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Abstract

We prove the existence of the Helmholtz decomposition

Lq(Ωp,C
d) = Lqσ(Ωp)⊕Gq(Ωp),

for periodic domains Ωp ⊆ Rd with respect to a lattice L ⊆ Rd, i.e. Ωp = Ωp + z for all
z ∈ L, and for all q ∈ I = (3+ε

2+ε , 3 + ε), where ε = ε(Ωp) is given by

• ε =∞ if Ωp ∈ C1, i.e. I = (1,∞).

• ε > 1 if Ωp is Lipschitz and d = 2.

• ε > 0 if Ωp is Lipschitz and d ≥ 3.

The proof of the Helmholtz decomposition builds upon [Bar13], where periodic operators
are extended continuously from L2 to operators defined on Lq by using Bloch theory and
Fourier multiplier theorems. Here, we prove that the Helmholtz projection P2 on L2 has
an extension to a bounded linear operator on Lq.
The same approach yields the existence of the Leray decomposition

Lq(Ωp,C
d) = Lqσ,Dir(Ωp)⊕GqDir(Ωp),

which is related to the weak Dirichlet problem, while the Helmholtz decomposition is related
to the weak Neumann problem.

Following the approach in [KU15a], we define the Maxwell operator on periodic domains
by using the form method, and this allows us to extend the operator on Lq-spaces, where
q ∈ [3/2, 3] if ∂Ωp is Lipschitz and q ∈ [6/5, 6] if ∂Ωp ∈ C1,1, by using generalized Gaussian
estimates. Furthermore, we show spectral independence of q for the Maxwell operator and
prove a spectral multiplier theorem for a shifted version of the operator.

Furthermore, we get that the Stokes operator with Dirichlet boundary conditions generates
an analytic semigroup for periodic domains of C3-class, and are able to show several results
for the incompressible Navier-Stokes equations which make use of [GHHS12] and [GK15].
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CHAPTER 1

Introduction

In 1858 von Helmholtz [Hel58] introduced the vector field decomposition

u = ∇(div F ∗ u)− curl (curl F ∗ u), u ∈ C∞c (Rd,Cd),

F (x) : =

{
1

2π log |x|, d = 2,
1

d(2−d)|B(0,1)| |x|
2−d, d = 3,

where F is the fundamental solution of the Laplace operator. Since div curl = 0, the
decomposition consists of a gradient part and a solenoidal vector field. This ansatz can be
used to prove the existence of the Helmholtz decomposition on Lq(Rd,Cd) for all q ∈ (1,∞),
i.e. a unique decomposition into a gradient part and a solenoidal vector field. From there
on mathematicians analysed this decomposition and generalized it to arbitrary domains
Ω ⊆ Rd. This decomposition, if it exists, is known as the Helmholtz decomposition and one
common today’s formulation for a domain Ω ⊆ Rd looks as follows.
We say that the Helmholtz decomposition exists on Lq(Ω,Cd), if for all f ∈ Lq(Ω,Cd) there
exist unique functions ∇p ∈ Gq(Ω), g ∈ Lqσ(Ω) so that

f = g +∇p, and ||g||Lq(Ω,Cd) + ||∇p||Lq(Ω,Cd) ≤ C||f ||Lq(Ω,Cd),

where C = C(q,Ω). Here, the spaces Lqσ(Ω) and Gq(Ω) are defined as follows:

Lqσ(Ω) = C∞c,σ(Ω)
||·||q

= {u ∈ C∞c (Ω,Cd) | div u = 0 in Ω}
Lq(Ω,Cd)

,

Gq(Ω) = {∇p ∈ Lq(Ω,Cd) | p ∈W 1,q
loc (Ω)} = {∇p ∈ Lq(Ω) | p ∈ L1

loc(Ω)}.

If the decomposition exists, there is a bounded projection operator Pq : Lq(Ω,Cd)→ Lq(Ω,Cd)
satisfying kernel(Pq) = Gq(Ω) and image(Pq) = Lqσ(Ω). Pq is called the Helmholtz projec-
tion. The Helmholtz decomposition exists on Lq(Ω,Cd) if and only if the weak formulation
of the classical Neumann problem

∆p = div u in Ω,

∂p

∂ν
= u · ν on ∂Ω.

1



1 Introduction

has for all u ∈ Lq(Ω,Cd) a unique solution p ∈ Gq(Ω), compare Theorem 2.43 and Remark
2.44.
The Helmholtz decomposition can be used in physical models considering source-free vector
fields, which is in fact a very common assumption. In this work we examine the Maxwell
equations (note that the magnetic field is source-free) and the incompressible Navier-Stokes
equations for fluids. We discuss below (p.4 ff.) how the Helmholtz projection enters in these
systems. We shall come back to applications, but we first outline the existence theory of
the Helmholtz decomposition.

On half-spaces there is, as in the case of Ω = Rd, a fundamental solution for the Laplace
operator with Neumann boundary condition, which yields the existence of Helmholtz de-
composition for all q ∈ (1,∞). From a mathematical point of view the Hilbert space case
q = 2 is by far the easiest, and in fact one can easily prove the existence of the Helmholtz
decomposition on any domain Ω ⊆ Rd in that case by using the Lax-Milgram lemma, com-
pare Theorem 2.45.
In the study of (nonlinear) differential equations it often does not suffice to consider the
case q = 2. In the theory of the three dimensional Navier-Stokes equations the spaces Lq

for q ≥ 3 play an important role. For example, an important tool in the study is the Fujita-
Kato iteration scheme [FK64], which yields a unique mild solution in the case q > d = 3.
Here, the iterations enlarges step by step the interval on which the mild solution is unique.
The exponent q > d is needed to have the embedding of W 1,q into the space of continuous
functions. Also the case q = d is of special interest, cf. for example [Gig86], because one
can use the scaling invariance of the Navier-Stokes equations on Ld under the scaling

u(x, t) = λu(λx, λ2t), p(x, t) = λ2p(λx, λ2t).

Furthermore, in nonlinear Maxwell equations and heat equations nonlinear terms behaving
like u|u|p−1, p > 1 have to be studied. So here, one also is obviously reliant on using
Lq-theory.

At least since 1986 [Bou86] it became clear that the Helmholtz decomposition fails for some
unbounded (even C∞-) domains and also fails for some bounded Lipschitz domains for some
range of q. So, the following question attracted and is still attracting many mathematicians:

Under which assumptions on Ω exists the Helmholtz decomposition, and on which Lq-spaces?

In the 1990’s Simader and Sohr [SS92] and Fabes, Mitrea and Mendez [FMM98] gave a
satisfactory answer to this question for domains having compact boundary, i.e. for bounded
and exterior domains. The Helmholtz decomposition exists for all q ∈ (1,∞) if Ω has a
compact C1-boundary and for all q ∈ (3+ε

2+ε , 3 + ε), where ε = ε(Ω) > 0, if Ω has a compact
Lipschitz boundary. Furthermore, the result for Lipschitz domains is sharp, i.e. for all
q < 3/2 and q > 3 there exists a domain Ω for which the Helmholtz decomposition fails on
Lq(Ω,Cd). Still, there is no general theory treating domains having non-compact boundary.
For some unbounded domains, the Helmholtz decomposition is known to exist for some
q 6= 2. We present them along with references in Theorem 2.46. However, Farwig, Kozono
and Sohr presented in 2007 the following approach to general unbounded domains [FKS07],
which are uniformly C1. They proved the existence of the Helmholtz decomposition for all

2



1 Introduction

q ∈ (1,∞) on the spaces L̃q(Ω,Cd), which are defined as Lq(Ω,Cd)∩L2(Ω,Cd) for q ∈ [2,∞)
and by Lq(Ω,Cd) + L2(Ω,Cd) for q ∈ (1, 2).

In this thesis, we present a new class of (unbounded) domains on which the (classical)
Helmholtz decompositions exists, namely domains periodic with respect to a lattice L ⊆ Rd,
i.e. domains Ω ⊆ Rd satisfying Ω = Ω + z for all z ∈ L. By transforming the basis of L to
the standard basis, it suffices to consider Zd-periodic domains, cf. Remark 2.13 and Remark
3.36. Therefore we only examine (Zd-)periodic domains, which we denote by Ωp. The main
result reads as follows:

Theorem: Helmholtz decomposition of Lq-vector fields on periodic domains
Let Ωp ⊆ Rd be a periodic domain. The Helmholtz decomposition on Lq(Ωp,C

d) exists for
all q ∈ I, where

• I = (1,∞), if ∂Ωp ∈ C1.

• I = (3+ε
2+ε , 3 + ε), for some ε = ε(Ωp) > 0, if ∂Ωp is Lipschitz. If d = 2, then ε > 1.

The whole chapter 3 deals with the proof of this theorem. Note that the interval on which
the Helmholtz decomposition exists on periodic domains is looking as in the bounded case.
In fact, we will reduce the case of periodic domains to the case of bounded domains by
using the Bloch transform.

Furthermore, we also take a look at a similar decomposition, the Leray decomposition, and
prove the existence of the Leray decomposition on periodic domains for the same range
of q as in the Helmholtz case. While the Helmholtz decomposition is related to the weak
Neumann problem, the Leray decomposition is related to the weak Dirichlet problem. We
give a precise definition of the decomposition at the end of the introduction.

We shortly summarize the structure of the remaining part of the introduction now. We
start by giving the motivation for studying periodic domains, i.e. we expound the physical
background on periodic domains. Having studied the physical background, we turn our at-
tention to applications, namely the Maxwell equations and the incompressible Navier-Stokes
equations with Dirichlet boundary conditions. After that, we come back to the Helmholtz
decomposition on periodic domains and summarize the main steps of the proof. Finally, we
discuss the Leray case, too. We present the spaces involved in the Leray decomposition and
formulate the analogue of the theorem above in this case. At the end, we shortly summarize
the content of the single chapters and their sections.

Photonic crystals

Periodic domains attracted much attention in recent years, mainly because they play a key
role in photonic crystals, which became very popular, compare e.g. [HP01].
For the introduction of photonic crystals we follow [JJWM08, Introduction]. The main idea
behind photonic crystals is to build materials with special optical properties. The goal is
to construct them in such a way that certain frequencies are reflected and some ranges of
frequencies pass the material in a particular direction, or even some frequencies might be
confined in a chosen domain.
The original motivation for this are observations on the propagation of electrons in a periodic

3



1 Introduction

potential, which is realised in semiconductor crystals, where exactly these phenomena oc-
cur. So, depending on the energy, some electrons pass without scattering at all, while some
electrons are not able to propagate in certain directions. And furthermore, there arise even
complete band gaps, which means that no electrons at all are able to pass through. The ex-
planation for these phenomena comes from quantum mechanics, since electrons behave like
waves in that case. In photonic crystals, one considers the propagation of electromagnetic
waves instead of the propagation of electrons. Mathematically, one detects passing and re-
flecting frequencies by looking at the spectrum, respectively the resolvent set of the Maxwell
operator. There is a series of papers by Figotin and Kuchment [FK94, FK95, FK96, FK98]
concerning the band-gap structure of the Maxwell operator in periodic media. In [KK99]
numerical results are analysed. So, in [FK95] the spectrum of the Maxwell operator for
two dimensional photonic crystals is examined. They proved the band-gap structure of the
spectrum, which is a typical application of Bloch theory, cf. Remark 4.1. In [HPW09] the
existence of a band-gap is proven by using numerical approximations of the eigenvalues.
These band-gaps are of special interest, because in that frequency range the photons are
not able to spread and this can be used to lead light through solids. In order to achieve
band gaps, one takes periodic macroscopic media with different dielectric constants instead
of atoms and molecules. Instead of a periodic potential, we face a periodic permittivity
here.
Photonic crystals appear in nature and were observed in wings of butterflies, opals and feath-
ers. They also have applications in technology. One of the most important is the possible
use in telecommunication. Its striking advantages are its superior speed and better stabil-
ity despite smaller dimensions. Besides, light waves do less interfere than electron waves.
Physicists are optimistic to use them to build optical transistors [NSM+05, VRW+12].
A step further they might even help to build a quantum computer. By the rules of quantum
mechanics, this computer would be able to do lots of calculations at the same time, which
would lead to a tremendous speed. Another futuristic application is quantum cryptogra-
phy, compare for example [CD05], which also uses photons. This encryption uses quantum
mechanics, too and is by Heisenberg’s uncertainty principle absolutely safe. In recent time,
there were already first successful realizations of quantum computers and quantum cryp-
tography.
For further explanations and more about the physical background we refer to [Mit09, Sou12].

The Maxwell operator for photonic crystals

We are getting to the mathematical modelling of photonic crystals. The mathematical
description of photonic crystals goes back to Yablonovitch [Yab87] and John [Joh87]. In
applications, the wavelengths are about some hundreds of nanometres (e.g. blue light ∼
400−500 nm, green light ∼ 520−570 nm, yellow light ∼ 580−600 nm, red light ∼ 650−750
nm). This number is in comparison to the atomic level quite large, so we can take the
macroscopic Maxwell equations instead of the microscopic ones. We examine both types of
equation systems in more detail in the physical appendix.

After integrating the properties of photonic crystals like linearity, non-homogeneity and
perfect conductor boundary conditions, which as well are studied in the physical appendix

4



1 Introduction

and at the beginnig of Chapter 4, we get by the time harmonic ansatz H(x, t) = e−iωtH(x)
(i.e. we assume a monochromatic wave form) the following system of equations for the
magnetic field strength H:

curl (ε−1curl H) = ω2µ−1
0 H, in Ω,

div H = 0, in Ω,

ν ·H = 0, on ∂Ω,

ν × ε−1curl H = 0, on ∂Ω.

Because of its essentiality for the theory, the first equation is sometimes called the master
equation. Throughout this work we focus on periodic domains Ωp. We analyse the related
Maxwell operator M = curl ε−1curl by using the form method and incorporate the other
three equations in the definition of the domain. More precisely, in L2(Ωp,C

d) we examine
the form

a(u, v) =

∫
Ωp

ε(·)−1curl u curl v dx+

∫
Ωp

div u div v dx,

for u, v ∈ V (Ωp), where

V (Ωp) = {u ∈ L2(Ωp,C
d) | div u ∈ L2(Ωp,C), curl u ∈ L2(Ωp,C

d), ν · u |∂Ωp= 0}.

We deduce the embedding of V (Ωp) into H1(Ωp) if Ωp has C1,1-boundary and into H1/2(Ωp)
if it has Lipschitz boundary from the bounded case, where this is a well known fact. As
we shall see this yields A2u = curl ε−1curl u − ∇div u for u ∈ D(A2), and u ∈ D(A2)
satisfies automatically the boundary conditions ν × ε−1curl u = 0 on ∂Ωp. In fact, we get
the following characterization for the domain of A2, provided functions in H1(Ωp)∩ V (Ωp)
with bounded support are dense. This is for instance the case if ∂Ωp ∈ C1,1. Then,

D(A2) = {u ∈ V (Ωp) | curl ε−1curl u ∈ L2(Ωp,C
3), div u ∈ H1(Ωp), ν×ε−1curl u|∂Ωp = 0}.

The operator associated to the form is not yet the Maxwell operator, since we have an extra
divergence term here. To get rid of the divergence term and take into account the second
equation we use the Helmholtz projection. By using the Helmholtz projection we restrict
the domain of A2 to solenoidal vector fields and obtain the Maxwell operator

M2 := A2, D(M2) = P2D(A2) = D(A2) ∩ L2
σ(Ωp).

Here P2D(A2) = D(A2)∩L2
σ(Ωp), since A2 and P2 commute, which is due to the boundary

conditions, see [KU15a, Lemma 3.6]. This is quite handy, because we can assign many
results we shall prove for A2 to the Maxwell operator M2.
The definition of the Maxwell operator on Lq requires the extension of both operators to
Lq, namely the operator A2 and the Helmholtz projection P2. As already mentioned, the
operator −A2 generates a bounded analytic semigroup, and by using generalized Gaussian
estimates we show that the semigroup generated by −A2− λ, λ > 0, extends to a bounded
analytic semigroup of angle π/2 on Lq with generator −Aq,λ. Since we have proven the
existence of the Helmholtz projection on Lq(Ωp,C

3) we can define in the same manner the
Maxwell operator on Lq. Besides, we are able to transfer a spectral multiplier theorem for

5



1 Introduction

operators fulfilling generalized Gaussian estimates [KU15b, Theorem 5.4] and the spectral
independence of q from Aq,λ to the Maxwell operator Mq,λ. Here, a decisive ingredient is
that the operator Aq,λ and Pq also commute.
Summing up, we are able to extend the theory for bounded domains from [KU15a] to
periodic domains.

Navier-Stokes equations

Besides the Maxwell equations, the Helmholtz decomposition has a key role in the theory
of the Navier-Stokes equations, which describe the motion of viscous fluids and gases. The
Navier-Stokes equations is one of the most important and most studied system of par-
tial differential equations. Nevertheless, many aspects of the existence-, uniqueness- and
regularity theory are still not satisfactorily answered. The case of the three dimensional
incompressible system on R3 or the torus Π3 is one of the famous open Millennium Prize
Problems, see [Wie99] for a discussion.
At the very end of this thesis, we have a physical appendix, where we give short informa-
tion about the background of the Maxwell and Navier-Stokes equations. The incompressible
Navier-Stokes equations with no-slip boundary condition are given by (where ∂tu := ∂u

∂t )

%
(
∂tu− µ∆u+ (u · ∇)u

)
+∇p = f, in Ω× (0, T ),

div u = 0, in Ω× (0, T ),

u|∂Ω = 0, on ∂Ω× (0, T ),

u(0, ·) = u0.

Here ∆ denotes the vectorial Laplacian, % the density, u the flux, µ the viscosity, ∇p the
pressure and f the external force. In the application part we only consider the case of a
constant density and we consider the Stokes system for high-viscous media and scale in
such a way that we get

∂tu−∆u+∇p = f, in Ω× (0, T ),

div u = 0, in Ω× (0, T ),

u|∂Ω = 0, on ∂Ω× (0, T ),

u(0, ·) = u0.

For this simplified system, the L2-theory is well-known, since the negative of the Stokes
operator A2 = −P2∆ is, as in the Maxwell case, self-adjoint and semibounded and hence
generates an analytic semigroup. Using a form ansatz as in the Maxwell case, the Stokes
operator can be defined on general three dimensional domains Ω, compare [Mon06]. For the
definition of the Stokes operator on Lq-spaces one is of course reliant on the existence of the
Helmholtz decomposition on these spaces. On the other hand, there are several results of
the form ’let us assume the Helmholtz decomposition exists on Lq, then...’, so since we prove
the existence of the Helmholtz decomposition on Lq (e.g. for all q ∈ (1,∞) if ∂Ωp ∈ C1),
we get some results without much further effort. We apply the results from [GHHS12]
and [GK15], which describe applications in the Lq-case for general domains Ω ⊆ Rd with
uniform C3-boundary, in the case that the Helmholtz decomposition exists on Lq(Ω,Cd) for
some q ∈ (1,∞). We begin by defining for smooth periodic domains the Stokes operator

6



1 Introduction

Aq on Lqσ(Ωp) by

D(Aq) := W 2,q(Ωp) ∩W 1,q
0 (Ωp) ∩ Lqσ(Ωp),

Aqu := −Pq∆u.

Next, we see that −Aq is the generator of an analytic semigroup on periodic domains having
uniform C3-boundary, admitting even maximal Lp-Lq-regularity. In particular, the Cauchy
problem

∂tu+Aqu = f,

u(0) = u0,

is uniquely solvable. Following this, we consider the Stokes resolvent problem

λu−∆u+∇p = f, in Ω,

div u = 0, in Ω,

u|∂Ω = 0, on ∂Ω.

By defining u := (λ+ Aq)
−1Pqf and ∇p = (Id− P )(f + ∆u) we get a solution pair of the

Stokes resolvent problem. In addition, we obtain a norm estimate, too.
Furthermore, we get by applying the results from [GK15] that the Stokes operator λ+ Aq
admits for all q ∈ (1,∞) a bounded H∞-calculus for some λ > 0.
We prove that the incompressible Stokes system has a unique solution pair (u,∇p) in
the Lq-setting. Once more, we get accompanying norm estimates. Finally, we apply a
theorem [GHHS12, Theorem 3.2] and obtain a unique mild solution for the full non-linear
incompressible Navier-Stokes equations in the case of fluids with constant density and no
external force, which are given by

∂tu+ (u · ∇)u−∆u+∇p = 0, in Ωp × (0, T ),

div u = 0, in Ωp × (0, T ),

u|∂Ω = 0, on ∂Ωp × (0, T ),

u(0, ·) = u0, in Ωp.

More precisely, we have a unique mild solution in some time interval (0, T0), where T0

depends on u0, provided u0 ∈ Lqσ(Ωp), q ∈ (d,∞) and Ωp has uniform C3-boundary.

Sketch of the proof of the Lq-Helmholtz decomposition on periodic domains

Next, we outline the main steps of the existence proof of the Helmholtz decomposition
on periodic domains for q 6= 2. The rough idea is to use adapted versions of Bloch
multiplier theorems from [Bar13], which are applicable thanks to the periodicity of the
domain and the periodicity of the Helmholtz projection. We prove that this yields an ex-
tension of the Helmholtz projection operator from L(L2(Ωp,C

d)) to a bounded operator
in L(Lq(Ωp,C

d)). Afterwards, we prove that this operator actually defines the Helmholtz
projection on Lq(Ωp,C

d). Since a periodic domain has non-compact boundary, there arise

7



1 Introduction

problems, which do not occur for bounded or exterior domains. For example one cannot ex-
clude in general in the class of unbounded (even C∞) domains that the following inclusions
of spaces of solenoidal vector fields and gradients on Ω ⊆ Rd are strict.

Lqσ(Ω) ( L̂qσ(Ω) := {u ∈ Lq(Ω,Cd) | div u = 0 in Ω, ν · u = 0 on ∂Ω},

Ĝq(Ω) := ∇C∞c (Ω)
||·||

Lq(Ω,Cd) ( Gq(Ω).

However, we prove that these spaces coincide for all periodic Lipschitz domains Ωp and
q ∈ (1,∞). It turns out that besides the boundary regularity, the equality of these spaces
is a crucial property for our proof of the existence of the Helmholtz decomposition on
Lq(Ωp,C

d). On the one hand, we use this equality to prove a representation for the fibre
operators (compare the forthcoming lines for the definition of them), on the other hand this
property is essential to prove that the operator obtained by continuous extension from L2

to Lq coincides with the Helmholtz projection on Lq.
We give shortly the main idea of the proof for the equality of these spaces. For this, we use
the fact, that it suffices to extend functions p ∈ Lqloc(Ω) with ∇p ∈ Lq(Ω,Cd) to functions p̃

in Lqloc(R
d) with ∇p̃ ∈ Lq(Rd,Cd) for all q ∈ (1,∞). This suffices, since Ĝq(Rd) = Gq(Rd).

The equality Lqσ(Ωp) = L̂qσ(Ωp) follows then by duality. The extension can be realized by
using extension theorems for W 1,q-functions, which go back to Calderón, Stein and Jones,
together with the Poincaré-inequality and the periodic structure of the domain.

Now, we give more details about the sub-steps. First of all, we observe that the Helmholtz
projection P2 and the associated projection Q2 := Id − P2 are periodic operators, which
means that they interchange with translations having integer entries. We define the mani-
fold with boundary Ω# := Ωp/Z

d representing one periodicity cell. Then, the idea is to use
an isometric isomorphism, the so-called Bloch transform, given by

Φ: L2(Ωp,C
d)→ L2(Bd, L2(Ω#,C

d)),

((Φf)(θ))(x) =
∑
k∈Zd

e−2πiθ·(x−k)f(x− k), θ ∈ Bd, x ∈ Ω#, f ∈ C∞c (Ωp,C
d),

to transform the operator Q2 into a family of fibre operators Q(θ) ∈ L(L2(Ω#,C
d)), where

θ ∈ Bd = [−1/2, 1/2)d, which are uniquely determined by the equation

Q(θ)(Φg(θ)) = (Φ(Qg))(θ), g ∈ L2(Ωp,C
d).

By periodicity arguments, it suffices to consider them on one unit cube, and we choose Bd.
The fibre operators Q(θ) exist since Q2 is periodic [Bar13] and we obtain representations
that are explicit enough to apply appropriate variants of the Bloch multiplier theorems
from Barth’s thesis [Bar13, Theorem 4.22], which yield the extension property of Q2 on
Lq-spaces and read as follows. In fact, we use the following general theorem for the special
case that Qf = Q(θ) from above.
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Theorem: Bloch multiplier theorem
Let Ωp ⊆ Rd be a periodic domain, q ∈ (1,∞), Ω# = Ωp/Z

d and E1, E2 be UMD-spaces.
Let Qf : Bd → L(Lq(Ω#, E1), Lq(Ω#, E2)). If

(i) θ 7→ Qf(θ) ∈ Cd(Bd,L(Lq(Ω#, E1), Lq(Ω#, E2))), or if,

(ii) θ 7→ Qf(θ) ∈ Cd(Bd \ {0},L(Lq(Ω#, E1), Lq(Ω#, E2))) and

τ := {|θ||α|∂αQ(θ) : θ ∈ Bd \ {0}, α ≤ (1, . . . , 1)} ⊆ L(Lq(Ω#, E1), Lq(Ω#, E2))

is R-bounded,

then Q := ΦQf Φ−1 defines a translationsinvariant operator in L(Lq(Ωp, E1), Lq(Ωp, E2)).

To get a representation for the fibre operators, we have to take a look at the following equiv-
alent characterization for the existence of the Helmholtz decomposition. The Helmholtz
decomposition exists on Lq(Ωp,Cd) if and only if the operator Nq = (∇q′)∗∇q is an isomor-
phism, where

Ẇ 1,q(Ωp)
∇q−−→ Lq(Ωp,C

d) ∼= (Lq
′
(Ωp,C

d))∗
(∇q′ )∗−−−−→ (Ẇ 1,q′(Ωp))∗,

and Ẇ 1,q(Ω) := {u ∈ Lqloc(Ω) | ∇u ∈ Lq(Ω,Cd)}/C is endowed with ||u|| := ||∇u||q.
Furthermore, if the Helmholtz decomposition exists, the projection Qq on the gradient part
is given by Qq := ∇qN−1

q (∇q)∗. Motivated by the fact that ∇+2πiθ are the fibre operators

associated with ∇, we prove that for θ ∈ Bd \ {0} the fibre operators for Q2 are given by
Q(θ) = (∇+ 2πiθ)((∇+ 2πiθ)∗(∇+ 2πiθ))−1(∇+ 2πiθ)∗, where

W 1,2(Ω#)
∇+2πiθ−−−−−→ L2(Ω#,C

d)
(∇+2πiθ)∗−−−−−−→ (W 1,2(Ω#))∗.

The proof of this formula relies on the equality Lqσ(Ωp) = L̂qσ(Ωp) and Gq(Ωp) = Ĝq(Ωp),
since this allows us to restrict ourselves to the dense subspaces consisting of C∞c -functions.
An essential observation in the study of the fibre operators is that the operators ∇ +
2πiθ : W 1,2(Ω#)→ L2(Ω#,C

d) are injective for θ ∈ Bd \ {0}. So θ = 0 has a special role.
In fact, this singularity in θ = 0 prevents the usage of the condition (i) in the Bloch mul-
tiplier theorem stated above. On the other hand, the condition (ii) of the Bloch multiplier
theorem requires an R-boundedness condition, and the verification is thus more involved.
To overcome this problem, we split Q(θ) into a sum

Q(θ) = Q0(θ) + T (θ),

where Q0(θ) is defined as Q(θ), but with W 1,2(Ω#) replaced by W 1,2(Ω#)0 = {u ∈
W 1,2(Ω#) |

∫
Ω#

u dx = 0}, and T is the rest term. The mapping θ 7→ Q0(θ) is real

analytic, even at θ = 0. So, part (i) of the Bloch multiplier theorem from above applies for
Q0. A calculation shows that there is a concrete formula for the rest term T , which is an
orthogonal projection onto a one-dimensional subspace. This can be used to prove that this
part fulfils the assumption of the part (ii) in the Bloch multiplier theorem, which means
that we can check the R-boundedness assumption here. Note that the space W 1,2(Ω#) is
by one dimension larger than Ẇ 1,2(Ω#), which is a heuristic explanation why the rest term
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T has an one-dimensional range. Finally, the arguments prove that Q2 has a continuous
extension to an operator Qq ∈ L(Lq(Ωp,C

d)).

It remains to prove that the operator Qq on Lq obtained by continuous extension from L2

coincides with the projection onto Gq(Ω) and Id − Qq defines the Helmholtz projection.

This is easy to prove since Ĝq(Ωp) = Gq(Ωp) and L̂qσ(Ωp) = Lqσ(Ωp). Otherwise, i.e. without
the equality of these spaces, this would not be clear.

The Leray decomposition

Although we only focus on applications using the Helmholtz decomposition, we also con-
sider another Helmholtz-type decomposition, the Leray decomposition. We recall that the
Helmholtz decomposition is connected to the weak Neumann problem, whereas the Leray
decomposition is related to the weak Neumann problem. We prove that the Leray decom-
position exists on Lq(Ωp,C

d), where

Lq(Ωp,C
d) = Lqσ,Dir(Ωp)⊕GqDir(Ωp),

Lqσ,Dir(Ωp) = C∞c,σ(Rd)|Ωp

||·||q
= {u ∈ Lq(Ωp,C

d) | div u = 0},

GqDir(Ωp) = ∇C∞c (Ωp)
||·||q

= ∇W 1,q
0 (Ωp)

= {∇p ∈ Lq(Ωp,C
d) | p ∈W 1,q

loc (Ωp), p|∂Ωp = 0},

and the range of q is depending on the regularity of ∂Ωp in the same manner as in the
Helmholtz case. In the statement above we already used the equality of spaces Lqσ,Dir(Ωp) =

L̂qσ,Dir(Ωp) and GqDir(Ωp) = ĜqDir(Ωp), which is not true in general for unbounded domains,
see the discussion in Section 3.5. Here, these equalities for periodic domains are due to
a Poincaré inequality on Ωp, which is applicable thanks to the Dirichlet boundary condi-
tions. This proof requires much less technical tools in comparison to the same proof in the
Helmholtz case.
The existence proof of the Leray decomposition on Lq(Ωp,C

d) follows the method of the
existence proof in the Helmholtz case. In fact, this proof is also much easier, since in con-
trast to the weak Neumann problem no singularity for the fibre operators at θ = 0 occurs.
So we are not obliged to use version (ii) of the Bloch multiplier theorem, i.e. we do not
have to prove an R-boundedness condition, which had been the most technical step in the
Helmholtz case.

Scheme of the thesis

In the following we give a brief summary of this thesis.

Chapter 2 consists of a collection of well-known facts used in the chapters to follow. We
start with the notation used in this work. Afterwards, we analyse semigroups. Both the
Maxwell and the Stokes operator will be proven to generate analytic semigroups. Following
this, we consider sesquilinear forms, which will be used to define the Maxwell operator. In
Section 2.4 we consider differentiability and analyticity of Banach space valued maps. In
Section 2.5 we regardR-boundedness. In Section 2.6 we take a brief look at theH∞-calculus.
At the end of the chapter 2, we summarize the main known theorems and open problems
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concerning the Helmholtz decomposition.

The Helmholtz decomposition on periodic domains is the content of Chapter 3. In Section
3.1 we prove Lqσ(Ωp) = L̂qσ(Ωp) and Gq(Ωp) = Ĝq(Ωp) for all periodic Lipschitz domains
and all q ∈ (1,∞). Subsequently, we summarize basics of the Bloch theory and give
appropriate variants of the multiplier theorem from [Bar13]. In Section 3.3 we decompose
the projection Q onto the gradient space G2(Ωp) under the Bloch transform into the fibre
operators Q(θ) and prove a concrete representation for them. Finally, we are ready to prove
the existence of the Helmholtz decomposition on Lq for the stated range of q on periodic
domains in Section 3.4. To this end, we have to consider the fibre operators on Lq and check
the assumptions of the Bloch multiplier theorem. At the end of the chapter, we consider
another Helmholtz-type decomposition, the Leray decomposition, which is related to the
weak Dirichlet problem, while the Helmholtz decomposition is related to the weak Neumann
problem. We prove that an analogous result holds true for the Leray decomposition of Lq

vector fields.

We examine applications in Chapter 4 and start with considering photonic crystals and
the Maxwell operator on L2(Ωp). In Section 4.3 we establish the Maxwell operator on Lq.
Between these two sections, we prove Gaussian estimates, which we need to extend the
Maxwell operator on Lq. In Section 4.4 we give properties of the Lq Stokes operator with
no-slip boundary condition on periodic domains, where q 6= 2.

Chapter 5 is the physical appendix. There we present the Maxwell and the Navier-Stokes
equations from a physical point of view. Our focus lies on the explanation of physical terms
and the mathematical consequences for the equations.

11



CHAPTER 2

Preliminaries

2.1 Basic Notations

We introduce the following notations. We denote by C a positive constant which might
change from line to line. Let A ⊆ Rd. By A we denote the closure of A, and by |A| we denote
the volume, if A is measurable. Let N= {1, 2 . . . , } be the natural numbers, N0= N ∪ {0},
and let Z denote the integers. We denote the open and closed balls as follows:

Bd(x, r) = {y ∈ Rd | |x− y|2 < r},
Bd(x, r) = {y ∈ Rd | |x− y|2 ≤ r}.

Let M ⊆ B be a subset of a Banach space B. By M
||·||B we denote the norm closure of M

in B. Let B1, B2 be Banach spaces. We denote

L(B1, B2) := {T : B1 → B2 | T is linear and bounded}, L(B1) := L(B1, B1).

All frequently used symbols are listed at the end of the thesis. We tried to make things as
self-contained as possible. For more details, further explanations and the proofs we refer
to [Soh01, Chapter I and II], [Neč12] and [Tem77, Chapter I], where most of the following
statements were taken from. A domain Ω ⊆ Rd is an open, connected subset of Rd. We start
with the introduction of boundary regularity classes, compare [Soh01, Chapter I, section
3.2].

Definition 2.1 (boundary regularity classes)
We say that a domain Ω ⊆ Rd has Cα-regularity, α ≥ 0, if for all x ∈ ∂Ω, there is a
coordinate transform ψ : Rd → Rd, which is given by a concatenation of a rotation and a
translation, such that x = ψ(0, yd) and that there are constants r, β > 0 and a Cα-regular
function Φx : Bd−1(0, r)→ R satisfying

∂Ω ∩ Ux = {ψ(y1, . . . , yd) | yd = Φx(y1, . . . , yd−1)},
Ω ∩ Ux = {ψ(y1, . . . , yd) | yd > Φx(y1, . . . , yd−1)},

where Ux := ψ(Bd−1(0, r) × (−β + yd, β + yd)) and ∂Ω denotes the boundary of Ω. Ω has
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local Lipschitz boundary, if Φx can be chosen Lipschitz continuous for all x ∈ ∂Ω. If Φx

can be chosen k−times differentiable with Lipschitz continuous partial derivative of order k
for all x, then Ω is said to be a Ck,1-domain.
Ω has a uniform Ck, respectively Lipschitz boundary, if the constants r, β can be chosen
independent of x and if the Ck-norm, respectively Lipschitz-norm, of Φx can be estimated
by a constant independent of x.

Sometimes one finds a weaker definition of Lipschitz domains, which uses bilipschitz maps.
For the definition and examples that this class contains more domains, see [QHMS04, Defi-
nition 2.1, Example 2.2]. Therefore the last definition is sometimes called weakly Lipschitz
and the definition above is called strongly Lipschitz. However, in our investigation at the
beginning of Chapter 3, the following definition [AF03, chapter 4, (4.9)] for uniform Lip-
schitz domains will be used. It requires besides the uniformity of the Lipschitz constant M
and of the locally minimally covered size constant δ, the existence of a so called overlap
number R which states that nowhere more than R sets of the covering are intersecting.

