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Abstract—The emergence of decentralized crypto currencies
such as Bitcoin and the success of the anonymizing network
TOR lead to an increased interest in peer-to-peer based tech-
nologies lately – not only due to the prevalent deployment of
mass network surveillance technologies by authorities around
the globe. While today’s application services typically employ
centralized client/server architectures that require the user to
trust the service provider, new decentralized platforms that
eliminate this need of trust are on their rise. In this paper
we critically analyze a fully decentralized alternative to today’s
digital ecosystem – MaidSafe – that drops most of the commonly
applied principles. The MaidSafe network implements a fully
decentralized personal data storage platform on which user
applications can be built. The network is made up by individual
users who contribute storage, computing power and bandwidth.
All communication between network nodes is encrypted, yet
users only have to remember a username and password. To
guarantee these objectives, MaidSafe combines mechanisms such
as Self-Authentication, Self-Encryption, and a P2P-based public
key infrastructure. This paper provides a condensed description
of MaidSafe’s key protocol mechanisms, derives the underlying
identity and access management architecture, and evaluates it
with respect to security and privacy aspects.

I. INTRODUCTION

Despite the fact that the Internet was initially designed as
a de-centralized network of services, the ecosystem of today’s
Internet looks different on most layers that reside above the
transport layer. When looking at services such as Google Docs,
Office 365, Facebook, and Paypal – to name only a few – this
difference has two key implications: (1) the introduction of a
trust requirement into the service provider, and (2) dependency
on a central system. Furthermore, these systems are, e.g., due
to business related reasons, not open anymore: users cannot
freely choose to run parts of the service locally or choose a
different service provider while remain being connected with
users that are still in contract with the old service provider.
When looking at the shutdown of the encrypted webmail
service Lavabit in 2013, which discontinued its service as the
operating company did not want to cooperate with the U.S.
government, the weakness of such centralized services against
authorities or individual powerful parties becomes also visible.

In parallel to the increased awareness w.r.t. these issues,
and in reply to the decrease of trust into individual centralized
service providers, new platforms and networks developed
during the past years. Bitcoin [1] for instance is a peer-to-peer
based digital currency system and allows to perform transac-
tions without the need of intermediates such as banks. Bitcoin

uses a public distributed database called the Blockchain which
contains records of all transactions executed in the past.
Ethereum [2], a platform for decentralized applications, also
uses a blockchain in order to implement a cryptographically
secure, transaction-based state machine. It can be considered
as a generalization of Bitcoin which allows to implement
other services such as voting systems, domain name registries,
self-enforcing contracts and agreements, smart property, and
distributed autonomous organizations. A similar but rather
storage-oriented approach is the project called MaidSafe [3],
which calls itself "the new decentralized Internet". Tor [4], a
peer-to-peer based anonymizer that protects its users against
traffic analysis, a common form of Internet surveillance, is also
a very prominent example of the de-centralization trend.

The success of these emerging platforms convinced several
companies around the world to interconnect with them or to
adopt their principles. Dell and Expedia, amongst others, are
now accepting payments in Bitcoin. IBM goes even further in
an executive report of their Device Democracy Program [5] and
states that the Internet of Things (IoT) can only survive the end
of trust and scale to billions of devices if the currently applied
principles are re-thought at their foundation. Together with
Samsung they recently show-cased a completely de-centralized
IoT prototype platform called ADEPT (Autonomous Decen-
tralized Peer-To-Peer Telemetry) [6] which applies the princi-
ple of privacy-by-design.

It may appear that de-centralized approaches will solve
many of the security and privacy issues we are facing in today’s
Internet. They promise to reduce the power of service providers
and to eliminate the need of trust into them. However, it is
unclear whether this reduction and elimination is exclusively
a gain or maybe also a loss from a user’s perspective. For
instance, it may be difficult to guarantee availability of stored
data. The limitation and termination of a security or privacy
attack is also non-trivial if the underlying platform runs
completely de-centralized. If everything is distributed, security
and privacy properties are based completely on cryptographic
algorithms, which eventually might be broken in the future.

In this paper, we provide a condensed description of the
emerging P2P-based personal cloud platform MaidSafe and
its core protocol mechanisms. We then derive the underlying
trust model, critically analyze MaidSafe w.r.t security and
privacy aspects and discuss the inherent drawbacks of such
a decentralized architecture. The rest of the paper is structured
as follows: Section II reviews related work, Section III presents
a condensed description of MaidSafe, followed by the analysis
and evaluation of MaidSafe’s trust model and architecture in



Section IV. Our conclusion is given in Section V.

