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Abstract. Finding the shortest paths between pairs of nodes is a fun-
damental graph problem. Due to the dynamic nature of many today’s
networks, algorithms that quickly update shortest paths have become
a necessity. Several dynamic algorithms have been proposed over the
last fifty years, focusing on different update types (incremental- and
decremental-only, fully-dynamic). Although an O(n2)-algorithm for the
incremental problem is known, previous experimental analysis has shown
that algorithms with worse complexities perform significantly better and
are therefore preferred in practice. In this paper, we propose a new incre-
mental algorithm with optimal worse-case complexity of O(n2), which is
also faster in practice than all existing methods. We prove that after the
insertion of an edge or a node, newly created shortest paths have cer-
tain properties which allow us to significantly reduce the amount of work
needed to recompute them. In our experimental study on several real-
world graphs, we show that our approach outperforms existing methods,
on average by a factor 10 and up to a factor 30 for edge insertion and
150 for node insertion.

1 Introduction

One of the fundamental problems in graph theory is the computation of shortest
paths between node pairs. It is quite easy to imagine applications for which one
can be interested in shortest paths and distances: transportation networks (where
weights might represent travel times), social network analysis (for which several
shortest-paths based centrality measures exist), but also database systems and
document formatting are just a few examples [18]. In the literature, finding
shortest paths from a single node is referred to as Single-Source Shortest Path
(SSSP), whereas finding shortest paths between all pairs of nodes in the graph
is named All-Pairs Shortest Paths (APSP). The SSSP is solved using Dijkstra’s
algorithm (or a Breadth-First Search, BFS, in unweighted graphs). By computing
an SSSP rooted in each node, the APSP can therefore be computed in O(nm)
operations in unweighted graphs and O(n(m+ n log n)) in weighted graphs. An
alternative approach [23] solves the APSP problem in O(n2.373 log n) using fast
matrix multiplication. However, this approach only computes distances (problem
sometimes referred to as All-Pairs Distances) and does not allow us to retrieve
shortest paths in linear time in the length of the path. Also, since real-world
networks are often sparse, the SSSP-based approach is often used in practice.



Motivation Networks such as the Web and social networks continuously undergo
changes. Dynamic APSP algorithms update the paths after a change in the
graph and are divided among incremental (handle only edge/node insertions
and edge weight decreases), decremental (handle only edge/node deletions and
edge weight increases) and fully-dynamic (handle both). Whereas the best fully-
dynamic APSP algorithm by Thorup [22] requires O(n2(log n+log2((m+n)/n))
amortized time per update, the incremental problem can be solved in O(n2)
worst-case time. Although it might seem reductive to only consider insertions
and weight decreases, it is important to note that many real-world dynamic
networks evolve only this way and do not shrink. Think, for example, about
co-authorship networks: a new author (node) might be added to the network, or
a new edge (paper), but an existing paper or author will not disappear.

Our contribution We present two new incremental algorithms for the APSP
problem, one for edge insertion/weight decrease and one for node insertion. Like
existing algorithms, the worst-case complexity of our methods is O(n2). However,
compared to these algorithms, our approaches reduce significantly the number
of operations in the average case. Instead of comparing distances between each
pair of nodes in the graph, we efficiently identify the affected node pairs, based
on properties of the newly-created shortest paths. Our experimental study on
real-world graphs shows that our two algorithms outperform existing methods,
on average by a factor 10 and up to a factor 30 for edge insertion and 150 for
node insertion.

2 Preliminaries

2.1 Notation and problem specification

Let G = (V,E, ω) be the initial graph (directed or undirected), where V is the
set of vertices, E the set of edges and ω : E → R≥0 is the edge weight function.
We define G transposed as the graph Gt = (V,Et, ω), where Et = {(v, u)|(u, v) ∈
E}). In case of single-edge update, we denote the update by (u, v, ω′(u, v)) where
(u, v), u, v ∈ V is either a new edge of weight ω′(u, v) or an existing edge for
which we are setting the new weight to ω′(u, v) (smaller than the old weight
ω(u, v)). In case of node insertion, we represent the update with (z, Z(in), Z(out)),
where z is the new node and Z(in) = {(u1, z), ..., (uk, z)}, u1, ..., uk ∈ V is a set
of new incoming edges and Z(out) = {(z, v1), ..., (z, vj)}, v1, ..., vj ∈ V is a set of
new outgoing edges.

Let G′ = (V ′, E′, ω′) be the graph after the update. For an edge update,
V ′ = V and E′ = E ∪ {(u, v)}, for a node update V ′ = V ∪ {z} and E′ =
E∪Z(in)∪Z(out). For any two nodes x, y ∈ V ′, we denote by d(x, y) the shortest-
path distance from x to y before the edge update, and we denote by d′(x, y) the
shortest-path distance from x to y after the edge update. Since the length of a
shortest path can only decrease after an edge insertion or decrease of an edge
weight, it is always true for all node pairs (x, y) that d′(x, y) ≤ d(x, y). On a
shortest path from s to t in G, we say w is a predecessor of t when (w, t) ∈ E and
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d(s, w) +ω(w, t) = d(s, t). For example, if [s, x, y, t] is a shortest path between s
and t, then y is the predecessor of t. We can say equivalently that t is a successor
of y for s.