Definition 2.2 (strongly local Lipschitz boundary)
A domain Ω ⊆ Rd is called strongly local Lipschitz, if there are constants δ,M > 0 such that
there exists a locally finite open covering {Uj} of ∂Ω, and, for each j there is a function
fj = fj(x1, . . . , xd−1) with the following properties:

a) There is a R ∈ N such that every collections of R+1 of the sets Uj has empty intersection.

b) For all x, y ∈ Ωδ = {z ∈ Ω | dist(z, ∂Ω) < δ} with |x− y| < δ there is a j with

x, y ∈ Vj := {z ∈ Uj | dist(z, ∂Uj) > δ}.

c) Every function fj is Lipschitz continuous with constant M , which means

|fj(x1, . . . , xd−1)− fj(y1, . . . , yd−1)| ≤M |(x1 − y1, . . . , xd−1 − yd−1)|.

d) There is a Cartesian coordinates system xj,1, . . . , xj,d in Uj such that

Ω ∩ Uj = {xj,d | xj,d < fj(xj,1, . . . , xj,d−1)}.

This definition is also called minimally smooth boundary condition [Ste70, chapter 6, section
3.3]. Note that Definition 2.1 and Definition 2.2 coincide for bounded domains [AF03].
There, one finds a detailed description of the theory. We remark that our attention in this
thesis lies on periodic domains, and there the two definitions do also coincide because of
the periodic structure of these domains.

Lemma 2.3 (existence of the exterior unit vector)
If Ω has local Lipschitz boundary, the exterior unit vector ν exists for almost all x ∈ ∂Ω.

Proof: See [Soh01, Chapter I, Section 3.4]

For the sake of completeness and to facilitate the overview, we give some basics about
Lebesgue spaces, Sobolev spaces and dual spaces.
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2 Preliminaries

Definition and Remark 2.4 (Lebesgue and Sobolev spaces)
Let (Ω,A, µ) be a measure space, q ∈ [1,∞) and K = Cd or K = Rd. After identifying
functions, which coincide almost everywhere, we get the Lq-spaces

Lq(Ω,K) = {[f : Ω→ K] | f is measurable and

∫
Ω

|f(x)|qdx <∞},

endowed with the norm ||f || := (
∫

Ω |f(x)|qdx)1/q. In most cases we consider Ω ⊆ Rd

measurable, as A the Borel σ-algebra, and µ is the Lebesgue measure. In that case we
define

Lqloc(Ω) := {[f : Ω→ K] | f is measurable, f |Ω′ ∈ Lq(Ω′) for all compact Ω′ with Ω′ ⊆ Ω}.

The dual space of a complex Banach space E is defined by E′ := L(E,C). Furthermore the
anti-dual space E∗ of E consists of all continuous antilinear forms, i.e. ϕ(αf) = αϕ(f) for
all α ∈ C, f ∈ E. For all q ∈ [1,∞) we have Lq(Ω,K)′ ∼= Lq

′
(Ω,K), where the canonical

isomorphism is given by

Lq
′
(Ω,K)→ Lq(Ω,K)′, g 7→ [f 7→

∫
Ω
fg dx].

For Ω ⊆ Rd open, f ∈ L1
loc(Ω) a function g ∈ L1

loc(Ω) is called the weak j-th partial
derivative of f if ∫

Ω

f∂jϕdx =

∫
Ω

gϕdx, for all ϕ ∈ C∞c (Ω).

We define weak derivatives of higher order iteratively. For Ω ⊆ Rd open, 1 ≤ q < ∞,
k ∈ N, we consider the Sobolev spaces

W k,q(Ω) = {f ∈ Lq(Ω) | all weak derivatives of f of order ≤ k belong to Lq(Ω)},

which are complete for the norm ||f || = (
∑
|α|≤k |||∂αf ||

q
Lq(Ω))

1/q. We further define

W k,q
0 (Ω) := C∞c (Ω)

||·||
Wk,q(Ω) ⊆W k,q(Ω),

W k,q
loc (Ω) := {f ∈ Lqloc(Ω) | Dlf ∈ Lqloc(Ω) for all 0 ≤ |l| ≤ m}.

It is also possible to define Sobolev spaces of negative index, namely

W−k,q(Ω) = (W k,q′

0 (Ω))′ =
(
C∞c (Ω)

||·||
Wk,q′ (Ω)

)′
.

Next, we define the surface integral. We follow the approach in [Soh01, Chapter I, section
3.4]. Let Ω be a bounded Lipschitz domain. Since ∂Ω is compact, we find by definition a
finite open covering U1, . . . , Um of ∂Ω and functions ψj ,Φj as in Definition 2.1. Furthermore,
there is a decomposition of unity on ∂Ω, given by functions ϕj ∈ C∞c (Uj) satisfying

0 ≤ ϕj ≤ 1,

m∑
j=1

ϕj(x) = 1 for all x ∈ ∂Ω.

Now, we are ready to define the surface integral
∫
∂Ω u dS and function spaces on ∂Ω.
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Definition 2.5 (boundary function spaces)
Let Ω ⊆ Rd be a bounded Lipschitz domain. A function u : ∂Ω → C is called measur-
able/integrable if

y 7→ u(ψj(y,Φj(y)))ϕj(ψj(y,Φj(y)))(1 + |∇Φj(y)|2)1/2

is measurable/integrable for all j = 1, . . . ,m. We define dS := (1 + |∇Φj(y)|2)1/2dy, which
yields to the definition of the surface integral∫

∂Ω
u dS :=

m∑
j=1

∫
∂Ω∩Uj

uϕj dS.

This definition is well-defined and we define the spaces Lq(∂Ω) consisting of equivalence
classes of measurable functions, whose q-th power is integrable. We define for β ∈ (0, 1),
q ∈ (1,∞) the Besov spaces

Bq
β(∂Ω) : = {u ∈ Lq(∂Ω) | ||u||Bβ,q(∂Ω) <∞},

||u||Bqβ(∂Ω) =
(
||u||qLq(∂Ω) +

∫
∂Ω

∫
∂Ω

|u(x)− u(y)|q

|x− y|d−1+βq
dSxdSy

)1/q
.

These spaces and their duals Bq
−β(∂Ω) = (Bq′

β (∂Ω))′ are important tools in [FMM98], where
the solvability of the weak Neumann problem is proven for bounded Lipschitz domains on
an interval of the form (3+ε

2+ε , 3 + ε).

Lemma 2.6 (trace operator)
Let Ω ⊆ Rd be a bounded Lipschitz domain and q ∈ (1,∞).

(a) On bounded Lipschitz domains exists the trace operator

Γtrace : W 1,q(Ω)→ Bq
1−1/q(∂Ω),

which defines generalized boundary values. In particular, Γtraceu = u|∂Ω for all u ∈
C∞(Ω). Furthermore, Γtrace is bounded and surjective.

(b) There is a bounded, linear extension operator Γext : Bq
1−1/q(∂Ω)→W 1,q(Ω) satisfying

ΓtraceΓext = Id on Bq
1−1/q(∂Ω).

(c) kernel(Γtrace) = W 1,q
0 (Ω).

Proof: See [Neč12, Chapter II, Theorem 5.7 and Chapter II, Theorem 4.10].

Next, we introduce the Poincaré inequality, which will be used frequently in Section 3.1.
The proof can be found in most of the standard analysis books. Nevertheless, we present
the proof here.
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Lemma 2.7 (Poincaré inequality)
Let Ω be a bounded Lipschitz domain and q ∈ [1,∞). We consider the following classes:

• K1 = {u ∈W 1,q(Ω) |
∫

Ω u dx = 0}.

• K2 = {u ∈W 1,q(Ω) | u|M = 0}, where M ⊆ Ω has positive measure.

• K3 = {u ∈ W 1,q(Ω) | Γtraceu|N = 0}, where N ⊆ ∂Ω is a non-empty relatively open
subset.

On all these classes, the Poincaré inequality applies, i.e. there are constants Ci > 0 satis-
fying

||u||Lq(Ω) ≤ Ci||∇u||Lq(Ω,Cd), u ∈ Ki.

In particular,

||u−m(u)||Lq(Ω) ≤ C1||∇u||Lq(Ω,Cd), u ∈W 1,q(Ω),

where m(u) denotes the mean of u.

Proof: We suppose such a constant does not exist. Then, there is a sequence (wn)n∈N with
the demanded properties such that

||wn||q = 1, ||∇wn||q ≤ 1/n.

By the Rellich-Kondrachov theorem [Neč12, Chapter 2, Theorem 6.3] the embeddingW 1,q ↪→
Lq is compact, and since the sequence is bounded in W 1,q(Ω), there is a subsequence
{wjk}k∈N, w ∈ W 1,q(Ω) such that wjk → w in Lq(Ω) and ∇wjk → ∇w weakly in Lq(Ω).
This yields

||w||q = lim
k→∞

||wjk ||q = 1, ||∇w||q ≤ lim
k→∞

inf ||∇wjk ||q = 0.

Hence, ∇w = 0 and w is constant, since Ω is connected. By assumption, only w = 0 is
possible, but that contradicts ||w||q = 1.

Next, we give a general formulation of the integration by part/Green’s formula. For this
purpose, we first define spaces of functions having integrable divergence/curl. On these
spaces, we are able to define normal/tangential components for functions at the boundary
by extending the integration by part/Greens’ formula.

Definition and Remark 2.8 (spaces of div and curl)
Let Ω ⊆ Rd, d ≥ 2 and q ∈ (1,∞). We define the following spaces:

Divq(Ω) = {v ∈ Lq(Ω,Cd) | div u ∈ Lq(Ω)},
Curlq(Ω) = {v ∈ Lq(Ω,Cd) | curl u ∈ Lq(Ω,Cd)},

Here, div and curl are defined in distributional sense. In the case q = 2 these spaces are
usually denoted by H(div ,Ω) and H(curl ,Ω). The norms on the Banach spaces Divq and
Curlq are defined by
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||v||Divq(Ω) =
(
||v||qq + ||div v||qq

)1/q
,

||v||Curlq(Ω) =
(
||v||qq + ||curl v||qq

)1/q
.

Furthermore, it is worth to mention that C∞(Ω) is dense in these spaces if Ω ⊆ Rd is a
bounded Lipschitz domain, cf. [FM77] and [Tem77, Chapter I, Theorem 1.1].

Now, we are in the position to consider generalized traces, which are defined as follows.

Lemma 2.9 (normal component)
Let Ω ⊆ Rd be a bounded Lipschitz domain, q ∈ (1,∞). There is a bounded, linear operator

ΓN : Divq(Ω)→ Bq
−1/q(∂Ω) :=

(
Bq′

1/q(∂Ω)
)′
,

which is given as the continuous extension of the mapping ΓN : u 7→ u · ν from the dense
subspace C∞c (Ω) to Divq. The operator is called the generalized trace operator.

Proof: See [SS92, Theorem 5.3].

The density results from Definition and Remark 2.8 yield the following general formulation
of the integration by parts formula.

Lemma 2.10 (integration by parts)
Let Ω ⊆ Rd be a bounded Lipschitz domain, d ≥ 2, q ∈ (1,∞), u ∈ W 1,q(Ω), v ∈ Divq′(Ω).
Then we have

〈u,div v〉Ω = 〈u, v · ν〉∂Ω − 〈∇u, v〉Ω.

Note that 〈u, v · ν〉∂Ω is well-defined since

ΓNv ∈ Bq′

−1/q′(∂Ω), u|∂Ω ∈ Bq
1−1/q(∂Ω).

Proof: See [Soh01, Chapter II, Lemma 1.2.3].

In the three dimensional case an analogous approach yields the existence of the tangential
component and an integral formula for the operator curl, which we summarize in the next
lemma, compare e.g. [GR12, Chapter I, Theorem 2.11]. To distinguish between the two
appearing integral formulas, we call the equation below Green’s formula and the formula
from Lemma 2.10 integration by parts.

Lemma 2.11 (tangential component and Green’s formula)
Let Ω ⊆ R3 be a bounded Lipschitz domain. Then, the mapping ΓT : u 7→ u× ν|∂Ω defined
on C∞c (Ω,C3) can be extended to a bounded linear operator, still denoted by ΓT , where

ΓT : Curlq(Ω)→ Bq
−1/q(∂Ω).

Furthermore, we have the following Green’s formula

〈curl u, v〉 − 〈u, curl v〉 = 〈ΓTu, v〉∂Ω, for all u ∈ Divq(Ω), v ∈W 1,q′(Ω).
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We arrive at the definition of a periodic domain, which is of greatest importance in this
work.

Definition 2.12 (periodic domains)
A lattice L ⊆ Rd is a discrete subgroup of (Rd,+) with rang L = d. In other words,

L = {
d∑
j=1

zjbj | zj ∈ Z},

where {b1, . . . , bd} form a basis of Rd. A domain Ωp ⊆ Rd is called periodic with respect to
a given lattice L, if Ωp = Ωp + p for all p ∈ L. If L = Zd, we call Ωp a Zd-periodic domain
or just a periodic domain. A periodic domain is characterized by one periodicity cell

Ω0 := Ω ∩ [0, 1]d.

Figure 2.1: A two dimensional (Zd-)periodic domain.

Remark 2.13 (reduction to Zd-periodic domains)
Let Ωp be a periodic domain with respect to a given lattice L and B = {b1, . . . , bd} be
a basis of L. We denote by M the (invertible) matrix mapping B to the standard basis
{e1, . . . , ed}. Clearly, the transformation is C∞, and invertible with inverse map M−1. In
particular, the transformation is bilipschitz and the results in Section 3.1 remains untouched
under this transformation, cf. Remark 3.1. Also, the Bloch theory can be adapted to an
arbitrary periodicity cell, cf. Remark 3.36. Therefore we restrict ourselves to the case of
Zd-periodic domains. From now on, a periodic domain is defined as a Zd-periodic domain
and is denoted by Ωp.

Definition and Remark 2.14 (definition of Ω#)
If Ωp ⊆ Rd is a periodic domain, we define the manifold Ω#:= Ωp/Z

d. So, Ω# is given by
Ω0, where the opposite edges are identified. Note that Ω# is a flat manifold with boundary.

Note that Lq(Ω0,C
d) = Lq(Ω#,C

d), but W 1,q(Ω#) is much smaller than W 1,q(Ω0), since
functions fromW 1,q(Ω0) are only inW 1,q(Ω#) if they fulfil Zd-periodic boundary conditions.
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2.2 Semigroups

LetX be a Banach space. We follow [EN00, Chapter I, §5 and Chapter II, §1]. Alternatively,
the basic theory of semigroups can be found in [Lun95], too.

Definition 2.15 (semigroups)
A C0-semigroup or strongly continuous semigroup is a map T : [0,∞) → L(X) having the
following properties:

a) For all x ∈ X the map [0,∞)→ X, t 7→ (T (t))(x) is continuous.

b) We have T (t+ s) = T (t)T (s) for all t, s ∈ [0,∞).

c) We have T (0) = Id.

Since all semigroups appearing in this work are strongly continuous we spare to mention the
C0-property of the semigroup. So, by just writing semigroup we actually denote a strongly
continuous semigroup.

Definition and Remark 2.16 (generator of a semigroup)
Let T be a semigroup. The generator A of the semigroup is defined by

Ax = lim
h→0+

1

h
(T (h)x− x),

D(A) = {x ∈ X | lim
h→0+

1

h
(T (h)x− x) exists}.

It follows that every generator of a semigroup is densely defined and closed.

Let us give the most basic results on this subject [Sch12b, chapter I], [EN00, Chapter II].
The theory of semigroups was developed in the late 1940’ and early 1950’ among others by
Feller, Hille, Miyadera, Phillips and Yosida.

Proposition 2.17 (basics on semigroups and their generators)
Let T (·) be a semigroup. Then, there are M ≥ 1 and ω ∈ R such that

||T (t)|| ≤Meωt, t ≥ 0.

The infimum over all possible choices ω is called the growth bound of T and denoted by
ω0(T ) or ω0(A). A linear operator generates a semigroup T (·) with growth constants M,ω
if and only if A is closed, densely defined, (ω,∞) ⊆ %(A) and

||R(λ,A)n|| ≤ M

(λ− ω)n
, for all λ > ω, n ∈ N.

If λ ∈ C with Re(λ) > ω0(T ), then λ ∈ %(A) and

R(λ,A)f =

∞∫
0

e−λtT (t)fdt.
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Besides, semigroups have the following connection to the well-posedness of the Cauchy
problem.

Proposition 2.18 (Cauchy problem)
A closed operator on a Banach space X generates a semigroup if and only if the Cauchy
problem

u′(t) = Au(t), t > 0,

u(0) = u0,

is well-posed, i.e. D(A) is dense in X, for all u0 ∈ D(A) the problem is uniquely solvable,
the solution u(t, un) converges to u(t, u0) uniformly for t in compact subsets of R, whenever
un, u0 ∈ D(A) and un → u in X. Furthermore, in that case, the solution is given by
u = T (·)u0.

Example 2.19 (holomorphic functional calculus)
Let A ∈ L(X), hence σ(A) is compact. We choose a smooth path Γ around the spectrum
with winding number equal to one like in the following picture.

Figure 2.2: The path Γ en-
closes the spectrum of A

By using the holomorphic functional calculus, we define the family of operators
T (t) ∈ L(X) by

T (t) := etA =
1

2πi

∫
Γ

eλtR(λ,A)dλ.

By the well known results for the holomorphic functional calculus, it is not hard to prove
that T is a uniformly continuous semigroup with generator A, i.e. t 7→ T (t) ∈ L(X) is
continuous with respect to the uniform operator topology cf. [EN00, Chapter I, Prop 3.5].

There is a family of closed operators, for which the approach with the contour integral
works. We consider an operator A having σ(A) lying in some sector and examine the
following path.
We choose arbitrary ϕ′ ∈ (ϕ, π), r > 0 and define the path Γ := Γ1 + Γ2 + Γ3, where

Γ1 := {−teiϕ′ | t ∈ (−∞,−r]},
Γ2 := {re−it | t ∈ [−ϕ′, ϕ′]},
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Figure 2.3: Γ is orientated counterclockwise.
The spectrum is contained in the sector Σϕ ly-
ing in the right half-plane, and since zero might
be in the spectrum one has to steer clear of zero.

Γ3 := {te−iϕ′ | t ∈ [r,∞)}.

Assuming a resolvent estimate, the path integral from Example 2.19 becomes convergent,
compare Proposition 2.21 below. This property allows to extend semigroups on certain sec-
tors compare [Sch12b, Definition 2.11] or [EN00, Chapter II, 4.1 Definition, 4.5 Definition].
We remark that these authors use a mirrored version for sectorial operators by considering
−A instead of A, in particular they consider the supremum instead of the infimum as angle
and the value of the angle w(A) changes to π − w(A).

Definition 2.20 (sectorial operators and analytic semigroups)
A closed operator A is called sectorial if there is a ϕ ∈ (0, π) such that σ(A) ⊆ Σϕ, where

Σϕ := {λ ∈ C \ {0} | |arg(λ)| < ϕ},

and

||R(λ,A)|| ≤ C

|λ|
,

for all ϕ′ ∈ (ϕ, π], 0 6= λ with |arg(λ)| > ϕ′, where C = C(ϕ′). The infimum of all such ϕ
is called the angle of A and is denoted by w(A).
An analytic semigroup of angle θ ∈ (0, π] is a family of operators {T (z) | z ∈ {0} ∪ Σθ}
satisfying

• T is a semigroup and the semigroup law extends to Σθ.

• T : Σθ → L(X) is analytic.

• T (z)x→ x in X as z → 0 in ΣΘ for all 0 < Θ < θ.

If, in addition supz∈ΣΘ
||T (z)|| < ∞ for all 0 < Θ < θ, T is called a bounded analytic

semigroup of angle θ.

Next, we study equivalent descriptions of analyticity and give helpful properties using an-
alyticity.

Proposition 2.21 (characterizations of analytic semigroups)
Let A be a closed operator on a Banach space X. The following are equivalent:

• A generates a bounded analytic semigroup of angle θ ∈ (0, π/2].
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• A is densely defined and −A is sectorial of angle w(−A) < π/2.

• A is densely defined, {λ ∈ C | Re(λ) > 0} =: C+ ⊆ %(A) and

||R(λ,A)|| ≤ C

Re λ
, ||R(λ,A)|| ≤ C

|Im λ|
,

for all λ ∈ C+ and a constant C > 0.

• There is a Θ ∈ (0, π/2) such that the operators e±iΘA generate bounded semigroups.

• A generates a semigroup T such that T (t)X ⊆ D(A) for all t > 0 and

||AT (t)|| ≤ M1

t
,

where M1 > 0 is a constant.
Furthermore, T ∈ C1((0,∞),L(X)) and d

dtT (t) = AT (t) for all t > 0.

Proof: See [Sch12b, Theorem 2.12] or [EN00, Chapter II, 4.6 Theorem].

Proposition 2.22 (representation of the semigroup by using the Laplace transform)
Let A be the generator of a bounded analytic semigroup of angle θ ∈ (0, π/2] and Γ be the
mirrored (at the y-axis) path of the path in Figure 2.3. The semigroup T is given by

T (t) =
1

2πi

∫
Γ

eλtR(λ,A)dλ, t > 0.

Here, the integral has to be understood as a Bochner integral, which is defined by approximat-
ing with simple functions. Hence, it is the generalisation of the Lebesgue integral, compare
[AE08, chapter X] for the details.
We have T (t)X ⊆ D(An) and even T ∈ C∞((0,∞),L(X)), where dn

dtnT (t) = AnT (t),

||AnT (t)|| ≤ Mn
tn for all n ∈ N and constants Mn depending on C and n.

Proof: See [Sch12b, Theorem 2.12] or [EN00, Chapter II, §4].

At the end of the section we just want to mention that the smoothing property mentioned
in Proposition 2.22 is useful in applications. It yields better regularity of the solution of
the homogeneous and inhomogeneous Cauchy problem. Besides, analytic semigroups are
known to behave better in perturbation theory. For more details concerning semigroups we
refer to standard literature concerning this topic like [EN00].

2.3 Sesquilinear forms

At the beginning of this section we have to warn the reader. The notation of the following
terms is not consistent in the literature. So, other authors may, for example call coercive,
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what we call shifted ellipticity condition. For more details concerning forms, see [Sch12a,
chapter 11].

Definition 2.23 (terms used for sesquilinear forms)

We consider a sesquilinear form a(u, v), defined on V
i
↪→ H, where V,H are complex Hilbert

spaces and the embedding has to be continuous and dense.

(a) a is called continuous if there is a constant C > 0 satisfying

|a(u, v)| ≤ C||u||V ||v||V , for all u, v ∈ V.

(b) a is called coercive if there is a constant C > 0 satisfying

|a(u, u)| ≥ C||u||2V , for all u ∈ V.

(c) a is called elliptic if there is a constant C > 0 satisfying

Re a(u, u) ≥ C||u||2V , for all u ∈ V.

(d) a fulfils the shifted ellipticity condition if there are constants C1, C2 ≥ 0 such that

Re a(u, u) + C1||u||2H ≥ C2||u||2V , for all u ∈ V.

(e) a is called symmetric, if

a(u, v) = a(v, u), for all u, v ∈ V.

To avoid confusion the notation V -continuous, V -coercive etc. is common.

Obviously, every elliptic sesquilinear form is coercive. If V
i
↪→ H is continuous and dense,

then the map

j : H ↪→ V ∗, h 7→ [v 7→ 〈h, v〉H ]

is continuous, injective, linear and the image is dense in V ∗. So we have V
i
↪→ H

j
↪→ V ∗,

which is the so-called Gelfand triple. By using the isomorphism ϕ between H and H∗ this
can be written as

V ↪→ H ∼= H∗ ↪→ V ∗.

By using the Riesz representation theorem it is quite easy to define an operator associated
with the form.

Definition and Lemma 2.24 (operator associated to a sesquilinear form)

Let V
i
↪→ H

j
↪→ V ∗ be a Gelfand triple, where V,H are complex Hilbert spaces. Besides, let

a(·, ·) be a V -continuous sesquilinear form. We define the operator A associated with the
form by

u ∈ D(A), Au = f ⇔ u ∈ V, a(u, v) = 〈f, v〉H , for all v ∈ V.
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Then, we have

D(A) = {u ∈ V | there is a h ∈ H such that a(u, v) = 〈h, v〉, for all v ∈ V }
= {u ∈ V | there is a Cu ≥ 0 so that |a(u, v)| ≤ Cu||v||H , for all v ∈ V }.

The operator is densely defined on H if a(·, ·) is V -coercive or if a(·, ·) fulfils the shifted
ellipticity condition. In the latter case −A generates an analytic semigroup. If a(·, ·) is
even V -elliptic, the analytic semigroup generated by −A is contractive. If in addition a(·, ·)
is symmetric, then A is self-adjoint.

Sketch of proof: By considering the adjoint sesquilinear form and using Lax-Milgram it
follows that A is densely defined [Ban10, Chapter 11, Theorem 3]. Next, we prove that −A
generates a contractive semigroup if a is V -elliptic. For this purpose, we use the Lumer-
Philips theorem [EN00, Theorem 3.15]. So, we have to check that −A is dissipative and
λId+A is surjective for some λ > 0. −A is dissipative since

Re 〈−Ax, x〉 = −Re a(x, x) ≤ −C||x||2V ≤ 0, for all x ∈ D(A).

By using a value λ ∈ (0, C), the Lax-Milgram lemma for coercive sesquilinear forms yields
the second part. One gets the analyticity of the semigroup by showing resolvents estimates
of the form ||R(λ,A)|| ≤ C

|Im(λ)| for some C > 0. This technical calculation involves the

consideration of an operator Â : V → V ∗ as operator on V ∗, compare [Ban10, chapter 13,
Theorem 7], [IK02, chapter 3, 3.6 Theorem]. If a fulfils the shifted ellipticity condition with
constants C1, C2 we consider the form

ã(u, v) := a(u, v) + C1〈u, v〉H .

This is obviously elliptic and the operator associated with the form is given by Ã := A+C1Id
and D(Ã) = D(A). Hence, −(A + C1) generates an analytic contraction semigroup, in
particular −A generates an analytic semigroup. Let a be in addition symmetric. One can
prove that A∗ is the operator associated with the dual form a∗ of a, and hence A = A∗.

Lemma 2.25 (shifted coercivity implies discrete spectrum if V ↪→ H is compact)
Let a(·, ·) be a continuous symmetric densely defined sesquilinear form which fulfils the
shifted coercivity condition, i.e.

|a(u, u)|+ ||u||2H ≥ C||u||2V , for all u ∈ V.

Furthermore, let the embedding of V ↪→ H be compact. Then, the spectrum of the associated
operator A is discrete, consisting only of eigenvalues. The statement is true for shifted
ellipticity instead of shifted coercivity, too.

Proof: By shifting, we can restrict to the case of an coercive sesquilinear form, because the
spectrum shifts, too. So, [DL00, chapter II, Theorem 7], which uses Fredholm-theory, yields
the desired properties.
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2.4 Differentiable and analytical maps

In this section we consider differentiability and analyticity of maps from a domain U ⊆ Rd
into an arbitrary Banach space E. Note that there are different approaches to differentia-
bility. We will use the Fréchet differentiability, since it occurs in Weis’ generalization of
Mikhlin’s multiplier theorem and in related theorems such as the Bloch multiplier theorem,
which we examine in Section 3.2.

Definition 2.26 (Fréchet differentiability)
Let U ⊆ Rd be open and E be an arbitrary Banach space. A map f : U → E is called
Fréchet differentiable at x0 ∈ U if there is a bounded, linear map Ψ: Rd → E satisfying

lim
h→0

||f(x0 + h)− f(x0)−Ψh||
|h|

= 0.

If the derivative exists, we denote it by f ′(x0) := Ψ. If the derivative exists for all u ∈ U
the map f is called differentiable. If furthermore,

f ′ : U → L(Rd, E), x0 7→ f ′(x0)

is continuous, then f is called continuously differentiable. In that case we use the notation
f ∈ C1(U,E). Since L(Rd, E) is a Banach space again, we can define C2(U,E) as the set
of C1-functions, whose derivative is C1 again. Inductively, we define Ck(U,E) for arbitrary
k ∈ N. f is called smooth, if f ∈ C∞(U,E).

We start with the definition of analyticity of a family of operators.

Definition 2.27 (analyticity of operators)
Let B1, B2 be complex Banach spaces and Q : Cd ⊇ D → L(B1, B2), θ 7→ Q(θ), where D is
a complex domain. The family of operators Q(θ) is called analytic, if the map

θ 7→ g(Q(θ)f)

is complex analytic for all f ∈ B1 and g ∈ B′2. This is equivalent [Bar13, Corollary 5.6] to
the following: The map Q is analytic at all θ0 ∈ D, which means that for fixed θ0 there is
a family of operators Qα, α ∈ Nd

0 and a neighbourhood Uθ0 satisfying

Q(θ) =
∑
α∈Nd0

(θ − θ0)αQα, θ ∈ Uθ0 ,

and the series converges absolutely.
A function T : Rd ⊇ U → L(B1, B2) is called real analytic at x, if the power series repre-
sentation above is true locally on a neighbourhood Ox ⊆ Rd of x. These are exactly those
functions having locally an extension to analytic functions.

We give a very simple example for an analytic function, which becomes important when
we analyse the fibre operators of the Helmholtz projection later. After that, we state some
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basic facts about analyticity, which will be needed in the next chapter, too.

Example 2.28 (analyticity of ∇+ 2πiθ)
Let Ωp be a Zd periodic domain and Ω# = Ωp/Z

d, cf. Definition and Remark 2.14. We
consider S : Cd → L(W 1,q(Ω#), Lq(Ω#,C

d)) defined by

S(θ) : = ∇+ 2πiθ.

Let ej ∈ Rd denote the j-th standard basis vector. We define Sj ∈ L(W 1,q(Ω#), Lq(Ω#,C
d))

by Sj(f) := 2πifej , j = 1, . . . , d. Then,

S(θ) = ∇+
d∑
j=1

θjSj ,

so S is analytic. We consider T (θ) := (∇+ 2πiθ)∗ : Cd → L(Lq(Ω#,C
d), (W 1,q′(Ω#))∗) and

define Tj ∈ L(Lq(Ω#,C
d), (W 1,q′(Ω#))∗) by Tj(f)(v) := 〈f, 2πivej〉. We get

T (θ) = ∇∗ +

d∑
j=1

θjTj .

Hence, T |Rd is real analytic, but T is not complex analytic. That is because complex
conjugation is not analytic. In fact, the function θ 7→ T (θ) is the analytic extension of
T |Rd .

Corollary 2.29 (analyticity implies differentiability)
It is not hard to see that real analytic functions f : Rd ⊇ U → E are continuously differ-
entiable. In fact, the derivative of an absolutely convergent power series yields again an
absolutely convergent power series. Hence, real analytic functions are C∞-functions.

Lemma 2.30 (analyticity of an inverse map)
Let Q : Rd ⊇ U → L(E1, E2) be real analytic and Q(θ) bijective for all θ ∈ U . In that case
R : Rd ⊆ U → L(E2, E1) defined by θ 7→ Q(θ)−1 is real analytic as well.

Corollary 2.31 (composition of analytic maps)
Let Q : Rd ⊇ U → L(E1, E2) and T : Rd ⊇ U → L(E2, E3) be real analytic. Then, S : Rd ⊇
U → L(E1, E3) defined by θ 7→ T (Q(θ)) is real analytic, too.

2.5 R-boundedness

We present the classical approach to R-boundedness, but take only a short glance at this
topic. For further reading we refer to [KW04], where all statements in this section were
taken from. R-boundedness was used first to formulate a vector-valued version of Mikhlin’s
theorem. Furthermore, it yields a criterion for proving maximal Lq-regularity.
The most important statement in this work using R-boundedness is Theorem 3.20, which
is essentially taken from [Bar13]. This theorem will lead to the extension of the Helmholtz
decomposition on Lq-spaces. In [Bar13], R-boundedness is used to prove Lq-boundedness
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for certain classes of periodic operators.

Definition 2.32 (R-boundedness)
Let X,Y be Banach spaces. A set of operators τ ⊆ L(X,Y ) is called R-bounded, if there is
a constant C > 0 such that

||
m∑
n=1

rnTnxn||L2([0,1],Y ) ≤ C||
m∑
n=1

rnxn||L2([0,1],X),

for all m ∈ N, T1, . . . , Tm ∈ τ, x1, . . . , xm ∈ X. The functions rn(t) = sign (sin(2nπt)) are
called Rademacher functions. If τ is R-bounded, we denote the infimum of all constants C
fulfilling the inequality by R(τ).

Remark 2.33 (Rademacher functions)
Note that the Rademacher functions are an orthonormal sequence in L2([0, 1]) with mean
value 0.

Figure 2.4: Illustration of the first four
Rademacher functions, visualizing the or-
thogonality (from [Bar13, p.35]).

So, they can be seen as a sequence of identically distributed, stochastically independent
functions with values in {−1, 1}. In fact, one can replace them in the definition by any
sequence (εn)n∈N of identically distributed, stochastically independent functions with values
in {−1, 1} and mean value zero [KW04, Remark 2.6b)]. It is not hard to see that scalar
multiples, sums and concatenations of R-bounded sets are R-bounded [vG06, Prop 2.1].

The forthcoming Remark 2.35 yields a useful criterion to prove R-boundedness. We will
apply it to prove R-boundedness of the fibre operators associated to the Helmholtz decom-
position in the next chapter. It is an easy consequence of the following two basic estimates,
which we state before the remark.

Proposition 2.34 (a) (Khinchine’s inequality)
For q ∈ [1,∞) there is a constant Cq > 0 satisfying

1

Cq

(∑
n

|an|2
)1/2 ≤

∣∣∣∣∑
n

rnan
∣∣∣∣
Lq([0,1])

≤ Cq
(∑

n

|an|2
)1/2

.
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(b) (Kahane’s inequality)
Let X be a Banach space, q ∈ [1,∞). There is a constant Cq > 0 satisfying

1

Cq

∣∣∣∣∑
n

rnxn
∣∣∣∣
L2([0,1],X)

≤
∣∣∣∣∑

n

rnxn
∣∣∣∣
Lq([0,1],X)

≤ Cq
∣∣∣∣∑

n

rnxn
∣∣∣∣
L2([0,1],X)

.

Proof: See [KW04, 2.2. Khinchine’s inequality and Theorem 2.4].

Therefore, it is possible to replace the exponent 2 in Definition 2.32 by any q ∈ [1,∞).
Let X = Y = Lq(Ω) and q ∈ [1,∞). We calculate for x1, . . . , xm ∈ X

||
m∑
n=1

rnxn||L2([0,1],X) ∼ ||
( m∑
n=1

|xn|2
)1/2||X .

So we get the following equivalent characterization for R-boundedness of τ ⊆ L(X), which
we use in the proof of Theorem 3.35.

Remark 2.35 (characterization of R-boundedness)
Let X = Y = Lq(Ω, µ), (Ω, µ) a σ-additive measure space and q ∈ [1,∞). τ ⊆ L(X) is
R-bounded if and only if

||
( m∑
n=1

|Tnxn|2
)1/2||X ≤ C||( m∑

n=1

|xn|2
)1/2||X , T1, . . . , Tm ∈ τ.

Proof: This is an easy consequence of Kahane’s inequality, Khinchine’s equality and Fubini’s
theorem, see [KW04, Remark 2.9].

Now, we introduce the UMD-property and explain its significance within this topic.

