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DEUTSCHE ZUSAMMENFASSUNG

Der Large Hadron Collider LHC am CERN in Genf ist mit einem Umfang von 27 km und
einer aktuellen Schwerpunktsenergie von 13 TeV der leistungsstärkste Teilchenbeschle-
uniger der Welt. Hierbei werden zwei gegenläufig beschleunigte Protonstrahlen unter

anderen im Zentrum von dem Compact Muon Solenoid Experiment (CMS) mit einer Rate von
40 MHz zur Kollision gebracht. Die Kollisionsprodukte bzw. deren Zerfälle werden durch Messung
von Sekundärteilchen detektiert und analysiert, wobei das Physikprogramm sowohl Untersuchun-
gen zur Vervollständigung des Standard Models der Teilchenphysik als auch neue Phänomene
der Natur umfasst.
Im Zuge einer sequentiellen Erhöhung der instantanen Luminosität von bis zu 5×1034 cm−2s−1

sowie der Protonstrahlenergie zu 7 TeV steigen die Anforderungen an die Detektoren enorm. Die
erwartete höhere Teilchendichte führt sowohl zu einer erhöhten Strahlenbelastung der Detek-
toren als auch zu einer größeren Datenmenge. Um diesen Anforderungen während der Hochlu-
minositätsphase des LHC gerecht zu werden, werden die Subdetektoren ebenfalls verbessert
beziehungsweise weiterentwickelt. Der CMS Teilchenspurdetektor wird konzeptionell völlig über-
arbeitet und während einer langen Umbauphase, geplant für die Jahre 2024 bis 2026, komplett
ersetzt.

Der CMS Spurdetektor besteht aus Siliziumsensoren, worin die Ionisationsladung von durchge-
henden geladenen Teilchen an Elektroden gesammelt wird. Aktuell sind die Elektroden als
p-Typ Streifen implantiert in einem n-Typ Substrat. Die Siliziumsensoren des zukünftigen
Spurdetektors werden, im Gegensatz zum aktuellen Detektor, aus p-Typ Substrat sein. Diese
Entscheidung wurde auf Grund von umfangreichen kollaborativen Messkampagnen und Un-
tersuchen der Strahlenhärte von Siliziumsensorn in Abhängigkeit der Polarität getroffen. Die
in dieser Arbeit untersuchten p-Typ Sensoren weisen nach Bestrahlungen bis zu einer Fluenz
von Φ= 1×1015 neqcm−2, welche gegen Ende der Hochluminositätsphase erwartet werden, eine
höhere Ladungssammlungseffizienz im Vergleich zur Löchersammlung im n-Substrat auf. Jedoch
tretet bei dieser Technologie auf Grund eines positiven Potentials an der Oberfläche auch eine
Akkumulation von Elektronen auf, welche die Auslesestreifen ohne zusätzlicher Maßnahmen
kurzschließen würde.
Die Optimierung der Technologie, welche eine Unterbrechung dieser Anhäufung von negativer
Ladung zwischen den Sammelelektroden unabhängig von der Strahlenbelastung gewährleistet,
war ein wichtiger Bestandteil dieser Arbeit. Die Isolationstechnologie der p-Typ Sensoren hat
einen signifikanten Einfluss auf das Durchbruchsverhalten der Sensoren. Darüberhinaus wurde
innerhalb dieser Arbeit herausgefunden, dass eine zu hohe Dotierkonzentration der Isolation-
schicht zu zufällig verteilten Ladungsanhäufungen führt, welche von der Detektierlogik als
Teilchendurchgänge interpretiert werden. Andererseits sinkt bei einer zu niedrig kalkulierten
Dotierkonzentration der Isolationsschicht der Zwischenstreifenwiderstand mit Bestrahlung als
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direkte Folge der Akkumulationsschicht. Als Resultat sinkt die Auflösung der Sensoren auf Grund
von Ladungsteilung auf viele Streifen, sodass der Suchalgorithmus für Teilchendurchgänge keine
genauen Werte mehr liefern kann und eine zuverlässige Positionsbestimmung der Teilchen-
spuren unmöglich macht. Daher wurden drei verschiedene Produktionen mit unterschiedlichen
Herstellern der Halbleiterindustrie durchgeführt, wobei Testsensoren mit unterschiedlichen
Isolationscharakteristika auf den jeweiligen Wafern platziert wurden. Ein Vergleich vor und
nach Bestrahlung wurde durchgeführt, wobei jeweils eine elektrische Qualifizierung als auch
Ladunssammlungseffizienzen gemessen und verglichen wurden. Darüberhinaus konnten T-CAD
Simulationsstudien Messdaten reproduzieren und die Leistung von Sensoren in Abhängigkeit
wichtiger Parameter wie Dotierkonzentration und Dotiertiefe der Isolatiosschicht vorhersagen.
Die Kombination der experimentell bestimmten Daten sowie der Ergebnisse aus den Simulatio-
nen erlauben die Charakteristika der Streifenisolierung, welche der herausfordernden Umgebung
des HL-LHC standhalten kann, vorherzusagen.

Die Funktionalität eines neuen Modulkonzepts ist ein weiterer Schwerpunkt dieser Arbeit.
Um die erwartet höhere Teilchendichte auflösen zu können, werden im zukünftigen Spurdetektor
die Streifenlänge als auch der Streifenabstand im Vergleich zum aktuellen Spurdetektor verklei-
nert. Dies resultiert in einer erhöhten Anzahl an Kanälen, wobei auch die Datenmenge, welche
aus dem Detektor ausgelesen werden muss, ebenfalls steigt. Daher werden die Signalhöhen im
Analogteil des neuen Auslesechips mit einem Schwellenwert auf Modulebene verglichen und in
binäre Werte konvertiert. Informationen wie Pulshöhe werden nicht mehr aus dem Detektorvolu-
men transferiert, was schließlich zu einer Datenreduktion führt.
Darüberhinaus wird der Spurdetektor erstmals auch zur globalen Triggerentscheidung beitragen.
Dies wird ebenfalls mit Hilfe des neuen binären Auslesechips CBC realisiert. Dabei korreliert
eine Auslesechiplogik Treffer in zwei Sensoren, welche planparallel zu einander mit wenigen
Millimetern Abstand in einem Modul angeordnet sind. Auf Grund der Spurkrümmung von
geladenen Teilchen in dem 3.8 T starken Magnetfeld des CMS Experiments wird der Versatz
von Treffern der beiden Sensoren je Modul gemessen. Der Versatz ist auf Grund der Lorenzkraft
direkt mit dem Transversalimpuls korreliert. Übersteigt der Transversalimpuls einen Wert
von 2 GeV/c, so wird im CBC Datenstrom ein zusätzlicher Bit (Stub Bit) auf level high gesetzt.
Diese Stub Information wird mit der Kollisionsrate von 40 MHz ausgelesen und zur globalen
Triggerentscheidung genutzt.
Innerhalb dieser Arbeit wurde ein Auslesesystem basierend auf dem CBC aufgebaut, wobei
sowohl der Chip als auch die binären Daten qualifiziert wurden. Hierfür wurden die Chips und
Sensoren zu den erwarten Fluenzen bestrahlt und mit Messungen vor Bestrahlung verglichen.
Der Chip zeigt sowohl vor als auch nach Bestrahlung eine verlässliche Funktionalität, wobei
sich die Korrelationslogik wie erwartet verhaltet. Um dieses auch während realen Konditionen
zu beweisen, wurde ein Triggermodul, bestehend aus zwei Testsensoren mit je 254 Streifen
und zwei CBCs, konstruiert. Wie zuvor wurden die Sensoren und Auslesechips bis zu den er-
warteten Fluenzen bestrahlt und am SPS Beschleuniger am CERN in einem hochenergetischen
Teststrahl vermessen. Die Ergebnisse des Experiments mit dem Prototypmodul stimmen mit
den Erwartungen überein. Die Korrelationslogik des CBC generiert ein Stub Bit high, wenn
der Strahl im Suchfenster der Logik trifft (äquivalent zu einem Teilchendurchgang mit einem
hohen Transversalimpuls). Letzteres wurde durch ein Drehen des Moduls im Teststrahl simuliert.
Somit konnte das Triggermodulkonzept verifiziert werden, wobei weitere Teststrahlexperimente
bereits in Vorbereitung sind.
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Die Arbeit gliedert sich in drei Teile. Im ersten werden der Large Hadron Collider und das
CMS Experiment vorgestellt. Des Weiteren wird das Phase II Upgrade diskutiert, wobei ins-
besondere auf den Teilchenspurdetektor von CMS eingegangen wird. Das Verständnis eines
Siliziumsensors und dessen Eigenschaften in Anhängigkeit der Bestrahlung werden behandelt
sowie die Wechselwirkung von Teilchen mit Materie.
Im zweiten Teil werden experimentelle Ergebnisse hinsichtlich der Strahlenhärte und des Mo-
dulkonzepts diskutiert. Zuerst wird die Strahlenhärte der Silziumsensoren in Abhängigkeit der
Isolationsschicht sowohl mit Hilfe von T-CAD Simulationen als auch anhand von Messungen
behandelt. Dabei wird neben den elektrischen Eigenschaften auch auf die Ladungssammlungsef-
fizienz und die Auswirkung der Strahlenschäden eingegangen. Zusätzlich wird ein neues Sen-
sorkonzept, welches eine weitere Erhöhung der Anzahl der Auslesekanäle auf Sensorlevel erlaubt,
vorgestellt. Anschließend werden der CBC und die CBC Messstation thematisiert. Hierbei wird
die Stahlenhärte des CBC nach Röntgenbestrahlung erläutert. Im letzten Abschnitt des zweiten
Teils wird das Teststrahlexperiment am SPS sowie die ersten Analysen der gewonnen Daten mit
unbestrahlten und bestrahlten Triggermodulen vorgestellt.
Im dritten Teil wird eine Zusammenfassung der wichtigsten Erkenntnisse in dieser Arbeit
gegeben. Ein Ausblick über bestehende offene Fragestellungen hinsichtlich der Simulation und
Triggermodule sowie Vorschläge für ergänzende Messungen und Simulationen schließen den
letzten Teil ab.
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1
INTRODUCTION

The Large Hadron Collider at CERN is the most powerful particle accelerator ever built.

The collision of high intensity proton beams at a center of mass energy of up to 14 TeV

allows the exploration of the undiscovered territory at the TeV scale with great detail.

The high energy physics frontier covers detailed Standard Model (SM) physics like the search for

the SM Higgs boson, which has been found in July 2012, but also physics beyond the SM like the

Supersymmetry or studies of the quark-gluon plasma.

The production rate of certain events is correlated to the instantaneous luminosity which is a

measure for the number of detected events within a certain time with respect to the interaction

cross-section. In order to increase the statistics by collecting more data, the integrated luminosity

is maximized as far as possible. Simultaneously, an increase of the particle energy and the

luminosity reveals challenging experimental requirements for the trigger and detector systems

present at the LHC.

After a successful Run 1 of the machine between 2010 and 2013, the energy and the instantaneous

luminosity of the machine are sequentially increased up to the last, so called Phase II Upgrade

planned for the years 2024 and 2025. The high luminosity LHC will provide particle beams

with the final 14 TeV center of mass energy at an instantaneous luminosity of 5×1034 cm−2s−1,

which is five to seven times the nominal design luminosity. In the course of the Upgrade, the

experiments will face extraordinary radiation environments and particle densities and will also

have to be upgraded in order to cope with the challenging demands.

The Compact Muon Solenoid (CMS) at CERN is a general purpose experiment with a diverse

physics measurement program. It is built of several subdetectors. The innermost part consists

of the pixel detector and the silicon strip tracker. The latter will be replaced completely during

the Phase II Upgrade by a new layout in which a different silicon sensor technology and module
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CHAPTER 1. INTRODUCTION

design will be deployed.

Silicon strip and macro-pixel sensors in the future CMS experiment will face a fluence of up to

Φ= 1×1015 neqcm−2s−1 after an integrated luminosity of 3000 fb−1 and 10 years of operation

in HL-LHC conditions. Therefore, the radiation hardness of the sensors must guarantee high

charge collection efficiency which degrades with increasing radiation damage. Extensive radiation

damage and charge collection studies have been exercised in order to find the most suitable sensor

material and layout which will withstand the harsh operation environment. The key technology

has been decided to be p-type substrate in which electrons with a high mobility and less trapping

effects are collected by the readout electrodes. However, this technology requires detailed investi-

gations of the necessary isolation layer which prevents a build-up of an accumulation layer below

the sensor surface which would directly lead to a lower resolution of the tracker.

Furthermore, an elevated particle or track density requires a higher granularity. Hence the strip

length of the sensors and the strip pitch will be reduced resulting in more channels and as a

direct consequence more data which has to be transmitted out of the tracker volume. In contrast

to the current tracker, the signal level will be compared to a threshold by the new binary readout

chip CBC and just the binary hit information will be processed to the next instance.

In addition, the tracker will contribute to the global Level-1 trigger decision. The contribution

will be achieved by the correlation logic of the binary readout chip which detects hits on two

stacked sensors in one module. Depending on the particle curvature in the CMS 3.8 T mag-

netic field, the transverse momentum pT of the traversing particles is estimated on-chip and

compared to a programable threshold. Simulations indicate that rejecting hits from low momen-

tum particles in the range below 2 GeV/c reduces the data amount by several orders of magnitude.

The radiation hardness of silicon strip sensors for the Phase II Upgrade was investigated with

respect to the breakdown voltage and charge collection efficiency. Furthermore, the concept of the

transverse momentum discriminating trigger modules was studied.

In chapter 2, the Large Hadron Collider at CERN and the CMS experiment will be introduced in

more detail. Especially the different readout options (analogue vs. binary) of the current and the

future tracker are discussed. Chapter 3 covers the Phase II Upgrade plans of the CMS Tracker.

Here, the new current baseline of the future tracker layout is described as well as the concept

of the trigger modules, both with the background of the fluence and dose which is estimated

with the help of FLUKA simulations. Chapters 4 and 5 deal with the concept of particle tracking

detectors equipped with silicon sensors. In particular, the radiation damage as well as the impact

on the sensor performance are discussed. A brief summary of extensive measurement campaigns

within the CMS Tracker and RD50 collaborations leading to the decision on the future sensor

substrate polarity is presented.

The analysis and results part starts with T-CAD simulation studies. Main interest of the simula-

tions was, firstly, to reproduce data of measured sensors before and after irradiation. Secondly,
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predictions of the breakdown and charge collection efficiency were performed with the help of

validated radiation damage models which allow accurate simulation studies of irradiated samples

up to a fluence of Φ= 1.5×1015 neqcm−2s−1. In this study, several wafers with different sensor

layouts and test structures were designed. The workflow and the most important sensor layouts

are covered in chapter 7. After the production of the most promising sensor layouts following

the simulation studies, irradiation studies were conducted. Chapter 8, deals in particular, with

the results with respect to the p-type isolation which significantly affects the overall sensor

performance. A recommendation on the isolation technique as a consequence of the simulation

and irradiation studies is presented.

In chapter 9, the CMS binary chip CBC will be introduced in more detail. A setup was built in

order to investigate both the CBC and the performance of a small scale readout system based

on the CBC connected to non-irradiated and irradiated silicon strip sensors. In order to prove

the concept of the low pT discrimination, 2S mini modules were built and tested in test beam

conditions. The layout of the mini modules, the test beam setup and goals as well as the results

showing the efficiency of the pT discrimination are summarized in chapter 10. A conclusion on

the presented studies and an outlook are given in chapter 11.
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2
LHC AND CMS

The Large Hadron Collider (LHC) at the European Organization for Nuclear Research

(CERN) [CER] near Geneva/Suisse is the world’s largest and most powerful particle

accelerator and has been designed to collide counterotating high-intensity proton beams

with a center of mass energy
p

s of up to 14 TeV at a frequency of up to 40 MHz. The proton

bunches collide in the center of the Compact Muon Solenoid (CMS) [The08] experiment and the

products of the collisions are detected in several sub-detectors of CMS.

In this chapter, the LHC and the CMS experiment will be briefly introduced.

2.1 The Large Hadron Collider

The LHC is the last accelerator of a complex of machines with increasingly higher energies, see

figure 2.1. It is filled with protons from pre-accelerators and accelerates the particle bunches to

an energy of each beam up to about 7 TeV, resulting in a center of mass energy of
p

s of 14 TeV.

In order to achieve these high beam energies, the LHC has a circumference of approximately

27 km, since the maximum energy is a function of the radius and the magnetic field of the

superconducting magnets. It is roughly 100 m below ground level due to geological considerations

and situated between Lake Geneva and the Jura mountains.

In table 2.1, the kinetic energy and speed of the particles after each accelerator in the chain are

presented. This high energy and speed in a circular accelerator allows collisions of hadrons only

because the about 2000 times lighter electrons would lose to much energy per circulation due to

synchrotron radiation. The most important parameters of the LHC are listed in table2.2.
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Figure 2.1: The LHC complex at CERN. First, decoupled protons from hydrogen atoms are
accelerated in the Linac2 and than injected into the PS Booster to be further accelerated in the
PS and SPS machines. After that, the particles have a kinetic energy of about 450 MeV and a
speed of 99.9998 % of light speed. At this energy, the particle bunches can be injected into the
LHC where they reach their nominal energy and speed, [CER09].

Table 2.1: Kinetic energy and speed of a proton after each accelerator, [CER09].

Kinetic energy of a proton Speed (%c) Accelerator
50 MeV 31.4 Linac 2
1.4 GeV 91.6 PS Booster
25 GeV 99.93 PS
450 GeV 99.9998 SPS
7 TeV 99.9999991 LHC

2.1.1 Definition of luminosity L

One important quantity in table 2.2 in respect to statistics for data analysis of very rare events

is the luminosity which, after the energy, is the second most important qualification of a beam

collider. The luminosity is the proportionality between the number of events per second dR/dt

and the cross section σp of an event, which is a measure of the probability that an event

occurs, [HM06]:

(2.1)
dR
dt

=L ·σp.

The unit of the luminosity is cm−2s−1.
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Table 2.2: Importamt parameters of the LHC, [CER09]

Quantity number
Circumference 26659 m
Dipole operating temperature 1.9 K
Number of magnets 9593
Number of main dipoles 1232
Number of main quadrupoles 392
Number of RF cavities 8 per beam
Nominal energy for protons 7 TeV
Peak magnetic dipole field 8.33 T
Min. distance between bunches 7 m
Design luminosity 1034 cm−2s−1

No. of bunches per proton beam 2808
No. of protons per bunch 1.1×1011

2.1.2 Definition of integrated luminosity Lint

In order to define a measure for the real observed events, the integrated luminosity has to be

taken into account after [HM06] which is:

(2.2) Lint =
∫ T

0
L (t′)dt′,

and hence can be related to:

(2.3) Lint ·σp = number for events of interest.

The aim of the operation of a collider must be to optimize the integrated luminosity.

2.2 The Compact Muon Solenoid

In figure 2.1 one can see that the machine provides collisions in several experiments at CERN. The

four most prominent experiments indicated in the figure are: The Compact Muon Solenoid (CMS),

the Toroidal LHC Apparatus (ATLAS) [ATL], the LHC-b experiment [LHC] and A Large Ion

Collider Experiment (ALICE) [ALI]. CMS and ATLAS are the two general purpose experiments

with a congruent measurement program. Both complex experiments collect data and thousands

of scientists search with these data for new particles, like the Higgs boson, new phenomenology in

physics as well as for supersymmetry or extra dimensions. The asymmetric design of the LHC-b

detector allows the study of B mesons which most likely traverse the detector in forward direction.

B mesons are interesting due to their behavior which is linked to a range of quantum phenomena.

ALICE studies the conditions shortly after the big bang with the quark gluon plasma, the very

early state of material in the universe.

A detailed overview of the physics program of the experiments at the LHC is given in [Gia04].
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2.2.1 Requirements for the CMS detector

In order to face the tremendous physics program at the LHC, the CMS detector has to fulfill

several requirements. A short summary of the requirements has been extracted from [The08]:

• A robust, precise and efficient reconstruction of trajectories of charged particles

• Radiation hard detectors and electronics due to the harsh radiation environment

• Sufficient muon identification and momentum resolution as well as the determination of

the muon charge

• Efficient track reconstruction, especially for the inner tracker (pixel detector) and sufficient

trigger capability

• Good electromagnetic energy resolution and a wide range coverage

• High missing transverse energy resolution

These requirements were driving the layout and construction of the CMS experiment leading

to an onion-like assembly of sub-detectors, each with a dedicated task in order to determine all

necessary parameters of the traversing particles for further physics analysis. A short description

of the layout and the sub-detectors is given in the next subsection.

2.2.2 General design of the experiment

Figure 2.2 indicates the CMS detector from perspective view where all sub-detectors are visible.

The experiment is about 21 m long, 15 m wide and 15 m high. The overall weight is roughly 14000

tonnes in which 12000 tonnes are ascribed to the iron/steel return yoke in order to guide and form

the 4 Tesla strong CMS magnetic field. The magnetic field allows the determination of a traversing

particle’s momentum by tracking its bent path through the detector. The size of the experiment is

entitled to accurate calculations of the particle momentum by taking several measurements along

its path. Furthermore, the partially very high energies of traversing particles have to be absorbed

by a huge amount of material, again leading to the actual size of the experiment. Describing the

detector from the outer to the inner sub-detectors one can divide the experiment as follows:

• The muon system [Tey10]: Besides the detection of muons, the muon system also triggers

and measures the transverse momentum. In order to achieve the requirements, the system

has been designed with three different technologies. It consists of drift tubes (DT), cathode

strip chambers (CSC) and resistive plate chambers (RPC). All three technologies have in

common that traversing particles ionize the gas contained in the tubes and plates. The

knocked off electrons and positive ions drift along the electric field inside the detectors

leading to a position determination and trigger capability due to closely spaced wires.
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Figure 2.2: The CMS detector from perspective view [The08].

• The solenoid magnet and iron return yoke [The10]: An important key role of the CMS

experiment is its superconducting magnet enclosed inside a 12,000 tonnes iron return yoke.

The yoke ensures the homogeneity of the magnetic field in the tracker volume and the

return of the magnetic flux to the solenoid, thereby reducing the stray field. With the 3.8

Tesla strong magnetic field, the determination of particles’ momenta due to their bent paths

inside the detector is implemented.

• The hadron calorimeter [CMS10b]: Consisting of sampled massive absorbers and plastic

scintillators which produce a blue-violett light pulse in repeated layers, the hadronic

calorimeter measures the energy of hadrons like protons, neutrons, kaons and pions.

• The electromagentic calorimeter [CMS10a]: Electromagnetically interacting particles like

electrons and photons deposit their energy in the electromagnetic calorimeter producing

showers. The requirement for high energy resolution is stringent in oder to be sensitive

on the Higgs boson decay into two photons. Therefore, lead tungstate crystal scintillators

are used in which electrons and photons deposit energy. The produced scintillation light is

proportional to the particle energy.

• Tracking detector [ftC14]: About 206 m2 of silicon sensors divided into a pixel detector in the

inner part and a strip detector surrounding the pixel modules represent the tracker of CMS.

Positioned within the solenoid magnetic field, the tracker is able to provide momentum
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Figure 2.3: Schematic cross section through the CMS tracker. Each line represents a detector
module.

information of passing charged particles by reconstruction of their bent paths due to the

Lorenz force. A more detailed description of the tracker is given in the next section.

2.2.3 The inner tracking system

Informations presented in this section are mainly derived from [The08], if not stated otherwise.

In order to reliably distinguish between the high density of particle paths, the tracker provides

position measurements with an accuracy of about 10 µm. Such high track resolution requires a

dense arrangement of thousands of silicon sensors at which the distance between the readout

channels per sensor is in the range of a few tens to hundreds of micrometers, depending on

the module position in the tracker. Simultaneously, the construction is conditioned to be as

lightweight as possible for the purpose of minimizing multiple scattering, bremsstrahlung and

nuclear interactions. On average, approximately 1000 charged particle tracks out of 20 proton-

proton events per bunch crossing (pile-up) at up to 40 MHz occur. Therefore, the tracker must

feature high granularity and fast response. These constraints have been implemented in a 5.8 m

long tracker with a diameter of 2.5 m surrounding the center of the interaction point.

At the design luminosity of 1034cm−2s−1, a hit rate of 1 MHz/mm2 at a radius of 4 cm from the

collision point falling to 3 kHz/mm2 at the radius of 115 cm was expected. Therefore, the tracker

layout is comprised of a high resolution pixel detector with three cylindrical layers at 4.4 cm, 7.3

cm and 10.2 cm from the interaction point. In order to cover the forward region as well, two disks

equipped with pixelated sensors complement the vertex detector.

With falling particle hit density, the need for high granularity decreases slightly, hence the pixel

detector is surrounded by a silicon strip tracker with lower but sufficient resolution with the
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advantage of the need for less electronics. The strip tracker is divided into inner barrel layers

(TIB) with inner end caps (TID) where both TIB and TID are surrounded by the tracker outer

barrel layers (TOB). Comparable to the pixel detector, the strip tracker is also complemented by so

called end cap disks (TEC). As the strip modules arrangement varies a lot in thickness, pitch and

layout of the sensors, the details are not further discussed for simplicity but can be looked up in

chapters 3.1 and 3.2 in [CMS98]. A schematic cross section of the CMS tracker is shown in figure

2.3. The choice for the tracking system layout keeps the occupancy at or below 1% in order to

ensure reliable distinction of particle paths. Additionally, the TID/TEC cover the pseudorapidity

η=−ln tan(θ/2) up to |η| < 2.5, where the polar angle θ is measured from the z-axis. This range is

required by the LHC physics program in order to achieve precise reconstruction of trajectories of

charged particles which also fly in the very forward direction [CMS].

2.2.4 Analogue pipeline ASIC APV25

The silicon strip sensors generate signals which are amplified and shaped by the analogue APV25

read-out chip with 128 channels fabricated in 0.25µm CMOS technology [ea00], [FJM+01]. In

combination with thin gate oxide and layout adjustments, this technology ensures radiation

hardness and low noise with a high circuit density. Detected signals from the sensors are

integrally amplified. The information of the pulse height of signals on the strips is important and

used too. A comparison of the signal heights with the charge center-of-gravity method improves

the position resolution to sub-strip range. On the example of two strips one can calculate the

resolution σx to:

(2.4) σx ∝ p
SNR

with x = x1 +
h2

1

h1 +h2
(x2 − x1).

X1 and x2 denote the positions of the first and the second strip, where h1 and h2 stand for the

signal heights on the corresponding strip. P is the strip pitch and SNR is the signal to noise ratio.

Hence, a low strip pitch and a high SNR result in a higher resolution of the hit detection.

(a) Schematics for one APV25 channel
(b) Pulse shapes for peaking and deconvo-
lution modes.

Figure 2.4: The APV25 logic and pulse shapes for two different modi operandi [FJM+01]
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The resulting pulses are formed by a CR-RC shaper with a peaking time of 50 ns. The

APV25 contains a 192 column analogue memory into which data is stored with the LHC 40 MHz

frequency and read out after the trigger decision. Two modi operandi have been implemented

in the chip, the peaking and the deconvolution mode. In the first mode, each cell is read out

separately with a peaking time of 50 ns which is too slow for accurate time distinction of events

at the LHC frequency. In the deconvolution mode, the APSP1 reads tree channels sequentially

and a weighted sum is the output, see figure 2.4(b). This re-shaping results in a 25 ns peaking

time which is suitable to the collision rate at LHC experiments. The output is then sampled and

held and directly fed into the 128:1 Multiplexer with one resulting differential current output

which is then transferred out of the detector by optical fibers.

2.2.5 The CMS trigger system

At the current full LHC luminosity, the CMS experiment records more than 1000 particle tracks

within about 20 pile-up events with 25 ns bunch crossing time. As the typical event size is 1-2

MByte, the data throughput would be around 1TByte/s for 109 events per second [Jei14]. This

amount of data cannot be read out with the LHC frequency and successfully processed. Therefore,

a two stages trigger system for the CMS Experiment has been designed and implemented. The

main task is the selection of high interest events while suppression of events of less interest has

to be given.

The first level in the trigger decision is the Level-1 (L1) trigger which is implemented in ASICs2

and programmable FPGAs3. L1 reduces the data stored in 3.2 µs deep front-end pipelines from the

40 MHz LHC frequency to 100 kHz. After a positive L1 decision (L1 Accept), data corresponding

to a certain bunch crossing is fully read out and processed by the High-Level Trigger (HLT). The

latter is a completely software based trigger system where full reconstruction of the events and

data storage are executed with an overall event selection of about 100 Hz.

The existing L1 Trigger uses just a part of the full detector information for the decision provided

by the muon sub-detector and the calorimeters. Data from the tracker is only available for the

HLT after a positive L1 decision.

1Analogue Pulse Shape Processor
2Application-Specific Integrated Circuit
3Field Programmable Gate Array
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THE PHASE II UPGRADE

The Large Hadron Collider (LHC) accelerator is being upgraded in several steps. In the

next step, the machine will increase the energy of accelerated protons from 6.5 TeV to

7 TeV and the delivered luminosity which was introduced in 2.1.1. Higher energy and

collision rate ensure an extended physics program for the experiments situated at CERN. In

particular, very rare events with small cross sections and physics beyond the standard model

of particles need higher statistics ensured by the increased luminosity. In order to fully profit

from the high luminosity LHC (HL-LHC), the CMS experiment undergoes a step-by-step upgrade

too. This includes the sub-detectors as well as the trigger system. The following sections shortly

describe the upgrade plans of LHC and CMS with respect to the Phase II Tracker upgrade.

3.1 LHC upgrade in a nutshell

The LHC ramped up its energy up to 8 TeV during its first four years of operation. The design

peak luminosity of 1034 cm−2s−1 has almost been reached with 7.7×1033 cm−2s−1 at the end of

November 2012. The first long shutdown called LS1 started in February 2013 with the aim of

increasing the LHC energy of pp collisions to
p

s = 13−14 TeV and the peak luminosity to the

design value. A further long shutdown is scheduled for 2019 (LS2) where the injector and the

LHC will upgrade to twice the design luminosity of 2×1034 cm−2s−1 at a center of mass energy ofp
s = 14 TeV with a 25 ns bunch spacing. At this point, the luminosity will already reach values

beyond the design luminosity. In the subsequent run, the machine will deliver about 300 fb−1 of

pp collisions [RR14]. Due to its interesting discoveries, high potential for precise measurements

as well as new physics frontiers, the LHC physics program will be prolonged for an additional

10 years after the last planned long shutdown during the LS3 scheduled for 2024. During this
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Figure 3.1: The sketches show the current CMS tracker upgrade baseline layout. Blue lines
indicate the positions of the PS modules whereas the red lines represent the 2S modules [Mer14].

future run, the aim is to collect 3000 fb−1 of data.