We define the incremental SSSP problem as follows: given a (source) node
s ∈ V and the old distances d(s, ·) in the shortest paths from s to all other nodes,
find the distances d′(s, ·) (and new shortest paths) in G′. In the incremental
APSP problem, we have to find all distances d′(s, t) (and new shortest paths)
in the shortest path between each pair of nodes s, t ∈ V .

In the following, we will describe only how to compute the new distances d′.
However, the update of the shortest paths is straightforward and can be obtained
by simply updating the predecessors in the new shortest paths while updating
distances.

2.2 Related Work

The problem of dynamically updating shortest paths in a graph has a long
history. Papers on the topic date back almost fifty years [17]. The first algorithm
with O(n2) worst-case complexity for edge insertions was proposed in 1985 [7].
The basic idea is simple: naming (u, v) the newly-inserted edge, for each pair of
nodes (x, y), we take the minimum between the old distance d(x, y) and the sum
d(x, u) + ω(u, v) + d(v, y), where ω(u, v) is the weight of edge (u, v).

In subsequent years, several algorithms have been proposed for special classes
of graphs. Ausiello et al. [1] proposed an incremental shortest path algorithm
for graphs with integer edge weights less than a constant value C. The amor-
tized running time of their algorithm is O(Cn log n) per edge insertion. The
algorithm by Henzinger et al. [10] works on fully-dynamic planar graphs with
integer weights and its running time is O(n9/7 log(nC)) per edge update. Also
King [14] presented a fully-dynamic algorithm for maintaining APSPs in graphs
with integer weights less than C: the running time in this case is O(n2.5

√
C log n)

per edge update. Ramalingam and Reps [19,20] proposed dynamic shortest path
algorithms for graphs with arbitrary real weights, both for the SSSP and the
APSP problem. Their worst-case running times are the same as recomputing
from scratch. However, they express the complexity of their algorithms accord-
ing to a new model, which will be described in Section 3.3. Frigioni et al. [8,9]
designed fast algorithms for graphs with bounded genus, bounded degree graphs,
and bounded tree width. Also in this case, in the worst case the running times of
the algorithms are as bad as recomputing from scratch. The first to propose an
asymptotically faster algorithm for fully-dynamic graphs with real edge weights
were Demetrescu and Italiano [5]. Their algorithm requires O(n2 log3 n) amor-
tized time per update. This bound was then improved by Thorup [22], whose
algorithm achieves O(n2(log n + log2((m + n)/n)) amortized time per update.
An experimental evaluation [6] studied the behavior of the different approaches
on real-world networks. Despite the worse worst-case running time, the dynamic
APSP algorithm by Ramalingam and Reps [20] (which we refer to as RR) was
shown to be the best-performing in practice. For this reason, it has recently
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been used also as a basis for algorithms that dynamically update centrality mea-
sures [11,12,3,4].

Regarding node insertions, a very simple method has been proposed re-
cently [13] (we refer to it as KNNB). The algorithm has a Θ(n2) complexity
and is basically composed of two steps. Naming z the newly-inserted node and
(u1, z), ..., (uk, z) the new incoming edges edges of z, KNNB sets the distance
d(x, z), x 6= z tomini=1,...,k d(x, ui)+ω(ui, z) (analogously, naming (z, v1), ..., (z, vj)
the outgoing edges, it sets d(z, x) to mini=1,...,j ω(z, vi)+ d(vi, x)). Then, KNNB
compares the distance between each node pair (x, y) with d(x, z) + d(z, y) and,
in case this is smaller, sets d(x, y) to d(x, z) + d(z, y).

2.3 RR algorithm

Since our edge-update algorithm is an improvement of RR [20] (both in terms of
worst-case running time and practical performance, as we will see in Section 4),
we briefly describe it in this section. To make the understanding easier, we start
from the incremental SSSP algorithm and then show how this has been extended
by Ramalingam and Reps to the incremental APSP problem [20].

Incremental SSSP Let s ∈ V be the source node from which we want to find
the new distances d′(s, ·) and let (u, v, ω′(u, v)) be the edge update. We define
all the nodes t ∈ V such that d′(s, t) < d(s, t) as affected targets. Notice that in
this case d′(s, t) = d(s, u) + ω′(u, v) + d(v, t). In fact, the only new edge in G′ is
(u, v), therefore all shortcuts must go through node u and node v. Since we know
d(s, ·), the only thing we need to know to find d′(s, t) for the affected nodes t
is d(v, t). Also, Ramalingam and Reps [20] proved that a node t can be affected
only if all the nodes in the shortest path from v to t are also affected. Therefore,
to find the affected nodes we can start an SSSP from t (either Dijkstra or a BFS,
depending on wether G is weighted or not). If a node y is an affected target,
then we update its distance and traverse its outgoing edges. Otherwise, we do
not need to continue the search from y. Algorithm 2 in the Appendix (Section A)
describes the SSSP update. The algorithm works basically like a Dijkstra rooted
in v, with the difference that only the affected nodes are inserted into the priority
queue (Line 8). We refer to it as truncated Dijkstra.

