

 Karlsruhe Reports in Informatics 2016,2
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

The CoCoME Platform for

Collaborative Empirical Research
on Information System Evolution

 Robert Heinrich, Kiana Rostami, Ralf Reussner *

 2016

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

*Institute for Program Structures and Data Organization

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

http://creativecommons.org/licenses/by-nc-nd/3.0/de

Contents

1 Introduction 7

2 CoCoME Platform Overview 8

3 Evolution Subject 9
3.1 Plain Java Variant . 11
3.2 Service-oriented Variant . 11
3.3 Hybrid Cloud-based Variant . 13

4 Evolution Scenarios 14
4.1 Evolution Scenarios of the Plain Java Variant 14
4.2 Evolution Scenarios of the Hybrid Cloud-based Variant 14

4.2.1 Platform Migration . 14
4.2.2 Adding a Pick-up Shop . 15
4.2.3 Database Migration . 15
4.2.4 Adding a Service-Adapter . 16

5 Design Details for Evolution Scenarios 17
5.1 Replacing the Database . 17
5.2 Platform Migration . 17
5.3 Design Decision for the Hybrid Cloud-based Variant 26

5.3.1 Communication Model . 26
5.3.2 Basic Components . 29
5.3.3 Event Bus and Scopes . 30
5.3.4 Web Service Adapters . 30

5.4 Adding a Pick-up Shop . 31
5.4.1 Use Cases of the Pick-up Shop . 31
5.4.2 Design of the Pick-up Shop . 34

5.5 Adding a Service-Adapter . 40

6 Life-Cycle 48

7 Implementation of Evolution Scenarios 49
7.1 Platform Migration . 49
7.2 Adding a Pick-up Shop . 50

CONTENTS 3

7.3 Adding a Service-Adapter . 51
7.3.1 Service-Adapter API . 51
7.3.2 Libraries and Frameworks . 51

8 Conclusion 55

List of Figures

2.1 Overview of the Three Parts of the CoCoME Platform 8

3.1 Overview of the CoCoME Structure . 10
3.2 Use Cases of CoCoME . 10
3.3 Architecture Overview of the Plain Java Variant of CoCoME 12
3.4 Architecture Overview of the Service-oriented Variant of CoCoME 12

5.1 CoCoME Component Structure Before and After Change (Plain Java Variant). 18
5.2 First Part of the Sequence Diagram of the Process Sale Use Case. 19
5.3 Second Part of the Sequence Diagram of the Process Sale Use Case. 21
5.4 Sequence Diagram of the Process of Paying by Cash. 22
5.5 Sequence Diagram of Entering the Amount as Digits Through the Cash Box

Number Pad (Cashier). 23
5.6 Sequence Diagram of Paying by Credit Card. 24
5.7 Sequence Diagram of Outputting Information About the Sale and Persisting

the New State (Last Steps of a Sale) . 25
5.8 Coarse Structure of the Hybrid Cloud-based Variant of CoCoME 26
5.9 Architecture Overview of the Hybrid Cloud-based Variant of CoCoME 28
5.10 Changed Use Cases due to the Introduction of the Pick-up Shop 31
5.11 Hybrid Cloud-based Variant Component Structure After Adding the Pick-up

Shop (Added Components are Highlighted). 35
5.12 Sequence Diagram of Selecting a Store in the Pick-up Shop. 37
5.13 Sequence Diagram of the Process Online Sale Use Case of the Pick-up Shop. . 38
5.14 Sequence Diagram of Authenticating a User in the Pick-up Shop. 39
5.15 Sequence Diagram of Adding a new Credit Card of a Customer in the Pick-up

Shop. 39
5.16 Adding a Service-Adapter to CoCoME . 42
5.17 The Service-Provider Framework . 43
5.18 Generic Navigation in the Service-Provider Framework 44
5.19 Response ServiceAdapter . 45
5.20 Response ServiceProviderDatabase . 46
5.21 Response ServiceProviderBookSale . 47
5.22 Get-Request on ServiceProviderDatabase . 47

6.1 Overview of the CoCoMEP Life-Cycle . 48

LIST OF FIGURES 5

7.1 Overview of the project structure in the cloud-logic-service project of the
hybrid-cloud variant. 50

7.2 Overview of Format Parsing for Client Communication 52
7.3 The Lexer-Parser-Framework . 53
7.4 The Table-Framework . 54

Acknowledgement

We would like to thank our student assistants Tobias Pöppke and Giovanni Alessandro Giusa
for contributing to this Technical Report.

This work was supported by the DFG (German Research Foundation) under the Priority
Programme SPP1593: Design For Future – Managed Software Evolution.

1 Introduction

In industrial practice, many information systems are operated over decades. During operation
they face various modi�cations, e.g. due to emerging requirements, bug �xes, and environ-
mental changes, such as legal constraint or technology stack updates. In consequence, the
systems change continually which is referred to as software evolution [13]. Supporting soft-
ware evolution is a competitive advantage in software engineering. A variety of methods
aim at supporting di�erent aspects of software evolution. However, it is hard to assess their
e�ectiveness and to compare them due to divergent characteristics. Empirical research in
terms of case studies and controlled experiments is useful to validate these methods. However,
empirical studies on software evolution are rarely comprehensive. They only cover few of
the many aspects needed to study evolution such as (i) long time-frames of observation are
required to analyze changes, (ii) large amount of artifacts and (iii) various types of artifacts
are a�ected by evolution, (iv) artifacts repeatedly change, (v) changes partly build upon each
other, (vi) various stakeholders are involved, (vii) access to relevant project data, (viii) relevant
project data must be documented over long time spans, (ix) relevant context knowledge must
be documented beyond the code base and issue trackers.

To study evolution comprehensively we believe it is important to collaborate by joint research
in order to increase coverage of the aspects. Joint research supports sharing of knowledge
and resources [16]. In particular, this allows replicating studies which in general is important
to con�rm and to strengthen results of empirical research [11] and thus enhance evidence.
Our goal is to support joint research by collaboration and replication in empirical studies
based on common evolution scenarios and artifacts. Currently, empirical studies on software
evolution are seldom comparable as they vary in analyzed subjects and execution process.
Furthermore, these studies are seldom reusable as important artifacts (e.g., requirements, design
decisions, or context knowledge) are often not provided to the community. To the best of our
knowledge, there is neither a community-accepted case study for software evolution nor a
common benchmark available. Consequently, a common basis for study collaboration and
replication is missing.

In this technical report, we propose CoCoMEP1 – a platform for collaborative empirical
research on information system evolution. Under a “platform" we understand a comprehen-
sive knowledge base for the evaluation process that can be exploited and extended by other
researchers with di�erent backgrounds and research interests. It provides assistance on diverse
characteristics important for software evolution, e.g. the life-cycle of the system, artifacts
in di�erent revisions, and comprehensive evolution scenarios. CoCoMEP builds upon the
established CoCoME case study [10] which is further evolved in the course of this report.

1The term is a combination of Common Component Modeling Example “CoCoME " [10] and “Platform"

2 CoCoME Platform Overview

In [8] we analyzed related work on empirical research and conducted a literature review. We
analyzed related work with regard to collaboration. In particular, we focused on replicability
and comparability that are both indispensable to enable research collaboration. The aim was to
learn from experiences in empirical research and derive requirements as basis for the design
of CoCoMEP. In the literature review we analyzed how well existing studies on software
evolution support the requirements identi�ed in related work. The shortcomings identi�ed in
the literature review clari�ed the need for improvement in case study research on information
system evolution as further described in [8].

We developed the research platform CoCoMEP depicted in Fig. 2.1 to address these shortcom-
ings. The platform consists of three parts – evolution subject, evolution scenario and evolution
life-cycle – which are described in detail in Sec. 3 through Sec. 6.

An evolution subject is the amount of artifacts in di�erent revisions (e.g., requirements,
design documents, source code, or monitoring data) that represent an information system. On
this account, the established CoCoME case study serves as a study subject (Sec. 3).

An evolution scenario describes changes to a certain evolution subject. We developed
examples of change scenarios in information system evolution and describe them in Sec. 4.

An evolution life-cycle integrates activities and their relationships required to implement
one or more evolution scenarios. We constructed sample activities in system development and
operation, and arranged them in life-cycle form (Sec. 6).

CoCoME

Variant

Platform Migration

Adding a Web Shop

Run-time Reconfig.

Design-time

Run-time

Evol. Subject Evol. Scenarios Evol. Life-Cycle

Figure 2.1: Overview of the Three Parts of the CoCoME Platform [8]

3 Evolution Subject

We use CoCoME as evolution subject in our platform. CoCoME has been set up initially in a GI
Dagstuhl research seminar as a common case study on which several methods in the context
of component-based software engineering have been applied. Since more and more people do
research on software evolution, CoCoME has been applied in new areas as a demonstrator for
software evolution methods.

CoCoME represents a trading system as it can be observed in a supermarket chain handling
sales. This includes processing sales at a single store of the chain, e.g scanning products or
paying, as well as enterprise-wide administrative tasks, e.g. inventory management or reporting.
An overview of the structure of CoCoME is given in Fig. 3.1. Each store of the CoCoME chain
contains several cash desks whereas the set of cash desks is called cash desk line. The cash desk
is the place where the cashier scans the goods a customer wants to buy. The central unit of each
cash desk is the cash desk PC. The cash desk line is connected to a store server. A set of stores
is organized in the CoCoME enterprise where an enterprise server exists to which all stores
are connected. Use cases supported by CoCoME are depicted in Fig. 3.2. A detailed description
of the initial requirements, architecture, and system behavior in form of sequence diagrams is
given in [10]. In the course of this report CoCoME faces changes by various evolution scenarios
while we present changes to requirements, architecture, and system behavior. The CoCoME
movie1 gives a quick introduction to CoCoME in the context of the DFG Priority Programme
1593.

Since CoCoME has been applied and evolved successfully in various research projects, e.g.
SLA@SOI2, Q-Impress3 or the DFG Priority Programme 15934, several variants exist that span
di�erent platforms and technologies, such as Plain Java code, service-oriented frameworks or
hybrid cloud architectures. Furthermore, various development artifacts are available, such as
requirements speci�cation or design documentation, that changed over time. CoCoME is well
suited to serve as a study subject because the supermarket context is commonly comprehensible
and the complexity of the system is appropriate. As CoCoME is a distributed system, several
quality properties are a�ected by evolution.

1http://www.dfg-spp1593.de/cocome
2http://sla-at-soi.eu
3www.q-impress.eu
4http://www.dfg-spp1593.de

http://www.dfg-spp1593.de/cocome
http://sla-at-soi.eu
www.q-impress.eu
http://www.dfg-spp1593.de

10 EVOLUTION SUBJECT

Figure 3.1: Overview of the CoCoME Structure

Figure 3.2: Use Cases of CoCoME [10]

PLAIN JAVA VARIANT 11

3.1 Plain Java Variant

The Plain Java variant of CoCoME was the outcome of the GI Dagstuhl seminar on component-
based software engineering. The architecture of the Plain Java variant is depicted in Fig. 3.3. The
Plain Java variant of CoCoME uses Java SE in combination with Java Database Connectivity
(JDBC), the Java Persistence API (JPA) and the Java Message Service (JMS). JMS is used
to provide a way for communication between the components. The main component is
the TradingSystem component. It consists of the TradingSystem::CashDeskLine component
and the TradingSystem::Inventory component. The TradingSystem::CashDeskLine in turn
consists of several CashDesk components representing the physical cash desks in a store
with their corresponding components. There is one Coordinator component per store which
receives sales events from the cash desks and changes the express mode state if needed.
The TradingSystem::Inventory consists of the Console component which provides a user
interface for store related operations through its Store component. The Console::Reporting
component provides the user interface to retrieve enterprise or store reports. The central
component of the TradingSystem::Inventory is the Application component. It provides the
cash desk and the store user interface the operations to retrieve data and to book sales. The
data is transferred in the form of Transfer Objects to provide an abstraction layer between the
database and the other components. To retrieve the reporting information for the presentation
layer, the Application::Reporting component provides the needed interface. There is also a
ProductDispatcher component available to dispatch needed stocks from one store to another if
necessary. A connection to the underlying database is realized by the Data component which
relies on JDBC and JPA to persist and retrieve data. It is divided into three sub-components,
Store, Enterprise and Persistence. The Store and Enterprise components are only used to query
store or enterprise data, whereas the Persistence component writes objects to the database. See
[10] for inner, more detailed component structure.

