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Abstract 

 

Herein, we report magnesium sulphide (MgS) as an anode for lithium ion batteries. Magnesium 

sulphide-carbon composite is directly synthesized by mechanically milling the elemental 

mixture. A possible lithiation and delithiation mechanism for MgS is proposed based on 

electrochemical and ex-situ XRD studies. The electrochemical reaction of MgS with lithium 

results in the formation of Li2S and Mg, the as-formed Mg simultaneously reacts with lithium 

and forms LixMg alloy further contributing to the capacity. A stable reversible capacity of 530 

mAh g
-1

 was achieved after 100 cycles within the voltage window of 0.001 - 2.5 V. The 

compatibility of MgS anode was tested in full cell using lithium nickel manganese cobalt oxide 

(LNMC) and lithium iron phosphate (LFP) as cathodes. 
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1. Introduction 

Lithium-ion batteries are commercially successful rechargeable batteries for portable 

electronic devices and considered promising for applications in plug-in hybrid electric vehicles. 

A commercial lithium-ion battery consists of, e.g., graphite anode, lithium-ion conducting 

electrolyte, LiPF6 in ethylene carbonate-diethylcarbonate and a prelithiated cathode, LiCoO2, 



 

LiMn2O4 or LiFePO4. Though metallic lithium has a theoretical specific capacity of 3,861 mAh 

g
-1

, due to dendrite formation and related safety concerns alternative anodes were developed like 

graphite with ten times less theoretical specific capacity (372 mAh g
-1

). Vast efforts have been 

made to replace graphite with high capacity anode materials [1-6]. The most promising materials 

are metals (Al [7,8], Sn [9-11]) and semiconductors (Si [12-14], Ge [15,16]) that can react with 

lithium and form alloys. In addition, a number of transition metal oxides [17-20], hydrides [21], 

sulphides [22,23], nitrides [24,25], and phosphides [26,27] were studied as anode for lithium-ion 

batteries [28]. Recently, silicon has gained much interest as it can react with more number of 

lithium to form a fully lithiated alloy, Li4.4Si, with a theoretical specific capacity of 4,200 mAh g
-

1
, much higher than graphite [14]. However, it is accompanied by poor cycle life compared to 

graphite due to fracture and crumbling of electrode caused by large volume change (280% for Si) 

and due to diffusion induced stress [29]. There is a great interest for alternative high capacity, 

low voltage anode materials. In an attempt towards this we report the investigation of 

magnesium sulphide (MgS) as sustainable anode material for lithium-ion batteries.  

The theoretical reaction potential of MgS with lithium is 0.5 V. It has a theoretical 

specific capacity of 951 mAh g
-1

 assuming the following reaction. 

 

MgS + 2Li  Li2S + Mg 

 

In addition, lithium can react with magnesium to form alloys of lithium by further increasing the 

theoretical capacity. The high capacity combined with low reaction potential makes MgS an 

interesting anode material for Li-ion batteries in principle. Hence we synthesized MgS-carbon 

nanocomposites and evaluated as anode material for lithium-ion batteries. Very recently, another 

report was published on MgS as anode for lithium-ion battery [30]. Our work is distinctive in the 

following aspects; 1. We report a single step preparation method of MgS carbon composite, 2. 

From XRD and electrochemical studies we conclude a reversible lithiation/delithiation 

mechanism, 3. We show that the addition of conductive carbon during electrode fabrication can 

significantly improve the cycling performance, 4. Further the practicality of MgS-carbon 

composite anode is evaluated in full cell using lithium nickel manganese cobalt oxide (LNMC) 

and lithium iron phosphate (LFP) as cathodes. 

 



 

2. Experimental 

 

2.1. Synthesis 

 Magnesium sulphide-carbon (MgS-CB) composite was prepared from the elements 

by ball-milling (PM100 Retsch) stoichiometric mixture (1:1 molar ratio) of magnesium powder 

(Alfa-Aesar, 99.8 %) and sulphur powder (Sigma-Aldrich, ≥99.5 %) with carbon black (Alfa-

Aesar, >99.9 %) to obtain a mass fraction of MgS, 75 % ; carbon black, 25 %. The mixture was 

loaded in a tungsten carbide vial with tungsten carbide balls and closed in an argon filled glove 

box (MBRAUN). The ball-to-powder ratio was 10:1, milling time was 20 h at 400 rpm with 10 

min milling and 10 min pause to prevent excessive heating. 