II. RELATED WORK

Security considerations for P2P-based distributed hash ta-
bles (DHTs) were already discussed by Sit et al. in 2002 [7].
The authors compiled a list of potential network attacks (e.g.
routing attacks or data storage and data retrieval attacks)
and provided general guidelines how these attacks could be
defended. They identified one key issue which they termed
verification of node keys and outlined an authentication solu-
tion which is adopted by MaidSafe. Similar privacy-preserving
authentication approaches can be found in [8] and [9].

At the same time, Douceur et al. identified the well
known Sybil Attack [10] which de-centralized P2P networks
are vulnerable to. In a sybil attack, an adversary creates a large
number of pseudonymous identities to gain a large influence
on the overall network with the objective to control operation.
A classification of sybil attacks and methods to avoid them
were later provided by Dinger et al. in [11]. The aspects
of privacy, security and trust were previously discussed by
Mondal et al. in [12], however, with a focus on the applicability
of the P2P paradigm on domains beyond traditional file-sharing
applications.

A security analysis that specifically focuses on data con-
fidentiality, data integrity and data availability within the
MaidSafe network is provided by the authors of MaidSafe [13].
Yet, the provided analysis is limited to the mechanisms that
implement MaidSafe’s distributed storage system.

III. MAIDSAFE

The SAFE network (or MaidSafe) refers to Secure Access
For Everyone and is described by their authors as a fully
distributed data management service that offers secure data
storage and secure data retrieval. The following subsections
provide a condensed summary of its design goals, the imple-
mentation of its core features, and its underlying identity and
access control management (IAM) architecture.

A. Design Goals & Assumptions

MaidSafe aims to satisfy the following design goals. The
mechanisms which implement the design goals are described
in the following subsections.

1) Autonomous network operation without reliance on
centralized servers or components.

2) No need to trust single entities or operators.
3) Ease of use from the perspective of its users. Users

need to remember only their username and password.
All other data shall be stored in the network.

4) Privacy by design: nobody has access to anyone else’s
data unless specifically shared.

5) Availability and integrity: stored data shall be avail-
able at all times and integrity protected.

6) Protection against targeted and mass surveillance of
users.

To facilitate comprehension in the subsequent subsections,
we prepend several design principles and assumptions: (1)
MaidSafe stores all data in a distributed hash table (DHT), i.e.
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Fig. 1. Overview of the various access methods of a user to the MaidSafe
network

a common address space which is shared over all nodes of the
MaidSafe network; (2) all nodes keep an open connection to
at least four of their closest neighbors; (3) all communication
between nodes is authenticated, hence nodes are identifiable
by an asymmetric public key accessible through a P2P public
key infrastructure [14]; (4) all communication between nodes
is encrypted.

B. Trust & Identity Management

From a user’s point of view, their passport is the central
concept in the MaidSafe network. As a user can have more
than one passport it roughly corresponds to a user account as
with traditional services today. With each passport, a user has
several views or access possibilities to the network, depending
on the aspect of the network they want to use currently. For
each of these aspects, different identities (IDs) are used to
communicate with the network. All of these identities are
stored in the passport, see Figure 1, and are defined as follows:

• for anonymous network usage like storing or retrieving
the user’s own personal data, the MaidSafe Anonymous
ID (MAID) is used.

• MaidSafe Public IDs (MPIDs) correspond to user-
names or email addresses and are used to send mes-
sages between users, or to store public data such as
a personal website. Each user can own an arbitrary
number of MPIDs.

• in case the data to store is not public, but should still
be shared with a limited user group, the user can create
a private share. Each share is identified by a Maidsafe
Share ID (MSID), which is also used to store and
retrieve the share’s data. Therefore, each user that has
access to the share knows the MSID.

• in case the user wants to contribute resources like
storage of his own machines to the network, the last
type of IDs are used: the user starts one or more
DHT nodes per machine, and each node gets its own
Proxy MaidSafe ID (PMID) to communicate with the
network – independent from the user’s own activity.



The main purpose of this separation is anonymization, as there
is no direct way to link different identities to a user.

All IDs consist of two public key pairs: kpriv1 , kpub1 and
kpriv2 , kpub2 . The first pair k1 is used to encrypt and sign all
communication with the network and other users, as well as to
encrypt data before storing it. k2 is only used to validate the
identity in case k1 gets compromised and has to be revoked.
Using these pairs, the ID fingerprint (usually referred to as ID
as well) is then computed as

ID = h(kpub1 ||skpriv
2

(kpub1 )) (1)

where h equals SHA-512, || refers to string concatenation and
skpriv

2
(x) corresponds to the signature of x using kpriv2 .