Incremental APSP (RR) Clearly, to update the distances between all pairs of
nodes one could just run Algorithm 2 from each node s ∈ V . However, Rama-
lingam and Reps showed that we can do better than this [20]. If G is directed,
the distance from v to any other node cannot decrease as a consequence of the
edge update (u, v, ω′(u, v)). Therefore, d(v, ·) = d′(v, ·). Since in this case we
know d(v, ·), we do not need to recompute (part of) the SSSP from v like in Al-
gorithm 2. To find the affected nodes with respect to a given source, we can just
walk down the nodes reachable from v, inserting them into a queue as we visit
them and therefore sidestepping the use of a priority queue. In other words, we
are basically performing a Breadth-First Search (BFS) rooted in v instead of Di-
jkstra. Notice that doing this we might not visit the nodes in order of increasing
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distance from v, but this is not necessary since we already know all the distances
from v. This optimized version of Algorithm 2 for the APSP is described in Al-
gorithm 3 in the Appendix (Section A). As for the incremental SSSP, we stop the
traversal of the outgoing edges of a node when the node is not affected. We call
this traversal a truncated BFS. Instead of running Algorithm 3 from each node in
V , RR further optimizes the update by first identifying the affected sources, i. e.
the nodes s such that d(s, v) > d′(s, v) (equivalently, d(s, v) > d(s, u)+ω′(u, v)).

u

v

x1 x2

Fig. 1: Affected targets (in
green) and affected sources
(x1, x2, u) after the insertion of
edge (u, v).

These are the only nodes for which the con-
dition in Line 1 is true and therefore the only
ones for which we actually have to update
something. The affected sources can be iden-
tified by running Algorithm 3 rooted in u
on G transposed. This basically means that
instead of scanning the outgoing edges of u
and its affected successors, we scan the in-
coming edges. Algorithm 4 in the Appendix
(Section A) shows the pseudocode.

To summarize, RR finds all the affected
sources with Algorithm 4 first and then for
each affected source updates the distances to
its affected targets with Algorithm 3.

3 Faster Incremental APSP

3.1 Edge insertion

To explain our new algorithm, let us start with a simple example. In Figure 1,
a new edge has been inserted between node u and node v. This decreases the
distance from nodes x1, x2, u to all the nodes represented in green. RR would
first identify the affected source nodes (i. e. x1, x2, u) and, for each of them, run
a (truncated) BFS rooted in v to identify the affected targets. This means we are
repeating almost exactly the same procedure each time, namely once for each
of the affected sources. It is true that we have to update the distances between
each affected source and each one of its affected targets (and this cannot be
avoided). However, RR also goes through the outgoing edges of each affected
target multiple times (leading to a worse-case running time of O(mn)).

The basic idea of our algorithm is to avoid this recomputation. Instead of
starting a BFS from v for each one of the affected sources, we run the BFS only
once for the affected source u, updating at the same time also the distances from
the other affected sources. The reason why we can do this is based on a property
of the affected nodes, stated in Lemma 1. Naming S(y) the set of affected sources
of node y, i. e. S(y) := {x ∈ V : d′(x, y) < d(x, y)}, the following holds (proof in
Section B of the Appendix):

Lemma 1. Let a directed graph G = (V,E), a single edge update (u, v, ω′(u, v))
and a node y ∈ V be given. Then: for each z that is predecessor of y in a shortest
path from v, S(y) ⊆ S(z).
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Naming T (x) := {y ∈ V : d′(x, y) < d(x, y)} the set of affected targets of node
x, we can similarly prove that T (x) ⊆ T (s) if s is the successor of x in a shortest
path to u. This implies that T (x) ⊆ T (u), ∀x ∈ V .

Corollary 1. Let a directed graph G = (V,E), a single edge update (u, v, ω′(u, v))
and a node x ∈ V be given. Then: T (x) ⊆ T (u).

Algorithm 1 shows the pseudocode for our APSP update. First, we identify all
the affected sources of node v with Algorithm 4 (Line 2). Then, we basically
run Algorithm 3 with source node s = u, with a few differences. First, when
inserting an affected target w into Q, we also keep track of the predecessor y
in (one of) the shortest path(s) from v (Line 22). Then, we do not only update
the distance from u to y, but also those from each node in S(y) to y. Since by
Lemma 1 the set of affected targets of y is contained in that of z, we can just
go through S(z) (Line 10) to find out which of the x ∈ S(z) are also affected
sources for y i. e. d(x, y) > d′(x, y). In this case, we add x to S(y) (which will be
used by the successors of y) and set d(x, y) to d′(x, y) (Lines 12 - 14).

Then, we loop over the outgoing edges of y to find new affected targets for
u (Lines 18 - 23). Differently from Algorithm 3, here in Line 19 we also have
to make sure that y is the predecessor for w in a shortest path from v, i. e.
d(v, w) = d(v, y) + ω(y, w). Note that, by Corollary 1, T (x) ⊆ T (u), ∀x ∈ V ,
therefore Algorithm 1 will correctly update the distance between each affected
source x and its affected targets.

Proposition 1. Given a graph G = (V,E), an edge update (u, v, ω′(u, v)), and
pairwise distances d(·, ·), Algorithm 1 correctly computes the distances d′(x, y)
for each x, y ∈ V in G′ = (V,E ∪ {(u, v)} (proof in Section B of the Appendix).

Notice that if we are also interested in the actual shortest paths and not only
in the distances, we can set the predecessor in the shortest path from x to y to
P (y), when updating the distances in Line 3 .