Definition 2.36 (UMD-spaces)
A Banach space E is called UMD-space, if the Hilbert transform

Hf(t) := lim
ε→0+

1

π

∫
|y|>ε

f(x− y)

y
dy

extends from the Schwartz space S(R, E) to a bounded linear operator on the whole space
Lq(R, E) for one or equivalently for all q ∈ (1,∞). Once again, the integral has to be
understood as a Bochner integral.

Remark 2.37 (UMD and martingales)
The notation UMD refers to ’unconditional martingale differences’ and in fact UMD-spaces
were first described by the following equivalent definition. E is a UMD-space if for all
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probability spaces (Ω,A, P ) there is a C > 0 such that

||
n∑
k=1

εk(uk − uk−1)||L2(Ω,E) ≤ C||
n∑
k=1

(uk − uk−1)||L2(Ω,E), for all n ∈ N, εk ∈ {±1},

where (uk) are arbitrary E-valued martingales. As in the case of the definition of R-
boundedness it is possible to replace 2 by any q ∈ (1,∞) (of course, q = 1 is not possible
since the Hilbert transform is not bounded on L1).

Before we state the main results we introduce maximal regularity.

Definition 2.38 (maximal regularity)
Let X be a Banach space, (T (t))t≥0 be an analytic semigroup with generator A. Consider
for a given f ∈ Lq(R+, X) the inhomogeneous Cauchy problem

y′(t) = Ay(t) + f(t), t ≥ 0, y(0) = 0.

The operator A is said to have maximal Lq-regularity if the unique solution y satisfies

||y′||Lq(R+,X) + ||Ay||Lq(R+,X) ≤ C||f ||Lq(R+,X).

If X is an Lr-space, this is called maximal Lq-Lr-regularity.

A first result on this topic was the result by [dS64], where maximal regularity for arbi-
trary analytic generators in the Hilbert space case was shown. Bourgain [Bou86] showed a
vector-valued generalization of Mikhlin’s multiplier theorem employable for multipliers of
the form M(t) = m(t)Id and q ∈ (1,∞), where m is a scalar-valued function. This result
was extended from R to Rd by [Zim89]. For a more detailed overview, cf. [KW04, page 2].
Maximal regularity has many applications, we only state two important results from [Wei01].
The first one is a general Banach space valued version of Mikhlin’s multiplier theorem and
the second one gives a characterization of maximal regularity by using R-boundedness.

Theorem 2.39 (a) (Mikhlin-type multiplier theorem)
Let X,Y be UMD-spaces and M : R \ {0} → L(X,Y ) be differentiable such that the
sets

{M(t) : t ∈ R \ {0}}, {tM ′(t) : t ∈ R \ {0}},

are R-bounded. Then it follows that F−1 ◦M ◦F extends to a bounded linear operator
K : Lq(R, X)→ Lq(R, Y ) for all q ∈ (1,∞).

(b) (characterizations of maximal regularity)
Let X be a UMD-space and T (t) a bounded analytic semigroup with generator A. The
following are equivalent:

• A has maximal Lq-regularity.

• There is a constant C > 0 satisfying

R({a2nR(ia2n, A) | n ∈ Z}) ≤ C, 1 ≤ |a| ≤ 2.
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• There is a θ > 0 such that the following set is R-bounded.

{λR(λ,A) | λ ∈ Σ(π/2 + θ)}.

• There is a θ > 0 such that the following set is R-bounded.

{T (z) | z ∈ Σ(θ)}.

• There are θ, C > 0 such that for all a ∈ [1, 2], |ϕ| ≤ θ

R({Ta2neiϕ | n ∈ Z}) ≤ C.

Proof: See [Wei01, Theorem 3.4 and Theorem 4.2] or [KW04]. We sketch shortly below
where the R-boundedness conditions have their origin, cf. [KW04, Discussion 1.5].

Let A be a generator of a bounded analytic semigroup. The unique mild solution of the
Cauchy problem

y′ −Ay = f, y(0) = x0

is given by the variation of constants formula

y(t) = T (t)x0 +

t∫
0

T (t− s)(f(s))ds.

Taking x0 = 0 and differentiating yields

y′(t) =

t∫
0

AT (t− s)f(s)ds+ f(t).

The operator K, first defined for f ∈ Cc(R+, D(A)), by

Kf(t) =

t∫
0

AT (t− s)f(s)ds,

is a convolution operator with the singular kernel AT (t), whose norm behaves like 1/t.
Therefore, it is natural to take the Fourier transform F(AT (t)) of AT (t). Since A generates
a bounded analytic semigroup, the formula for the resolvents from Proposition 2.17 formally
leads to

m(u) := F(AT (t))(u) = AR(iu,A) = iuR(iu,A)− Id.

The functions m and

um′(u) = −iuAR(iu,A)2 = [uR(iu,A)]2 + iuR(iu,A)
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are, due to the analyticity of the semigroup, both bounded on R\{0}. The theorems we use
later in this work are due to [Bar13] and use R-boundedness to extend periodic operators
from L2 to Lq-spaces. We analyse them in detail in Section 3.2.

2.6 The H∞-calculus

In Section 2.2 we met the Dunford type integral

1

2πi

∫
Γ

eλtR(λ,A)dλ, t > 0,

which gave a formula for the semigroup generated by A. In this section, we consider for
sectorial operators A of angle ϕ ∈ (0, π/2) general integrals of the form

1

2πi

∫
Γ

f(λ)R(λ,A)dλ,

where Γ is defined as in Figure 2.3, f ∈ H∞(Σσ) := {g : Σσ → C | g is bounded analytic},
and ϕ < ϕ′ < σ < π. In general, this integral is not well-defined. Since ||R(λ,A)|| ∼= |λ|−1

on ∂Σϕ′ the integral exists for all bounded analytic functions f satisfying

|f(λ)| ≤ C
∣∣ λ

(1 + λ)2

∣∣ε, for some C, ε > 0.

We denote the space of such functions by H∞0 (Σσ), i.e.

H∞0 (Σσ) := {f : Σσ → C | f bounded analytic, |f(λ)| ≤ C
∣∣ λ

(1 + λ)2

∣∣ε for some C, ε > 0}.

Roughly saying, we say that A admits a bounded H∞-calculus, if this can be extended
to a bounded algebra homomorphism with values in B(X) for all bounded analytic func-
tions defined on Σσ, where σ > ϕ′. More exactly, we have the following definition of the
H∞-calculus. The holomorphic functional calculus was introduced by McIntosh in 1986
[McI86]. For more details on the construction we refer to [KW04, section 2.9].

Definition 2.40 (H∞-calculus)
Let A : D(A) ⊆ X → X be a closed sectorial operator of angle ϕ < π/2 and σ > ν > ϕ. A
has bounded H∞-calculus, if the map T̃A mapping f 7→ f(A) ∈ L(X) can be extended from
H∞0 (Σσ), i.e. from all bounded analytic functions f satisfying

|f(λ)| ≤ C
∣∣ λ

(1 + λ)2

∣∣ε, for some C, ε > 0,

to a bounded map TA : H∞(Σσ)→ L(X) satisfying the following properties:

• TA is linear and multiplicative, i.e. TA(f · g) = TA(f)TA(g) = TA(g)TA(f).
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• TA((µ− ·)−1) = R(µ,A) for all µ /∈ Σσ.

Here, the norm on H∞ is given by the L∞-norm. This is equivalent to [KW04, chapter II,
Remark 9.11]

||ΦA(f)||L(X) ≤ C||f ||H∞(Σσ), for all f ∈ H∞0 (Σσ).

The infimum over all such ω is called the H∞-angle of A and is denoted by wH∞(A).

There is an extensive theory concerning characterizations and examples for operators ad-
mitting an H∞-calculus, comprising many classes of differential operators, compare [KW04,
chapter 2]. Besides, one finds there a very detailed discussion of the H∞-calculus [KW04,
chapter 2, sections 9-15]. We just mention one fundamental theorem and one important ap-
plication here, namely the ’sum theorem’, which implies maximal regularity for R-sectorial
operators on UMD-spaces [KW01]. We defined the terms UMD-space, R-boundedness and
maximal regularity in Definition 2.36, Definition 2.32 and Definition 2.38.

Theorem 2.41 (sum theorem and maximal regularity)
Let X be a Banach space and B a closed, R-sectorial operator on X of angle ϕ < π/2, i.e.
the operators {λR(λ,B)} on the sector are not only bounded, but R-bounded.

(a) Let A be a closed operators on X such that the resolvents of A and B commute. We
assume that A has a bounded H∞-calculus. Then, A + B is closed on D(A) ∩D(B)
and

||Ax||+ ||Bx|| ≤ C||(A+B)x||, x ∈ D(A) ∩D(B).

(b) If X is a UMD-space, then B has maximal Lq-regularity for all q ∈ (1,∞).

2.7 The Helmholtz decomposition

We already mentioned in the introduction that the Helmholtz decomposition is named after
von Helmholtz, who introduced the decomposition of a vector field on R3 into a gradient
part and a curl part. We remark that a vector field on a simply connected domains Ω is
solenoidal if and only if it is the curl of another vector field. If Ω is a bounded domain,
which is not simply connected, then there exist L2 vector fields, which cannot be describes
as a sum of a gradient field and a curl of another vector field. In fact, the orthogonal
complement of the gradient space consists of solenoidal vector fields and this space can be
splitted into a curl part and some (on bounded domains finite dimensional) rest part, cf. the
concluding remark in Chapter 3. Nevertheless, for Ω = R3 or Ω ⊆ R3 a simply connected
smooth domain it is quite helpful to know that every sufficiently decreasing vector field u is
uniquely determined by its divergence and its curl. For Ω = R3, we recall the decomposition
(for u ∈ C∞c )

u(r) = −∇
( 1

4π

∫
div u(x)

|r − x|
dx
)

+ curl
( 1

4π

∫
curl u(x)

|r − x|
dx
)
,
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and consider the following example from electrodynamics [Gri99, App. B]. The physical
motivation and definitions behind the theory are given in the appendix. We have div E = %

ε0
and curl E = 0, so the electromagnetic field is given by

E(r) = −∇
( 1

4πε0

∫
%(x)

|r − x|
dx
)
.

Analogously, we get a formula for the magnetic field (here ∂tE = 0)

B(r) = curl
(µ0

4π

∫
curl J(x)

|r − x|
dx
)
,

since div B = 0 and curl B = µ0J . We discuss additional applications of the Helmholtz
decomposition later, namely the Stokes operator and the Maxwell operator. Now we are
coming to the mathematical details of the Helmholtz decomposition.

Definition 2.42 (Helmholtz decomposition and Helmholtz projection)
Let Ω ⊆ Rd be a domain. We say that the Helmholtz decomposition exists on Lq(Ω,Cd) if
there are for all f ∈ Lq(Ω,Cd) unique functions ∇p ∈ Gq(Ω), g ∈ Lqσ(Ω) with

f = g +∇p, and ||g||Lq(Ω,Cd) + ||∇p||Lq(Ω,Cd) ≤ C||f ||Lq(Ω,Cd),

where C = C(q,Ω). Here, the spaces Lqσ(Ω) and Gq(Ω) are defined as follows:

Lqσ(Ω) = C∞c,σ(Ω)
||·||q

= {u ∈ C∞c (Ω,Cd) | div u = 0 in Ω}
Lq(Ω,Cd)

,

Gq(Ω) = {∇p ∈ Lq(Ω) | p ∈ L1
loc(Ω)} = {∇p ∈ Lq(Ω,Cd) | p ∈W 1,q

loc (Ω)}.

If the decomposition exists, there is a bounded projection operator Pq : Lq(Ω,Cd)→ Lq(Ω,Cd)
satisfying kernel(Pq) = Gq(Ω) and image(Pq) = Lqσ(Ω). Pq is called the Helmholtz projec-
tion. Hence, Qq = Id−Pq defines the projection onto the gradient part of the decomposition.

There are more equivalent characterizations, which we present in the following theorem.

Theorem 2.43 (characterizations for the Helmholtz decomposition)
Let Ω ⊆ Rd be an arbitrary domain and q ∈ (1,∞). Then are equivalent:

a) The Helmholtz decomposition exists on Lq(Ω,Cd).

b) For all u ∈ Lq(Ω,Cd) there is exactly one

p ∈ Ẇ 1,q(Ω) := {u ∈ Lqloc(Ω) | ∇u ∈ Lq(Ω,Cd)}/C

solving the problem
∫

Ω(∇p− u) · ∇ϕ = 0 for all ϕ ∈ Ẇ1,q′(Ω) and ||∇p||q ≤ C||u||q.
This problem is also called the weak formulation of the Neumann problem. The definition
of the classical Neumann problem is stated in the forthcoming remark.

c) The operator Nq = (∇q′)∗∇q is bijective, hence an isomorphism. Here:

Ẇ 1,q(Ω)
∇q−−→ Lq(Ω,Cd) ∼= (Lq

′
(Ω,Cd))′

(∇q′ )∗−−−−→ (Ẇ 1,q′(Ω))∗.
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Here, ||u||Ẇ 1,q(Ω) := ||∇u||q. In that case, the projection onto the space Gq(Ω) is given

by ∇qN−1
q ∇∗q′.

d) The estimate

||∇p||Gs(Ω) ≤ C sup
06=∇v∈Gs′ (Ω)

|〈∇v,∇p〉|
||∇v||s′

, for all ∇p ∈ Gs(Ω)

holds true for s = q, q′ and C = C(d, q,Ω).

e) The estimate

||g||Lsσ(Ω,Cd) ≤ C sup
06=h∈Ls′σ (Ω)

|〈g, h〉|
||h||s′

, for all g ∈ Lsσ(Ω,Cd)

holds true for s = q, q′ and C = C(d, q,Ω).

Proof: See [SSV14, Theorem 2.2 and Theorem 2.3] and combine it with Corollary 2.50 to
get the equivalence of a),d) and e).
The equivalence of a) and b) directly follows from Lqσ(Ω) = (Gq

′
(Ω))⊥, cf. Proposition

2.49. To get the Helmholtz decomposition from c) (cf. [HK12, Theorem 2.6]) we define
p := (∇∗q′∇q)−1∇∗q′f and get ∇∗q′(∇p− f) = 0, which means ∇p− f ∈ Lqσ(Ω). It remains to

show a)⇒c). If ∇∗q′∇q p = 0, it follows ∇p ∈ Lqσ(Ω), hence ∇p = 0, so ∇∗q′∇q is injective.

Let ψ ∈ (Ẇ 1,q′(Ω))∗ be arbitrary. Recalling that ∇∗q′ is surjective we find f ∈ Lq(Ω,Cd)
satisfying ∇∗q′f = ϕ. We can decompose f = g + ∇p. Since ∇q′ g = 0, the proof is
finished.

Remark 2.44 (a) (classical Neumann problem)
The problem in part b) of Theorem 2.43 is called the weak Neumann problem. If
Ω and u are smooth enough, the solution p is a solution of the classical Neumann
problem, which is given as follows:

∆p = div u in Ω,

∂p

∂ν
= u · ν on ∂Ω.

Note that all solutions of the classical Neumann problem are also weak solutions by
the integration by parts formula.

(b) (remark on the space Ẇ 1,q(Ω))
Note that the way the space Ẇ 1,q(Ω) is defined, is such that ∇Ẇ 1,q(Ω) = Gq(Ω). By
factorizing out the constant functions, ∇ is made injective. It is always possible to
replace in the definition of Ẇ 1,q(Ω) the space Lqloc by L1

loc or by distributions.
Moreover, we have [Neč12, Chapter II, Theorem 7.6] for local Lipschitz domains

Ẇ 1,q(Ω) = {u ∈ Lqloc(Ω) | ∇u ∈ Lq(Ω,Cd)}/C.
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In particular, we have for bounded Lipschitz domains domains

Ẇ 1,q(Ω) = W 1,q(Ω)/C.

Up to now, we did not mention in which cases the Helmholtz decomposition exists. Because
of Proposition 2.49 below, there is one very easy special case, namely the Hilbert space case
L2(Ω,Cd). It is also not hard to prove directly the existence of the Helmholtz decomposition
for q = 2 on any domain Ω ⊆ Rd.

Theorem 2.45 (Helmholtz decomposition on L2(Ω,Cd))
Let Ω ⊆ Rd be any domain. The Helmholtz decomposition exists on L2(Ω,Cd), and the
subspaces L2

σ(Ω) and G2(Ω) are orthogonal complements. We write P = P2 and Q = Q2

for the associated projections.

Sketch of proof: We give the very short proof here. For a given u ∈ L2(Ω,Cd) we consider
the weak Neumann problem

〈∇p,∇ψ〉 = 〈u,∇ψ〉, for all ∇ψ ∈ G2(Ω).

By the Lax-Milgram lemma, there is a unique solution ∇p ∈ G2(Ω) and the solutions
satisfies ||∇p||2 ≤ C||u||2, so the Helmholtz decomposition exists, compare Theorem 2.43.

The non-Hilbert space case Lq(Ω,Cd), q 6= 2, is far more difficult. We state the most
important historical existence results in the following theorem.

Theorem 2.46 (existence results for the Helmholtz decomposition and counterexamples)

(a) Ω = Rd: This is in historical terms the first case considered. We considered this case
at the beginning of the introduction using the fundamental solution F of ∆.

(b) Ω = Rd+ = {x ∈ Rd | xd > 0} is a half space: The Helmholtz decomposition exists
for all q ∈ (1,∞). Here again, we have an explicit formula. The Neumann Green’s
function for the half space is given by

G(x, y) = F (x− y)− F (x− y∗), y∗ = (y1, . . . , yd−1,−yd),

where F denotes the fundamental solution from (a). So, the gradient part is given by

p =

∫
Rd+

G(x, y) div u(y)dy, x ∈ Rd+.

(c) Bended half space Ω: That means Ω lies above a graph of a C1-function with com-
pact support. The easiest proof for this statement is given by combining [SS92] and
Theorem 2.43.
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(d) Ω bounded: The first results for bounded domains are due to [FM77] and [CM85].
They applied more general results known for elliptic problems from [LM62, Theorem
4.1],[Sch63b, Sch63a] and [Mir78, § 57].
The strongest results are showed in [SS92] and [FMM98]. The first one states the
existence of the Helmholtz decomposition for all q ∈ (1,∞) if Ω is a bounded C1-
domain.
The second concerns Lipschitz domains Ω ⊆ Rd, where d ≥ 3. There exists an ε > 0
such that the Helmholtz decomposition exists for all q ∈ [3+ε

2+ε , 3 + ε]. It is proven that
this result is sharp in the following sense: For every ε > 0 there is a Lipschitz domain
Ωε, where the Helmholtz decomposition does not hold if q > 3 + ε or if q < 3/2 − ε,
compare (h). For the proof, concrete representations by using the single layer potential,
were used. A similar approach for exterior and bounded domains can be found already
in [vW90], which yields interesting maximal regularity results, too. The case d = 2 is
discussed together with the counterexamples in (h) below.
Furthermore the Helmholtz decomposition does hold for all bounded convex domains
[GS10].

(e) Ω exterior, i.e. Ω unbounded and ∂Ω compact: There are results in [Sol77] and
[Miy82]. Again, the Helmholtz decomposition exists for the full range q ∈ (1,∞),
provided Ω has C1-boundary [SS92].
The same techniques as in the bounded Lipschitz case, can be used to show the exis-
tence of the Helmholtz decomposition on exterior domains for q ∈ (3+ε

2+ε , 3+ε), compare
[LM06, Theorem 6.1]. As in the bounded case the range of q is known to be optimal
[LM06, Theorem 7.3].

(f) Ω is an infinite cylinder or an infinite layer: See [ST98, Miy94]. In [Far03] weighted
versions are considered.

(g) Ω is an aperture domain: See [FS96]. For the definition of an aperture domains, see
Remark 3.1.

(h) There are also domains known, where the Helmholtz decomposition does not exist.
There are unbounded domains with even C∞-boundary known, where the Helmholtz
decomposition does not exist for some range of q. The first example was discovered
1986 by Bogovskii and Maslennikova [MB86, Example 3], consisting of a complement
of a smoothed angle, where θ > π and d = 2.

Figure 2.5: The existence range of q, for which
the Helmholtz decomposition exists, depends on
the angle θ, and also on the smoothness of the
angle (from [Gal11, p. 153]).

The interval on which the Helmholtz decomposition exists on Lq(Ω,C2) depends on the
angle θ. One can show (in the two dimensional case) that the weak Neumann problem
has no solution if 1 < q < 2

1+π
θ

. In return, it loses uniqueness if q > 2
1−π

θ
. We remark

36



2 Preliminaries

that it matters for the problem if the ’corner is smooth’. Astoundingly, the existence
interval enlarges if the corner is sharp. In that case the Helmholtz decomposition exists
for all q ∈ (1,∞)\{2/(1± π

θ )}. As we shall see below in the discussion after Corollary
2.50 the disconnectedness of the existence range is a phenomena, which does not occur
on uniform C1-domains since there the Helmholtz projections are consistent.
The result for bounded Lipschitz domains is sharp in the following sense: For all
q < 3/2 and q > 3 there are bounded Lipschitz domains Ω ⊆ R3 so that the Helmholtz
decomposition does not exist on Lq(Ω,Cd).
The ’optimal counterexample’ looks as follows, cf. [JK89] and [FMM98, Theorem 12.2
and Corollary 12.3]. It suffices to find for q > 3 a Lipschitz domain Ω and a function
v ∈ W 1,2(Ω) satisfying ∆v ∈ C∞c (Ω), v|∂Ω = 0, but v /∈ W 1,q(Ω). This domain can
be constructed by choosing Ω as the intersection of a ball and the complement of a
circular cone of angle α having its apex in the center of the ball. By using some radial
symmetry arguments, once can prove the existence of such a function v, provided α
is small enough.

Figure 2.6: two dimensional visualization: The existence
interval of the Helmholtz decomposition shrinks to (3/2, 3)
if the angle α tends to zero.

Counterexamples for Lipschitz domains were known even before.

Figure 2.7: Two dimensional counterexample,
also yielding a ’sharp negative result’ (from
[MB86, Example 11]).

Here, the Helmholtz decomposition on the two dimensional domain Ω exists if p ∈
( 2

1+π/θ ,
2

1−π/θ ) and does not exist for p < 2
1+π/θ or p > 2

1−π/θ . Note that this example
yields that the best possible general bound for two dimensional Lipschitz domains can-
not be better than (4+ε

3+ε , 4 + ε). As in the three dimensional case the result is sharp,
i.e. for all bounded Lipschitz domains Ω there is an ε > 0 such that the Helmholtz
decomposition exists for all q ∈ (4+ε

3+ε , 4 + ε), cf. [Gen12, Theorem 1.2].

Proof: The proofs can be found in the mentioned references. We just want to remark that
for different domains different approaches lead to the proof. Therefore, it is quite helpful
to have the equivalent characterizations at hand.

In the following we want to take a closer look at other possible characterizations of the
involved spaces in the Helmholtz decomposition. It turns out, that one has to be quite
careful. Once more we want to mention that it is possible to consider more general domains
as strongly local Lipschitz domains.
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Definition and Remark 2.47 (the spaces L̂qσ(Ω) and Ĝq(Ω))
Let Ω ⊆ Rd be a strongly local Lipschitz domain. We define

L̂qσ(Ω) = {f ∈ Lq(Ω,Cd) | div f = 0 in Ω, ν · f = 0 on ∂Ω},

Ĝq(Ω) = ∇C∞c (Ω)
||·||q

.

Obviously, Ĝq(Ω) ⊆ Gq(Ω) and Lqσ(Ω) ⊆ L̂qσ(Ω). Here, ν · f has to be understood in the
generalized trace sense, which is possible since div f = 0 ∈ Lq(Ω), cf. Lemma 2.9.

It is quite an important question, if these spaces are equal or not. A long time it was taken
for granted that these spaces are equal. Heywood was the first one who detected that these
spaces might be different. We shall not take a closer look on the historical development of
this theory. For further reading we suggest [MB81] and the literature mentioned therein.
Concerning the question of this coincide, there are still a lot of unsolved problems. We will
discuss them at the beginning of Chapter 3.

The orthogonality of the spaces L2
σ and G2, compare Theorem 2.45, has a natural extension

on Lq. Before, we consider de Rham’s argument, which is essential for the whole theory
and is a main part of the subsequent proof.

Lemma 2.48 (de Rham’s argument)
Let Ω ⊆ Rd be an arbitrary domain. Suppose that u ∈ L1

loc(Ω) verifies∫
Ω

u · w = 0, for all w ∈ C∞c,σ(Ω),

then there is a function p ∈W 1,1
loc (Ω) such that u = ∇p.

Proof: See [Gal11, Lemma III.1.1]

We remark that there is also a variant of this lemma on the distributional level, cf. [Soh01,
II.2.2.1 Lemma]. We recall

Lqσ(Ω) = {f ∈ C∞c (Ω,Cd) | div f = 0}
||·||q

Gq(Ω) = {∇p ∈ Lq(Ω,Cd) | p ∈ Lqloc(Ω)}

L̂qσ(Ω) = {f ∈ Lq(Ω,Cd) | div f = 0 in Ω, ν · f = 0 on ∂Ω},

Ĝq(Ω) = ∇C∞c (Ω)
||·||q

.

Proposition 2.49 (annihilator relations)
Let Ω ⊆ Rd, d ≥ 2, be any domain and q ∈ (1,∞). The following annihilator relations hold:

Lqσ(Ω) = Gq
′
(Ω)⊥, Gq(Ω) = Lq

′
σ (Ω)⊥
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If Ω has local Lipschitz boundary, we have

L̂qσ(Ω) = Ĝq
′
(Ω)⊥, Ĝq(Ω) = L̂q

′
σ (Ω)⊥.

Proof: For Lqσ(Ω) = (Gq
′
(Ω))⊥ cf. [Gal11, Lemma III.2.1], [HK12, Proposition 2.5]. The

proof that Gq(Ω) is closed works as follows, compare [Gal11, Lemma II.6.2]. Since this
result is fundamental for the theory, we give the sketch of the proof here.
Let (∇pi)i∈N be a Cauchy sequence in Lq(Ω,Cd) converging to g with pi ∈ Lqloc(Ω). There
is [Gal11, Lemma II.1.1] a covering D of Ω with at most countable many open balls {Bk}k∈I
such that for all families F = {Bl}l∈I′ , I ′ ( I there is a B ∈ D\F so that (∪l∈I′Bl)∩B 6= ∅.
Let B0 ∈ D be arbitrary. By using Poincaré’s inequality it follows that pi − mean(pi|B0)
converges to some u0 ∈ Lq(B0). Furthermore, by definition of the weak derivative, ∇u0 =
g|B0 almost everywhere. By using the property of the covering we find B1 satisfying B0 ∩
B1 6= ∅. As above, we construct u1 ∈ Lq(B1). Since B0 ∩ B1 6= ∅ we get u0 = u1 + c on
B0 ∩ B1 6= ∅. Without restriction, we can assume u0 = u1 on B0 ∩ B1 6= ∅. So there is a
function u0,1 ∈ Lq(B0 ∪ B1 =: B0,1) satisfying ∇u0,1 = g|B0,1 . By using another property
of the covering [Gal11, Lemma II.1.1(iii)], this argument can be extended inductively until
Ω is totally covered. All in all, this yields a function u ∈ Lqloc(Ω) satisfying ∇u = g.

So, we have Gq(Ω) = Gq(Ω)⊥⊥ = Lq
′
σ (Ω)⊥. For a detailed direct proof of this annihilator

equality not using a duality argument we refer to [FM77, Lemma 7]. The main issues in the
proofs are the integration by part formula and de Rham’s argument. The other annihilator
relations can be proven in a similar way by using the integration by parts formula in Ω.
Therefore we need the local Lipschitz boundary condition.

An immediate consequence of Proposition 2.49 is the duality property of the weak Neumann
problem.

Corollary 2.50 (duality of the weak Neumann problem)
Let Ω ⊆ Rd be an arbitrary domain. The Helmholtz decomposition exists on Lq(Ω,Cd) if
and only if it exists on Lq

′
(Ω,Cd).

Proof: This follows directly from Proposition 2.49. See [GHHS12, Lemma 5.1] for another
proof using the duality between the weak Neumann problems on Lq and Lq

′
.

We want to remark that, although there is in some sense a duality of the problem, there is
no interpolation of the problem. So, the set

M = {q ∈ (1,∞) | Helmholtz decomposition exists on Lq(Ω,Cd)}

is not always an interval. In fact, we considered the example of an unbounded domain with
sharp angle in Theorem 2.46(h), where the Helmholtz decomposition exists on (1,∞) up to
two isolated points. Besides, it seems not to be clear, if M is always an open set.

On the other hand, if Ω is an arbitrary domain of uniform C1-class, then M is an interval.
To get this description for M one proves consistency of the Helmholtz projections. To get
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this result, one uses the uniqueness of the Helmholtz decomposition on L2 ∩ Lq for q ≥ 2
from Remark 2.52 below, compare [GK15, Proposition 2.1].

Moreover, even if the Helmholtz projection extends from L2 to a bounded operator on Lq,
it is not certain that the extended operator defines the Helmholtz projection on Lq.
Since our approach is based on this extension property, we need a feature of the domain
guaranteeing that the extended operator defines indeed the Helmholtz projection on Lq.
More precisely, we have the following criterion.

Lemma 2.51 (Helmholtz decomposition on Lq by extending P2)
Let q ∈ (1,∞), Ω ⊆ Rd be an arbitrary domain with strongly local Lipschitz boundary such
that Lrσ(Ω) = L̂rσ(Ω) and Gr(Ω) = Ĝr(Ω) for r = 2, q. Furthermore, we assume that the
Helmholtz decomposition P := P2 ∈ L(L2(Ω,Cd)) extends to an operator Pq ∈ L(Lq(Ω,Cd)).
Then, the Helmholtz decomposition exists on Lq(Ω,Cd) and Pq coincides with the Helmholtz
projection on Lq(Ω,Cd).

Proof: Clearly, we have P 2
q = Pq. We show that

Ĝq(Ω) ⊆ kernel(Pq) ⊆ Gq(Ω),

Lqσ(Ω) ⊆ image (Pq) ⊆ L̂qσ(Ω),

which yields, together with the projection property, the stated. We observe that f ∈
kernel(Pq) if and only if there is a sequence (fn)n∈N ⊆ L2(Ω,Cd) ∩ Lq(Ω,Cd) satisfying
fn → f in Lq(Ω,Cd) and P2fn → 0 in Lq(Ω,Cd). In that case, gn := fn − P2fn satisfies
gn → f in Lq(Ω,Cd) and P2gn = 0. So, by Remark 2.44(b),

kernel(Pq) = {f ∈ L2(Ω) ∩ Lq(Ω) | P2f = 0}||·||q

= {∇p ∈ L2(Ω) ∩ Lq(Ω) | p ∈ L1
loc(Ω)}

||·||q
.

We calculate

Ĝq(Ω) = ∇C∞c (Ω)
||·||q
⊆ {f ∈ L2(Ω) ∩ Lq(Ω) | P2f = 0}||·||q = kernel(Pq),

kernel(Pq) = {∇p ∈ L2(Ω) ∩ Lq(Ω) | p ∈ L1
loc(Ω)}

||·||q

⊆ {∇p ∈ Lq(Ω) | p ∈ L1
loc(Ω)}

||·||q

= Gq(Ω)
||·||q

= Gq(Ω),

Lqσ(Ω) = C∞c,σ(Ω)
||·||q ⊆ {P2f | f ∈ L2(Ω) ∩ Lq(Ω)}||·||q = image(Pq),

Im(Pq) = {g ∈ L2(Ω) ∩ Lq(Ω) | div g = 0, ν · g = 0}||·||q

⊆ {g ∈ Lq(Ω) | div g = 0, ν · g = 0}||·||q

= L̂qσ(Ω)
||·||q

= L̂qσ(Ω).

Note that we were not able to find a proof for the above lemma, which does not require the
equality of the gradient and solenoidal vector field spaces. The statement of Lemma 2.51
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might be wrong without that assumption.
At the end of this section we want to mention another approach [FKS07] to the Helmholtz
decomposition, which has the big advantage to work on arbitrary unbounded domains of
uniform C1-class.

Remark 2.52 (variant of the Helmholtz decomposition)
Let Ω ⊆ Rd be an arbitrary domain of uniform C1-class. We define

L̃q(Ω,Cd) =

{
Lq(Ω,Cd) ∩ L2(Ω,Cd), 2 ≤ q <∞,
Lq(Ω,Cd) + L2(Ω,Cd), 1 < q < 2,

L̃qσ(Ω) =

{
Lqσ(Ω) ∩ L2

σ(Ω), 2 ≤ q <∞,
Lqσ(Ω) + L2

σ(Ω), 1 < q < 2,

G̃q(Ω) =

{
Gq(Ω) +G2(Ω), 2 ≤ q <∞,
Gq(Ω) ∩G2(Ω), 1 < q < 2.

The norm on these spaces is given by

||f ||
L̃qσ(Ω)

=

{
max{||f ||Lq(Ω,Cd), ||f ||L2(Ω,Cd)}, 2 ≤ q <∞,
inf{||f1||Lq(Ω,Cd) + ||f2||L2(Ω,Cd) | f = f1 + f2}, 1 < q < 2.

The main result [FKS07, Theorem 1.2] reads as follows: Let q ∈ (1,∞). Each f ∈ L̃q(Ω,Cd)
has a unique decomposition

f = g +∇p, g ∈ L̃qσ(Ω), ∇p ∈ G̃q(Ω)

satisfying the estimate
||g||

L̃q
+ ||∇p||

L̃q
≤ C||f ||

L̃q

for some C independent of f . In particular, there is a continuous Helmholtz projection
defined on L̃q(Ω,Cd) onto the space L̃qσ(Ω).

Proof: See [FKS07].

It is an interesting open question if a similar result holds true for uniform Lipschitz domains
and a range of q which depends on the uniform constants.
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CHAPTER 3

The Helmholtz decomposition on periodic domains

In the first part of this chapter we prove the space equalities Lqσ(Ωp) = L̂qσ(Ωp) and

Gq(Ωp) = Ĝq(Ωp) for all periodic Lipschitz domains and all q ∈ (1,∞).
Following this, we prove the validity of the (adapted) Bloch multiplier theorems [Bar13] in
the case of a periodic domains instead of Rd. Thereupon, we calculate the fibre operators
for the Helmholtz projection on L2(Ωp,C

d) and prove existence and boundedness of these
operators in the Lq-setting. By applying the multiplier theorems we prove that P2 extends
to a bounded operator on Lq(Ωp,C

d), which implies the existence of the Helmholtz decom-
position on Lq(Ωp,C

d) by Lemma 2.51.
In the last section of this chapter we consider the weak Dirichlet problem and the inher-
ent projection, the Leray projection. We prove similar statements as in the weak Neu-
mann/Helmholtz decomposition case.

3.1 Equality of two solenoidal vector field spaces on periodic
domains

At the beginning of this chapter we examine the not yet considered question in which cases
the two spaces of solenoidal vector fields and the two spaces of gradients introduced in
Definition and Remark 2.47 coincide. We show that this is always the case for periodic
Lipschitz domains.
The proof of this statement uses a quite easy criterion taken from [MB83]. It says that is
suffices to extend functions p ∈ Lqloc(Ωp) with ∇p ∈ Lq(Ωp,C

d) to functions in Lqloc(R
d)

with gradient in Lq(Rd,Cd). This is because the equality of the two spaces is known on
Rd and the C∞c approximations of the extended functions can be used to approximate the
function on the subset Ω, too. Naturally, the periodicity of the domain has a large share on
the extension property. Furthermore, a combination of Stein’s extension theorem and the
Poincaré inequality are an important tool for the proof. Before we go into details about
the case of periodic domains we consider general results concerning the question in which
cases the two spaces coincide.
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3 The Helmholtz decomposition on periodic domains

Remark 3.1 Let Ω be a bounded Lipschitz domain, q ∈ [1,∞). Then, the two spaces of
gradients and solenoidal functions coincide [MB83, Corollary of Theorem 1]. In particular,

Lqσ(Ω) = {f ∈ Lq(Ω,Cd) | div f = 0 in Ω, ν · f = 0 on ∂Ω}.