3.2 Upgrade of the CMS Tracker

As a consequence of this long physics run with high luminosity, the CMS detector has to be

upgraded as well in order to manage the increasing demand for radiation tolerant subdetectors.

In particular, the whole CMS tracker, including the pixel detector and strip detector, will be

replaced completely (but some services) during the long shutdown in 2024 because the current

tracker would suffer from thermal runaway of the silicon detectors due to the steadily increasing

leakage current as a consequence of the radiation damage. For years now, the CMS tracker

collaboration has been investigating several material technologies for silicon detectors which

have to be able to withstand the harsh expected radiation environment. Besides the radiation

tolerance of the silicon detectors, the tracker layout has to be redesigned in order to assure

sufficient reconstruction of particle tracks despite the increasing track density with the overall

aim of material reduction to achieve a low radiation length. Thus, the channel granularity must

be increased to keep the overall occupancy of the detector below 1%. Moreover, information for

the trigger system of the CMS experiment have to be processed already at tracker level in order

to achieve a Level-1 trigger rate of a few hundreds kHz. This fact requires, in comparison to the

trigger system described in 2.2.5, a completely new detector module layout and readout ASICs

(see section 3.2.3).

Some of the demands mentioned in this section were investigated and will be described in more

detail in the following chapters.

3.2.1 Tracker layout for HL-LHC with trigger contribution

In comparison to the tracker layout shown in figure 2.3, the new design will cover the pseudo-

rapidity up to |η| < 4.0, hence the capabilities of CMS to cover a wider physics program will be
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Figure 3.2: The pT spectrum (averaged per event) for all minimum bias particles that generate
stubs in a stacked layer under HL-LHC pileup conditions. Results are for a stacked layer at 25 cm
with a sensor separation of 1 mm and a row correlation window of 3 strips [PH10].

enhanced. Furthermore, the modules will be double-sided, meaning that two stacked sensors

with a separation of several millimeters depending on the module placement in the tracker will

be connected to common hybrids equipped with the readout electronics. Two options for these

modules will be implemented. The “PS module“ will be built of two stacked sensors in which

one sensor will be a pixelated and the other one a microstrip sensor. PS modules will cover the

range of the tracker between R~20 cm and R~60 cm . The “2S module“ will consist of two stacked

microstrip sensors and will be mounted in the outer regions of the tracker at ~R> 60 cm .

The baseline tracker layout for the HL-LHC era is sketched in figure 3.1. Figure 3.1(a) shows

the quarter section of the tracker. Point (0,0) is the interaction point of the proton beams in the

very center of the experiment. Figure 3.1(b) is the front view of the future tracker. This layout is

the result of extensive simulations using Monte-Carlo methods and a special software package [G.

14]. Further studies on the most promising geometrical position of the modules are ongoing as

well as the search for the optimal pixel detector geometry. The latter will not be discussed any

further.

3.2.2 Concept of pT trigger modules

The L1 trigger will be upgraded to a rate of ~750 kHz and a latency of 12.8 µs. The new tracker

layout takes the L1 trigger into account and allows the addition of track information to the L1

decision. The data from the modules is read out with 40 MHz rate which would result in a huge

bandwidth. In order to achieve the goal of track information at L1, the pT trigger modules concept

has been chosen.
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Figure 3.3: The sketch illustrates the trigger module concept described in 3.2.2. The blue track
of a particle passes the searching window in the outer tracker and a stub is generated. The red
track fails due to low particle momentum [ea14a].

Charged particles are bent on their track in the 3.8 T magnetic field depending on their transverse

momentum following the Lorentz law. With two stacked sensors and common readout ASICs with

hit correlation logic, the data throughput can be reduced by one order of magnitude if a threshold

of 2 GeV is applied [AM12] by rejecting particles with transversal momentum below 2 GeV at

module level.

The rejection itself is achieved by correlating hits of two closely-spaced sensors. The spacing will

be 1.6, 2.6 and 4.0 mm for the PS and 1.8 respectively 4.0 mm for the 2S modules. In this scope,

the module position in the tracker is the decisive factor. The front-end electronics at the edges of

the modules are capable of detecting the signals from both sensors in the module. After a hit of

the inner sensor from the interaction point of view, the correlation logic of the ASICs searches for

a hit in a programable searching window in the outer sensor. The window size is programable in

±1 strip pitches up to ±8 times the pitch. If the hits in both sensors are within the window, a

stub is generated which implies a particle with high momentum and of interest. In case of a hit

outside the searching window due to a low pT particle and hence strong bending, the track will be

rejected. As for the sensor spacing within one module, the size of the searching window depends

on the module position. The stub data is processed at bunch crossing rate while the hit data is

stored in the up to 12.8 µs (512 × 25 ns bunch crossing rate) deep front-end pipeline which will

be read out after the trigger L1 accept. The stub finding logic is illustrated in figure 3.3.

3.2.3 CMS Binary Chip (CBC) - ASIC for 2S pT modules

The new ASICs for the 2S trigger module will be the CMS binary chip (CBC). After a first

successful submission of the CBC1 and several tests of it, the CBC2 which is the current version

of the ASIC has been designed in 130 nm CMOS process and delivered in early 2013. The CBC2 is

a 254-channel binary readout front-end with correlation logic and optimized for the application in

2S modules. The analogue front-end consists of a preamplifier, a gain amplifier and a comparator,
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Figure 3.4: Analogue front-end scheme of the CBC for one channel [Bra13].

Figure 3.5: The CBC stub finding logic for correlation of hits [ea14b].

see figure 3.4. The channels of the chips are bonded alternately to the inner and outer sensor,

allowing the correlation of hits in both sensor levels. After detection of the signal, the output

voltage of the preamplifier is again amplified by the capacitive gain respectively post-amplifier.

The following pulse is detected by the comparator if the pulse height exceeds the programmable

comparator threshold (vcth). A binary “1“ indicating a hit and a “0“for no hit will be produced for
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CBC

Readout hybrid

Service	hybrid

Figure 3.6: The 2S trigger module from perspective view and an in picture exploded view to
visualize the arrangement of two sensors [Ros15].

each channel at bunch crossing rate and sampled into the pipeline RAM.

The stub finding logic is shown in figure 3.5. After hit detection, the cluster width discrimination

(CWD) rejects huge cluster widths1 depending on the CBC setting. The CWD can be varied

between one and three strips. Clusters bigger than 3 strips are always discarded as they are

attributed to low momentum particles. The center strip of the CWD output is than the reference

position of the inner sensor and the correlation logic checks for valid clusters (within the searching

window) in the outer sensor. After validation, the strip of the inner sensor is considered as a valid

stub [ea14b]. The outputs for all channels of the coincidence logic are ORed and latched into the

stub shift register if a stub is found. This is a test feature of the current chip version and a full

stub readout will be implemented in the next and probably last version (CBC3, scheduled for

2016).

3.2.4 2S pT modules

The 2S trigger modules will consist of two approximately 10 cm × 10 cm silicon strip sensors. A

CAD drawing of the current module design is shown in figure 3.6. The strips of the sensors (each

2×1016 strips) are parallel to each other in order to assure the stub finding logic. A feature of the

sensors is the segmentation of the strips into 90 µm × 5 cm strips. This increases the granularity

accounting for the high track density. The 16 CBC ASICs are bump-bonded to two flexible readout

hybrids. The readout hybrids feature routing lines to wire bond pads. This arrangement assures

the connectivity of the inner and outer sensor to one hybrid or rather one chip row. Therefore,

two hybrids with each 8 CBCs at the opposite ends of the sensors are necessary. In addition, a

1Number of simultaneously firing adjacent strips
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Figure 3.7: Exploded view of the current PS module baseline [CMK+14].

service hybrid holding the powering, optical converter and a 5 Gbs link is mounted. The design is

driven by several needs concerning heat transfer, low mass to keep the radiation length minimal

and a reproducible production. Optimization using finite element analysis is ongoing.

Considering the 2S module, within this thesis radiation tolerant sensor technologies have been

optimized and studied. Furthermore, a setup with a dedicated CBC readout chain has been

build2 and the prove of principle of such trigger modules has been investigated during test beam

conditions. The results are discussed in the later chapters.

3.2.5 PS pT modules

Comparably to the 2S module concept, the PS module provides high pT particle information by

correlation of hits on two sensors. In the case of the PS module however, the inner sensor is

a macro-pixel sensor with a cell size of 100 µm × 1.4 mm. The choice for PS modules for the

inner three layers of the outer tracker barrel is due to the higher density of tracks next to the

interaction point where a higher granularity and information along the y coordinate is necessary.

This concept requires additional readout ASICs for both, the pixelated sensor and the strip sensor.

16 Macro Pixel ASICs (MPA) will be directly bump-bonded to the 5 cm × 10 cm pixelated sensors.

The strip sensor ASICs (SSA) are not yet defined. The strip sensor will be segmented in 100 µm

2within the CMS tracker collaboration
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× 23 mm and wire-bonded to the readout hybrid. The cross section of a possible layout of the PS

module is illustrated in figure 3.7.

High particle density at increased luminosity requires radiation tolerant sensors. In addition to

the strip sensors, for the first time the pixelated sensors for the PS module application have been

designed, produced and investigated on the electrical properties and signal quality before and

after irradiation.

3.3 Radiation environment

In the previous sections the upgrades of the LHC and the CMS have been described shortly. The

increased instantaneous luminosity after 2024 is equivalent to a higher particle hit density per

area in the detector. FLUKA studies allow the simulation and estimation of the expected particle

fluence for the HL-LHC era. With the help of this tool, the radiation level of the CMS cavern

can be visualized. The following presented studies on radiation tolerant sensor and ASICs refer

to the estimations from the FLUKA plots. The Monte Carlo estimation of the expected fluence

for proton beam energies of 7 TeV with the new tracker layout is shown in figure 3.8 [FLU15].

Like in figure 3.1, the interaction point of the proton beams is at point (0,0). The fluence is

given in 1 MeV neutron equivalent damage in silicon. This unit is taken in order to compare

different particle energies and interaction mechanisms following the NIEL3 damage law. Hadrons,

neutrons, photons and electrons are implemented depending on their spectra. The maximum

fluence on the sensors depends on their position in the tracker. Clearly, the innermost and very
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forward regions are exposed to the highest radiation levels. The plot represents the expected

exposure after 10 years of operation equivalent to 3000 fb−1.

From the plot one can see, that the innermost layer of the future outer tracker will suffer from

Φ= 1×1015 neqcm−2. As a consequence, the new silicon detectors for the HL-LHC era have to

withstand this harsh radiation level and provide reliably signals even after 10 years of operation.

Therefore the sensors under test which have been designed and produced within this thesis

have been irradiated with protons and neutrons up to Φ= 2×1015 1MeV neqcm−2. The safety

margin of about 100% should guarantee sufficient sensor performance if for instance by chance

the FLUKA simulations underestimate the particle fluence.

Not only bulk damage affects the overall sensor performance but also the surface damage

especially during the HL-LHC lifetime. Here FLUKA simulations predict a dose higher than

1×105 Gy after 3000 fb−1. Therefore a detailed studies in the sensor surface damage as well as

the radiation hardness of the future readout chips have to be executed.

A more detailed description of the irradiation will follow in the corresponding chapters.
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4
SENSORS BASED ON SILICON

S ilicon tracking detectors have been successfully used in high energy physics experiments

for decades now. While the first experiments during the 1970s used some mm2 area of

silicon sensors, the current biggest ever built silicon detector of the CMS experiment

consists of more than 200 m2 . The reasons for using silicon for tracking applications in high

energy experiments are manifold. First of all, the element silicon is available in huge amounts

and can be easily obtained from the upper earth crust at relatively low costs. Secondly, silicon

has revolutionized the electronics industry and is therefore well known, both in industry and

research. Furthermore, passing ionizing particles deposit their energy while interacting with the

silicon lattice respectively the electrons. Thereby, ~75-80 free electron-hole pairs are generated

per µm distance in silicon, hence the amount of generated charges in 100-500 µm thick detectors

is relatively high and due to fast carrier mobilities, the charges can be collected within a few

nanoseconds. These characteristics are the main decisive facts leading to large area applications

of silicon for tracking devices.

In the following chapter, some of the silicon properties will be introduced in more detail. After

understanding silicon as a semiconductor and its properties for silicon tracking detectors, the

silicon strip sensors for HEP experiments will be introduced. As the sensors are used in harsh

radiation environments, lattice and surface damage must be considered and discussed.

4.1 Silicon properties

Silicon is a tetravalent metalloid with the atomic number 14. The silicon lattice has a diamond

structure and is visualized in figure 4.2. Tetravalent means that each silicon atom has four

neighboring silicon atoms. The covalent bonding is due to sharing eight electrons between

five silicon atoms, forming the crystal lattice. Silicon is a semiconductor, hence the electrical
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(a) (b)

Figure 4.1: Silicon tetravalent lattice with diamond structure. (a) 3D orientation and (b) two-
dimensional representation after [Kit96].

conductance is somewhere between the conductivity of a metal and an isolator. Semiconductors

vary in the specific resistivity between 10−4 Ωm and 107 Ωm [Hun07]. At 0 K of the absolute

temperature, semiconductors behave like isolators. In this state, all electrons are arranged in the

valence band, the top most band filled with charge carriers. The conduction band on the contrary,

is completely unoccupied. The energy needed to overcome the barrier between the valence band

EV and conduction band EC is called the bandgap energy EG:

(4.1) EG =EC −EV (=1.12 eV at 300 K for Silicon).

With increasing temperature for instance, charge carriers may overcome the bandgap, occupy

one of the next higher energy levels and contribute to conductance as free charge carriers in the

conduction band1. This bandgap is responsible for the electronic properties of semiconductors and

in case of silicon, the bandgap energy of 1.12 eV at T= 300 K is particularly useful for tracking

detectors.

Intrinsic case

In semiconductors, electrons and holes contribute to the conductivity. Hence, the conductance can

be expressed as [Hun07]:

(4.2) σ= e× (nµn + pµp),

in which n and p are the densities of free electrons and holes, accordingly µn = 1350 cm2V−1s−1

and µp = 450 cm2V−1s−1 are the electron and hole mobilities [Har09]. In order to obtain the

electron density in the conduction band, one integrates the product of the density of state DC(E)

and the Fermi-Dirac function f(E,T). In a similar way, the hole density can be calculated where

the occupation probability of an energy band for the holes is (1− f(E,T)):

(4.3) n =
∫ ∞

EC

DC(E) f (E,T)dE and p =
∫ EV

−∞
DV (E)[1− f (E,T)]dE.

1definition of “semiconduction“
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For the integration limit, it is allowed to take infinity because just the lowest states in the

conduction band are of interest due to the quickly decreasing fermi function with increasing

energy, where the fermi function is defined as:

(4.4) f (E,T)= 1

e
E−EF
kBT +1

for E > EF

and

(4.5) 1− f (E,T)= 1

e
EF−E
kBT +1

for E < EF .

EF is the energy at which the occupancy probability for the electronic states is 50%. The density

states in equation (4.3) is given by:

(4.6) DC(E)= (2m∗
n)

3
2

2π2~3

√
E−EC for E > EC

and

(4.7) DV (E)=
(2m∗

p)
3
2

2π2~3

√
EV −E for E < EV .

The energy range EV < E < EC does not allow any electronic states. The effective masses mn =
0.32me and mp = 0.26me depend on the crystal orientation [Kit96].

In the intrinsic case and in thermal equilibrium state, the density for free charge carriers can be

simplified to:

(4.8) ni = pi =
√

NC NV e
−EG
2kBT .

Here, the “i“ indicates the intrinsic case, NC and NV are the effective densities of states. The

intrinsic charge carrier density for silicon is ni = 1.1×1016 m−3 .

Extrinsic case - doping of semiconductors

Semiconductors without any impurities are intrinsic and the electrical properties can be calcu-

lated as shown in the section before. Extrinsic semiconductors are intentionally doped semicon-

ductors. This means that atoms in the lattice are replaced by foreign atoms (“impurities“), which

introduce further energy levels. In general, electrical properties can be tuned by doping. One of

the effects is that the conductivity of semiconductors can increase by several orders of magnitude

in comparison to the intrinsic case. Silicon is a group IV element with 4 electrons in the outer

shell. By doping silicon with group III elements like boron, one introduces one electron less than

expected by the lattice resulting in a p-type acceptor level EA. From now on, we will call this type

of silicon p-type. As a consequence, additional energy level above the valence band are generated.

Taking group V elements like phosphorus for the doping, energy levels ED below the conduction
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(a)
(b)

(c) (d)

Figure 4.2: Introduction of group V elements: (a) lattice with impurities and (b) additional
shallow donor level. For group III elements holes are left over shown in (c) with a resulting
shallow acceptor level shown in (d) [Spi05].

band are introduced and the semiconductor is called n-type donator, or simply N-type, due to the

additional negative free charge. In figure 4.2, one can see that impurities depending on their

outer shell number of electrons introduce additional shallow energy levels in the bandgap.

Usually, the doping concentration is several orders of magnitude higher than the intrinsic

case, therefore n in (4.8) can be expressed by ND for N-type silicon. For P-type silicon p is replaced

by NA. Now the effective charge carrier density can be calculated according to [Hun07]:

(4.9) n =
√

NC ND

2
e

−Ed
2kBT ,

with Ed = EC −ED .

Doping of semiconductors is realized by implantation or diffusion processes at high temperatures

exceeding 1000◦C and up to hundreds of keV Energy for the dopants.

4.2 pn-junction

The CMS tracking detector with more than 200 m2 of silicon sensors is based on the electrical

properties of a pn-junction, also well known as a diode. Here, p-type doped material is in

direct contact with n-type doped material and vice versa. Initially, n- and p-doped materials are

electrically neutral because the number of existing positive ionized atoms and free negative charge
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carriers is equal. Due to the contact of oppositely doped regions and the resulting concentration

gradient, electrons diffuse from the n-doped region to the p-type region until the fermi level

is equalized and recombine. The holes drift from the p-type to the n-type region. The positive

dopants in the n-side and negative acceptors in the p-side however remain due to the crystal

lattice boundary. Thus, a net positive charge arises in the n-type region and a negative one

in the p region, creating an electrical field which counteracts the diffusion process due to the

concentration gradient. As a consequence, a region free of mobile charges is formed, also called

the space charge region (SCR).

Width of the space charge region

The width w of the SCR is one of the crucial properties of a pn-junction, which are used in the

silicon detectors, therefore a quick derivation of the space charge region following [LR09] is

executed. Starting from the Poisson equation, the electrostatic potential Ψ, the electric field E

and the width of the space charge region can be derived:

(4.10)
d2Ψ

dx2 =−ρ(x)
ε

,

where ε= 1.054 pFcm is the silicon electric permittivity. The charge density ρ(x) is given by

(4.11) ρ(x)=
 qNd, for 0≤ x ≤ xn

−qNa, for − xp ≤ x ≤ 0
,

assuming an abrupt junction. Nd and Np are the donor respectively the acceptor concentrations,

xn and xp the widths of the depletion in the specific n and p regions. Now the Poisson equation

can be integrated with the boundary conditions E(xn)= E(−xp)= 0 resulting in the electric field

of the pn junction:

(4.12) E(x)=−dΨ
dx

=
En(x)= q(Nd/ε)(x− xn), for 0≤ x ≤ xn.

Ep(x)=−q(Na/ε)(x+ xp), for − xp ≤ x ≤ 0.

The space charge region free of mobile charges can now already act as a silicon detector. An

energy of at least E = 3.67 eV [B+12] for the ionizing particle is needed to create an electron

hole pair. This excited energy compared to the silicon bandgap energy of Eg = 1.12 eV is due

to the conservation of energy and momentum as of silicon lattice excitations as silicon is an

indirect semiconductor. The generated charges now drift in the electric field, in dependence on

their charge, towards the electrodes and the signal is fed into the readout front-end for further

processing.

The electrostatic potential is derived from the integration of equation (4.12):

(4.13) Ψ(x)=
Ψn(x)=Ψn − q(Nd/(2ε))(x− xn)2, for 0≤ x ≤ xn.

Ψp(x)=Ψp − q(Na/(2ε))(x+ xp)2, for − xp ≤ x ≤ 0.
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The contact potential V0 of the pn-junction in silicon is about 0.3−0.6 eV at 300 K. With the

contact voltage, the width w of the depletion region can be calculated to:

(4.14) w = xn + xp =
√

2εV0

q

(
1

Nd
+ 1

Na

)
.

The width of the SCR without any applied voltage depends on the doping concentrations or

rather the concentration gradient. Therefore, silicon detectors are used by applying a reverse bias

voltage to the pn-junction, which results in an extension of the SRC by increasing the reverse

bias. As a direct consequence, the active region where electron hole pairs are generated grows,

leading to a larger signal and hence better signal-to-noise ratio. With this, the total width of the

SCR is calculated to:

(4.15) w = xn + xp =
√

2ε(V0 +Vbias)
q

(
1

Na
+ 1

Nd

)
.

The contact voltage was replaced by (V0 +Vbias) where Vbias stands for the outer reverse bias

voltage. The current CMS outer tracker is built of p+− in−n type sensors. This means that the

bulk substrate is of low n doping of about 1×1012 cm−3, and below the collecting electrode highly

doped p+ regions with concentrations of about 1×1019 cm−3 are implanted. Hence, xp << xn and

therefore the equation (4.15) can be simplified to:

(4.16) w ≈ xn ≈
√

2ε
qNd

(V0 +Vbias) .

The voltage needed to fully extend the SCR region over the bulk is the depletion voltage Vfd:

(4.17) Vf d ≈ w2

2εµρ
.

This means high resistivity sensors need a low full depletion voltage and vice versa. The range

is about 500 V - 250 V, depending on the bulk doping concentration
∣∣Ne f f

∣∣ = |Na −Nd|. Neff

can be determined by capacitance over voltage measurements because a silicon detector can be

considered a parallel plate capacitor.

4.3 Position sensitive silicon detectors

Silicon sensors vary in geometry and coupling of the signal to the electrode. The simplest silicon

sensor is a diode with reverse bias voltage. However, tracking detectors like the CMS tracker with

hundreds of particles crossing within 25 ns need high resolution of the tracks for precise physics

analysis. Therefore, the sensors are segmented in several pn-junctions. Depending on the radius

in the tracker, pixelated sensors with small cells and high electronics density are necessary in the

innermost layers in order to sufficiently distinguish between the dense particle tracks. The outer
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Figure 4.3: Working principle of a p+− in−n
silicon strip sensor.

Table 4.1: Sensor parameters

Quantity number
Thickness d 100-500µm
Strip pitch 20-250µm
Resolution 5-70µm (p/

p
12 )

Bulk doping ~1×1012 cm−3

Strip doping ~1×1019 cm−3

Back doping ~1×1019 cm−3

Charge (MIP) 75-80 e/h pairs per
µm

Charge collection a few ns

layers of the tracker are equipped with silicon strip sensors. Figure 4.3 illustrates the working

principle of a p+− in−n silicon strip sensor.

The substrate or bulk of the sensor in figure 4.3 is n doped and of relatively low concentration

of about 1×1012 cm−3. This results for a exemplary 300 µm thick sensor in a full depletion voltage

of about 150 V, depending on the wafer resistivity. The HV is applied to the backplane whereas

the AC coupled aluminum strips are on ground potential (an alternative biasing option via the

sensor periphery in order to cope with the mechanical challenges in the pT modules described in

section 3.2.4 is presented in appendix C). In order to achieve an ohmic contact, a high backplane

implantation is present. The strip implants (p+) are highly doped as well to about 1×1019 cm−3

and a few µm deep. The strip pitch p defines the distance between adjacent strips and directly

influences the resolution. With reverse bias, the depletion region extends through the whole

bulk2. Between the strip implants and the aluminum electrodes a coupling oxide3 (mostly SiO2)

is grown. The generated charge is read out capacitively be the ASICs. Furthermore, the silicon

oxide has safety functions and prevents damage to the sensor surface. Due to the outer voltage,

an electric field is present and in case of a p+− in−n detector, holes drift along the electric field

towards the electrodes and induce a signal. This signal is than amplified and processed by the

front-end electronics.

Interaction of particles with matter

The collected charge of a sensor is generated by passing charged particles through ionization

processes where mainly elastic collisions with the shell electrons dominate. The mechanism of

the energy deposition is described by the Bethe-Bloch formula [Bet30] and [Blo33]:

(4.18)
dE
dx

= 2πNLr2
emec2ρ

Zz2

Aβ2

[
ln

(
2meγ

2v2Wmax

I2

)
−2β2 −δ−2

C
Z

]
,

2before irradiation; after irradiation this may change, see section 4.4
3Pixel sensors are DC coupled with direct contact of the electrode and the implant
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with

• x is the path length ( g
cm2 )

• 2πNLr2
emec2 = 0.1535 MeVc2

g

• the electron radius re = 2.817×10−13 cm

• the electron mass me

• the Avogadro number NL

• I the effective ionization potential

• Z, the atomic number of the medium

• A, the atom ic weight

• ρ, the medium density

• z, representing the charge of the crossing particle

• β= v
c , the velocity of the crossing particle

• γ= 1p
1−β2

• δ is the density correction

• C represents the shell correction

• Wmax is the maximum energy transferred in a single collicion

Due to the electric field and depleted bulk, the generated electron hole pairs do not recombine, but

are separated and drift parallel to the electric field to opposite electrodes due to the electrostatic

force [Lut99]:

(4.19) ~F = q~E+me
v
τ

,

with the average drift velocities for electrons and holes given by:

(4.20) vn =µnE and vp =µpE.

The amount of the collected charge in an unirradiated sensor is directly proportional to the

deposited energy. In the Bethe-Bloch formula, a region at about βγ≈ 3−4 can be identified as the

minimal deposited energy corresponding to about 300 eV per µm distance. Taking the ionization

energy of 3.6 eV for one electron hole pair, an average charge generation of about 80 electron hole

pairs per µm is expected as the most probable value. A particle with energy this low is called a

minimal ionizing particle (MIP) and would generate the minimal charge of 24000 electron hole
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pairs in a 300 µm thick sensor. The charge distribution itself follows a Landau distribution due

to energy fluctuations in the energy transfer. The Bethe-Bloch relation describes the gaussian

mean energy deposition E0 in material. In addition, a long tail towards high energies due to

knock-on electrons (δ-electrons) is present. This means that the most probable value of the energy

deposition is about 30% lower than the mean deposited energy. Later, when comparing results

from signal measurements, the MPV is considered.

Photon absorption

In order to generate signal in the test sensors during laboratory measurements, a Sr90 source was

taken. The β-decay electrons interact with the silicon material. Some of the studies, especially

when looking into the substrip resolution, were done by using a 1060 nm laser. The photons

interact by the inner photoelectric effect, which means that the photon is absorbed, leading to an

excitation of an electron from the valence band to the conduction band.

4.4 Radiation damage

The upgrade of the CMS tracker detector discussed in chapter 3 is a consequence of the harsh

radiation environment. The particles additionally interact with the atoms via Coulomb interac-

tions and nucleus-nucleus scattering. Atoms can be displaced from their lattice position leaving

a vacancy and the knocked-on atoms (PKA) can act as interstitial atoms. The threshold of the

recoil energy for such a displacement is ER ≈ 21 eV [ABC+01]. These defects appear as additional

energy levels within the bandgap, thus changing the electrical properties of the detector.

When considering radiation damage, one can distinguish between bulk damage and surface

damage. Bulk damage mechanisms directly influence the charge collection efficiency by adding

trapping centers, increase leakage currents and depletion voltage through build-up of space

charge. Furthermore, ionization processes in the silicon dioxide can influence the sensor perfor-

mance severely. The surface damage can significantly influence the electric field distribution.

Additional increasing surface currents might decrease the breakdown voltage and lead to lower

position resolution, depending on the substrate type due to effects on the strip isolation. The

damage depends on the energy of the penetrating particle as well as the charge. Protons introduce

more likely point-like defects and with increasing energy also cluster defects [Huh02], while

neutrons mainly create cluster defects. Cluster defects are initiated by recoil atoms, which can

displace further atoms.

4.4.1 NIEL scaling

In order to compare damage introduced by different irradiation energies and particle type

(charge), the non-ionizing energy loss hypothesis is used with the assumption that the damage

scales linearly with the deposited displacement energy. In this scope, neutrons with an energy of
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1 MeV are taken as reference. The following irradiations of the sensors performed within this

thesis include proton and neutron irradiations. A scaling factor κ= 2 is used for irradiations with

23 MeV protons at the Zyklotron AG at KIT in Germany [Zyk15]. The factor has been defined

in [Die03]. The Proton Synchrotron (PS) at CERN has been used in order to perform proton

irradiations with an energy of 23 GeV. Here the hardness factor of κ= 0.62 is used for scaling [G.

10]. For the neutron irradiation at the TRIGA Mark II reactor in Ljubljana [TRI15], a hardness

factor of 0.90±0.03 is applied [Zon98].

Taking the hardness factors, the fluence equivalent to a 1 MeV neutron can be calculated by:

(4.21) Φeq = κ×Φ= κ×
∫
Φ(E)dE.

All results and irradiation levels presented later in this study refer to the 1 MeV neutron

equivalent fluence Φeq = neqcm−2.

4.4.2 Impact on the sensor performance

Defects, which are either created during the manufacturing process or after irradiation, change

the sensor performance. Vacancies or interstitials can further react to new defect complexes and

clusters, each with specific impact on the electronic behavior of silicon. In fact, depending on the

defect formation, additional energy levels in the bandgap are introduced. A detailed study of

the defect formation and measurements of the energy levels are investigated within the RD50

group [RD5] and [Jun11].

Bulk defects

Main bulk defect effects visualized in figure 4.4 are:

• The creation of shallow levels next to the valance and conduction band which mainly affect

the effective doping concentration Neff as these defects can be easily ionized resulting in a

change of the space charge. Additional donors and acceptors are created where the ratio of

both depends on the particle energy and the type. For the sensors in this study, which are

n+− in−p type only, an increase of the depletion voltage is the consequence. Hence, with

increasing radiation dose or sensor lifetime, a higher voltage up to 900 V depending on the

sensor thickness is necessary in order to fully deplete the detector. Therefore the capability

of the power system of the experiment has to be taken into account during the search for

radiation hard detectors. Moreover with increasing sensor power P=U·I, the cooling power

has to be increased too.