3.2 Service-oriented Variant

The service-oriented variant of CoCoME has been developed in the SLA@SOI research project.
In the project CoCoME served as an open reference demonstrator. For constructing the service-
oriented variant, CoCoME was extended with additional Web Service layer on top of the
original CoCoME components. An architecture overview of the service-oriented variant is
depicted in Fig. 3.4. A diverse set of deployment options was achieved by complete separation
of the application logic from the data model and the service composition layer. The application
was transformed into a manageable and SLA-aware application ready to be deployed with the
SLA@SOI framework.

See project report Deliverable D.B2b Reference Demonstrator5 for design documentation of
the service-oriented variant of CoCoME.

5http://sla-at-soi.eu/wp-content/uploads/2011/08/D.B2b-M38-Reference_Demonstrator.pdf

http://sla-at-soi.eu/wp-content/uploads/2011/08/D.B2b-M38-Reference_Demonstrator.pdf

12 EVOLUTION SUBJECT

«component»
:Data

«component»
:Reporting

«component»
:Store

«component»
:Console

«component»
:Enterprise

«component»
:Persistence

«component»
:Store

«component»
TradingSystem::Inventory

«component»
:Application

«component»
:ProductDispatcher

«component»
:Reporting

«component»
:Store

«component»
TradingSystem::CashDeskLine

«component»
:Coordinator

«component»
:JMSEventBus

«component»
:CardReader

«component»
:UserDisplay

«component»
:Printer

«component»
:BarcodeScanner

«component»
:ExpressLight

«component»
:CashBox

«component»
:CashDesk

AccountSaleEvent

IReporting

IStoreInventoryManager

IBank

 IEnterpriseQuery

IPersistence

IStoreQuery

IStoreInventory

Figure 3.3: Architecture Overview of the Plain Java Variant of CoCoME [10]

Figure 3.4: Architecture Overview of the Service-oriented Variant of CoCoME

HYBRID CLOUD-BASED VARIANT 13

3.3 Hybrid Cloud-based Variant

The hybrid cloud-based variant of CoCoME was developed in the DFG Priority Programme
Design For Future - Managed Software Evolution (SPP 1593) [4]. This variant of CoCoME is using
Java EE technologies for both the frontend and the backend. The hybrid cloud-based variant
of CoCoME evolved from the Plain Java variant by implementing the evolution scenarios
described in Sec. 4.2.

A coarse-grained component diagram of the hybrid cloud-based variant of CoCoME is shown
in Fig. 5.8. The frontend uses Java Server Faces (JSF) to implement the user interface. In the
WebFrontend::UseCases component the presentation logic is implemented which uses the com-
ponents in the TradingSystem component to store the data retrieved from the ServiceAdapter.
The ServiceAdapter component de�nes and implements an interface for database access and
internally uses JDBC and JPA to access the underlying database. To query the database, the Ser-
viceAdapter provides a Representational State Transfer (REST) style interface over Hypertext
Transfer Protocol (HTTP) further described in Sec. 5.5.

Additional abstraction layers are introduced for the communication between the presentation
layer and the business logic. These layers are located in the WebService component. The
inner structure of the TradingSystem was nearly left unchanged as shown in the �ne-grained
component diagram in Fig. 5.9. One exception is the event bus. Instead of the JMS event bus
the Context and Dependency Injection (CDI) event bus is used. Another change is that the
components in Data now use the ServiceAdapter instead of the database directly. This allows for
more �exibility in the cloud context. The newly introduced WebService::CashDesk component
provides the frontend with a way to access the cash desk components. It is designed as a wrapper
around the business logic so the method of accessing the business logic can be exchanged
just by exchanging the wrapper classes. This is also the purpose of the WebService::Inventory
component. The WebService::Inventory contains the Enterprise component to enable the
frontend to access enterprise related information. This is necessary to enable several tasks
needed for database administration like the listing of all stores in a speci�c enterprise. Design
details are given in Sec. 5.

4 Evolution Scenarios

We implemented distinct evolution scenarios covering the categories adaptive and perfective
evolution. Corrective evolution is not considered in the scenarios as this merely refers to
�xing design or implementation issues. The scenario “Replacing the Database" re�ects an
adaptive evolution of the Plain Java variant of CoCoME (Sec. 4.1). An adaptive evolution of the
hybrid cloud-based variant is re�ected in the scenario “Platform Migration" due to evolving
technology (Sec. 4.2.1). A perfective evolution is represented in the scenario “Adding a Pick-up
Shop" by emerging user requirements (Sec. 4.2.2). Furthermore, in order to accommodate the
self-adaptiveness of modern software architectures, recon�guration during system operation
is addressed in the scenario “Database Migration" (Sec. 4.2.3). "Adding a Service-Adapter" is
another perfective evolution scenario to facilitate the further extension of the hybrid cloud-
based variant (Sec. 4.2.4).

4.1 Evolution Scenarios of the Plain Java Variant

The evolution scenario Replacing the Database refers to the Plain Java variant of CoCoME
[9]. In the scenario, CoCoME faces performance issues. In order to avoid them the company
which operates CoCoME decides to replace the existing database. They shift away from a
relational database (e.g., MySQL) to a non-relational database (e.g., CouchDB). Artifacts a�ected
by this evolution scenario are described in [12].

4.2 Evolution Scenarios of the Hybrid Cloud-based Variant

This section introduces the four evolution scenarios of the hybrid cloud-based variant of
CoCoME.

4.2.1 PlatformMigration

The CoCoME company must reduce operating costs of the resources and, therefore, migrates
some resources to the cloud. The enterprise server and its connected database are now running
in the cloud.

The introduction of the cloud enables �exible adaptation and recon�guration of the system,
however, causes new challenges regarding aforementioned quality properties which must be
considered in development and operation. For example, a look back in the recent past shows
that privacy is one of the most important quality properties for cloud systems.

EVOLUTION SCENARIOS OF THE HYBRID CLOUD-BASED VARIANT 15

4.2.2 Adding a Pick-up Shop

where the customers can order online and pick-up the goods at a chosen store. This design-time
modi�cation includes adding new use cases and modifying existing design models.

The CoCoME company is in competition with online shop vendors (such as Amazon). In
order to increase its market share, the CoCoME company management decides to o�er a pick-up
service for goods to address emerging customer requirements. The customers can order and pay
online. The goods are delivered to a pick-up place (i.e. a store) of her/his choice, for example in
the neighborhood or the way to work. If the order has not been paid online, the goods have to
be paid at the pick-up place (either per credit card or cash). Modi�cations regarding the use
cases of the pick-up shop are depicted in Fig. 5.10. By introducing the pick-up shop as web
application, the CoCoME system is transforms from a closed system (only employees can access
and access depends on the location, e.g. a store) to an open system (customers can accessed via
internet). This raises certain consequences such that the number of users is not restricted any
longer. Hence, various quality properties are a�ected, e.g. privacy, security, performance, and
reliability.

4.2.3 Database Migration

After a while, the CoCoME company starts a big advertise campaign. Advertisements lead
to an increased amount of sales. Thus, the performance of the system may su�er due to
limited capacities of the cloud provider currently hosting the enterprise database. Migrating
the database from one cloud provider to another may solve the scalability issues.

Especially in the cloud, the application usage, performance, pricing and privacy are closely
interrelated. The application usage impacts on the application’s performance and pricing. Con-
tinuously appraised elasticity rules trigger the migration and replication of cloud application’s
software components among geographically distributed data centers. Both, migration and
replication, may lead to the violation of privacy policies that prescribe certain geo-locations.
Furthermore, a cloud application may also face performance/availability trade-o�s as replica-
tion is often done for improving the system’s overall availability, not just performance, which
again might violate privacy policies [6].

This scenario represents a recon�guration at run-time. Migrating the database may cause a
privacy issue due to violations of privacy constraints [5]. According to a privacy constraint1 of
the European Union (EU) sensitive data must not leave the EU. Since the CoCoME enterprise is
located within the EU its databases containing customer data must be hosted on data centers
within the EU. This scenario is about dynamic analysis of cloud applications at run-time to
identify upcoming quality �aws. It includes model-based observation and prediction techniques
in �exible environments [6].

1http://eur-lex.europa.eu

http://eur-lex.europa.eu

16 EVOLUTION SCENARIOS

4.2.4 Adding a Service-Adapter

CoCoME grew in size and complexity due to prior evolution scenarios. It is hard to extend the
system because a large code-base must be understood by developers beforehand. Therefore,
a Service-Adapter is added to the system which facilitates the further extension of CoCoME.
It provides an additional layer to extend CoCoME by REST-Services. The Service-Adapter is
composed of a set of services each of which can be browsed via a catalog and provides a certain
functionality. Using the Service-Adapter the set of available functionality can extended easily
by adding new services.

5 Design Details for Evolution Scenarios

In this chapter we provide the detailed design documentation for each of the evolution scenarios
introduced in the prior section. Sec. 5.1 sketches modi�cations to the design of the Plain Java
variant by the evolution scenario Replacing the Database. Sec. 5.2 describes the evolution of
the Plain Java variant to the hybrid cloud-based variant by the scenario Platform Migration.
Detailed design decisions regarding this evolution are described in Sec. 5.3. The hybrid cloud-
based variant is further modi�ed in Sec. 5.4 by the evolution scenario Adding a Pick-up Shop
and in Sec. 5.5 by the scenario Adding a Service-Adapter.

5.1 Replacing the Database

Replacing a relational database by a non-relational database raises certain consequences. Since
JDBC has just been developed to provide a connection to relational databases, the interface has
to be replaced, too. This is visualized in Fig. 5.1 by comparing the component structure before
and after change. Moreover, in the given scenario, the Data component is a�ected by changing
the Database component as depicted in the �gure.

5.2 PlatformMigration

The evolution scenario Platform Migration transfers the Plain Java variant of CoCoME to the
hybrid cloud-based variant. As mentioned before, for the design of the hybrid cloud-based
variant additional abstraction layers are introduced for the communication between the pre-
sentation layer and the business logic. These layers are located in the WebService::CashDesk
and WebService::Inventory components depicted in Fig. 5.9. The WebService::CashDesk com-
ponent provides the frontend with a way to access the cash desk components. The Web-
Service::Inventory component enables the frontend to access enterprise related information.
Wrappers are designed around the business logic so the method of accessing the business logic
can be exchanged just by exchanging the wrapper classes.

An important task of the wrappers in WebService::CashDesk is to activate and deactivate the
correct scope for the cash desk components to run in. Because the cash desk components are
stateful, it is necessary that a method is called on the correct component. The CashDeskSes-
sionScoped scope stores the states of the cash desk components of every cash desk and the
correct scope has to be active when invoking a method on a cash desk. To activate the correct
scope, the wrapper uses the name of the cash desk and the identi�er of its containing store.

The deployment of the hybrid cloud-based variant is similar to the plain Java variant. In

18 DESIGN DETAILS FOR EVOLUTION SCENARIOS

Figure 5.1: CoCoME Component Structure Before and After Change (Plain Java Variant).

Fig. 5.9 the deployment of a component is annotated in brackets. If there is no deployment
annotated to a component, it is the same as for the containing component. The store server
includes the components WebService::CashDesk, WebService::Inventory::Store, TradingSys-
tem::CashDeskLine, TradingSystem::Inventory::Application::Store, TradingSystem::Inventory::
Data::Store as well as the External::Bank component. The enterprise server includes all re-
maining components of the WebService and TradingSystem components and both servers
access the data they need through the Service-Adapter. In addition to those components, the
WebFrontend::UseCases component is deployed on a separate server. The Service-Adapter may
be deployed on the enterprise server or on a separate database server.

As a behavioral overview of the evolved cloud-based variant of CoCoME, it su�ces to look at
the Process Sale use case introduced in Herold et al. [10]. This use case gives a good overview
of the interactions between all system components during a sale. Because the business logic
was merged from the monolithic variant, the behavior did not change for the other use cases
except for the calls to the wrapper classes. Therefore, see the behavioral view of the original
monolithic variant for further details. Note, interface names are used in the following to denote
that an implementation of the interface is injected into the calling component via a dependency
injection mechanism.