One gets this equality even for arbitrary domains with compact Lipschitz boundary [MB81,
Theorem 2], which includes the case of exterior domains. We remark that this case is also
trivially included by the approach for periodic domains in this work, which we consider
after Corollary 3.4. Besides, the codimension is not only depending on Ω, but also highly
depending on q, cf. [MB83, last remark]. So, for all unbounded strongly local Lipschitz
domains we have Lqσ(Ω) = L̂qσ(Ω) for all q ∈ [1, d/(d−1)], and consequently Gq(Ω) = Ĝq(Ω)
for all q ∈ [d,∞) by duality, cf. [MB83, Theorem 5]. These results are sharp in the general
context. More exact, for all q ∈ ( d

d−1 ,∞) the codimension of Lqσ(Ω) ⊆ L̂qσ(Ω) might be any
natural number, or even infinite, where the boundary can even be chosen smooth [MB83,
last remark].
The first counterexample was discovered by Heywood in 1976 [Hey76]. Later, Ladyzhen-
skaya, Solonnikov, Maslennikova, Bogovskii and Kapitanskii studied this problem inten-
sively. We want to give a concrete example. We consider the aperture domain

Ω =
(
Rd \ {x ∈ Rd | xd ∈ [−1/2, 1/2]}

)
∪ (−1, 1)d,

consisting of two half spaces which are connected by an aperture. Here, the codimension is
one if d = 3 and q = 2, see [Gal11, Theorem III.4.4] for a detailed proof. One explanation
is that there are two exits at infinity. In general, if there are m exits at infinity, then the
codimension is m − 1, cf. [LS76, MB83]. We remark that the codimension for a cylinder
is zero, in that case the exits are too ’small’. Up to now, it is not known which exits are
huge enough too raise the codimension. We refer to [Gal11, Section III.4.3] concerning this
discussion. By all yet known results, it is quite plausible that the size of the codimension
depends only on the shape of Ω and on q, and is independent of the boundary regularity
within the Lipschitz class of the associated domain, cf. [MB81, page 242]. On any account,
this property persists under a bilipschitz transform Φ: Ω1 → Ω2, i.e. the spaces coincide
on Ω1 if and only if they coincide on Ω2, cf. the arguments in [MB83, Theorem 7]. Here,
bilipschitz means that Φ is bijective, Lipschitz and the inverse is Lipschitz, too.

Now we turn our attention to periodic domains. First, we give the main tools for the
approach. Since the proof is actually very technical, we illustrate the approach by concrete
examples first, including some pictures. After that, we give full technical details. We start
with the following fundamental lemma [MB83, Theorem 6].

Lemma 3.2 Let q ∈ (1,∞) and Ω ⊆ Rd be a strongly local Lipschitz domain admitting
the extensions of functions p ∈ Lqloc(Ω) with ∇p ∈ Lq(Ω,Cd) to functions in p ∈ Lqloc(R

d)

with ∇p ∈ Lq(Rd,Cd). Then Gq(Ω) = Ĝq(Ω) and Lq
′
σ (Ω) = L̂q

′
σ (Ω), i.e.

Gq(Ω) = ∇C∞c (Ω)
||·||q

,

Lq
′
σ (Ω) = {u ∈ Lq′(Ω,Cd) | div u = 0 in Ω, ν · u = 0 on ∂Ω}.
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3 The Helmholtz decomposition on periodic domains

Proof: The relation Ĝq(Ω) ⊆ Gq(Ω) is trivially always true. So, let p ∈ Lqloc(Ω) with
∇p ∈ Lq(Ω,Cd). We denote by p̃ the extension of p on Rd given by assumption. Note that

we have Gq(Rd) = ∇C∞c (Rd)
||·||q

. Hence, ∇p̃ can be approximated by C∞c functions, which

trivially approximate ∇p on Ω, too. The statement Lq
′
σ (Ω) = L̂q

′
σ (Ω) follows by duality,

compare Proposition 2.49.

The second important tool for the forthcoming proof of the coincide for periodic domains
is the Calderón-Stein theorem.

Theorem 3.3 (Calderón-Stein theorem)
Let Ω ⊆ Rd be any domain having strongly local Lipschitz boundary and q ∈ [1,∞]. Then
there is a linear, continuous extension operator E : W 1,q(Ω) → W 1,q(Rd), i.e. Eu|Ω = u.
By continuity,

||Eu||W 1,q(Rd) ≤ CΩ,q||u||W 1,q(Ω), u ∈W 1,q(Ω).

Proof: The proof in the case q ∈ (1,∞) goes back to Calderón [Cal61]. A proof including
the endpoints q = 1,∞ was discovered by Stein [Ste70, chapter VI], using a completely
different approach.

Since we are interested in extensions of functions p where only ||∇p||q is finite, we do not
use Theorem 3.3 directly, but the following corollary concerning only gradient estimates.

Corollary 3.4 (gradient estimates using the Calderón-Stein theorem)
Let Ω ⊆ Rd be a bounded Lipschitz domain and M ⊆ Rd be bounded and measurable. Then,
there is an extension operator Ẽ : W 1,q(Ω) → W 1,q(Rd) as in Theorem 3.3 and a constant
C = C(Ω,M, q) such that

||∇(Ẽu)||Lq(M,Cd) ≤ C||∇u||Lq(Ω,Cd), u ∈W 1,q(Ω).

Proof: Starting from the extension operator E given by Theorem 3.3, we construct the
operator Ẽ. We have to ensure that Ẽc|M = c, where c denotes the constant function with
value c ∈ C. We take a function ϕ ∈ C∞c (Rd) with ϕ ≡ 1 on M ∪ Ω and define

Ẽu = E(u− uΩ) + ϕuΩ,

where uΩ denotes the mean of u on Ω. Obviously, Ẽ : W 1,q(Ω) → W 1,q(Rd) is linear and
continuous, where the continuity constant depends on the continuity constant of E and on
the choice of ϕ. Hence,

||∇(Ẽu)||Lq(M) ≤ CM,Ω,q

(
||u||Lq(Ω) + ||∇u||Lq(Ω)

)
, u ∈W 1,q(Ω).

Now let v := u− uΩ. By linearity and the choice of ϕ we get Ẽv = Ẽu− uΩ on M . Using
the Poincaré inequality on Ω this leads for any u ∈W 1,q(Ω) to

||∇(Ẽu)||Lq(M) = ||∇(Ẽv)||Lq(M) ≤ CΩ,M,q

(
||u−uΩ||Lq(Ω)+||∇u||Lq(Ω)

)
≤ CΩ,M,q||∇u||Lq(Ω).
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3 The Helmholtz decomposition on periodic domains

Now, we explain descriptively how Corollary 3.4 can be used to extend gradients in the
setting of periodic domains. For this purpose we recall from Remark 2.44(b) that restrictions
of functions from {p ∈ Lqloc(Ωp) | ∇p ∈ Lq(Ωp,C

d)} on bounded subdomains Ω are actually
W 1,q(Ω) functions, i.e.

W 1,q(Ω) = {u ∈ Lqloc(Ω) | ∇u ∈ Lq(Ω,Cd)}.

Now, we have the main tools at hand to explain how we extend functions from Gq(Ωp) onto
Gq(Rd). We start with the easy case that ∂(0, 1)d ⊆ Ωp and define Ω1 = (0, 1)d ∩ Ωp and
M1 = (0, 1)d \ Ω1.

Figure 3.1: Using Corollary 3.4 we can extend p
from Ω1 to M1. Note that the values of p outside
of Ω1 are irrelevant for this extension. Besides
we can estimate the gradient norm on M1 by that
of Ω1.

So, let p ∈ Lqloc(Ωp) with ∇p ∈ Lq(Ωp,C
d). By Remark 2.44(b) we have p|Ω1 ∈ W 1,q(Ω1),

hence Corollary 3.4 yields an extension Ẽ(p|Ω1) ∈W 1,q(Rd) onto M1 such that

||∇(Ẽ(p|Ω1))||Lq(M1,Cd) ≤ C||∇p||Lq(Ω1,Cd).

We define

p1(x) :=

{
p(x), if x ∈ Ωp,

Ẽ(p|Ω1)(x), if x ∈M1.

By Corollary 3.4, this yields a function p1 ∈W 1,q(Ω1 ∪M1) accompanied by the estimate

||∇p1||M1 ≤ C||∇p||Ω1 .

Figure 3.2: Left: The set Ωp ∪M1. Right: In a next step, we pick a neighboured cell and continue
as before.

We consider a neighboured periodicity cell Ω2 and by the same procedure we get an exten-
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sion p2 of p1 on Ωp ∪M1 ∪M2 satisfying

||∇p2||M2 ≤ C||∇p||Ω2 .

Note that, by the periodicity of the domain, the constant C is the same as in the first
estimate. Proceeding this approach allows us to get an extension p̃ of p defined on the whole
space Rd. Besides, the gradient norm on Mz, z ∈ Zd can be estimated by the gradient norm
of the surrounding cell by Corollary 3.4 and hence ||∇p̃||Lq(Rd,Cd) ≤ C||∇p||Lq(Ω,Cd) < ∞.

Altogether, we get p̃ ∈ {u ∈ Lqloc(R
d) | ∇u ∈ Lq(Rd,Cd)}, i.e. ∇p̃ ∈ Gq(Rd), which is what

we needed.

It is possible to use slightly different variants of this procedure. Any bounded Lipschitz
domain, which fully surrounds a periodically repeated compact component works, too. In
particular, any periodic Lipschitz domain Ωp whose complement consists of compact isolated
components can be treated by this approach. Note that this is always the case for d = 2.
Besides, the approach can be transferred easily to periodic domains with respect to any
given lattice L. By Remark 3.1 the equality of spaces property remains true under any
bilipschitz transformation, so it suffices anyhow to consider only Zd-periodic domains, cf.
Remark 2.13.
If d ≥ 3 the complement of Ωp might have unbounded connected components. For example,
the domain may consist of periodically arranged tubes of the same length.

Figure 3.3: Possible shape of a (three dimensional) periodicity
cell, where the tubes are arranged as edges of a cube with non-
zero diameter.

The case considered above was easy to handle because the sets Mj and Mk had a positive
distance for j 6= k. In the case that these sets do overlap, it is not possible to extend the
function p independently on both, since it is not ensured that the extensions coincide on
the intersection. In the next lines we introduce an approach which helps us to overcome
this problem.

To illustrate our approach in that case we consider the following periodic open set Ωp ⊆ R2.
Note that Ωp is not a domain, but this is not important for the illustration of the approach.

Figure 3.4: Ωp is a periodic open set
with connected complement.

So, let p ∈ {u ∈ Lqloc(Ωp)|∇u ∈ Lq(Ωp,C
d)}. We will extend p onto the whole space,
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accompanied by a gradient estimate. By Corollary 3.4 we can extend p in a first step on
any bounded set M1. For this extension we have to choose a bounded Lipschitz sub domain
Ω ⊆ Ωp fulfilling Ω ∩M1 = Ωp ∩M1. For example, we chose Ω = (0, 1)d ∩ Ωp in the case
above. In a second step we can extend p on a bounded set M2. The problem is that we
need countable many steps to cover ΩC

p , and hence it is not ensured that the gradient norm
of the extended function is finite (whereas in the case above it was possible, since there
the gradient norms of Mj only depended on the gradient norm of Ωj and in particular did
not depend on each other). We are searching for an approach such that ΩC

p is covered in
finitely many steps. For this purpose we remark that we can extend p simultaneously on
translated sets Mi + zi, provided they do not intersect. A possible choice can be seen in
the following picture.

Figure 3.5: Using Corollary 3.4 we
have extended p onto the blue marked
set with finite gradient norm. Note
that we covered ’more than a fourth of
the complement.’

Here, we take a set M1 satisfying [0, 1]2 ⊆ M1 ⊆ [−1/3, 4/3]2 and choose a bounded
Lipschitz sub domain Ω ⊆ Ωp satisfying

(
Ωp∩(−1/3, 4/3)2

)
⊆ Ω. Furthermore, we consider

translations of the form M1 + z and Ω + z, where z ∈ (2Z)2. This yields an extension p1 of
p on the set Ω1 := Ωp ∪

⋃
z∈(2Z)2(M1 + z), and

||∇p1||Lq(∪zM1+z) ≤ C||∇p||Lq(Ωp) <∞.

In the next step we extend p on a set M2 containing the neighboured cell [0, 1]× [1, 2] and
translations of the form M2 + z, z ∈ (2Z)2. Once more, we choose the Lipschitz domain
Ω ⊆ Ω1 in Corollary 3.4 so that it touches the whole boundary of M2. So, this approach
yields an extension of p with finite gradient Lq norm defined on Ω2 := Ω1∪

⋃
z∈(2Z)2(M2+z).

Figure 3.6: We have extended p on a
set, which is ’bigger than the half of
ΩC

p .’

Next, we choose M3 such that it contains [1, 2] × [0, 1], Ω ⊆ Ω2 surrounding M3 and
the related (2Z)2 translations. This yields the extension of p defined on Ω3 := Ω2 ∪⋃
z∈(2Z)2(M3 + z).

Finally, we arrive again in the setting that the complement consists of separated compact
sets, cf. Figure 3.7. Hence, we can extend p to p̃ on the whole space. Note that ||∇(p̃)||q is
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Figure 3.7: We covered more than 3/4
of ΩC

p . Besides, the still missing parts
are isolated components.

finite, thanks to the estimate in Corollary 3.4, and hence ∇p̃ ∈ Gq(Rd).

This approach works in higher dimensions, too. More exact we start with covering [0, 1]d

with M1 and consider all translations of the form M1 + z, z ∈ (2Z)d. Afterwards we cover
all neighboured cells of [0, 1]d gradually. So, in total we need 2d steps.

Now, we are coming to the technical details of the approach. We note that we have to choose
the sets Mi in such a way that Ωp ∪M1 ∪ . . . ∪Mi still has enough boundary regularity
to allow the use of Corollary 3.4. In general, it is not possible to use any cuboid Mi, for
example there might appear cusps or touching boundaries as in the following sketch.

Figure 3.8: Here, the union is not only not of Lip-
schitz class, it is even known that cusps obstruct the
existence of an extension operator on Sobolev spaces
[Jon81].

To overcome this difficulty we enlarge the cube Q by adding some small cuboid upon the
graph of the Lipschitz boundary of Ωp at all points where ∂Q and ∂Ωp intersect, as sketched
below.

Figure 3.9: By adding some small extra cuboids at
every intersecting point of Ωp and Q we again get a
Jones domain as we shall see below. Besides, the com-
pactness of the intersection at the boundary will yield
that it suffices to add finitely many cuboids.

Since the union of cuboids is not a Lipschitz domain in general, we work instead with
domains of a weaker boundary regularity class, the so-called locally uniform domains. For
this purpose we show that we have a statement analogous to Corollary 3.4 for locally
uniform domains. Afterwards, we construct the sets Mi concretely as suggested in such a
way that Ωp ∪M1 ∪ . . . ∪Mi is locally uniform. We start with the introduction of locally
uniform domains. Note that there is no explicit boundary regularity assumption stated in
the definition. In fact, within this class are e.g. some fractals, cf. Figure 3.10 below.
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Definition 3.5 (uniform and Jones domains)
A domain Ω ⊆ Rd is called (ε, δ)-locally uniform, where ε ∈ (0,∞), δ ∈ (0,∞] if for any
x1, x2 ∈ Ω satisfying |x1−x2| ≤ δ there is a rectifiable arc γ ∈ Ω of length l(γ) ≤ |x1−x2|/ε
such that for all z ∈ γ

dist(z, ∂Ω) ≥ ε|z − x1||z − x2|
|x1 − x2|

.

In the case δ =∞, Ω is also called Jones domain or just uniform domain.

Obviously, every uniform domain is locally uniform. Note that in the bounded case the
reverse statement is true, too [EE04, page 187]. That means every bounded locally uniform
domain is uniform. Therefore, in the case of a bounded domain, we only use the notation
Jones domain.

It is known that local uniformly Lipschitz domains are (ε, δ)-locally uniform for some values
of ε, δ. Besides, the class is larger than the class of Lipschitz domains, for example the
following domains are locally uniform.

Figure 3.10: Left: The boundary of the three
dimensional polyhedron cannot be represented lo-
cally by a Lipschitz graph at the indicated points.

Right: The Koch snowflake, which is a fractal
(from [Rog04, page 10]).

Typical examples for domains which are not locally uniform are domains lying on both sides
of the boundary or domains having cusps, compare the following pictures.

Figure 3.11: Left: Domain lying on both sides of
the boundary.

Right: Domain having a cusp.

So, while extending the functions from Ωp to Ωp ∪M1 ∪ . . . ∪Mi, we still have to avoid
these cases. Before we do this, we show that we can use the theory of the beginning of this
section for locally uniform domains instead of Lipschitz domains, which mainly means that
the extension property and the Poincaré inequality hold.

Theorem 3.6 (extension operator on Jones domains)
Let Ω ⊆ Rd be an (ε, δ)-locally uniform domain, q ∈ [1,∞]. Then, there is a bounded, linear
extension operator E : W 1,q(Ω)→W 1,q(Rd) and the norm bound depends on q, d, ε, δ.

Proof: See [Jon81].

For an analogous use of Corollary 3.4 we need the Poincaré estimate to hold on bounded
locally uniform domains.
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Lemma 3.7 (Poincaré inequality on Jones domains)
Let Ω ⊆ Rd be a bounded Jones domain, q ∈ [1,∞). Then there is a constant C > 0 such
that

||u− u|Ω||Lq(Ω) ≤ C||∇u||Lq(Ω,Cd), u ∈W 1,q(Ω).

Proof: A Jones domain is a John domain [SS90, page 2] in the sense defined in [SS90] and
such domains fulfil the Poincaré estimate [SS90, Theorem 10].

Corollary 3.8 (gradient estimate on Jones domains)
Let Ω ⊆ Rd be a bounded Jones domain and M ⊆ Rd be bounded and measurable. Then,
there is an extension operator Ẽ : W 1,q(Ω) → W 1,q(Rd) as in Theorem 3.3 and a constant
C = C(Ω,M, q) such that

||∇(Ẽu)||Lq(M,Cd) ≤ C||∇u||Lq(Ω,Cd), u ∈W 1,q(Ω).

Proof: Since we have the extension property for W 1,q-functions and the Poincaré inequality,
compare Theorem 3.6 and Lemma 3.7, we may copy the proof from Corollary 3.4.

We have the following easy criterion to prove that a bounded domain is a Jones domain.

Lemma 3.9 (sufficient criterion for being a Jones domain)
Let Ω ⊆ Rd be a bounded domain such that there are δ, C > 0 with the following properties:
For all x, y ∈ Ω with |x − y| ≤ δ there is an rectifiable arc γ ⊆ Ω connecting x and y of
length l(γ) ≤ C|x − y| such that for all z ∈ γ at least one of the following two conditions
holds.

• |y − z| ≤ Cd(z, ∂Ω).

• |x− z| ≤ Cd(z, ∂Ω).

Then, Ω is a Jones domain.

Proof: Let x, y ∈ Ω and γ ⊆ Ω a rectifiable arc given by the assumption and z ∈ γ. In the
first case we have since |z − x| ≤ l(γ) the inequalities

|z − x||z − y|
|x− y|

≤ C2 |z − x|
l(γ)

d(z, ∂Ω) ≤ C2d(z, ∂Ω).

The estimate in the second case can be proven analogously.

As already mentioned the union of two intersecting cuboids is a Jones domain. We give a
short proof below.

Lemma 3.10 Let Q1, Q2 ⊆ Rd be two intersecting cuboids. Then, Q := Q1 ∪ Q2 is a
Jones domain.

Proof: Let x, y ∈ Q. The only interesting case is when x ∈ Q1 and y ∈ Q2. We can apply
the previous Lemma. In fact, we can choose the arc lying in one plane as sketched below.
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3 The Helmholtz decomposition on periodic domains

Figure 3.12: Path connecting
two points within two intersect-
ing cuboids, which fulfils the in-
equalities from Lemma 3.9

Note that we have to choose δ > 0 so small that the whole arc γ is contained in Q and
far enough away from other parts of the boundary. We get l(γ) ≤ C|x − y|, where C
only depends on the dimension and the intersection angle α of the two cuboids. Clearly,
|z − x| ≤ d(z, ∂Ω) for z ∈ γ1 and |z − y| ≤ d(z, ∂Ω) for z ∈ γ3. For z ∈ γ2 we have
|z − x| ≤ l(γ) ≤ C|x− y| ≤ Cd(z, ∂Ω).

We recall Figure 3.9. The last lemma stated that the union of two cuboids is a Jones
domain, and the next lemma ensures that the union of some (small) cuboid added upon a
small boundary part of a Lipschitz domains, is a Jones domain, cf. Figure 3.13.

Lemma 3.11 Let Ω ⊆ Rd be a bounded Lipschitz domain, 0 ∈ ∂Ω and d ≥ 2. We assume
that there are r, β > 0 and f : (−r, r)d−1 → (−β, β) Lipschitz with f(0) = 0 such that

Ω ∩
(
(−r, r)d−1 × (−β, β)

)
= {x ∈ (−r, r)d−1 × (−β, β) | xd < f(x1, . . . , xd−1)}.

Then, Ω̃ := Ω ∪Q := Ω ∪ ((−r/2, r/2)d−1 × (−β, β)) is a Jones domain.

Proof: We will prove the fact constructively, by defining an arc with the properties de-
manded in Lemma 3.9. So, let x, y ∈ Ω̃. It suffices to prove the property locally, so
we can assume |x − y| < δ < r/2. Besides, there is nothing to prove if x, y ∈ Ω or
x, y ∈ (−r/2, r/2)d−1 × (−β, β). So, let x ∈ Ω and y ∈

(
(−r/2, r/2)d−1 × (−β, β)

)
\ Ω.

Figure 3.13: The incline of γ2 is determined by
the Lipschitz constant L. This is important to keep
distance to the boundary and hence allows us the use
of Lemma 3.9. Besides, we choose l(γ4) = l(γ1) =
|x− y|.

The path is constructed as follows (cf. Figure 3.13): We divide the path γ in four parts:
γ = γ1 +γ2 +γ3 +γ4. We choose γ1(t) = x− t(0, 0, . . . , 0, 1), where t ∈ [0, |x−y|]. The part
γ4 is defined by γ4(t) := y − t(y1, . . . , yd−1, 0), where t ∈ [0, |x − y|/|(y1, . . . , yd−1, 0)|]. We
define p ∈ Rd as the point of intersection of the straight line g := γ4(|x−y|)+s(0, . . . , 0, 1),
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3 The Helmholtz decomposition on periodic domains

s ∈ R and the cone surface

K := {u ∈ Rd | ud − (γ1(|x− y|))d = −L|(u1 − (γ1(|x− y|))1, . . . , ud−1 − (γ1(|x− y|))d−1|},

where L denotes the Lipschitz constant of f . The parts γ2 and γ3 are defined as the line
segments connecting p and γ1(|x− y|), γ4(|x− y|), respectively. We choose δ > 0 so small
that we have p ∈ Q for all choices of x ∈ Ω, y ∈ Q \ Ω with |x − y| ≤ δ and that we keep
away far enough from the remaining boundary (i.e. the boundary not occurring in Figure
3.13). We have l(γ1) = l(γ4) = |x − y|. To estimate the total length of γ we consider the
following sketch.

Figure 3.14: By the triangle equality |s| ≤ 2|x− y|
and hence the lengths of γ2 and γ3 are smaller than
C|x− y|.

We have |s| ≤ 2|x− y| and hence l(γ2), (γ3) ≤ C|x− y|, where C only depends on the angle
α and the angle α is independent of x, y, since it only depends on the Lipschitz constant L
of the function f . This shows l(γ) ≤ C|x − y| for a constant C > 0, which is independent
of the choice of x and y. Besides, d(z, ∂Ω̃) ≥ C3|x − y| for all z ∈ γ2 ∪ γ3 by construction
and C3 depends only on the Lipschitz constant of f . Furthermore, we have

|x− z| ≤ C4d(z, ∂Ω̃)

for z ∈ γ1, where C4 depends on the Lipschitz constant L and

|z − y| ≤ d(z, ∂Ω̃)

for z ∈ γ4. All in all, we have verified the assumptions of Lemma 3.9.

We remark that Ω̃, as defined in Lemma 3.11, is in fact even a Lipschitz domain. It
is possible to represent the boundary at every point x ∈ ∂Ω̃ locally by the graph of a
Lipschitz function. In fact, if x ∈ ∂Ω∩∂Q we rotate the coordinate system slightly and get,
since the function f is Lipschitz, a representation of the boundary as a graph of a Lipschitz
function. Now, we are able to prove the equality of gradient spaces on periodic domains.
By duality we also get the coincide of the solenoidal vector field spaces.
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3 The Helmholtz decomposition on periodic domains

Theorem 3.12 (equality of spaces for periodic domains)
Let Ωp ⊆ Rd be a periodic Lipschitz domain. Then, we have Lqσ(Ωp) = L̂qσ(Ωp) and

Gq(Ωp) = Ĝq(Ωp) for all q ∈ (1,∞), i.e.

Lqσ(Ω) = {f ∈ Lq(Ω,Cd) | div f = 0 in Ω, ν · f = 0 on ∂Ω},

Gq(Ω) = ∇C∞c (Ω)
||·||q

.

Proof: We apply Lemma 3.2, so we have to prove that every function p ∈ Lqloc(Ωp) with
∇p ∈ Lq(Ωp,C

d) has an extension to a function p̃ ∈ Lqloc(R
d) with ∇p̃ ∈ Lq(Rd,Cd). So,

let p ∈ Lqloc(Ωp) with ∇p ∈ Lq(Ωp,C
d).

Let Ωb ⊆ Ωp be a bounded Lipschitz domain satisfying Ωp ∩ [−10, 10]d ⊆ Ωb. Note that Ωb

is just an auxiliary tool, which we need because Corollary 3.8 requires a bounded domain.
Besides, we have to ensure that Ωb has the same shape as Ωp everywhere, where the bound-
ary of Ωper touches M . Note that M denotes the set on which we extend p, see Corollary
3.8. We refer also to the explanation of the approach subsequent to Corollary 3.4.
We define M̃ := (−4/3, 4/3)d and consider the compact set K := ∂M̃ ∩ ∂Ωp = ∂M̃ ∩ ∂Ωb.
By using a small rotation, it is possible to find for all x ∈ K one common coordinate sys-
tem, where ∂M̂ and ∂Ωp are both locally described by Lipschitz functions, compare [GQ12,
Proof of Lemma 4.7]. So, for all x ∈ K there is a transformation of coordinates T consisting
of rotations and translations such that T (x) = 0, r, β ∈ (0, 1/15) and Lipschitz functions
f, g : (−r, r)d−1 → (−β, β) such that

T (Ωp) ∩
(
(−r, r)d−1 × (−β, β)

)
= {y ∈ (−r, r)d−1 × (−β, β) | zd < f(z1 . . . , zd−1)},

T (∂Ωp) ∩
(
(−r, r)d−1 × (−β, β)

)
= {y ∈ (−r, r)d−1 × (−β, β) | zd = f(z1 . . . , zd−1)},

and either

T (M̃) ∩
(
(−r, r)d−1 × (−β, β)

)
= {y ∈ (−r, r)d−1 × (−β, β) | zd < g(z1 . . . , zd−1)},

T (∂M̃) ∩
(
(−r, r)d−1 × (−β, β)

)
= {y ∈ (−r, r)d−1 × (−β, β) | zd = g(z1 . . . , zd−1)},

or

T (M̃) ∩
(
(−r, r)d−1 × (−β, β)

)
= {y ∈ (−r, r)d−1 × (−β, β) | zd > g(z1 . . . , zd−1)},

T (∂M̃) ∩
(
(−r, r)d−1 × (−β, β)

)
= {y ∈ (−r, r)d−1 × (−β, β) | zd = g(z1 . . . , zd−1)}.

We fix for all x ∈ K the cuboid Kx given by Kx := T−1
(
(−r/2, r/2)d−1 × (−β, β)

)
. Since

K is compact we find a finite covering of K by Kx1 , . . . ,Kxn , x1 . . . , xn ∈ K. We have

Kx1 , . . .Kxn ⊆ [−7/5, 7/5]d, since 4/3 + 1/15 = 7/5. We define M1 := M̃ ∪Kx1 ∪ . . .∪Kxn .
By Lemma 3.10 and Lemma 3.11 it follows that

Ω1,0 := Ωb ∪M1

is a Jones domain, since we can choose δ > 0 so small that we have, for x, y ∈ Ω1,0 with
|x− y| ≤ δ, only to consider the following cases: x, y ∈ Ωb, x, y lying in one or two cuboids,
or x ∈ Ωb and y lying in a intersecting cuboid, constructed as above. In all these cases
the existence of a connecting arc with the demanded properties is already proven, compare
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Lemma 3.10 and Lemma 3.11. By Lemma 3.8 we can extend p|Ωb to p1,0 defined on Ω1,0

and

||∇p1,0||Lq(M1,Cd) ≤ C||∇p|Ωb ||Lq(Ωb,Cd).

This approach yields an extension of p to Ωp∪M1. By using translations of the form Ωb+z,
z ∈ (2Z)d, we can in an analogous manner, extend p on all sets M1 + z simultaneously.
Altogether this yields a function p1 ∈ Lqloc(Ω1), where Ω1 := Ωp ∪

⋃
z∈(2Z)d(M1 + z). Note

that the ||p1||Lq(M1+z) can be estimated by a constant independent of z ∈ Zd times the
gradient norm of p on the bounded surrounding Ωb + z.
Let V 1,q(Ω) := {u ∈ Lqloc(Ω) | ∇u ∈ Lq(Ω,Cd)}.
Hence, there is a C1 > 0 and an extension operator E1 : V 1,q(Ωp)→ V 1,q(Ω1) such that

||∇(E1p)||Lq(Ω1,Cd) ≤ C1||∇p||Lq(Ωp,Cd), p ∈ V 1,q(Ωp).

By the same procedure we find a set M2 with (−1/3, 7/3) × (−4/3, 4/3)d−1 ⊆ M2 ⊆
[−2/5, 12/5] × [−7/5, 7/5]d−1 such that Ω2 := Ω1 ∪

⋃
k∈(2Z)d(M2 + k) is locally a Jones

domain and there is a C2 > 0 and an extension operator E2 : V 1,q(Ω1)→ V 1,q(Ω2) satisfy-
ing

||∇(E2p)||Lq(Ω2,Cd) ≤ C2||∇p||Lq(Ω1,Cd), p ∈ V 1,q(Ω1).

There are M3,M4, . . . ,M2d , accompanied by extension operators E3, . . . , E2d , covering, to-
gether with M1,M2 and all (2Zd)-translations of these sets, in total the whole Rd.
Hence, we have proved the existence of an extension operator E := E2d◦. . .◦E1 : V 1,q(Ωp)→
Ẇ 1,q(Rd) such that

||∇(Ep)||Lq(Rd) ≤ C1 · C2 . . . · C2d ||∇p||Lq(Ωp), p ∈ V 1,q(Ωp),

and so the assertion follows from Lemma 3.2.

By combining Remark 3.1 and Remark 2.13 the statements remain true for periodic domains
with respect to any lattice L.

3.2 The Bloch transform and multiplier theorems

In the next lines we introduce the Bloch transform and show that we can adapt the results
from [Bar13] to our case. This transform was already used by Bloch [Blo29] to study
crystal lattices. Even before Floquet, Lyapunov and Hill used similar techniques to consider
periodic structures. Therefore, other nomenclatures for the Bloch transform are common,
too.

Besides, we assume throughout this section Ωp to be a periodic domain and q ∈ [1,∞).
We define the unit cube Bd := [−1/2, 1/2)d. Before we come to the exact definition, we
remark that the Bloch transform is a very common tool when considering all variants of
periodic operators. We refer to [Kuc15] for a comprehensive overview. Roughly speaking,
the idea of the Bloch theory is to transform functions on the whole periodic domain into a
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3 The Helmholtz decomposition on periodic domains

sequence of functions defined on one periodicity cell and apply Fourier theory there. The
just mentioned transform has the following representation.

Lemma 3.13 The operator Γ: Lq(Ωp,C
d)→ lq(Zd, Lq(Ω#,C

d)), given by

(Γf)(z) = f(· − z)|Ω#
,

is an isometric isomorphism. The inverse mapping is given by

(Γ−1ϕ)(x) =
∑
z∈Zd

E(ϕ(z))(x+ z),

where E : Lq(Ω#,C
d) = Lq(Ω0,C

d) → Lq(Ωp,C
d) denotes the zero extension for functions

on Ω0 to functions on Ωp.

We define

s(Zd, Lq(Ω#,C
d)) := {ϕ ∈ l∞(Zd, Lq(Ω#,C

d)) | sup
z∈Zd

||zαϕ(z)||q <∞ for all α ∈ Nd
0},

Lqs(Ωp,C
d) := Γ−1s(Zd, Lq(Ω#,C

d)).

Note that, for all q ∈ [1,∞), these space are dense in lq(Zd, Lq(Ω#,C
d)), Lq(Ωp,C

d),
respectively, since functions with finite respectively compact support are dense.

Definition 3.14 We define the operator

Ξ: Lq(Bd, Lq(Ω#,C
d))→ Lq(Bd, Lq(Ω#,C

d)),

f 7→ [θ 7→ [x 7→ e−2πiθ·xf(θ, x)]].

Note that Ξ is for all q ∈ [1,∞] an isometric isomorphism with inverse

Ξ−1 : Lq(Bd, Lq(Ω#,C
d))→ Lq(Bd, Lq(Ω#,C

d)),

f 7→ [θ 7→ [x 7→ e2πiθ·xf(θ, x)]].

Definition and Remark 3.15 (Bloch transform)
We define

F−1 : s(Zd, Lq(Ω#,C
d))→ L∞(Bd, Lq(Ω#,C

d)),

[F−1g](θ) :=
∑
z∈Zd

e2πiz·θg(z).

We denote by D(Bd, Lq(Ω#,C
d)) the image of F−1. There is an explicit characterization

[Bar13, Lemma 2.9] for that dense subspace of Lq(Bd, Lq(Ω#,C
d)) and one can show that

F : D(Bd, Lq(Ω#,C
d))→ s(Zd, Lq(Ω#,C

d)),

(Fu)(z) :=

∫
Bd

e−2πiz·θu(θ)dθ
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is well-defined and is the inverse mapping to F−1 [Bar13, Lemma 2.17].

Hence, the Zak transform

Z : Lqs(Ωp,C
d)→ D(Bd, Lq(Ω#,C

d)),

Zf := F−1Γf,

is bijective, but not necessarily continuous. We define the Bloch transform

Φ: Lqs(Ωp,C
d)→ D(Bd, Lq(Ω#,C

d)),

Φf := ΞF−1Γf.

Φ is bijective, too, cf. Defintion 3.14. For q = 2, thanks to Plancherel’s theorem, these
operators extend to isometric isomorphisms on the whole space [Bar13, Lemma 2.18]. Note
that Φ has the following description:

Φ: L2(Ωp,C
d)→ L2(Bd, L2(Ω#,C

d)),

((Φf)(θ))(x) =
∑
k∈Zd

e−2πiθ·(x−k)f(x− k), θ ∈ Bd, x ∈ Ω#, f ∈ C∞c (Ωp,C
d).

Note that Φ is quasi-periodic in θ and periodic in x, i.e.

((Φf)(θ + z))(x) = e2πiθz((Φf)(θ))(x), ((Φf)(θ))(x+ z) = ((Φf)(θ))(x),

and this is the reason why we restrict ourselves to values θ ∈ Bd = [−1/2, 1/2)d and
x ∈ Ω# = Ωp/Z

d.