3.2 Node insertion

Let us now consider the node insertion problem: a new node z and a set of
incoming edges Z(in) = {(u1, z), ..., (uk, z)}, u1, ..., uk ∈ V and a set of outgoing
edges Z(out) = {(z, v1), ..., (z, vj)}, v1, ..., vj ∈ V are added to the graph G. We
assume that before the insertion d(x, z) = d(z, x) = ∞, ∀x ∈ V . Clearly, one
could just apply the Algorithm described in Section 3.1 to each edge in Z(in) and
Z(out). However, this might imply that we update the distance between a certain
node pair or visit a certain edge multiple times. Algorithm 5 in the Appendix
(Section A) describes our optimized algorithm for the APSP update after a node
insertion. First (Lines 1 - 13), we identify the set S(z) of affected sources, i. e. the
set of nodes x such that d′(x, z) < d(x, z). Notice that all the new shortest paths
have to go through z, therefore if d′(x, y) < d(x, y) for two nodes x and y, then
x ∈ S(z). To identify the nodes in S(z), we basically do the same as Algorithm 4,
with the difference that here we need a priority queue, since we cannot use

6



Algorithm 1: APSP update - edge insertion
Input : Graph G = (V,E), edge update (u, v, ω′(u, v)), pairwise distances

d(·, ·)
Output : Updated pairwise distances
Assume: boolean vis(v) is false, ∀v ∈ V

1 if ω′(u, v) < d(u, v) then
2 S(v)← findAffectedSources(G, (u, v, ω′(u, v)), d);
3 d(u, v)← ω′(u, v);
4 Q← ∅;
5 P (v)← v;
6 Q.push(v);
7 vis(v)← true;
8 while Q.length() > 0 do
9 y = Q.front();

/* update distances for source nodes */
10 foreach x ∈ S(P (y)) do
11 if d(x, y) > d(x, u) + ω′(u, v) + d(v, y) then
12 d(x, y)← d(x, u) + ω′(u, v) + d(v, y);
13 if y 6= v then
14 S(y).insert(x);
15 end
16 end
17 end

/* enqueue all neighbors that get closer to u */
18 foreach w s.t. (y, w) ∈ E do
19 if not vis(w) and d(u,w) > ω′(u, v) + d(v, w) and

d(v, w) = d(v, y) + ω(y, w) then
20 Q.push(y, w);
21 vis(w)← true;
22 P (w)← y;
23 end
24 end
25 end
26 end

previously-computed distances (in the case of Algorithm 4, the distances to node
u). While doing this, we update the distances to node z (Line 8). Then (Lines 14
- 32), we update the distances between each affected target node y and each one
of its affected sources S(y) = {x ∈ V |d′(x, y) < d(x, y)}. Notice that in this case,
d′(x, y) is equal to d′(x, z) + d′(z, y). Similarly to Lemma 1, we can prove that
S(y) ⊆ S(q) if q is the predecessor of y in a shortest path from z. Therefore, we
can basically execute Algorithm 1, also in this second part replacing the queue
with a priority queue, since we also have to compute the SSSP from node z.
Since z /∈ S(z), the distances from z are updated separately (Line 29).
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Proposition 2. Given a graph G = (V,E), a node update (z, Z(in), Z(out)), and
pairwise distances d(·, ·), Algorithm 5 correctly computes the distances d′(x, y)
for each x, y ∈ V in G′ = (V ∪{z}, E ∪Z(in) ∪Z(out)) (proof in Section B of the
Appendix).

3.3 Time Complexity

As defined in Sections 3.1 and 3.2, let T (x) of a node x ∈ V be the set {y ∈
V : d′(x, y) < d(x, y)} (and, analogously, S(y) = {x ∈ V : d′(x, y) < d(x, y)}).
Since the distances between each x and each node in T (x) must be updated, the
complexity of any algorithm for the APSP update is clearly Ω(

∑
x∈V |T (x)|),

where |T (x)| is the cardinality of T (x). This quantity can be Θ(n2), in case
for example of an edge insertion connecting two disconnected components of
equal size. However, if the update affects only a small portion of the graph,
this can be much smaller than n2. The simple algorithm by Even and Gazit [7]
(compare each pair of nodes in V and update the distances when necessary)
requires Θ(n2), whatever the set of affected nodes is. In [20], the complexity
of RR is expressed as a function of the set of affected nodes. Let us define the
extended size ||A|| of a set of nodes A as the sum of the number of nodes in
A and the number of edges that have a node of A as their endpoint. Using a
Fibonacci heap-based priority queue, the complexity of the incremental SSSP
algorithm described in Section 2.3 is Θ(||T (s)|| + |T (s)| log |T (s)|), since each
node in |T (s)| is inserted and extracted from the priority queue and since each
of its outgoing edges is visited. The complexity of RR is Θ(||S(v)||) for the initial
identification of affected sources (Algorithm 4) and Θ(

∑
x∈S(v) ||T (x)||), because

the priority queue has been replaced with a queue. If we express this in terms of
worst-case complexity, this can be Θ(nm). However, in most cases, the number
of operations is actually much smaller than n ·m, and also than n2. Let us now
consider the complexity of our new algorithms. Algorithm 1 first identifies the
set of affected sources with Algorithm 4, which takes Θ(||S(v)||). Then, we run
a truncated BFS from v, which takes ||T (u)||. For each node in y ∈ T (u), we
also scan the set of affected sources of the predecessor P (y) of y in a shortest
path from v (Line 10). Therefore, the following proposition holds.