In case the ID fingerprint represents a PMID, it is also
used as the node’s position in the DHT. This is a key design
decision, as the security of MaidSafe requires that one can not
choose a specific desired position easily. This requirement is
satisfied as long as the hash function h in Equation 1 is not
broken (which is the case for SHA-512 at the time of writing)
and if assumption 3 (all communication is authenticated)
applies. Authentication in this context means that a node
proves that he knows the public/private key pairs that yield
his position in the DHT.

With respect to trust, MaidSafe relies on the condition that
any group of k nodes that are closest to an arbitrarily chosen ID
(within the DHT address space) does not cooperate in order to
execute an attack. The group is considered to cooperate if the
majority of nodes in the group cooperates. Hence, the nodes
are expected to mutually check and validate their operation.

C. Self-Authentication

MaidSafe employs a mechanism which is termed Self-
Authentication by their authors. It allows to authenticate users
without communicating to a central, trusted identity (or ser-
vice) provider, while guaranteeing that the credentials of the
users never leave their machines [3]. To satisfy this design
goal, the process is divided into two phases: (1) determining
the DHT location and subsequent retrieval of a so called access
packet, and (2) retrieval of the user’s passport from the location
that is calculated with the help of the information stored within
the previously fetched access packet [15]. Once the passport is
retrieved (and decrypted) the user is considered to be logged
in.

To clarify how the process works in detail let us focus on
phase one first: retrieval of the information stored within the
access packet. It consist of the following sequence of actions:

1) Calculation of the location of the access packet as
h(u||s) where h is the hash function SHA-512, u
the username, s a salt that is derived from u and p
(p being the password of the user), and || the string
concatenation function

2) Retrieval of the (encrypted) access packet ap using
the DHT location calculated in the previous step

3) Calculation of the encryption key ka that was used to
symmetrically encrypt ap, as ka = k(u, s), whereas k
refers to the password-based key derivation function

in version 2 as defined by RFC 2898[16] and u or s
to the username and salt as above

4) Decryption of ap using ka in order to receive the
random value v, which will be used in the second
phase.

Obviously, the username and password never leave the
user’s device in plain text. However, they are used as input
to the salt creation function (not clearly specified in the
specification), which in turn is used to derive the location of the
access packet. As username and password are used to derive
the salt, two users with the same username will not run into
an identity collision as long as their passwords are not equal
as well.

The sequence of actions in the second phase, i.e. retrieval
of the passport, is then as follows (re-using the notation
introduced above):

1) Calculation of the location of the passport as
h(u||s||v), with h being SHA-512 again, u the user-
name, v being the result value of phase one, and ||
the string concatenation function

2) Retrieval of the passport pp from the DHT location
calculated in the previous step

3) Calculation of the encryption key kp, that was used
to symmetrically encrypt pp, as kp = k(p, s), with k
being defined as before, p being the password of the
user, and s being the salt

4) Decryption of pp using kp in order to receive the
passport of the user

As can be seen, phase two is very similar to phase one, with the
difference that the calculation of the passport location uses the
value stored within the access packet, and that the password-
based key derivation function k takes the user password p and
not the username u as input.

The MaidSafe documentation mentions two enhance-
ments that are meant to improve the security of the Self-
Authentication mechanism. The first enhancement suggests to
move the passport to a different location whenever the user
logs out (and consequently update the value v stored within the
access packet), and the second one suggests to move the access
packet as well. The second enhancement could be implemented
by using the current date or week during the calculation of the
access packet’s location. The access packet would then move to
a different location as well during user logout. The implications
of both enhancements will be discussed in Section IV.

D. Secure Distributed Storage

The actual storage of data in MaidSafe happens in a
DHT based on Kademlia [17], but significantly extended and
enhanced to suit the needs of MaidSafe [18].