Note that it is also possible to define the Bloch transform associated to other lattices L.
Using the adapted version of the Bloch transform, the whole forthcoming theory can be
developed in an analogous manner for periodic domains with respect to any lattice. Since
there occur enough other technical issues, we ignore this fact firstly und just refer to Remark
3.36

The Bloch transform Φ and the Zak transform Z are isometrically isomorphic, since Ξ is an
isometric isomorphism. The advantage of the Zak transform is that the the fibre operators
(cf. Definition 3.25) associated to the Zak transform are independent of θ, whereas the
domains of the fibre operators depend on θ. In contrast, the fibre operators associated to
the Bloch transform depend on θ, but the domains do not, cf. [Bar13, page 149]. In the
forthcoming, we only use the Bloch transform.

The most common application of the Bloch transform is the decomposition of the spectrum
of a periodic differential operator into bands. We refer to the discussion in Remark 3.36
and focus on Bloch multiplier theorems here. Before we state the adapted main theorems
from [Bar13], we give a short summary of the approach there. A given operator T defined
on Lq-spaces is periodic if and only if the operator T̃ := ΓT Γ−1 defined on the sequence
space lq is translation invariant. Furthermore, as in the Fourier theory, translation invariant
operators are exactly those operators which are given as a convolution operator, cf. [Bar13,
Theorem 3.7]. This correlation can be used to show that, at least in some cases like Hilbert
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spaces or subspaces of Lq, translation invariant operators can be described by L∞ Fourier
multipliers, cf. [Bar13, Theorem 3.12 and Theorem 3.18]. One possible criterion to transfer
these results from subspaces to the whole space is the case of UMD-spaces and Cd-regularity
of the multiplier on Bd, alternatively Cd-regularity of the multiplier on Bd \ {0} and some
R-boundedness condition, cf. [Bar13, Theorem 4.22] or the related version Theorem 3.22 in
this work.
So, as we want to apply this machinery, we have at first to check that our underlying
operator, the Helmholtz projection, is periodic. Furthermore, we have to check the UMD-
property of the involved space. It is known that reflexivity of the Banach space is a necessary
condition for the UMD-property. On the other hand, the most common spaces in analysis
are UMD-spaces, if they are reflexive [KW04, page 11]. For that reason, the following
lemma is no surprise.

Lemma 3.16 (UMD-property of Lq(Ω#,C
d))

Let Ωp ⊆ Rd be a periodic domain, q ∈ (1,∞). Then, Lq(Ω#,C
d) is a UMD-space.

Proof: See [Bar13, Prop 2.61 (iii)].

Remark 3.17 (periodicity of the Helmholtz projection)
Let Ωp ⊆ Rd be periodic and P2 the Helmholtz projection. The operator P2 is Zd-periodic,
which means

P2τzf = τzP2f, for all f ∈ L2(Ωp,C
d), z ∈ Zd.

This can be seen directly. If f = g +∇p is the Helmholtz decomposition of f , then

f(· − z) = g(· − z) +∇p(· − z),

and g(· − z), ∇p(· − z) belong to L2
σ(Ωp), G2(Ωp), respectively, thanks to the periodicity of

the domain.

Definition 3.18 (space of Fourier multipliers)
Let E1, E2 be Banach spaces. The space Mq(Z

d, E1, E2) consists of all m : Bd → L(E1, E2)
such that, Tm := F ◦Mm ◦F−1, first defined for ϕ ∈ s(Zd, E1), extends to a bounded, linear
operator

Tm : lq(Zd, E1)→ lq(Zd, E2).

In that case, Tm is translation invariant, cf. [Bar13, Remark 4.20].
Here, Mm : Lq(Bd, E1)→ Lq(Bd, E2) is defined by

(Mmf)(θ) := m(θ)f(θ).

Theorem 3.19 (Fourier multiplier theorem)
Let m ∈ Cd(Bd,L(E1, E2)) and E1, E2 UMD-spaces. Then, m ∈ Mq(Z

d, E1, E2) for all
q ∈ (1,∞).

Proof: See [Bar13, Theorem 4.17 (i)].
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Theorem 3.20 (Mikhlin type Fourier multiplier theorem)
Let E1, E2 be UMD-spaces and m ∈ Cd(Bd \ {0},L(E1, E2)) be such that the set

τ = {|θ||α|∂αm(θ) : θ ∈ Bd \ {0}, α ≤ (1, . . . , 1)}

is an R-bounded subset of L(E1, E2). Then, m ∈Mq(Z
d, E1, E2) for all q ∈ (1,∞) and

||Tm||L(lq(Zd,E1,E2)) ≤ CRq(τ),

where C = C(q, d, E1, E2).

Proof: See [Bar13, Theorem 4.19].

As noted in [Bar13, bottom of page 44] most of the analysis takes place in the sequence
spaces. Therefore, it is possible to transfer the results from Rd/Zd to arbitrary Ω# =
Ωp/Z

d, where Ωp is a periodic domain. Nevertheless, we give the details here. The next
theorem is a variant of [Bar13, Theorem 4.21] for periodic domains and states that Fourier
multipliers are Zak multipliers.

Theorem 3.21 (Zak multiplier theorem)
Let q ∈ (1,∞) and m ∈Mq(Z

d, Lq(Ω#,C
d), Lq(Ω#,C

d)) be bounded and measurable. Then,
m is a Zak multiplication function, i.e.

Zmf := Z−1MmZf

first defined for f ∈ Lqs(Ωp,C
d), extends to a bounded, linear and translation invariant

operator in L(Lq(Ωp,C
d)).

Proof: We recall that Lq(Ω#,C
d) is a UMD-space and that ΓLqs(Ωp,C

d) = s(Zd, Lq(Ω#,C
d))

by definition. Furthermore,
Zmf = Γ−1TmΓf.

Since both, Γ and Γ−1 are isometric isomorphisms, Zm inherits the properties of Tm. The
periodicity follows from the translation invariance of Tm and Γτzf = τ−zΓf , plus Γ−1τ−zf =
τzΓ
−1f .

This theorem does not work in full generality for the Bloch transform. But in combination
with Theorem 3.20 or respectively Theorem 3.19 it works.

Theorem 3.22 (Bloch multiplier theorem)
Let m be as in Theorem 3.20 or as in Theorem 3.19 and q ∈ (1,∞). Then,

Bmf := Φ−1MmΦf, first defined for f ∈ Lqs(Ωp,C
d),

extends to a bounded, linear and periodic operator Bm ∈ L(Lq(Ωp,C
d)).

Proof: The case m given as in Theorem 3.19, works as in the proof of [Bar13, Theorem
4.22(i)] by applying Theorem 3.19 and Theorem 3.21 to the function Ξ−1mΞ.
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The second case, works as in [Bar13, proof of Theorem 4.22(ii)], too. The main idea is to
apply Theorem 3.20 to θ 7→ Ξ−1(θ)m(θ)Ξ(θ) and afterwards Theorem 3.21, which proves
the assertion, since Bm = Z−1TΞ−1mΞZ. So we have to show the premises of Theorem 3.20.
The functions Ξ and Ξ−1 belong to C∞(Bd,L(Lq(Ω#,C

d))) and the derivatives are given
by

∂αΞ(θ) = Mx 7→(−2πix)αe−2πix·θ ,

∂αΞ−1(θ) = Mx 7→(2πix)αe2πix·θ ,

which shows that ∂αΞ and ∂αΞ−1 are scalar multiplications on Lq(Ω#,C
d) bounded by

(2π)|α|. By [Bar13, Lemma 2.58(a)], the sets

κ1 := {|θ||β|∂βΞ(θ) | θ ∈ Bd, β ≤ (1, . . . , 1)},
κ2 := {|θ||β|∂βΞ−1(θ) | θ ∈ Bd, β ≤ (1, . . . , 1)},

are R-bounded subsets of L(Lq(Ω#,C
d)) with constant Rq(κi) ≤ 2(2π)d.

We split |θ||α|[∂αΞ−1mΞ](θ) into a finite sum with terms of the form

|θ||γ1|[∂γ1Ξ−1](θ) ◦ |θ||γ1|[∂γ2m](θ) ◦ |θ||γ1|[∂α−γ1−γ2Ξ](θ),

where γ1 ≤ α and γ2 ≤ α−γ1. Since sums and concatenations of R-bounded sets are again
R-bounded, we are done.

3.3 Fibre operators for the Helmholtz projection on L2(Ω#,C
d)

At first, we explain the definition of fibre operators in an abstract setting.

Definition 3.23 Let A,B,C be any sets and Q : maps(A,B)→ maps(A,C). A family of
operators {Qf(a) : B → C}a∈A is called fibre operators of Q, if

Qf(a)(ϕ(a)) = (Qϕ)(a), for all ϕ : A→ B, a ∈ A.

In our concrete situation we have Lq-spaces instead of general maps. The following easy
standard example is taken from [Bar13, Theorem 1.2].

Example 3.24 (fibre operators associated to the gradient operator)
We consider the periodic operator Au := ∇u defined on D(A) = H1(Rd) = W 1,2(Rd). We
want to calculate the fibre operators of the operator Φ◦A◦Φ−1, where the Bloch transform
Φ is given as in Definition and Remark 3.15. We calculate

(ΦAf)(θ, x) =
∑
z∈Zd

e−2πiθ·(x−z)(∇f)(x− z)

= ∇
∑
z∈Zd

e−2πiθ·(x−z)f(x− z)
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= (∇+ 2πiθ)
∑
z∈Zd

e−2πiθ·(x−z)f(x− z)

= (∇+ 2πiθ)(Φf)(θ, x), f ∈ C∞c (Rd).

Moreover, we get for f ∈ D(A) and for almost all θ ∈ Bd = [−1/2, 1/2)d that Φf(θ, ·) ∈
D(A(θ)) := H1

per([0, 1)d). It follows that A(θ) = (∇ + 2πiθ) are the fibre operators of the
operator A, compare the forthcoming Definition 3.25. Note that the periodic boundary
conditions of D(A(θ)) are a consequence of the correlation between translation invariance
and periodicity.
In the case of a periodic domain Ωp this correlation will result in the fact that we consider
the manifold Ω# = Ωper/Z

d instead of Ω0.

As we know, the Helmholtz decomposition exists on L2(Ωp,C
d) and the projection Q = Q2

onto the gradient part defines a periodic operator in L(L2(Ωp,C
d)). We take a closer look

at the following diagram.

L2(Ωp,C
d)

Γ //

Q
��

l2(Zd, L2(Ω#,C
d))

Γ−1
oo

F−1
// L2(Bd, L2(Ω#,C

d))
F
oo

Ξ // L2(Bd, L2(Ω#,C
d))

Ξ−1
oo

Q̃
��

L2(Ωp,C
d)

Γ // l2(Zd, L2(Ω#,C
d))

Γ−1
oo

F−1
// L2(Bd, L2(Ω#,C

d))
F
oo

Ξ // L2(Bd, L2(Ω#,C
d))

Ξ−1
oo

We recognize the Bloch transform Φ = Ξ ◦ F−1 ◦Γ, which is an isometric isomorphism and
define Q̃ := Φ ◦Q ◦ Φ−1. Therefore, it is quite natural to make the following definition.

Definition 3.25 (fibre operators in the Bloch setting)
The fibre operators of Q̃ are called the fibre operators of Q, too. So, Q(θ) : L2(Ω#,C

d) →
L2(Ω#,C

d), θ ∈ Bd are the fibre operators associated to Q if and only if

Q(θ)(f(θ)) = ((Φ ◦Q ◦ Φ−1)f)(θ), f ∈ L2(Bd, L2(Ω#,C
d)),

or equivalently, if and only if

Q(θ)(Φg(θ)) = (Φ(Qg))(θ), g ∈ L2(Ωp,C
d).

Once more, we recall that the existence of the fibre operators of the Helmholtz projection is
due to the periodicity of the operator. This is because operators on the sequence spaces are
given as multiplication operators if and only if they are translation invariant and we know
that Γ transforms periodic operators into translation invariant operators and backwards.
The theorem for bounded operators can be found in [Bar13, Theorem 3.12]. We remark
that there is also a version for unbounded operators [Bar13, Theorem 3.26].
Next, we deduce a concrete formula for the fibre operators. For this purpose, we recall at
first that the projection Q onto the gradient part is given by Q = ∇((∇)∗(∇))−1∇∗, cf.
Theorem 2.43. Motivated by Example 3.24 it is natural to expect the following form for
the fibre operators: Q(θ) = (∇ + 2πiθ)((∇ + 2πiθ)∗(∇ + 2πiθ))−1(∇ + 2πiθ)∗. Here, the
problem of choosing the right domain for the operators ∇+ 2πiθ arises. Clearly, we expect
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3 The Helmholtz decomposition on periodic domains

periodic boundary conditions for the domain. We realize this by using the flat manifold
with boundary Ω# = Ωp/Z

d. In fact, we will see that the spaces W 1,2(Ω#) are the right
choice, at least for θ 6= 0. We observe that θ = 0 is somehow a special point, since only there
∇ + 2πiθ : W 1,2(Ω#) → L2(Ω#,C

d) is not injective (actually the operator is not injective
for all θ ∈ Zd, but we are only interested in θ ∈ Bd = [−1/2, 1/2)d), cf. the proof of Lemma
3.27. For determining the fibre operators, it is helpful to consider ∇+ 2πiθ on

W 1,2(Ω#)0 := {f ∈W 1,2(Ω#) |
∫

Ω#

f dx = 0} ∼= W 1,2(Ω#)/C,

too. Note that we have Ẇ 1,2(Ω#) = W 1,2(Ω#)/C ∼= W 1,2(Ω#)0 by Remark 2.44(b). We
recall that these are the spaces occurring in the Helmholtz decomposition. Besides, the
fibre operators for θ = 0 are related to these spaces as we shall see below.
In the forthcoming diagram we chose to use W 1,2(Ω#)0 instead of Ẇ 1,2(Ω#) (only on the
first space ∇+ 2πiθ is well-defined) and arrive at the following diagram.

W 1,2(Ω#)
∗
0

R0(θ)

��

W 1,2(Ω#)
∗

R(θ)

��

%
oo

L2(Ω#,C
d)

(∇+2πiθ)∗

77

(∇+2πiθ)∗0

gg

W 1,2(Ω#)0

i //

N0(θ)

OO

(∇+2πiθ)0

77

W 1,2(Ω#)
m̃

oo

N(θ)

OO

∇+2πiθ
gg

Figure 3.15: Diagram showing fi-
bre operators of Q. We will prove
that these are given by Q(θ) = (∇ +
2πθ)R(θ)(∇ + 2πiθ)∗ for θ ∈ Bd \ {0}
and by Q0(0) = ∇0R0(0)∇∗

0 for θ = 0.

Here, we denote by i the inclusion operator and by % the restriction operator. We denote by
m : W 1,2(Ω#)→ C the mean of a function and define the operator m̃ by m̃(u) := u−m(u).
Before we take a closer look at Figure 3.15, we first prove the existence of the inverse
operators for N0(θ) = (∇+ 2πiθ)∗0(∇+ 2πiθ)0 and N(θ) = (∇+ 2πiθ)∗(∇+ 2πiθ), which we
denote by R0(θ) and R(θ). For this purpose we need the following compactness theorem.

Lemma 3.26 (Rellich-Kondrachov theorem)
Let Ωp be a periodic local Lipschitz domain and q ∈ [1,∞). Then, the embedding W 1,q(Ω#) ↪→
Lq(Ω#) is compact.

Proof: For q ≤ d the compactness of the embedding follows from

W 1,q(Ω#) ⊆W 1,q(Ω0) ↪→ Lq(Ω0) = Lq(Ω#),

and the Rellich-Kondrachov embedding theorem [Neč12, Chapter 2, Theorem 6.3], and for
q > d it is even more simple. In that case the space is compactly embedded into the space of
continuous functions. Obviously, convergence in || · ||∞-norm on a bounded domain implies
Lq convergence.
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3 The Helmholtz decomposition on periodic domains

Lemma 3.27 (invertibility of N0(θ) and N(θ))
The operators N0(θ) and N(θ) are invertible for all θ ∈ Bd \ {0}. Besides, N0(0) is invert-
ible.
Furthermore, we have

L2(Ω#,C
d) = (Kern(∇+ 2πiθ)∗)⊕ (∇+ 2πiθ)W 1,2(Ω#),

and

Q(θ) = (∇+ 2πiθ)((∇+ 2πiθ)∗(∇+ 2πiθ))−1(∇+ 2πiθ)∗

Q0(θ) = (∇+ 2πiθ)0((∇+ 2πiθ)∗0(∇+ 2πiθ)0)−1(∇+ 2πiθ)∗0

are orthogonal projections in L2(Ω#,C
d).

Proof: We consider the sesquilinear form associated to N(θ), which is given by

a(u, v) = 〈(∇+ 2πiθ)u, (∇+ 2πiθ)v〉, u, v ∈W 1,2(Ω#) ⊆ L2(Ω#).

Hence,

a(u, u) = ||∇u||22 + 4π2|θ|2||u||22 + 2π

∫
Ω

iθ(u∇u− u∇u)dx.

We use the following easy consequence of the Cauchy-Schwarz and the binomial inequality

|
∫
Ω

iθ(u∇u− u∇u)dx| ≤ 2

∫
Ω

|θ||u||∇u|dx ≤ 2|θ|ε2||∇u||22 + 2ε−2|θ|||u||22,

which holds true for all ε > 0. Hence,

a(u, u) ≥ ||∇u||22 + 4π2|θ|2||u||22 − 4π|θ|ε2||∇u||22 − 4πε−2|θ|||u||22.

We choose ε > 0 such that 1− 4π|θ|ε2 > 0 holds true. Altogether, after a suitable choice of
t, C we get

a(u, u) + t||u||22 ≥ C||u||2W 1,2 = C(||u||22 + ||∇u||22).

Because the domain of the form is compactly embedded into L2(Ω#), cf. Lemma 3.26,
N(θ) + t has discrete spectrum consisting of eigenvalues, cf. Lemma 2.25.
The solution f(x) = e−2πiθ·x of the equation ∇f = −2πifθ is not Zd-periodic, since θ /∈
Zd. So, we know that 0 cannot be an eigenvalue of N(θ), and it follows that N(θ) is
bijective. The bijectivity of N0(θ) can be proven analogously. As already mentioned, ∇0(0)
is injective, whereas ∇(0) is not injective. That is why N0(0) is invertible and N(0) is not.
The projection property, which implies the decomposition of L2(Ω#,C

d) is obvious. Note
that

Q(θ)∗ = (∇+ 2πiθ)(((∇+ 2πiθ)∗(∇+ 2πiθ))−1)∗(∇+ 2πiθ)∗ = Q(θ).
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3 The Helmholtz decomposition on periodic domains

Using i∗ = % and (∇+ 2πiθ)0 = (∇+ 2πiθ) ◦ i we get

(∇+ 2πiθ)∗0 = i∗ ◦ (∇+ 2πiθ)∗ = % ◦ (∇+ 2πiθ)∗,

N0(θ) = (∇+ 2πiθ)∗0 ◦ (∇+ 2πiθ)0 = % ◦N(θ) ◦ i.

Further we have for ϕ ∈W 1,2(Ω#)∗ with R(θ)ϕ ∈W 1,2(Ω#)0 the following relationship:

N0(θ)R(θ)(ϕ) = %(ϕ),

R(θ)(ϕ) = (R0(θ) ◦ %)(ϕ).

Note that m̃ is an orthogonal projection in W 1,2(Ω#) with respect to the scalar product

〈u, v〉W 1,2 := 〈∇u,∇v〉L2 + 〈u, v〉L2

and m̃W 1,2(Ω#) = W 1,2(Ω#)0. The kernel of m̃ is one-dimensional, more precisely it
consists of all constant functions. Now, we are able to formulate and prove the following
theorem, which describes the fibre operators of Q.

Theorem 3.28 (representation for the fibre operators)
Let Ωp be a periodic local Lipschitz domain and Q : L2(Ωp,C

d)→ L2(Ωp,C
d) be the projec-

tion onto the gradient part. Then, Q is periodic and the operators Q(θ) ∈ L(L2(Ω#,C
d))

given by

Q(θ) = (∇+ 2πiθ)((∇+ 2πiθ)∗(∇+ 2πiθ))−1(∇+ 2πiθ)∗, θ ∈ Bd \ {0},

are the fibre operators associated with Q. The fibre operator for θ = 0 is the operator

Q0(0) = ∇0(∇∗0∇0)−1∇∗0.

Here, ∇+2πiθ : W 1,2(Ω#)→ L2(Ω#,C
d) and (∇+2πiθ)∗ : L2(Ω#,C

d)→
(
W 1,2(Ω#,C

d)
)∗

.

Proof: We start with θ ∈ Bd \ {0}. We already know by Theorem 3.12 that C∞c,σ(Ωp,C
d)

and ∇C∞c (Ωp) are dense in L2
σ(Ωp) and G2(Ωp), respectively. Hence the sum of the two

orthogonal spaces is dense in L2(Ωp,C
d), too. So, it suffices to consider

f = f0 +∇p,

where f0 ∈ C∞c,σ(Ωp,C
d) and p ∈ C∞c (Ωp). We use the Bloch transform Φ and get

Φf(θ, ·) = (Φf0)(θ, ·) + Φ(∇p)(θ, ·).

At first, we show

Φ(∇p)(θ, ·) = (∇+ 2πiθ)(Φp)(θ, ·).
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3 The Helmholtz decomposition on periodic domains

Since p ∈ C∞c (Ωp) the following sum is finite and we calculate, cf. Example 3.24,

Φ(∇p)(θ, ·) =
∑
z∈Zd

e−2πiθ(·−z)(∇p)(· − z)

=
∑
z∈Zd

(∇+ 2πiθ)e−2πiθ(·−z)p(· − z)

= (∇+ 2πiθ)
∑
z∈Zd

e−2πiθ(·−z)p(· − z)

= (∇+ 2πiθ)(Φp)(θ, ·).

If we can show that (Φf0)(θ, ·) is lying in kernel(∇+ 2πiθ)∗, then

Q(θ)Φ(∇p)(θ, ·) = Q(θ)(∇+ 2πiθ)(Φp)(θ, ·) = (∇+ 2πiθ)(Φp)(θ, ·),

implies that
(ΦQf)(θ, ·) = Q(θ)(Φf)(θ, ·),
(ΦPf)(θ, ·) = P (θ)(Φf)(θ, ·),

which is, because of Definition 3.25 exactly what we stated. We recall that P = Id − Q
denotes the Helmholtz projection on L2(Ωp,C

d).

So we show that (Φf0)(θ, ·) ∈ kernel(∇+2πiθ)∗. There is a function ϕ ∈ C∞c (Ωp) satisfying∑
k∈Zd ϕ(· − k) = 1 on Ωp. Let g ∈ C∞per(Ωp). By periodicity, g =

∑
k(ϕg)(· − k) on Ωp.

Hence, the set of functions {g|Ω#
| g =

∑
k g0(· − k), g0 ∈ C∞c (Ωp)} is dense in W 1,2(Ω#).

Let g be such a function. We calculate using integration by part

〈(∇+ 2πiθ)∗(Φf0)(θ, ·), g〉Ω#

= 〈(Φf0)(θ, ·), (∇+ 2πiθ)g〉Ω#

= 〈
∑
k∈Zd

e−2πiθ(·−k)f0(· − k),
∑
k∈Zd

((∇+ 2πiθ)g0)(· − k)〉Ω#

= 〈e−2πiθ(·)f0, (∇+ 2πiθ)g0〉Ωp

= 〈e−2πiθ(·)f0,∇g0〉Ωp + 〈e−2πiθ(·)f0, 2πig0θ〉Ωp

= −〈div (e−2πiθ(·)f0), g0〉Ωp + 〈e−2πiθ(·)f0, 2πig0θ〉Ωp

= 〈e−2πiθ(·)2πiθf0, g0〉Ωp + 〈e−2πiθ(·)f0, 2πig0θ〉Ωp

= 0.

We note that there are no boundary terms occurring, since f0 has compact support in Ωp.
In the calculation above we used the relation

div (e−2πiθ(·)f0) = e−2πiθ(·)div f0 − 2πe−2πiθ(·)iθ · f0 = −2πe−2πiθ(·)iθ · f0.

In the case θ = 0 we do the same approach as above, and observe that

Q0(0)(Φf)(0) = ∇0(∇∗0∇0)−1∇∗0∇0m̃(Φp)(0) = ∇0m̃(Φp)(0) = Φ(∇p)(0) = Φ(Qf)(0).
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3 The Helmholtz decomposition on periodic domains

Now we are ready to give a decomposition of the fibre operators into a sum of two operators.
The advantage of this decomposition is that the first summand consists of a family of
operators, which is real analytic in θ for all θ ∈ Bd, thus including θ = 0. The second
summand are projections onto a one-dimensional subspace, and therefore much better to
handle. In fact, we are able to show the R-boundedness assumption of Theorem 3.22 for
these operators.

Lemma 3.29 (decomposition of the fibre operators)
Let Ωp be a periodic Lipschitz domain, Q be the projection on the gradient part defined on
L2(Ωp,C

d) and Q(θ) the fibre operators from Theorem 3.28 defined on L2(Ω#,C
d) . Then,

we have for θ ∈ Bd \ {0} and f ∈ L2(Ω#,C
d)

Q(θ)f = Q0(θ)f +m
(
R(θ)(∇+ 2πiθ)∗f

)
(2πiθ −Q0(θ)2πiθ)

= Q0(θ)f +
〈f, P0(θ)2πiθ〉
||P0(θ)(2πiθ)||2

P0(θ)(2πiθ)

= Q0(θ)f + T (θ)f,

where

T (θ)f := m
(
R(θ)(∇+ 2πiθ)∗f

)
(2πiθ −Q0(θ)2πiθ) =

〈f, P0(θ)2πiθ〉
||P0(θ)(2πiθ)||2

P0(θ)(2πiθ)

is an orthogonal projection. Note that 2πiθ is considered as a constant vector field here.

Proof: We take θ 6= 0, f ∈ L2(Ω#,C
d) and define ϕ := (∇ + 2πiθ)∗f ∈ W 1,2(Ω#)∗,

u := R(θ)(∇ + 2πiθ)∗f = R(θ)ϕ. In particular we have (∇ + 2πiθ)u = Q(θ)f . To get to
the right side of Figure 3.15 we consider m̃(u). We have

(∇+ 2πiθ)0(m̃(u)) = (∇+ 2πiθ)u− (∇+ 2πiθ)m(u)

= (∇+ 2πiθ)u−m(u)2πiθ.

Hence

N0(θ)(m̃(u)) = %N(θ)u−m(u)(∇+ 2πiθ)∗0(2πiθ),

which implies

m̃(u) = R0(θ)%N(θ)u−m(u)R0(θ)(∇+ 2πiθ)∗0(2πiθ).

Now, we use the representation u = R(θ)ϕ and obtain

m̃(R(θ)ϕ) = R0(θ)%ϕ−m(R(θ)ϕ)R0(θ)(∇+ 2πiθ)∗02πiθ,

or equivalently

R(θ)ϕ = R0(θ)%ϕ+m(R(θ)ϕ)(1−R0(θ)(∇+ 2πiθ)∗02πiθ).
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We use the relation ϕ = (∇+ 2πiθ)∗f, and arrive after applying ∇+ 2πiθ from the left side
and using % ◦ (∇+ 2πiθ)∗ = (∇+ 2πiθ)∗0 at

Q(θ)f = Q0(θ)f +m(R(θ)(∇+ 2πiθ)∗f)(2πiθ −Q0(θ)2πiθ)

for all f ∈ L2(Ω#,C
d) and θ ∈ Bd \ {0}. The projection property of T (θ) follows from

T (θ)2 = (Q(θ)−Q0(θ))2 = Q(θ)2−Q(θ)Q0(θ)−Q0(θ)Q(θ)+Q0(θ)2 = Q(θ)−Q0(θ) = T (θ).

Here we used Q(θ)Q0(θ) = Q0(θ) and Q0(θ)Q(θ) = Q0(θ). The first one immediately
follows by definition, since (∇+ 2πiθ)f = (∇+ 2πiθ)0f for all f ∈W 1,2(Ω#)0. The second
follows from

Q0(θ)Q(θ) = (Q0(θ)Q(θ))∗∗ = (Q(θ)∗Q0(θ)∗)∗ = (Q(θ)Q0(θ))∗ = Q0(θ)∗ = Q0(θ).

Furthermore the projection is even orthogonal since

T (θ)∗ = Q(θ)∗ −Q0(θ)∗ = Q(θ)−Q0(θ) = T (θ).

There is another way of describing this situation. Since T (θ) is the orthogonal projection
onto the one dimensional subspace spanned by P0(θ)2πiθ it must be of the following form:

T (θ)f =
〈f, P0(θ)2πiθ〉
||P0(θ)(2πiθ)||2

P0(θ)(2πiθ).

Remark 3.30 It is possible to show the projection property of T (θ) directly. By using
m(R0(θ)...) = 0, which holds since R0(θ) is mapping into W 1,2(Ω#)0, we calculate

m(R(θ)(∇+ 2πiθ)∗(Id−Q0(θ))2πiθ)

= m(R(θ)(∇+ 2πiθ)∗(Id−Q0(θ))(∇+ 2πiθ)1)

= m(R(θ)(∇+ 2πiθ)∗(∇+ 2πiθ)1−R(θ)(∇+ 2πiθ)∗Q0(θ)(∇+ 2πiθ)1)

= m(1−R0(θ)(∇+ 2πiθ)∗0(∇+ 2πiθ)1)

= 1.

This yields

T (θ)(T (θ)f) = m(R(θ)(∇+ 2πiθ)∗m(R(θ)(∇+ 2πiθ)∗f)P0(θ)2πiθ)P0(θ)(2πiθ)

= m(R(θ)(∇+ 2πiθ)∗f)m(R(θ)(∇+ 2πiθ)∗P0(θ)2πiθ)P0(θ)(2πiθ)

= T (θ)f.

3.4 The fibre operators on Lq(Ω#,C
d)

In the previous section we proved a representation for the fibre operators Q(θ) of the pro-
jection Q onto the gradient space G2(Ωp). The fibre operators turned out to be orthogonal
projections.
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In this section we consider the situation on Lq(Ω#,C
d). By applying perturbation theory,

we prove existence and boundedness for the fibre operators on Lq(Ω#,C
d) for some range

of q depending on the boundary regularity as in Theorem 2.46.

Roughly speaking, the operator ∇ + 2πiθ is a compact perturbation of the operator ∇,
so Fredholm theory is applicable. Furthermore, we will show that we can apply Theorem
3.20, which will lead to the central results of this work, the Helmholtz decomposition on
Lq(Ωp,C

d) for periodic domains Ωp. We recall Figure 3.15, the diagram for the fibre
operators on L2, and consider therefore for θ ∈ Rd the following operator:

Nq(θ) = (∇+ 2πiθ)∗(∇+ 2πiθ) : W 1,q(Ω#)→ (W 1,q′(Ω#))∗,

(Nq(θ)(u))(v) = 〈(∇+ 2πiθ)u, (∇+ 2πiθ)v〉.

If q is fixed, we just will write N(θ). Analogously, we define

N0,q(θ) : W 1,q(Ω#)0 → (W 1,q′(Ω#)0)∗,

where W 1,q(Ω#)0 := {u ∈W 1,q(Ω#) |
∫

Ω#
u dx = 0}.

At first, before we use perturbation arguments, we recall the existence results for the
Helmholtz decomposition on bounded domains, which yield the bijectivity of the opera-
tor N0,q(0).

Theorem 3.31 (Helmholtz decomposition on Lq(Ω#))
Let Ωp ⊆ Rd be periodic. Then, N0,q(0) : W 1,q(Ω#)0 → (W 1,q′(Ω#)0)∗ is an isomorphism
for all q ∈ (1,∞) if Ω# has C1-boundary. If Ω# has Lipschitz boundary, there is an
ε = ε(Ωp) > 0 such that the statement is true for q ∈ (3+ε

2+ε , 3 + ε). If d = 2, then ε > 1.

Proof: Note that Ẇ 1,q(Ω#) ∼= W 1,q(Ω#)0 by Remark 2.44b), and hence N0,q(0) is an iso-
morphism if and only if the Helmholtz decomposition exists on Lq(Ω#). The existence of
the Helmholtz decomposition has been proven in [SS92] for C1-domains and in [FMM98] for
Lipschitz domains, compare Theorem 2.46. Both make use of the localization procedure,
so it causes no problem that we consider the flat manifold with boundary Ω# instead of a
domain in Rd. For d = 2, cf. Theorem 2.46.

Proposition 3.32 (well-definedness of the fibre operators on Lq)
Let Ωp ⊆ Rd a periodic domain with C1-boundary and q ∈ (1,∞) or having Lipschitz
boundary and q ∈ (3+ε

2+ε , 3 + ε), where ε > 0 is given as in Theorem 3.31. The operators

Q(θ) are even well-defined elements of L(Lq(Ω#,C
d)) for all θ ∈ Bd \ {0}, i.e.

(∇+ 2πiθ)∗(∇+ 2πiθ) : W 1,q(Ω#)→ (W 1,q′(Ω#))∗

are isomorphisms. The operators Q0(θ) : W 1,q(Ω#)0 → (W 1,q′(Ω#))∗0 are well-defined for
all θ ∈ Bd.

Before we can do the proof of the proposition, we have to establish two Lemmas.
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Lemma 3.33 (compactness result)
Let Ωp and q be as in Proposition 3.32. Then, N(θ)−N(0) : W 1,q(Ω#)→ (W 1,q′(Ω#))∗ is
compact for all θ ∈ Rd. The same is true for N0(θ)−N0(0) : W 1,q(Ω#)0 → (W 1,q′(Ω#)0)∗.

Proof: Let θ ∈ Rd. By Lemma 3.26, the map 2πiθ : W 1,q(Ω#) → Lq(Ω#,C
d) is compact.

By Schauder’s theorem (2πiθ)∗ : Lq(Ω#,C
d)→ (W 1,q′(Ω#))∗ is compact, too. We note that

N(θ)−N(0) is given by

N(θ)−N(0) = (2πiθ)∗∇+∇∗(2πiθ) + (2πiθ)∗(2πiθ),

and hence is compact. We can replace N by N0 and W 1,q() by W 1,q()0 to prove the last
assertion.

Lemma 3.34 Let Ωp and q be as in Proposition 3.32. Then, N(0) is a Fredholm operator
of index zero. More precisely,

kernel(N(0)) = {u ∈W 1,q(Ω#) | u is constant},

image(N(0)) = {ϕ ∈ (W 1,q′(Ω#))∗ | ϕ(u) = 0 for all constant functions u}.

Proof: Clearly, every constant function is in kernel(N(0)) by definition of N(0). Now, let
u ∈ W 1,q(Ω#) be not constant, hence u − m(u) ∈ W 1,q(Ω#)0 is not zero. By Theorem
3.31 there is an 0 6= v ∈ W 1,q′(Ω#)0 satisfying (N(0)(u−m(u)))(v) 6= 0. From N(0)(u) =
N(0)(u−m(u)) we get that u is not in kernel(N(0)), so the first assertion is proved.
Again by definition of N(0) it is clear, that ϕ ∈ image(N(0)) satisfies ϕ(u) = 0 for all
constant functions u. Now, let ϕ be in (W 1,q′(Ω#))∗ such that ϕ(u) = 0 for all constant
functions u. We can restrict ϕ to W 1,q′(Ω#)0. Again, by Theorem 3.31 we know that there

is a function u ∈ W 1,q
0 (Ω#) satisfying ϕ(v) = 〈∇u,∇v〉 for all v ∈ W 1,q′

0 (Ω#). Since we
know that ∇w = ϕ(w) = 0 holds for all constant functions w ∈ W 1,q′(Ω#) this equality
extends to all v ∈ W 1,q′(Ω#), since W 1,q(Ω#) = W 1,q(Ω#)0 ⊕ C. So, we have shown that
the dimension of the kernel and the cokernel is one, hence N(0) is a Fredholm operator of
index zero.