Figures 5.2 and 5.3 show the sequence diagram of the Process Sale use case in the evolved
cloud-based variant. To start the sale, the cashier presses the "Start New Sale" button at an
instance of NewSaleProcess in the WebFrontend. This initiates a call to the pressControlKey
method in the ICashBox wrapper which in turn activates the correct CashDeskSessionScoped
instance for the cash desk on which this operation should be executed. The scope is addressed
by the store identi�er and the cash desk name.

The wrapper then calls the method on the ICashBoxModel, which then proceeds to send
a SaleStartedEvent over the event bus to notify other components of the new sale. Those
components can then reset their state accordingly. When all components have been noti�ed

PLATFORM MIGRATION 19

S
et

 o
f m

od
el

s
th

at

w
er

e
ch

an
ge

d
du

rin
g

th
e

ev
en

t

:N
ew

S
al

eP
ro

ce
ss

:S
er

vi
ce

A
da

pt
er

:G
et

X
M

LF
ro

m
B

ac
ke

nd

:IS
to

re
Q

ue
ry

:IS
to

re
In

ve
nt

or
y

:IU
se

rD
is

pl
ay

M
od

el

:IU
se

rD
is

pl
ay

E
ve

nt
H

an
dl

er

:IP
rin

te
rM

od
el

:IP
rin

te
rE

ve
nt

H
an

dl
er

:IC
as

hD
es

kM
od

el
:IC

as
hD

es
kE

ve
nt

H
an

dl
er

:IB
ar

co
de

S
ca

nn
er

M
od

el

C
as

hD
es

kS
es

si
on

S
co

pe
d

lo
o

p
[w

hi
le

 m
or

e
ite

m
s

to
 s

ca
n]

:IB
ar

co
de

S
ca

nn
er

:IN
am

ed
S

es
si

on
C

on
te

xt

:IU
se

rD
is

pl
ay

M
od

el
:IU

se
rD

is
pl

ay
E

ve
nt

H
an

dl
er

:IP
rin

te
rM

od
el

:IP
rin

te
rE

ve
nt

H
an

dl
er

:IC
as

hD
es

kM
od

el
:IC

as
hD

es
kE

ve
nt

H
an

dl
er

C
as

hD
es

kS
es

si
on

S
co

pe
d

:C
D

IE
ve

nt
B

us

:IC
as

hB
ox

M
od

el

:IC
as

hB
ox

sd P
ro

ce
ss

 S
al

e
(P

ar
t 1

)

P
re

ss
 b

ut
to

n
"S

ca
n

B
ar

co
de

"
ac

tiv
at

e(
...

)

P
re

ss
 b

ut
to

n
"S

ta
rt

 N
ew

 S
al

e"

S
et

<
C

la
ss

>

de
ac

tiv
at

eC
ur

re
nt

C
on

te
xt

()

on
E

ve
nt

(.
..)

se
tC

on
te

nt
(.

..)

pr
in

tT
ex

t(
...

)
on

E
ve

nt
(.

..)

fir
e(

R
un

ni
ng

T
ot

al
C

ha
ng

ed
E

ve
nt

)

P
ro

du
ct

W
ith

S
to

ck
Ite

m
T

O

ge
tD

at
a(

qu
er

y)
ge

tS
to

ck
Ite

m
s(

qu
er

y)
qu

er
yS

to
ck

Ite
m

(
st

or
eI

D
, b

ar
co

de
)

ge
tP

ro
du

ct
W

ith
S

to
ck

Ite
m

(
st

or
eI

D
, b

ar
co

de
)

ad
dI

te
m

T
oS

al
e(

ba
rc

od
e)

on
E

ve
nt

(.
..)

fir
e(

P
ro

du
ct

B
ar

co
de

S
ca

nn
ed

E
ve

nt
)

se
nd

P
ro

du
ct

B
ar

co
de

(b
ar

co
de

)

se
nd

P
ro

du
ct

B
ar

co
de

(
na

m
e,

 s
to

re
ID

,
ba

rc
od

e)

de
ac

tiv
at

eC
ur

re
nt

C
on

te
xt

()

ac
tiv

at
e(

...
)

S
et

<
C

la
ss

>

se
tC

on
te

nt
(.

..)
on

E
ve

nt
(.

..)

pr
in

tT
ex

t(
...

)
on

E
ve

nt
(.

..)

st
ar

tS
al

e(
...

)
on

E
ve

nt
(.

..)
fir

e(
S

al
eS

ta
rt

ed
E

ve
nt

)
pr

es
sC

on
tr

ol
K

ey
(

"S
T

A
R

T
_S

A
LE

")

pr
es

sC
on

tr
ol

K
ey

(
na

m
e,

 s
to

re
ID

,
"S

T
A

R
T

_S
A

LE
")

Fi
gu

re
5.2

:F
irs

tP
ar

to
ft

he
Se

qu
en

ce
D

ia
gr

am
of

th
e

Pr
oc

es
sS

al
e

Us
e

Ca
se

.

20 DESIGN DETAILS FOR EVOLUTION SCENARIOS

and the operation on the ICashBoxModel returned, the wrapper deactivates the scope. There
also exists a listener that listens to ContentChangedEvents. Those events are �red when the
state of a component changes and the names of the components that had their state changed
since the last check can be retrieved from the listener. All wrappers return a set of names of
changed components to the caller, so that the caller may poll their new state subsequently.
Now the cash desk is ready to scan items and add them to the sale.

New items are added when the cashier scans the barcode of a product or inputs the barcode
manually. Because of the WebFrontend of this variant of CoCoME it is only possible to input
the barcode manually and then press the button "Scan Barcode". This again triggers the
activation of the correct scope and forwards the event to the IBarcodeScannerModel component.
A ProductBarcodeScannedEvent is �red and the ICashDeskModel queries the product information
for the scanned item from the database by calling getProductWithStockItem on its IStoreInventory
component. This in turn queries the database through the ServiceAdapter to get the needed
information. This process is repeated as long as there are items to add to the sale.

If no more items are left to be scanned, the customer may choose to pay by cash or by credit
card. The process of paying by cash is depicted in the sequence diagram in Fig. 5.4 and the
process of paying by credit card in Fig. 5.6. The cashier may start the payment process by
either clicking on the "Pay by Cash" or "Pay by Credit Card" button. Clicking either one of
them will result in a call to ICashBoxModel to �nish the sale and �re a SaleFinishedEvent.

If the customer chose to pay by cash, the next step is to �re a PaymentModeSelectedEvent
from ICashBoxModel. The cashier can then either directly enter the received cash amount or
type the amount on the number pad of the cash box. Because there is only a WebFrontend in
the cloud-based variant, the cashier has to enter the amount directly. The process of typing in
the digits at the cash box is shown in Fig. 5.5. In both cases when the amount was entered a
CashAmountEnteredEvent is �red to update the other components with the received amount.
Directly after that, the ICashDeskModel calculates the change amount and sends it to the
listening components via a ChangeAmountCalculatedEvent. This causes the cash box to open,
so the cashier can collect the cash amount and return the change to the customer. When closing
the cash box, the sale is getting booked to the database.

If the customer wants to pay by credit card, ICashBoxModel �res the corresponding Pay-
mentModeSelectedEvent. The customer then enters her/his credit card info and her/his credit
card PIN until the IBank returns a valid transaction and a positive DebitResult or the customer
chooses to pay by cash.

To account for a sale, paid either by cash or by card, and to persist the new stock item
amounts, the �nish sale sequence is called. Fig. 5.7 shows the steps in this procedure. First, an
AccountSaleEvent is �red which signals the IStoreEventHandler to account the sale and update
the database. After that, the cash desk components get informed that the sale was successful
by a SaleSuccessEvent and �nally the ICoordinator is called through a SaleRegisteredEvent. The
coordinator then checks if the cash desk should switch to express mode or not. If express mode
is required, it �res an ExpressModeEnabledEvent. In contrast to the original Plain Java variant
of CoCoME, it is not yet possible to queue changes while the ServiceAdapter is not reachable.

PLATFORM MIGRATION 21

:C
D

IE
ve

nt
B

us
:IN

am
ed

S
es

si
on

C
on

te
xt

:IC
as

hB
ox

:N
ew

S
al

eP
ro

ce
ss

sd P
ro

ce
ss

 S
al

e
(P

ar
t 2

)

re
f

S
eq

C
ar

dP
ay

m
en

t

re
f

S
eq

C
as

hP
ay

m
en

t

al
t

[U
se

r
w

an
ts

 to
 p

ay
 b

y
ca

sh
]

[U
se

r
w

an
ts

 to
 p

ay
 b

y
cr

ed
it

ca
rd

]

:IP
rin

te
rM

od
el

:IC
as

hD
es

kM
od

el
:IC

as
hD

es
kE

ve
nt

H
an

dl
er

:IC
as

hB
ox

M
od

el

C
as

hD
es

kS
es

si
on

S
co

pe
d

P
re

ss
 b

ut
to

n
"P

ay
 B

y
C

as
h"

or

 "
P

ay
 b

y
C

re
di

t C
ar

d"

pr
es

sC
on

tr
ol

K
ey

("
F

IN
IS

H
_S

A
LE

")

pr
in

tT
ex

t(
...

)
on

E
ve

nt
(.

..)

:IP
rin

te
rE

ve
nt

H
an

dl
er

fin
is

hS
al

e(
...

)
on

E
ve

nt
(.

..)
fir

e(
S

al
eF

in
is

he
dE

ve
nt

)

de
ac

tiv
at

eC
ur

re
nt

C
on

te
xt

()

ac
tiv

at
e(

...
)

S
et

<
C

la
ss

>

pr
es

sC
on

tr
ol

K
ey

(
na

m
e,

 s
to

re
ID

,
"F

IN
IS

H
_S

A
LE

") Fi
gu

re
5.3

:S
ec

on
d

Pa
rt

of
th

e
Se

qu
en

ce
D

ia
gr

am
of

th
e

Pr
oc

es
sS

al
e

Us
e

Ca
se

.

22 DESIGN DETAILS FOR EVOLUTION SCENARIOS

:IP
rinterE

ventH
andler

:IP
rinterM

odel
:IU

serD
isplayM

odel
:IU

serD
isplayE

ventH
andler

:IC
ashD

eskM
odel

C
ashD

eskS
essionS

coped

:IP
rinterM

odel
:IP

rinterE
ventH

andler
:IU

serD
isplayM

odel
:IU

serD
isplayE

ventH
andler

:IC
ashD

eskM
odel

:IC
ashD

eskE
ventH

andler
:IC

ashB
oxM

odel

C
ashD

eskS
essionS

coped

:IC
ashD

esk

ref

[S
eqE

nterD
igits]

alt

[C
ashier uses cash box num

pad]

[C
ashier uses w

eb frontend]

:IU
serD

isplayM
odel

:IU
serD

isplayE
ventH

andler
:IC

ashD
eskM

odel
:IC

ashD
eskE

ventH
andler

:C
D

IE
ventB

us

:IC
ashB

oxM
odel

C
ashD

eskS
essionS

coped

:IN
am

edS
essionC

ontext
:IC

ashB
ox

:N
ew

S
aleP

rocess

sdP
rocess S

ale::C
ash P

aym
ent

S
et<

C
lass>

S
et<

C
lass>

deactivateC
urrentC

ontext()

onE
vent(...)

printT
ext(...)

onE
vent(...)

setC
ontent(...)

fire(
C

hangeA
m

ountC
alculatedE

vent)

onE
vent(...)

printT
ext(...)

onE
vent(...)

fire(
C

ashA
m

ountE
nteredE

vent)

startC
ashP

aym
ent(am

ount)

activate(...)
startC

ashP
aym

ent(nam
e,

storeID
, am

ount)

C
lose cash box

ref

S
eqF

inishS
ale

deactivateC
urrentC

ontext()

finishC
ashP

aym
ent(...)

onE
vent(...)

fire(C
ashB

oxC
losedE

vent)
close()

activate(...)
close(

nam
e, storeID

)

E
nter am

ount
and press button

"P
ay"

S
et<

C
lass>

setC
ontent(...)

onE
vent(...)

selectP
aym

entM
ode(...)

onE
vent(...)

fire(
P

aym
entM

odeS
electedE

vent)

pressC
ontrolK

ey("C
A

S
H

_P
A

Y
M

E
N

T
")

deactivateC
urrentC

ontext()

activate(...)
pressC

ontrolK
ey(

nam
e, storeID

,
"C

A
S

H
_P

A
Y

M
E

N
T

")

P
ress button

"P
ay B

y C
ash"

Figure
5.4:Sequence

D
iagram

ofthe
ProcessofPaying

by
Cash.