 

2.2. Structural Characterization 

 X-ray diffraction (XRD) patterns were obtained with a STOE STADI P 

diffractometer using Cu Kα radiation in transmission mode. For ex-situ XRD studies, the 

powders from the current collector were retrieved and characterized at different discharged and 

charged states. The morphology of synthesized sample was examined by scanning electron 

microscopy (SEM, LEO 1550 Gemini). 

 

2.3. Electrochemical measurements 

Electrochemical studies were performed in Swagelok type cells. Electrode fabrication 

and assembly of electrochemical cells was done in an argon filled glove box. The electrodes 

were fabricated with or without additional amounts of conductive carbon. For electrodes without 

additional conducting carbon, the as-prepared MgS-carbon composite (75% of MgS) was mixed 

with the binder, poly vinylidene fluoride (PVDF) at the mass ratio of 90:10. The electrodes with 

conducting carbon were prepared by mixing MgS-carbon composite (75% of MgS), carbon 

(Super P (SP)/carbon nanofibre (CNF)/graphene (Gra)), and poly vinylidene fluoride (PVDF) in 

the mass ratio of 80:10:10. A slurry containing the above mixture was prepared by using N-

methyl-2-pyrrolidinone as solvent, spread on a stainless steel (SS) foil (area: 1.13 cm
2
), and dried 

in a vacuum oven at 120 °C for 12 h. Typically, each electrode contained 2−3 mg of the active 

material. The specific capacities were calculated based on the mass of active material in the 

electrode. Lithium foil (Aldrich, 99.9%) was used as the negative electrode, and a borosilicate 



 

glass fiber sheet saturated with 1 M LiPF6 in 1:1 ethylene carbonate (EC)/dimethyl carbonate 

(DMC) (LP30, BASF) was used as separator and electrolyte. The cells were placed in an 

incubator (Binder) to maintain a constant operation temperature of 25 ± 0.1 °C. Electrochemical 

studies were carried out using Arbin battery cycling unit BT2000 and Bio-logic VMP-3 

potentiostat. Electrochemical impedance spectroscopy (EIS, Bio-logic VMP-3) measurements 

were performed with an applied AC signal amplitude of 10 mV over a frequency range of 200 

kHz to 10 mHz. 

 

3. Results and discussion 

Various methods have been reported for the preparation of pure MgS which all require 

high-temperature, long sintering time and utilizing toxic chemicals as precursors. [31]. However, 

nanocrystalline active material (MgS) coated with carbon would be of particular interest to 

obtain better electrochemical performance. To achieve this, MgS-carbon composite (MgS-CB) 

was synthesized by mechanically milling the elemental mixture. The XRD profile of as-

synthesized MgS-CB is shown in Fig. 3a. The MgS peaks are consistent with the standard 

JCPDS card number 35-0730 with rock salt type structure. The average crystallite size calculated 

by Scherer equation was 24 nm. The microstructure of the as-prepared MgS-CB was 

characterized by scanning electron microscopy (SEM). Fig. 1 shows the SEM image of the as-

prepared MgS-CB composite and the corresponding energy dispersive X-ray spectrometry (EDS) 

maps of Mg, S and C. The smaller particles of MgS-CB composites were aggregated to form 

secondary particles in the range of 5 to 10 μm in size with irregular particle shapes. EDS 

indicated a homogeneous distribution of Mg, S and C in the material.  



 

 

Fig. 1 SEM image of as-prepared MgS-CB and the corresponding EDS mapping of Mg, S and C. 

 

Fig. 2a, shows the cyclic voltammogram of MgS-CB composite. The cathodic and anodic 

scan gives information about the discharge process (alloying or lithiation) and charge process 

(dealloying or lithium extraction) respectively. Two cathodic peaks centered at 0.72 V and a 

sharp peak at 0.005 V were observed in the first cycle. The peak at 0.72 V in the first cathodic 

scan disappeared in the subsequent cycles suggesting decomposition of solvent and electrolyte 

forming a solid-electrolyte interface (SEI). The sharp peak at 0.005 V is due to the reaction of 

MgS with Li (discussed below). During anodic scan, two peaks centered at 0.21 V and 0.67 V 

were observed. On subsequent cycling, two cathodic and anodic peaks were observed 

corresponding to the two step lithiation and delithiation process. The cathodic peak at 0.25 V 

was due to the lithiation of MgS and that observed at 0.005 V was due to the alloying of Li with 

Mg that is formed during the reduction of MgS [32-34]. From previous studies, alloying of Li 

with Mg is proved to occur below 0.1 V vs Li/Li
+
 in anode materials like pure Mg [33], Mg-Ni 

[34], Mg2Si [35] and Mg2Sn [36] alloys. Two anodic peaks centered at 0.21 V and 0.67 V 

correspond to the delithiation process. With increasing cycle number the anodic and cathodic 

peaks current increases indicating a progressive activation of the material under cyclic 

voltammetric (CV) conditions. 