• The introduction of deep levels which mainly increase the leakage or dark current. Energy

levels in the middle of the bandgap act as generation and recombination centers for electrons
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Figure 4.4: Effects of defect levels in the silicon bandgap.

and holes. In measurements of different sensor materials and types it has been found that

the leakage current increases linearly with fluence and can be calculated by

(4.22)
∆I
V

=α×Φeq

with the proportionality factor α as the current related damage rate [Mol99]. Typically, the

leakage current in reverse bias is in the order of pA per cubic centimeter before irradiation.

The leakage current increases until the depletion of the bulk is reached and than saturates.

By further increasing the HV, the sensor becomes conductive, leading to an electrical

breakdown. After irradiation, the current increases to the order of O (µA/cm−3) at 293

Kelvin.

• Trapping of drifting charges. Intermediate and deep level states with a large emission

time compared to the readout time capture the charges and emit them with some delay.

This signal is not detected within the collection time and does not contribute. The charge

collection with respect to the unirradiated case decreases significantly with fluence. At high

fluence, signal cannot be distinguished from noise sufficiently.

Surface defects

Surface defects are categorized as the defects appearing in the silicon dioxide at the sensor

surface at the transition region Si−SiO2. Main defect mechanism is ionization and not atomic

displacement like in the bulk. After electron hole generation, the charges separate due to the

fact that the electron mobility in SiO2 is several orders of magnitude higher than the mobility

of the holes (µe,SiO2 ≈ 20 cm2

Vs , µh,SiO2 ≈ 2×10−5 cm2

Vs ) [Wun92]. Electrons drift to the positive metal

electrode and are removed while the holes slowly drift towards the Si−SiO2 interface where

they get trapped in deep levels (Eg,SiO2 = 8.8 eV). As a consequence, a positively charged layer
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arises which represents an attractive potential for drifting electrons in the bulk. This leads to a

slight increase of the interstrip capacitance due to additional charges and hence the input noise.

Furthermore, the interstrip resistance decreases, leading to increasing charge-sharing of adjacent

readout strips. In particular, n+− in−p type sensors suffer from lower resolution. In this type of

substrate, electrons are collected at the electrodes and the additional accumulation layer of elec-

trons below the surface short-circuits the strips. Due to the fact that the buildup of positive charge

in the SiO2 is unavoidable (without any special treatment or SiO2 grown technique like slow

dry growing), additional production processes in form of further p+ implantation steps between

the strips are necessary. The latter forms an isolation layer in order to prevent a short-circuit of

the strips. The most promising doping characteristics and pattern of such p+ isolation layer are

one of the main interests in this thesis and will be discussed in more detail in the coming chapters.

The interplay of bulk and surface damage is under study. Clearly, surface damage affects the

overall sensor performance either considering the sensor current through additional surface

currents, electrical breakdown due to influence on the electric field strength in the bulk or the

resolution. Therefore, both damage regions (bulk and surface) will be discussed later.

4.4.3 Annealing

Table 4.2: Annealing steps used for the measurements in this study

Step Temperature [◦C] Time [min]

1 60 10

2 60 10

3 60 20

4 60 76

5 80 15

6 80 30

7 80 60

The defects in silicon and silicon dioxide are not stable and can recombine or form new defects.

This effect is called annealing. It is strongly related to the temperature. Whereas at −20◦ C

the annealing effect is almost frozen, the velocity of the defect kinetics increases rapidly with

increasing temperature. Moll [Mol99] parametrized the anneling behavior of the current and the

effective doping concentration in the Hamburg model.

The impact of increased temperature at the sensors for a certain period of time after irradiation

needs to be understood because the CMS tracker might be heated up for maintenance during

yearly shut downs up to room temperature4.

A detailed description of the annealing behavior of the current and the effective doping con-

4currently, the tracker operates at −10◦ C, the aim for the Phase II Upgrade is −20◦ C
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centration is given in [Mol99] and [Har09]. The temperature steps and the time of increased

temperature in this study were chosen isothermally and are listed in table 4.2. Normally, after

each step, the leakage current, depletion voltage and charge collection of the sensors under study

were measured and scaled to an equivalent time at room temperature (20◦ C). The following

relation after [Chi11] is valid (see section 6.4 for more detail):

(4.23) I(T = 20◦C)= I(T)×
(

293 K
T

)2
exp

(−1.21 eV
kBT

[
1

293 K
− 1

T

])
.
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5
SILICON SENSORS FOR HL-LHC

The RD50 collaboration searches for radiation hard silicon devices for high luminosity

colliders. Several participating groups have been investigating for years now which type

(n+−in−p, p+−in−n or n+− in−n) is most promising to deal with increasing demands to

sustain an overall sufficient performance even after the expected 3000 fb−1 during HL-LHC. More-

over, detectors built of wafers from different silicon ingot growth technics (Magnetic Czochralski

“MCz“ [Czo17] and Float Zone “FZ“ [CW00]), which mainly differ in the initial oxygen concentra-

tion, are under study. Precise measurements of the particle track also require a low mass tracker

concept to avoid influence on the track by multiple scattering, for example. Hence, the thickness

is varied and has to be balanced in order to achieve sufficient charge collection and low power

always keeping the mass production in mind1.

In the following chapter, a brief summary of the current status of theses studies is presented.

The summary plots leading to the decision for using n+−in−p type sensors for the CMS Tracker

Phase II upgrade are extracted from [Die13].

5.1 N-type vs. P-type sensors

Within the CMS Tracker Collaboration, a huge measurement campaign [Hof11] was carried out

with the aim to identify the most radiation hard single-sided sensors which will face the high

luminosity environment. The processed wafers were delivered by Hamamatsu Photonics K.K, a

manufacturer who had already delivered the sensors for the current CMS Outer Tracker in high

quality. The wafers differed in the substrate type (n- and p-type), the growth process (MCz and

FZ) and active thickness (300 µm, 200 µm and 120 µm). An overview of the sensors, to which the

1very thin sensors may be more expensive due to special handling and thinning processes
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Table 5.1: Overview of the sensor labels and characteristic

Sensor label physical thickness [µm] active thickness [µm]
FZ320N/P/Y 320 300
FZ200N/P/Y 200 200
dd-FZ200N/P/Y 320 200
MCz200N/P/Y 200 200
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Figure 5.1: Signal measurements of (a) 300 µm and (b) 200 µm thick sensors with different
substrate types as a function of the fluence. The measurements were performed at T =−20◦C
and Vbias = 600 V .

following plots refer, is listed in table 5.1.

The labels indicate the substrate growth technique, the physical thickness and the substrate

type. The latter is expresses by N for n-type, P for p-type with p-stop isolation and Y for p-type

with p-spray isolation. Within this study, no significant difference of the sensor performance

in dependence on the isolation layer was observed. Therefore, the different techniques will be

explained later when necessary.

One photolithographic mask set was used to produce 144 wafers in 6 inch size. The sensors

were distributed amongst the participating institutes and electrically qualified before and after

irradiation. The samples were irradiated with mixed particles (neutrons and protons) to Φ =
7×1014 1MeV neqcm−2, corresponding to a radius of ≈40 cm and Φ= 1.5×1015 1MeV neqcm−2,

according to ≈20 cm radial distance from the interaction point in the CMS experiment. Compared

to the FLUKA predictions, the fluence was chosen with a safety margin of about 50%. Before and

after irradiation, the charge collection of the sensors was measured with β-electrons from the

Sr90 decay. Sensors with the 20 cm irradiation were also investigated on their properties after

several annealing steps.
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Figure 5.2: Annealing of the seed signal. The signal is more or less constant over a period of 20
weeks (3360 hours) at room temperature. The signal in MCz material seems to stay constant or
even increases for longer annealing times. The annealing is scaled to room temperature according
to the annealing behavior of the leakage current.

In figure 5.1, the collected seed2 charge as a function of the fluence in logarithmic scale is

plotted. Here, 300 µm thick FZ sensors of both substrate types are shown. All samples were

measured at T=−20◦C. This temperature is envisaged to be the future sensor temperature during

operation in order to keep the leakage currents and accordingly the cooling power as low as

possible. At each measurement point, the particle type (neutron or proton) and the energy (if not

labeled 23 GeV p) are indicated. Clearly, and in agreement with several studies [Man13] [Wei13],

the p+−in−n sensors suffer earlier high charge loss due to trapping. After a fluence of Φ =
7×1014 1MeV neqcm−2, the p-type sensors collect significantly more charge.

5.2 Thin vs. thick sensors

Thick sensors collect more charge before irradiation compared to thin sensors due to the

simple relation deduced in section 4.3 where it was calculated that a MIP generates about

80 electron hole pairs per µm distance in silicon. However, after high irradiation of about

Φ= 7×1014 1MeV neqcm−2, thin sensors collect a comparable charge amount like the thick ones.

The reason is the slightly higher electric field strengths and hence higher drift velocities in thin

sensors and shorter drift distances. Therefore, drifting charges are less prone to be trapped.

Furthermore, the annealing behavior of the charge collection is plotted in figure 5.2 for the

2strip with the highest signal in a cluster
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different substrate material, n+−in−p polarity and thickness. Thin sensors show a more constant

annealing behavior, considering the charge collection efficiency up to 20 weeks during room

temperature. This could be beneficial during operation, as explicitly increasing the temperature

of the tracker could decrease the leakage current and hence noise, but the signal would stay

unchanged.

5.3 Consequence and motivation for this study

As a consequence of the results briefly shown in the previous sections, the following study

concentrates only on the n+−in−p type technology of silicon sensors for the CMS Outer Tracker.

Due to the tremendous demands on the sensor reliability, the p-type technology has to be studied

in more detail. Besides the most promising thickness which affects leakage current, charge

collection, radiation length and annealing, general aspects like the pattern of the strips and

detector periphery are of interest. In particular, in section 4.4.2 the influence of the silicon

dioxide on the p-type bulk sensor was introduced and the need for additional strip isolation

layers was mentioned.

Hamamatsu Photonics K.K (HPK) has proven to deliver silicon sensors with high qual-

ity for HEP experiments. This fact was one reason why this manufacturer produced the silicon

sensors for the current CMS Tracker. The sensors were developed in collaboration with the

Hamamatsu Photonics process engineers. The manufacturer was allowed to change the provided

data files for the production of the photolithographic masks to ensure high voltage stability and

stable operations. In addition, process details on the implantations were developed within HPK

and are a corporate secret. Hence, any important values which affect the sensor performance

like implantation dose, energy and temperatures (which define also the doping depth) are not

provided by HPK but are assumed from experience. When considering n+−in−p type technology,

in particular the p+ isolation layer although at floating potential is critical and difficult to

calculate in order to preserve good strip isolation independent of the fluence and keep the

electric field strengths as low as possible to avoid electrical breakdown. Clearly, R&D studies

are also conducted with other vendors. In this study, sensors from five different vendors were

investigated. The main point is that some of the vendors, for instance, process silicon sensors for

HEP experiments for the first time. This means that doping concentrations and further sensor

characteristics should be provided to the manufacturer.

Therefore, the presented R&D studies were used to scan critical parameter of the p+ isolation.

Sensors with comparable specifications but different doping concentrations and depths of the p+

layer were produced and will be discussed in detail in the following chapters.
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Figure 5.3: Visualization of the p isolation techniques of n+−in−p detectors, (a) p-spray covering
the whole wafer with no additional implantation mask and (b) p-stop, which is an individual
pattern between the strips due to an additional photolithographic step.

5.4 N+−in−p technology

Basically, the n+−in−p technology is the vice versa version of the p+−in−n. The bulk is of low

p (boron) doping concentration of around pconc. ≈ 1×1012 cm−3, which gives a bulk resistivity

ρ = 1
e(µNd) ≈ 4−10kΩcm. The strip implants are of high peak concentration n+ with values of

around nconc. ≈ 1×1019 cm−3 and around 1 to 2 µm deep. In most cases, the group V element

phosphorus is used. In order to avoid a Schottky contact, the backside is also highly doped

with boron to pconc. ≈ 1×1019 cm−3. While the backside of the detector is fully covered with

aluminum for the HV supply, the grounded aluminum readout strips on top of the coupling SiO2

are segmented and exhibit the so-called “metal overhang“ of a few µm, extending the width of

the n+ strip implants. This overhang, which is around 6 µm to each side, results in lower high

electric field densities at the strip implants through attracting the fields towards the overhang

edges. This actually increases the breakdown voltage. As mentioned previously, the positively

charged SiO2 attracts the drifting negative charges towards the surface. An accumulation layer

of electrons short-circuiting the strips appears. In order to prevent such buildup of an electron

layer, additional implantations of a group III element between the strips are necessary.

P+ isolation techniques

Three different technologies are currently available and two of them are visualized in figure 5.3.

The p-spray technology in figure 5.3(a) is a p+ layer which covers the whole wafer. An advantage

of this technology is that for the production one less mask is needed, as the p-spray does not hold

any specific pattern. Due to the fact that the p-spray layer is in direct contact with the highly

doped n strip implants, lateral pn junctions are created. Here, the development of the lateral

space charge region influences the electric field density at the n+ strip edges, which can be critical

for the operation. As a consequence, the doping concentration and in particular the doping depth
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Figure 5.4: Definition of the implantation depth used for the T-CAD simulation studies showing a
gaussian shape with the peak doping concentration at a depth of 300 nm. Here, the exemplary
p-stop parameters are shown.

have to be calculated carefully. A rough estimate on the p-spray characteristics are the following:

the peak doping concentration of boron is in the range of nconc. ≈ 5×1015 cm−3 with a relatively

shallow depth of 200 nm to 500 nm. Here, the ratio of the doping depths for the strips and the

p-spray are crucial. In order to keep the electric field densities at the strip implant edges as low

as possible, the n+ strips should be implanted significantly deeper to around 2 µm, see later in

chapter 6.4.

The doping depth of the implants is defined as the depth at which the additional implantations

reach the value of the bulk doping and is visualized exemplary for the p-stop solution in figure 5.4.

The curve is of gaussian shape and was defined and used in the T-CAD simulation studies (see

chapter 6).

A second option for the p+ isolation is implanting a certain pattern for each individual strip,

indicated in figure 5.3(b). Here, the multiplicity of the p-stops is one and called “common

p-stop“. But also two p-stops between the strips are possible. This arrangement is called “p-stop

atoll“in which the strip is surrounded by an individual p-stop. While preparing the data files

(GDS format) for the mask production, an additional mask for the p-stop pattern is needed.

This increases the costs however, the costs for a photolithographic mask, considering a mass

production, are negligible. As a matter of fact, no significant cost deviation for p-spray or p-stop

wafers was asserted but might be dependent on the vendor as the number of process steps

might change between the two different techniques. The advantage of the p-stop technology

in comparison to the p-spray technique is obviously the prevention of the lateral pn junction

formation at the strip implant edges. Figures 5.3(a) and 5.3(b) indicate that the implantation

depth of the p-stop is higher than for p-spray. It is assumed to be around 2 µm, like the strip

implants. The doping concentration also needs to be calculated carefully, as in the p-spray case.

Low doping concentrations might be not sufficient enough for good strip isolation, whereas
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high doping concentrations might lead to high electric field strengths and low breakdown

voltages. The concentration of boron acting as p-stop is in the range of nconc. ≈ 5×1015 cm−3

and nconc. ≈ 1×1017 cm−3. The determination of the most promising p-stop doping depth and

concentration is one of the topics covered in this thesis and will be discussed in more detail in

chapter 6.

The third option, which is currently under study amongst different institutes, is the combi-

nation of both techniques. A moderate p-spray is used and additional p-stops with moderate

concentration are present. The combination might be advantageous for the pixel detector due to

the expected higher fluence of Φ≈ 1×1016 1MeV neqcm−2, leading to even higher electric field

strength in the sensors. This technique is therefore not covered here.

In any of the three cases, the boron implants are neutral acceptors after implantation

or diffusion. Then, electrons from the bulk are captured by the acceptors and a negative space

charge (acceptor−) forms at the regions of the boron implants. Now, electrons drifting towards

the electrodes are repelled due to Coulomb’s law from the negative space charge and as a result

the accumulation layer is interrupted.
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SIMULATION STUDIES OF SILICON STRIP SENSORS

In this study, the combination of both measurements and simulation was used in order to

investigate the most promising sensor layout and process characteristics for the future

CMS Tracker. Technology Computer-Aided Design (T-CAD) is a powerful tool to develop

and optimize semiconductor applications like silicon detectors. The commercial Synopsys Sen-

taurus [Syn] simulation package offers a variety of industrial leading tools which are able to

simulate and analyze different devices based on semiconductors. Simulations were tuned to

reproduce measurements of existing silicon detectors as well as for the performance predictions

of new detector layouts and process characteristics. After successful reproduction of data, the

developed radiation damage models within the CMS Tracker Collaboration [Ebe13,Eic12,Pel14]

were used and applied to new sensor layouts. Subsequently, the most promising layouts were

produced with several vendors from the semiconductor industry. For this purpose, the files for

the production of the photolithographic masks were prepared with agreement to the technical

constraints of the vendors.

In this chapter, the simulation tool Sentaurus T-CAD and the workflow will be briefly introduced.

After that, the dedicated characteristics of n+−in−p technology sensors under study will be dis-

cussed and the performance before and after irradiation in dependence on the isolation technique

introduced in section 5.4 will be shown. As the results from the simulation were directly driving

the layout of the new sensors, the design of the masks for the photolithographic steps during

production will be briefly described afterwards.
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Figure 6.1: T-CAD simulation workflow with the Synopsys Sentaurus software package.

6.1 Technology Computer-Aided Design

Simulation studies were performed due to two important facts. First, the costs are low in

comparison to wafer production and processing. The following results were computed on a 8 core

machine with 16 GB RAM memory. Secondly, simulations help to understand physical details of

some measured sensor features like the electrical behavior and the charge collection efficiency as

a function of the fluence, for instance.

In figure 6.1, the workflow of a T-CAD simulation is sketched. First of all, the geometry of the

device is built, and the resulting file build_dvs.cmd contains all relevant geometry and process

informations. A significant advantage of simulations is the quick production of different layouts

using variables. In particular, the strip implant width, the p-stop atoll width and the p-stop to

strip distance (PS) were varied and studied in detail. Furthermore, the doping concentrations

and doping depths of the strip implants as well as for the p-stop were varied. In particular, the

latter is of high interest regarding the radiation hardness. The resulting geometry file can be

viewed with the Sentaurus Structure Editor. This tool allows a quick check, if all parameters

and the definitions of the electrical contacts are set correctly. As a last step of the geometry build,

the mesh is generated and stored into the grid_mesh.tdr file. The number of mesh points or

rather the size of the mesh cells defines the accuracy of the simulation. For the latter, a simple

correlation is valid: the more mesh points, the higher the accuracy of the simulation but also

higher demands for computing power. Therefore, a custom mesh was used in which the mesh size

is small in regions of interest (strip implant, p-stop, silicon dioxide) and is coarse in regions of

less importance for accurate physics (for instance deep bulk along y).

The build_dvs.cmd and grid_mesh.tdr files are direct input files into the Sentaurus Device tool.

This is the actual simulation tool in which all physics models, starting conditions of the simulation

as well as the SPICE1 network and computing steps are defined. The simulation results are then

1Simulation Program with Integrated Circuits Emphasis
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stored into the _des.plt and _des.tdr files and can be analyzed either with additional Synopsys

tools or exported into any readable files.

The simulator itself is based on the calculation of the Poisson equation in order to resolve the

electrostatic potential:

(6.1) ∇·
(
ε∇φ+→

P
)
=−q (p−n+ND −NA)−ρtrap,

where ε is the electrical permittivity and
→
P is the ferroelectric polarization. Moreover, q is the

elementary electron charge and ND is the concentration of ionized donors respectively NA is the

concentration of ionized acceptors. ρtrap is the charge density contributed by traps and fixed

charges. The electron and hole densities n and p are calculated with Boltzmann-statistics to:

(6.2) n = NC exp
(EF,n −EC

kBT

)
and p = NV exp

(EV −EF,p

kBT

)
.

The constituents are:

• NC and NV , the effective density-of-states

• EF,n =−qφn and EF,p =−qφp, the quasi-Fermi energies for electrons and holes

• φn and φp, the electron and hole quasi-Fermi potentials

In addition, the charge conservation must be assured and calculated at each mesh point. The

continuity equations read as follows:

(6.3) ∇
→
Jn= qRnet + q

∂n
∂t

−∇
→
Jp= qRnet + q

∂p
∂t

,

with Rnet as the net recombination rate and Jn and Jp as the electron current density and hole

current density.

Physics models have to be applied by stating specific headwords. The definition of the models as

well as the equations are described in the Sentaurus manual in detail. Exemplary simulation

configuration files with different physics model and the description of the most important ones

can be found in the appendix.

6.2 Electric fields in silicon detectors

The electric field strength which mainly affects the sensor performance or rather the breakdown

voltage, especially after irradiation, can be simulated in detail. Several studies have already been

executed in which the comparison between n+−in−p and p+−in−n type sensors considering the

electric field strength was extracted [Ebe13, EBD+14b, Eic12]. These studies have in common

that the data, to which the studies refer, was recorded within a huge measurement campaign,

the HPK campaign [Hof11] briefly described in section 5.1. Hence, the simulations were mainly

performed in order to reproduce the data for both substrate polarities. The simulated geometries

were taken from the GDS files of the campaign without any layout variations of the sensors.
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Table 6.1: Effective two-defect damage model for proton irradiation of silicon sensors for T= 253 K.
EC and EV are the edge energies of the conduction and valence band. σe and σh are the capture
cross sections for electrons and holes. Φ is the fluence.

Defect Energy (eV) σe (cm−2) σh (cm−2) Concentration (cm−3)

Acceptor EC −0.525 1.0×10−14 1.0×10−14 1.189 cm−1 ×Φ+6.454×1013

Donor EV +0.48 1.0×10−14 1.0×10−14 5.598 cm−1 ×Φ−3.949×1014

Table 6.2: Effective two-defect damage model for neutron irradiation of silicon sensors for T =
253 K.

Defect Energy (eV) σe (cm−2) σh (cm−2) Concentration (cm−3)

Acceptor EC −0.525 1.2×10−14 1.2×10−14 1.55×Φ
Donor EV +0.48 1.2×10−14 1.2×10−14 1.395×Φ

Radiation damage model

A second main task during the campaign was to develop a radiation damage model for T-CAD

simulations which should be able to reproduce the data after irradiation. This means that

additional energy levels in the silicon bandgap have to be parameterized. Different models were

developed, ranging from two-effective defects [Ebe13] to five-effective defects [EBD+14a]. All

damage and energy levels are compressed into two to five effective defects. Development of a

model means that the additional inter bandgap levels are configured such that the current,

depletion voltage and electric fields of the simulation match the measurements.

In this thesis, the two-effective defect model for proton and neutron irradiations was used. The

models for both particle types are listed in table 6.1 and 6.2.

In the model valid for neutron irradiation, the concentration of the defects is directly proportional

to the fluence. In order to match the full depletion voltage, the cross sections for electron and

holes are set to 1.2×10−14 cm2. The concentration for the donor is 90% of the concentration of the

acceptor. In the proton model, the cross sections are 1.0×10−14 cm2 for both electron and holes.

The probability of a drifting charge carrier to be captured by a defect is dependent on the cross

section, the bulk defect concentration Ni and the probability Pi which describes whether a defect

is already occupied or not:

(6.4)
1

τe f f
=∑

Ni

(
1−P e,h

i

)
σe,hvdri f te,h ,

where τeff is the effective trapping time, which is correlated with the mean free path of the charge

carrier. The concentration of defects has additional correction values. Without the correction a

reproduction of the charge collection would not be possible. This effect is related to the different

defects in dependence on the charge of the incoming particle. Both models are valid in the range
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Figure 6.2: Fixed oxide charge as a function of the ionizing dose. Here different oxide thicknesses
as well as different crystal orientations have been studied [Zha13].

between Φ= 1×1014 1MeV neqcm−2 and Φ= 1.5×1015 1MeV neqcm−2. This range of the fluence

is exactly the range for the sensors which are investigated in this study. In order to simulate

higher fluence of the pixel detector region, new damage models have to be developed.

Role of the surface damage

During irradiation of detectors, not only bulk defects but also surface defects which affect the

sensor performance are introduced. Basically, the surface damage should be also parametrized,

as the bulk damage shown above. The surface damage is complex and can be divided into the

fixed oxide charge as deep level defects, the oxide trapped charge and interface traps at the

Si−SiO2 interface. The interplay of these defect types has been studied in detail in [Zha13] for

the European XFEL facility in Hamburg, Germany. The defects are created by ionization and

may increase the current due to additional surface currents. Especially in the case of n+−in−p

type detectors, the formation of the accumulation layer of electrons is a direct consequence of the

positively charged oxide defects. The dependence of the fixed oxide charge on the dose after an

annealing of 10 min at 80◦C is show in figure 6.2. Before irradiation, the positive oxide charge

is in the range of 1×1010 cm−2 to 1×1011 cm−2, depending on the growing method during the

processing. After irradiation it increases and saturates at about 3×1012 cm−2. At the HL-LHC, a

dose of about 105 kGy is expected. However, the bulk damage models shown in tables 6.1 and 6.2

were developed for a fixed value of fixed oxide charge and a beneficial annealing of 10 min at

60◦C. This means, independent of the fluence or rather the dose, the proton model is valid in the

range of Φ= 1×1014 1MeV neqcm−2 and Φ= 1.5×1015 1MeV neqcm−2 and a fixed oxide charge of
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Figure 6.3: Electric field strength in dependence on the oxide charge.

1×1012 cm−2 at T=−20◦C. The neutron model reproduces data for a surface defect concentration

of 7×1011 cm−2. The latter is due to the fact that neutrons in general ionize the SiO2 less. A

detailed parameterization of the surface damage is currently ongoing within the CMS Tracker

Collaboration. Within this study, the fixed values for the simulations were used.

6.3 Electric field strength as a function of the oxide charge

Simulations calculate the electric field strength in the bulk although due to model uncertainties

the values should be interpreted qualitatively in order to understand the coherences. Figure 6.10

shows the electric field distribution 1.3 µm below the sensor surface for n+−in−p type in 6.3(a)

and p+−in−n type in 6.3(b). At this depth, the pn junction for this geometry starts.

In this simulation, the pitch and the width-to-pitch-ratio are chosen corresponding to the cur-

rent Tracker Phase II Upgrade baseline with 2S modules (p = 90 µm,w/p = 0.22). The pro-

ton model was taken and the conditions are Vbias = −1000 V at T= −20◦C for a fluence of

Φ= 1.0×1015 1MeV neqcm−2. It is obvious that for p-type detectors the increasing oxide charge is

advantageous with respect to the electric field strength, whereas in n-type detectors, increasing

oxide charge results in higher electric field strength. In case of n-type sensors, the electric field

density at the strip implant edges is high where local avalanche effects may occur. Hence, p-type

detectors are less prone to local microdischarges or electrical break down due to the flat electric

field distribution between the strips which is due to the conductive electron layer below the

surface. This observation led, amongst others, to the decision to use p-type detectors for the

upgrade. Besides, the secondary peaks of the distributions just below the Alu-strip are the effect

of the metal overhang of 6 µm which for both polarities attracts the field towards the Alu-strip

edges leading to lower maximum electric fields in the bulk.
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Figure 6.4: Section from a GDS file showing
the definition of the strip to p-stop distance.
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Figure 6.5: P-stop atoll pattern in the AC
pad region for the sensors in the HPK cam-
paign.

6.4 Electric fields in dependence on the p-stop characterstics

The p-stop atoll is a pattern where each individual strip posseses its own individual p-stop

implantation surrounding itself. Accordingly, the question arises of what the pattern should

look like. The p-stop should not affect the sensor’s leakage current and charge collection but

at the same time ensure a sufficient strip isolation. Furthermore, in dependence on the strip

to p-stop distance PS shown in figure 6.4, the design of the p-stop is much simpler compared

to the example shown in figure 6.5. Here, one can see that due to a close spacing of the p-stop

to the strip implant, the p-stop has to be designed around the AC pads. The AC pads are the

connecting pads for the readout chip and are around 50 µm to 70 µm wide. The width of the

AC pads should ensure wire bonding with high yield and also the placement of probing needles

for the electrical qualification. Therefore, (although technically possible and without any known

impact on electrical properties) the p-stop should not be implanted below the pads as this leads

to a non-uniform metal surface. In order to ensure good connectivity during measurements or

bonding, the metal surface should be as even as possible.

Before the design of the sensors for this study, simulations were carried out in which the p-stop

pattern was varied. A script extracts the maximum electric field strength in the silicon bulk from

the simulation results. For this study, the proton model for simulations of irradiated devices was

used. In order to get reliable results from the simulations, the parameters of the HPK campaign

sensors were used due to the fact that the damage model was developed on HPK data. The sensor

characteristics are listed in table 6.3. The pitch was varied to p= 90 µm compared with p= 80 µm

for the HPK sensors as this pitch was decided to be used for the 2S pT modules.

As during the qualification of sensors in an electrical probe station, the simulations were per-

formed at T= 20◦C for unirradiated and T=−20◦C for irradiated sensors. The latter temperature

is the target temperature at sensor level for the HL-LHC conditions. Lowering the temperature at

the sensor decreases the leakage current and improves the noise behavior. The relation between
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Table 6.3: Parameters used for the simulation of the p-stop effects on electric field strength
Quantity Value
Substrate thickness 300 µm
Strip pitch 90 µm
Bulk doping 3×1012 cm−3

Strip implant doping 1×1019 cm−3

Strip doping depth 1.5 µm
Strip doping width 25 µm
Backside doping 5×1018 cm−3

Backside doping depth 5 µm
p-stop implant doping varied from 1×1016 to 9×1016 cm−3

p-stop width varied to 4,6,8 µm

temperature and leakage current for a diode was described in [Chi11]:

(6.5) I(T)∝ T2exp
(−1.21 eV

kBT

)
.

It is possible to normalize the measured current at lower temperatures to the equivalent current

at room temperature T= 20◦C with the following formula:

(6.6) I(T = 20◦C)= I(T)×
(

293 K
T

)2
exp

(−1.21 eV
kBT

[
1

293 K
− 1

T

])
.

Before irradiation, the sensors are fully depleted at around VFD = 220 V. Within the sensor

community, it has been decided to measure all relevant parameters at V > 1.2×VFD. For the

simulation study, a voltage of V = −300 V in the unirradiated case was used. Not only the

leakage current increases but also the full depletion voltage because it is directly proportional to

the effective doping concentration |Neff| =ND −NA which changes with ionizing irradiation, too.