Proof of Proposition 3.32: By Lemma 3.33 and Lemma 3.34 we get that N(θ) is a Fredholm
operator of index zero. So, it suffices to show that N(θ) is injective or surjective. If N(θ)
is injective, so is N0(θ). Hence, it is enough to consider N(θ).
We begin with the case q ≥ 2. Let u ∈ kernel(Nq(θ)). Then, u ∈W 1,q(Ω#) ⊆W 1,2(Ω#) ⊆
W 1,q′(Ω#) by Hölder’s inequality. We have

||(∇+ 2πiθ)u||22 = 〈(∇+ 2πiθ)u, (∇+ 2πiθ)u〉 = 0,

so (∇ + 2πiθ)u = 0 and thus u = 0, compare the proof of Lemma 3.27. Hence N(θ) is
injective. Now, we consider the case q < 2. We use a duality argument as follows.
We know that Nq′(θ), defined on W 1,q′(Ω#), is an isomorphism. In the next lines, we
prove that Nq(θ)

∗ and Nq′(θ) are the same up to an isometric isomorphism, so Nq(θ)
∗ is an

isomorphism and hence Nq(θ), too. We have Nq(θ)
∗ : (W 1,q(Ω#))∗∗ → (W 1,q′(Ω#)∗. The
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space W 1,q′(Ω#) is reflexive, so

Jq′ : W
1,q′(Ω#)→ (W 1,q′(Ω#))∗∗, w 7→ [ϕ 7→ ϕ(w)]

is an isometric isomorphism. We show that Nq(θ)
∗ ◦ Jq′ = Nq′(θ) holds. For this purpose,

let u ∈W 1,q′(Ω#), v ∈W 1,q(Ω#). We have by definition

(Nq(θ)
∗ ◦ Jq′(u))(v) = (Nq(θ)

∗(ϕ 7→ ϕ(u)))(v) = (ϕ 7→ ϕ(u))(Nq(θ)(v))

= (Nq(θ)(v))(u) = 〈(∇+ 2πiθ)v, (∇+ 2πiθ)u〉
= Nq′(θ)(u)(v).

Theorem 3.35 (regularity of the fibre operators)
Let Ωp ⊆ Rd be a periodic domain with Lipschitz boundary, q ∈ [2, 3 + ε), where ε > 0
is given as in Theorem 3.31, or a C1-domain and q ≥ 2. We recall for θ ∈ Bd \ {0} the
decomposition

Q(θ)f = Q0(θ)f +
〈f, P0(θ)2πiθ〉
||P0(θ)(2πiθ)||2

P0(θ)(2πiθ)

= Q0(θ)f + T (θ)f.

(a) The operator Q0 is real analytic in θ, in particular Q0 ∈ Cd(Bd,L(Lq(Ω#,C
d))). So,

Theorem 3.22 applies to the operator Q0.

(b) We have T ∈ Cd(Bd \ {0},L(Lq(Ω#,C
d))). Furthermore,

τ := {|θ||α|∂αT (θ) | θ ∈ Bd, α ≤ (1, . . . , 1)}

is an R-bounded subset of L(Lq(Ω#,C
d)). So again, Theorem 3.22 applies to the

operator T .

Proof: (a) The real analyticity follows by combining Example 2.28, Lemma 2.30 and Corol-
lary 2.31. Furthermore we know that real analytic functions are C∞, see Corollary 2.29.

(b) The real analyticity and hence the Cd-regularity follows as in (a). For theR-boundedness
condition, we start with the case α = 0. For proving it, we use Remark 2.35, so we have to
show

||
(∑

j

|T (θj)fj |2
)1/2||Lq(Ω#) ≤ C||

(∑
j

|fj |2
)1/2||Lq(Ω#), θj ∈ Bd \ {0}, fj ∈ Lq(Ω#,C

d).

We define g(θ) = P0(θ)2πiθ. Note that θ 7→ g(θ) is real analytic for all θ ∈ Bd, hence in
particular C∞. Our starting point is the following representation of T .

T (θ)f =
〈f, g(θ)〉g(θ)

||g(θ)||22
.
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By definition of T and Hölder’s inequality we have

||T (θj)fj ||q = ||〈fj , g(θj)〉g(θj)||q||g(θj)||−2
2 ≤ ||fj ||q′ ||g(θj)||2q ||g(θj)||−2

2 .

Since q ≥ 2 we have by the Minkowski inequality

||
(∑

j

|T (θj)fj |2
)1/2||2q = ||

∑
j

|T (θj)fj |2||q/2 ≤
∑
j

|| |T (θj)fj |2 ||q/2 =
∑
j

||T (θj)fj ||2q ,

and hence

||
(∑

j

|T (θj)fj |2
)1/2||q ≤ (∑

j

||T (θj)fj ||2q
)1/2

≤ sup
j
||g(θj)||2q ||g(θj)||−2

2

(∑
j

||fj ||2q′
)1/2

≤ sup
j
||g(θj)||2q ||g(θj)||−2

2 ||
(∑

j

|fj |2
)1/2||q′

≤ C sup
j
||g(θj)||2q ||g(θj)||−2

2 ||
(∑

j

|fj |2
)1/2||q.

Here we used the reverse Minkowski inequality (note that q′/2 ≤ 1) and Hölder’s inequality
in the last steps. Finally, we have to estimate supj ||g(θj)||2q ||g(θj)||−2

2 by a constant. We
assume that to be impossible, i.e.

sup
θ∈Bd\{0}

||P0(θ)2πiθ||q
||P0(θ)2πiθ||2

=∞.

Since Bd is bounded, we find a converging sequence θk → θ0 satisfying ||P0(θ)2πiθk||q ≥
k||P0(θk)2πiθk||2 or equivalently ||P0(θ) θk

|θk| ||q ≥ k||P0(θk)
θk
|θk| ||2. By analyticity of P0(·)

on Bd it follows that only θ0 = 0 is possible. Once more by compactness of Bd, we can
without restriction assume that θk

|θk| → η0. So we get P0(0)η0 = 0, which is equivalent to

η0 = ∇p for some function p ∈ W 1,q(Ω#). Since η0 is a constant function, it follows that
p(x) = c1x1 + c2x2 + . . . cdxd − c for some constants c, c1, . . . cd ∈ C. Since η0 6= 0 not all
constants c1, . . . , cd are zero. But such a function is not periodic and hence not an element
of W 1,q(Ω#). Consequently, we have a contradiction and therefore

sup
θ∈Bd\{0}

||P0(θ)2πiθ||q
||P0(θ)2πiθ||2

<∞.

So, the case α = 0 is proven. We will prove the assertion by induction. For better trans-
parency, we present the details of the proof in the case |α| = 1, too.
We have to show

||
(∑

k

| |θk||ej |∂jT (θk)fk |2
)1/2||q ≤ C||(∑

k

|fk|2
)1/2||q.
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Since q ≥ 2 the estimate from above yields

||
(∑

k

| |θk||ej |∂jT (θk)fk |2
)1/2||q ≤ (∑

k

|| |θk||ej |∂jT (θk)fk ||2q
)1/2

,

so, again by the same estimates as above, it is sufficient to prove the estimate

|| |θ||ej |∂jT (θ)f ||q ≤ C||f ||q′ , θ ∈ Bd \ {0}, f ∈ Lq(Ω#)

for a constant C independent of θ and f . We calculate

∂jT (θ)f =
〈f, ∂jg(θ)〉g(θ) + 〈f, g(θ)〉∂jg(θ)

||g(θ)||22

− 〈∂jg(θ), g(θ)〉+ 〈g(θ), ∂jg(θ)〉
||g(θ)||42

〈f, g(θ)〉g(θ),

and arrive at

|| |θ||ej |∂jT (θ)f ||q ≤ C
( ||g(θ)||q
||g(θ)||2

|| |θ||ej |∂jg(θ) ||q
||g(θ)||2

+
||g(θ)||3q
||g(θ)||32

|| |θ||ej |∂jg(θ) ||q
||g(θ)||2

)
||f ||q′ .

Since we already know that
||g(θ)||q
||g(θ)||2 is bounded, it remains to prove

sup
θ∈Bd\{0}

|| |θ||ej |∂jg(θ) ||q
||g(θ)||2

<∞.

Again, we do a proof by contradiction and assume without restriction of generality that we

have a sequence θk → 0 with θk/|θk| → η0 and
|| |θk||ej |∂jg(θk)||q

||g(θk)||2 ≥ k. Note that |θk||ej | =

|θk|. We divide nominator and denominator by |θk| and get that the fraction converges to
||∂jg(0)||q
||P0(0)η0||2 , which is finite.

The same fundamental idea is used in the induction for higher orders of partial derivatives.
We are coming to the induction step now. For this purpose, let 0 6= α ∈ Nd

0 be a multi-index.
Then we have using h(θ) = 〈g(θ), g(θ)〉−1 the representation

∂αT (θ)f =
∑

β,γ∈Nd0
β+γ≤α

Cβ,γ〈f, ∂βg(θ)〉∂γg(θ)∂α−β−γh(θ)

for some constants Cβ,γ . We point out the following characterization for the partial deriva-
tives of h. For all multi-indexes α with |α| ≥ 1 it holds true

∂αh(θ) =

|α|∑
d=1

∑
β1+...+βd=α

Cβ1,...,βd

∂β1〈g(θ), g(θ)〉 . . . ∂βd〈g(θ), g(θ)〉
〈g(θ), g(θ)〉d+1

.
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We prove it by induction over |α|. We have

∂jh(θ) = −∂j〈g(θ), g(θ)〉
〈g(θ), g(θ)〉2

.

Now, we are coming to the induction step:

∂j
∂β1〈g(θ), g(θ)〉 . . . ∂βd〈g(θ), g(θ)〉

〈g(θ), g(θ)d+1

=
∂ej+β1〈g(θ), g(θ)〉 . . . ∂βd〈g(θ), g(θ)〉

〈g(θ), g(θ)〉d+1
+ . . .+

∂β1〈g(θ), g(θ)〉 . . . ∂ej+βd〈g(θ), g(θ)〉
〈g(θ), g(θ)〉d+1

− (d+ 1)
∂β1〈g(θ), g(θ)〉 . . . ∂βd〈g(θ), g(θ)〉〈g(θ), g(θ)〉d∂j〈g(θ), g(θ)〉

〈g(θ), g(θ)〉2d+2
.

Hence, the induction for the representation of the derivatives of h is complete. So, ∂αT (θ)f
has the representation

∑
β,γ∈Nd0
β+γ≤α

Cβ,γ〈f, ∂βg(θ)〉∂γg(θ)

|α|−|β|−|γ|∑
d=1

∑
η∈Nd0

η1+...+ηd=α−β−γ

Cηh
d+1(θ)∂η1h−1(θ) . . . ∂ηdh−1(θ).

To prove the stated R-boundedness condition we show

|| |θ||α|S||q ≤ C||f ||q′

for every summand S of ∂αT (θ)f and a constant independent of θ and f . So, we look at
just one summand of the form

〈f, ∂βg(θ)〉∂γg(θ)
∂η1〈g(θ), g(θ)〉 . . . ∂ηd〈g(θ), g(θ)〉

〈g(θ), g(θ)〉d+1
,

where η1 + . . .+ ηd + β + γ = α. We estimate

|| |θ||α|〈f, ∂βg(θ)〉∂γg(θ)
∂η1〈g(θ), g(θ)〉 . . . ∂ηd〈g(θ), g(θ)〉

〈g(θ), g(θ)〉d+1
||q

≤
||f ||q′ || |θ||β|∂βg(θ) ||q || |θ||γ|∂γg(θ) ||q

∣∣ |θ||η1|∂η1〈g(θ), g(θ)〉 | . . .
∣∣ |θ||ηd|∂ηd〈g(θ), g(θ)〉 |

||g(θ)||2||g(θ)||2||g(θ)||2d2
.

We know that we have

sup
θ∈Bd\{0}

|| |θ||β|∂βg(θ) ||q
||g(θ)||2

<∞, sup
θ∈Bd\{0}

|| |θ||γ|∂γg(θ) ||q
||g(θ)||2

<∞,

by using the same contradiction proof as for α = 0 and |α| = 1. So, it remains to prove

sup
θ

∣∣|θ||η|∂η〈g(θ), g(θ)〉
∣∣

||g(θ)||22
<∞.

The case |η| ≤ 1 was already examined. If |η| ≥ 2 we note that ∂η〈g(θ), g(θ)〉 is a sum of
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terms 〈∂z1g(θ), ∂z2g(θ)〉, where z1 + z2 = η. We estimate∣∣|θ||η|〈∂z1g(θ), ∂z2g(θ)〉
∣∣

||g(θ)||22
≤ |θ||η|−2 || |θ|∂z1g(θ) ||2

||g(θ)||2
|| |θ|∂z2g(θ) ||2
||g(θ)||2

,

which is bounded.

Finally, we are ready to state the main theorem, the existence of the Helmholtz decom-
position on periodic domains. Before we state the theorem, we shortly remark that this
approach works also for periodic domains with respect to a lattice L 6= Zd.

Remark 3.36 Let L be any lattice with basis {b1, . . . , bd} and Ωp ⊆ Rd periodic with
respect to L. Here, the Bloch transform is defined by

Φ: L2(Ωp,C
d)→ L2(Bd

L, L
2(ΩL,#,C

d)),

((Φf)(θ))(x) = |Bd
L|−1

∑
k∈Zd

e−2πiθ·(x−Mk)f(x−Mk), θ ∈ Bd
L, x ∈ ΩL,#, f ∈ C∞c (Ωp,C

d),

where ΩL,# = Ωp/L, M is the matrix consisting of the basis vectors, and |Bd
L| denotes the

volume of one fundamentally mesh, the so-called Brillouin zone, of the reciprocal lattice
Bd
L. The reciprocal lattice Bd

L of L is defined as the lattice having a basis {a1, . . . , ad}
so that ai · bj = δij . The whole theory from Section 3.2 up to here could be adapted in
an analogous manner to arbitrary (not necessarily Zd)-periodic domains. For example,
∇+ 2πiθ : W 1,q(ΩL,#)→ Lq(ΩL,#,C

d) is injective if and only if θ /∈ Bd
L.

Theorem 3.37 (Helmholtz decomposition of Lq-vector fields on periodic domains)
Let Ωp ⊆ Rd be a periodic domain (with respect to some lattice L). The Helmholtz decom-
position on Lq(Ωp,C

d) exists for all q ∈ I, where

• I = (1,∞), if ∂Ωp ∈ C1.

• I = (3+ε
2+ε , 3 + ε), if ∂Ωp is Lipschitz and ε = ε(Ωp) > 0. If d = 2, then ε > 1.

Proof: By using Theorem 3.12 and Lemma 2.51 it suffices to check that P2 extends to an
operator Pq ∈ L(Lq(Ωp,C

d)). Moreover, the duality argument from Corollary 2.50 yields
that it is sufficient to prove the case q ≥ 2.
By Lemma 3.29 and by combining the parts a) and b) from Theorem 3.35, the Bloch
multiplier Theorem 3.22 yields that Q ∈ L(Lq(Ωp,C

d)), so the proof is already finished,
since Q = Id− P2 ∈ L(L2(Ωp,C

d)) denotes the projection on the gradient part.

3.5 The weak Dirichlet problem on periodic domains

At the end of this chapter we consider decompositions similar to the Helmholtz decomposi-
tion. In many applications one considers a system of equations containing only the equation
div u = 0 but with different boundary conditions. The main result of this section is that
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there is a projection

Lq : Lq(Ωp,C
d)→ {u ∈ Lq(Ωp,C

d) | div u = 0},

provided the periodic domain Ωp has C1-boundary and q ∈ (1,∞) or Lipschitz boundary
and q ∈ (3+ε

2+ε , 3 + ε) if d ≥ 3 and q ∈ (4+ε
3+ε , 4 + ε) if d = 2, where ε = ε(Ωp) > 0.

We call this projection Leray projection. Also the name Helmholtz-Leray projection or
Helmholtz projection or Weyl projection are used for it. Naturally, since there is no re-
striction for the solenoidal vector fields at the boundary, it is straightforward to assume the
complement to consist of gradients ∇p having zero trace.

In fact, Simader and Sohr [SS96] proved for bounded C1-domains Ω ⊆ Rd, q ∈ (1,∞) the
decomposition

Lq(Ω,Cd) = {u ∈ Lq(Ω,Cd) | div u = 0} ⊕ ∇W 1,q
0 (Ω)

= C∞c,σ(Rd)|Ω
||·||q ⊕ {∇p ∈ Lq(Ω,Cd) | p ∈W 1,q

loc (Ω), p|∂Ω = 0}

and the spaces of solenoidal functions and gradients coincide, respectively. The Leray
decomposition is related to the weak Dirichlet problem. As in the Helmholtz case, one
has to be careful with the definition of the underlying spaces. We discuss this problem in
Remark 3.39. So next, we give the definition of the emerging spaces.

Definition 3.38 (spaces for the weak Dirichlet problem)
Let Ω ⊆ Rd be a strongly local Lipschitz domain and q ∈ (1,∞). We define

Lqσ,Dir(Ω) = C∞c,σ(Rd)|Ω
||·||q

,

GqDir(Ω) = {∇p ∈ Lq(Ω,Cd) | p ∈W 1,q
loc (Ω), p|∂Ω = 0},

L̂qσ,Dir(Ω) = {u ∈ Lq(Ω,Cd) | div u = 0},

ĜqDir(Ω) = ∇C∞c (Ω)
||·||q

.

We say that the Leray decomposition exists on Lq(Ω,Cd) if

Lq(Ω,Cd) = Lqσ,Dir(Ω)⊕GqDir(Ω),

and the projections onto the subspaces are continuous.

As in the Helmholtz case, we give an overview of the theory in the bounded and exterior
domain case before focussing on periodic domains. Then, we prove the equality of these
spaces for periodic Lipschitz domains. As in the case of the Helmholtz decomposition, this
is the ’door opener’ for the proof of the Lq Leray decomposition on periodic domain. We
summarize the main facts in the following remark. A main difference to the Helmholtz case
is that here, the vector spaces do never coincide on exterior domains (for some q ∈ (1,∞)).
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Remark 3.39 (main known results for the weak Dirichlet problem)
As in Proposition 2.49 we see for strongly local Lipschitz domains Ω and q ∈ (1,∞) the
relations

Lqσ,Dir(Ω) =
(
Gq
′

Dir(Ω)
)⊥
, GqDir(Ω) =

(
Lq
′

σ,Dir(Ω)
)⊥
,

L̂qσ,Dir(Ω) =
(
Ĝq
′

Dir(Ω)
)⊥
, ĜqDir(Ω) =

(
L̂q
′

σ,Dir(Ω)
)⊥
.

In particular, the Leray projection exists on L2(Ω,Cd) if Ω is a strongly local Lipschitz
domain and the spaces L2

σ,Dir(Ω), G2
Dir(Ω) are orthogonal.

Clearly, there are equivalent characterizations for the existence of the Leray decomposition,
compare Theorem 2.43. The existence of the Leray decomposition is equivalent to the
following statements:

• For all f ∈ Lq(Ω,Cd) there is a unique ∇p ∈ GqDir(Ω) such that 〈f −∇p,∇g〉 = 0 for

all ∇g ∈ Gq
′

Dir(Ω) and ||∇p|| ≤ C||f || for some constant C > 0 independent of f . This
is the weak formulation of the classical Dirichlet problem.

• The operator (∇q′)∗∇q is an isomorphism, where

Ẇ 1,q
Dir(Ω)

∇q−−→ Lq(Ω,Cd) ∼= (Lq
′
(Ω,Cd))∗

(∇q′ )∗−−−−→ (Ẇ 1,q′

Dir (Ω))∗,

and Ẇ 1,q
Dir(Ω) = {p ∈ W 1,q

loc (Ω) | ∇p ∈ Lq(Ω,Cd), p|∂Ω = 0} is equipped with the norm
||p|| := ||∇p||q.

• There is a constant C > 0 such that

||∇p||Lr(Ω,Cd) ≤ C sup
06=g∈Gr′Dir

〈∇p,∇g〉
||∇g||r′

for all ∇p ∈ GrDir(Ω)

where r = q, q′.

Let Ω be a bounded Lipschitz domain and q ∈ (1,∞). Then, Lqσ,Dir(Ω) = L̂qσ,Dir(Ω) and

GqDir(Ω) = ĜqDir(Ω) = ∇W 1,q
0 (Ω) [Soh01, Chapter II, 2.2.3. Lemma]. Besides, the Leray

decomposition exists, and as in the case of the Helmholtz decomposition, this can be proven
by using localization arguments [SS96, page 17].
If Ω is a bounded Lipschitz domain, then the Leray decomposition exists for q ∈ (3+ε

2+ε , 3+ε)

if d = 3 and for q ∈ (4+ε
3+ε , 4 + ε) id d = 2, where ε = ε(Ω) > 0 and these results are sharp in

the same sense as for the weak Neumann problem. The examination of the weak Dirichlet
problem for bounded Lipschitz domains goes back to Jerison and Kenig, compare [JK95,
Theorem 0.5] for the positive results and [JK95, Theorem A.1] for the negative results.
In the case of exterior domains Ω the spaces GqDir(Ω) and ĜqDir(Ω) are equal for q ≥ d

and they are not equal if q ∈ [1, d). In fact, in the latter case ∇p ∈ ĜqDir(Ω) implies
p ∈ Ldq/(d−q)(Ω) [SS96, Chapter I, Theorem 2.8]. Hence, every function p ∈ C∞(Ω) with
p ≡ 1 on B(0, r)C for some r >> 0 and p|∂Ω = 0 lies in GqDir(Ω) but not in ĜqDir(Ω). This
is the only counterexample in the following sense: For all exterior domains we have the
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decomposition [SS96, Chapter I, Theorem 2.15]

GqDir(Ω) = ĜqDir(Ω)⊕ [∇p],

where [∇p] denotes the one dimensional subspace spanned by a function as mentioned
above.
Simader and Sohr demonstrated that the variational inequality is not satisfied on ĜqDir(Ω)

for q ∈ (d,∞) on exterior domains Ω. More precisely, there is a function ∇h ∈ ĜqDir(Ω)
such that

sup
06=∇p∈Ĝq

′
Dir(Ω)

〈∇h,∇p〉
||∇p||q′

= 0,

and hence Lq(Ω,Cd) 6= L̂qσ,Dir(Ω)⊕ ĜqDir(Ω). However, the variational inequality holds true

on GqDir(Ω) for all exterior C1-domains and all q ∈ (1,∞) [SS96, Chapter II, Theorem 1.1].
Consequently, the Leray decomposition

Lq(Ω,Cd) = Lqσ,Dir(Ω)⊕GqDir(Ω)

holds. Once more we want to warn the reader that the notation is not consistent in the
literature. So, other authors may write that the Leray respectively Weyl decomposition
fails on exterior domains and they refer to the spaces with hat in our notation.

One of the main steps in the case of periodic domains was the proof of the density of C∞c -
functions in the function spaces of gradients, respectively spaces of solenoidal vector fields.
In the Dirichlet setting, this is also true and the proof of this statement is much easier since
we can show a Poincaré inequality on the unbounded domain Ωp, thanks to the Dirichlet
boundary conditions, see Corollary 3.41 below.

Lemma 3.40 (Poincaré implies Lq
′

σ,Dir(Ω) = L̂q
′

σ,Dir(Ω) and Gqσ,Dir(Ω) = Ĝqσ,Dir(Ω))

Let Ω ⊆ Rd be a strongly local Lipschitz domain and q ∈ (1,∞). We recall

Ẇ 1,q
Dir(Ω) = {p ∈W 1,q

loc (Ω) | ∇p ∈ Lq(Ω,Cd), p|∂Ω = 0}.

If the Poincaré estimate is fulfilled on Ω, i.e.

||u||q ≤ C||∇u||q for all u ∈ Ẇ 1,q
Dir(Ω),

then Lq
′

σ,Dir(Ω) = L̂q
′

σ,Dir(Ω) and Gqσ,Dir(Ω) = Ĝqσ,Dir(Ω) = ∇W 1,q
0 (Ω).

Proof: Clearly, by the Poincaré inequality we have

ĜqDir(Ω) ⊆ GqDir(Ω) = ∇W 1,q
0 (Ω).

Since C∞c (Ωp)
||·||W1,q

= {u ∈ W 1,q(Ωp) | u|∂Ωp = 0}, compare Lemma 2.6, the relation

∇W 1,q
0 (Ω) ⊆ ĜqDir(Ω) is trivial, too. The assertion about the Lqσ,Dir-spaces follows by

duality.
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3 The Helmholtz decomposition on periodic domains

Corollary 3.41 (Lqσ,Dir(Ωp) = L̂qσ,Dir(Ωp) and Gqσ,Dir(Ωp) = Ĝqσ,Dir(Ωp))

Let Ωp ⊆ Rd be a periodic Lipschitz domain, q ∈ (1,∞). Then, the Poincaré inequality is
fulfilled, in particular we have the space equalities

Lq
′

σ,Dir(Ωp) = L̂q
′

σ,Dir(Ωp), Gqσ,Dir(Ωp) = Ĝqσ,Dir(Ωp) = ∇W 1,q
0 (Ωp).

Proof: Let u ∈ Lqloc(Ωp) with u|Ωp = 0 and ∇u ∈ Lq(Ωp,C
d). Let Ωb ⊆ Ωp be a bounded

Lipschitz domain with Ωp ∩ [0, 1]d ⊆ Ωb. Since u is zero at some non-trivial part of the
boundary, we can apply the Poincaré inequality from Lemma 2.7, i.e. there is a constant
C > 0 such that

||u||Lq(Ωb) ≤ C||∇u||Lq(Ωb,Cd).

By periodicity, this inequality applies on all sets Ωb + k, k ∈ Zd, i.e.

||u||Lq(Ωb+k) ≤ C||∇u||Lq(Ωb+k,Cd), k ∈ Zd,

and C is independent of k ∈ Zd. By summing up, it follows u ∈ Lq(Ωp) with accompanying
Poincaré estimate and thus u ∈W 1,q(Ωp).

In particular, we have for periodic Lipschitz domains Ωp ⊆ Rd the orthogonal decomposition

L2(Ωp,C
d) = L2

σ,Dir(Ωp)⊕G2
Dir(Ωp) = L2

σ,Dir(Ωp)⊕∇W 1,2
0 (Ωp).

From now on we focus on the case of periodic domains Ωp ⊆ Rd of Lipschitz class. We
denote by QDir the orthogonal projection Q2,Dir mapping L2(Ωp,C

d) onto G2
Dir(Ωp). The

approach for the existence proof of the Leray decomposition on Lq(Ωp,C
d) is the same as

in the Helmholtz decomposition case. So, we just recall the main steps and mention the
differences occurring in comparison to the Helmholtz case.
As in the case of the Helmholtz decomposition the main idea is to extend the operator
Q2,Dir = Id−P2,Dir to a bounded operator on Lq(Ωp,C

d). The following lemma states that
this yields the Leray projection on Lq. Once more the crucial factor for this statement is
the equality of the solenoidal vector field spaces and the gradient spaces.

Lemma 3.42 Let Ω ⊆ Rd be a strongly local Lipschitz domain, q ∈ (1,∞) such that
Lrσ,Dir(Ω) = L̂rσ,Dir(Ω) and GrDir(Ω) = ĜrDir(Ω) for r = 2, q. Besides we assume that
the Leray projection P2,Dir has a continuous extension to a bounded operator Pq,Dir in
L(Lq(Ω,Cd)). Then, the Leray decomposition exists on Lq(Ω,Cd) and the Leray projec-
tion is given by Pq,Dir.

Proof: The proof can be copied line by line from Lemma 2.51.

We continue by computing the fibre operators of the translation invariant operator QDir.
Not surprisingly, we will prove that they are given by

QDir(θ) = (∇+ 2πiθ)((∇+ 2πiθ)∗(∇+ 2πiθ))−1(∇+ 2πiθ)∗,
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3 The Helmholtz decomposition on periodic domains

where ∇+ 2πiθ : W 1,2
0 (Ω#)→ L2(Ω#,C

d) and (∇+ 2πiθ)∗ : L2(Ω#,C
d)→

(
W 1,2

0 (Ω#)
)∗

.
At first, we examine the operator NDir(θ) = (∇+ 2πiθ)∗(∇+ 2πiθ).

Lemma 3.43 Let Ωp ⊆ Rd be a periodic Lipschitz domain and Ω# = Ωp/Z
d. Then, the

operators NDir(θ), given as in the following diagram

(W 1,2′

0 (Ω#))∗

L2(Ω#,C
d)

(∇+2πiθ)∗
77

W 1,2
0 (Ω#) ,

∇+2πiθ

gg
NDir(θ)

OO

are invertible for all θ ∈ Bd. More exact, we have

L2(Ω#,C
d) = kernel(∇+ 2πiθ)∗ ⊕ (∇+ 2πiθ)W 1,2

0 (Ω#),

and the operators

QDir(θ) = (∇+ 2πiθ)((∇+ 2πiθ)∗(∇+ 2πiθ))−1(∇+ 2πiθ)∗, θ ∈ Bd,

are orthogonal projections.

Proof: Since the embedding W 1,2
0 (Ω#) ↪→ L2(Ω#) is compact, we can copy the proof from

Lemma 3.27 for θ 6= 0. We admit the case θ = 0 here, and this case corresponds directly to
the Leray projection on L2(Ω#,C

d)

In contrast to the Helmholtz decomposition case, we do not have technical difficulties for
θ = 0. This is because ∇ : W 1,2

0 (Ω#) → L2(Ω#,C
d) is already injective thanks to the

Dirichlet boundary conditions. Note that in the case of the weak Neumann problem we had
to factor out the constants, since the weak Neumann problem is only uniquely solvable up
to an additive constant. Now, we can prove the representation of the fibre operators.

Lemma 3.44 (representation of the fibre operators)
Let Ωp be a periodic Lipschitz domain. Then, the fibre operators of QDir = Id − PDir ∈
L(L2(Ωp,C

d)), θ ∈ Bd are given by

QDir(θ) = (∇+ 2πiθ)NDir(θ)
−1(∇+ 2πiθ)∗, i.e.

(ΦQDirf)(θ, ·) = QDir(θ)(Φf)(θ, ·).

Proof: Here again, we nearly copy the proof from Theorem 3.28. We consider the Leray
decomposition f = f0 +∇p in L2(Ωp,C

d). By density of the C∞c -functions we only need to
consider f0 ∈ C∞c,σ(Ωp), p ∈ C∞c (Ωp). Clearly, Φ(∇p)(θ, ·) = (∇+ 2πiθ)(Φp)(θ, ·). Next we
show that (Φf0)(θ, ·) ∈ kernel(∇+ 2πiθ)∗. For this purpose we still proceed as in the proof
of Theorem 3.28. Since, on a first glance, one cannot exclude the occurrence of non-zero
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3 The Helmholtz decomposition on periodic domains

boundary integrals, we give full details. We shall see that in fact the boundary integrals
vanish.
Let ϕ ∈ C∞c (Ωp) be a function satisfying

∑
k∈Zd ϕ(· − k) = 1 on Ωp and g ∈ C∞per(Ωp) with

g|∂Ωp = 0 and dist (supp(g), ∂Ωp) > 0. By periodicity g =
∑

k(ϕg)(· − k) on Ωp. Hence,

the set of functions {g|Ω#
| g =

∑
k g0(· − k), g0 ∈ C∞c (Ωp)} is dense in W 1,2

0 (Ω#). Let g
be such a function. We calculate using integration by part

〈(∇+ 2πiθ)∗(Φf0)(θ, ·), g〉Ω#

= 〈(Φf0)(θ, ·), (∇+ 2πiθ)g〉Ω#

= 〈
∑
k∈Zd

e−2πiθ(·−k)f0(· − k),
∑
k∈Zd

((∇+ 2πiθ)g0)(· − k)〉Ω0〉Ω#

= 〈e−2πiθ(·)f0, (∇+ 2πiθ)g0〉Ωp

= 〈e−2πiθ(·)f0,∇g0〉Ωp + 〈e−2πiθ(·)f0, 2πig0θ〉Ωp

= −〈div (e−2πiθ(·)f0), g0〉Ωp + 〈e−2πiθ(·)f0, 2πig0θ〉Ωp

= 〈e−2πiθ(·)2πiθf0, g0〉Ωp + 〈e−2πiθ(·)f0, 2πig0θ〉Ωp

= 0.

There are no boundary terms occurring, since g0 has compact support in Ωp. We recall
that the boundary terms also vanished in the Helmholtz projection case, but there f had
compact support. In the calculation above we used the relation

div (e−2πiθ(·)f0) = e−2πiθ(·)div f0 − 2πe−2πiθ(·)iθ · f0 = −2πe−2πiθ(·)iθ · f0.

Now we are ready to consider the fibre operators on Lq. In comparison to the Helmholtz
case there are less technical difficulties to overcome, so we treat this topic quite briefly. We
start with the bijectivity of the fibre operators for θ = 0. The following theorem conforms
Theorem 3.31 in the Helmholtz setting.

Theorem 3.45 (Leray projection on Lq(Ω#,C
d))

Let Ωp ⊆ Rd be a periodic Lipschitz domain. Then,

NDir,q(0) = (∇q′)∗∇q : W 1,q
0 (Ω#)→ (W 1,q′

0 (Ω#)∗

is an isomorphism for all q ∈ (1,∞) if Ωp is a C1-domain. In the Lipschitz case the
statement holds for q ∈ (3+ε

2+ε , 3 + ε) if d = 3 and for q ∈ (4+ε
3+ε , 4 + ε) if d = 2, where

ε = ε(Ωp) > 0.

Proof: The operator NDir,q(0) is an isomorphism if and only if the Leray decomposition
exists on Lq(Ω#,C

d). The Leray projection exists for all bounded C1-domains Ω by [SS96],
and since the proof uses a localization procedure, the projections also exist for the flat
manifold with C1-boundary Ω#.
The theory in the Lipschitz case goes back to [JK95], compare also Remark 3.39. The
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3 The Helmholtz decomposition on periodic domains

problem is also covered by the work of Fabes, Mitrea and Mendez [FMM98, Theorem 11.2].
In particular, this problem localizes, too.

Next, we prove that the fibre operators, as defined in the L2-case, are well-defined on
Lq-spaces, compare Lemma 3.33 for the analogue in the Helmholtz case.

Corollary 3.46 (well-definedness of the fibre operators on Lq)
The operators QDir,q(θ) are well-defined operators in L(Lq(Ω#,C

d)) for all θ ∈ Bd, which
means that the operators

(∇+ 2πiθ)∗(∇+ 2πiθ) : W 1,q
0 (Ω#)→ (W 1,q′

0 (Ω#))∗

are isomorphisms.

Proof: Using the compactness of 2πiθ : W 1,q
0 (Ω#) ↪→ Lq(Ω#,C

d) and the compactness of

(2πiθ)∗ : Lq(Ω#,C
d) ↪→ (W 1,q′

0 (Ω#))∗, it follows that NDir,q(θ)−NDir,q(0) is compact. Since
NDir,q(0) is an isomorphism, NDir,q(θ) is a Fredholm operator of index zero. So, it suffices
to prove that NDir,q(θ) is injective for q > 2 and surjective for q < 2. This can be done by
copying the proof of Proposition 3.32.

So, the operators

QDir,q(θ) = (∇q + 2πiθ)((∇q′ + 2πiθ)∗(∇q + 2πiθ))−1(∇q′ + 2πiθ)∗

are well-defined operators in L(Lq(Ω#,C
d)). Now, we are in a position to show the regu-

larity conditions for the mapping θ 7→ QDir,q(θ), which guarantee that the operator QDir,q

extends from L2 to a bounded operator on Lq.