PLATFORM MIGRATION 23

lo
o

p

[U
nt

il
"E

nt
er

"
bu

tto
n

pr
es

se
d]

:IU
se

rD
is

pl
ay

E
ve

nt
H

an
dl

er
:IU

se
rD

is
pl

ay
M

od
el

C
as

hD
es

kS
es

si
on

S
co

pe
d

:IC
as

hB
ox

M
od

el

sd P
ro

ce
ss

 S
al

e:
:C

as
h

P
ay

m
en

t::
E

nt
er

D
ig

its

:C
D

IE
ve

nt
B

us
:IN

am
ed

S
es

si
on

C
on

te
xt

:IC
as

hB
ox

:N
ew

S
al

eP
ro

ce
ss

:IC
as

hB
ox

E
ve

nt
H

an
dl

er
:IC

as
hD

es
kM

od
el

:IC
as

hD
es

kE
ve

nt
H

an
dl

er
:IP

rin
te

rM
od

el
:IP

rin
te

rE
ve

nt
H

an
dl

er
:IU

se
rD

is
pl

ay
M

od
el

:IU
se

rD
is

pl
ay

E
ve

nt
H

an
dl

er
:IC

as
hB

ox
M

od
el

C
as

hD
es

kS
es

si
on

S
co

pe
d

de
ac

tiv
at

eC
ur

re
nt

C
on

te
xt

()

se
le

ct
P

ay
m

en
tM

od
e(

...
)

on
E

ve
nt

(.
..)

fir
e(

C
as

hB
ox

N
um

pa
dK

ey
pr

es
sE

ve
nt

)

pr
es

sN
um

pa
dK

ey
(d

ig
it)

ac
tiv

at
e(

...
)

pr
es

sN
um

pa
dK

ey
(

na
m

e,
 s

to
re

ID
, d

ig
it)

P
re

ss
 d

ig
it

bu
tto

n

op
en

()
on

E
ve

nt
(.

..)

pr
in

tT
ex

t(
...

)
on

E
ve

nt
(.

..)

se
tC

on
te

nt
(.

..)
on

E
ve

nt
(.

..)
fir

e(
C

ha
ng

eA
m

ou
nt

C
al

cu
la

te
dE

ve
nt

)

st
ar

tC
as

hP
ay

m
en

t(
...

)
on

E
ve

nt
(.

..)

pr
in

tT
ex

t(
...

)
on

E
ve

nt
(.

..)

on
E

ve
nt

(.
..)

fir
e(

C
as

hA
m

ou
nt

E
nt

er
ed

E
ve

nt
)

de
ac

tiv
at

eC
ur

re
nt

C
on

te
xt

()

ac
tiv

at
e(

...
)

pr
es

sN
um

pa
dK

ey
("

E
N

T
E

R
")

pr
es

sN
um

pa
dK

ey
(

na
m

e,
 s

to
re

ID
, "

E
N

T
E

R
")

P
re

ss
 "

E
nt

er
"

bu
tto

n Fi
gu

re
5.5

:S
eq

ue
nc

e
D

ia
gr

am
of

En
te

rin
g

th
e

A
m

ou
nt

as
D

ig
its

Th
ro

ug
h

th
e

Ca
sh

Bo
x

N
um

be
rP

ad
(C

as
hi

er
).

24 DESIGN DETAILS FOR EVOLUTION SCENARIOS

alt

[If debitR
esult =

=
 D

ebitR
esult.O

K
]

[If debitR
esult =

=
 D

ebitR
esult.IN

V
A

LID
_T

R
A

N
S

A
C

T
IO

N
_ID

 or D
ebitR

esult.IN
S

U
F

F
IC

IE
N

T
_B

A
LA

N
C

E
]

:IU
serD

isplayM
odel

:IU
serD

isplayE
ventH

andler
:IC

ashD
eskM

odel
:IC

ashD
eskE

ventH
andler

:IC
ardR

eaderM
odel

lo
o

p

[U
ntil transactionID

 !=
 null and debitR

esult=
=

D
ebitR

esult.O
K

C
ashD

eskS
essionS

coped

:IC
ardR

eader

sdP
rocess S

ale::C
ard P

aym
ent

:IU
serD

isplayM
odel

:IU
serD

isplayE
ventH

andler
:IC

ashD
eskM

odel
:IC

ashD
eskE

ventH
andler

:C
D

IE
ventB

us

:IC
ashB

oxM
odel

C
ashD

eskS
essionS

coped

:IN
am

edS
essionC

ontext
:IC

ashB
ox

:N
ew

S
aleP

rocess

sendC
reditC

ardP
in(

nam
e, storeID

,
pin)

S
cope gets deactivated

and activated again

sendC
reditC

ardP
in(pin)

deactivateC
urrentC

ontext()

setC
ontent(...)

onE
vent(...)

fire(
InvalidC

reditC
ardE

vent)

ref

S
eqF

inishS
ale

finishC
reditC

ardP
aym

ent(
pin)

onE
vent(...)

fire(
C

reditC
ardP

inE
nteredE

vent)

setC
ontent(...)

onE
vent(...)

startC
reditC

ardP
aym

ent(
cardInfo)

onE
vent(...)

fire(
C

reditC
ardS

cannedE
vent)

sendC
reditC

ardInfo(cardInfo)

activate(...)
sendC

reditC
ardInfo(

nam
e, storeID

,
cardInfo)

E
nter card info and

pin

S
et<

C
lass>

setC
ontent(...)

onE
vent(...)

selectP
aym

entM
ode(...)

onE
vent(...)

fire(
P

aym
entM

odeS
electedE

vent)

pressC
ontrolK

ey(
"C

R
E

D
IT

_C
A

R
D

_P
A

Y
M

E
N

T
")

deactivateC
urrentC

ontext()

activate(...)
pressC

ontrolK
ey(

nam
e, storeID

,
"C

R
E

D
IT

_C
A

R
D

_P
A

Y
M

E
N

T
")

P
ress button

"P
ay B

y C
ard"

Figure
5.6:Sequence

D
iagram

ofPaying
by

CreditCard.

PLATFORM MIGRATION 25

:IE
xp

re
ss

Li
gh

tM
od

el
:IC

as
hD

es
kE

ve
nt

H
an

dl
er

al
t

[E
xp

re
ss

 m
od

e
is

 n
ee

de
d]

:IE
xp

re
ss

Li
gh

tE
ve

nt
H

an
dl

er

sd P
ro

ce
ss

 S
al

e:
:F

in
is

h
S

al
e

:C
D

IE
ve

nt
B

us

U
pd

at
e

st
at

is
tic

s

:IC
oo

rd
in

at
or

:IP
rin

te
rM

od
el

:IP
rin

te
rE

ve
nt

H
an

dl
er

:IU
se

rD
is

pl
ay

M
od

el
:IU

se
rD

is
pl

ay
E

ve
nt

H
an

dl
er

:S
er

vi
ce

A
da

pt
er

:IB
ac

ke
nd

C
on

ne
ct

io
n

:IP
er

si
st

en
ce

C
on

te
xt

:IS
to

re
In

ve
nt

or
yM

an
ag

er
:IS

to
re

E
ve

nt
H

an
dl

er

:IC
as

hD
es

kM
od

el

C
as

hD
es

kS
es

si
on

S
co

pe
d

tu
rn

E
xp

re
ss

Li
gh

tO
n(

)
on

E
ve

nt
(.

..)

se
tC

on
te

nt
(.

..)
on

E
ve

nt
(.

..)

on
E

ve
nt

(.
..)

fir
e(

E
xp

re
ss

M
od

eE
na

bl
ed

E
ve

nt
)

F
in

is
h

S
al

e

on
E

ve
nt

()
fir

e(
S

al
eR

eg
is

te
re

dE
ve

nt
)

pr
in

tT
ex

t(
...

)
on

E
ve

nt
(.

..)

se
tC

on
te

nt
(.

..)
on

E
ve

nt
(.

..)
fir

e(
S

al
eS

uc
ce

ss
E

ve
nt

)

se
tD

at
a(

...
)

se
nd

U
pd

at
eQ

ue
ry

(.
..)

up
da

te
E

nt
ity

(.
..)

ac
co

un
tS

al
e(

...
)

on
E

ve
nt

(.
..)

fir
e(

A
cc

ou
nt

S
al

eE
ve

nt
)

en
ab

le
E

xp
re

ss
M

od
e(

)

Fi
gu

re
5.7

:S
eq

ue
nc

e
D

ia
gr

am
of

O
ut

pu
tti

ng
In

fo
rm

at
io

n
A

bo
ut

th
e

Sa
le

an
d

Pe
rs

ist
in

g
th

e
N

ew
St

at
e

(L
as

tS
te

ps
of

a
Sa

le
)

26 DESIGN DETAILS FOR EVOLUTION SCENARIOS

«component»
WebFrontend::UseCases

«component»
:ServiceAdapter

«web service»
WebService::Inventory

«component»
TradingSystem::Inventory

«component»
TradingSystem::CashDeskLine

«web service»
WebService::CashDesk

IUserManagerIAuthenticator

IEnterpriseManager

IStoreManager

IEnterpriseReporting

ServiceAdapterIReportingIStoreInventoryManager

AccountSaleEventIStoreInventory

ICashDeskModelICardReaderModelIUserDisplayModelIPrinterModelIBarcodeScannerModelIExpressLightModelICashBoxModel

ICashDesk

ICardReader

IUserDisplay
IPrinter

IBarcodeScanner

IExpressLight
ICashBox

Figure 5.8: Coarse Structure of the Hybrid Cloud-based Variant of CoCoME

5.3 Design Decision for the Hybrid Cloud-based Variant

To achieve the functionality and the ability to deploy the evolved variant in the cloud, several
design decisions had to be made. These decisions concern the basic components of which the
components will be composed, the event bus to be used and the scopes for each component.
Also the decision to implement the web service via an additional wrapper layer will be discussed,
as well as the communication model for this web service.

5.3.1 Communication Model

To achieve the separation of presentation layer and the business logic layer in a way that
enables the system to be deployed on di�erent servers in a cloud, it is necessary to decide in
which way the layers communicate with each other. The most popular way to solve this, is
the use of web service interfaces, because they provide a method to integrate di�erent layers
in a Remote Procedure Call (RPC) style. The decision which communication model to use for
communication between the presentation layer and the business logic layer is explained here.

Table 5.1: Comparison between the supported concepts of REST and WS-* web services.
Supported Concept RESTful WS-*
Contract Design

Contract-�rst X
Continued on next page

DESIGN DECISION FOR THE HYBRID CLOUD-BASED VARIANT 27

Table 5.1: Continued
Supported Concept RESTful WS-*
Contract-last X
Contract-less X

Data Modeling

XML Schema X
Do-it-yourself X

Payload Format

XML (SOAP) X X
XML (POX) X
JSON X
YAML X
MIME X

There are two main styles of web services currently in wider use. These are the RESTful style
[3] and the SOAP/WS-* based web services [1]. There exist a wide variety of other methods to
integrate applications via RPC like the Java Remote Method Invocation (RMI). The problem with
these methods and technologies is that they are not interoperable and therefore put limitations
on the implementation of the clients.

Pautasso et al. [15] give an overview of the architectural decisions and possibilities for
each of the two web service styles. Based on their comparison of both web service styles, the
decision was made to implement a WS-* style web service as the interface of the business
logic. In Tab. 5.1 a part of the comparison between RESTful and WS-* web services is shown.
This comparison is based on the above mentioned work by Pautasso et al. and shows some
important aspects that lead to the conclusion to use a WS-* style web service.

The �rst decision is based on the supported contract design. WS-* style web services support
a contract-�rst or a contract-last approach. That means, it is possible to �rst de�ne a contract
and the implement the web service according to that contract or to derive the contract from
an existing implementation. A contract for a WS-* web service is de�ned by a WSDL �le and
describe the methods, arguments and return types of the web service. RESTful web services
only support a design without contracts. Instead, the caller has to obtain the needed information
like method arguments by other means.

Because the existing monolithic variant of CoCoME already de�nes interfaces for the pre-
sentation layer to access the business logic the contract-last or the contract-less approach are
possible choices.