Proposition 3. The running time of Algorithm 1 for updating distances after
an edge update (u, v, ω′(u, v)) is Θ(||S(v)||+ ||T (u)||+

∑
y∈T (u) |S(P (y))|).

Notice that, since S(P (y)) is O(n), the worst-case complexity of Algorithm 1
is O(n2). Also, notice that

∑
y∈T (u) |S(P (y))| = O(

∑
x∈V ||T (x)||), the running

time of RR. In fact, ||T (x)|| ≥ |T (x)| + |N(T (x))|, where N(T (x)) is the set
of nodes that have at least one neighbor in T (x). If a node x is in S(P (y)),
then P (y) ∈ T (x) and therefore y ∈ N(T (x)). This means that for each node
x ∈ S(P (y) that is increasing by one the cardinality of

∑
y∈T (u) |S(P (y))|, we

are increasing by at least one also the cardinality of
∑

x∈V ||T (x)||.
Algorithm 5 for node insertion requires Θ(||S(z)|| + |S(z)| log |S(z)|) for

Lines 1 - 13 (truncated Dijkstra from z on G transposed). Then, for Lines 14
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- 32 the running time is Θ(||T (z)||+ |T (z)| log |T (z)|) for the truncated Dijkstra
from z, plus

∑
y∈T (z) |S(P (y))|) for Lines 18 - 23.

Proposition 4. The running time of Algorithm 5 for updating distances after
the insertion of node z is Θ(||S(z)||+|S(z)| log |S(z)|+||T (z)||+|T (z)| log |T (z)|+∑

y∈T (z) |S(P (y))|).

Also for Algorithm 5 the worst-case complexity is O(n2).

4 Experimental Results

Implementation and settings. We refer to our algorithm for edge update as
QUINCA (from QUick Incremental APSP) and to the one for node insertion as
QUINCA-N. For an experimental comparison with other edge update algorithms,
we implement RR [20] and the simple quadratic algorithm by Even and Gazit
(EG) [7]. For node insertions, we implement KNNB [13]. All the algorithms are
implemented in C++, building on the open-source NetworKit framework [21].
We choose to implement RR because it was shown to be the best performing in
practice [6], and EG and KNNB for their optimal worst-case asymptotic bounds
of O(n2). The machine used for the experiments has 2 x 8 Intel(R) Xeon(R)
E5-2680 cores at 2.7 GHz, of which we use only one core, and 256 GB RAM.

Data sets and experimental design. For our experiments, we consider a set
of real-world networks belonging to different domains, taken from SNAP [16],
KONECT [15] and the 10th DIMACS Implementation Challenge [2]. The prop-
erties of the networks are reported Table 1 (directed) and in Table 2 (undirected)
in Section C of the Appendix. In our experiments on single edge insertions, we
compare QUINCA with RR and EG, whereas on node insertions we run QUINCA,
KNNB and RR. Since RR is a single-edge insertion algorithm, we apply it to each
neighboring edge of the new node and report the sum of the running times. We
do not do the same for EG because its number of operations is always greater
than that of KNNB if the node has more than one neighboring edge (equal oth-
erwise). To simulate real edge insertions, we remove an existing edge from the
graph (chosen at random), compute distances on the graph without the edge and
then add the edge back, updating distances with the incremental algorithms. For
node insertions we basically do the same: we remove all the neighboring edges
of a random node and then we insert them back and update distances. Since
random updates do not usually affect a large fraction of nodes, we also examine
the behavior of the algorithms on a different scenario: we remove and insert back
the node with maximum degree instead of a random node. This is likely to create
several shortcuts in the shortest paths and therefore affect many pair-wise dis-
tances. For all random updates, we consider 20 edge/node insertions and report
the average over these 20 runs.

Experimental results. The results for edge insertions are reported in Table 1 and
Table 2 in Section C of the Appendix. Although the speedups may vary sig-
nificantly among the networks (due to their structures and sizes), some general
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considerations can be made. First, RR is always faster than EG, which con-
firms the previous experimental study by Demetrescu and Italiano [6]. Also,
our new method QUINCA clearly outperforms the existing approaches and is
always faster than both of them. The speedup of our method on RR varies be-
tween ≈ 1.5 (on the faroe-islands street network) and ≈ 30 (on GoogleNw
and as-caida20071105). Compared to recomputation, QUINCA is on average
17634.2 times faster, RR is on average 1715.1 times faster and EG is on average
39.3 times faster (geometric means). This means that our edge insertion algo-
rithm improves the state of the art by about a factor 10. Table 3 and Table 4 in

Edge Random Node Max. Dist. Node
0

100
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102

103

104

105

S
p
e
e
d
u
p

RR

EG

QUINCA

Fig. 2: Average speedups on recomputation for the three incremental algorithms,
under different types of updates: single edge insertion, random node insertion
and maximum-distance node insertion. The bars represent the geometric means
of the speedups on all tested directed and undirected networks (see Section C of
the Appendix for all exact values).