 



 

 

 

Fig. 2 Electrochemical properties of MgS-CB prepared by ball milling. (a) Cyclic voltammogram 

of MgS-CB at a scan rate of 0.03 mV s
-1

. (b) The discharge and charge profiles of MgS-CB 

obtained at 50 mA g
-1

. 

 

Fig. 2b shows the electrochemical discharge and charge profiles of MgS-carbon 

composite anode obtained at a current density of 50 mA g
-1

. In the first discharge, the voltage 

faded rapidly from the initial OCV of 2.9 V to 0.9 V followed by a monotonous fading until 0.1 

V with an irreversible voltage plateau between 0.9 V and 0.5 V. This is attributed to the 

formation of solid electrolyte interfaces (SEI) film [37] and to the insertion of lithium into 

carbon, together corresponding to a capacity of 318 mAh g
-1

. Further, a long flat plateau was 

observed between 0.1 - 0.001 V. The length of this plateau corresponds to a capacity of 1550 

mAh g
-1

. This plateau is due to the reaction of MgS with Li. This was corroborated by the XRD 

patterns collected at various discharged states (discussed below). The total discharge capacity in 

the first cycle was 1899 mAh g
-1

. Upon charging, a low voltage plateau was observed at 0.21 V 

corresponding to a capacity of 575 mAh g
-1 

and a second plateau was observed centered at 0.67 

V followed by a steep rise to the cut off voltage (2.5 V) resulting in a total charge capacity of 

1194 mAh g
-1

. An irreversible capacity loss (ICL) of 705 mAh g
-1 

was observed in the first cycle. 

The volume change accompanied by the conversion reaction and SEI formation in the first 

discharge can typically contribute to the ICL. 

 



 

During second discharge, voltage rapidly faded and a sloppy region was observed 

between 0.4 V - 0.1 V followed by small plateau until 0.001 V (the cut off voltage) was reached. 

This corresponds to a capacity of 930 mAh g
-1

. The second discharge curve was different to that 

of first discharge curve. The change was due to the different intermediates formed in the first 

charge and due to the activation of MgS in the first discharge. The second charge resembled the 

first charge nevertheless the total capacity was less (813 mAh g
-1

). The subsequent 

discharge/charge behaviour was similar to the second discharge/charge curves. However, there 

was a constant capacity fading with increasing number of cycles. 

In order to investigate the lithiation/delithiation mechanism during the first cycle, ex-situ 

XRD patterns were collected on the electrodes discharged and charged to various depths. Fig. 3b 

shows the XRD patterns recorded after discharging the cell to a capacity of 1180 mAh g
-1

 (by 

taking into account the capacity contribution from both carbon and MgS) during the first 

discharge. Apart from MgS peaks, Li2S and metallic Mg peaks were observed. In addition, it is 

interesting to note the formation of Li alloy with Mg (2θ = 36.2°, intense peak for LixMg) [38]. 

The complete reduction of MgS is expected at the recorded capacity, as the theoretical capacity 

of MgS is 951 mAh g
-1

. However, peaks corresponding to MgS were still observed indicating an 

incomplete reaction. Further, XRD patterns were recorded for the fully discharged cell to 0.001 

V (cut off voltage) and represented in Fig. 3c. The peaks due to MgS almost vanished and 

intensities of Li2S, Mg, LixMg alloy peaks increased. Although energetically the lithiation of 

MgS should occur before the formation of LixMg alloy, due to the large overvoltage in the first 

reaction, lithiation of MgS can occur at 0.1 V which is close to the formation potential of LixMg 

alloy [32, 34]. Based on the XRD results and voltage-capacity profiles we propose a reaction of 

MgS with Li to form Li2S and Mg. Thus the as-formed Mg is reacting with Li to form LixMg 

alloy in a subsequent reaction. 

 

 

 

MgS   +   2Li                 Li2S   +   Mg 

Mg   +   xLi                      LixMg 



 

 

Fig. 3 XRD pattern of a) as-prepared MgS-CB and (b-e) ex situ XRD patterns of MgS-CB 

recorded at different points during the first discharge and charge processes. 

 

The capacity contribution from LixMg alloy formation is approximately 600 mAh g
-1

. 