The next choice is what kind of data modeling to use. Because the WS-* web services are
based on XML and SOAP messages, the WS-* web services support strongly typed data types
through XML schema �les. RESTful web services rely on the caller to correctly interpret the
data coming from the web service. Because of the additional tool support for data types and

28 DESIGN DETAILS FOR EVOLUTION SCENARIOS

«web service»
:CashDesk

«component»
:CashDesk

«component»
WebFrontend::UseCases

«component»
ServiceAdapter

External::Bank

«web service»
:Enterprise

(Enterprise Server)

«web service»
:Reporting

(Enterprise Server)

«web service»
:Store

(Store Server)

«web service»
WebService::Inventory

«component»
:Enterprise

(Enterprise Server)

«component»
:Persistence

(Store and Enterprise Server)

«component»
:Store

(Store Server)

«component»
:Reporting

(Enterprise Server)

«component»
:Store

(Store Server)

«component»
:Data

«component»
:Application

«component»
:ProductDispatcher
(Enterprise Server)

«web service»
:CashBox

«web service»
:ExpressLight

«web service»
:BarcodeScanner

«web service»
:Printer

«web service»
:UserDisplay

«web service»
:CardReader

«web service»
WebService::CashDesk

(Store Server)

«component»
TradingSystem::Inventory

«component»
:Coordinator

«component»
:CDIEventBus

«component»
:CardReader

«component»
:UserDisplay

«component»
:Printer

«component»
:BarcodeScanner

«component»
:ExpressLight

«component»
:CashBox

«component»
:CashDesk

«component»
TradingSystem::CashDeskLine

(Store Server)

IStoreDataFactory

IEnterpriseQuery

ICashDeskModel ICardReaderModelIUserDisplayModelIPrinterModelIBarcodeScannerModelIExpressLightModelICashBoxModel

IEnterpriseManager IEnterpriseReporting IStoreManager

IBank

AccountSaleEvent

ICashBox

IEnterpriseQuery

 ServiceAdapter

IReporting

IStoreInventoryManager

IEnterpriseDataFactory

IPersistenceContext

IStoreQuery

IExpressLight
IBarcodeScanner

IPrinter
IUserDisplay
ICardReader

ICashDesk

IStoreInventory

Figure 5.9: Architecture Overview of the Hybrid Cloud-based Variant of CoCoME

DESIGN DECISION FOR THE HYBRID CLOUD-BASED VARIANT 29

the automatic generation of stubs in the client code, the WS-* web service is better suited for
communication between the presentation layer and the business logic layer in the cloud-based
CoCoME variant.

WS-* web services can only be used in conjunction with XML and SOAP and therefore limit
the possible payload of the messages. In contrast, RESTful web services are very �exible with
regards to the payload and can also use Plain Old XML (POX), JSON, YAML and MIME as
payload. JSON is the most frequent choice because of the compact payloads it allows. Using
WS-* web services results in a signi�cant communication overhead because of the verbosity of
the XML/SOAP combination in contrast to using RESTful web services with JSON.

Both web service styles support HTTPS for securing the communication between the client
and server. If more advanced security features are needed however, only WS-* web services
provide a standardized way to enable message level security features through the WS-Security
standard. Because CoCoME runs in an enterprise environment it may be necessary to implement
such message level security features.

The tool support for WS-* web services is more developed because the WS-* stack is stan-
dardized and therefore easier to develop generic tools for it than for the highly �exible and
unstandardized RESTful web service style. With the existing tools for WS-* web services it is
possible to generate code stubs for most popular languages. That makes it easier to implement
additional clients to the business logic like mobile devices.

The WS-* web services therefore provide a more convenient and easy way for clients to
access the web services and considering the standardization as well as the security features
o�ered, the decision was made to use WS-* web services for communication between the
presentation layer and the business logic layer.

5.3.2 Basic Components

The basic components used to implement the original monolithic variant of CoCoME are Plain
Old Java Objects (POJOs). The initial cloud-based variant uses Java EE technologies like JSF,
Enterprise Java Beans (EJBs) and Context and Dependency Injection (CDI) beans in conjunction
with POJOs. This necessitates an application server but enables the support of transactions,
sessions and the possibility to de�ne di�erent security requirements on EJBs. Every EJB is
also a CDI bean and therefore inherits their capability of dependency injection and context
dependency. Context dependency enables a CDI bean to be active, and for example receive
events, only while a speci�c context is active.

Because the initial cloud-based variant is already using Java EE technologies and the advan-
tages like contexts and dependency injection provided by them are the reasons to also use these
technologies for the implementation of the business logic. Furthermore, Java EE enables the
generation of WS-* web services by simply annotating classes and methods. The application
server then generates the contract WSDL �le automatically and the code stubs for the client
can also be generated with tool support.

This leads to the decision to leverage the abilities of EJB and CDI beans as the basic compo-
nents of the business logic layer.

30 DESIGN DETAILS FOR EVOLUTION SCENARIOS

5.3.3 Event Bus and Scopes

CDI provides an event bus implementation to decouple event producers and consumers. All
events �red are synchronously distributed to all registered consumers in the currently active
scope. There are �ve prede�ned scopes de�ned in CDI: application scope, request scope, session
scope, dependent scope and conversation scope.

The application scope is active while the application server is running and the application is
deployed on the server. The request scope is active during a single call from the client to the
CDI bean whereas the session scope is active during all calls from one client to the bean during
a session. All CDI beans are dependent scoped by default. This scope is active depending on
the life cycle of the one client to which the dependent scoped object is bound. The conversation
scope is active during the interaction of a single user with a Java Server Faces application. This
may also span multiple invocations of the application.

It would be bene�cial if any cash desk component could �re events that are delivered only
to other cash desk components of the same cash desk. This would allow to simplify these
components, not needing to include the cash desk’s name in each event or creating di�erent
JMS topics as it is the case in the original variant. Furthermore, it is necessary for a cash desk
to keep its state, for example if the express mode was activated, during the complete lifetime
of the cash desk. None of the above prede�ned scopes matches these requirements so it was
necessary to implement a custom scope, the CashDeskSessionScoped scope.

This scope is activated manually and is addressed by the cash desk’s name and the store
identi�er of the cash desk. The scope may be deactivated after the completion of an operation
on the cash desk components. After deactivation, all components remain in their current state.
It is possible to delete a speci�c cash desk’s scope, but it is not performed automatically, that
means all cash desk scopes that are being created stay in memory. This re�ects the nature of
a supermarket, where the number of cash desks normally does not change over a long time
period.

Because of the bene�ts of a speci�c scope for the cash desk components, the CashDeskSes-
sionScoped scope was implemented.

5.3.4 Web Service Adapters

The communication between the presentation layer and the business logic layer is done via the
web service wrappers as stated above. It is possible to annotate the business logic components
themselves to provide the required interface. However, this would make it more di�cult to
change the integration style and the business logic components would have the additional
responsibility of exposing their functionality as a web service.

This can be avoided by wrapping the business logic with the web service wrappers. These
wrappers are only responsible for exposing the web service to be used by the clients and the
business logic components can be maintained separately. Another bene�t of this additional
abstraction layer is the possibility to exchange the web service wrappers without a�ecting the
business logic.

Also, because the cash desk components rely on the CashDeskSessionScoped scope to be

ADDING A PICK-UP SHOP 31

active, the web service wrappers can be used to activate the correct scope for each invocation
of their methods. For these reasons the decision was made to implement the web service as a
wrapper around the business logic.

5.4 Adding a Pick-up Shop

Building upon the hybrid cloud-based variant of CoCoME this section discusses design details
of the Pick-up shop. Sec. 5.4.1 describes modi�cations and extensions to use cases. Sec. 5.4.2
describes modi�cations and extensions on design level.

5.4.1 Use Cases of the Pick-up Shop

UC 13: View
CustomerReport

UC 10: Manage
ProductInformation

UC 12: CreateCustomer UC 11: AuthenticateUser

EnterpriseManager

StockManager

UC 4: Receive
OrderedProducts

UC 6: ShowDeliveryReports

UC 8: ProductExchange

UC 7: ChangePrice
UC 5: ShowStockReport

UC 3: OrderProducts

StoreManager

Cashier

Customer

UC 2: ManageExpressCheckout

TradingSystem

UC 1: ProcessSale

ManageExpressCheckout

UC 9: ProcessOnlineSale

ProcessSale

«includes»

«includes»

Figure 5.10: Changed Use Cases due to the Introduction of the Pick-up Shop

UC 9 - Process Online Sale

Brief Description A Customer selects the product items s/he wants to buy and the payment by
credit card is performed.

Involved Actors Customer, Bank
Precondition The Pick-up Shop is ready to process a new sale and the Customer already has an

account registered in the System.
Trigger The Customer requests the Pick-up Shop website and wants to buy product items.
Postcondition The Customer has paid and the sale is registered in the Inventory.
Standard Process

1. The Customer selects the Store where s/he wants to pick up his purchased product
items.

32 DESIGN DETAILS FOR EVOLUTION SCENARIOS

2. The Customer adds the product items s/he wants to purchase to the Shopping Cart by
clicking the Add to Cart button.
Step 2 is repeated until all items are added to the cart.

3. The Customer clicks the button to display the Shopping Cart.
4. The System presents the Customer with the item names, prices and the running total.
5. Denoting the end of adding items, the Customer presses the Proceed to checkout button.
6. The Customer is presented with a login form and is required to complete the Authen-

ticate User use case.
7. In order to initiate card payment, the Customer selects a credit card to use for the

purchase.
8. The Customer enters her/his PIN in the designated �eld presented by the System.
9. The System presents the Customer with an overview of the purchase, the Customer

con�rms the purchase and waits for validation.
Step 9 is repeated until a successful validation or the Customer decides to cancel the
purchase.

10. Completed sales are logged by the System and sale information are sent to the Inven-
tory in order to update the stock.

11. The Customer is presented with a success message and the product items are being
prepared to be picked up by the customer.

12. The Customer leaves the website.
Alternative or Exceptional Processes

• In step 7: No Card available
1. In order to add a new credit card the Customer clicks the Add Card button.
2. The Customer enters the card number of the new credit card and saves the card.

• In step 9: Card validation fails
1. The Customer tries again and again.
2. Otherwise, the Customer can decide to cancel the purchase.

UC 10 - Manage Product Information

Brief Description The System provides the opportunity to change the stored information of a
product.

Involved Actors Stock Manager
Precondition The store management website is available and the Stock Manager is authenti-

cated.
Trigger The Stock Manager wants to change the stored information of a product.
Postcondition The stored information for the considered product has been changed and will

now be shown when requested by the Pick-up Shop.
Standard Process

1. The System presents an overview of all available products in the enterprise.
2. The Stock Manager selects a product item and changes its stored information to the

desired information.
3. The Stock Manager commits the change by pressing the corresponding button.

ADDING A PICK-UP SHOP 33

UC 11 - Authenticate User

Brief Description The System provides the opportunity to authenticate a User.
Involved Actors User
Precondition The System shows the Pick-up Shop website.
Trigger A User wants to authenticate himself.
Postcondition The User is authenticated.
Standard Process

1. The User is presented with a login form and enters his username and password.
2. The System checks the provided credentials and logs the User in.

Alternative or Exceptional Processes
• In step 2: Wrong credentials

1. The User is presented with an error message.
2. The User may try again until the authentication succeeds.

UC 12 - Create Customer

Brief Description The System provides the opportunity to create a new Customer account.
Involved Actors Customer
Precondition The Customer does not yet have a Customer account and the System is started.
Trigger A new Customer wants to create an account.
Postcondition A new Customer account is created and stored in the Inventory.
Standard Process

1. The System presents the Customer with a form to �ll out, requesting all necessary
information to create a new Customer account.

2. The Customer �lls out the form and submits the information.
3. The System checks the provided information and creates a new Customer account in

the Inventory.
Alternative or Exceptional Processes

• In step 3: Provided information is incorrect or not valid.
The Customer is noti�ed of the problem and enters the information again until it passes
the check.

UC 13 - View Customer Report

Brief Description The System provides an opportunity to generate reports about the purchases
of a Customer.

Involved Actors Stock Manager
Precondition The store management website is available and the Stock Manager is authenti-

cated.
Trigger The Stock Manager wants to see the report about a Customer.
Postcondition The report about the Customer has been generated and is displayed on the store

management website.

34 DESIGN DETAILS FOR EVOLUTION SCENARIOS

Standard Process
1. The Stock Manager enters the Customer identi�er and submits the request to create

the report.
2. A report including all purchases made by this Customer is displayed.