Section C of the Appendix summarize the results for node insertions on undi-
rected and directed graphs respectively. The first three columns of both tables
report the speedups of the incremental algorithms on recomputation for random
node insertions, whereas the last three report the speedups for maximum degree
node insertion. Also in this case, QUINCA-N is the fastest approach on almost
all networks and all update types. Only for the maximum degree insertion and
for oregon2-010526, the speedup of KNNB is better than that of QUINCA-N,
although by a very small margin: 43.34 versus 42.47. This is due to the fact that
in this case the node insertion affects almost all the nodes in the graph, making
it faster to simply compare each pair of nodes. It is interesting to notice that
EG and KNNB behave quite differently depending on the type of update. This is
particularly evident looking at Figure 2, which summarizes all the speedups on
all types of updates. On random node insertions, performing RR on each inserted
edge is significantly faster than KNNB: compared to recomputation, the average
speedups of QUINCA-N, EG and KNNB are 5503.2, 604.3 and 64.7 respectively.
However, on maximum-degree insertion the speedups are very different: 281.2
for QUINCA-N, 12.4 for EG and 33.2 for KNNB. The reason why KNNB is slower
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than EG on random insertions is that often only a small fraction of the graph is
affected and therefore it is still faster to run truncated BFSs from each affected
node than comparing each pair of nodes in the graph. On the other hand, on
maximum-degree insertions, a large fraction of nodes become affected, making
KNNB faster. Also, this explains why the speedups of all incremental algorithms
are significantly worse for this type of update.

To summarize, the results show that the relative performances of other ap-
proaches (when compared to each other) strongly depend on the type of update,
whereas our method outperforms them on all tested instances. In particular,
QUINCA and QUINCA-N are on average about a factor 10 times faster than
the best competitors, and up to a factor 30 for edge insertions (GoogleNw and
as-caida20071105) and up to a factor 150 for node insertions (subelj-cora-cora).

5 Conclusions and future work

Finding shortest paths between the nodes of a graph is a problem of great prac-
tical relevance. In this paper we have proposed and evaluated new techniques
for the APSP update after the insertion (or weight decrease) of an edge and
the insertion of a node. Our algorithms for edge and node update have a worst-
case complexity of O(n2) and our experiments on real networks show that they
outperform existing methods. Also, we show that for node insertions the perfor-
mance of existing algorithms strongly depends on the type of the update, whereas
our new approach is almost always better than all competitors, on average by
one order of magnitude.

Future work might include the use of parallelization to further increase the
speedups of our algorithms. Also, our techniques might be used as a basis to
design more efficient incremental algorithms for shortest-paths based centrality
measure, such as closeness and betweenness.

It would also be interesting to investigate whether our techniques can be
applied to the more difficult problem of updating the shortest paths after an
edge or a node deletion, for which the best known algorithm has a complexity
of O(n2(log n+ log2((m+ n)/n)) amortized time per update.

Our implementations are based on NetworKit1, the open-source framework
for high-performance large-scale network analysis, and we plan to publish our
source code in upcoming releases of the package. The code can be inspected for
reviewing purposes by accessing the private hg repository at https://algohub.
iti.kit.edu/parco/NetworKit/NetworKit-fork-arie with login “rev-inc-apsp”
and password “InKaP$P”.
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A Pseudocodes

Algorithm 2: Incremental SSSP (truncated Dijkstra) [20]
Input : Graph G = (V,E), source node s ∈ V , edge update

(u, v, ω′(u, v)), distances d(s, ·)
Output: Updated distances from s

1 if d(s, v) > d(s, u) + ω′(u, v) then
2 d(s, v)← d(s, u) + ω′(u, v);
3 PQ← ∅;
4 PQ.insert(v, d(s, v));
5 while PQ.length() > 0 do
6 (y, psy)← PQ.extractMin();
7 foreach w s.t. (y, w) ∈ E do
8 if d(s, w) > psy + ω(y, w) then
9 d(s, w)← psy + ω(y, w);

10 PQ.update(w, d(s, w));
11 end
12 end
13 end
14 end

Algorithm 3: Incremental APSP for one source (truncated BFS) [20]
Input : Graph G = (V,E), source node s ∈ V , edge update

(u, v, ω′(u, v)), distances d(·, ·)
Output : Updated distances from s
Assume: boolean vis(v) is false ∀v ∈ V

1 if d(s, v) > d(s, u) + ω′(u, v) then
2 d(s, v)← d(s, u) + ω′(u, v);
3 Q← ∅;
4 Q.insert(v);
5 vis(v)← true;
6 while Q.length() > 0 do
7 y ← Q.front();
8 d(s, y)← d(s, u) + ω′(u, v) + d(v, y);
9 foreach w s.t. (y, w) ∈ E do

10 if not vis(w) and d(s, w) > d(s, u) + ω′(u, v) + d(v, w) then
11 vis(w)← true;
12 Q.push(w);
13 end
14 end
15 end
16 end
17 Reset vis(·) to false;
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Algorithm 4: Find affected sources [20]
Input : Graph G = (V,E), edge update (u, v, ω′(u, v)), distances d(·, ·)
Output : Affected sources S
Assume: vis(v) is false ∀v ∈ V

1 S ← ∅;
2 if d(u, v) > ω′(u, v) then
3 Q← ∅;
4 Q.insert(u);
5 vis(u)← true;
6 while Q.length() > 0 do
7 x← Q.front();
8 foreach z s.t. (z, x) ∈ E do
9 if not vis(z) and d(z, v) > d(z, u) + ω′(u, v) then