ND and NA are the concentrations of donors and acceptors. When more donors than acceptors are

created, the positive space charge increases and as a consequence the full depletion as well, due

to the simple relation:

(6.7) VFD = qd2|Ne f f |
2εSi

,

where d is the sensor thickness. The absolute value of charges is represented by q. In order

to collect as much generated charge as possible, the sensors have to be powered with higher

voltages compared to unirradiated sensors. For the future Tracker, different scenarios have been

calculated. Currently, it is under study if a high voltage of up to around 900 V could be applied

to the sensors during Run 3 with the existing services. A high voltage of around 600 V is the

baseline. Therefore, the simulation results after irradiation were performed at 600 V and 900 V.
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(a) Exemplary 2d simulation of the electric field between
two half strips with the HPK parameters (here after
irradiation in order to visualize the gradient).
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(b) pconc = 1×1016 cm−3, width= 6 µm
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(c) PS= 7 µm
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(d) PS= 27 µm
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(e) max. electric field strength

Figure 6.6: Figure 6.6(a) visualizes the electric field in the simulation. From these results,
different informations are extracted. In 6.6(b) the max. electric field is plotted as a function of
the PS before irradiation. 6.6(c) shows a cut line through the electric field 1.5 µm below the
Si-SiO2 interface for PS= 7 µm and 6.6(d) for PS= 27 µm in dependence on the p-stop doping
concentration. In 6.6(e), the max. electric field strength in the bulk is plotted as a function of PS.
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Results - unirradiated case

The following information and results are derived from the 2d simulation. Figure 6.6(a) exem-

plarily visualizes such a 2d electric field plot. In order to keep the computing time low, the

symmetric geometry of two half strips with a pitch of 90 µm was used. Due to the fact that

this structure periodically recurs up to several hundreds times in a real sensor, the Neumann

boundary conditions are applied implicitly to all boundaries which are not set as contacts (in this

case, to the left and right of the shown 2d plot).

In figure 6.6(b), one can see the effect of the p-stop to strip distance in the unirradiated sensor at

a bias voltage of -300 V and room temperature. Clearly, the lower the PS value, the higher the

electric field strength. Here, the electric field density is higher at the strips due to the influence

of the p-stop on the potential. The p-stop doping depth is kept constant to 2 µm and the strip

implants to 1.5 µm. Also, the effect of the metal overhang (MO) is recognizable, which is the

second peak in the electric field cut line 1.5 µm below the Si-SiO2 interface next to the first peak

just under the n+ implant. Figures 6.6(c) and 6.6(d) show, at the same conditions as in 6.6(a), cut

lines for PS= 7 µm and PS= 27 µm for three different p-stop doping concentrations respectively.

It seems that before irradiation, the doping concentration of the p-stop does not influence the

electric field strength in a significant way. From this point of view, a relatively high p-stop peak

doping concentration of about 9×1016 cm−3 is good before irradiation as the interstrip resistance

is assured (see the measurements chapter 8.1). Taking a closer look at figure 6.6(a), it can be

seen that the maximum electric field strength is some tens of nanometers below the Si-SiO2

interface. Therefore figure 6.6(e) shows the maximum electric field strength which was extracted

from the silicon bulk independent of the high field position. As a consequence, the values are

slightly higher compared to the values plotted in 6.6(b). Nevertheless, as a further consequence of

the simulations of unirradiated silicon n+−in−p strip sensors with different p-stop atoll pattern,

clearly the implantation of the p-stop should be placed just in the center between two adjacent

strips. This lowers the maximum electric field and hence the breakdown voltage increases.

The p-stop common technique has been investigated in [VBF+12] with the result that the p-

common negatively influences the signal to noise ratio of the sensors. Therefore, the study

presented concentrates on the p-stop atoll only. Nevertheless, samples with the p-stop com-

mon layout were also produced in order to check against the results shown in [VBF+12] and

comparable investigations were started.

Results - irradiated case

For the irradiated case, the simulation with the damage models described in tables 6.1 and 6.2

changes the picture in dependence on the applied isolation parameter. First of all, in figure 6.7(a)

the significance of the cut line below the surface is shown. Here, one can see that a wrong

interpretation of the electric field strength could happen if the cut line is not set properly.

This is of importance in particular after irradiation to Φ = 1×1015 neqcm−2, indicated by the

58



6.4. ELECTRIC FIELDS IN DEPENDENCE ON THE P-STOP CHARACTERSTICS

0 2 0 4 0 6 0 8 0- 5 . 0 x 1 0 4

0 . 0

5 . 0 x 1 0 4

1 . 0 x 1 0 5

1 . 5 x 1 0 5

2 . 0 x 1 0 5

2 . 5 x 1 0 5

3 . 0 x 1 0 5

3 . 5 x 1 0 5

Ele
ctr

ic f
ield

 st
ren

gth
 / (

Vc
m-1 )

p o s i t i o n  a l o n g  l i n e  /  ( µ m )

Φ  /  ( n e q c m - 2 )  - -  c u t  /  ( n m )
 0          - -     1 5 0 0
 0          - -       2 0 0
 1 x 1 0 1 5  - -     1 5 0 0
 1 x 1 0 1 5  - -       2 0 0

n +

(a)

0 2 0 4 0 6 0 8 0- 5 . 0 x 1 0 4

0 . 0
5 . 0 x 1 0 4

1 . 0 x 1 0 5

1 . 5 x 1 0 5

2 . 0 x 1 0 5

2 . 5 x 1 0 5

3 . 0 x 1 0 5

3 . 5 x 1 0 5

4 . 0 x 1 0 5

Ele
ctr

ic f
ield

 st
ren

gth
 / (

Vc
m-1 )

p o s i t i o n  a l o n g  l i n e  /  ( µ m )

 V b i a s = - 9 0 0 V ,  T = - 2 0 ° C
n +

Φ  /  ( n e q c m - 2 )
 1 x 1 0 1 4

 3 x 1 0 1 4

 7 x 1 0 1 4

 1 x 1 0 1 5

(b)

1 . 0 x 1 0 1 4 3 . 0 x 1 0 1 4 5 . 0 x 1 0 1 4 7 . 0 x 1 0 1 4 9 . 0 x 1 0 1 4 1 . 1 x 1 0 1 5

1 . 5 x 1 0 5

1 . 8 x 1 0 5

2 . 1 x 1 0 5

2 . 4 x 1 0 5

2 . 7 x 1 0 5

3 . 0 x 1 0 5

3 . 3 x 1 0 5

3 . 6 x 1 0 5

3 . 9 x 1 0 5

V b i a s = - 9 0 0 V ,  T = - 2 0 ° C

Ma
x. 

ele
ctr

ic f
ield

 st
ren

gth
 / (

Vc
m-1 )

F l u e n c e  /  ( n e q c m - 2 )

P - s t o p  c o n c .  /  ( c m - 3 )
 1 e 1 6
 3 e 1 6
 5 e 1 6
 7 e 1 6
 9 e 1 6

c r i t i c a l  e l e c t r i c  f i e l d  s t r e n g t h

(c)

1 . 0 x 1 0 1 4 3 . 0 x 1 0 1 4 5 . 0 x 1 0 1 4 7 . 0 x 1 0 1 4 9 . 0 x 1 0 1 4 1 . 1 x 1 0 1 5

1 . 5 x 1 0 5

2 . 0 x 1 0 5

2 . 5 x 1 0 5

3 . 0 x 1 0 5

3 . 5 x 1 0 5

4 . 0 x 1 0 5
V b i a s = - 9 0 0 V ,  T = - 2 0 ° C

Ma
x. 

ele
ctr

ic f
ield

 st
ren

gth
 / (

Vc
m-1 )

F l u e n c e  /  ( n e q c m - 2 )

P s t o p  c o n c .  /  ( c m - 3 )  - -  P S  /  ( µ m )
 1 x 1 0 1 6  - -  2 7
 1 x 1 0 1 6  - -  1 7
 1 x 1 0 1 6  - -  1 2
 1 x 1 0 1 6  - -  7
 3 x 1 0 1 6  - -  2 7
 3 x 1 0 1 6  - -  1 7
 3 x 1 0 1 6  - -  1 2
 3 x 1 0 1 6  - -  7

c r i t i c a l  e l e c t r i c  f i e l d  s t r e n g t h

(d)

5 1 0 1 5 2 0 2 5 3 01 . 6 0 x 1 0 5

1 . 6 5 x 1 0 5

1 . 7 0 x 1 0 5

1 . 7 5 x 1 0 5

1 . 8 0 x 1 0 5

1 . 8 5 x 1 0 5

Φ = 1 x 1 0 1 5 n e q c m - 2 ,  p - s t o p  c o n c . = 1 x 1 0 1 6 c m - 3 ,  T = - 2 0 ° C

Ma
x. 

ele
ctr

ic f
ield

 st
ren

gth
 / (

Vc
m-1 )

p - s t o p  t o  s t r i p  d i s t a n c e  /  ( µ m )

 - 6 0 0 V ,  8 µ m
 - 6 0 0 V ,  4 µ m
 - 6 0 0 V ,  6 µ m
 - 9 0 0 V ,  8 µ m
 - 9 0 0 V ,  4 µ m
 - 9 0 0 V ,  6 µ m

(e)

1 x 1 0 1 6 3 x 1 0 1 6 5 x 1 0 1 6 7 x 1 0 1 6 9 x 1 0 1 6

1 . 5 x 1 0 5

1 . 8 x 1 0 5

2 . 1 x 1 0 5

2 . 4 x 1 0 5

2 . 7 x 1 0 5

3 . 0 x 1 0 5

3 . 3 x 1 0 5

3 . 6 x 1 0 5

3 . 9 x 1 0 5

4 . 2 x 1 0 5
Φ = 1 x 1 0 1 5 n e q c m - 2 ,   T = - 2 0 ° C

Ma
x. 

ele
ctr

ic f
ield

 st
ren

gth
 / (

Vc
m-1 )

p - s t o p  d o p i n g  c o n c .  /  ( c m - 3 )

P S  /  ( µ m )  - -  V b i a s  /  ( V )
   7  - -  6 0 0
   7  - -  9 0 0
 2 3  - -  6 0 0
 2 3  - -  9 0 0

c r i t i c a l  e l e c t r i c  f i e l d  s t r e n g t h

(f)

Figure 6.7: Figure 6.7(a) indicates the significance of the correct cut line. In 6.7(b), the max.
electric field is plotted as a function of the fluence for a p-stop doping concentration of 9×1016 cm−3.
6.7(c) and 6.7(d) show the maximum electric field independent of the appearance for different
p-stop doping concentrations and positions. In 6.7(e), the max. electric field strength in the bulk
for three different p-stop widths is shown, assuming a doping concentration of 1×1016 cm−3.
Figure 6.7(f) shows the extracted maximum electric field strength as a function of the doping
concentration after a fluence of 1×1015 neqcm−2.
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Figure 6.8: Scan of the electric field strength as a function of the p-stop peak doping concentration
and particle fluence. Proton model and sensor parameters as in table 6.3, T= 253 K, Vbias =−600 V,
NOx = 1×1012 cm−2.

dashed lines when high electric fields in the region of ≈ 105 Vcm−1 are expected. In figure 6.7(b),

one can see such high fields at the p-stop curvatures already after a relatively low fluence of

Φ = 1×1014 neqcm−2. Especially after a proton fluence of Φ = 1×1015 neqcm−2, the electrical

breakdown voltage of a pn-junction in silicon with 3×105 Vcm−1 is reached. Hence, a scan of

the p-stop peak doping concentration was performed for the same fluence. From figure 6.7(c)

one can derive that for the nominal doping depth of the boron of around 2 µm, a peak doping

concentration of 3×1016 cm−3 should not be exceeded to stay below critical field strengths. Here,

the positioning of the p-stops was already optimized taking the value for the p-stop to strip

distance PS of 27 µm.

Figure 6.7(d) now concentrates on the p-stop doping concentrations of 1×1016 cm−3 and 3×
1016 cm−3. According to the simulations, these values seem to assure high breakdown voltages.

But when using this values with the different p-stop doping positions one can see that the electric

field strengths for the lower p-stop concentration are not affected at all while the higher p-stop

doping concentration of 3×1016 cm−3 also shows high electric fields when the p-stop to strip

distance was chosen to be smaller and towards the end of the sensor lifetime. Consequently, the

upper range for the p-stop doping concentration is limited and so far the interstrip resistance

Rint has not been considered at all. Rint will be discussed in the coming sections.

So far, the doping width of the p-stop was been considered. The constraints for the width are
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the effect on the electric field, the interstrip resistance and the production feasibility for the

vendor. This means that an implantation of a few µm is not trivial and some vendors require at

least 4 µm wide pattern. In addition to the physical implantation width, the lateral diffusion

has to be taken into account. In general, after implantation, diffusion processes are applied

in which the wafers are heated up to several hundreds degrees. This thermal diffusion also

spreads laterally. A value of about 80% of the depth can result in lateral diffusion. The lowest

value for almost all vendors is 4 µm. After the diffusion process, a p-stop width of about 5 µm is

expected2. The electric field strength for the p-stop doping concentration of 1×1016 cm−3 and a

fluence of 1×1015 neqcm−2 for three different p-stop doping widths of 4, 6 and 8 µm is plotted in

figure 6.7(e). Here the bias voltages of 600 V and 900 V are shown. For both high voltages, the

electric field strengths are within a safe range although for higher voltages also the electric field

strength increases. From this point of view, the width of the p-stop does not affect the breakdown

voltages but it has to be mentioned that although the width was varied, the PS distance was kept

the same. This means that the electric field density between the strip edge and the p-stop edge is

the same. The relatively small range for the p-stop doping concentration is shown in figure 6.7(f).

One can see, how the critical range for the electric field strength is quickly reached even for a

low boron doping concentration of 2×1016 cm−3 when the position of the implant is close to the

strip, for both 600 V and 900 V. Here, again the end of the lifetime after an integrated luminosity

of 3000 fb−1 was considered for inner strip sensors of the PS modules. The default simulation

settings are such that although the electric field strength lowers the breakdown voltage, the

simulator does not stop as long as the calculations converge.

The maximum electric field strength as a function of the proton fluence and the p-stop doping

concentration was simulated for the HPK sensor characteristics listed in table 6.3 and is plotted

in figure 6.8. Independent of the appearance in the bulk, the maximum electric field strength in

the sensor was extracted for a bias voltage of -600 V and T= 253 K. Obviously, with increasing

fluence and p-stop doping concentration, the maximum electric field strength increases too.

The measurements for different sensor suppliers and boron doping concentrations will cover the

range shown in this plot in order to make a comparison and to verify the damage model and in

general the simulation predictions.

Besides the doping concentration and position of the p-stop isolation structure, also the depth

of the implant has to be balanced. As in figure 6.8, a scan of the p+ and n+ doping depths

was performed as well. In figure 6.9, the results are shown for two different p-stop doping

concentrations of 1×1016 cm−3 and 5×1016 cm−3 for the fluence of Φ = 1×1014 neqcm−2 and

Φ = 1×1015 neqcm−2 respectively. It seems that an increasing p-stop doping depth influences

the electric fields negatively whereas the strip implant concentration does not effect the field

strength at all. Furthermore, for the concentration of 1×1016 cm−3, the electric field strength

stays in a low range even for deep diffusion to 3 µm. Simulation of the interstrip resistance has

2depending on the vendor and the chosen process sequence
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Figure 6.9: Electric field strength in dependence on the n+ and p+ doping depths. Two different
p-stop concentrations and fluence are shown. Colored legend shows the maximum electric field in
bulk.

now to be executed in order to study if a shallow doping and the maximum boron concentration

for the isolation leads to a satisfying interstrip resistance.

The effects of the various p-stop isolation characteristics on the electric fields Emax with

respect to simulation studies in particular after irradiation is summarized in table 6.4:
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6.5. INTERSTRIP RESISTANCE Rint

Table 6.4: Effects on the maximum electric field Emax in dependence on the p-stop characteristics

.

Quantity:

Value:
low high

p-stop-strip distance Emax ⇑ Emax ⇓
p-stop width Emax ⇔ Emax ⇔
p-stop doping conc. Emax ⇓ Emax ⇑
p-stop depth Emax ⇓ Emax ⇑

6.5 Interstrip resistance Rint

The interstrip resistance is a crucial parameter for silicon detectors as it directly influences

the resolution of a sensor. A high interstrip resistance must be achieved independent of the

irradiation level in order to isolate adjacent strips and distinguish successfully between hit strips.

Rint is measured between two adjacent strips on their DC pads. The DC pads hold the feature

that the pads are, with the help of vias, directly contacted to the strip implant and the direct

current can be measured. These DC pads are not mandatory for the operation but are used for the

qualification of sensor parameters like the interstrip resistance. While the whole sensor is biased

via the bias ring with high voltage, an additional low voltage (LV) is applied to two neighboring

strips and a voltage ramp in 0.2 V steps up to 2 V is conducted. The Ohmic law describes the

relation between current, voltage and resistance. Hence, the interstrip resistance is obtained

from the current measurement driven by the LV. A measurement setup is shown in figure 6.10(a).

guardring 

biasring 

DC pads 

AC pads 

A 
ramp +1V 
ΔV=0.2V 

(a) Rint measurement network
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 / (

Oh
m*

cm
)

 d a t a
 r e g r e s s i o n
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(b) Definition of the Rint value

Figure 6.10: Definition and measurement setup of the interstrip resistance Rint. In (a), the
measurement network is shown where an additional LV is applied between two adjacent strips,
and in (b), the determination of Rint for a float-zone 320 µm thick sensor after a proton irradiation
to 7×1014 neqcm−2 is shown.
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Figure 6.11: Interstrip resistance for different substrate material, thickness and polarity for the
HPK samples as a function of the fluence [Hof13].

Constraints of the measurement are the strip leakage current, noise and the current range of the

measurement device. In the following chapter, in which the results from the measurements will

be shown, the interstrip resistance is determined in a bias voltage ramp shown in figure 6.10(b).

In general, all strips of a sensor are scanned for high statistics and in order to absorb fluctuations.

As Rint increases and saturates with the HV, a linear fit with a slope of 0 is fitted to the values in

the range between 400 V and 900 V, as this is the bias range after high irradiation level.

During the large HPK measurement campaign, the interstrip resistance was also measured for

all kinds of sensors [Hof13]. Here, the substrate materials, thickness and polarity were varied and

the sensors were irradiated to a high fluence. Within this study, it was found that the interstrip

resistance is the only parameter for the electrical measurements which significantly changes after

irradiation. While Rint starts in the range of tens of GΩ before irradiation, the value decreases

by at least three orders of magnitude for the HPK samples, see figure 6.11. Unfortunately, the

parameters for the boron isolation are not known from the vendor, due to its corporate secret.

Nevertheless, even after degradation, the value of about > 108 GΩcm still fulfills the specification

of Rint > 20×Rpoly. Rpoly is the poly silicon bias resistor for each individual strip and is in the

range from 2 MΩ to 4 MΩ, where the range has been specified by the CMS tracker community.

For the simulation, the SPICE network was adapted in order to mirror the measurement setup.

This means, as during the electrical qualification, an LV ramp between two adjacent strips

was added in order to be as close to the measurement setup as possible. Than again, the p-

stop doping concentration as well as the p-stop depth was varied. The result is plotted in

figure 6.12. Several conclusions can be drawn: First of all, one can see that a sufficient interstrip

resistance in the simulation can be achieved first for a minimum p-stop doping concentration of
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Figure 6.12: Simulated interstrip resistance as a function of the p-stop doping concentration and
depth after a fluence of Φ= 1×1015 neqcm−2 at -900 V and T= 253 K. The strip implant depth is
2 µm.
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Figure 6.13: Simulated interstrip resistance as a function of the p-stop doping depth after a
fluence of Φ= 1×1015 neqcm−2 at -900 V and T= 253 K. The strip implant depth is 2 µm and the
p-stop doping concentration is kept constant to 1×1016 cm−3.

1×1016 cm−3 and more importantly, the p-stop doping depth should be at least 1.5 µm. This is

valid if the strip implant doping depth is 2 µm, which was used for this simulation. Moreover,

the simulated interstrip resistance is combarable with the measured interstrip resistance after
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Φ= 1×1015 neqcm−2, shown in figure 6.11. With increasing p-stop doping depth, Rint increases as

expected and the electric field strength, too. But the latter is, for the moderate boron concentration

of 1×1016 cm−3, still in a healthy range and in agreement with the results shown in figure 6.9

in the previous section. The red line emphasizes the range of the high electric field strength

above 3×105 Vcm−1. The value for Rint of 1 MΩcm for low doping concentrations is due to the

fact, that if the Rint is too low, the measured or simulated value for the Rint corresponds to the

resistance of the measured Rpoly bias resistors in parallel mode. As here two strips, each with a

Rpoly = 2 MΩcm was simulated, a resistance of 1 MΩcm is expected when no strip isolation is

given.

Figure 6.13 visualizes the point in figure 6.12 where the Rint starts to be satisfactory (p-stop

conc.= 1×1016 cm−3). C1 and C2 are the electrodes at which the LV is applied. The inverse of the

curve’s slope is the interstrip resistance. The red curve is related to a low interstrip resistance

and behaves linearly in this range. An interesting fact is that like in the measurement, the fit

to the LV ramp points is linear by default. But in measurements as in the simulated case, a

non-linear curve is observed after irradiation. This is related to the leakage current of the bulk

and also in agreement with the simulation.

As for the maximum electric field strength in the previous section, the effects on the interstrip

resistance in dependence on the p-stop characteristics are listed in table 6.5:

Table 6.5: Effects on the interstrip resistance Rint in dependence on the p-stop characteristics.

(The last points have not been shown implicitly).

Quantity:

Value:
low high

p-stop doping conc. Rint ⇓ Rint ⇑
p-stop depth Rint ⇓ Rint ⇑
p-stop width Rint ⇔ Rint ⇔
p-stop position Rint ⇔ Rint ⇔

Drawbacks of present radiation damage models

In general, tens of different point defects and clusters depending on the irradiation particle type

and energy are present. Clearly, the phase space for the implementation of all known defects

into the simulation is too large. Therefore, defect damage models with a couple of defects (in

this thesis, the 2-effective defect model) are developed which can describe the measurements

in a certain region with good agreement. The main goal was to reproduce the data from the

technical point of view. A physical approach should include more, or in best case, all defects.

The damage model used in this thesis is the 2-defect damage model, as described in one of

the previous sections. This model is valid for the fluence range of Φ = 1× 1014 neqcm−2 to

Φ= 1.5×1015 neqcm−2. More important is that the model is only valid when a constant number
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of positive oxide charges (NOx = 1×1012 cm−2 for the proton model) is used. But the study of

Zhang, shown in figure 6.2, clearly indicates that the oxide charge after such high fluence

exceeds the value of NOx = 1×1012 cm−2 for proton irradiation. As soon as the oxide charge is

slightly increased in the simulation using the 2-defect model, the interstrip resistance vanishes

also for a p-stop doping concentration of = 1×1016 cm−3 and higher which, at a first glance,

seems to be a suitable value corresponding to the results gained during the HPK campaign3.

Hence, some further defects at the Si−SiO2 interface and oxide have to be implemented. One

approach has been presented by [Pel14], where a third trap in form of shallow acceptor levels

just 1 µm under the Si−SiO2 interface was implemented (the work was done within the CMS

silicon sensor simulation working group). This model also reproduces data with good agreement

and also allows higher values for the oxide charge (NOx = 2×1012 cm−2). A further model was

developed within the simulation working group and published in [JBD+15]. Here in particular,

the interface and oxide damage, which has significant influence on p-type sensors, was extended

by two additional surface acceptor levels. With this model it is also possible to reproduce data

for a even higher fluence (important for the pixel detector region), but in contrast it is only

valid for a second software, the Silvaco software simulation package [Sil]. Actually, the different

simulation software packages (Synopsys and Silvaco) differ slightly in some of the implemented

physics models due to different values for physical paramters. Hence, a direct comparison of

results obtained from different packages is difficult.

Nevertheless, simulations are a powerful tool for sensor development and should be taken into

account, especially in order to save time and costs, but clearly the production and measurements

of silicon sensors for such harsh radiation environment like at the HL-LHC are unavoidable.

This brings us now to the next chapter in which the design of different wafers and sensors based

on simulation results will be discussed.

3The concentration and depth of the HPK samples have been measured with the spreading resistance
method [Tre12]
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DESIGN OF SILICON STRIP SENSORS

Development of radiation hard silicon detectors includes several aspects, ranging from

the choice of the substrate material and thickness to the design or rather the surface

layout of the components, like the strips and the isolation structure. As shown in the

previous chapter, simulation studies support the development and understanding of detector

characteristics. Nevertheless, the design and production with subsequent measurements and

irradiation studies are required. The combination of simulations and data should converge to the

choice of the silicon detectors for the CMS Tracker Phase II Upgrade.

The most promising design aspects from the T-CAD studies as well as some of the less promising

ones, in order to prove the simulation predictions, were realized on three different wafers of three

different vendors. Sensor design aspects like the close PS distance were also included in the wafer

design in order to qualify and check the simulation predictions. In this chapter, the design of the

silicon strip detectors used for the p-stop isolation study will be shown.

7.1 Design of photolithographic masks

The layouts for the photolithographic masks for the production of the wafers were designed

within this study. In total, three different wafers were realized and produced. The final wafer

layouts and a short description of wafer processing at ITE Warsaw1 are in the appendix B.

The mask design itself was done with the LayoutEditor software [LE] which is a graphical design

software for IC structures. The output files are in the GDS format, which can be directly taken for

the mask production at the producing company. The layouts were designed using macro scripts

programmed in C++ like code which allows a fast redrawing of structures. This is important due

1Institute of Electron Technology Warsaw
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to many changes during the layout process and additional constraints by the vendor which are

propagated during the iterations before the final production.

For the p-type wafers with p-stop isolation pattern, at least seven masks are necessary in order

to process a silicon strip detector. At this juncture, masks for the different implantations are

required as well as masks for the metal layer and passivation openings. Furthermore, additional

masks for the DC contacts are needed. Depending on the run and vendor, an additional mask

is necessary if a shallow nitride layer below the coupling oxide is required. This layer should

ensure radiation hardness in form of stable coupling capacitances and hence a stable channel

noise input. In this study, this technique was not used and will not be discussed any further.

Then, an additional mask may be required if the periphery of the sensor shall be implanted with

a higher dose in order to achieve a higher doping concentration in the order of 1×1019 cm−3. The

higher concentration in the periphery is applied in order to prevent an influence of additional

currents which are generated at the sensor edges due to the dicing. The latter destroys the

single crystal lattice of the silicon bulk and introduces undesired currents. This technique was

used for the ITE and CNM2 runs whereas for the CiS3 run it has been discarded. Here, the

periphery concentration is equal to the p-stop doping concentration (≈ 1×1016 cm−3), hence one

photolithographic mask for both implantation regions was used.

7.2 Sensor layout for the p-stop isolation study

All three wafer layouts contain one specific test strip sensor design. The parameters of the

design correspond to the 2S module design aspects, like a fix pitch of 90 µm and a strip width of

25 µm. Furthermore, variations of this standard layout with varying p-stop pattern, for instance,

were placed on the wafers too. Hence, each wafer contains a number of several silicon strip

detectors which differ in layout but have the same process parameters. This fact should ensure

the comparison of data for the different layouts. The sensors are on average the size of 1x2 cm2

with 64 strips. Basically, the results of the electrical qualifications are normalized to 1 cm long

strips and can be scaled to a real size sensor (≈ 10x10 cm2).

A global zoom into the GDS file of a test sensor for the p-stop study is shown in figure 7.1. This

standard design was placed on each wafer submission. The most important design constituents

are labeled. The picture shows one edge of a sensor, hence the size of the periphery in relation to

the strip pitch can be extracted. Currently, studies are being done in which the sensor periphery

is scaled down [F+13] in order to increase the active region as far as possible. This topic will

not be discussed any further. The periphery itself contains, besides the strip numbering, also

additional alignment marks. These are, especially for the trigger modules, of high importance

because the two stacked sensors in one module have to be aligned with high precision. Going

from the periphery to the inner parts, the guard ring can be seen. It is in operation basically on

2Centro Nacional de Microelectronica (IMB-CNM-CSIC) Barcelona
3CiS Forschungsinstitut fuer Mikrosensorik GmbH Dresden
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Periphery

Guard ring
Bias	ring
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AC ACDC
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Strip	#

Figure 7.1: GDS section showing an edge of a silicon strip sensor designed and used in this thesis.

p-stop atoll pattern

DC	pad Aluminum strip

n+ strip

pitch
PS

p-stop width

Figure 7.2: Zoom into the sensor shown in the figure above.

floating potential and shapes the electric field inside the active region in order to minimize any

effects from the sensor edges. For this purpose, the same material as for the strips is used as an

implant. The bias ring is implemented in the same way as the guard ring but during operation at

ground potential. The Rpoly bias resistors connect the ground potential of the bias ring with the

individual strips which are connected to the readout chip via the AC pads.

In figure 7.2, the most important quantities for the p-stop isolation study are labeled correspond-
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Table 7.1: P-stop doping profile parameters of the sensors in this study.
Vendor /Variant peak conc. doping depth projected surface conc.

(cm−3) (µm) (cm−2)
HPK 1×1016 2.2 9×1011

CNM 9×1016 2.7 8×1012

ITE << 1×1016 < 2.0 << 1×1011

CiS / V1 1×1016 1.5 7×1011

CiS / V2 1×1016 2.5 9×1011

CiS / V3 1×1017 2.5 8×1012

ing to the simulation studies. Here, the p-stop width, the strip implant to p-stop distance PS and

the strip implant width are of importance.

7.3 P-stop characteristics of the different submissions

In order to cover the whole phase space for the different p-stop parameters, p-type sensors from

four different submissions and four different manufacturers were investigated. In addition to the

wafers designed within this study, the sensor results from the HPK campaign were taken into

account too.

For all submissions, the specifications were the same. The wafer substrate material is float-zone

and high resistive (4 kΩcm to 10 kΩcm) p-type. The crystal lattice orientation is < 100 > and

the sensors should withstand a bias voltage up to 500 V before irradiation. At this voltage,

the leakage current should not exceed 5 nA/mm3 (< 0.1 µA/cm2). The physical thickness varies

between 200 µm and 320 µm, which mainly has an effect on the leakage current and charge

collection efficiency. For the p-stop study, the thickness is not important. The values for the p-stop

doping concentration and doping depth for the different submissions are listed in table 7.1. One

can see that the range for doping concentrations is between << 1×1016 cm−3 and 1×1017 cm−3.

The p-stop doping depths vary between 1.5 µm and 2.7 µm. For both quantities, the values are

mainly derived from process simulations by the manufacturers. In case of the HPK variant, the

concentration and depth have been measured with the spreading resistance method. In case of

the CNM submission, the choice on the p-stop parameters was done by the manufacturer, as

this was a joint R&D submission with collaborators. The CiS samples were ordered as the last

submission at which the specifications for the p-stop parameters were propagated by the author.