5.4.2 Design of the Pick-up Shop

For adding the Pick-up Shop, the hybrid cloud-based variant had to be modi�ed and extended
to �t the needs arising from an online shop. In Fig. 5.11 the component diagram of the modi�ed
hybrid cloud-based variant is shown. The �rst addition is the implementation of a system for
customers to register and log in. This functionality requires the ServiceAdapter to store the
login information and additional data like credit card data and the customer’s preferred store
in the data store. Because the login functionality can also be used by the web frontend, the
data stored for this purpose is divided up into user data used for authentication and customer
data. The general user data contains information on the username, used credentials and roles
of a user. The customer data contains the data only needed for customers and is linked to the
corresponding user record.

The second addition is to include the mechanisms for the creation, modi�cation and au-
thenti�cation of customers into the business logic tier. To this end the Inventory component is
extended by a new UserManager component. This component implements the communication
with the ServiceAdapter to retrieve, modify or create the user and customer data. The data is
processed as needed by the UserManager component inside the Application component. Access
to this functionality is provided via web service interfaces which extend the web service inter-
faces of the existing hybrid cloud-based variant. The two added web service interfaces include
one interface for the authentication functionality in the WebService::Inventory::LoginManager
component and one interface for other operations on users and customers in the WebSer-
vice::Inventory::UserManager component.

These interfaces are used by the PickupShop component, which implements the frontend
with which the customers interact. The ShoppingCart component keeps track of all items the
customer wants to buy and is responsible for calculating the total price of these items. When
the customer is done adding items to the ShoppingCart and proceeds, the sale is persisted by
a wizard implemented in the CheckOut component. This component uses the external bank
interface to debit the total price from the customers credit card. Only if this operation succeeds,
the sale gets sent to the business logic and then persisted into the data store, as it is shown
in Fig. 5.13. The Inventory component queries the available stock items of stores as well as
general information about available stores and enterprises for the customer to pick up the
ordered goods. The information queried is cached locally to minimize the number of queries to
the business logic and the data store. This component is also responsible to propagate a sale
event to the business logic.

An important aspect of the design is to make the system scale well due to the possibly high
number of requests the Pick-Up Shop could be faced with. This is being addressed by only
making calls from the Pick-Up Shop frontend to the business logic and the data store when

ADDING A PICK-UP SHOP 35

«component»
PickupShop

«web service»
:CashDesk

«component»
:CashDesk

«component»
:UserManager

(Enterprise Server)

«component»
:UserManager

(Enterprise Server)
«web service»

:LoginManager
(Enterprise Server)

«component»
WebFrontend::UseCases

«component»
ServiceAdapter

External::Bank

«web service»
:Enterprise

(Enterprise Server)

«web service»
:Reporting

(Enterprise Server)

«web service»
:Store

(Store Server)

«web service»
WebService::Inventory

«component»
:Enterprise

(Enterprise Server)

«component»
:Persistence

(Store and Enterprise Server)

«component»
:Store

(Store Server)

«component»
:Reporting

(Enterprise Server)

«component»
:Store

(Store Server)

«component»
:Data

«component»
:Application

«component»
:ProductDispatcher
(Enterprise Server)

«web service»
:CashBox

«web service»
:ExpressLight

«web service»
:BarcodeScanner

«web service»
:Printer

«web service»
:UserDisplay

«web service»
:CardReader

«web service»
WebService::CashDesk

(Store Server)

«component»
TradingSystem::Inventory

«component»
:Coordinator

«component»
:CDIEventBus

«component»
:CardReader

«component»
:UserDisplay

«component»
:Printer

«component»
:BarcodeScanner

«component»
:ExpressLight

«component»
:CashBox

«component»
:CashDesk

«component»
TradingSystem::CashDeskLine

(Store Server)

IInventory

IUserManager

«component»
:UserManager

IInventory

ICheckOut

«component»
:Inventory

«component»
:ShoppingCart

«component»
:CheckOut

IStoreDataFactory

IEnterpriseQuery

IUserDataFactory

IUserQueryIUserManager

IAuthenticator

ILoginManager

ICashDeskModel ICardReaderModelIUserDisplayModelIPrinterModelIBarcodeScannerModelIExpressLightModelICashBoxModel

IEnterpriseManager IEnterpriseReporting IStoreManager

IBank

AccountSaleEvent

ICashBox

IEnterpriseQuery

 ServiceAdapter

IReporting

IStoreInventoryManager

IEnterpriseDataFactory

IPersistenceContext

IStoreQuery

IExpressLight
IBarcodeScanner

IPrinter
IUserDisplay
ICardReader

ICashDesk

IStoreInventory

Figure 5.11: Hybrid Cloud-based Variant Component Structure After Adding the Pick-up Shop
(Added Components are Highlighted).

36 DESIGN DETAILS FOR EVOLUTION SCENARIOS

absolutely necessary, therefore minimizing the additional load on these layers. Moreover, the
login functionality, user data manipulation, store and item queries as well as the persisting of
sales do not require the Pick-Up Shop nor any other component involved to rely on any kind
of state other than the persisted state of the system in the data store. Therefore the Pick-Up
Shop can be deployed on multiple machines simultaneously, enabling the use of load balancing
mechanisms and therefore the possibility of horizontal scalability.

To give a behavioral overview of the added Pick-up Shop, the behavior during the Process
Online Sale use case will be explained below. The customer interacts with the Pick-up Shop
through a web frontend which passes the customers’ commands to the correct underlying
component and method in the component. The interactions with the web frontend is omitted
in the following sequence diagrams and the corresponding actions are invoked directly on
the components for simpli�cation. As in Sec. 5.2, interface names are used to show that a
concrete implementation of the interface is injected into the calling component via a dependency
injection mechanism.

Fig. 5.13 shows the process of a customer choosing and buying products at the Pick-up
Shop. The customer arrives at the Pick-up Shop and is required to select the store where s/he
wants to pick up the products after the purchase. The selection of the store is initiated by the
customer who is �rst asked to choose the enterprise and then to choose the speci�c store in
that enterprise. To retrieve the enterprises and the stores, the called IEnterpriseInformation and
IStoreInformation interfaces use IEnterpriseQuery. IEnterpriseQuery �rst looks for the requested
information inside its internal cache and if the information is missing, queries the business
logic through the IEnterpriseManager or IStoreManager web service interfaces. The customers’
selections are then stored inside the SessionScoped implementations of the IEnterpriseInfor-
mation and IStoreInformation interfaces. Once the store was selected, the navigation element
for selecting a store is deleted by a call to the removeElement method in the NavigationMenu
component as shown in Fig. 5.12.

The customer is then presented with a list of all available stock items and may choose to add
the ones s/he would like to purchase to his shopping cart. The list of stock items is retrieved
through the IInventory interface and also use an internal cache. If the stock items are not yet
stored in the cache they will be retrieved through the IStoreQuery interface which in turn also
calls the IStoreManager web service interface in the business logic. To add a stock item to
the cart, the stock item is passed to the SessionScoped implementation of the IShoppingCart
interface which adds it to its internal data structures and computes the new price for the cart.

When the customer then proceeds to the checkout with his cart, the ConversationScoped
CheckOutWizard starts a new checkout conversation and redirects the customer to a speci�c
checkout site. If the customer is not already logged in, the customer has to log in before the
checkout can be completed. The log in process is shown in Fig. 5.14. The customer enters his
username and password in a log in form. These values are stored in the SessionScopedUserLogin
component which is responsible for handling the login process. The login process itself is
handled via a login module which plugs into GlassFish’s built-in login functions. To log in, the
UserLogin component calls GlassFish’s log in function which in turn calls the authenticateUser
method in the LogicServiceLoginModule. This method calls the ILoginManager web service

ADDING A PICK-UP SHOP 37

:NavigationMenu:IStoreInformation

:ServiceAdapter:GetXMLFromBackend:IEnterpriseQuery:IEnterpriseManager:IEnterpriseQuery:IEnterpriseInformation

sd
Select Store

removeElement(
StoreSelect)

Submit Store

Store List
Store List

StoreTO List
Store List

StoreTO List
StoreTO List

getData(query)
getStores(query)

queryStoresByEnterpriseID(
enterpiseID)

queryStoresByEnterpriseID(
enterpriseID)

getStores(enterpriseID)

Enterprise List

Submit Enterprise

Enterprise List
EnterpriseTO List

Enterprise List
EnterpriseTO List

EnterpriseTO List

getData(query)
getEnterprises(query)

queryAllEnterprises()
getEnterprises()

getEnterprises()
Press

"Select Store"
Button

Figure 5.12: Sequence Diagram of Selecting a Store in the Pick-up Shop.

interface in the business logic, which uses the IAuthenticator interface to perform the check.
To this end, the IUserQuery queries the data store for the user record and checks if the provided
credentials match the stored credentials. If the credentials match, the authentication was
successful.

Once logged in, the customer has to select the credit card which should be charged with the
purchase. If the customer decides to add a new card to his account, s/he is presented with a
form where s/he enters his card information. This is shown in Fig. 5.15. Once the information
is entered it is stored in the AddCreditCardWizard component and the customer account is
updated by �rst adding the new card to the currently loaded Customer component which
contains all information on the customer. This updated Customer gets updated in the data
store as well by calling the IInventory interface which hands the updated information to the
ICustomerQuery which in turn transforms the data and sends it to the business logic through
the ILoginManager web service interface. The web service sends the data on to the data store
through the IUserManager interface.

Once the credit card is selected, the selected card is stored in the CheckOutDetails and
the customer has to enter her/his PIN for the credit card which is also stored. When the
customer has reviewed her/his order and proceeds, the card data and the PIN are retrieved
from the CheckOutDetails and are used to obtain a transaction id from the IBank interface. If
the transaction id is not null the card is debited by another call to IBank. In case there was an
error, the customer is presented with an error message and may try again.

If the transaction succeeds the IInventory interface is called and calls the IStoreQuery to loop
over all the items in the shopping cart. For each item a SaleTO is generated and passed to the

38 DESIGN DETAILS FOR EVOLUTION SCENARIOS

:ServiceAdapter:IBackendConnection:IPersistenceContext:IStoreInventoryManager

loop

[For each item in the cart]

:IStoreManager:IStoreQuery

loop

[Until transactionID != null and debitResult == DebitResult.OK]

:IInventory

alt

[debitResult == DebitResult.OK]

[debitResult = DebitResult.INVALID_TRANSACTION_ID or DebitResult.INSUFFICIENT_BALANCE]

:IBank

:CheckOutDetails

alt

[User wants to add a new credit card]

alt

[Customer not logged in]

:CheckOutWizard

loop

sd
Process Online Sale

:IShoppingCart

reset()

Show Success Message

Show Error Message

setData(...)
sendUpdateQuery(...)

updateEntity(
updatedStockItem)

accountSale(
storeID, saleTO)

accountSale(
storeID, saleTO)

Invalidate cache entry
for each item in cart

accountSale(
shoppingCart)

accountSale(shoppingCart)

debitResult
debitCard(transactionID)

transactionID
validateCard(creditCard, PIN)

PIN
getCredtCardPIN()

creditCard
getCredtCard()

Press Button
"Confirm Purchase"

Navigate to overview page

setCredtCardPIN(
PIN)

Enter PIN and Press Button
"Confirm PIN"

setCredtCard(
creditCard)

Navigate to PIN page

Select Card and Press Button
"Confirm Card"

ref

[SeqAddCard]

Navigate to checkout page

ref

[SeqAuthenticateUser]

Press Button
"Proceed to checkout"

Press Button
"Add to Cart"

ref

[SeqSelectStore]

Figure 5.13: Sequence Diagram of the Process Online Sale Use Case of the Pick-up Shop.

ADDING A PICK-UP SHOP 39

:ServiceAdapter storedUser:IUser:GetXMLFromBackend:IUserQuery:IAuthenticator:ILoginManager:LogicServiceLoginModule:UserLogin

sd
Authenticate User

[Repeat until result == true]

result
result

result

storedUser
storedUser

getData(...)
getUser(...)

result

checkUserCredentials(
user)

storedUser

queryUserByName(
username)

checkCredentials(
user)

checkCredentials(
userTO)

authenticateUser(
username, password)

login()

setPassword(
password)

setName(
username)

Figure 5.14: Sequence Diagram of Authenticating a User in the Pick-up Shop.