Theorem 3.47 (analyticity of the fibre operators)
Let Ωp ⊆ Rd be a periodic Lipschitz domain and QDir,q(θ) ∈ L(Lq(Ω#,C

d) as defined
above. Then, the mapping θ 7→ QDir,q(θ) is real analytic in θ, in particular QDir,q ∈
Cd(Bd,L(Lq(Ω#,C

d)), compare Corollary 2.29.

Proof: The real analyticity follows directly by combining Example 2.28, Lemma 2.30 and
Corollary 2.31, compare also the proof of the (a)-part of Theorem 3.35.

We remark once more that this proof is in fact much easier than the analogue in the
Helmholtz case, because it suffices to apply the (a)-part of the multiplier Theorem 3.35.
This is because the fibre operators of the Leray projection do not have a singularity at zero.
In particular, there is no R-boundedness condition to prove here. As in the Helmholtz case,
the theory works also on periodic domains with respect to any lattice L, cf. Remark 3.36.

Theorem 3.48 (Leray decomposition on periodic domains)
Let Ωp be a periodic (w.r.t. some lattice L) C1-domain and q ∈ (1,∞). Then, the Leray
decomposition

Lq(Ωp,C
d) = Lqσ,Dir(Ωp)⊕GqDir(Ωp)
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3 The Helmholtz decomposition on periodic domains

exists for all q ∈ (1,∞). If Ωp ⊆ Rd has Lipschitz boundary, there is an ε > 0 such that
the Leray decomposition exists for all q ∈ (3+ε

2+ε , 3 + ε) if d ≥ 3 and q ∈ (4+ε
3+ε , 4 + ε) if d = 2.

Furthermore, we have

Lqσ,Dir(Ωp) = C∞c,σ(Rd)|Ωp

||·||q
= {u ∈ Lq(Ωp,C

d) | div u = 0},

GqDir(Ωp) = ∇C∞c (Ωp)
||·||q

= ∇W 1,q
0 (Ωp)

= {∇p ∈ Lq(Ωp,C
d) | p ∈ Lqloc(Ωp), p|∂Ωp = 0}.

Proof: Theorem 3.47 allows us to use the multiplier Theorem 3.22, which proves that QDir

extends to a bounded operator in L(Lq(Ωp,C
d)). Since the stated characterizations for

Lqσ,Dir(Ω) and GqDir(Ω) hold true for periodic domains (cf. Corollary 3.41), Lemma 3.42
yields the existence of the decomposition.

We remark that there are more interesting problems in decomposition theory for vector
fields. So, one could examine periodic domains with periodically repeated mixed boundary
conditions, see for example [MM07]. There, the connected boundary splits into two parts, on
one part one considers Neumann boundary conditions, on the other part Dirichlet boundary
conditions. Note that this also leads to a Poincaré inequality, which gives hope to be able
to prove a Helmholtz type decomposition, where the gradient space and solenoidal vector
field space have to be equipped locally with the correct boundary conditions.

Sometimes, it is of interest to decompose the spaces Lqσ(Ω) and Lqσ,Dir(Ω) into two subspaces,
splitting out a curl part. More exactly, one can prove

Lqσ(Ω) = {u ∈ Lqσ(Ω) | curl u = 0}
⊕ curl {u ∈ Lq(Ω,Cd) | div u = 0, curl u ∈ Lq(Ω,Cd), ν × u = 0 on ∂Ω},

and

Lqσ,Dir(Ω) = {u ∈ Lq(Ω,Cd) | div u = curl u = 0, ν × u = 0 on ∂Ω}
⊕ curl {u ∈ Lqσ(Ω) | curl u ∈ Lq(Ω)}

for bounded C∞-domains Ω ⊆ R3 and all q ∈ (1,∞) [KY09, Corollary 1.1].

These decompositions are related to the so-called Hodge decompositions

Lq(ΛlM) = dW 1,q
bc1(Λl−1M)⊕ d∗W 1,q

bc2(Λl+1M)⊕Hqbc3(ΛlM),

for differential forms, which exist on bounded manifolds M with sufficient smooth boundary.
Here, bc1, bc2 and bc3 denote some (suitable) boundary conditions. The spaceH consists of
differential form u with zero Hodge-Laplacian, i.e. d∗d+dd∗u = 0. An important statement
within the theory is that the dimension of the space Hqbc3(ΛlM) is finite, and the dimension
is related to the topology of the domain. Note that in the three dimensional case, one can
interpret 1-forms and 2-forms as vector fields, zero forms as scalar functions, d0 as ∇, d∗1
as curl and the Hodge-Laplacian d∗1d1 + d0d

∗
0 equals the vectorial Laplacian. Since the

Hodge decomposition is related to the Helmholtz decomposition, it is an important tool in
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3 The Helmholtz decomposition on periodic domains

the study of the Navier-Stokes equation on Riemann manifolds, cf. [MT01]. We did not
examine the question if such types of decompositions exist for periodic domains Ωp. Clearly,
one cannot expect the dimension of Hqbc3(ΛlM) to be finite, since Ωp might have infinitely
many holes. The Hodge-decomposition was developed by Hodge, Kodaira and de Rham,
cf. [Mit04] for more information.
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CHAPTER 4

Applications

This chapter is structured as follows. We start with the mathematical description of pho-
tonic crystals and establish the Maxwell equations in this setting. Once more, we remark
that the physical background can be found in the physical appendix, while the physical
motivation of periodic domains can be found in the introduction.
Here, we use a form method ansatz to define a self-adjoint, positive operator A2 given by
A2 u := curl ε−1curl u − ∇div u, and define the Maxwell operator M2 = A2 on L2

σ(Ωp).
Furthermore, −A2 generates a bounded analytic contraction semigroup of angle π/2. We
prove that M2 inherits these properties, which is essentially true since A2 and P2 commute.
This fact in turn holds since the boundary conditions of D(A2) match to the Helmholtz
projection.

We use generalized Gaussian estimates to extend the semigroup generated by a shifted
version of A2 to a semigroup on Lq, where q ∈ [3/2, 3] if ∂Ωp is Lipschitz, and q ∈ [6/5, 6] if
∂Ωp ∈ C1,1. So, in Section 4.2, we formulate the generalized Gaussian estimates and show
their validity in our application case. Besides, they lead to a spectral multiplier theorem
for the shifted operator.

In section 4.3, we define the Maxwell operator on Lq by using the Helmholtz projection,
and prove that the validity of the spectral multiplier theorem remains true. Besides, we
show spectral independence of q for the Maxwell operator.

The last section in this chapter deals with the incompressible Navier-Stokes equations.
Thanks to the existence of the Helmholtz decomposition, we obtain that the Stokes operator
generates an analytic semigroup on Lq for all q ∈ (1,∞) if ∂Ωp ∈ C3. Besides, we are able
to show several results for the incompressible Navier-Stokes equations. These applications
make use of results from [GHHS12].

4.1 Photonic crystals and the Maxwell operator on L2(Ωp)

We already discussed in the introduction possible applications and the properties of periodic
domains in the theory of photonic crystals. In this section, we focus on the mathematical
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side. In the following, we only consider the physical relevant case d = 3. Photonic crystals
are realized by arranging dielectrics in spatially periodic structures, most often by using
a lattice structure. One distinguishes between one-, two- and three-dimensional photonic
crystals, compare the following illustration.

Figure 4.1: Illustration
of the different types of
photonic crystals (from
[JJWM08, page 4])

So, if ε only depends on one variable, i.e. ε = ε(x1), the medium is called one-dimensional
photonic crystals. If ε = ε(x1, x2) then it has a two-dimensional structure. We discuss these
simplified structures in more detail in Remark 4.1. We continue with the main object in this
chapter, the Maxwell operator for a dielectric medium. Since the wavelengths are about
some hundred nanometres [JJWM08], the starting point are the macroscopic Maxwell
equations

div B = 0,

div D = %f ,

curl H = Jf + ∂tD,

curl E = − ∂tB,

where D = ε0E+P and H = 1
µB−M , which we consider in detail in the physical appendix.

We are interested in the propagation of light in a dielectric periodic medium without free
charges and free currents, so we have %f = Jf = 0. Furthermore, in photonic crystals one
uses non-magnetic materials, so we have M = 0 and get

div B = 0,

div D = 0,

curl H = ∂tD,

curl E = − ∂tB,

plus D = ε0E + P and H = 1
µB.

Next, we transform the equations in such a way that only the vector fields E and H occur.
We assume to have a linear, non-dispersive material. By linearity of the material we get
D = ε0(1 + χ)E = εE. We neither assume the material to be homogeneous nor to be
isotropic. We assume the material to be little magnetic. Since there is no magnetism
(or to be precise, the magnetic effect is negligible, i.e. µr ≈ 1) we have B = µ0H, and
hence H = µ−1

0 B. Since the material is linear and non-dispersive, we have D = εE and
∂t(εE) = ε∂tE. Maxwell’s equations thus transform to

div H = 0,
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div (εE) = 0,

curl H = ε∂tE,

curl E = − µ0∂tH.

Next, we use the time-harmonic separation ansatz

H(x, t) = e−iωtH(x), E(x, t) = e−iωtE(x),

i.e. we assume E and H to be monochromatic waves. In a photonic crystal this means
that the light wave has a fixed frequency. This equals the approach of using the Fourier
transform F in time [KH15, section 1.3.3]. By the rule F (u′) = −iωFu we get the time
harmonic form of Maxwell’s equations

div H = 0,

div (εE) = 0,

curl H = − iωεE,

curl E = iωµ0H.

This representation is also called the phasor form of Maxwell’s equations. Note that
E = i

ωε
−1curl H, in particular we have div (εE) = 0 unconditionally. Motivated by

the equations above, one often finds the following definition for the Maxwell operator (also
for non-constant µ instead of µ0):

M =

(
0 iε−1curl

−iµ−1curl 0

)
.

Hence M(E,H) = (iε−1curl H,−iµ−1curl E) and one can easily prove the self-adjointness
of M on some weighted L2-spaces, cf. [BS87].

We consider another approach. More precisely, we combine the last two equations and get
the eigenvalue problem

curl (ε−1curl H) =
ω2

µ0
H.

The operator curl (ε−1curl ) is what we call the Maxwell-operator. Note that we also obtain
the operator by squaring the matrix above. Just as well we could use H = − i

ωµ
−1
0 curl E

and get
ε−1curl curl E = ω2µ0E.

Obviously, the operator µ−1ε−1curl curl is the other non-zero entry of the matrix M2.
The two equations are unitarily equivalent, so we restrict ourselves to the first equation
involving the magnetic field. We refer to [JJWM08, page 16ff] for the proof of the unitary
equivalence and the discussion of advantages and disadvantages of the two systems. Before
we continue with our approach to the Maxwell operator, we state the band-gap structure of
the Maxwell operator. This is a consequence of the Bloch theory, which works for general
strongly elliptic differential operators.
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Remark 4.1 (band-gap structure and Bloch waves)
In this work, we used the Bloch multiplier theorems to prove the existence of the Helmholtz
decomposition. The most common application of Bloch theory in the study of periodic
strongly elliptic differential operators (see [DLP+11, Section 3.2] for the exact formulation
of the needed assumptions) with continuous coefficients is another, which we present now.
By using the Bloch transform it is possible to decompose the spectrum of a periodic dif-
ferential operator A into bands. More exactly, one transforms the eigenvalue problem on
the whole space to an eigenvalue problem on one periodicity cell (for fixed θ ∈ Bd, where
Bd denotes the reciprocal lattice). By using compactness of embeddings which are due to
the boundedness of one periodicity cell, the spectrum of this reduced operator consists of
a sequence of eigenvalues λ1(θ) < . . . < λn(θ) < . . . , where λn(θ) → +∞ for n → ∞. The
corresponding eigenfunctions are called Bloch waves and satisfy a completeness property
in L2 [DLP+11, Section 3.5]. The eigenvalues are continuous in θ, i.e. λj(θn) → λj(θ) if
θn → θ. In particular, the sets Ij := ∪

θ∈Bdλj(θ) are compact intervals. The main result of
the theory is that the spectrum of A is given as the union of all these bands, i.e.

σ(A) =
⋃
j∈N

Ij .

A band gap is a gap in the spectrum, which appears if Ij and Ij+1 do not overlap for some
j ∈ N. To put it another way, a band gap appears if supθ∈Bd λj(θ) < infθ∈Bd λj+1(θ).
In praxis, one tries to build materials (photonic crystals) having some band gaps, cf. also
the discussion in the introduction. This problem can be simplified by considering one- and
two-dimensional photonic crystals. In fact, one can show that it suffices in these cases to
consider scalar-valued problems to determine the spectrum of the Maxwell operator. In
fact [FK95, Section 7], it suffices to consider the cases of so-called transverse magnetic and
transverse electric waves, i.e. H = H(x1, x2), respectively E = E(x1, x2). The examples
mentioned in the introduction are also in the two-dimensional setting. For more details we
refer to the mentioned references and [DLP+11, Chapter 2, 3].

We continue with the Maxwell operator. In addition to the stated assumptions, we assume
to have perfect conductor boundary conditions, which means that we have a perfect con-
ductor on one side of the boundary, so σ = ∞ there. This corresponds to total reflection.
Since the flux cannot be infinity, Ohm’s law shows that E = 0 inside a perfect conductor,
which implies D = H = B = 0, too. This implies that the boundary conditions are given
by

n× E|∂Ωp = 0, n ·D|∂Ωp = %|∂Ωp , n ·B|∂Ωp = 0, n×H|∂Ωp = J |∂Ωp ,

cf. [ZL13, section 1.2.2] or [DLP+11, section 1.1.6] for comprehensive explanations. Here,
the charges distribute on the boundary of the domain in such a way that the second and
the last equation hold.

We now give the precise definition of the Maxwell operator on L2(Ωp). We assume ε(·) ∈
L∞(Ωp,C

3×3) to be almost everywhere in Ωp positive definite, Hermitian matrices. Besides,
we assume ε(·)−1 ∈ L∞(Ωp,C

3×3). Note that the positive definiteness of ε corresponds to
transparency of the underlying material, compare the physical appendix. As a consequence
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of the assumptions on ε, the uniform ellipticity condition holds, i.e.

ε(x)ζζ ≥ ε0|ζ|2

for all ζ ∈ C3 and almost all x ∈ Ωp, where ε0 is independent of x, ζ.
It might be tempting to take the form

a(u, v) =

∫
Ωp

ε(·)−1curl u curl v dx.

But, we get better properties by adding a divergence term. Note that the first Maxwell
equation implies that the added term will vanish. Mathematically, this will be realized by
using the Helmholtz projection. Concretely, we take a look at the following densely defined
symmetric sesquilinear form

a(u, v) =

∫
Ωp

ε(·)−1curl u curl v dx+

∫
Ωp

div u div v dx,

where u, v ∈ V (Ωp) and

V (Ωp) = {u ∈ L2(Ωp,C
3) | div u ∈ L2(Ωp,C), curl u ∈ L2(Ωp,C

3), ν · u |∂Ωp= 0}.

This form fulfils the shifted ellipticity condition

Re a(u, u) + C1||u||2L2(Ωp,C3) ≥ C2||u||2V (Ωp).

Before we define the operator associated to this form, we discuss properties of the form
domain V (Ωp).

Remark 4.2 (discussion about V (Ω))
Let Ω ⊆ R3 be a strongly local Lipschitz domain. We define the space X(Ω) = Div2(Ω) ∩
Curl2(Ω), cf. Definition and Remark 2.8. Then, functions u ∈ X(Ω) belong to H1

loc(Ω)
[GR12, Chapter I, Corollary 2.10]. In fact, we even have X(R3) = H1(R3), but problems
occur at the boundary of Ω. In general, the space X(Ω) is not embedded in H1(Ω), even if
Ω has smooth boundary.
Under the additional assumption that the normal component vanishes, we arrive at the
space V (Ω) = {u ∈ X(Ω) | u · ν = 0} and this space can be embedded into H1(Ω), if Ω is a
bounded C1,1 domain and into H1/2(Ω), if Ω is a bounded Lipschitz domain, see Lemma 4.6
below. We prove in Lemma 4.7 that these embeddings are still valid in the case of periodic
domains. We use these embeddings in the proof of the generalized Gaussian estimates in
Section 4.2. A main step in the proof of the embedding property on bounded domains is to
show at first that H1∩V (Ω) is dense in V (Ω). As we shall see immediately this fact remains
true on unbounded domains and we even can use H1-functions with bounded support. This
density result will be used below in the proof of the domain characterization for A2.
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Lemma 4.3 (density result for V (Ω))
Let Ω ⊆ R3 be any domain of class C1,1. Then, H1

b (Ω) ∩ V (Ω) is dense in V (Ω), where

H1
b (Ω) := {u ∈ H1(Ω)| supp(u) is bounded}.

If Ω ⊆ R3 is strongly local Lipschitz, then H
1/2
b (Ω) ∩ V (Ω) is dense in V (Ω).

Proof: See [ABDG98, Lemma 2.10] for the bounded case. If Ω is unbounded, we consider
uk := u·ϕk → u ∈ V (Ω), where (ϕk)k∈N ⊆ C∞c (R3) are chosen such that ϕk = 1 on [−k, k]3.
Note that uk ∈ V (Ω) for all k ∈ N since scalar multiplication preserves the direction and
hence the boundary conditions are respected.

We get the following properties for the operator associated to this form:

Proposition and Definition 4.4 (operator A2)
Let Ωp ⊆ R3 be a periodic Lipschitz domain. The operator A2 associated to the form a(·, ·)
is defined by

u ∈ D(A2), A2u = f ⇔ u ∈ V (Ωp), a(u, v) = 〈f, v〉L2(Ωp,C3), v ∈ V (Ωp),

compare Definition and Lemma 2.24. Then, 〈A2u, u〉 ≥ 0, A2 is self-adjoint and −A2

generates a bounded analytic contraction semigroup on L2(Ωp,C
3) of angle π/2.

Proof: By Definition and Lemma 2.24 we get that A2 is self-adjoint and generates an ana-
lytic contraction semigroup. We know even more. By definition 〈A2u, u〉 = a(u, u) ≥ 0 for
all u ∈ D(A2). −A2 is upper semibounded, i.e. 〈−Au, u〉 ≤ w||u||2 for some w ∈ R (here we
have w = 0), and self-adjoint, and hence generates a bounded analytic semigroup of angle
π/2, see [EN00, chapter II, Corollary 4.7ff].

Before we continue with the definition of the Maxwell operator, we take a closer look at the
domain of A2 and prove a concrete representation.

Remark 4.5 Let Ωp ⊆ R3 be a periodic Lipschitz domain so that H1
b (Ωp) ∩ V (Ωp) is

dense in V (Ωp). This is for example the case if ∂Ωp ∈ C1,1. Then,

A2u = curl ε−1curl u−∇div u,

D(A2) = {u ∈ V (Ωp) | curl ε−1curl u ∈ L2(Ωp,C
3), div u ∈ H1(Ωp), ν × ε−1curl u|∂Ωp = 0}.

We start with proving the stated assertions for functions in D(A2). If u ∈ D(A2) we have
〈Au, v〉 = 〈ε−1curl u, curl v〉 + 〈div u,div v〉 for all v ∈ C∞c (Ωp) by definition, and hence
A2u = curl ε−1curl u−∇div u in distributional sense. Besides, we have by Definition and
Lemma 2.24

D(A2) = {w ∈ V (Ωp) | There is Cw ≥ 0 so that |a(w, v)| ≤ Cw||v||L2 for all v ∈ V (Ωp)}.
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Thus, we have by Riesz’ representation theorem curl ε−1curl u ∈ L2(Ωp,C
3) and div u ∈

H1(Ωp). Using Lemma 2.10 and Lemma 2.11 we get for u ∈ D(A2), v ∈ C∞c (Ωp) ∩ V (Ω)

〈A2u, v〉 = a(u, v) = 〈ε−1curl u, curl v〉+ 〈div u,div v〉

= 〈curl ε−1curl u, v〉 −
∫
∂Ωp

(ν × ε−1curl u)vdσ − 〈∇div u, v〉,

so ν × ε−1curl u = 0 for v ∈ C∞c (Ωp) with v · ν = 0. Note that (ν × ε−1curl u) · ν = 0, so it
suffices to consider v ∈ C∞c (Ωp) with v · ν = 0 to prove ν × ε−1curl u = 0. Hence,

D(A2) ⊆ {u ∈ V (Ωp) | curl ε−1curl u ∈ L2(Ωp,C
3), div u ∈ H1(Ωp), ν×ε−1curl u|∂Ωp = 0}.

On the other hand,
”
⊇ “ follows sinceH1

b (Ωp) is dense in V (Ωp), cf. Lemma 4.3. More exact,
let u ∈ V (Ωp) satisfying curl ε−1curl u ∈ L2(Ωp), div u ∈ H1(Ωp) and ν×ε−1curl u|∂Ωp = 0.
We have to show

〈curl ε−1curl u−∇div u, v〉 = a(u, v), for all v ∈ V (Ωp).

Since H1
b (Ωp) ∩ V (Ωp) is dense in V (Ωp) it suffices to consider v ∈ H1

b (Ωp) ∩ V (Ωp). By
using the integration by parts/Green’s formulas, cf. Lemma 2.10 and Lemma 2.11, we get

〈curl ε−1curl u−∇div u, v〉 = 〈curl u, curl v〉+ 〈div u,div v〉 = a(u, v),

where we note that the boundary integrals vanish since ν× ε−1curl u|∂Ωp = 0 and ν · v = 0.

We still have to incorporate the condition div u = 0. Consequently, we define the Maxwell
operator by projecting the operator A2 onto L2

σ(Ωp), using the Helmholtz decomposition
on L2(Ωp). To be precise, we define the Maxwell operator on L2(Ωp) by M2 := A2 with
domain D(M2) = P2D(A2) = D(A2) ∩ L2

σ(Ωp). The last equation is due to the following
observations.
Thanks to the boundary conditions of V (Ωp), the Helmholtz projection P = P2 leaves the
domain of the form V (Ωp) invariant. Furthermore, it follows that the operator A2 and the
Helmholtz operator P2 commute, see [KU15a, Lemma 3.6]. This is quite handy, because
we can assign many known results for A2 to the Maxwell operator M2.

We want to examine the Maxwell operator not only on L2, but also on Lq. We proved
in Chapter 3 the existence of the Helmholtz projection on periodic Lipschitz domains for
q ∈ (3+ε

2+ε , 3 + ε) and on periodic C1-domains for all q ∈ (1,∞).
Besides, for the definition of the Maxwell operator on Lq(Ωp) we need to extend the op-
erator A2 onto Lq, too. This will be realized by extending the semigroup generated by
−A2 − λ, λ > 0 to Lq via generalized Gaussian estimates.
So, before we resume the theory for the Maxwell operator, we introduce generalized Gaus-
sian estimates, and prove the extension of the semigroup under the assumptions made
above.
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4.2 Gaussian estimates and a spectral multiplier theorem

The foundation of the extension result for the semigroup e−A2t is the forthcoming Theorem
4.9 taken from [KU15b], which uses generalized Gaussian estimates. We refer to [KU15b]
for a discussion of the underlying theory. Here, we just recall that the generalized Gaussian
estimates (GGE) have their origin in pointwise Gaussian estimates [SV94, Dav95b], which
are given by

|pt(x, y)| ≤ C|B(x, t1/m)|−1e
−b |x−y|

m/(m−1)

t1/(m−1) ,

where pt(x, y) denotes the kernel of the semigroup e−tL. The spectral multiplier results
for non-negative self-adjoint operators L fulfilling pointwise Gaussian estimates are due to
Duong, Ouhabaz and Sikora [DOS02].

Before we start looking at the spectral multiplier theorem, we present the following embed-
ding lemma for the form domain, which is essential for the proof of GGE. In the proof we
resort to the bounded case by using a decomposition of unity, so we quote the results for
the bounded case before.

Proposition 4.6 (embedding result for V (Ω))
If Ω ⊆ R3 is a bounded Lipschitz domain, we have V (Ω) ↪→ H1/2(Ω,C3) and if Ω has
C1,1-boundary, we have V (Ω) ↪→ H1(Ω,C3).

Proof: See [Cos90] for the case that ∂Ω is a connected Lipschitz domain and [MMT01, p.
87] for the full Lipschitz case. A proof in the case ∂Ω ∈ C1,1 can be found in [ABDG98,
Theorem 2.9].

Lemma 4.7 (embedding result for V (Ωp))
Let Ωp ⊆ R3 a periodic domain with C1,1-boundary. Then,

V (Ωp) ↪→ H1(Ωp) ↪→ L6(Ωp).

If Ωp has a local Lipschitz boundary, we have

V (Ωp) ↪→ H1/2(Ωp) ↪→ L3(Ωp).

Proof: The idea is to reduce this problem to one periodicity cell, since there we can use the
embedding property for bounded domains, compare Proposition 4.6. Let 0 ≤ ϕ ∈ C∞c (R3)
be a function such that

∑
k∈Zd ϕk = 1, where ϕk := ϕ(· − k) and Ω ⊆ Ωp be a bounded

Lipschitz domain containing supp(ϕ). We set Ωk := Ω + k, k ∈ Zd.
Let u = (u1, . . . , ud)

T ∈ V (Ωp) and N be the number of Ωk intersecting Ω0. We estimate

||u||2H1(Ωp,C3) = ||
∑
k∈Zd

uϕ(· − k)||2H1(Ωp,C3) =

d∑
i=1

||
∑
k∈Zd

uiϕk||2H1(Ωp)

≤ N
d∑
i=1

∑
k∈Zd

||uiϕk||2H1(Ωk) = N
∑
k∈Zd

||uϕ(· − k)||2H1(Ωk,C3)
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≤ NC
∑
k∈Zd

||uϕ(· − k)||2V (Ωk) ≤ NC||u||
2
V (Ωp).

In the calculation above we used the embedding in the bounded case in the second estimate.
The first inequality is a consequence of the simple inequality

(
N∑
i=1

ai)
2 ≤ N

N∑
i=1

a2
i ,

and due to the fact that at every point at most N of the Ωk’s are overlapping. The last
inequality is a conclusion of∑

k∈Zd
||fϕk||22 ≤

∫
Ω

∑
k∈Z
|f(x)|2ϕk(x)2dx

≤
∫
Ω

|f(x)|2(
∑
k∈Z

ϕk(x))2dx = ||f ||22.

For estimating the div and curl parts of the V (Ω) norm, we use the relations

curl (ϕku) = ϕkcurl u+ (∇ϕk)× u, div (ϕku) = ϕkdiv u+∇ϕk · u,

together with the estimate |∇ϕk| ≤ C, which imply∑
k∈Zd

||(∇ϕk)× u||22 ≤ C2
∑
k∈Zd

||u||2L2(Ωk) ≤ C
2N ||u||22,∑

k∈Zd
||(∇ϕk) · u||22 ≤ C2

∑
k∈Zd

||u||2L2(Ωk) ≤ C
2N ||u||22.

In the same way, by reducing to the bounded case, the embedding V (Ωp) ↪→ H1/2(Ωp)
can be proven. The embeddings H1/2(R3) ↪→ L6(R3) and H1(R3) ↪→ L3(R3) follow by
Sobolev’s inequality [AF03, Theorem 4.31]. By using the Calderón-Stein extension Theorem
3.3 these embeddings hold for arbitrary strongly local Lipschitz domains.

We follow [KU15a, §2]. For this approach we need a space of homogeneous type in the sense
of Coifman and Weiss. (X, d, µ) is a space of homogeneous type, if (X, d) is a non-empty
metric space endowed with a σ-finite measure µ satisfying µ(X) > 0. In addition, the
doubling condition must be satisfied, which means

µ(B(x, 2r)) ≤ Cµ(B(x, r)), x ∈ X, r > 0,

where C is independent of r, x. Examples are Rd and arbitrary bounded open subsets with
Lipschitz boundary endowed with Euclidean metric and Lebesgue measure.

Furthermore, periodic domains with Lipschitz boundary fulfil the doubling condition, too.
For small values of r, say r ≤ 4, the doubling condition can be reduced to the case of a
bounded Lipschitz domain by using periodicity.
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Let x ∈ Ωp, r ≥ 4 and Ωk = Ω0 + k, k ∈ Zd. Recall that Ω0 = Ωp ∩ [0, 1]d. Let

ck,x,r :=

{
1, if B(x, r) ∩ Ωk 6= ∅,
0, if B(x, r) ∩ Ωk = ∅,

dk,x,r :=

{
1, if Ωk ⊆ B(x, r),

0, if Ωk * B(x, r),

Figure 4.2: dk = 1 if the periodicity cell is fully contained in the ball, while ck = 1 if the ball
intersects the periodicity cell.

We have

|B(x, 2r) ∩ Ωp| ≤
∑
k∈Zd

ck,x,r|Ω0| ≤ (2r + 1)d|Ω0|,

and

|B(x, r) ∩ Ωp| ≥
∑
k∈Zd

dk,x,r|Ω0| ≥ (r/2)d|Ω0|,

and hence Ωp is of homogeneous type.

Now, we give the spectral multiplier theorem for operators fulfilling GGE in the special
case of a domain in Rd.

Definition 4.8 (generalized Gaussian estimates)
Let X ⊆ Rd be a non-empty domain, d the Euclidean metric and µ the Lebesgue measure.
Furthermore, let A be a non-negative, self-adjoint operator on L2(X), p ∈ [1, 2] and q ∈
[2,∞]. A satisfies generalized Gaussian (p, q)-estimates if there are b, C > 0 such that

||1B(x,t1/2)e
−tA1B(y,t1/2)||Lp→Lq ≤ Ct

−d/2( 1
p
− 1
q

)
e−b

|x−y|2
t , t > 0,

where

||1E1e−tA1E2 ||p→q := sup
||f ||p≤1

||1E1e−tA1E2f ||q,

for Borel sets E1, E2. In that case, we say that A fulfils GGE (p, q).
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There is the following spectral multiplier theorem for positive self-adjoint operators fulfilling
GGE. In this theorem there appears a non-negative cut-off function ω ∈ C∞c ((0,∞)) such
that supp ω ⊆ (1/4, 1),

∑
n∈Z

ω(2−nλ) = 1 for all λ > 0.

Theorem 4.9 (spectral multiplier theorem for operators satisfying GGE)
Let X ⊆ Rd be a non-empty domain admitting the doubling condition, d the Euclidean
metric and µ the Lebesgue measure. Furthermore, let A be a positive, self-adjoint operator
on L2(X) fulfilling GGE (p0, p

′
0), p0 ∈ [1, 2). Then, for all p ∈ (p0, p

′
0), and all bounded

Borel functions F : [0,∞)→ C satisfying supn∈Z ||ωF (2n·)||Cs <∞ for some s > d|1p −
1
2 |,

we get F (A) ∈ L(Lp(X)) with accompanying norm estimate

||F (A)||Lp→Lp ≤ Cp
(

sup
n∈Z
||ωF (2n·)||Cs + |F (0)|

)
.

Furthermore, the analytic semigroup generated by −A has an extension to an analytic semi-
group on Lp(X) for p ∈ [p0, p

′
0].

Proof: See [KU15b, Theorem 5.4] for the first part, where p ∈ (p0, p
′
0), and [Blu07, Theorem

1.1] for the second part. For p = p0 and p = p′0, cf. Theorem 4.13.

Now we are ready to prove generalized Gaussian estimates for a shifted version of the
operator A2.

Theorem 4.10 (GGE for A2 + λ)
For all λ > 0 the operator A2,λ := A2 + λId fulfils GGE (3/2, 3)-estimates if Ωp has local
Lipschitz boundary. The interval extends to (6/5, 6) if Ωp has C1,1-boundary.

Proof: By using duality and the semigroup law it suffices to prove GGE (2, 3), respectively
GGE (2, 6). The proof of GGE (2, 2) alias Davies-Gaffney estimates for

(e−tA2)t>0, (t1/2curl e−tA2)t>0, (t1/2div e−tA2)t>0

is exactly the same as in the proof of [KU15a, Steps 1-3 in the proof of Theorem 3.2] for
bounded domains and uses Davies’ perturbation method. Nevertheless, we give the main
ideas of the approach, which consists in studying of ’twisted’ forms

a%,ϕ(u, v) := a(e%ϕu, e−%ϕv),

where u, v ∈ V (Ωp), % ∈ R and

ϕ ∈ E = {ϕ ∈ C∞c (Ωp,R) | ||∂jϕ||∞ ≤ 1 for j = 1, 2, 3.}.

This is well-defined since e%ϕV (Ωp) ⊆ V (Ωp) and one can prove for all γ ∈ (0, 1) the
existence of a constant ω0 ≥ 0 such that

|a%ϕ(u, u)− a(u, u)| ≤ γa(u, u) + ω0%
2||u||22, u ∈ V (Ωp), % ∈ R, ϕ ∈ E .
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In a next step it follows that the operator A%ϕω, where ω > ω0, associated to the form
a%ϕω := a%ϕ + ω%2 is sectorial, and that the bounded analytic semigroup generated by
−A%ϕω is contractive. This can be used to prove

||e−%ϕe−zA2e%ϕ||L(L2(Ωp,C3)) ≤ Ceω%
2Re z,

which implies the Davies-Gaffney estimates for A2. The Davies-Gaffney estimates for
(t1/2curl e−tA2)t>0, (t1/2div e−tA2)t>0 also follow by considering twisted forms. We just
remark that the term t1/2 appears since the estimate

||A%ϕωe−tA%ϕω ||L(L2(Ωp,C3)) ≤
1

t sin θ0
,

is used, where θ0 denotes the angle of A%ϕω.

We use Lemma 4.7, which yields

||u||Lr(Ωp,C3) ≤ C
(
||u||L2(Ωp,C3) + ||div u||L2(Ωp,C) + ||curl u||L2(Ωp,C3)

)
,

where r = 3 if Ωp is a Lipschitz domain and r = 6 if Ωp is a C1,1-domain. Now, we proceed
as in [KU15a, Step 5 in the proof of Theorem 3.2]. The argument has its origin in [MM09,
Section 5]. So, let t > 0, x, y ∈ Ωp and f ∈ C∞c (Ωp,C

3) with supp(f) ⊆ B(y, t1/2). We put
Ωx := B(x, 2t1/2) ∩ Ωp and choose a cut-off function η ∈ C∞c (Ω0,R) satisfying

0 ≤ η ≤ 1, η = 1 on B(x, t1/2), ||∇η||∞ ≤ 2t−1/2.

This implies, together with the product rules for div and curl, which we already used in the
proof of Lemma 4.7, the estimates

||div (ηe−tA2f)||L2(Ωx,C) ≤ C
(
||div (e−tA2f)||L2(Ωx,C) + t−1/2||e−tA2f ||L2(Ωx,C3)

)
,

||curl (ηe−tA2f)||L2(Ωx,C3) ≤ C
(
||curl (e−tA2f)||L2(Ωx,C3) + t−1/2||e−tA2f ||L2(Ωx,C3)

)
.