The purpose for the latter was to check against the simulation results and measurements of the

previous submissions with HPK, ITE and CNM.

Furthermore, on the ITE and the CNM wafer standard test sensors with different p-stop positions

were placed in order to check whether any differences as a function of strip to p-stop distance PS

can be observed.

The surface implant dose in table 7.1 was calculated assuming a gaussian shape of the doping
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profiles. Then, the simulated profile was integrated. It is worth mentioning that the magnitude

of the dose is approximately the surface concentration of oxide charges after irradiation. For the

high p-stop concentration and depth a value of 8×1012 cm−2 for the surface implantation dose

was calculated. This is quite high in comparison to the positive oxide charge of 1−3×1012 cm−2

and may be related to the high electric field strength in the bulk for high boron concentrations.
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SILICON SENSORS - IRRADIATION STUDIES

In general, test sensors are electrically qualified in a semi-automatic probe-station before

and after irradiation. By placing probe needles to the bias ring and pads, several sensor

parameters can be qualified. In this particular case, the interstrip resistance in dependence

on the p-stop characteristics is of high interest. Besides the electrical qualification, also the

noise and the charge collection of the samples are measured with an analogue readout chip.

Both the interstrip resistance and the charge collection degrade with increasing radiation level,

whereas the noise, mainly generated by leakage current, increases. As shown in chapter 6, the

interstrip isolation significantly affects the electric field strength and distribution respectively

and is directly related to the charge collection and noise of the sensor.

In order to investigate the relation between the radiation hardness of a sensor and the isolation

technique, irradiations in several steps were done. The subsequent qualification of the sensors

considering the p-stop influence is summarized in the following chapter. Furthermore, studies on

different sensor designs for PS and 2S modules will be discussed as well as a new sensor layout

developed at KIT.

8.1 Interstrip resistance before and after irradiation

All samples with the different p-stop characteristics from table 7.1 were irradiated with protons

and/or neutrons. The range of the fluence was chosen from Φ = 1×1014 neqcm−2 to Φ = 1.6×
1015 neqcm−2 in order to cover the expected radiation level after 3000 fb−1. The highest chosen

fluence is approximately two times the maximum expected fluence for safety reasons.

In figure 8.1, again the simulated interstrip resistance and electric fields are plotted for Φ =
1×1015 neqcm−2 and 900 V. In addition, the different submissions from the four vendors are
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Figure 8.1: Simulated interstrip resistance and electric fields and the expectations for the different
vendors.

indicated by colored areas corresponding to the p-stop doping concentration of the individual run.

For the ITE samples (greenish), it is expected that the interstrip resistance is far too low as the

doping concentration is significantly below 1×1016 cm−3 due to some process problems during

production. The HPK and the CiS V1 and V2 ( blueish) are expected to behave well with respect

to a good strip isolation and simultaneously low electric field strength. The latter can be derived

from noise measurements and will be discussed later. Finally, for the CNM as well as for the CiS

V3 samples (reddish), though the interstrip resistance is expected to be sufficient due to high

doping concentrations of the p-stop isolation, the electric field strength is expected to be in the

critical region at around 3×105 Vcm−1.

Measurements

The samples were measured before irradiation at T= 20◦C. Although p-type detectors deplete

from the sensor surface to the backside, the bias voltage was at least Vbias = 1.2×VFD for scans

in which several strips were measured. Furthermore, bias scans have been performed too. After

irradiation, the measurements have been performed at T=−20◦C due to the increased leakage

current as a consequence of the radiation damage. A bias voltage of up to 900 V was applied.

The results from these measurements are plotted on figure 8.2 as a function of the fluence. For the

irradiation either just protons and neutrons or mixed particle were used. The latter is realized by
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Figure 8.2: Measured interstrip resistance for the different vendors and variants respectively
before and after irradiation. The CiS samples were processed with different p-stop characteristics.

subsequent irradiations. The estimated errors for the fluence are 20% for the protons and 10% for

the reactor neutrons. The errors on the interstrip measurement are derived from a linear fit with

a slope of 0 to the several measured samples and strips where the mean error was extracted.

All samples but the ITE with low p-stop doping concentration show a sufficient interstrip

resistance, even after a fluence of Φ= 1.6×1015 neqcm−2. The lowest measured value was for the

CiS V3 samples after a fluence of Φ= 1×1015 neqcm−2, although still above 100 MΩcm, whereas

50 MΩcm are required. In particular, the CiS samples of version 1 with the relatively shallow

doping depth of 1.5 µm and a doping concentration of 1×1016 cm−3 for the p-stop behave well.

This range for the p-stop characteristics is corresponding to the simulation studies advantageous

with respect to low electric field strength. In general, at the high fluence level all samples but the

ITE sensors hold an interstrip resistance of about 1GΩ which is sufficient and correspond to the

values predicted in the simulations, which is shown in figure 8.1. The plot shows measurements

for samples with different p-stop doping positions (CNM). No difference related to the position

PS regarding the interstrip resistance was observed .

Figure 8.3 shows a comparison between T-CAD simulation and measurement of an irra-

diated sample, in this case a CiS V3 sensor. Here, the bias voltage was ramped and at each

ramping point the interstrip resistance was measured. While during the measurement the

interstrip resistance slowly increases depending on the bias voltage up to around 200 V until the

final value, the Rint increases in the simulation, too, but much faster. At a bias voltage of around
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Figure 8.3: Measured and simulated interstrip resistance for a bias voltage scan.

20 V, the simulation reaches the final value for the interstrip resistance. This effect has not been

understood so far and has to be investigated further. After around 200 V in both simulation and

measurement, the values match well and a sufficient strip isolation is given in both measurement

and simulation. Hence, simulations can reliably predict the sensors’ performance when the

model and radiation level range used are comparable, but on the other hand some discrepancy is

observed and has to be resolved.

Role of the space charge

The ITE samples with a low p-stop doping concentration result in no sufficient strip isolation

before irradiation. Here, a value of some tens of kΩ was measured. This is expected as these

sensors feature 64 strips, each contacted via a bias resistor of about 2 MΩ to the bias ring. With

a low interstrip resistance, these 64 strips are measured in parallel and an interstrip resistance

of ≈ 30 kΩ is the result.

After irradiation, an increase of the interstrip resistance is observed for the proton irradiated

samples, whereas the neutron irradiation does not change the Rint in a significant way. This

effect in dependence on the charge of the hadrons during the irradiation can be explained by

considering the space charge. This theoretical idea was first developed within the CMS silicon

sensor simulation working group. For the 23 MeV proton irradiation, more acceptor-like point

defects are introduced which are homogeneously distributed through the silicon bulk [Neu13]. As

a further consequence, the effective bulk doping increases and the full depletion voltage as well.
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Figure 8.4: Relative proportion of charges in the bulk in dependence on the polarity and the
resulting space charge density as a function of the bulk depth.

Now in case of a n+−in−p detector, the electrons are collected at the electrodes, whereas the holes

drift to the backplane. Hence, the neutral acceptor like defects capture the electrons which drift

towards the collecting electrodes. As the proportional density of the electrons is higher at the

surface, also the number of negatively charged acceptor defects at the surface increases. In turn,

a negative space charge region at and between the strips arises and acts in principle in the same

way like the p-stop or rather the p-spray isolation, see figure 8.4. The electrons are repelled by

the negatively charged acceptor defects and no accumulation layer builds up. In case of the ITE

samples, the interstrip resistance increased after a proton fluence of Φ= 3×1014 neqcm−2 from

the initial ≈ 30 kΩ to almost 1 GΩ. This value again fulfills the specifications. For the neutron

irradiation, more donors than acceptors are created, which increases the positive space charge

instead of the negative and hence no increase of the interstrip resistance is expected.

In order to check whether the space charge mechanism is responsible for the raise of the interstrip

resistance, the ITE sensors were irradiated in the x-ray tube at EKP. The 23 MeV protons at

KIT create in addition to bulk damage also surface damage, where a dose of about 150 kGy

per 1×1014 neqcm−2 was calculated. In contrast, a dose of just about 1 kGy/1×1014 neqcm−2 for

the 0.91 MeV neutrons is introduced. X-rays in general introduce damage in the oxide whereas

no bulk damage is created. Hence, a buildup of an accumulation layer due to additional fixed

positive surface charge is expected. The result is plotted in figure 8.5. For the low irradiation

to 10 kGy an increase in the interstrip resistance was measured and is probably related to any

additional surface charge-up which affects the bulk current but it is not understood completely.
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Figure 8.5: X-ray irradiation of the ITE samples with low initial interstrip resistance.

For the further x-ray irradiations, the interstrip resistance stays low and as expected. The result

confirms the space charge effect.

Unfortunately, the effect of increasing interstrip resistance after proton irradiation cannot be

reproduced with the damage model by simulations. Here, basically a p-type sensor without any

isolation structure was simulated and damage corresponding to a fluence of Φ= 1×1015 neqcm−2

was set. But the simulator results in no or very low interstrip resistance and the charge is

distributed equally amongst the simulated strips. Clearly, the model has to be either adapted or

more likely to be extended by further additional defect levels in order to reproduce the observation.

Some first approaches are currently ongoing within the simulation working group.

An example of how the charge collection and cluster size behave for the different samples will be

drawn in the next sections.

8.2 Signal measurements

Besides the electrical quantities and the necessity for low leakage currents, the charge collection

of silicon detectors is the most important parameter. A traversing particle (especially a MIP)

should be detected reliably even after the expected fluence of Φ= 1×1015 neqcm−2 for the outer

tracker silicon strip sensors. In order to measure the generated charge by a particle, the ALiBaVa1

readout system was used [MH08]. The readout system is based on the Beetle chip with 128

readout channels which is used by the LHC-b experiment at CERN. It is an analogue chip with

about 25 ns peaking time and allows a detailed analysis of the detector signal (information

are the pulse shape and height). The sensors are bonded to the Beetle chip and analyzed with

scripts using the ROOT software framework [ROO]. Charge carriers are generated by traversing

1A Liverpool Barcelona Valencia
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β-electrons from the Sr90 decay on top of the sensor and triggered by a scintillator. The samples

can be cooled down during the measurement to T=−30◦C and also annealing studies at elevated

temperatures (> 80◦C) can be performed within the ALiBaVa setup.

In order to determine the noise of a sample, a pedestal run prior to the measurement is performed

where randomly triggered events are recorded. From this, a mean pedestal Ps for each strip is

calculated by

(8.1) Ps = 1
N

N∑
i=1

ADCs,i,

where N is the number of triggers taken and ADC the signal of an individual strip. The noise

itself is the variance of the the pedestal and can be calculated to:

(8.2) Ns =
√√√√ 1

N

N∑
i=1

(ADCs,i −Ps)2 .

After the calculation of the pedestal and the noise, the particle hits can be identified.

The signal measured by the analogue chip is algorithmically calculated to the cluster signal.

Cluster is a measure for the multiplicity of adjacent strips which detect signals generated by

one hit. The strip with the highest signal within a cluster is called the seed strip and must be at

least 5 times higher than the calculated noise. Furthermore, any adjacent strips which detect

signals higher than 2 times the noise contribute to the cluster charge (5/2σ-cut). The cluster

signal of several triggers is of an asymmetric Landau-Gauss distribution due to energy deposition

fluctuations, see figure 8.6. Therefore, the mean is always higher than the most probable value

(MPV).

In figure 8.6(c) the combination of the noise and the signal can be seen. Due to the 5σ-cut for

the seed strip, in this case the part of the tail exceeding 5σ= 5×3.783= 18.915 is interpreted as

signal and corresponds to a hit.

Results - signal measurements for the different submissions

As in the simulation studies, the expected fluence range for the PS pT modules with the highest

fluence in the outer tracker was covered in the irradiation studies for the different submissions.

All samples were measured before irradiation, too, in order to study the signal degradation with

increasing damage. Due to increasing leakage current after irradiation, the sensors were cooled

down to T=−20◦C, independent of the fluence. In addition, the bias voltage was chosen to 600 V

in this plot in order to keep the noise as low as possible2. The results are summarized in figure 8.7

where the MPV value of the Landau-Gauss fit is plotted as a function of the fluence for the

seed signal. The seed signal is of particular importance due to the change of the future readout

ASICs to binary readout. In this case, the signal of each strip is compared to a threshold in the

2due to the fact, that CNM and CiS V3 samples show high noise, see later
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Figure 8.6: Exemplary signal measurements in the ALiBaVa readout system of a CiS V1 sample.
8.6(b) shows the noise from the pedestal run which is of gaussian shape. In 8.6(c) one can see the
pedestal subtracted signal distribution.
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Figure 8.7: Summary plot for the charge collection as a function of the fluence for the different
submissions. Measurements were performed at 600 V and T=−20◦C after irradiation. The MPV
of the cluster charge is plotted.

comparator. Hence, not the higher cluster but the seed signals should be considered. All samples

independent of the irradiation collect sufficiently high charge confirming existing studies which

were briefly introduced in chapter 5. The CiS samples show lower charge collection compared to

the other samples because the substrate material is 200 µm thick, compared to about 300 µm

for the other submissions. As shown in the plots in chapter 5, after a high fluence the difference

in charge collection is less pronounced for both substrate thicknesses as before irradiation. The

ITE sensors are included as well due to an improved interstrip resistance after irradiation, as

expected from the electrical qualification.

The CNM and CiS V3 samples with the high p-stop doping concentrations of 9×1016 cm−3 and

1×1017 cm−3 and relatively high doping depth are labeled with “RGH“. The acronym stands for

“random ghost hits“ and will be discussed in detail in the following section.

Random ghost hits

During the HPK measurement campaign, a non-gaussian noise for n-type detectors after high

irradiation has been observed [Die12]. Figure 8.8 shows pedestal noise runs, one for a p-type

sensor from this campaign in (a) and one for a n-type substrate, where a non-gaussian noise

contribution is observed in (b). This effect has been observed for 200 µm and 320 µm thick n-type

sensors for both silicon growth techniques, Float-Zone and Magnetic-Czochralski. The p-type

sensors of HPK did not show this effect at all. This non-gaussian noise results in fake particle

hits in n-bulk sensors as the fake signal is comparably high as a signal generated by a MIP. The
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(a) (b)

Figure 8.8: Noise contributions for (a) p-type and (b) n-type sensors in the HPK campaign for a
fluence of Φ= 1.5×1015 neqcm−2 measured at T=−20◦C and Vbias = 900 V .

effect was quantified and defined as the number of strips with a signal above 5 times the noise

divided by the number of triggered events and connected strips on the sensor. In this study, if the

RGH occupancy is higher than 1%, the sensor is discarded as bad.

Now, in this thesis, a non-gaussian noise contribution was also observed for p-type detectors,

in particular only for the CNM and the CiS V3 samples. Both of them have the relatively high

p-stop doping concentration in common. The signal measurements of samples which show RGH

above 1% are labeled as such in figure 8.7. On each wafer several sensors have been irradiated

for statistical reasons and here, the sensors showing the least RGH occupancy are shown. The

CiS V3 sensors for a fluence higher than Φ= 3×1014 neqcm−2 are not plotted due to extremely

high noise where no distinction between noise and signal was possible. On the other hand and

of high importance is the fact that the CiS V1 and V2 samples with a moderate p-stop doping

concentration of 1×1016 cm−3 do not show any measurable non-gaussian noise. Simultaneously,

a good interstrip resistance is present, hence the moderate boron concentration for strip isolation

seems to be suitable with respect to low noise and sufficient interstrip resistance.

Combination of simulations and measurements

The effects observed after irradiation, particularly the appearance of the random ghost hits, can

now be explained by taking the simulations into account which were discussed in chapter 6.

There, it was found that with increasing p-stop doping concentration, the electric field strength in

the sensors increases, too. In figure 8.9, the simulated electric field strength for the CNM sample

is plotted. The red line indicates the critical breakdown region of the electric field, whereas the

blue line indicates the start of the avalanche model. This means that a multiplication of charges

by electrons in high electric fields first appears if the electric field strength exceeds the value of

1.75×105 Vcm−1.

Here, the electron-hole production is due to the impact ionization which requires a threshold

in the electric field strength. The Van Overstraeten and De Man model [vOdM70] from 1970

has been used which is applicable in the range of 1.75×105 Vcm−1 to 6×105 Vcm−1. Here, the
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Figure 8.9: Electric field line cut just below the sensor surface. Here, the CNM sample was
simulated after a fluence of Φ = 1× 1015 neqcm−2 at 600 V and T= −20◦C. The asymmetry
between the p-stops is due to the chosen individual mesh.

impact coefficients for the electrons are the same in the lower and higher electric field regions

7.03×105 cm−1.

This means that in the local regions at the p-stop curvatures with electric fields higher than

1.75×105 Vcm−1, avalanche electrons can be created which may contribute to the non-gaussian

noise and be interpreted as hits by traversing particles. In particular, this range of high fields is

first reached in the simulation when the p-stop doping concentration exceeds 3×1016 cm−3 at

600 V for a doping depth of 2 µm. Hence, the upper limit for the doping concentration of boron

atoms for isolation layers seems to be low in the range of 1−3×1016 cm−3.

For the CiS V1 and V2 samples, which just differ in the p-stop doping depth, no significant

difference was observed. This fact is also just as predicted by the simulations shown in 6.12,

where the electric field strength stays below 1.5×105 Vcm−1 for the 1×1016 cm−3 concentration,

even after the relativly high fluence in the innermost layers of the outer tracker. As a conclusion,

it seems that the vendor produced the sensors corresponding with the specified p-stop isolation

characteristics.

Considering the p-stop to strip distance PS, the CNM samples were measured, too, and the

results are shown in figure 8.10. Here, the charge collection of the Sr90 measurement as well as

the expectations from the simulations are plotted. The PS is either 16 µm or 25 µm. In this plot,

the RGH are not labeled in order to keep the plot less crowded but all samples after irradiation

show undesired fake hits.
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Figure 8.10: Simulated and measured charge collection (cluster signal) for the CNM samples and
different PS up to a fluence of Φ= 1.6×1015 neqcm−2 at 900 V and T=−20◦C.

For the proton irradiations only, the data and simulation match well, which confirms the

proton 2-defect damage model for T-CAD. The irradiations of Φ = 7 × 1014 neqcm−2 and

Φ= 1.6×1015 neqcm−2 are of mixed particles. In the first case, after an initial proton irradiation

of Φ= 3×1014 neqcm−2, an additional neutron irradiation of Φ= 4×1014 neqcm−2 was performed.

For the higher irradiation, the samples were first irradiated with protons toΦ= 1.1×1015 neqcm−2

and subsequently with neutrons to additional Φ= 5×1014 neqcm−2. An additional drawback of

the damage model is that in principle a simulation of a mixed irradiation is not possible so far.

Here, too many variables diverge, like the fact that for the neutron model a fixed oxide charge of

7×1011 cm−2 is assumed. But the mixed samples in case of the highest irradiation first received

a proton irradiation of Φ= 1.1×1015 neqcm−2 which probably already resulted in a fixed oxide

charge higher than 1×1012 cm−2. The measurements of the samples with a mixed fluence of

Φ = 7×1014 neqcm−2 show higher values than expected. This is probably due to the starting

avalanche effect. In this case namely, the part of the neutron irradiation is higher than the proton

part which means that the oxide charge might not be saturated so far. As shown in figure 6.10,

this could lead to even higher electric fields at lower radiation level, as in p-type detectors an

increasing oxide charge is advantageous. At this fluence, the measurement at a bias voltage

of 700 V matches the expectations only. The 900 V data is around 2500 electrons higher than

expected. This is valid for both p-stop-to-strip distances of 16 respectively 25 µm.

For the proton irradiations only, no significant difference in the charge collection in dependence

on the p-stop-to-strip distance for both measurement and simulations was observed. This means
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(a)
(b)

Figure 8.11: Layout of a test 2S module sensor from the GDS file with 64 strips on each side. (b)
shows the zoom into the segmentation region where the strips meet.

from this point of view, the PS can be chosen to be high and accordingly implanted in the center

between two strips in order to keep the electric field strength as low as possible.

8.3 Sensor layouts for high particle track density

In addition to the p-stop isolation study, all wafers also included other sensor layouts in order

to study the different needs for the future tracker sensor technology. One of the main goals and

needs is an increased granularity due to an increasing particle track density as a consequence of

the higher luminosity. Several approaches were investigated and will be shown in the following

sections.

8.3.1 Sensors for the 2S module

In chapter 3.2.4, the concept of the 2S trigger module was introduced. One main feature of the

sensors is that by dividing the strips in the center and adding AC pads to both ends of the sensor,

the granularity is increased by a factor of two. The layout of a small scale 2S strip sensor is shown

in figure 8.11. Here, the strips are segmented symmetrically in the center of the sensor. The

readout chips will be wire-bonded to the pads in this picture on the left and right side respectively.

A zoom into the segmentation region is shown in figure 8.11(b). These kind of test sensors were

implemented in all wafer layouts which have been discussed so far.

As this kind of sensor for the 2S module was designed for the first time, the question arose how

much the strips have to be separated in the center. Basically, the active region should be as big

as possible. As charge sharing between strips due to the interstrip capacitance is present, the

layout shown in figure 8.11(b) was chosen in which the segmentation is equal to the strip pitch.

Variations of the segmentation gap were implemented on a current run with HPK and will not

be discussed here. For the ALiBaVa setup a dedicated board was designed on which the Beetle

readout chips are facing each other, as in the future 2S module. The drawings of the 2-end board
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Figure 8.12: Laserscan of the segmentation region in a 2S test sensor at 300 V and T= 20◦C. A
1060 nm laser has been used on a xy-stage with 1 µm step size.

are in the appendix D.1. With this, a sensor can be bonded from both sides simultaneously and

the segmentation region can be studied as well.

Figure 8.12 shows a scan with a 1060 nm laser in the ALiBaVa setup which was placed on a

x-y-stage with 1 µm step size accuracy. The laser was moved with 10 µm step size along the

strips. The global laser position on the x axis is arbitrary but the scale is correct. The laser was

positioned such that it is about 10 µm next to the aluminum strip. With this, a significant charge

sharing with the adjacent strip is suppressed. When the laser is in the left part of the sensor, the

right part does not see any signal by capacitive coupling at all. As soon as the laser position with

a focus of about 7-8 µm reaches the segmentation region, the signal vanishes and appears on

the right side (in this example) of the sensor. At the global value of x= 750±10 µm, the signal is

shared between the two facing strips. After irradiation, this picture does not change at all. Hence,

it seems that a strip segmentation in the order of the strip pitch seems to be appropriate and no

inactive regions (though very small) appear. On the other hand, the signal in the exact center

decreases to around 30%which might be too low after irradiation for the CBC threshold of around

6000 electrons. Therefore, in a current submission, samples with different separation values were

included and a detailed study of this region in dependence on the fluence will be performed.

8.3.2 Sensors for the PS module

The PS module concept was introduced in chapter 3.2.5. While the trigger concept is the same as

for the 2S modules, the design of the PS modules differs significantly. This is due to the increased

requirement on higher granularity in the tracker regions at about R~20 cm to R~60 cm. In
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Figure 8.13: Cross section of the PS module [Ros15].

order to fulfill this demand, the PS module consists of a strip sensor and a pixelated sensor in

the bottom layer. The strip sensor will be read out with a distinct chip (SSA=strip sensor asic),

connected via wire bonds to the AC pads. Due to the high channel density of the macro pixel

sensor, the readout chip (MPA=macro pixel asic [CMK+14]) has to be directly bump-bonded to

the sensor pads. The macro pixel sensor itself will be around 5 cm × 10 cm huge and 16 MPA

chips will be required per module to connect all 30720 bump pads respectively macro pixel strips

of the sensor.

While the strip sensors for the PS module hold the same features as for the 2S module, no

additional R&D on this type of sensor is necessary3. Besides the strip pitch of 100 µm and the

overall size of 5 cm × 10 cm nothing else changes in comparison to the 2S strip sensor design.

As such kind of macro pixel sensor had not existed, a collaborative R&D study between the

CERN CMS electronics group and the CMS sensor community on the Macro Pixel Sub Assembly

(MaPSA) was carried out and is ongoing. This subassembly is shown in figure 8.13 and consists

of the macro pixel sensor and the MPAs. As a first iteration, the MaPSA concept was checked in a

MaPSA light subassembly in which the ASICs as well as the macro pixel sensors are test devices

and smaller compared to the final layout. The chip is of the size of 6.5 mm × 1.6 mm and contains

48 bump pads. Following the demands and compatibility with the ASIC (see appendix E), the

sensors were designed within this study and produced at CiS in Erfurt. They contain overall 288

channels with 100 µm×1446 µm cell size and the same bump pad pattern as the MPA. In total,

the test sensors are 8 mm × 12 mm huge and are equipped with each 6 MPAs in the MaPSA light

subassembly.

Standard design of the MaPSA light sensor

Several aspects for the DC coupled macro pixel sensor for PS modules need to be investigated

in order to achieve the most compatible design with respect to high efficiency and radiation

tolerance. The physical and active thickness of the sensors is 200 µm. Besides the fixed pixel cell

size, the width-to-pitch ratio and in particular the region on the sensor where the MPA chips

meet need to be studied. In figure 8.14, one of the six cell rows of the MaPSA light standard

sensor is shown.

3besides the thickness which is also under investigation for the 2S sensors
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Figure 8.14: Extract from the GDS file of the standard MaPSA light sensor.

The width-to-pitch ratio is w/p= 0.25 and a p-stop isolation pattern and characteristics following

the results discussed in sections 6.5 and 8.1 was used. In the region where the MPAs meet, the

strips are 125 µm wide. The reason for this choice is that in this configuration, the strip-to-strip

distance in the interconnection region of the chips stays the same just as throughout the whole

sensor. This is necessary due to the inactive periphery of the chip. The interstrip capacitance

and hence charge sharing by traversing particles between the strips is equal to the w/p= 0.25

regions, although the overall input capacitance to these individual chip channels is higher as a

consequence of the wider strip [Har09]:

(8.3) Cn−side[pF/cm]≈ 2×
(
1.5+ w

p

)
,

where w stands for the strip width and p defines the strip pitch.

Furthermore, all sensors are biased via punch through (PT) structures which basically are npn

transistors. During the operation in the tracker, the sensors are biased with high voltage. The

ground potential at the strips is provided by the MPA chips which are at ground potential, too.

For the purpose of electrical qualification in a probe station, a bias grid had to be implemented in

order to allow strip measurements but also a homogeneous depletion. Moreover, the PT structure

was able to contribute to the safety of the readout ASIC if a higher current from the sensor

concentrated at a few or one channel would appear. This scenario is possible during a beam

splash or significant damage of a channel on the sensor. The feasibility and performance of such

PT structures needs to be studied in detail and will not be discussed any further. The layout of

the PT structure design used works well and was designed following the layout used during the
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Table 8.1: Overview of the sensor layout variations for the MaPSA light sensor. In all cases the
strip pitch is 100 µm.

Sensor label edge [µm] pixel width [µm] gap pixel [µm]
std (wp025) 850 25 125
wp03 850 30 125
wp04 850 40 125
wp04gap40 850 40 40
wp025gap50 850 25 50
edge500 500 25 125
edge350 350 25 125

HPK campaign for some of the pixel test sensors.

The variations of the standard macro pixel sensor layout placed on the wafer are summarized in

table 8.1. The variations can be divided into two main parts: variations of the pixel active region

and variations of the periphery. The former includes alternatives for the width to pitch ratio as

well as options for the chip-to-chop gap region while the latter concentrates on the ratio between

active and inactive region of a sensor. Here, the width of the periphery was scaled down from

nominal 850 µm to 350 µm.

Electrical qualification

The samples were received in three batches and qualified in the probe station. In this study, the

samples from batch number 3 are discussed as these show the best electrical properties. Process

variations of the wafers differed in the p-stop isolation characteristics with the same values used

for the CiS strip sensor study. This is due to the simple fact that the discussed strip sensors

and MaPSA light sensors were placed on the same wafer at which the former are AC coupled

and the latter DC coupled. Such realization was possible due to the CiS DC process in which for

the DC contacts an additional mask is required. This means, after the oxide growing, the via

mask is used to etch the oxide away in the regions where the DC contacts need to be placed. As a

consequence, AC coupled detectors can be designed and placed on the same wafer by discarding

these oxide openings for the DC contacts.

The first parameter under study is the current over voltage relation due to the completely new

sensor layout. The IV characteristics of a standard MaPSA light sensor design are shown in

figure 8.15 in dependence on the humidity inside the probe station. The breakdown voltage of

the sensor before irradiation and in dependence on the humidity was extracted and plotted in

figure 8.16.

From this, one can see that specifications for the currents and breakdown voltage which are

(8.4) I@500V < 5 nA/mm3 −→measured≈ 1 nA/mm3
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Figure 8.16: Breakdown voltage for the standard MaPSA light sensor as a function of the RH.

are reached for variants 1 and 2 though, but this is strongly related to the environmental

conditions of the measurement. The dependence of the currents on the humidity is still under

study and in discussion with the vendor.

In order to check whether the variant of the p-stop isolation technique affects the currents of

the sensors, the standard sensors of each wafer always at the same position in the wafer center

were measured as a function of the voltage. Several observations were made. First, the process
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Figure 8.17: Breakdown voltage for the standard MaPSA light sensor for the different p-stop
isolation techniques.

stability for variant 1 (p-stop conc.= 1×1016 cm−3 and 1.5 µm deep) is most pronounced. Variant

2 (p-stop conc.= 1×1016 cm−3 and 2.5 µm deep) shows for one wafer breakdown voltages below

500 V inconsistent with the specifications, whereas the second wafer with same specifications

shows currents one order of magnitude lower and without a breakdown. Lastly, variant 3 (p-stop

conc.= 1×1017 cm−3 and 2.5 µm deep) always shows early breakdown in the range of about 250 V.

This observation is valid for all sensors of variant 3.

Clearly, the breakdown voltage is affected by the process. For the implantation of all three

variants an ion energy of 130 keV was used and the surface projected ion concentration varied

from = 6.5×1011 cm−2 for variant 1 to = 8.6×1011 cm−2 for variant 2 and = 8.2×1012 cm−2

for variant 3. From the measurements it seems that the high p-stop concentration and depth

increase the electric field strength in the CiS samples, even before irradiation, to a critical value,

leading to early breakdown voltages, although such low breakdown voltages had not necessarily

been expected.

The different gap pixel sizes and width-to-pitch ratio variations of the standard design do not

show any measurable differences in the current over voltage characteristics.