This number is obtained from the first discharge curve after excluding the theoretical capacity of 

MgS from 1550 mAh g
-1

 (the contribution from the plateau between 0.1 and 0.001 V). However, 

the exact value of ‘x’ in LixMg alloy is difficult to deduce from the observed capacity as some 

amount of unreacted metallic Mg was observed after discharging to 0.001 V, cut off voltage. 

During charge, initially lithium is extracted from LixMg alloy and forms Mg metal. This is 

shown with an increase in intensity of Mg in Fig. 3d. Above 0.5 V, lithium is extracted from Li2S 

and reacts with Mg to form MgS during this reaction the intensity of Mg is reduced (Fig. 3e). 

Though the intensity of LixMg seems to increase during this step, it is remaining constant only 

the intensity of Mg peak is changing (Fig 3d and 3e). From Fig. 3c and Fig. 3d, the peak 

intensities corresponding to LixMg alloy is reduced and from Fig. 3d and Fig. 3e the peak 

intensities corresponding to MgS is increased during charge further supporting the proposed 

mechanism. 

 

The total charge capacity in the first cycle was 1200 mAh g
-1

. After excluding the 

contribution from dealloying of LixMg (600 mAh g
-1

, assuming full reversibility) from the total 

charge capacity, the remaining 600 mAh g
-1

 could be attributed to the delithiation of Li2S. The 



 

observed total capacity during charge proves the reversibility of Mg + Li2S. The extraction of 

lithium occur in two steps one at 0.21 V which is in accordance with the extraction potential of 

lithium from Li-Mg alloy [32] and the second plateau centered at 0.6 V is due to the formation of 

MgS from Li2S and Mg. The reversibility of magnesium based anode material is known from Mg 

+ LiH system as reported by Tarascon group [21]. Based on the above experimental 

observations, the reversibility of Mg + Li2S is concluded which is contrary to the mechanism 

proposed by Wang et al [30]. 

 

Though initial capacity of MgS is quite high, large irreversible capacity loss and a 

constant capacity fade over cycling were observed. During discharge and charge process it is 

evident that MgS is converted to Li2S and Mg. This reaction is associated with a volume change 

of 85 %. This volume change leads to pulverization of active materials and hence significant 

amount of material will lose contact with carbon during cycling and restrain from contributing to 

the capacity. Inactive volume elements accumulate with cycling and hence capacity fades. 

 

Further, ball milling of carbon can destroy and/or damage the carbon backbone and 

reduce the electronic conductivity, thereby contributing to capacity loss. To check this 

hypothesis and to enable electronic conductivity, MgS-CB composite was prepared with the 

addition of different conductive carbons. Electrodes were fabricated with 10 wt % of different 

conducting-carbons like carbon nanofibre (CNF), super P (SP) and graphene (Gra) in addition to 

as-prepared MgS-CB composite and binder. Though the initial capacity fading was not retrieved 

by addition of carbon (as it again implies the nature of ball milled sample) the cycling stability 

was significantly improved depending on the nature of the carbon added (Fig. 4a). This is 

substantiated by the impedance data shown in (Fig. 4b). 



 

 

Fig. 4 (a) Cycling test for the cells with as-prepared MgS-CB electrode (50 mA g
-1

) and different 

carbon containing MgS-CB electrodes measured at a constant current density of 100 mA g
-1

. (b) 

Nyquist plots for cells with as-prepared MgS-CB electrode and different carbon containing MgS-

CB electrodes recorded after 50 cycles. 

 

Fig. 4a shows the variation of discharge capacities of samples with cycling tests. The 

total discharge capacity in the first cycle for as-prepared MgS-CB and MgS-CB with Gra, SP and 

CNF was 1899, 2268, 1909 and 1682 mAh g
-1

 respectively. The capacity contribution between 

OCV and 0.1 V for Gra, SP, CNF containing
 
MgS-CB and the as-prepared MgS-CB are 672, 

417, 337 and 318 mAh g
-1 

respectively. The variation in the discharge capacities are attributed to 

the SEI and lithium insertion into the respective carbon. Further, the MgS-CB with carbon 

additive exhibited improved cycling stability and reversible capacity with cycling numbers 

compared to as-prepared MgS-CB composite. In particular, MgS-CB with super P exhibited 

superior performance compared to graphene or CNF additive. A stable capacity of 530 mAh g
-1 

after 100 cycles was obtained for electrodes with super P compared to 470 mAh g
-1 

and 410 mAh 

g
-1

 in the case of electrodes with graphene and CNF respectively. To better understand the 

improved cycling stability of the carbon added MgS-CB, after 50 charge-discharge cycles the 

cells were examined using electrochemical impedance spectroscopy (EIS).   