10 Q.push(z);
11 vis(z)← true;
12 S.insert(z);
13 end
14 end
15 end
16 end
17 Reset vis(·) to false;
18 return S
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Algorithm 5: APSP update - node insertion
Input : Graph G = (V,E), node update (z, Z(in), Z(out)), pairwise

distances d(·, ·)
Output : Updated pairwise distances

1 S(z)← ∅;
2 PQ← ∅;
3 PQ.insert(z, 0);
4 while PQ.length() > 0 do
5 (x, pxz)← PQ.extractMin();
6 foreach q s.t. (q, x) ∈ E do
7 if d(q, z) > ω(q, x) + pxz then
8 d(q, z)← ω(q, x) + pxz;
9 PQ.update(q, d(q, z));

10 S(z).insert(q);
11 end
12 end
13 end
14 PQ.push(z, 0);
15 while PQ.length() > 0 do
16 (y, pzy)← PQ.extractMin();
17 if y 6= z then
18 foreach x ∈ S(P (y)) do
19 if d(x, y) > d(x, z) + d(z, y) then
20 d(x, y)← d(x, z) + d(z, y);
21 S(y).insert(x);
22 end
23 end
24 end
25 foreach w s.t. (y, w) ∈ E do
26 if d(z, w) > pzy + ω(y, w) then
27 PQ.update(w, d(z, w));
28 P (w)← y;
29 d(z, w)← pzy + ω(y, w);
30 end
31 end
32 end
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B Omitted Proofs

B.1 Proof of Lemma 1

Proof. Let x be any node in S(y), i.e. d′(x, y) < d(x, y). We want to show that
x ∈ S(z) (i.e. d′(x, z) < d(x, z)). It is true that d(x, y) ≤ d(x, z)+ω(z, y) because
either d(x, z) + ω(z, y) represents the shortest possible distance between x and
y in G, or there exists a shorter path. Notice that ω′(z, y) = ω(z, y). Thus, if
d(x, z) = d′(x, z) then

d(x, y) ≤ d(x, z) + ω(z, y) = d′(x, z),+ω′(z, y) = d′(x, y),

which contradicts x ∈ S(y). Since pairwise distances in G′ can only be equal
to or shorter than pairwise distances in G, d(x, z) 6= d′(x, z) implies d(x, z) >
d′(x, z) and thus x ∈ S(z). ut

B.2 Proof of Proposition 1

Proof. Let (x, y) be a node pair such that d′(x, y) < d(x, y). If x = u and y = v,
the distance is correctly updated in Line 3. Otherwise, x ∈ S(v) and y ∈ T (u),
by Lemma 1 and Corollary 1. By correctness of Algorithm 4 (see [20] for proof of
correctness), x ∈ S(v) after Line 2. Then, at some point, node y will be extracted
from Q (Line 9). This is true because y ∈ T (u) and by correctness of Algorithm 3
(see [20] for proof of correctness). Also, by Lemma 1, x ∈ S(z) for each node in
each shortest path from v to y. This means that the condition in Line 11 will
be true for each of them and x will be inserted in each of the S(z), including
S(P (y)). The distance between x and y will therefore be correctly updated in
Line 12. ut

B.3 Proof of Proposition 2

Proof. Initially, d(x, z) = d(z, y) =∞, ∀x, y ∈ V . Therefore, all nodes x that can
reach z in V ′ will be extracted from PQ in Line 5 and their distance d′(x, z) will
be correctly computed, by correctness of Dijkstra on G′ transposed. Similarly,
all nodes y reachable from z in V ′ will be extracted from PQ in Line 16 and the
distance d′(z, y) correctly computed. Similarly to Lemma 1 and Proposition 1,
we can prove that x ∈ S(P (y)) in Line 6, if d′(x, y) < d(x, y). Their distance
d′(x, y) will therefore be computed correctly in Line 20. ut
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C Additional experimental results

Graph Nodes Edges Time Static (s) QUINCA EG RR
polblogs 1 224 16 715 0.37 5 797.72 95.95 1 271.29
subelj-jung-j-jung-j 6 120 50 535 0.23 10 285.91 2.85 4 421.67
wiki-Vote 7 115 100 762 12.42 15 593.83 100.77 1 830.44
elec 7 118 103 617 2.86 14 489.50 26.13 1 592.99
p2p-Gnutella09 8 114 26 013 15.08 20 458.02 94.32 2 297.68
freeassoc 10 617 63 788 30.19 18 392.22 110.31 1 645.95
p2p-Gnutella04 10 876 39 994 28.85 22 767.26 100.86 2 192.05
dblp-cite 12 591 49 728 1.76 12 755.20 5.19 1 024.75
cfinder-google 15 763 170 335 34.74 38 443.87 65.22 2 748.30
p2p-Gnutella25 22 687 54 705 25.92 22 680.02 23.55 1 527.33
subelj-cora-cora 23 166 91 500 22.13 50 104.85 19.31 2 790.01
ego-twitter 23 370 33 101 1.41 21 027.60 1.21 8 173.44
ego-gplus 23 628 39 242 2.44 29 039.04 2.04 8 601.35
munmun-digg-reply 30 398 85 247 63.74 32 484.83 32.31 1 342.11
linux 30 837 213 424 10.78 17 808.80 5.31 954.18
faroe-islands 31 097 31 974 81.51 65.80 34.10 43.71

Table 1: Results on directed graphs after a single edge insertion. The table shows
the time taken by the static algorithm (SSSP from each node) and the speedups
of the incremental algorithms on it. Bold font represents the best speedup for
each graph.