The interstrip resistance was measured too, see figure 8.18. Here, no deviation from the strip

sensors were expected and observed, even after an irradiation of Φ = 2×1015 neqcm−2 with

23 MeV protons. In the plot example, the three different width-to-pitch ratios of variants 1, 2 and

3 are shown. A sufficient strip isolation is always present, independent on the variant.

The sensors with the different periphery size are investigated at the HEPHY4 institute in Vienna

4High Energy Physics

93



CHAPTER 8. SILICON SENSORS - IRRADIATION STUDIES

- 1 0 1 1 0 1 4 1 0 1 5 1 0 1 6
1 0 8

1 0 9

1 0 1 0

1 0 1 1

1 0 1 2

1 0 1 3

1 0 1 4
 w / p = 0 . 2 5  V 1
 w / p = 0 . 2 5  V 2
 w / p = 0 . 2 5  V 3
 w / p = 0 . 3 0  V 1
 w / p = 0 . 3 0  V 2
 w / p = 0 . 4 0  V 1
 w / p = 0 . 4 0  V 2
 w / p = 0 . 4 0  V 3

int
ers

trip
 re

sis
tan

ce
 / Ω

cm

F l u e n c e  /  ( n e q c m - 2 )

Figure 8.18: Interstrip resistance for variants 1, 2 and 3 sensors with different width to pitch
ratios before and after irradiation. No difference has been observed.

and will not be discussed here.

Signal measurements

Meanwhile, the MPA is existing and has been qualified intensively within the electronics commu-

nity and also subassemblies consisting of 6 chips on one MaPSA light sensor have been produced.

At the time of writing this thesis, no dedicated MaPSA readout system was available, meaning

that a system qualification based on the readout of a macro pixel sensor via the MPA was not

possible. Fortunately, the Beetle chip of the ALiBaVa system is capable of dealing with AC and

DC coupled sensors. Hence, in order to study the sensor’s charge collection and fake hit rates,

the PS-p light sensors were connected to the Beetle chip. The clustering algorithm was kept

the same as for strip sensors and accordingly just one row of the macro pixel sensor strips was

wire-bonded to the Beetle. For the measurements, again β-electrons from the Sr90 decay were

used to generate MIP signal. Furthermore, the environmental conditions were chosen to be

compatible with the tracker conditions. This means that the sensors were qualified at T= 20◦C
before and at T=−20◦C after irradiation, independent on the fluence. The ALiBaVa setup was

flooded constantly with dry air: the humidity during the measurements was always below 10%

and the temperatures were set to T= 20◦C for unirradiated and T=−20◦C for irradiated samples.

In figure 8.19, the MPV of the cluster charge at bias voltages of 600 V and 900 V is plotted. The

values in the brackets indicate the number of samples measured so far as the irradiation had just

taken place. Before irradiation, the MPV signal is above 15000 electrons, which is in agreement
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Figure 8.19: MPV cluster charge for the MaPSA light sensors of variant 1 & 2 before and after
irradiation with protons.
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Figure 8.20: Charge collection of MaPSA light sensors as a function of the voltage.

with the expectations for substrates 200 µm thick. After irradiation, the signal degrades and

ends up in:

(8.5) Cluster signal: 10.7 ke−@−600 V & 12.1 ke−@−900 V (F= 1×1015neqcm−2).

For the three different irradiations to Φ = 7 × 1014 neqcm−2, Φ = 1 × 1015 neqcm−2 and

Φ = 2×1015 neqcm−2, the cluster and the seed signals were plotted as a function of the bias

voltage in 8.20. The seed signal is of interest due to the fact that as in the 2S modules, the

sensors will be read out by a binary chip. In the analogue IC of the binary chip, a comparator

compares the incoming signal height with a threshold. If the signal exceeds this threshold, a hit

of the corresponding channel is detected but no pulse height informations are stored. Comparing
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Figure 8.21: Random ghost hit rate for the standard MaPSA light sensor of variant 1 before and
after irradiation.

the cluster signal in figure 8.20(a) with the seed signal in 8.20(b), one can see that the seed signal

is lower. Before irradiation, the difference is about 1500 to 2000 electrons. After an irradiation

to Φ = 1×1015 neqcm−2, the seed signal at 600 V is about 8400 electrons, compared to 9500

electrons at 900 V. The threshold in the binary chip will be below 3000 electrons and is currently

studied by the chip designers. This means that either the sensor thickness has to be increased in

order to gain more charge or the bias voltage has to be increased to 900 V in order to reliably

distinguish the signal from the noise.

Figure 8.21 shows the RGH rate exemplary for a standard layout MaPSA light sensor for different

irradiation fluence, plotted over the bias voltage. For this irradiation study, variant 3 with the

high p-stop concentration and doping depth was not investigated due to the low breakdown

voltages before irradiation of about 250 V. Variant 2 has to be measured. On the other hand, the

variant 1 with the moderate p-stop doping concentration of 1×1016 cm−3 shown in figures 8.19

behave well even after a high proton fluence of Φ = 2×1015 neqcm−2. In particular, the noise

and fake hit rate and the RGH rate respectively were studied too. Here, both variants with a

moderate p-stop doping concentration are included at which the curve for the highest fluence is

extracted from the measurements of variant 2. Clearly, both variants show neither high noise

nor a too low interstrip resistance, which can be seen in the cluster width distribution shown in

figure 8.22. In this plot, in addition to the standard layout, also the sensors with different width

to pitch ratios are included up to a fluence of Φ= 2×1015 neqcm−2. The cluster size of around

1.5 at 600 V and 1.6 at 900 V are as expected and comparable to strip sensor cluster widths in

the HPK campaign. The increase if the cluster width is related to the lower interstrip resistance
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Figure 8.22: Cluster size for the standard MaPSA light sensor of variants 1 & 2 before and after
irradiation.

after irradiation and hence a more pronounced charge sharing between the strips. Nevertheless,

the effect is within the expectations.

Conclusion on the first MaPSA light sensor design for PS modules

The first attempt of the small test sensors with PS module demands is, with respect to the

irradiation studies, very promising. This means that both charge collection and noise behavior

were tested up to the fluence of Φ= 2×1015 neqcm−2. This fluence is two times higher than the

expected fluence for the inner PS modules.

In the ALiBaVa setup, no significant differences in the performance depending on the layout of

the MaPSA sensor were observed. In order to check whether a certain layout is some percent more

efficient compared to other ones, more detailed studies with substrip resolution are necessary.

For this purpose, the sensors need to be qualified during beam test conditions. The latter will be

introduced and discussed in more detail in chapter 10.

8.3.3 FOSTER

The increase in luminosity after the LHC Phase II Upgrade will also increase the density of

particle tracks in the detector. In order to sufficiently distinguish between several thousands

of tracks per trigger event, the granularity of the detector needs to be increased too. A basic

requirement of each tracking detector is also to keep the material budget as low as possible in

order to suppress multiple scattering. For the future CMS outer tracker, the concept of PS and

2S modules with two stacked sensors is the current baseline with the aim of coping with the
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Figure 8.23: Schematic view of the FOSTER layout.

increasing demands and track density. As the occupancy of the channels should be as low as

possible to allow reliable discrimination of particle tracks, the granularity of the future strip

sensors were increased by a factor of two by dividing the strips into two half strips. Both halves

will be connected at the opposite edges of the sensors to the readout ASICs via wire bonds. The

wire bond technology is well known and of high yield.

Within the EKP hardware working group at KIT, a new layout of a strip sensor for high track

density experiments was developed and proposed. The new layout increases the granularity by

a factor of four compared to common strip sensors but simultaneously, the layout allows the

usage of the wire bonding technology at the edges of the sensor, and hybrids do not have to be

mounted on the sensor. The sensor is called FOSTER (FOurfold segmented STrip sensor with

Edge Readout).

The following sections will describe the chronological development of the FOSTER. The first

layout had already been implemented in the HPK campaign wafer. The first prototype showed

undesired behavior [Kor11]. In a second submission with ITE, though the sensor showed some

improved performance, the undesired behavior was still present [Hof13, gS12]. In a further

submission with CNM and an addition of layout improvements, the auspicious performance was

proved. The results in the following sections were published in [dBDH+15].

Sensor layout

The design of the FOSTER is schematically shown in figure 8.23. The sensor is divided in two

identical halves, separated by a bias line connected to the bias ring in the center of the sensor.
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Furthermore, each half is again divided into two regions. There is the “near“ strip region which is

next to the sensor edge and the “far“region with strips which are connected via thin aluminum

routing lines running between the near strips to the AC pads for wire bonding at the edges. In

order to allow such routing, the near strips are displaced by a half pitch in comparison to the far

strips and vice versa.

First prototypes with HPK

The first prototypes were implemented within the HPK campaign on different substrate material

and thickness. The sensors held 4×128 strips of about 7 mm length with a pitch of 100 µm. The

electrical qualification was promising as the sensors fulfilled the specifications of low currents

and strip parameters like strip isolation and interstrip capacitance [Hof13].

The charge collection measurements were performed in the ALiBaVa setup either with a Sr90

source or with a 1060 nm laser. Regarding the FOSTER design, it is crucial for the signal

generated in the near strip region to be not coupled to the routing line of the far region strips

because this would lead to a wrong hit position assignment. In order to prove if a coupling is

present or not, the laser with a 15 µm beam spot was moved in 1 µm steps above the far and near

region respectively. The result is shown in figure 8.24.

The FOSTER in this case is a p-type sensor with p-spray isolation. Corresponding to the colors

indicated in the sketch of the far and near regions, the signal of the contributing strips was

plotted. The scan of the far region in figure 8.24(a) shows an expected behavior, where the signal

is first seen on the left far strip (blue) and then by moving the laser it vanishes and appears on

the next far strip (green). The corresponding near strip does not see any signal at all as desired.

After repeating the same measurement in the near region of the FOSTER, a signal coupling to

the corresponding far strip was observed. One can see in figure 8.24(b) a red curve belonging to

the far strip. Here, the generated charge in the near region coupled to the routing line of the

far strip. In such a scenario, a traversing particle in the near region but next to the routing line

would be wrongly interpreted by the readout electronics as a hit in the far region. The grayish

bars in the signal plot indicate the position of the aluminum strips and routing line at which the

laser gets reflected and as a result no signal appears at this positions. The measurements with

the Sr90 source led to the same conclusion, as the cluster charge in the near region was about 5%

lower than the cluster charge in the far region. In this case, it can be concluded that this missing

fraction was induced to the routing line of the far strip. In particular, when placing the source

above the near region, more than 31% of the seed signal positions (strip with the highest signal

in the cluster finding algorithm) was attributed to the far region. In comparison, less than 1% of

wrongly assigned seed signals was detected while placing the source above the far region. In both

cases, a wrong assignment of about 1% can be attributed to the spread of the source which was

placed in a collimator with a 0.8 mm opening 8 mm above the sensors.

The induced signals on the routing line were observed for both n-type and p-type sensors.
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(a) Far region laser scan (b) Near region laser scan

Figure 8.24: Laser scan of the FOSTER prototype. The orange bars indicate the laser scan position
and the resulting signals on the strips are shown below.

Simulation studies

In order to understand the signal coupling to the routing line, T-CAD simulations were per-

formed. In general, induced currents on electrodes can be calculated following the Shockley-Ramo

theorem [Sho38,Ram39]. Given an electrode i, the induced current I is:

(8.6) I i = e
(
~v ·~∇Φwi(~x)

)
,

with e as the electron charge and~v the instantaneous electron velocity. The weighting potential

Φwi is responsible for the coupling of a point charge to an electrode i. As a consequence, when a

weighting potential or a weighting field |~∇Φwi| is present, a signal is induced to an electrode i.

The weighting potential can be simulated by applying 1 V to an electrode and leaving all other

electrodes at ground potential.

In figure 8.25, the weighting potential for the FOSTER p-type prototype with p-spray isolation

obtained in the simulation is shown. The parameters used for the simulation are the same as

for the sensor studies in chapter 6. For the purpose of simulating the weighting potential, one

simulation with all electrodes at ground potential and 300 V bias voltage was performed and one

additional simulation for which a potential of 1 V on the routing line was applied. The difference

100



8.3. SENSOR LAYOUTS FOR HIGH PARTICLE TRACK DENSITY

near strip routing line

Figure 8.25: Simulated weighting potential for the prototype FOSTER.

of both simulations is the resulting weighting potential. A potential not equal to 0 is present and

hence a charge at any given position in the sensor induces after Shockley-Ramo a current on the

electrode proportional to the velocity and weighting field, in this case the routing line.

In this simulation, also the electric field was investigated and the result with an indicated direc-

tion of the electric field by unit vectors is shown in figure 8.26. The p-spray doping concentration

was chosen to 2×1015 cm−3 and 1 µm depth. This concentration was estimated for the HPK

p-spray samples. The electric field vectors are all directed from the sensor surface to the backside

of the sensor. As a consequence, electrons are not just drifting towards the collecting electrodes

but also to the routing line, or more precisely, in general towards the surface, and induce the

undesired signal.

A possible solution to the problem should be a higher doping concentration of the p+ isolation

layer in order to flip the electric field just below the routing line. With this, drifting electrons will

be repelled by the electric field below the routing line and no signal induction is expected any

more. While investigating the FOSTER, the CNM submission was prepared. The CNM run was

decided to be of p-type material with p-stop isolation. Hence, a p-stop below the routing line was

simulated too and the relative induced signal on the electrode as a function of the p-stop doping

concentration is plotted in figure 8.27. Besides, this effect with increasing boron concentration is,

with respect to simulation results, also valid for the p-spray technology [Hof13,gS12].

One can observe that with increasing p-stop doping concentration the relative induced signal

on the routing line vanishes for a p-stop peak doping concentration of 9×1015 cm−3 and 1.5 µm

depth. This in fact is of high interest, as this peak doping concentration was also found to assure

a good interstrip resistance and low electric fields and as a result high breakdown voltages, see

chapter 6.4.

The effect of the vanishing signal on the routing line is also present in the simulation of the

weighting field and electric field strength. Figure 8.28 shows the weighting potential when a
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Figure 8.26: Simulated electric field for the prototype FOSTER with p-spray isolation.
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Figure 8.27: Relative induced signal on the routing line as a function of the p-stop doping
concentration.
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near strip routing line

Figure 8.28: Weighting potential for a FOSTER with a p-stop below the routing line. The doping
concentration in this plot is 1×1016 cm−3 and of 1.5 µm depth

Figure 8.29: Simulated electric field for a FOSTER with a p-stop below the routing line. The
doping concentration in this plot is 1×1016 cm−3 and of 1.5 µm depth.
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p-stop
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Figure 8.30: Section of the transition region of the new FOSTER design.

p-stop with a concentration of 1×1016 cm−3 and 1.5 µm depth is present below the routing line.

Basically no weighting potential is there and hence, following the theory, no induction of any

signals is expected.

Also, the electric field shown in figure 8.29 is flipped below the routing line due to the moderate

p-stop peak doping concentration of 1×1016 cm−3 and of 1.5 µm depth. As a result, the electrons

are repelled from this region and no signals are induced any more.

The finding of this effect was directly applied to a new FOSTER layout and submitted to the

CNM run in 2014 together with the strip sensors discussed in the previous chapter.

Improved FOSTER design

The design did not change significantly to the HPK design due to the fact, that besides the signal

coupling to the routing line, in general all strip parameters were showing reasonable values. Due

to a limited available space on the CNM wafer, the new FOSTER sensor is 25 mm long and 6 mm

wide with 4×32 strips. Each strip is about 4.9 mm long. The p-stop doping concentration in the

CNM run is as mentioned earlier about 9×1016 cm−3 and roughly 2.7 µm deep.

Two variations of the new FOSTER were implemented. The widths of the routing line as well as

of the p-stop below the latter hold different sizes and are listed in table 8.2. Although the widths

have been varied, the ratio of the aluminum width to the p-stop width is the same in both cases.

Performance of the new FOSTER design

After receiving the new FOSTER, the measurements were repeated including laser scans of the

far and near regions as well as Sr90 source measurements. The results from the laser scan as

shown for the prototype HPK FOSTER in figure 8.24 are shown in figure 8.31 for a new FOSTER
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Table 8.2: The differences of the new FOSTER layout. The routing line and the p-stop width
below it were varied.

FOSTER design p-stop width [µm] routing line width [µm]
“narrow“ 15 10
“wide“ 27 18

(a) Far region laser scan (b) Near region laser scan

Figure 8.31: Laser scan of the new CNM FOSTER performed as in figure 8.24. There is no
unwanted signal coupled to the routing line any more.

before irradiation. The interesting scan of the near region is shown in figure 8.31(b), where no

signal on the routing line is observed any more. As predicted by the simulation studies, the

additional p-stop below the routing line prevents a signal induction if the boron peak doping

concentration is chosen moderate to high5.

Complementary measurements with a Sr90 source were also performed. The source was placed

either above the far region or the near region. The cluster finding algorithm searches for a strip

with the highest signal and attributes this strip to the hit position (in case of the FOSTER to one

of the four strip regions). The result is shown in figure 8.32. The upper two plots in the figure

5the concentration should in addition fulfill the requirements discussed in chapter 6 and 8
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Figure 8.32: Source measurements of the different regions of the new FOSTER design. Each plot
shows the position of the source at a certain region and the number of attributed seed strips to
any region.

show the number of attributed seed strips when the source is placed above the far region. A

negligible part of the hits is attributed to a hit in the near region although the source is above the

far region and is unavoidable due to the spread of the source respectively the collimator. After

placing the source above the near region, the same observation was made vice versa. This means

also a negligible part of the hits was wrongly attributed to the far region. These measurements,

both laser and source in combination with the simulation, proved the concept of the new FOSTER.

After the initial qualification before irradiation the sensors have been irradiated with protons

at KIT up to a fluence of Φ = 1.1×1015 neqcm−2. Again, laser measurements and Sr90 source

measurements have been performed.

The laser scan of the near region of the wide FOSTER after a fluence of Φ = 3×1014 neqcm−2

is plotted in figure 8.33. Due to increased leakage current after radiation damage the sample

was cooled down to T=−20◦C and the bias voltage was increased to 600 V. Also, in this figure

no undesired signal coupling to the routing line is observed and the direction of the electric

field towards the routing line that repels the drifting electrons is still present. But indeed, with

increasing fluence more wrongly attributed seed strips are found in dependence on the routing

line width and p-stop width. The ratio of wrongly assigned hits to the number of overall found

clusters is shown in figure 8.34.

The wide FOSTER design shows less wrongly assigned hits in the order of about 7% after the
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Figure 8.33: Laser scan of the near region of the new wide FOSTER design after proton irradiation
to Φ= 3×1014 neqcm−2 at T=−20◦C and 600 V.
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Figure 8.34: Source measurements and the ratio of wrongly assigned hits after proton irradiation
up to Φ= 1.1×1015 neqcm−2, performed at T=−20◦C and 600 V for the two different FOSTER
designs.
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Figure 8.35: Narrow FOSTER source measurements and the ratio of wrong assigned hits after
proton irradiation to Φ= 1×1015 neqcm−2.

highest proton irradiation. The narrow FOSTER design shows 13% wrong hits. Both numbers

are in comparison to the first prototype with than 30% better but nevertheless the coupling is not

negligible anymore, particularly for the narrow version of the FOSTER.

This growing effect with fluence can be explained by the increasing negative space charge below

the surface after irradiation, see chapter 8.1. As a consequence, the electric field just below the

routing line is affected by the space charge and a pronounced direction of the electric field towards

the routing line is not given any more. Probably a wider p-stop implant might help to reduce the

change after irradiation and secure a radiation hardness beyond a fluence of Φ= 1×1015 neqcm−2.

An annealing study for the narrow FOSTER after a fluence of Φ= 1×1015 neqcm−2 is presented

in figure 8.35. The annealing times were chosen corresponding to the HPK campaign and as

listed in table 4.2. The source has been placed on the near region and for each measurement

100000 trigger events were recorded. After the cluster finding algorithm, the number of seed

strips attributed to the far region through the coupling to the routing line was analyzed and

is plotted on the left y axis. The ratio of these wrongly assigned seed strips and the number

of found clusters is plotted on the right y axis. The first annealing point is basically the direct

measurement after receiving the sensor from irradiation and might differ to 1 hour at room

temperature due to transportation time. One can see that the initial 12% of wrongly assigned

seed strips decrease significantly with increasing annealing and end up at about 6%, like the
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wide FOSTER without annealing. But even after the first annealing step, in this measurement

corresponding to 90 hours at room temperature, the ratio drops from 12% to less than 8%. Clearly,

from the combination of the x-ray irradiation with the annealing study, the effect just depends on

the bulk damage and is independent on the surface damage.

Conclusion on the FOSTER

Increasing demands for detectors with high particle density also require an increase in the

granularity. The FOSTER design was developed at KIT and increases the granularity by a factor

of four compared to standard silicon strip sensors. Furthermore, standard wire-bond techniques

can be used, as the signal from the far strips regions are routed to the edge of the sensor. After

studying the first prototype, an unwanted signal coupling to the routing lines was observed.

Complementary simulation studies hint to a solution of this problem and a new FOSTER layout

was designed and produced with CNM Barcelona. Before irradiation, the new sensors behave well

and no coupling is observed anymore. After irradiation, the coupling shows up again, although

significantly less compared to the prototype. The wide version on the other hand shows fewer

induced signals than the narrow version, hence a wider p-stop might prevent the effect even after

high irradiation fluence of Φ= 1×1015 neqcm−2. Hence, further simulations and a new run with

additional small improvements might finally lead to a radiation hard FOSTER.
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CBC - BINARY CHIP FOR THE PHASE II OUTER TRACKER

UPGRADE

The new ASIC for the Outer Tracker 2S modules, the CMS binary chip (CBC) introduced

in chapter 3.2.3, is a key part of the trigger contribution provided by the tracker. For

this purpose, a correlation of hits within a certain searching window on the two stacked

sensors in one 2S module is defined as a high pT stub. The stub information itself will be read out

at 40 MHz LHC bunch crossing rate, while the binary data of the sensors can be stored into a

12.8 µs deep buffer until the global trigger decision.

The CBC is designed and investigated in several submissions. After the first promising version

(CBCv1) with restricted functionality, the CBC in version 2 is currently being investigated. The

latter already holds most of the final features and the final design and functionality will just

change slightly. In order to study the performance of such a sensor-chip system based on the

CBCv2 chip, a test setup was build. With this, it is possible to investigate noise and efficiencies of

either just the ASIC or a combined system of a sensor connected to the CBC.

In this chapter, the CBC setup will be introduced on the basis of measurements and theory.

Furthermore, irradiation studies were carried out where the CBC received either x-rays doses or

proton fluence equivalent to the expected dose towards the end of the HL-LHC era. The results

on the radiation hardness are discussed in the last section.

9.1 Purpose of the CBC setup

The CBC needs to be investigated as a standalone hardware part as well as an integrated part

within the 2S module system. Both categories include studies by the chip designers as well as by

users. The latter are several international institutes. This system test group aims to proof the
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Figure 9.1: Functional diagram of the CBC bench top test system at KIT.

concept of the low transverse momentum trigger modules and the feasibility of its integration

within the CMS experiment. In order to study the CBC performance, small scale systems based

on a few CBCs and one or none connected sensor (instead of two) are developed. The test system

is based on the GLIB AMC1 evaluation board [MBB+13]. This project is a Virtex-6 FPGA-based

evaluation platform of which the hardware, firmware and software are provided by the GLIB

project community. The board handles optical links and can be used as a data aquisition system

for bench-top experiments at the laboratory or in beam tests. The GLIB AMC features two

additional high pin count industrial standard FPGA Mezzanine Card (FMC) sockets which assure

additional I/O and clock lines.

Within this study, a setup based on the GLIB and a dual-CBCv2 hybrid [BBH+12] was built up and

studies were performed in order to get used to the CBC readout system as well as to understand

the functionality and evaluate the overall system and the chip respectively. Particularly the latter

is of high importance as any issues found directly affect the next and close to final third version

of the CBC, which is going to be submitted in early 2016.

9.2 The bench top readout system based on the CBCv2 and
GLIB platform

The functional diagram of the bench top test system with 2 CBCs is shown in figure 9.1. The

system consists of several hardware parts, each developed and supported by the contributing

collaborators within the system test working group. The individual parts are the following:

1Gigabit Link Interface Board - Advanced Mezzanine Card
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• GLIB-v3: The GLIB in version 3 is a standalone evaluation platform based on a Virtex-6

FPGA with several I/O and clock lines of different interfaces, allowing a broad connectivity.

The system part of the firmware code has been developed and is supported by the CERN

electronics group. The core user part is specified to the data transmission between the

CBCs and the DAQ machine has been developed and is maintained by the Straßbourg

IPHC group.

• Transition board: The transition board developed by the Bristol group is connected via a 32

pin flat ribbon cable to one of the FMC sockets on the GLIB. It handles both the powering

of the CBCs as well as the LVDS data transmission.

• Dual-CBC2 hybrid: The custom made dual-CBC2 hybrid contains two CBCv2 ASICs bump-

bonded to the hybrid. In order to allow the connectivity of two stacked sensors simultane-

ously, wire-bond pads on the top and the bottom of the hybrid are available. Furthermore,

the high voltage to the sensors is distributed via the dual-CBC hybrid. Both sensors in a

mini module can be either biased individually or via one bias voltage supply channel.

• Sensors: Considering the sensors, no restrictions are given due to the fact that the CBCv2

features a selectable feedback network which can handle both polarities (p-type or n-type

respectively electron or hole readout). Each CBC holds 254 input channels. The channels of

each CBC are alternatingly connected to the top and the bottom sensor in order to allow a

coincidence logic of hits in both sensors. Hence, in total a maximum number of 254 strips of

one sensor can be connected if two sensors are present.

• FMC-DIO5 [FMC]: The CBC produces either internal trigger signals or can be read out

at a trigger receive signal. The latter is fed into the readout network via the FMC-DIO5

card. It is a 5-bit port digital I/O card with FMC connectivity. The I/Os can be individually

programmed to either an input or an output channel. The trigger signal coming from the

scintillator and the photo multiplier respectively is transmitted via the DIO-5 to the GLIB

and processed further within the aquisition system.

• Analysis: Depending on whether the comparator of the front-end detects a signal which is

higher than the defined threshold, it produces a digital 1 for a hit or a 0 for no hit per channel.

A basic software to start and execute calibration and data taking is provided by CERN. The

software can be downloaded at https://gitlab.cern.ch/cmstkph2/Ph2_ACF. Within this

software framework, a C++ object-based library describes the system components (CBCs,

Hybrids, Boards) and their properties (values, status). The configuration of the readout as

well as of the chips can be accessed via dedicated registers in order to manipulate threshold

settings and calibration procedures. Any further procedure routines are implemented by

the user.
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Figure 9.2: The dual-CBC2 hybrid test board as built and used at KIT.

Figure 9.2 shows the board which was designed compatible with the ALiBaVa setup box. The box

contains a cooling jig precooled by water and peltier elements in order to stabilize the temperature

during the measurement. A constant temperature is important as after the calibration, the

threshold changes in the order of 300 electrons per 1◦C. A radioactive source can be placed in a

collimator above the sensor respectively module.

Calibration procedure

The creation of the binary hit information at the comparator output of the CBC depends on the

threshold voltage, which can be adjusted via register manipulation. The aim for the threshold in

2S modules is about 6000 electrons. This value shall assure a high hit detection efficiency and a

sufficient low noise rate but is still in optimization process.

The simplified schematic of the CBC front-end and the pulse shapes in electron mode are shown

in figure 9.3. During the calibration procedure, three registers are adjusted in order to fulfill high

hit efficiency. The global voltages Vcth and VPlus are set for the chip and Offset is adjusted for

each channel individually. Vcth sets the global threshold of the comparator for all channels and

VPlus sets the global DC signal voltage at the post-amplifier output. For a full efficiency, the DC

voltage needs to be tuned for each channel via the Offset registers. Each register is of 8-bit length,

hence the I2C range is from 0 to 255, which translates to the voltages between 0 and 1.2 V. The

calibration procedure reads as follows:
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Figure 9.3: Simplified CBC front-end scheme and pulse for electron mode [BHJ+12].

• set the global Vcth threshold to a certain value (examplary Vcth= 120 I2C units)

• the vcth scan is performed obtaining s-curves. The Offsets are set to 80 I2C units for some

different VPlus values

• the VPlus which assures a Vcth value of 120 is obtained

• s-curve calibration for the optimized VPlus value is performed again setting the indicidual

offsets

After this, the calibration of the chip(s) is done and the results are stored in the configuration

file(s). The latter is flashed onto the CBC(s) and the setup is ready to take data. The data output

is purely binary at 40 MHz clock frequency and consists of a header with 2 logic 1 bits, 2 error

bits, the 8 bit pipeline address and the data for all 254 channels.

9.3 Measurements and results

In order to gain experience with the CBC chip and the CBC setup respectively, after building the

system some studies were performed. First of all, the calibration procedure and the system noise

estimation were practiced with samples from the HPK campaign.

An exemplary result of a calibration is shown in figure 9.4. Here, an unirradiated float-zone

p-type sensor with p-stop isolation and 320 µm thickness was calibrated to a Vcth threshold

of 120 (dec.). In electron mode, a high Vcth value corresponds to a low threshold. In operation

mode, the global threshold is configured after the calibration via the Vcth register, hence if the

threshold value were set higher than 120 (in this example), all channels would detect hits and

the fake hit rate and efficiency would jump to 100% as in this range the comparator value is

within the nominal noise range.

If after calibration one or more strips show high noise, for instance due to a bad sensor strip

channel, the noisy strips can be masked individually via the corresponding register. In case of

electron mode, the channel offset would be set to 0 I2C units, hence the threshold is far too high
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Figure 9.4: S-curves for all connected 254 channels after calibration of the CBCs with an unirra-
diated FZ320P sensor with 254 strips.

s-curve midpoints
Entries  254
Mean    120.2
RMS    0.3064

vcth / I2C (dec.)
100 105 110 115 120 125 130 135 140

en
tr

ie
s

0

20

40

60

80

100

120

s-curve midpoints
Entries  254
Mean    120.2
RMS    0.3064

Figure 9.5: Spread of the s-curve midpints for all 254 channels after calibration of the CBC with
an unirradiated FZ320P sensor. A RMS = 0.3064 corresponds in the KIT setup to about 100
electrons.
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Figure 9.6: Offsets for each connected individual channel after calibration of the CBCs.

and never reached (vcth= 0 corresponds to a charge of about 40000 electrons).

The inflection points of the s-curves were extracted after calibration and plotted in figure 9.5.

The mean is 120.2, showing that the calibration (in this case to 120) works reliably, while sigma

of the s-curve midpoints is 0.3064. This value translates into about 100 electrons spread of the

threshold value for all channels in this setup. The latter was determined with help of the on-chip

test pulse (see next section).