 

Fig. 4b shows the Nyquist plots for the cells with as-prepared MgS-CB and other 

conducting carbon added MgS-CB electrodes. All samples exhibited similar EIS spectra with a 

combination of a semicircle in high frequencies and a straight line at low frequencies. The 



 

diameter of the semicircle attributed to interfacial charge transfer resistance (Rct) is decreased 

for conducting carbon added samples compared to as-prepared MgS-CB system. The intercepts 

with real impedance [ZRe] axis of as prepared MgS-CB and CNF, Gra and SP containing MgS-

CB were 94, 69, 24 and 14 Ohms respectively. Among various conducting carbon added MgS-

CB, Super P incorporated MgS-CB exhibited low resistance hence, improved cycling stability 

and reversibility with cycling number (Fig. 4a). The order of decreased resistance among various 

carbon containing MgS-CB are consistent with cycling stability and reversibility. Hence it is 

likely that these improvements were promoted or enabled by the improved electronic 

conductivity which increased the effective electrochemical interface. 

 

The practicality of as-prepared MgS anode was tested in full cells with lithium nickel 

manganese cobalt oxide (LNMC) and lithium iron phosphate (LFP) as cathode. The capacities 

were calculated with respect to the mass of LNMC (11.5 mg cm
-2

) and LFP (10.8 mg cm
-2

). The 

MgS-CB_SP electrodes were cycled to obtain a stable capacity in the half cell before employing 

for full cell studies. Fig. 5a shows the charge/discharge curves of LNMC vs. MgS cell and its 

cycling stability was plotted in Fig. 5b. The first charge capacity was 171 mAh g
-1

. The first 

discharge capacity was 131 mAh g
-1

. Large irreversible capacity was seen in the first cycle and a 

gradual fading in capacity was observed with cycling. Interesting feature of the LNMC vs. MgS 

cell is that the charge/discharge profiles are similar to that of LNMC vs. Li cells [39], only 

difference being the shift in the discharge voltage. Fig. 5c shows the charge/discharge profiles of 

LFP vs. MgS cells and its cycling behaviour is shown in Fig. 5d. A first charge capacity of 156 

mAh g
-1

 was achieved and a first discharge capacity of 108 mAh g
-1

. On subsequent cycling 

capacity faded gradually. The charge/discharge profiles are not flat in LFP vs. MgS cell 

compared to LFP vs Li cell [40] which is due to the nature of anode. In either case, capacity in 

the first charge is close to the theoretical capacity with respect to the cathode was achieved. On 

subsequent cycling, a constant capacity fading was observed. We believe that this capacity 

fading can be mitigated by optimizing the voltage window and by balancing the capacities of 

anode and cathode. 

 

4. Conclusions 



 

MgS-carbon composite was synthesized and investigated as a potential low voltage anode 

material for lithium-ion batteries. Based on voltage-capacity profiles and ex-situ XRD studies a 

reversible lithiation and delithiation mechanism for MgS is concluded. With a first optimized 

electrode fabrication a stable capacity of 530 mAh g
-1

 was obtained. Further, the feasibility of 

MgS carbon composite as anode material vs lithium nickel manganese cobalt oxide (LNMC) and 

lithium iron phosphate (LFP) cathode were tested. We believe that by adopting a different 

preparation method a highly reversible anode material can be realized. Such studies are 

underway. 
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Figure Captions 

 

Fig. 1 SEM images of as-prepared MgS-CB and the corresponding EDS mapping of Mg, S and 

C. 

 

Fig. 2 Electrochemical properties of MgS-CB prepared by ball milling. (a) Cyclic voltammogram 

of MgS-CB at a scan rate of 0.03 mV s
-1

. (b) The discharge and charge profiles of MgS-CB 

obtained at 50 mA g
-1

. 

 

Fig. 3 XRD pattern of a) as-prepared MgS-CB and (b-e) ex situ XRD patterns of MgS-CB 

recorded at different points during the first discharge and charge processes. 

 

Fig. 4 (a) Cycling test for the cells with as-prepared MgS-CB electrode (50 mA g
-1

) and different 

carbon containing MgS-CB electrodes measured at a constant current density of 100 mA g
-1

. (b) 



 

Nyquist plots for cells with as-prepared MgS-CB electrode and different carbon containing MgS-

CB electrodes recorded after 50 cycles. 

 

Fig. 5 Full cell performance of cycled MgS-CB_SP as anode with lithium nickel manganese 

cobalt oxide (LNMC) and lithium iron phosphate (LFP) as cathode 

 

 

 

 