:ServiceAdapter:IBackendConnection:IPersistenceContext:IUserManager:ILoginManager:ICustomerQuery:IInventory:Customer:AddCreditCardWizard

sd
Add Card

setData(...)
sendUpdateQuery(...)

updateEntity(
customerTO)

updateCustomer(
customerTO)

updateCustomer(
customerTO)

updateCustomer(
customer)

updateCustomer(
customer)

addCreditCard(
creditCardInfo)

end()

setCreditCardInfo(
creditCardInfo)

Figure 5.15: Sequence Diagram of Adding a new Credit Card of a Customer in the Pick-up
Shop.

40 DESIGN DETAILS FOR EVOLUTION SCENARIOS

business logic via the IStoreManager web service interface to update the inventory and account
the sale. After the sale is completed, the internal cache entry in the IInventory for each item
that was sold is invalidated and the shopping cart is reset. The customer is presented with a
success message at the end.

5.5 Adding a Service-Adapter

The Service-Adapter framework is introduced in the evolution scenario Adding a Service-
Adapter to facilitate the extension of CoCoME. The framework provides an additional layer
to extend CoCoME by REST services. Before, extension was only possible by introducing
new services at code-base level. Consequently, new contributers had to understand most of
the code-base in order to extend CoCoME in an appropriated way. Since this requires a lot
of upfront e�ort due to the complexity of the code-base, a new extension approach became
necessary. Two technologies are available to design the Service-Adapter.

• Remote-Object interfaces; are EJB interfaces which act like a facades to external clients.
They provide functionallity on CoCoME and can be injected by di�erent other projects
using JNDI technology.

• REST services; completely encapsulate CoCoME to clients and provide well-de�ned service
interfaces.

On the one hand remote objects are easy to implement. JEE provides a very good framework
using annotations. Clients using this interfaces implement against a Java interface which is
very handy. On the other hand this approach forces clients to inject the interfaces. Clients are
constrained on technology (in our case JEE).

A REST service layer allows for coupling extensions loosely to CoCoME. Clients can be
developed using di�erent kind of technologies. Further, clients only have to understand the
service rather than the whole code-base of CoCoME. Using this approach, however, a REST
service framework must be developed and coupled to CoCoME.

The taken solution is a mix of both. To be addressable by some kind of REST service, CoCoME
exposes internals by using EJB interfaces. These interfaces provide a facade to an adapter which
itself will provide the infrastructure for the REST service framework. So called Service-Provider
will itself provide access to di�erent kind of services implemented on di�erent platforms and
nodes. Since the adapter providing the REST infrastructure (Service-Adapter) has its own
code-base, it can be deployed on a separate node. The architecture of the Service-Adapter and
already implemented services are explained in the following.

ExtensionConceptOverview An overview of the Service-Adapter extension is given in Fig. 5.16.
The ServiceAdapter is located between the RESTful services and the actual CoCoME implemen-
tation. The ServiceAdapter is composed of a set of ServiceProvider which encapsulate a domain
within the system. Each ServiceProvider provides a set of Service, the actual functionality.
The set of ServiceProvider can be browsed by the ServiceProviderCatalog. Fig. 5.17 shows the

ADDING A SERVICE-ADAPTER 41

di�erent entities of the extension concept by starting from the ServiceProviderCatalog up to
the actual Service. Each kind of Service is implemented within a speci�c ServiceProvider. A
ServiceProvider can already be available or has to be implemented for a given Service. The
ServiceProvider acts like an extension point from where the services are reachable and where
additional services can be added, if they �t in the domain of the ServiceProvider.

In the current implementation, ServiceProvider and Service are implemented as Java Servlets.
They use remote Enterprise Java Beans in the CoCoME backend to provide access to the desired
functionality. In case of ServiceProviderDatabase, the DatabaseAccess bean was designed to
provide access to the database used by the CoCoME implementation.

For the client tier the actual used technology becomes irrelevant. The only important informa-
tion is the protocol of communication used by the desired Service. The actual communication,
however, is done via HTTP methods like GET, POST, PUT and DELETE.

Facades/Extension Points The remote objects in the CoCoME backend implementation are
used as extension points. They are designed to meet the needs of a speci�c Service or even a
set of Service in the ServiceProvider.

Navigation The Service-Provider framework is composed as depict in Fig. 5.17. This frame-
work is used to realize the navigation. Each ServiceProviderCatalog, ServiceProvider and
Service has its own URL where further navigation or the actual HTTP request URL can be used.

An overview of the navigation in the Service-Provider framework is given in Fig. 5.18. The
�gure shows how a request to the Service-Adapter is scheduled within the Service-Provider
framework.

The response of the Service-Adapter is depicted in Fig. 5.19 and discussed in the following.
The �gure shows the two Service-Providers – BookSale and Database.

Service-Provider Database In order to access the database of CoCoME, the Service-Provider
cocome.cloud.sa.serviceprovider.impl.ServiceProviderDatabase o�ers three services as depicted
in Fig. 5.20.

• GetData
Get data from the database. Query-Select

• SetData
Update or insert data into the database. Query-Update and Query-Insert

• Schemas
Provide schemas in order to use GetData and SetData.

GetData Service In order to get data from the database, select queries are used as URL param-
eters. The following setup is needed to make a request:

• HTTP-GET request
• Content-Type is either application/xml or application/csv
• query.select as url parameters

42 DESIGN DETAILS FOR EVOLUTION SCENARIOS

Figure 5.16: Adding a Service-Adapter to CoCoME

Fig. 5.22 depicts how the request is handled. A Get request containing the query string is sent
to the ServiceProviderDatabaseServlet. The query is forwarded to the DatabaseAccess bean
which provides the requested information from the database or responds an error. The Servlet
provides the requested information in XML or CSV format or responds an error message.

Query Language Queries are passed by the URL parameters. The listings show the syntax
and an application example of the query.

Syntax:
1 query.select=entity.type=[Entity];[ConstrainA];[ConstrainsB];...

ADDING A SERVICE-ADAPTER 43

ServiceProvider

ServiceServiceProviderCatalog

 serviceProviderCatalogs[0..1]

serviceProviders[*]

 serviceProvider[0..1]

services[*]

Figure 5.17: The Service-Provider Framework

Example:

1 query.select=entity.type=Product;product.purchasePrice=<100;product.name=LIKE

2 ’T*’

The example shows how to apply the query to get all products which price is less than or
equal to 100 and the name of the product starts with the letter T. For building constrains, the
Java Persistence Query Language (JPQL) is used. All constrains are logically composed with
AND. If OR is required, two di�erent requests have to be applied. The constrains available
depend on the entity. They are accessed with the dot-operator.

Joins of tables are done automatically if the corresponding entity has a �eld of the required
table. For instance, the entity Product has a �eld referring to the entity ProductSupplier. A
constrain which choses all ProductSupplier having a name starting with A looks like:

1 product.supplier.name=LIKE ’A*’

In the listing the tables Product and ProductSupplier are joined automatically using the JPQL.
Therefore constrains can be passed like using JPQL.

SetData The SetData service supports two kind of requests:

• query.insert
HTTP-POST request

• query.update
HTTP-PUT request

44 DESIGN DETAILS FOR EVOLUTION SCENARIOS

Figure 5.18: Generic Navigation in the Service-Provider Framework

There are two formats to send the data. One is the XML format using the table schema.
The other is the CSV format. The content type must be de�ned either application/xml or
application/csv. The default is application/xml. The syntax is speci�ed in the listings.

1 query.insert=[Entity]

for inserting and
1 query.update=[Entity]

for updating. Data is passed by the data-stream.
After the POST/PUT, the Service-Adapter will answer and provide a noti�cation whether

the action was successfully or not. This message is provided in a XML �le. The schema is the
Message.xsd.

Service-Provider BookSale The BookSale Service-Provider o�ers two services as depicted in
Fig. 5.21.

• GetAllProducts
Get all products from the database

ADDING A SERVICE-ADAPTER 45

Figure 5.19: Response ServiceAdapter

• OrderProducts
Order the given products

The Service-Provider uses the GetData service and the SetData service from the Service-
ProviderDatabase. It demonstrates that the framework can be used to compose new services
based on already available services.

The OrderProducts service requires input data from the input stream. This data should con-
tain the following information: ProductOrderId, StoreId, ProductBarcode, OrderDeliveryDate,
OrderOrderingDate, OrderAmount. The service saves the information into the database.

46 DESIGN DETAILS FOR EVOLUTION SCENARIOS

Figure 5.20: Response ServiceProviderDatabase

ADDING A SERVICE-ADAPTER 47

Figure 5.21: Response ServiceProviderBookSale

Figure 5.22: Get-Request on ServiceProviderDatabase

6 Life-Cycle

We developed a set of sample activities typical in information system evolution and arranged
them in life-cycle form (cf. Fig. 6.1) to cope with aforementioned evolution scenarios.

An iteration in the life-cycle starts with a change request. This is either an external request or
caused by upcoming issues at run-time. Examples of change requests are the need for migrating
the system to the cloud (Sec. 4.2.1) or for a pick-up shop (Sec. 4.2.2). Design decisions for system
modi�cation are made to cope with the request. The decisions are documented and a static
quality analysis is conducted to identify quality impacts at design-time. The system design is
adapted (or initially speci�ed) and implemented in source code. After deploying the (modi�ed)
application, a dynamic quality analysis is conducted for the running system. If an upcoming
quality issue has been identi�ed, two ways of modi�cation are distinguished – automated
adaptation and manual evolution. Automated adaptation refers to the capability of the system
to adapt itself. An example of automated adaptation is migrating the database from one cloud
provider to another (Sec. 4.2.3). Manual evolution triggers another iteration in the life-cycle.

Various alternatives and variations to the proposed life-cycle are possible. However, the
proposed life-cycle is one representative of a research basis suitable to conduct empirical
studies on software evolution as it covers to the evolution characteristics of Demeyer et al.
[2]. It comprises artifacts that correspond to all phases in the system’s life-cycle (Life-cycle
characteristic). It covers iterations and increments in the development process (evolution
characteristic). It provides a concrete setting to qualify the application domain (i.e. e-commerce),
problem domain (i.e. web-based system) and solution domain (e.g., architecture, source code) of
the case (domain characteristic). It supports evaluating the kinds of tools necessary to replicate
the case, such as implementation/design languages, operating system, or development/CASE
environments (tool characteristic).

Document Req.
+ Decisions

Static Quality
Analysis

C: Design-time : Run-time>

Design + Impl. Deployment

• •
•

Dynamic Qual.
Analysis

Adapt Design
+ Im I.

Figure 6.1: Overview of the CoCoMEP Life-Cycle [7]

7 Implementation of Evolution Scenarios

This chapter describes implementation and con�guration details for realizing the hybrid cloud-
based variante of CoCoME and the corresponding evolution scenarios. Sec. 7.1 provides insights
on the implementation of the Platform Migration scenario. The implementation of the scenario
Adding a Pick-up Shop is described in Sec. 7.2. Sec. 7.3 explains the API of the service adapter.

7.1 PlatformMigration

The Platform Migration evolution scenario transfers the Plain Java variant to the hybrid
cloud-based variant by introducing web service technologies. The implementation of the
hybrid cloud-based variant was done using Eclipse for Java EE and GlassFish 3.1 was used as
application server to deploy the application. Java EE version 6 was used because GlassFish 3.1
is only compatible with this speci�c version. To automate the build process and the deployment
of the business logic and the presentation layer, Maven was used.

To deploy the WebFrontend and the business logic with its web service wrappers, the Maven
install procedure uses a plug-in to directly deploy the application to the server. For this purpose,
the presentation layer is bundled into a .war archive from the cloud-web-frontend project. The
business logic is located in the cloud-logic-service project and consists of eight sub-projects,
java-utils, cloud-logic-core-api, cloud-logic-core-impl, cloud-logic-core-services, cloud-registry-
service, cloud-registry-client, cloud-enterprise-logic and cloud-store-logic. An overview of the
project structure and dependencies in the cloud-logic-service project is shown in a package
diagram in Fig. 7.1. The import relationship between packages is de�ned as a relationship
in which the importing namespace adds the names of the members of the imported package
to its own namespace. In contrast, the merge relationship indicates that the contents of both
packages are to be combined, similar to Generalization [14].