In figure 9.6, the offsets after calibration for the 254 channels are shown. The mean value is

96.43 I2C units with a significant root mean square of 16.64. This is directly connected to the

individual strip leakage currents and noise. Due to the individual offsets for each comparator

input transistor, now all channels respond equally to the global threshold Vcth.

Gain of the system

The CBC holds an analogue test pulse with programmable charge generator. The generator uses a

programmable DAC in order to adjust the test pulse signal from 0 fC to 5 fC [Bra13]. A test pulse

of 1 fC corresponds to 12 I2C units and the charge step resolution is 0.04 fC with 10% accuracy.

In order to determine the system noise, a test pulse of 2 fC≈ 12680 electrons was coupled into the

channels and the threshold was increased from the nominal threshold sequentially in 1 I2C unit

steps until no hits in the data output appeared. The threshold for the test pulse as a function of

the test pulse charge is plotted in figure 9.7.

A difference of 20 I2C units in the global threshold Vcth increase is necessary in order to get rid

of hits on the chip if the test pulse is increased by 1 fC≈ 6430 electrons. Hence, the gain of the
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Figure 9.7: Threshold as a function of the test pulse charge coupled into the CBC channels by the
on-chip generator.

setup per I2C is about 322 electrons ±10%.

Knowing the gain, now it is possible to set a certain global threshold corresponding to a certain

amount of charge where the threshold is set via the vcth threshold register with 1 I2C step

accuracy (about 320 electrons per step).

Examples of measurements with HPK samples

A HPK float zone 320 µm thick sensor before and after irradiation was measured with the setup

in order to check whether the CBC behaves well with input noise coming from a silicon sensor. In

figure 9.8, one can see the result of the unirradiated sensor in dependence on the threshold, here

set in hexadecimal values as in the CBC registers.

The plot contains measurements for three different Vcth values of 32, 64 and 96 decimal I2C

units. This corresponds with nominal threshold and taking the gain of 322 electrons per I2C

unit into account, to 28300, 18000 and 7800 electrons respectively2. The entries were fitted with

a gaussian function. The shape reproduces the expected distribution of the Sr90 decay as the

source was placed in a collimator in 8mm height above the sensor. With increasing threshold, the

signal slowly disappears. But for the relatively high threshold of about 28000 electrons, still a

small signal is visible.

In comparison to the measurement of the same sample with the analogue Beetle chip in the

2in electron mode a lower Vcth value corresponds to a higher threshold
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Figure 9.8: Measurement of an unirradiated FZ320 sensor with p-spray isolation with the CBC
setup.
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Figure 9.9: Measurement of an unirradiated FZ320Y sensor with the analogue Beetle chip in the
ALiBaVa setup. The MPV of the signal distribution is plotted.
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Figure 9.10: Number of hits in the unirradiated FZ320 sensor per trigger event for three different
threshold values.

ALiBaVa setup, see figure 9.9, no hits are expected any more. Here, one can see that a charge of

23000 electrons at 300 V is the maximum. But as mentioned in chapter 8.2, the signal distribution

is of a Landau shape. Hence, the detected hits correspond to a higher energy deposition of the

MIPs and are not directly comparable to the MPV shown in figure 9.9.

The distribution of the β-electron direction due to scattering at the collimator edges and the effect

of charge sharing between adjacent strips can been seen in the binary cluster size. In figure 9.10,

the number of hits per trigger event are plotted for the three different threshold values. If the

threshold is relatively low, in the range of 8000 electrons, several adjacent strips detect a hit.

Up to 5 strips detect a signal. This is related to the low threshold, the charge sharing and a not

perpendicular track direction of the MIP coming from the collimator. In this case, not just hits

of adjacent strips are included but also strips which are not direct neighbors, for instance due

to an increased strip noise. The CBC logic also includes a cluster width discrimination (CWD)

which is programmable between one and three strips. Cluster widths higher than three strips,

are in general, attributed to low momentum particles and are therefore rejected. In this case, the

default state was set in which the CWD is bypassed and all hits pass to the subsequent stage.

After increasing the threshold, the cluster size decreases as expected and just the strips with a

high signal are detected (compared to the analogue 5/2σ-cut, where some strips do not pass the

threshold).

The measurements were repeated for irradiated sensors as well. The HPK samples were irradi-

ated with neutrons and protons to a fluence of Φ= 6.9×1014 neqcm−2, which exceeds the expected

fluence for the inner 2S modules by about 40%. The calibration to Vcth= 120 of the chips had to

be repeated as well in order to compensate for any additional noise or bad strips after irradiation.

A threshold scan was performed for 600 V and 900 V and the result can be seen in figure 9.11.
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Figure 9.11: Comparison of the hit detection efficiency before and after irradiation as a function of
the threshold of an irradiated FZ320 sensor. Φ= 6.9×1014 neqcm−2, T=−20◦C after irradiation.

Clearly, after irradiation the signal decreases due to trapping effects and hence an earlier drop in

the hit detection efficiency is expected if the threshold is set high. For each of the measurement,

5000 trigger in total and the resulting number of hits have been counted. One can see that already

at a threshold of 106 I2C units, which is about 5600 electrons, the efficiency drops and depends

on the sensor high voltage. At this fluence and thickness of the sensor, a charge of about 11000

electrons at 600 V and 14000 electrons for 900 V is expected. Hence, a significant part of the

β-electrons pass the sensor in an angle not perpendicular to the sensor surface. As a consequence,

the charge is shared even more than in a perpendicular particle hit between several strips, where

no strip signal exceeds the threshold of 5600 electrons. In order to study the efficiency of the CBC

before and after irradiation, beam test conditions are necessary (see next chapter).

9.4 CBC - irradiation studies

A Monte Carlo estimation of the absorbed dose in CMS after an integrated luminosity of 3000 fb−1

for a proton energy of 7 TeV is plotted in figure 9.12. In this plot, the current tracker with 500 µm

thick sensors has been simulated. From this, a dose in the order of 30 Mrad is expected for the

most inner layer equipped with 2S modules. With a two times safety margin, the CBC should

survive 60 Mrad without showing any negative influence. The chip designers did some studies up

to an x-ray dose of 40 Mrad with the result that the CBC behaves well with respect to operation

and on-chip voltages and currents. From this, no influence on the hit detection efficiency can be

concluded [BR].

The availability of the x-ray source during the first irradiation test of the chip designers was lim-
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Figure 9.12: Expected dose in CMS after 3000 fb−1 for a proton energy of 7 TeV [FLU15]. Here,
the layout of the current tracker has been simulated.

ited. As at KIT, both proton irradiation and x-ray irradiation are possible, additional irradiation

studies were performed in order to complete the conclusion on the CBC radiation hardness.

X-ray irradiation

At the EKP3, an x-ray tube with an accelerating voltage up to 60 kV is available. Depending on

the height of the source, a beam diameter of up to 2 cm can be achieved. The CBC dimensions are

12×6 mm2, hence a full coverage during the irradiation is possible.

The measurements were performed before and after x-ray irradiation up to 180 Mrad. The highest

dose was chosen in order to check the radiation hardness beyond the specifications in order to see

if any changes after such high dose appear4. The bias voltages and bias currents are accessible

via an analogue multiplexer (A-MUX) on the chip, and the CBC hybrid respectively.

The irradiations were done sequentially in steps of different size (0, 47, 60, 75, 90, 105, 120,

180 Mrad) at room temperature. Hence, a simultaneous annealing of the surface defect has to

be taken into account, although according to [Zha13] it takes more than three years to anneal

50% of the fixed oxide charge. After each partial irradiation, the bias currents and bias voltages

of the chip were measured. In order to cover the whole range of possible values of the different

registers listed in table 9.1 (the nominal values might have to be changed during operation and

in dependence on the lifetime within the radiation environment), the registers were measured as

a function of the I2C value from 0 to 255.

One can see from the figures 9.13(a) to 9.13(i) that neither the bias currents nor the bias voltages

3Institut fuer Experimentelle Kernphysik
423 MeV KIT protons are equal to 15 Mrad dose per Φ= 1×1014 neqcm−2
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Figure 9.13: Current and bias voltages generated by the on-chip bias generator in dependence on
the x-ray dose.
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Table 9.1: The bias generator registers [Bra13].

Name Function Nominal Range

Ipre1 Preamp Input Branch Bias Current 90 µA 0-255 µA
Ipre2 Preamp Cascode Branch Bias Current 10 µA 0-51 µA
Ipsf Preamp Source Follower Bias Current 25 µA 0-51 µA
Ipa Postamp Bias Current 20 µA 0-51 µA
Ipaos Postamp Offset Adjust Bias Current 4 µA 0-12.7 µA
Icomp Comparator Bias Current 2 µA 0-12.7 µA
Vpafb Postamp Feedback Bias Current 2.5 µA 0-25.5 µA
Vpc Preamp Cascode Bias Voltage 0.4 V 0.2-0.8 V
Vplus Postamp Bias Voltage 0.6 V 0.2-0.8 V
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Figure 9.14: Bandgap voltage as a function of the x-ray dose.

change significantly with increasing x-ray dose which shows the radiation hardness of the CBC.

The slight increase of 3-5% in the bias currents is related to the slight increase of the bandgap

voltage shown in figure 9.14. The latter is the master reference for the bias generator which also

changes after irradiation from 600 mV to 640 mV or by about 6-7%. The voltages are generated by

applying a programmable current into a resistor, so an increase in the master current reference

also leads to an increase in the voltage range. After propagating and discussing the results with

the chip designers, these slight changes are within a safe range and may not affect the CBC

performance although this conclusion has to be proven during operation of an irradiated module

(CBC&sensor).
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Conclusion on the CBCv2

The CMS Binary Chip in version 2 has been studied in detail by the chip designers and at

different institutes with the aim to collect any user issues and found problems during operation.

Any found issues have to be taken into account in the design and specifications of the third and

close to final chip, the CBCv3 which is going to be submitted in 2016.

In a bench-top setup based on the GLIB and CBCv2, the performance of the CBC is reliable

before and after irradiation of up to 180 Mrad, which is far beyond the expected dose during the

HL-LHC era. Unirradiated and irradiated sensors were read out by the CBC and the results are

within the expectations. Due to the fact that the CBC output is purely digital, further studies with

enhanced setups are necessary, in particular if the investigation of the efficiency is of interest.

These requirements can be fulfilled in a beam test setup.

The CBCv2 was used for operation in 2S mini modules during beam test conditions twice and the

results will be discussed in the next chapter.
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2S MINI MODULE - BEAM TEST

W ithin the characterization process of the CBC or rather modules readout by the CBC,

measurements and studies during conditions comparable to the future requirements

in the tracker are necessary. Therefore, small scale prototype modules were built and

investigated in test beam experiments before and after irradiation. 2S small scale modules were

built with the dual-CBC2 hybrid which was also used for the bench-top setup as well as sensors

from the CNM wafer discussed in the previous chapters.

In this chapter, a short discussion of a beam test at DESY with unirradiated modules built at

CERN and the results considering the stub efficiency will be discussed. For the second test beam

with irradiated modules, the prototype 2S mini modules were built and calibrated at KIT. The

module production, calibration process and the analysis of the test beam data will be shown.

10.1 DESY BT 2013 - unirradiated mini module

The first beam test with 2S pT modules was conducted at the DESY-II test beam facility [DESb]

in November 2013. For this purpose, two prototype 2S mini modules were built at CERN. Each

module has been equipped with two small test sensors, each with 254 strips, one module with

sensors from CNM and one from Infineon. The sensor for the CNM module was designed and

characterized within this study in detail. It is a p-type sensor with p-stop isolation and 90 µm

pitch at which the strips are 54 mm long. The thickness is about 270 µm. Hence, the input noise

of each CBC channel is in the range of the future full size modules in which the sensors are

about 10 cm long but with bisected strips. The frame of the module was constructed such that

the separation of the sensors was about 2.75 mm. In order to emulate the CMS 3.8T magnetic

field, one module (CNM) was mounted on a rotation stage (device under test, DUT) while the
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Figure 10.1: Schematic drawing of the DESY TB setup. S0 and S1 are the sensors of the DUT
while the S2 and S3 are the sensors of the reference module. The x-y-plane of the coordinate
system is horizontal, the z-axis is vertical.

other (Infineon) was placed downstream and perpendicular to the beam and used as a reference.

A schematic overview of the module arrangement in the beam is shown in figure 10.1. The strips

are oriented along the z axis. As a consequence, the rotation of the DUT module will result in an

emulation of the magnetic field respectively the displacement of hits on the S0 and S1 sensor

will increase with increasing rotation angle. The cluster width discrimination CWD was set to 3

strips and the correlation window for stubs was set to ±7 constantly.

The correlation of the particle pT in GeV/c, the radial position of the module R in m in the tracker,

the separation d in µm of the sensors and the stub direction ∆X in µm reads as follows [N1̈4]:

(10.1) ∆X≈ 0.6 ·R ·d
pT

.

The angle α between the beam direction and the module rotation can be related to the particle pT

by:

(10.2) pT ≈ 0.6 ·R
α

.

Unfortunately, the integration of the available telescope for track building was not successful.

Therefore, efficiency studies were conducted by estimating tracks from hits on both DUT sensors

as well as on both REF sensors. Basically, for each trigger event in which clusters on the REF

planes and on S1 were present, hits within the correlation window of S0 were searched. An

overview of the analysis including the DESY test beam facility, calibration of the modules, event

reconstruction and analysis can be found in a CMS detector note [HhM14].

Using the event reconstruction mentioned above, the stub efficiency for unirradiated modules

was calculated assuming a radial position of the module of 75 cm in the tracker barrel and is
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(a) (b)

Figure 10.2: The stub efficiency of the 2S mini module as function of the beam incident angle (a)
and for a calculated pT at a radial distance of R=75 cm in (b). (With courtesy to M. Pesaresi)

shown in figure 10.2. For this module separation and strip pitch, the equation 10.2 predicts a pT

selection of 2.1 GeV/c with a 0.1 GeV/c resolution. Here, the efficiency was defined as the presence

of stubs divided by the number of selected events. Below 10◦, the module shows an efficiency of

99.5%. For angles higher than 12◦, no stubs are produced by the CBC correlation logic because

the displacement of hits between the bottom and the upper sensor is greater than 7 strips. From

this point of view, the CBC stub finding logic seems to work efficiently, although an integration of

straight telescope tracks would result in a more accurate analysis.

All information about the hardware, the DAQ and the analysis considering the first time test

beam measurements of 2S mini modules were collected by the system working group and the

publication is scheduled for early 2016.

10.2 SPS TB 2015 - irradiated mini module

A second test beam with 2S mini modules was executed as a collaborative effort within the system

working group. The main aim was to study the performance of such pT trigger modules after

irradiation. Furthermore, a successful telescope integration in order to perform reliable efficiency

studies was desired. In addition, gaining experience with the data aquisition system (DAQ) which

was developed to be as close as possible to the future module readout was necessary in order to

study the integration of the modules into the CMS readout system.

The tasks (module, DAQ) for the preparation of the test beam were distributed amongst the

system test collaborators.

The SPS irradiation facility [SPS] at CERN was chosen due to the higher beam energies. In this
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Figure 10.3: Picture of the irradiated 2S mini module for the SPS test beam. An aluminum frame
was chosen to assure a good thermal conductivity. Kapton foil was used to isolate the sensors
high voltage at the backplane from the aluminum frame.

test beam, a 120 GeV pion beam (compared to a 4 GeV electron beam at DESY) was available.

Furthermore, the same EUDET/AIDA telescope [Rub12] as at the DESY test beam facility is

present in the SPS beam area. Hence, lessons learned from the missed telescope integration

during the DESY TB were used to successfully integrate the telescope this time.

10.2.1 Irradiated 2S mini module

At KIT, a modified design of the 2S mini module was developed. This was necessary due to the

fact that the required cooling to about T=−20◦C of the existing mini modules which were studied

in the DESY TB 2013 was not possible due to the module frame layout. This means that no

opportunities of applying cooling contacts to the frame were given. As the modules are fragile, no

subsequent frame modifications could be made. Before the assembly of the new mini modules,

both the dual-CBC2 hybrid and the sensors were irradiated. The sensors were irradiated to the

expected fluence (plus safety margin) of Φ= 5×1014 neqcm−2 protons. The dual-CBC2 hybrid was

irradiated with protons at KIT as well to Φ= 2×1014 neqcm−2. This fluence using 23 MeV protons

can be calculated to an equivalent dose of 30 Mrad, which is the expected dose after 3000 fb−1.

A new aluminum frame was designed, which is mountable to a cooling plate flooded by C6F14

fluid during the test beam. The separation of the sensors was chosen to be 2.5±0.05 mm. In

figure 10.3, one of the new mini modules build at KIT is shown.

Preparatory test at KIT were performed in order to check whether the new frame design and

the challenging wire-bonding of both sensors to one hybrid were successful. The channels of the

CBCs are connected alternatingly in order to allow a correlation of hits on the two sensor layers.

The mapping of the channels, which is important for the analysis, is shown in figure 10.4. For
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Figure 10.4: Mapping of the channels of the 2S mini module.
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Figure 10.5: Cooling test of the 2S mini modules for the SPS TB. In (a) the test box with the
module is shown and in (b) the results of the IV characteristics (Tcoolingjig =−20◦C).

preliminary tests in the lab, the module was placed into an aluminum box equipped with a cooling

jig. The box was flooded with dry air in order to lower the dewing point below the measurement

temperature of T=−20◦C. The setup is shown in figure 10.5(a). The resulting IV curves of the

sensors on the module after an irradiation of Φ= 5×1014 neqcm−2 is shown in figure 10.5(b). For

a bias voltage of 600 V, the sensor power is about 350 mW each (S1 and S2) and about 640 mW

at 800 V. These values are within the specifications on the maximum currents and the chiller

capabilities during the test beam.
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Figure 10.6: S-curves after calibration of the 2S mini module with irradiated sensors.
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Figure 10.7: S-curves midpoint distribution after calibration of the 2S mini module with irradiated
CNM sensors.

10.2.2 Calibration

The modules were calibrated with the CBC bench-top setup. The s-curves are plotted for all

channels on both CBCs in figure 10.6 for the CNM module.

The shape of the s-curves shows that all channels on both CBCs and sensors were wire-bonded

successfully and no bad channels on the sensor are present. The latter would be visible by a
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DUT

Rotation	stage

Telescope planes

(a) (b)

Figure 10.8: Test beam setup at SPS. In (a), the telescope with the mounted module on a rotation
stage is shown. In (b), a schematic drawing of the telescope planes and the DUT arrangement is
shown.

broadening of the s-curve due to increased noise. In figure 10.7, the midpoints or rather the

inflection points of the fits to the s-curve were extracted and plotted. Also, after irradiation the

calibration procedure works well and a calibration to Vcth=120 I2C units resulted in a RMS

of 118 electrons for the CBC0 and 113 electrons for the CBC1 (compared to about 80 electrons

before irradiation).

10.2.3 Beam test setup

During the beam test, the DUT module was placed an a rotation stage equal to the one used

during the DESY test beam inside a cooling box in the EUDET/AIDA telescope. The telescope

consists of 6 Mimosa26 pixel chip planes with continous rolling shutter mode and is used to build

tracks for a more sophisticated data analysis. A picture of the setup with the mounted module

and a schematic drawing of the telescope planes and DUT arrangement is shown in figure 10.8.

In addition, upstream to the DUT, an ATLAS FE-I4 trigger plane [OBH+14] was placed as a

reference due to the multiplicity of tracks in one telescope readout frame (up to 8 tracks). In order

to match the correct track of the telescope to the corresponding hit on the DUT, a simultaneous

hit on the FE-I4 within the CBC and the GLIB readout cycle respectively is required.

The hardware was comparable to the bench top setup. One GLIB was used to process the CBC

data coming from the module via the Bristol FMC and handling the trigger signal distributed by

the trigger logic unit (TLU) [Desa] in a simple handshake mode via the DIO5 FMC. The TLU

is provided by the EUDET/AIDA telescope and distributes trigger signals and timestamps to

all telescope planes and the DUT/FE-I4, if a coincidence on all 4 scintillators (2 upstream, 2

downstream, see figure 10.1) appears.

During the beam time of 4 days 158 runs were recorded. Here, also commissioning runs like

133



CHAPTER 10. 2S MINI MODULE - BEAM TEST

hevenCbc0
Entries  92547
Mean    108.1
RMS     27.07

2⁄channel 
0 20 40 60 80 100 120

0

2000

4000

6000

8000

10000

12000

14000

16000

18000
hevenCbc0

Entries  92547
Mean    108.1
RMS     27.07

(a)

hevenCbc1
Entries  1067315
Mean    41.08
RMS     24.18

2⁄channel 
0 20 40 60 80 100 120

0

2000

4000

6000

8000

10000

12000

14000

16000

18000
hevenCbc1

Entries  1067315
Mean    41.08
RMS     24.18

(b)

Figure 10.9: The beam profile distribution on the DUT for (a) CBC0 and (b) CBC1.

data latency, stub latency and threshold scans are included. For the analysis, 75 physics runs

are available, which cover threshold scans, angular scans and high statistics runs. The CBC raw

data was converted after recording via a CMSSW-based unpacker into EDM [EDM] root files,

which contain commissioning and event data.

10.2.4 Analysis

During the test beam, besides some basic data quality plots, no analysis was performed. A joint

analysis working group within the system test working group formed after the test beam in order

to analyze the test beam data.

Unfortunately, by simply plotting the occupancy of all channels for each CBC which reflects the

beam profile in figure 10.9, one can see that the downstream sensor (red line in the figure) detects

less hits than the upstream sensor. In the case of the shown figure, a threshold of 28 I2C units

corresponding to about 9000 electrons was set and the sensors were biased with 800 V and at

0 degree angle. Summing up all hits on both sensors, with respect to the number of triggers

received, the upper sensor shows 4.3% fewer and the bottom sensor 8.9% fewer entries than

expected. In figure 10.10, the hit efficiency for a run at the same conditions but fewer events is

plotted. Det0 is the upstream sensor of the module and det1 the downstream sensor. Although

the module was penetrated by the beam perpendicularly, only in 73% of the events hits on both

sensor layers are detected. Also, the efficiency of the two sensor layers varies. This behavior was

checked by several different group members who scripted individual codes in order to exclude

any mistakes in the common analysis code developed by the working group with the same result.

So far, there is no clear explanation for this issue. One possibility which is under investigation is

the threshold set. The nominal comparator threshold of 6000 electrons for the 2S modules was

not used but instead the lowest threshold was set to 9000 electrons (but a few additional runs

towards the end of the TB). The reason for this choice are the random ghost hits of the CNM

sensors after irradiation, see chapter 8.2. A threshold scan was performed in the lab and during

134



10.2. SPS TB 2015 - IRRADIATED MINI MODULE

d e t 0  &  d e t 1 d e t 0 d e t 1 ! d e t 0 ! d e t 1 ! d e t 0  &  ! d e t 10 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

pe
rce

ntg
e

Figure 10.10: Hit efficiency of a 0 degree run at 800 V. Det0 marks the upstream sensor and det1
is the downstream sensor of the CNM module.
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Figure 10.11: Charge collection as a function of the bias voltage for an irradiated CNM sensors
used for the 2S mini modules measured in the lab. Φ= 6×1014 neqcm−2 (20% higher than the
fluence of the test beam sensors).

the test beam with the result that at the nominal threshold of 6000 electrons hits on the modules

appeared, although no source/beam was on. By increasing the threshold to 9000 electrons, this

effect was suppressed and a reliable distinction between real hits and no hits is possible during

the analysis without taking the track reconstruction from the telescope into account.

The charge collection for these sensors measured with the analogue Beetle chip predicts the MPV
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Figure 10.12: Hit efficiency as a function of the threshold of a 0 degree run at 600 V.

of the seed charge at 800 V to about 16000 and at 600 V about 12000, see figure 10.11(a). But on

the other hand, the left part of the Landau signal distribution for low energy deposition is cut

away by the threshold of 9000 electrons. This effect is indicated by the blue line in figure 10.11(b)

for the CNM sensors at a bias voltage of 600 V.

The result on the hit efficiency as a function on the threshold set to the module is plotted in

figure 10.12. The CBCs were calibrated to a value of 140. The measurements for the angular

scans were performed either at a threshold of 112 corresponding to about 9000 electrons or for a

few runs at 119 corresponding to 6800 electrons (accepting RGHs).

The resulting difference between the different efficiencies of the two sensors in one module still

can not be explained. A possible reason might be a slightly different fluence for both the sensors

during the irradiation. One of the CNM sensors broke during the gluing to the 2S mini module

frame and as a consequence a third sensor had to be irradiated which might lead to a different

fluence. A further hint on this assumption is that during the DESY BT with the unirradiated

modules such behavior was not observed with such significance1.

In order to check whether the correlation logic of the CBC works also after irradiation

reliably, the stub bit generation was studied too. The stub analysis was reconstructed offline. The

expectations were compared to the stub word. The stub word contains the stub bits for each CBC

and in case of a stub also the information on the hit location (strip/channel number). Following

1There have been events with different efficiencies on both layers but in less than 1% of the recorded events.
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Figure 10.13: Stub efficiency as a function of the rotation angle (a) and the calculated pT discrimi-
nation in (b) for a radial module position of R= 60 cm.

the stub reconstruction analysis of the DESY test beam data, several requirements have to be

fulfilled:

• for the stub efficiency, at least one hit in each sensor layer must be present

• a cluster in the upstream sensor is matched with a cluster in the downstream sensor with

the window size of ±7

• for several adjacent hits in one event, the cluster position is defined as X =
(

strip f irst−striplast
2

)
• clusters >3 strips are rejected due to the CWD as this is related to low momentum particles

(a change of the programmable CWD was not investigated during the BT)

• the window size of ±7 is in case of clusters on both sensors calculated from the location of

the upstream cluster position Xupstream, hence ∆X =±7= Xupstream − Xdownstream

• the algorithmic stub efficiency is defined as the number of events with at least 1 stub, when

there are clusters present on both sensor layers divided by the number of events with at

least 1 cluster on both sensors

Taking these requirements into account, the stub efficiency was calculated as a function of the

angle and compared to the stub word information. The result is shown in figure 10.13(a). By

rotating the module, at an angle of 10 degrees the stub efficiency starts to drop for both the

algorithmic definition as well as the stub word information. The latter means that no stub bits

are recorded any more at angles higher than 12 degrees, hence the correlation logic seems to work

well if the definitions and requirements listed above are obeyed during the offline reconstruction.

Now assuming a magnetic field of 3.8 T and a radial distance of the module at 60 cm (the inner 2S
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Figure 10.14: Stub efficiency with matched telescope tracks for an angular scan with a threshold
of 9000 electrons at 600 V. (With courtesy to K. Skovpen and N. Chanon.)

module) and the sensor separation d, the angular scan can be translated into a pT discrimination

following the relation

(10.3) φ= arcsin
(

d
2 ·R

)
with R = pT

0.3 ·B .

Under this assumption, from figure 10.13(b) one can see that the pT discrimination rejects

particles with a transverse momentum of about 2 GeV, leading to a significant data reduction, as

simulated in 3.3.

As an example the real stub efficiency was analyzed by taking the track information of the

telescope into account. The definition of the efficiency, in this case, is the presence of a stub

matched to a telescope track divided by the presence of a track, and is shown in figure 10.14. The

low efficiency of about 70% is directly related to the low efficiencies due to the chosen threshold

of the comparator (≈ 9000 electrons) for the angular scans.

Conclusion on the 2S mini module test beam results

The work presented in this chapter is the result of the efforts of the system test working group

with several participating institutes. The first time test beam at DESY with unirradiated pT

discriminating mini modules proved the concept of the correlation logic of the CBC. Unfortunately,

an integration of the telescope tracks due to synchronization problems was not possible, hence

the efficiency studies have to be made purely algorithmicly. Nevertheless, the results are highly

promising and it seems that the 2S module concept can lead to a successful trigger decision

contribution after the Phase II Upgrade of the CMS Tracker.
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The second test beam with irradiated mini modules (sensors and chips) at the SPS accelerator

at CERN was a success, too. It was possible to synchronize the telescope and the DAQ, based

on XDAQ. The readout chain was developed to be as close as possible to the final CMS Tracker

DAQ and worked reliably during the data taking. Due to the characteristics of the silicon sensors

which show random ghost hits after irradiation, the threshold was increased by 3000 electrons

compared to the nominal threshold of 6000 electrons to 9000 electrons, in order to suppress the

appearance of the RGHs. Although the fluence of Φ= 5×1014 neqcm−2 is not critically high, one

can see how the comparator threshold affects the overall trigger module performance in particular

the hit efficiency. As a direct consequence of this finding, the system test group decided to repeat

the test beam with an irradiated module in 2016, in order to study in detail the performance as

a function of the threshold at which the threshold has to be increased smoothly in 1 I2C units

which corresponds to approximately 300-350 electrons per unit. The analysis of the second test

beam at SPS is still ongoing. This is necessary as, for instance, the mentioned software tkLayout

relies on the recorded data from these test beams. The software is able amongst others to predict

the perfomance of the whole future tracker in dependence on its layout. For this purpose, for

instance the binary cluster widths have to be digitized and implemented in the software which

will be provided by the test beam data analysis working group.
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SUMMARY AND OUTLOOK

W ithin this thesis, several studies with respect to the planned CMS Phase II Upgrade

in 2024 were conducted. The future increased luminosity of the HL-LHC to about

5×1034 cm−2s−1 with an energy of 7 TeV per proton beam ans 10 years of operation will

lead to a challenging radiation environment for the experiments. Besides the increasing demands

on radiation hardness of the silicon detectors and subdetectors, in particular the granularity of

the CMS tracker has to be increased in order to cope with the higher expected particle track

densities. Furthermore, in order to process the enormous data amount out of the tracker for

further processing, a new binary readout of the new trigger module concept is the current baseline.

The latter allows a contribution of the tracker to the Level-1 trigger decision by correlation of

hits of two stacked sensors per module. For this purpose, a new binary chip is under devel-

opment which has to fulfill the requirements of holding a correlation logic and radiation hardness.

In the first part of the analysis the radiation hardness of silicon strip and macro-pixel

sensors was studied. Several silicon sensor irradiation and measurement campaigns were

conducted within the CMS Tracker and the RD50 collaborations. Extensive studies on the

radiation hardness for a fluence of up to Φ= 1.5×1015 neqcm−2 for the inner modules at large

pseudorapidity η equipped with strip sensors in the future tracker led to the decision to build

the entire tracker with n+−in−p silicon sensors. The main reason is the fact that this type of

silicon detectors retains a higher charge collection due to the higher mobility of electrons and as

a consequence less trapping compared to the hole readout in n-type detectors.