Note that we have Range(e−tA2) ⊆ D(A2) by Proposition 2.21, which is due to the fact that
−A2 generates a bounded analytic semigroup. And since we used the form ansatz we get
by definition D(A2) ⊆ V (Ωp), compare Proposition and Definition 4.4. By using Lemma
4.7 and the GGE (2,2) we get

||e−tA2f ||Lr(B(x,t1/2),C3) ≤ ||ηe−tA2f ||Lr(Ωp,C3)

≤ C
(
||ηe−tA2f ||L2(Ωx,C3) + ||div (ηe−tA2f)||L2(Ωx,C) + ||curl (ηe−tA2f)||L2(Ωx,C3)

)
≤ C

(
(1 + 2t−1/2)||e−tA2f ||L2(Ωx,C3) + ||div (e−tA2f)||L2(Ωx,C) + ||curl (e−tA2f)||L2(Ωx,C3)

)
≤ C(1 + t−1/2)e−b

|x−y|2
t ||f ||L2(B(y,t1/2),C3),

where r = 6 if ∂Ωp ∈ C1,1 and r = 3 if ∂Ωp is Lipschitz. Now, let λ > 0 andA2,λ := A2+λId.
First, we consider the case ∂Ωp ∈ C1,1 and estimate

||e−tA2,λf ||L6(B(x,t1/2),C3) = e−λt||e−tA2f ||L6(B(x,t1/2),C3)

≤ C(1 + t−1/2)e−λte−b
|x−y|2

t ||f ||L2(B(y,t1/2),C3) ≤ Ct
−1/2e−b

|x−y|2
t ||f ||L2(B(y,t1/2),C3).
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Hence A2,λ fulfils GGE (2,6). Now let ∂Ωp be Lipschitz. There is a constant C > 0
independent of t ≥ 1 satisfying

(1 + t−1/2)e−λt ≤ Ct−1/4, t ∈ [1,∞),

so we get

||e−tA2,λf ||L3(B(x,t1/2),C3) ≤ Ct
−1/4e−b

|x−y|2
t ||f ||L2(B(y,t1/2),C3), t ∈ [1,∞).

The case t ≤ 1 requires another approach. This is the easier case, because this case can be
treated as in the case of a bounded domain, thanks to the periodicity of the domain. So, let
t ∈ (0, 1] and x0 ∈ Ω. By periodicity of the domain we can assume that Ωx = B(x, 2t1/2) ⊆
Ωp lies in a bounded Lipschitz domain Ω independent of x. We know that

||w||Lr(Ω,C3) ≤ C
(
||w||L2(Ω,C3) + ||div w||L2(Ω,C) + ||curl w||L2(Ω,C3)

)
,

where r = 3 if ∂Ωp is Lipschitz and r = 6 if ∂Ωp is of class C1,1. Besides, the embedding
constant only depends on ∂Ω and the diameter of Ω. In particular, rescaling [MM09, page
3145] leads to (where we note that diam(Ωx) = 4t1/2)

||w||Lr(Ωx,C3) ≤ Ct−1/4
(
||w||L2(Ωx,C3) + t1/2||div w||L2(Ωx,C) + t1/2||curl w||L2(Ωx,C3)

)
,

where C only depends on the Lipschitz character of Ωx, which is controlled by that of Ωp.
Hence, we get

||e−tA2f ||L3(B(x,t1/2),C3) ≤ ||ηe−tA2f ||L3(Ωx,C3)

≤ Ct−1/4
(
||ηe−tA2f ||L2(Ωx,C3) + t1/2||div (ηe−tA2f)||L2(Ωx,C) + t1/2||curl (ηe−tA2f)||L2(Ωx,C3)

)
≤ Ct−1/4

(
3||e−tA2f ||L2(Ωx,C3) + t1/2||div (e−tA2f)||L2(Ωx,C) + t1/2||curl (e−tA2f)||L2(Ωx,C3)

)
≤ Ct−1/4e−b

|x−y|2
t ||f ||L2(B(y,t1/2),C3),

which is the inequality we need for GGE (2,3). Note that, in the case t ≤ 1, we can even
forego to add λId to A2.

We would be in the position to skip the shift in Theorem 4.10, if we could prove the
embedding V (Ωn) ↪→ H1/2(Ωn), or V (Ω) ↪→ H1(Ωn), respectively with an embedding
constant independent of n ∈ N.

Figure 4.3: We use the domain introduced following Remark 2.13 and scale the cube [−n, n]d to
size one for n = 1, 2, 3.

This is because we are reliant upon the independence of some scaling constant, compare the
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proof of the theorem above. By combining Theorem 4.9 and Theorem 4.10 we immediately
get the following spectral multiplier theorem.

Theorem 4.11 (spectral multiplier theorem for A2,λ)
Let Ωp ⊆ R3 be a periodic domain with local Lipschitz boundary λ > 0, q ∈ (3/2, 3),
s > 3|1/q − 1/2| and ω be a cut-off function as in Theorem 4.9. Then, for every bounded
Borel function F : [0,∞)→ C satisfying supn∈Z ||ωF (2n·)||Cs <∞, the operator F (A2,λ) is
bounded on Lq(Ωp,C

3) and there is a constant Cq > 0 such that

||F (A2,λ)||Lq→Lq ≤ Cq
(

sup
n∈Z
||ωF (2n·)||Cs + |F (0)|

)
.

If ∂Ωp ∈ C1,1, then the statement holds for all q ∈ (6/5, 6).

4.3 The Maxwell operator on Lq(Ωp)

We follow [KU15a] and use the same notation as there. The approach there worked for
bounded domains and we will transfer it to periodic domains. We recall that we have
to shift the operator A2 to get Gaussian estimates since we cannot use the localization
procedure for large values of t, as it is used in [KU15a, Proof of Theorem 3.2, step 4].
By using Theorem 4.10 and Theorem 4.9 we can extend the bounded analytic semigroup
generated by the operator −A2,λ = −A2 − λId, λ > 0 to a bounded analytic semigroup
on Lq, where q ∈ [3/2, 3] if ∂Ωp is Lipschitz and q ∈ [6/5, 6] if ∂Ωp ∈ C1,1. We denote
by −Aq,λ the generator of the extended semigroup. Of course, by the scaling properties of
semigroups, we have Aq,λ1 + (λ2 − λ1)Id = Aq,λ2 for all λ1, λ2 > 0 . In particular, it is
possible to define Aq,0 by Aq,0 := Aq,λ−λId and D(Aq,λ) is independent of the choice of λ.
We recall that ν · (Pqu) = 0 for all u ∈ Lq(Ωp). This matches the boundary conditions of
V (Ωp), and so one can show that A2 and the Helmholtz projection P2 are commuting, and
this property extends to Aq and Pq, if these operators exist. We introduce the following
notation for the common interval on which the Helmholtz decomposition and the analytic
semigroup exist.

Definition 4.12 (interval IΩp)
Let Ωp ⊆ R3 be a periodic domain with Lipschitz boundary. We denote by IΩp ⊆ (1,∞)
the largest subinterval containing 2 and consisting of all q, on which both, the Helmholtz
decomposition on Lq(Ωp) and the extension of the analytic semigroup generated by −A2−λ,
λ > 0, to a bounded analytic semigroup on Lq(Ωp) exist.

The following theorem [Blu07, Theorem 1.1] implies that GGE do not only guarantee that
the bounded analytic semigroup e−(A2+λ)t extends on Lq, but, moreover, the angle π/2
remains, too.

Theorem 4.13 (bounded analyticity of e−tA on Lq)
Let (X, d, µ) be as in Definition 4.8 and A be a non-negative selfadjoint operator on L2(X)
satisfying GGE (p, p′), where p ∈ [1, 2). Then, the semigroup generated by −A extends to a
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bounded analytic semigroup of angle π/2 on Lq(X) for all q ∈ [p, p′] and

||e−zA||q→q ≤ C
( |z|

Re(z)

)d( 1
p
− 1

2
)
.

From now on, let λ > 0 be arbitrary, but fixed. Aq,λ inherits more properties from A2,λ, if
q ∈ IΩp . Now, we collect the most important properties of Aq,λ in the following proposition.

Proposition 4.14 (properties of Aq)
Let Ωp ⊆ R3 be a periodic domain with Lipschitz boundary and q ∈ IΩp. The semigroup
generated by −Aq,λ is bounded analytic of angle π/2. Besides, we have σ(Aq,λ) = σ(A2,λ),
so the spectrum is independent of q ∈ IΩp. The operators Aq,λ and Pq are commutating.
More exact, Pq(D(Aq,λ)) ⊆ D(Aq,λ) and

Pq(Aq,λu) = Aq,λ(Pqu), u ∈ D(Aq,λ).

Proof: The first assertion follows from Theorem 4.13. Equality of spectra holds since we
continued the semigroup using generalized Gaussian estimates, cf. [BK05, Proposition 1.4,
Corollary 1.5]. The last assertion can be proven as [KU15a, Lemma 3.6] using density
arguments and consistency of the resolvents. Let us give some details here. Thanks to the
boundary conditions of V (Ωp) we get P2V (Ωp) ⊆ V (Ωp). By using the self-adjointness of P2

in L2 and a(u, P2v) = a(P2u, v), the assertion follows for q = 2. To prove the assertion for
q ∈ IΩp we consider the following consistency argument. Since the resolvents R(−Aq,λ, µ)
are for all µ ∈ C with Re(µ) > 0 given by the formula in 2.17 we get Pq(µ + Aq,λ)−1 =
(µ+Aq,λ)−1Pq on L2(Ωp,C

3)∩Lq(Ωp,C
3). Note that all these resolvents exist since −A2,λ

and −Aq,λ are both generator of bounded analytic semigroups of angle π/2. The assertion
follows by using boundedness of the resolvents and the density of L2 ∩Lq in Lq. Note that
the Helmholtz projections are also consistent by construction, compare Lemma 2.51 and
the discussion before.

Definition 4.15 (Maxwell operator)
Let Ωp ⊆ R3 be a periodic Lipschitz domain, q ∈ IΩp. We define the (shifted) Maxwell
operator Mq,λ on Lqσ(Ωp) by

D(Mq,λ) := PqD(Aq) = D(Aq) ∩ Lqσ(Ωp),

Mq,λu := Aq,λu for u ∈ D(Mq).

The operator Mq := Mq,0 = Mq,λ − λId is called the Maxwell operator.

We can extend the multiplier theorem from Theorem 4.11 to the operators Mq,λ for all
λ > 0 since Aq,λ and Pq commute.
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Theorem 4.16 (spectral multiplier theorem for the Maxwell operator)
Let λ > 0 and q, F : [0,∞) → C, Ωp as in Theorem 4.9. Then, the operator F (M2,λ)
defines a bounded operator on Lqσ(Ωp) and there is a constant Cq > 0 such that

||F (M2,λ)||Lqσ→Lqσ ≤ Cq(sup
n∈Z
||ωFλ(2n·)||Cs + |F (0)|).

Proof: This follows from Theorem 4.11 and Proposition 4.14.

We already have seen that the spectrum of Aq,λ is independent of q, but we get this result
for the Maxwell operator, too. Note that the spectrum of Mq,λ might be smaller than the
spectrum of Aq,λ.

Proposition 4.17 (spectral independence of q for the Maxwell operator)
Let Ωp ⊆ R3 be a periodic domain with Lipschitz boundary. Then, the spectrum of Mq,λ

(and hence also of Mq = Mq,0) is independent of q ∈ IΩp.

Proof: We have z ∈ R∩ %(Mq,λ) if and only if there is an ε > 0 and a function ϕ ∈ C∞c (R)
with ϕ = 1 on (z − ε, z + ε) so that f(Mq,λ) = 0, compare [Dav95a, Lemma 4]. Since we
have consistency of f(Mq,λ) = 0 for all q ∈ IΩp , and since Lp ∩ Lq is dense in Lq for all
p, q ∈ IΩp , we get the assertion.

4.4 Navier-Stokes equations and the Stokes operator

We consider the physical aspect of the Navier-Stokes equations in the appendix. From a
mathematical point of view, the Navier-Stokes equations fascinate and attract mathemati-
cians since a long time. Leray was able to prove existence in the weak sense already at
the beginning of the 1930’s [Ler33, Ler34]. It is nearly impossible to give all of the most
important results here. We refer to [Tem77, GR12] for a comprehensive treatment of the
Navier-Stokes equations implying numerical theory, too. Another recommendation includ-
ing the historical development of the theory is [Kye12]. Although already more than 15
years old [Wie99] is quite interesting to read, because many aspects and not yet solved
problems are summarized. Still, there are many open problems in the theory. The most
famous and important one is part of the Millennium problems. The matter of the problem
is the existence proof of strong, regular global solutions in the three dimensional setting.

Since periodic domains are not that important for the incompressible Navier-Stokes equa-
tions as in the case of Maxwell equations, we do not make a comprehensive analysis of the
theory here.
We clarify the importance of the Helmholtz projection within the theory and apply the
results from [GHHS12] to the case of periodic domains.
If ∂Ωp ∈ C3 this leads to analyticity of the semigroup generated by the Stokes operator on
Lq and we even obtain maximal Lr-Lq regularity for the solution pair (u,∇p). In addition,
we get a unique mild solution of the incompressible Navier-Stokes equations on Lq, provided
∂Ωp ∈ C3 and q > d.
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Furthermore, [GK15, Theorem 1.1] implies for all q ∈ (1,∞), and for all periodic do-
mains Ωp with uniform C3-boundary that the Stokes operator λ0 + Aq admits a bounded
H∞-calculus on Lqσ(Ωp) for some λ0 > 0. Besides, the function calculi are consistent.

We start with the definition of the Stokes operator.

Definition 4.18 Let Ωp ⊆ Rd be a periodic domain with uniform C1,1-boundary and
q ∈ (1,∞). We define the Stokes operator Aq := −Pq∆ by

D(Aq) := W 2,q(Ωp,C
d) ∩W 1,q

0 (Ωp,C
d) ∩ Lqσ(Ωp,C

d),

Aqu := −Pq∆u.

We observe that the Stokes operator is a special case of the Maxwell operator, namely by
putting ε ≡ 1, but with Dirichlet boundary conditions instead of Neumann boundary con-
ditions. So, by using the form method ansatz, it is possible to define the Stokes operator
with less smooth boundary.
As in the Maxwell case, the Hilbert space case L2 is much easier to handle than the Lq-
case. So, the negative of the Stokes operator is known to be self-adjoint and generator of
an analytic semigroup, even on general domains Ω ⊆ R3, cf. [Soh01, Mon06].
In the bounded case, it had been known for a long time, that −Aq generates a bounded
analytic semigroup on Lqσ for all q ∈ (1,∞), if ∂Ω is smooth, compare e.g. [Gig81].
In contrast, the case of a bounded Lipschitz domain Ω ⊆ Rd turned out to be much more
difficult. Shen [She12] proved the bounded analyticity, the so-called Taylor’s conjecture, for
q satisfying |1q −

1
2 | <

1
2d + ε, where d ≥ 3. Note that for d = 3 the interval corresponds to

(3+ε
2+ε , 3 + ε) which correlates to the existence interval of the Helmholtz decomposition.

The theory for unbounded domains is more complicated, particularly because the Helmholtz
decomposition might fail.
In the Lq-case for periodic domains, we use the results from [GHHS12] for general un-
bounded domains, on which the Helmholtz decomposition exists on Lq.

Proposition 4.19 (Stokes operator and the inhomogeneous problem)
Let Ωp ⊆ Rd be a periodic domain with C3-boundary, J = (0, T ) for some T > 0 and
r, q ∈ (1,∞). Then, the negative of the Stokes operator −Aq generates an analytic semigroup
on Lqσ(Ωp,C

d). Besides, the solution u of the inhomogeneous problem

∂tu+Aqu(t) = f(t), t > 0, f ∈ Lr(J, Lqσ(Ωp)),

u(0) = u0,

satisfies

||∂tu||Lr(J,Lq(Ωp)) + ||Aqu||Lr(J,Lq(Ωp)) ≤ C
(
||f ||Lr(J,Lq(Ωp)) + ||u0||X0

)
where C is independent of f ∈ Lr(J, Lq(Ωp)) and u0 ∈ X0. Here, X0 is the real interpolation
space

X0 = (Lqσ(Ωp), D(Aq))1−1/r,r

given by the K-Method [BL76, chapter 3], [Lun95, Section 1.2].
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Proof: We can apply [GHHS12, Corollary 2.2] since the Helmholtz decomposition exists on
Lq(Ωp,C

d), see Theorem 3.37.
Note that the interpolation space is a standard tool in the study of space-time regularity
for evolution equations, compare [Lun95, Section 2.2.1 and Section 4.3.2].

The resolvents of the Stokes operator are an interesting object. We consider the so-called
Stokes resolvent problem

λu−∆u+∇p = f, in Ωp × (0, T ),

div u = 0, in Ωp × (0, T ),

u = 0, on ∂Ωp × (0, T ).

First, we want to clarify the connection between the Helmholtz projection, the Stokes
resolvent system and the resolvents of the Stokes operator. Therefore, we give the following
formal calculation, which reveals the approach. We recall that a vector field is a gradient if
and only if it is of the form (Id−Pq)(. . . ). Furthermore we know that Pqu = u, (Id−Pq)u =
0, so we rewrite the system above and get

(Id− Pq)(λu−∆u+∇p) + Pq(λu−∆u+∇p) = (Id− Pq)f + Pqf,

which can be simplified to

λu+Aqu+∇p = Pqf + (Id− Pq)(f + ∆u).

So, the idea is to find a solution u of the Stokes resolvent problem

λu+Aqu = Pqf,

and define subsequently

∇p = (Id− Pq)(f + ∆u).

This is possible since Id−Pq maps onto Gq(Ωp). We get the following statement [GHHS12,
Corollary 2.3] concerning the Stokes resolvent system.

Proposition 4.20 (Stokes resolvent system)
Let Ωp be as in Proposition 4.19, q ∈ (1,∞) and 0 6= λ ∈ Σθ, where θ ∈ (0, π). Then,
there is a θ0 ∈ R such that for all λ ∈ θ0 + Σθ and f ∈ Lqσ(Ωp) there is a unique pair

(u,∇p) in (W 2,q(Ωp) ∩W 1,q
0 (Ωp) ∩ Lqσ(Ωp)) × Gq(Ωp) solving the Stokes resolvent system.

Furthermore, the inequality

|λ|||u||Lq(Ωp) + ||∆u||Lq(Ωp) + ||∇p||Lq(Ωp) ≤ C||f ||Lq(Ωp), f ∈ Lq(Ωp),

holds for some C > 0 independent of λ ∈ θ0 + Σθ.

In addition, the Stokes operator admits a bounded H∞-calculus, more exactly we get the
following.
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Proposition 4.21 (H∞-calculus for Stokes resolvent)
Let Ωp be as in Proposition 4.19 and q ∈ (1,∞). Then, there exists λ0 > 0 such that the
Stokes operator λ0 +Aq admits a bounded H∞-calculus in Lqσ(Ωp). Besides, the functional
calculi are consistent for all q ∈ (1,∞).

Proof: We use Theorem 3.37 and [GK15, Theorem 1.1].

Next, we give a unique solvability theorem for the time dependent Stokes equations with no-
slip boundary condition, u0 = 0 and µ ≡ 1. Furthermore, we even get maximal regularity
for the solution. We recall that this system is given by

∂tu−∆u+∇p = f, in Ωp × (0, T ),

div u = 0, in Ωp × (0, T ),

u|∂Ω = 0, on ∂Ωp × (0, T ),

u(0, ·) = u0.

Theorem 4.22 (theorem for the time dependent Stokes system)
Let Ωp, J, T, r, q, f be as in Proposition 4.19. Then, the time dependent Stokes system from
above has a unique solution pair

(u,∇p) ∈W 1,r(J, Lq(Ωp)) ∩ Lr(J,W 2,q(Ωp) ∩W 1,q
0 (Ωp) ∩ Lqσ(Ωp))× Lr(J,Gq(Ωp)),

and there is a constant C > 0 such that (where X = Lr(J, Lq(Ωp)))

||∂tu||X + ||u||X + ||∆u||X + ||∇p||X ≤ C||f ||X .

Proof: We use Theorem 3.37 and [GHHS12, Theorem 2.1].

Remark 4.23 There is a similar theory [FKS05, FKS08, FKS09] for arbitrary domains,
on which the Lq Helmholtz decomposition might fail, by using the alternative Helmholtz
decomposition in L̃q from Remark 2.52. In [FKS09] there was only needed ∂Ω to be uni-
formly of class C1,1. So, there is hope to weaken the boundary regularity in the Theorem
above, for example to demand only ∂Ω uniformly C2 or even C1,1.

After having discussed the linear case, we now take a look at the full Navier-Stokes system.
We recall that the incompressible Navier-Stokes equations for fluids with constant density
are given by

∂tu+ (u · ∇)u− µ∆u+∇p = f, in Ωp × (0, T ),

div u = 0, in Ωp × (0, T ),

u|∂Ω = 0, on Ωp × (0, T ),

u(0, ·) = u0,
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where we used for simplicity once more µ ≡ 1. As above, by using the Helmholtz decom-
position, it suffices to solve

∂tu−Aqu = Pqf − Pq((u · ∇)u),

and subsequently set

∇p = (Id− Pq)(∆u− (u · ∇)u)).

We consider the case of no external force f = 0, which leads to

∂tu+ (u · ∇)u−∆u+∇p = 0, in Ωp × (0, T ),

div u = 0, in Ωp × (0, T ),

u|∂Ω = 0, on Ωp × (0, T ),

u(0, ·) = u0.

So we have to solve the system

∂tu = −Aqu− Pq((u · ∇)u), in Ωp × (0, T ),

u(0, ·) = u0.

Here, [GHHS12] yields the existence of a continuous local mild solution. Roughly speaking,
a mild solution is a function, which is given by the variation of constants formula. This
solution concept is weaker than the classical solution concept, compare [EN00, section VI.7].

A local mild solution of the system above is a function u ∈ C([0, T ), Lqσ(Ωp)) satisfying

u(t) = e−tAqu0 −
t∫

0

e−(t−s)AqPq((u(s) · ∇)u(s))ds, 0 ≤ t < T,

for some T > 0. Observe that [GHHS12] use

div (u(s)⊗ u(s)) = (u(s) · ∇)u(s),

which is true since div u(s) = 0. Here, we refer to [Way05, page 6] for the details. By
applying Theorem 3.37 and [GHHS12, Theorem 3.2] we get immediately the following the-
orem.

Theorem 4.24 (mild solution for the Navier-Stokes system)
Let Ωp ⊆ Rd be a periodic domain with C3-boundary. Then, for q ∈ (d,∞) and u0 ∈
Lqσ(Ωp), there exists T0 > 0 and a unique mild solution u ∈ C([0, T0), Lqσ(Ωp)) of the system

∂tu = −Aqu− Pq((u · ∇)u), in Ωp × (0, T ),

u(0, ·) = u0,
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which is given by

u(t) = e−tAqu0 −
t∫

0

e−(t−s)AqPq((u(s) · ∇)u(s))ds, 0 ≤ t < T0.

Overall we have seen that the existence of the Helmholtz decomposition on Lq-spaces di-
rectly has consequences on linear and nonlinear Navier-Stokes equations.
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CHAPTER 5

Physical Appendix

5.1 Maxwell’s equations

We start with the Maxwell’s equations. Throughout this section we use SI units. We
follow [JJWM08]. The Maxwell equations are the fundamental equations in classical elec-
trodynamics and optics. They describe the correlation of electric and magnetic fields in
dependence of each other and of currents plus charges. In literature, one finds two different
formulations of the Maxwell equations. We consider both of them without going too much
into details from physics.

On atomic level one uses the microscopic Maxwell Equations, which are given by

div E = %/ε0, (Gauß’ law),

div B = 0, (Gauß’ law for magnetism),

curl E = − ∂tB, (Faraday’s law of induction),

curl B =µ0J + µ0ε0∂tE, (Ampére’s circuital law).

Here, E,B denote the electric and the magnetic field, % is the given electric charge density,
J is the electric current density. The constants ε0 and µ0 are the vacuum permittivity
and the vacuum permeability. We explain the origin of the equations very briefly now.
The first equation, the Gauss law, states that charges are the sources of the electric field.
The second equation states that there are no sources of magnetic fields, since there are
no magnetic monopoles. In consequence, the magnetic field lines are always closed. The
third equation, Faraday’s induction law, states that a changing magnetic field generates an
electric eddy current field. The last equation, Ampère’s law, states that electric changes
raise to a magnetic eddy field. This law includes the Maxwell’s displacement current.

In applications, it is often more convenient to use the macroscopic Maxwell equations,
which we consider now. If one is interested in the behaviour of a material, there occur
bound electrons, which have to be considered, too. Note that they are not free, so it is
useful to distinguish between free charges and bound charges. One further effect is that also
bound charges can change their position slightly. The strength of this effect depends on
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the material and is denoted as polarization. Analogously, there might be magnetic effects
in the material. Consequently, we have to add the polarisation P to the electric field, and
the magnetism M to the magnetic field. This yields the electric displacement field D and
the magnetizing field H which are given by

D := ε0E + P, H :=
1

µ0
B −M.

For more details we refer to [Gri99, pages 328-330]. The macroscopic Maxwell equations
are given by

div B = 0,

div D = %f ,

curl H = Jf + ∂tD,

curl E = − ∂tB.

We have

% = %f + %b, J = Jf + Jb,

where
%b = −div P, Jb = curl M + ∂tP,

and %f , Jf denote the free parts and %b and Jb the bound parts. Jb consists of movements
of electric and magnetic dipole moments. At a first glance, this system of equations seems
more difficult to manage. However, in many application cases the system simplifies. If the
material is not magnetic, then M = 0. Then, we have B = µ0µrH, where µr denotes the
permeability relative to the vacuum. A value 0 ≤ µr << 1 corresponds to a material, which
counteracts an external magnetic field. These materials are called diamagnets. Without
external magnetic field such materials are not magnetic. They are used in superconduc-
tors. A large value of µr corresponds to ferromagnets, which are strongly attracted by an
external magnetic field. In fact, these materials often are magnets, for example iron is a
ferromagnet. They are used among others as motors and transformers. Besides there are
many materials having µr ≈ 1 (in fact it is usually slightly bigger than), for example the
materials air, concrete, wood, aluminium, Teflon, sapphire and water. In these materials
there is only a small (negligibly strengthening) effect to external magnetic fields. The mag-
netic susceptibility χm := µr − 1 is also commonly used to measure the magnetizability of
a material. Hence

µ = µ0µr = µ0(1 + χm).

Besides, many materials are linear, which means that the polarisation is linear to the electric
field, which results in the linear connection

P = ε0χeE, D = ε0(1 + χe)E.

Linearity is a typical and common assumption. Nonlinear media are used in nonlinear
optics and are realized by using very high intensities. Here, the electric susceptibility χe is
not scalar, but matrix-valued, and the term εr := (1 +χe) denotes the permittivity relative
to the vacuum. If, in addition, χe is scalar-valued, which means that E and P are parallel,
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then the material is called isotropic. The permittivity ε is defined by

ε := ε0(1 + χe).

If χe is location-independent, the material is called homogeneous. The real part of ε yields
information about the dispersion. For example, a high value corresponds to transparent
material, and a very negative value corresponds to metal. For metals [JJWM08, page 8]
one even takes the limit ε → −∞. Whereas the imaginary part of ε yields information
about the absorption, compare [Jac06, section 7.5, page 359]. So, positive values for ε
correspond to the transparency of the underlying material. In contrast, a negative value
would correspond to a material where light is being lost. In praxis, every material is
not steady in all places, so homogeneity is an idealization, but one which works for many
materials in good approximation. Furthermore, if the material changes, this will be reflected
in discontinuity of ε. A material is called non-dispersive, if the value of P at the time t
depends only on E(t), and not on the values of E(t0) for t0 < t. This allows to pull ε
outside of the time derivative ∂t(εE).

Since we used a huge amount of physical terms here and in the last chapter, we give here
explanations of all these terms. More details can be found in classical books considering
electrodynamics like [Jac99].

• E: Electric field strength or Electric field: The vector field stating the electric
force a test particle would be exposed. The force is caused by electric charges or by
varying magnetic fields.

• B: Magnetic flux density or magnetic field: The vector field stating the force
on a moving charged particle such that the Lorentz force law is satisfied. It can be
characterized alternatively by the torque it produces on a magnetic dipole. The field
is generated by electric currents and magnetic materials.

• D: Electric displacement field: The electric displacement field describes the den-
sity of the electric field lines. In doing so, it regards the generated fields of free as
well as bound charges.

• H: Magnetic field strength or Magnetizing field: The vector field which de-
scribes the strength and direction of the magnetic field generated by magneto-motive
force. It states the magnetic effect of external currents without considering the mag-
netism of the underlying material, while the B-field describes the sum of both.

• %: electric charge density: % describes the distribution of charges.

• J: Electric current density: This vector field just describes the density of the
electric current.

• M: Magnetism: A magnet is a material, which attracts or rejects other magnets.

• Dielectric: A dielectric medium is a material, which is an insulator, but can be
polarised by an electric field. Examples of such materials are glass, most of the gases
and most of the plastics.

• P: Polarisation: This vector field describes the density of electric dipole moments
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in a dielectric. Polarisation appears when a dielectric is put in an electric field. The
dielectric can not transport charges, but the charges within the material change the
position slightly, and this effect is called polarisation.

• ε: permittivity: The permittivity describes the permeability of the material for
electric fields. It measures the ability of a material to support the formation of an
electric field.

• ε0: vacuum permittivity: The permittivity of the vacuum.

• εr: relative permittivity: In most cases the permittivity is expressed relative to
the vacuum permittivity, so εr = ε/ε0.

• χe: electric susceptibility: The electric susceptibility εr is defined by χe = ε/ε0−1
and describes as εr the permittivity of the material. Hence, it describes how strong
the polarisation effect is.

• µ: permeability: The permeability describes the permeability of the material for
magnetic fields. It is the magnetic analogue to the (electric) permittivity.

• µ0: vacuum permeability: The permeability of the vacuum.

• µr: relative permeability: The permeability relative to the vacuum.

• χm: magnetic susceptibility: χm is defined by χm = µ/µ0 − 1 and describes as µr

the permeability of the material.

• σ: conductivity: The material’s ability to conduct electric current.

5.2 The Navier-Stokes equations

The origin of the Navier-Stokes equations is based on the equation of motion and the
continuity equation applied to viscous fluids. Note that all involved functions may depend
on time, which will be denoted by the first variable, and space, the second variable. If
the time-dependence of the used derivation operation is not explicitly stated, we assume
derivation operations like div, ∇ to be applied on the space variables. Although it is possible
to consider the equations in d dimensions, we restrict ourselves to the by far most relevant
case d = 3.

In [Red08, section 8.1.2] there is a list of stunningly 22 equations of viscous fluids with 22
variables. The Navier-Stokes equations are a combination of four of them, the continuity
equation, the equations of motion, the constitutive equation and the rate of deformation-
velocity equations, which are looking as follows:

∂t% = −div (%u), (Continuity equation),

∇σ + %f = %(∂tu+ (u · ∇)u), (Equations of motion),

σ = 2µD + λ(tr D)Id− p Id, (Constitutive equation),

D = 1/2(∇u+ (∇u)T ), (Rate of deformation-velocity equations).
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Here, u describes the speed of the fluid, % the density, p the pressure and f the body force
density. Here, the operator λ and µ denote the Lamé constants of the fluid. Without going
into details, we just mention that they are used to describe Hook’s law, which describes
the stress in dependence of the strain tensor [Red08, section 6.3.3]. We note that we have
tr D = div u, since Dii = ∂ixi for i = 1, 2, 3. Besides we have 2Dij = ∂iuj + ∂jui for
i, j ∈ {1, 2, 3}, so one easily computes ∇2D = ∆u + ∇div u, where ∆, in literature also
denoted by ∇2, is the vectorial Laplacian, which is given by

u = (∆u1, . . . ,∆ud)
T .

In the case d = 3 we have the representation

∆u = ∇(div u)− curl (curl u).

So, by combing the last three equations [Red08, section 8.1.3] we get the momentum equa-
tion

%
(
∂tu+ (u · ∇)u

)
= −∇p+ µ∆u+ (λ+ µ)∇(div u) + %f,

The continuity equation is given by

∂t%+ div j = 0,

where j = %u is the current density of the fluid and hence

∂t%+∇% · u = −%div u.

By using notation from differential geometry we have

∂t(%(t, u(t))) = −%div u.

We only consider the most common variant of the Navier-Stokes equations, the incompress-
ible Navier-Stokes equations. In the proper sense a flow is incompressible if the density of
the fluid is independent of the pressure at the same temperature. In many applications
one ignores the influence of the temperature, since it is small in comparison to the effect of
the pressure. This yields to the idealisation that a media is incompressible if the density is
constant along every trajectory, which is mathematically reflected in

∂t(%(t, u(t))) = 0.

The continuity equation simplifies in that case to

div u = 0.

Furthermore, this also simplifies the momentum equation to

%
(
∂tu+ (u · ∇)u

)
= −∇p+ µ∆u+ %f.
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If we, in addition, ignore thermal influences on the density, assume incompressibility and
assume that the density % is even constant, we can divide the equation by % and get

∂tu+ (u · ∇)u = −∇p̃+ µ̃∆u+ f,

where p̃ = p/% and µ̃ = µ/%. Note that incompressibility does not imply constant density.
For example the density of water might depend on the salinity, which is not everywhere
constant. We want to give curt physical explanations of the appearing terms. Clearly, ∂tu
describe the changing rate of the speed at the time t at the position x. So, we examine
the driving forces causing the changes of the speed. As already mentioned the term −∇p
describes the effect of the pressure. The term µ∆u is related to internal friction, so the
value of µ measures the size of this effect, and is the called viscosity. The term (u · ∇)u
describes the convective acceleration and is consequence of the arising inertia forces. The
missing term f describes all exterior forces, which can be for example gravitation or electric
fields.
In applications, the viscosity µ of a material is usually assumed to be constant, although it
might depend on the temperature of the material. In the case of Non-Newtonian fluids, the
viscosity depends in addition on the shear rate. Most of the industrial products are Non-
Newtonian fluids, while water, milk or mineral oil are Newtonian fluids. Since we ignore
once more the thermal effect, we assume µ to be constant for Newtonian fluids.
To get a complete description of a system, we add boundary conditions and an initial value
u0 to the system. A typical boundary condition consists for instance of Dirichlet boundary
conditions, also called no slip boundary condition and conforms adhesion of the fluid on the
boundary. This boundary conditions turn out to appear in many physical applications. In
that case one has the following formulation for the incompressible Navier-Stokes equations
with constant density, for Newton fluids with negligibly thermal effects and no slip boundary
condition.

∂tu−∆u+ (u · ∇)u+∇p = f, in Ω× (0, T ),

div u = 0, in Ω× (0, T ),

u|∂Ω = 0, on Ω× (0, T ),

u(0, ·) = u0.

Depending on the chosen fluid, the shape of the domain Ω and the mathematical modelling
other boundary conditions also appear, for example one might choose Neumann boundary
conditions, pressure boundary conditions or permeable wall boundary conditions. This are
by far not all thinkable boundary conditions. Besides, mixtures are possible. There are
cases, where this system, which still is mathematically difficult to solve, can be further
simplified. From a mathematical point of view, the non linear inertia term (u · ∇)u often
causes difficulties. In the case of a Stokes flow, which means that the cinematic viscosity
is appreciable bigger than the inertia term and also thermal influences are negligible, one
gets the time dependent Stokes system (with no slip boundary condition)

∂tu−∆u+∇p = f, in Ω× (0, T ),

div u = 0, in Ω× (0, T ),
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u|∂Ω = 0, on Ω× (0, T ),

u(0, ·) = u0.

In this system, the non-linear term has vanished and we see in Section 4.4 how one can use
the Helmholtz projection to simplify this system further, slinging out the pressure of the
equation. Examples of materials having high viscosity are syrup, honey and solid materials.
In contrast, most of the gases, water, alkanes or alcohols have a small viscosity. For systems
which have very small viscosity, i.e. fluids with minor internal friction, one can ignore the
term µ∆u and this yields to the Euler equation

∂tu+ (u · ∇)u+∇p = f.

Since we only consider incompressible Navier-Stokes equations in this work, we do not take
a closer look at the (more complicated) compressible case here.
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Birkhäuser, 1995.

[MB81] V. N. Maslennikova and M. E. Bogovskǐi, On the approximation of solenoidal
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