Classes needed by the enterprise and the store server like transfer objects and interfaces of
components are de�ned in the cloud-logic-core-api project and implementations are provided
in the cloud-logic-core-impl project which depends on the java-utils project. In the java-utils
project some classes are implemented to ease the communication with the service adapter. The
cloud-logic-core-services project provides interface de�nitions for the core web services as
well as proxy classes to ease the use of these services for the clients. Any client can access the
services by including the cloud-logic-core-services project and using the proxy classes. The
registry where the addresses of available store and enterprise servers are located is implemented
in the cloud-registry-service project. To look up an endpoint registered in the registry, a client
is implemented in the cloud-registry-client project.

The cloud-enterprise-logic and cloud-store-logic projects depend on the above projects and

50 IMPLEMENTATION OF EVOLUTION SCENARIOS

cloud-store-logic

java-utils

cloud-enterprise-logic

cloud-logic-core-services

cloud-registry-client

cloud-registry-service

cloud-logic-core-impl

cloud-logic-core-api

«import»

«import»«import»

«import»

«merge»«merge»

«import»

«import»

«import»
«import»

«merge»

Figure 7.1: Overview of the project structure in the cloud-logic-service project of the hybrid-
cloud variant.

implement the business logic for the enterprise and store server. The cloud-enterprise-logic
project consists of three subprojects, enterprise-logic-ear, enterprise-logic-ejb and enterprise-
logic-webservice. The ejb project contains the enterprise beans that contain the business logic
and the webservice project contains the web service wrappers. These projects are bundled
together into a deployable .ear �le by the ear project.

The cloud-store-logic has a similar structure with the subprojects store-logic-ear, store-logic-
ejb, store-logic-webservice and store-logic-integrationtest. Integration tests for the store server
are provided inside the store-logic-integrationtest project and will be executed when using the
install command of Maven on the cloud-store-logic project.

Because of this structure it is possible to deploy every layer on a di�erent application server
or cluster of application servers. Also, all layers use web service technologies to communicate
with each other. This enables the application to be deployed in a cloud environment. Moreover,
it is possible to choose whether to use several store servers and an enterprise server or to use
a single server because the implementation of the business logic is capable of handling both
deployment options.

7.2 Adding a Pick-up Shop

Adding the Pick-Up Shop required to extend the hybrid-cloud variant, therefore the imple-
mentation was also done using Eclipse and was updated to work with Java EE version 7 in

ADDING A SERVICE-ADAPTER 51

conjunction with GlassFish 4.1. The hybrid-cloud variant was refactored so that it now includes
the cloud-logic-webservicestubs project. This project provides the generated Java stubs which
provide access to the web service interfaces and is included in the Pick-Up Shop and the
WebFrontend.

The Pick-Up Shop itself consists of the cloud-pickup-shop project which implements the
Pick-Up Shop’s frontend and is bundled into a .war �le by the Maven install procedure before
it is being deployed . The cloud-auth-provider project is an OSGi bundle and provides the
functionality for authenticating, logging in and logging out users and is used by the Pick-Up
Shop.

7.3 Adding a Service-Adapter

This section explains implementation details of the Service-Adapter. First we give an overview
of the Service-Adapter API in Sec. 7.3.1 before we describe used libraries and frameworks in
Sec. 7.3.2.

7.3.1 Service-Adapter API

An overview of the Service-Adapter API is given in Fig. 7.2. The Service-Adapter o�ers two
di�erent data formats – CSV and XML. For the CSV format (comma-separated) a semicolon
is used as delimiter. First line is the column names. Each line is divided by a break line. This
format can be used for inserting update data. When it comes to selecting data, the server will
always respond in XML as top-level format. Single nodes, especially the node providing the
result of the query can be de�ned in the request. It can be chosen as XML or CSV. The XML
format of the result is explained in Sec. 7.3.2. It is based on a custom library which is seri-
alized and unserialized using the JAXB framework of Java. For all formats libraries are provided.

XML schemas are provided as service of ServiceProviderDatabase by the given url:
http://host:port/de.kit.ipd.cocome.cloud.serviceadapter/Services/Database/Schemas

Internally the Table-Framework is used as �rst/last step in representation of data provided to
the client or from internal logic. We developed speci�c libraries for parsing which are available
in the project de.kit.ipd.java.utils.

7.3.2 Libraries and Frameworks

In the following, simple class names are used for simplify the text. Class names are capitalized.
In the Fig. 7.3 and 7.4 the full quali�ed names can be extracted. In case of unclear reference,
the full quali�ed name is used.

The Lexer-Parser-Framework depicted in Fig. 7.3 provides a structure to implement simple
lexers and parsers. The lexer scans raw text and provides events, which can be used by the
parser to build a model of the raw text. In case of the CSVParser the model is represented by

http://host:port/de.kit.ipd.cocome.cloud.serviceadapter/Services/Database/Schemas

52 IMPLEMENTATION OF EVOLUTION SCENARIOS

Figure 7.2: Overview of Format Parsing for Client Communication

the Table class, since a CSV �le is basically a table. The lexer has a StateMachine which should
be able to detected di�erent patterns in the text and switch from one State to another. Based on
the state machine there are di�erent end states which can be hooked up using the LexerVisitor.
In case of the CSVParser, the CSVParser implements the LexerVisitor interface. Obviously it
depends on the implementation of the StateMachine how the Parser has to understand di�erent
end states. The process of designing a new Parser comprises the following four steps:

• Designing a state machine and optimize it for minimal states.
• Implement the di�erent States using the State interface.
• Implementing the StateMachine using di�erent States. Therefore, the AbstractStateMa-

chine can be used as base class to extend from. The CharStreamStateMachine is an
actual implementation of the StateMachine to parse text in the �rst place. Using this
CharStreamStateMachine, only the States have to be implemented.

• Implement the Parser using an own designed model. The Parser itself would provide the
model to the client.

The CSVParser uses the Lexer-Parser-Framework to realize a parser for CSV �les. The
following snippets show how to use the parser to build and parse a CSV �le.

Build a CSV �le:
1 CSVParser csvparser = new CSVParser();

2 Table<String> table = new Table<>();

3 ... fill table

4 csvparser.setModel(table);

5 String csvFileContent = csvparser.toString();

Parse CSV �le:
1 (Get String or InputStream. Here named as content)

2 CSVParser csvparser = new CSVParser();

3 csvparser.parse(content);

4 Table<String> table = csvparser.getModel();

ADDING A SERVICE-ADAPTER 53

Figure 7.3: The Lexer-Parser-Framework

The Table-Framework is used to represent a CSV �le as a model. It is a simple framework
consisting of the classes shown in Fig. 7.4. The basic idea is as follows;

The Column class holds the actual value and is embedded in the Row class which is holding
all the columns within a row. The Row class itself is embedded in the Table class which provides
a method to get Row objects or even some convenient methods to get a Column directly. Hence
one gets the row �rst and from there the column. Row and Column have di�erent attributes to
facilitate the search, e.g. for name. The Table itself has also TableHeaders. These represent the
header of the CSV �le. The API is intuitive providing getter- and setter-methods.

54 IMPLEMENTATION OF EVOLUTION SCENARIOS

Figure 7.4: The Table-Framework

8 Conclusion

In this technical report we gave an overview of the CoCoME platform for collaborative empirical
research on information system evolution. The platform consists of the three parts evolution
subject, evolution scenario, and evolution life-cycle. The CoCoME system serves as an evolution
subject from which we described three variants – Plain Java, service-oriented, and hybrid cloud-
based variant. For each variant we present detailed architecture and design diagrams. We
present several evolution scenario that specify changes to the evolution subject. An evolution
life-cycle is described to integrate activities and their relationships required to implement the
proposed evolution scenarios.

In the future, the subject CoCoME will be further modi�ed to create new and evolve existing
artifacts by new evolution scenarios such as the introduction of mobile clients and the usage of
micro services.

Bibliography

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web services: Concepts, architectures and
applications. Data-centric systems and applications. Springer, Berlin, 2004.

[2] S. Demeyer, T. Mens, and M. Wermelinger. Towards a Software Evolution Benchmark.
In 4th International Workshop on Principles of Software Evolution, pages 174–177. ACM,
2001.

[3] R. Fielding. A little rest and relaxation. In The International Conference on Java Technology
(JAZOON07), Zurich, Switzerland, 2007.

[4] U. Goltz, R. H. Reussner, M. Goedicke, W. Hasselbring, L. Märtin, and B. Vogel-Heuser.
Design for future: managed software evolution. Computer Science - Research and Devel-
opment, 30(3):321–331, 2014.

[5] W. Hasselbring, R. Heinrich, R. Jung, A. Metzger, K. Pohl, R. Reussner, and E. Schmieders.
iObserve: integrated observation and modeling techniques to support adaptation and
evolution. Technical Report 1309, CAU Kiel, 2013.

[6] R. Heinrich. Architectural run-time models for performance and privacy analysis in
dynamic cloud applications. ACM SIGMETRICS Performance Evaluation Review, 43(4):13–
22, 2016.

[7] R. Heinrich, S. Gärtner, T.-M. Hesse, T. Ruhroth, R. Reussner, K. Schneider, B. Paech, and
J. Jürjens. The CoCoME platform: A research note on empirical studies in information sys-
tem evolution. International Journal of Software Engineering and Knowledge Engineering,
25(09&10):1715–1720, 2015.

[8] R. Heinrich, S. Gärtner, T.-M. Hesse, T. Ruhroth, R. Reussner, K. Schneider, B. Paech,
and J. Jürjens. A platform for empirical research on information system evolution. In
27th International Conference on Software Engineering and Knowledge Engineering, pages
415–420, 2015.

[9] R. Heinrich, K. Rostami, J. Stammel, T. Knapp, and R. Reussner. Architecture-based
analysis of changes in information system evolution. In Softwaretechnik-Trends, volume
35(2), 2015.

[10] S. Herold, H. Klus, Y. Welsch, C. Deiters, A. Rausch, R. Reussner, K. Krogmann, H. Koziolek,
R. Mirandola, B. Hummel, et al. Cocome-the common component modeling example. In
The Common Component Modeling Example, pages 16–53. Springer, 2008.

BIBLIOGRAPHY 57

[11] N. Juristo and O. Gómez. Replication of software engineering experiments. Empirical
software engineering and veri�cation, pages 60–88, 2012.

[12] T. Knapp. KAMP analysis applied to CoCoME. In Seminar thesis, SDQ Chair, KIT, 2012.

[13] M. M. Lehman and L. A. Belady, editors. Program Evolution: Processes of Software Change.
Academic Press Professional, Inc., 1985.

[14] Object Management Group (OMG). Uml 2.4.1 superstructure speci�cation, 2011.

[15] C. Pautasso, O. Zimmermann, and F. Leymann. Restful web services vs. "big"’ web services:
Making the right architectural decision. In 17th International Conference on World Wide
Web, pages 805–814. ACM, 2008.

[16] D. I. K. Sjoberg, T. Dyba, and M. Jorgensen. The future of empirical methods in software
engineering research. In Future of Software Engineering, pages 358–378. IEEE, 2007.

	2016,2_Titelbl.pdf
	Heinrich_cocome_techreport.pdf
	1 Introduction
	2 CoCoME Platform Overview
	3 Evolution Subject
	3.1 Plain Java Variant
	3.2 Service-oriented Variant
	3.3 Hybrid Cloud-based Variant

	4 Evolution Scenarios
	4.1 Evolution Scenarios of the Plain Java Variant
	4.2 Evolution Scenarios of the Hybrid Cloud-based Variant
	4.2.1 Platform Migration
	4.2.2 Adding a Pick-up Shop
	4.2.3 Database Migration
	4.2.4 Adding a Service-Adapter

	5 Design Details for Evolution Scenarios
	5.1 Replacing the Database
	5.2 Platform Migration
	5.3 Design Decision for the Hybrid Cloud-based Variant
	5.3.1 Communication Model
	5.3.2 Basic Components
	5.3.3 Event Bus and Scopes
	5.3.4 Web Service Adapters

	5.4 Adding a Pick-up Shop
	5.4.1 Use Cases of the Pick-up Shop
	5.4.2 Design of the Pick-up Shop

	5.5 Adding a Service-Adapter

	6 Life-Cycle
	7 Implementation of Evolution Scenarios
	7.1 Platform Migration
	7.2 Adding a Pick-up Shop
	7.3 Adding a Service-Adapter
	7.3.1 Service-Adapter API
	7.3.2 Libraries and Frameworks

	8 Conclusion