Unfortunately, n+−in−p detectors have the disadvantage of a necessary additional isolation of

the readout strips in order to avoid short circuits of the strips due the buildup of an accumulation

layer as a consequence of the positive oxide charge at the sensor surface. The isolation is a
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limiting factor of studied p-type detectors and has to be optimized in order to ensure a satisfactory

strip isolation independent of the fluence and at the same time no negative influence on noise

and break down characteristics. The pattern as well as the doping concentration and depth of the

isolation dopants affect the overall sensor performance due to the the electric field strength and

distribution. Measurements of silicon sensors produced with different isolation characteristics

and vendors accompanied by T-CAD simulation studies were performed. In particular the latter

was of great importance in order to understand and to describe the effects observed during the

measurements. The isolation technique which seems to be most promising as a result of several

investigations amongst different experiments is the p-stop atoll isolation, which is an individual

boron implantation surrounding each individual strip. Simulations were conducted in order to

optimize both the pattern as well as the doping characteristics which has not been studied in

detail so far within the CMS Tracker collaboration. As a result of the simulations, the p-stops

should be implanted in the center of adjacent strips while the p-stop doping concentration should

not exceed the value of 2×1016 cm−3 and a depth of 2.5 µm. These values, assuming a gaussian

shape of the p-stop implants, is equal to a surface projected charge of 1×1012 cm−2, which is

equal to the positive oxide charge. Three different wafers for submissions with three different

vendors were designed by the author. On each wafer, the same test sensor designs were placed

in order to guarantee the comparability of measurement results. The submissions basically

differed in the doping characteristics which covered both the range expected to be radiation hard

and the range which simulations would exclude. Experimentally obtained results before and

after irradiation of the test sensors matched the predictions from simulations with remarkable

precision. Also, the effect of random ghost hits, observed for the first time in p-type detectors,

could be observed for sensors with p-stop doping concentration higher than 3×1016 cm−3 as

predicted and understood with the help of T-CAD studies. Finally, the p-stop characteristics

ensuring a good strip isolation and high breakdown voltages showing no random ghost hits were

defined.

For the first time, macro-pixel prototype sensors for the PS trigger modules were de-

signed with respect to the constraints on the bump pad layout provided by the CERN CMS

electronics group. The experience from T-CAD simulations and measurements directly influenced

the sensor layout. The sensors were qualified on their electrical properties and charge collection

efficiencies before and after irradiation of up to Φ = 2×1015 neqcm−2, which is two times the

expected fluence after 3000 fb−1 at HL-LHC conditions for the most exposed modules. In spite of

the high radiation level, the sensors behave well considering the breakdown voltage and charge

collection and fulfill the ambitious requirements for the Phase II Upgrade. With respect to the

strip isolation study, the p-stop isolation with a peak doping concentration of 1×1016 cm−3

and 1.5 respectively 2.5 µm was chosen for the submission and the results confirm both the

simulation predictions and measurement outcomes of the silicon strip detectors investigated in
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the isolation study.

With respect to the demand for a higher granularity for a reliable reconstruction of tracks in a

dense particle environment, the FOSTER (A Fourfold Strip Sensor with Readout at the Edges)

with fourfold segmentation was developed within the IEKP CMS hardware group at KIT. The

first prototypes of the FOSTER showed undesired signal coupling to the routing lines running

between collecting electrodes. The effect was studied in detail with help of T-CAD simulations

with the proposal to implant additional boron material below the routing lines in order to avoid

the coupling. The boron implantation acts as a strip isolation and simultaneously redirects the

electric field below the routing line. The latter repels drifting electrons towards the readout

electrodes and no induced signals on the routing line are observed anymore. Though this type of

sensor exceeds the demands of CMS with respect to the granularity, the FOSTER might be a

promising candidate for future detectors present in high particle density experiments. Further

simulation and measurement studies have to be performed.

Although the results from the simulations and measurements of the irradiation study

for different sensor concepts match very well, the radiation damage model for T-CAD studies has

to be improved. Especially the evolution of the surface damage as well as the annealing behavior

of bulk and surface damage have to be parametrized and also the range of the fluence should be

extended. The latter is particularly necessary in order to study the future pixel detector material

and sensor layout, which will face a fluence beyond Φ= 1×1016 neqcm−2.

Furthermore, as mentioned, not only the p-stop technique but also the p-spray and a combination

of both exist. Studies within the RD50 collaboration hint on the advantageous radiation hardness

of the p-stop technique but no process variations of the p-spray comparable to the study discussed

in this study were performed. Hence, submissions with known p-spray characteristics might be

of interest in order to compare the different techniques, especially with respect to the Phase II

pixel detector, which probably will also be built of p-type detectors but facing significantly higher

radiations and less space for p-stop structures between pixels.

Not only the sensor material and layout for the Phase II Tracker changes but also the

module concept. In the future, the tracker must contribute to the Level-1 trigger decision,

therefore the trigger relevant data must be transmitted from the modules at 40 MHz. In order to

cope with the huge data rate, particles with low transverse momentum which are attributed to

non-interesting physics are rejected online, leading to significant data reduction. The rejection is

achieved by correlation of hits on two stacked sensors which are both connected to one chip, the

CBC. Depending on the track curvature and the resulting hit displacement on the second sensor

with respect to the first sensor, the transverse momentum can be determined. A setup based on

the CBC readout has built and measurements of silicon strip sensors before and after irradiation
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were done. The calibration and the response of the individual channels performs as expected.

The gain of the bench top system was identified by measurements with known charge pulses.

The setup is now ready and can be used in order to compare the signal detection of the binary

chip with the expectations from measurements with analogue readout.

The trigger module concept was implemented in the smallest possible scale, consisting

of two test sensors with 5 cm strip length and dual-CBC readout. After a first beam test

experiment with unirradiated sensors and chips with confirming results of the low pT particle

discrimination, additional 2S mini modules were built. The hardware components (CBCs and

sensors) were irradiated to the expected fluence and dose after 10 years of operation with 50%

safety margin. The irradiated mini module was tested in a second beam test in order to check

whether any discrepancy in comparison to the unirradiated module appears. The threshold had to

be increased from the nominal 6000 electrons to approximately 9000 electrons due to the sensors

which show random ghost hits after irradiation as a consequence of the high p-stop doping

concentration. With this setting, the hit detection was not 100% efficient during the angular

scan, hence an absolute module efficiency study could not be realized. By applying algorithmic

boundary conditions to the data during the analysis, the stub finding logic was proven to work as

expected. Nevertheless, a final conclusion on the module performance after irradiation cannot be

drawn and a further beam test with the same physics program and irradiated 2S mini modules is

scheduled for the year 2016.
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APPENDIX A

A.1 Particle identification in the CMS detector

Figure A.1 is a slice of the CMS detector showing a colorful cross-section of the different subde-

tectors. Depending on the charge, momentum and mass of the particles, they are bent more or

less and absorbed by different subdetectors. The identification of the particles is determined by

the tracks and energy deposition in the tracker, calorimeters and muon chambers.

By traversing the detector, charged particles leave ionization along their paths which are mea-

sured and reconstructed with the help of the tracking detector. By applying a strong magnetic

field, it is additionally possible to easily determine the sign of the charge in dependence of the

bent direction. The basic types for charged particles are e±, µ±, K±, π± and p± with typical

momenta of 2-50 GeV.

Neutral particles like photons above 50 MeV, Neutrons and K0
L are detected by measuring the

energy showers they deposit in the electromagnetic and hadronic calorimeters. Some neutral

particles are detected by measuring their stable decay products. Te these belong the K0
S →π+π−,

Λ→ pπ− and π0 → γγ.
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Figure A.1: Slice of the CMS detector with included tracks., [Lap10].
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APPENDIX B

B.1 Wafer processing - exemplary at ITE Warsaw

The processing of silicon detectors for HEP applications is a complex operation with up to several

hundreds of process steps. In the following chapter, a brief description of the process sequence is

given with no claim on completeness but more to give the reader a feeling of the complexity. The

summary is for a p-type sensor and was listed once in [gS12] and was extracted from [Mar05]

from the ITE in Warsaw:

• Initially, the silicon wafer is oxidized in a quartz tube by heating in oxygen enriched

atmosphere at temperatures of about 1000◦C. In this case, the oxide is grown by wet

oxidation method. Wet oxidation compared to dry oxidation is much faster and is used

for thick oxides. The growing rate is about 400 nm/h, resulting in a density of about 2.18

g/cm3 [Hil04]. Dry oxidation has a growing rate of about 50 nm/h with a density of 2.27

g/cm3 and is hence of much higher quality. Growing in pure oxygen results in high densities

and high breakthrough voltages, but it is time consuming and is only used for coupling

oxides.

• Backside diffusion of boron to form an ohmic contact (p+ highly doped). The diffusion depth

depends on the technology. A common diffusion depth is about 6 to 7 µm, but also deep

diffusion processes up to several hundreds of µm are possible (used, for instance, during

the HPK campaign).

• After diffusion, the dopants have to be activated in the silicon lattice by temperatures above

1000◦C.
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• Oxide etching for the p+ outer ring of the sensor, which is floating and avoids high electrical

fields inside the crack region which is caused at the sensor edges during the cutting process.

It is the first photolitographic step.

• Screen oxidation (dry, about 900◦C, 20 nm). This screening oxide serves as a scattering

layer for implantation. Thus, the channeling effect is suppressed, which constrains the path

of a charged particle in a crystal lattice.

• Again oxidation to protect the wafer backside against doping performed later in processing.

• P+ implantation of the outer ring

• Oxide etching (removing of screening oxide)

• Oxidation wet

• Oxide etching for the p-stop region. Generally, p-stop and p-spray implantation is done

before strip implantation. This is a consequence of the thermal budget. The achieved doping

profiles of microstrips should be unchanged.

• Screening oxidation

• P-stop implantation

• Removing of the screening oxide

• Oxidation wet

• Oxide etching for the n+ strips

• Screening oxidation

• N+ strip implantation

• Oxidation wet

• LPCVD1 for polysilicon layer

• Wet etching to define the bias resistor shape

• Removing of the polysilicon layer from the backside with plasma etching

• Photolitography defining contacts to the resistors

• Annealing in nitrogen to tune the resistivity of bias resistors

• Photolitography defining contacts to the n+ strips

1Low Pressure Chemical Vapor Deposition
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• Al-Si-Cu sputter deposition on both sides of wafer

• Photolitography to define the pattern of metal layer on front side

• Metal sintering

• APCVD2 or PECVD3 (limited conformity and electrical quality) silicon dioxide deposition

with D=600 nm to create a passivation layer at about 200◦C, oxidation wet in two steps,

250 nm + 150 nm

• Photolitography for opening windows in the passivation layer

In addition, polishing and handling between the steps are done.

2Atmospehric Pressure CVD
3Plasma Enhanced CVD
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B.2 ITE wafer

The ITE wafer - 4 inch, p-type substrate, < 100> lattice orientation, p-stop isolation

Figure B.1: Final ITE wafer layout

Figure B.2: Final ITE wafer after production and dicing
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B.3 CiS wafer

The CiS wafer - 4 inch, p-type substrate, < 100> lattice orientation, p-stop and p-spray isolation

Figure B.3: Final CiS wafer layout

Figure B.4: Final CiS wafer after production and before dicing
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B.4 CNM wafer

The CNM Barcelona wafer - 4 inch, p-type substrate, < 100> lattice orientation, p-stop isolation

Figure B.5: Final CNM wafer layout

Figure B.6: Final CNM wafer layout after production and before dicing
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C.1 Biasing option for silicon sensors in trigger modules

The pT discriminating modules described in section 3.2.4 hold besides the functional challenge

several mechanical challenges too. One of the latter is the application of the high voltage to the

backplane of two stacked sensors in one module in which the backplanes of the sensors are facing

each other. Figure C.1 shows an exploded CAD drawing of the current baseline concept of a 2S

module (January 26th, 2016). The high voltage will be applied via wire-bonds to kapton foils which

Figure C.1: Exploded view of the 2S trigger module baseline.
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Figure C.2: Simulated potential at the sensor edge. Unirradiated at Vbias =−300 V and T= 20◦C.

in contrary will be glued to the backplane. The tails of the kapton foils will be connected to a HV

connector which will be placed on the service hybrid. However, this kind of mechanical solution

holds risk of losing the backplane connection during operation besides additional challenges

during the module assembly.

A possible alternative to apply the high voltage to the sensor is via its periphery which is on

the same potential as the backplane. This is due to the fact that the periphery of a n-in-p type

detector is p+ doped in order to avoid currents from the damaged silicon crystal at the sensor

edges which is a consequence of the sawing. The potential at the sensor edge as a result from

T-CAD simulations is shown in figure C.2. A conducting P+PP+ channel at the sensor edge

is present. In order to check the connection of the high voltage via the periphery, additional

passivation openings at the sensor surface for some of the productions presented earlier in this

thesis have been placed. First samples before and after irradiation have been electrically qualified

for their current characteristics and measured on their charge collection as function of the bias

option (HV via backplane or via the periphery at the frontside).

One of the main parameter of a silicon sensor is its leakage current which has been measured in

the ALiBaVa station for both bias options. Three samples have been measured exemplary so far.

The sensors are from a huge measurement campaign and all of n-in-p type. For the first tests

irradiated samples have been chosen with irradiation levels ofΦ= 5×1014 1MeV neqcm−2 protons,

Φ= 7×1014 1MeV neqcm−2 and Φ= 1.5×1015 1MeV neqcm−2 mixed irradiation respectively. The

result for this three sensors with different fluence is plotted in figure C.3. No significant changes

for the different bias options have been observed. From this point of view, applying the bias voltage
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Figure C.3: Leakage current of three irradiated samples for the two bias options: back and front.
Measurements have been performed at T=−20◦C.

via the periphery in order to make the module production more comfortable looks promising.

Furthermore, comparable leakage currents for the different bias connections hint on an equally

depleted sensor bulk which is necessary for efficient charge generation.

Therefore, additional charge collection measurements have been performed with the ALiBaVa

station using a Sr90 source for charge generation. Again, the bias voltage has been applied

once to the backplane in the conventional way and once via the sensor periphery whereat the

measurement conditions stayed constant. The charge collection of the samples as function of the

bias voltage is shown in figure C.4.

Basically, the charge collection as function of the bias voltage is independent of bias technique.

There is a slight difference for the 320 µm thick sensor after Φ= 1.5×1015 1MeV neqcm−2 visible

but might be related to the analysis or a slightly different sensor temperature.

The median noise of the strips measured in the KIT setup does not change too. This behavior is

exemplary shown in figure C.5. But in some of the samples strips next to the periphery where the

high voltage bond has been applied showed non negligible higher noise and had to be masked for

the analysis. Hence, further investigations are necessary in order to prove the concept of front

side biasing via the sensor periphery.

In June 2015 a new wafer submission with Hamamatsu Photonics Japan has been conducted.
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Figure C.4: Charge collection for back and front bias for different sensor thicknesses and irradia-
tion levels.
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C.1. BIASING OPTION FOR SILICON SENSORS IN TRIGGER MODULES

The sensor layouts on the wafer all include the passivation opening in the periphery in order to

study in more detail the front bias technique which might simplify the module construction for

the CMS Phase II Outer Tracker Upgrade.
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D.1 The ALiBaVa 2-end daughterboard

Board design with Autodesk Inventor for the measurement of the 2S test sensors. The board was

designed such that the readout chips face each other. In this case, the sensor can be bonded on

both sides and the segmentation region can be studied in more detail with laser measurements.

Figure D.1: Design of the 2-end daughterboard with Autodesk Inventor
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E.1 Pad layout of the MPA

The final layout of the MPA might slightly change but the bump pad pattern is fixed.

Figure E.1: MPA chip bump pad pattern.
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E.2 Sensor layout combatible with MPA pad layout

The final layout of the macro pixel sensor might slightly change due to irradiation studies but

the bump pad pattern is fixed.

Figure E.2: Macro pixel sensor pad layout.

E.3 MaPSA light assembly

Drawing of the MaPSA light subassembly which was done with different suppliers by the

electronics industry and at KIT.

Figure E.3: Drawing of the MaPSA light subassembly.
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F.1 Sentaurus Structure Editor input file

With the following config file, the structure for the simulation is built. Furthermore, the contacts

as well as the doping materials and shapes are defined.

In addition, in the last section, the mesh is defined. This is particularly important. The mesh size

should be small enough to allow a reliable calculation of the physics. On the other hand, if the

mesh size is too dense, the simulator runs out of memory (depending on the machine).
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;;# definition of variables for the Workbench input

(define Pitch 90)
(define Pitch_2 45)
(define Imp_width 20)
(define Imp_width_2 10)
(define Al_width 33)
(define Al_width_2 165e-1)
(define P-stop_conc @p_conc@)
(define p_d @p_d@)
(define Imp_conc 1e19)
(define n_d @n_d@)
(define bulk @bulk@)
(define depth @depth@)

;;#--------------------------------------------------------------------------------
---------------------------------------------
;;#----------Draw Structure----------
(sdegeo:create-rectangle (position 0 0 0)  (position Pitch 200 0) "Silicon" 
"p-bulk" )
(sdegeo:create-rectangle (position 0 200 0)  (position Pitch 201 0) "SiO2" "oxide" 
)
(sdegeo:create-rectangle (position 0 0 0)  (position Pitch 1 0) "Aluminum" 
"backplane" )

(sdegeo:create-rectangle (position 0 2002e-1 0) (position Imp_width_2 201 0) 
"Aluminum" "strip_alu1")
(sdegeo:create-triangle (position Imp_width_2 201 0) (position Imp_width_2 2002e-1 
0) (position (+ Imp_width_2 8e-1) 201 0) "Aluminum" "strip_alu1")
(sdegeo:create-rectangle (position (- Pitch Imp_width_2) 2002e-1 0) (position 
Pitch 201 0) "Aluminum" "strip_alu2")
(sdegeo:create-triangle (position (- Pitch Imp_width_2) 201 0) (position  (- Pitch 
Imp_width_2) 2002e-1 0) (position (- (- Pitch Imp_width_2) 8e-1) 201 0) "Aluminum" 
"strip_alu2")
(sdegeo:create-rectangle (position 0 201 0) (position Al_width_2 202 0) "Aluminum" 
"strip_alu1_top")
(sdegeo:create-rectangle (position (- Pitch Al_width_2) 201 0) (position Pitch 202 
0) "Aluminum" "strip_alu2_top")

(sdegeo:insert-vertex (position Imp_width_2 200.0 0.0))
(sdegeo:insert-vertex (position (- Pitch Imp_width_2) 200.0 0.0))

;;#--------------------------------------------------------------------------------
---------------------------------------------
;;#----------Define Contacts----------
(sdegeo:define-contact-set "contactbackplane" 4  (color:rgb 1 1 1 ) "##" )
(sdegeo:define-contact-set "contactstrip_1" 4  (color:rgb 1 0 0 ) "##" )
(sdegeo:define-contact-set "contactstrip_2" 4  (color:rgb 1 0 0 ) "##" )

(sdegeo:define-contact-set "contactn_1" 4  (color:rgb 1 1 0 ) "##" )
(sdegeo:define-contact-set "contactn_2" 4  (color:rgb 1 1 0 ) "##" )



;;#--------------------------------------------------------------------------------
---------------------------------------------
;;#----------Define Ref/Eval Window----------
(sdedr:define-refeval-window "dope_p++" "Line" (position 0 1 0) (position Pitch 1 
0))
(sdedr:define-refeval-window "dope_n1" "Line" (position 0 200 0) (position 
Imp_width_2 200 0))
(sdedr:define-refeval-window "dope_n2" "Line" (position (- Pitch Imp_width_2) 200 
0) (position Pitch 200 0))

(sdedr:define-refeval-window "dope_pstop1" "Line" (position 35 200 0) (position 41 
200 0))
(sdedr:define-refeval-window "dope_pstop2" "Line" (position 55 200 0) (position 49 
200 0))

;;#--------------------------------------------------------------------------------
---------------------------------------------
;;#----------Set Contacts----------
(sdegeo:set-current-contact-set "contactbackplane")
(sdegeo:define-2d-contact (list (car (find-edge-id (position (/ Pitch 2) 0 0)))) 
"contactbackplane")
(sdegeo:set-current-contact-set "contactstrip_1")
(sdegeo:define-2d-contact (list (car (find-edge-id (position (/ Imp_width_2 2) 
2002e-1 0)))) "contactstrip_1")
(sdegeo:set-current-contact-set "contactstrip_2")
(sdegeo:define-2d-contact (list (car (find-edge-id (position (- Pitch (/ 
Imp_width_2 2)) 2002e-1 0)))) "contactstrip_2")

(sdegeo:set-current-contact-set "contactn_1")
(sdegeo:define-2d-contact (list (car (find-edge-id (position (/ Imp_width_2 2) 200 
0)))) "contactn_1")
(sdegeo:set-current-contact-set "contactn_2")
(sdegeo:define-2d-contact (list (car (find-edge-id (position (- Pitch (/ 
Imp_width_2 2)) 200 0)))) "contactn_2")

;;#--------------------------------------------------------------------------------
---------------------------------------------
;;#----------Define Dopingconcentrations----------
;;#----------Constant Doping Profile----------
(sdedr:define-constant-profile "ConstantProfileDefinition_1" 
"BoronActiveConcentration" bulk)
(sdedr:define-constant-profile-region "ConstantProfilePlacement_1" 
"ConstantProfileDefinition_1" "p-bulk")
;;#----------Analytic Doping Profile----------
(sdedr:define-analytical-profile-placement "AnalyticalProfilePlacement_1" 
"AnalyticalProfileDefinition_1" "dope_p++" "Both" "NoReplace" "Eval")
(sdedr:define-erf-profile "AnalyticalProfileDefinition_1" 
"BoronActiveConcentration" "Sympos" 2  "MaxVal" 5e18 "ValueAtDepth" bulk "Depth" 
depth "Erf"  "Factor" 0)



(sdedr:define-analytical-profile-placement "AnalyticalProfilePlacement_2" 
"AnalyticalProfileDefinition_2" "dope_n1" "Both" "NoReplace" "Eval")
(sdedr:define-gaussian-profile "AnalyticalProfileDefinition_2" 
"PhosphorusActiveConcentration" "PeakPos" 3e-1  "PeakVal" Imp_conc "ValueAtDepth" 
bulk "Depth" n_d "Erf"  "Factor" 8e-1)
(sdedr:define-analytical-profile-placement "AnalyticalProfilePlacement_3" 
"AnalyticalProfileDefinition_3" "dope_n2" "Both" "NoReplace" "Eval")
(sdedr:define-gaussian-profile "AnalyticalProfileDefinition_3" 
"PhosphorusActiveConcentration" "PeakPos" 3e-1 "PeakVal" Imp_conc "ValueAtDepth" 
bulk "Depth" n_d "Erf"  "Factor" 8e-1)

(sdedr:define-analytical-profile-placement "AnalyticalProfilePlacement_4" 
"AnalyticalProfileDefinition_4" "dope_pstop1" "Both" "NoReplace" "Eval")
(sdedr:define-gaussian-profile "AnalyticalProfileDefinition_4" 
"BoronActiveConcentration" "PeakPos" 3e-1  "PeakVal" P-stop_conc "ValueAtDepth" 
bulk "Depth" p_d "Erf"  "Factor" 8e-1)
(sdedr:define-analytical-profile-placement "AnalyticalProfilePlacement_5" 
"AnalyticalProfileDefinition_5" "dope_pstop2" "Both" "NoReplace" "Eval")
(sdedr:define-gaussian-profile "AnalyticalProfileDefinition_5" 
"BoronActiveConcentration" "PeakPos" 3e-1  "PeakVal" P-stop_conc "ValueAtDepth" 
bulk "Depth" p_d "Erf"  "Factor" 8e-1)

;;#--------------------------------------------------------------------------------
---------------------------------------------
;;#----------Refinement Placement----------
(sdedr:define-refinement-size "RefinementDefinition_1" 10 20 5e-2 5e-2)
(sdedr:define-refinement-material "RefinementPlacement_1" "RefinementDefinition_1" 
"Silicon" )
(sdedr:define-refinement-function "RefinementDefinition_1" "DopingConcentration" 
"MaxTransDiff" 1)
(sdedr:define-refinement-size "RefinementDefinition_2" 5e-1 5e-1)
(sdedr:define-refinement-material "RefinementPlacement_2" "RefinementDefinition_2" 
"SiO2" )
(sdedr:define-refinement-function "RefinementDefinition_2" "DopingConcentration" 
"MaxTransDiff" 1)

(sde:build-mesh "snmesh" " " "n@node@_msh")



F.2. SENTAURUS DEVICE SIMULATOR INPUT FILE

F.2 Sentaurus Device Simulator input file

The device config file contains all models which have to be included in the calculation of the

physical properties and performance. The models are included via certain key words. All models

are well described in the Sentaurus manual.

In addition, the SPICE network as well as the goal parameters (for instance the maximum bias

voltage) of the simulation are defined.
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# Simulation within Synopsis
# n-on-p strip detector
# PStop Investigation

Device n_on_p_strips {
;;#-----Initialize electrodes, start values--------------
 Electrode
 {
  {Name = "contactstrip_1" voltage=0.0 Area=10000}
  {Name = "contactstrip_2" voltage=0.0 Area=10000}

  {Name = "contactn_1" voltage=0.0 Area=10000}
  {Name = "contactn_2" voltage=0.0 Area=10000}

  {Name = "contactbackplane" voltage=0.0 Area=10000}
 }

 File
 {
        Grid    = "@tdr@"
        Current = "@plot@"
        Plot    = "@dat@"
 }

;;#-----------Physics section, apply models and radiation damage--------------
 Physics
 {
  Temperature = 253              
  Mobility
  (
   DopingDep
   eHighFieldSaturation
   hHighFieldSaturation
   Enormal
   CarrierCarrierScattering (ConwellWeisskopf)
  )
  Recombination
  (
          SRH (DopingDep ElectricField(LifeTime=Hurkx))
          Auger
          eAvalanche (vanOverstraeten Eparallel)
          hAvalanche (vanOverstraeten Eparallel)
   CDL
  )
  EffectiveIntrinsicDensity(Slotboom)
  Fermi 
        
;;#-------Generation of signal, MIP like energy deposition-------------        
  HeavyIon 
  (



   Direction=(0,1)
   Location=!(puts (@<Position>@,0))!
   Time=1e-9
   Length=[0 0.001 200 200.001]
   Wt_hi= [1.0 1.0 1.0 1.0]
   LET_f= [0 8.7176e-10 8.7176e-10 0]  
   Gaussian
   PicoCoulomb 
  )
 }

;;#------------radiation damage model------------------
 Physics ( material = "Silicon" )
 {
 Traps 
   ( 
  
     (
  Acceptor Level
  fromCondBand
  Conc=!(puts [expr 1.189*@F@+6.454e13])!
  EnergyMid=0.525
  eXsection=1.0e-14
  hXsection=1.0e-14
     )
     
     (
  Donor Level
  fromValBand
  Conc=!(puts [expr 5.598*@F@*0.9-3.949e14])!
  EnergyMid=0.48
  eXsection=1.0e-14
  hXsection=1.0e-14
     )
 )
 }
 
 Physics (MaterialInterface = "Silicon/SiO2")
 {
  Traps( FixedCharge Conc=@<Q_Ox>@ )
 }

}
;;#-------------SPICE network-------------------- 
System {

       n_on_p_strips npp ( "contactn_1"=c1 "contactn_2"=c2 "contactbackplane"=bg 
"contactstrip_1"=s1
       "contactstrip_2"=s2 )
       Vsource_pset v (bg 0) {dc = 0}
       Vsource_pset v1 (c1 0) {dc = 0}

       Resistor_pset r1c (c1 0) {resistance = 1800000}



       Resistor_pset r2c (c2 0) {resistance = 1800000}

       Resistor_pset r1s (s1 0) {resistance = 50}
       Resistor_pset r2s (s2 0) {resistance = 50}

}

File {
 Output  = "@log@"
 ACExtract = "@acplot@"
 }

;;#--------------Plot section---------------------
Plot {
  eCurrent/Vector hCurrent/Vector Current/vector
  eDensity hDensity
  ElectricField ElectricField/Vector
  eEparallel hEparallel
  Potential SpaceCharge
  Doping DonorConcentration AcceptorConcentration
  Auger eAvalanche hAvalanche AvalancheGeneration
  eMobility hMobility
  SRHRecombination
  #BeamGeneration
  eInterfaceTrappedCharge
  hInterfaceTrappedCharge
  eTrappedCharge
  hTrappedCharge
  HeavyIonCharge HeavyIonGeneration
 }

CurrentPlot   {

  ElectricField (Maximum(Material="Silicon"))
  eDensity((1 199.9))
  }

Math          
{
 Method=pardiso        
 Number_of_Threads = 8       
 Extrapolate        
 Derivatives        
 RelErrControl        
 Digits=4        
 Notdamped=50        
 Iterations=25        
 RecBoxIntegr (5e-3 50 5000)      
}

;;#------------Solve section; calculation of equations--------------
Solve          



{ Poisson
 Coupled (iterations=50 notdamped=0) { Poisson}    
 Coupled (iterations=50 notdamped=0) { Poisson Electron Hole}  

 QuasiStationary        
 (
  InitialStep=1e-5
  Minstep   = 1e-8
  MaxStep   = 1e-2
  Increment = 1.5
  Decrement = 2
  Goal
  {
   Parameter = v.dc
   Voltage=-1000
  }
  
 )
 
 {Coupled {Poisson Electron Hole}}
  Save(FilePrefix="vg1")
 
 Load(FilePrefix="vg1")
 NewCurrentPrefix="vg1_"
 Quasistationary
  (InitialStep=0.01
  MaxStep=0.1
  MinStep=0.001
  Goal {Parameter =v1.dc voltage=2})
  {Coupled {Poisson Electron Hole}
  CurrentPlot (Time=
   (range = (0 0.2) intervals=20;
   range = (0.2 1.0)))
  }
  
 NewCurrentPrefix = "transient_"

;;#----------Transient section; plot MIP signal-----------------
        Transient 
 (
                  InitialTime = 0.0
                  FinalTime=30.0E-9
                  InitialStep=0.5E-11
                  MaxStep=0.5E-9
        )
 { 
  Coupled (iterations=8, notdamped=15){Poisson Electron Hole Circuit}
  Plot(Time=(0.5e-9;1e-9;2e-9;5e-9;10e-9;20e-9;30e-9) noOverwrite 
FilePrefix="MIP_n@node@")
 }
 

}
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