Graph Nodes Edges Time Static (s) QUINCA EG RR
HC-BIOGRID 4 039 10 321 3.56 8 226.18 89.17 1 485.08
Mus-musculus 4 610 5 747 2.86 6 932.48 55.27 691.73
Caenor-elegans 4 723 9 842 4.16 8 974.83 76.40 949.28
ca-GrQc 5 241 14 484 3.38 11 172.57 50.62 1 137.95
advogato 7 418 42 892 6.76 15 020.19 50.56 1 784.50
hprd-pp 9 465 37 039 20.99 56 655.96 96.76 3 888.49
ca-HepTh 9 877 25 973 18.06 22 138.33 76.41 2 494.78
dr-melanogaster 10 625 40 781 26.99 32 705.07 98.78 2 554.50
PGPgiantcompo 10 680 24 316 31.82 11 591.48 73.91 1 612.05
oregon1-010526 11 174 23 409 19.76 39 407.76 65.49 1 551.08
oregon2-010526 11 461 32 730 21.08 41 509.26 66.37 1 541.84
Homo-sapiens 13 690 61 130 48.20 45 548.80 106.51 2 576.66
GoogleNw 15 763 148 585 44.50 64 969.18 74.30 2 172.45
dip20090126 19 928 41 202 87.79 29 922.43 91.66 1 566.50
as-caida20071105 26 475 53 381 168.23 49 022.58 99.67 1 720.83

Table 2: Results on undirected graphs after a single edge insertion. The ta-
ble shows the time taken by the static algorithm (SSSP from each node) and
the speedups of the incremental algorithms on it. Bold font represents the best
speedup for each graph.
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Random Maximum degree
Graph QUINCA-N KNNB RR QUINCA-N KNNB RR
polblogs 835.75 86.55 126.33 44.84 37.44 2.48
subelj-jung-j-jung-j 2 846.96 4.00 472.63 728.90 3.82 31.16
wiki-Vote 13 520.33 183.58 599.99 211.70 16.35 5.45
elec 4 195.41 57.99 257.66 144.57 16.55 5.51
p2p-Gnutella09 1 302.14 58.88 133.07 571.06 42.69 49.44
freeassoc 2 633.07 77.97 187.11 1 157.70 74.78 61.54
p2p-Gnutella04 2 063.15 56.17 166.03 243.76 53.19 37.31
dblp-cite 2 525.56 8.25 112.62 12.75 5.15 1.40
cfinder-google 7 745.63 100.83 444.21 71.35 80.14 19.75
p2p-Gnutella25 2 201.40 47.77 126.41 611.83 34.66 44.16
subelj-cora-cora 7 494.77 28.41 435.22 36 771.79 27.36 246.39
ego-twitter 10 774.97 3.40 713.22 2 164.25 3.41 176.58
ego-gplus 15 821.97 21.78 127.43 215.68 1.30 2.34
munmun-digg-reply 11 705.47 47.84 566.61 138.40 42.79 14.28
linux 37 181.37 8.78 581.75 19 700.71 8.81 241.20
faroe-islands 887.88 71.96 140.03 2 151.78 73.45 118.34

Table 3: Results on directed graphs after a node insertion. The first three columns
report the speedups of the incremental algorithms on recomputation for random
node insertions, whereas the last three report the speedups for maximum degree
node insertion. Bold font represents the best speedup for each graph and type
of insertion.

Random Maximum degree
Graph QUINCA-N KNNB RR QUINCA-N KNNB RR
HC-BIOGRID 3 401.32 146.19 2 215.51 227.13 108.94 21.32
Mus-musculus 4 245.39 92.15 1 227.16 68.66 46.00 3.49
Caenor-elegans 4 191.21 126.17 1 193.00 527.22 95.91 61.97
ca-GrQc 4 028.92 98.01 609.91 1 373.53 78.09 165.24
advogato 2 916.52 83.39 699.97 106.89 23.67 3.59
hprd-pp 5 260.68 174.96 257.80 414.39 126.02 17.54
ca-HepTh 5 818.89 129.07 1 427.53 453.95 114.95 47.66
dr-melanogaster 5 686.80 165.55 782.77 214.47 129.80 15.27
PGPgiantcompo 5 850.40 160.35 949.85 109.21 98.33 15.28
oregon1-010526 14 445.48 110.43 5 016.66 39.95 15.51 0.45
oregon2-010526 12 522.29 111.22 2 577.04 42.47 43.34 0.46
Homo-sapiens 8 330.10 179.43 1 111.09 409.96 115.48 10.39
GoogleNw 9 894.74 125.74 4 876.25 8.56 7.01 0.06
dip20090126 16 495.29 156.47 3 224.10 421.66 141.25 11.88
as-caida20071105 25 170.40 158.33 4 385.44 68.58 36.75 0.76

Table 4: Results on undirected graphs after a node insertion. The first three
columns report the speedups of the incremental algorithms on recomputation for
random node insertions, whereas the last three report the speedups for maximum
degree node insertion. Bold font represents the best speedup for each graph and
type of insertion.
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