1) Storing Data in the Network: Storing data in the Maid-
Safe network is split up to five different kinds of nodes, called
Personas in MaidSafe. Each Persona has simple tasks, which
in collaboration result in anonymous, distributed and secure
data storage. The personas will now be explained by means
of an example, following a PUT request through the network.
This request is depicted step by step in Figure 2, which is
based on [19].
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Fig. 2. Storage of Key-Value Pairs in the network via PUT: 1) The Client uses a MAID or MPID to connect to its ClientManagers, the 4 nearest nodes
to the used ID. 2) The key-value pair to store is sent to the ClientManagers to hide the Client’s IP. 3) The DataManagers are the 4 nearest nodes to the key.
Each ClientManager forwards the request to each DataManager, which take the majority of agreeing ClientManager requests as valid. 4) To ensure replication
and integrity, the DataManagers agree on 4 random DataHolders to store the data. The 4 nearest nodes to each DataHolder are his DataHolderManagers. Each
of the 16 in total DataHolderManagers are contacted by each DataManager individually, and each takes the majority of DataManager requests as valid. 5)
The DataHolderManagers forward the request of the majority to their respective DataHolder, which then processes the request received by the majority of
his DataHolderManagers, i.e. stores the data. 6) DataHolderManagers monitor the availability of DataHolders and report the loss of a DataHolder back to the
DataManagers, which then agree on additional DataHolders to ensure availability. To ensure integrity, DataManagers perform a „Proof of Resource“: They
check whether all DataHolders still store the same data (not depicted here), and then, the trusted majority of DataHolders receives Safecoin generated by the
DataManagers for their efforts.

Step 1) First, the Client can be either an anonymous
MAID or a public MPID of the user. It is connected to the
group of four nodes that are closest to its ID, which are the
ClientManagers. They are used as proxies by the client and
relay all network-level traffic from and to the client. Their
purpose is to hide the client’s IP address.

Step 2) To store a key-value pair via a PUT request, the
Client just forwards the request to each of his ClientManagers
and isn’t involved in anything else.

Step 3) The ClientManagers then independently identify
the four DataManagers, which are the four nearest nodes to
the key of the key-value pair. Each ClientManager forwards
the request to each DataManager, so that each DataManager
receives the request independently from four ClientManagers.
The DataManagers first check whether the ClientManagers
are in fact the nearest nodes to the ID that initiated the
request and then take the majority of agreeing ClientManager
requests as valid, based on the assumption that the majority of
ClientManagers is not compromised.

Step 4) The DataManager’s purpose is availability and
integrity management, not the actual storing of the data. They
agree on four random DataHolders, whose sole purpose is to
provide the actual storage. The four nearest nodes to each Data-
Holder are his DataHolderManagers, therefore, 16 DataHol-
derManagers exist. Each DataManager forwards the request
to each DataHolderManager, so that each DataHolderManager
receives one storage request from all DataManagers. The
DataHolderManagers validate the four requests by checking
whether the DataManagers actually are the four nearest nodes
to the key to store and again take the request of the majority
of agreeing DataManagers as valid.

Step 5) Each DataHolderManager forwards the request to
their respective DataHolder. Again, the DataHolders validate

the request by checking whether the DataHolderManagers are
the nearest nodes to him and processes the request that the
majority of DataHolderManagers agrees on, i.e. stores the
actual key-value pair.

Step 6) The DataHolderManagers’ purpose is to observe
their DataHolder as they keep direct connections to them
established and therefore notice the sudden absence of a Data-
Holder very fast. Additionally, they provide anonymization
to the DataHolder, as they are, like the ClientManagers, the
only nodes that know the IP address of the DataHolder in
this context. As soon as they detect that the DataHolder
is gone, they report back to the DataManagers, which then
agree on new, additional DataHolders to ensure the replication
and therefore the availability of the data. This is how churn
handling1 is performed in MaidSafe.

To ensure integrity, the DataManagers perform a periodic
check that is called Proof of Resource (PoR) in MaidSafe. The
resemblance of the term to Bitcoin’s proof of work is intended,
as Safecoins are generated through this PoR. For the PoR,
the DataManagers send a random value to each DataHolder.
The DataHolders answer with the hash of the value plus the
stored data, so that the actual data has not to be transmitted.
The DataManagers then compare the hashes received from
the DataHolders and have to trust the majority, as they don’t
store the data themselves. The DataHolders that comprise the
majority are then rewarded for their provided resources in
Safecoin generated by the DataManagers to incentivise correct
behaviour, while the DataHolders in the minority (which are
none, usually, if all DataHolders returned the same hash) are
punished and will receive less data to store and to earn Safe-
coin through. The Safecoins issued by the DataManagers are

1i.e. the handling of nodes that stored data leaving the network and the
subsequent redistribution to new storage nodes
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new Safecoins that didn’t exist before, analogous to Bitcoin’s
mining process. It is the only occasion where new Safecoins
can be created.

2) Self-Encryption: The mechanism that MaidSafe uses to
split and reconstruct files to and from encrypted key-value pairs
is called Self-Encryption. The only input of the mechanism is
the file itself, hence the name. The output consists of multiple
AES-encrypted chunks that can be stored in the DHT, as well
as a DataMap that contains the pre- and post-encryption hashes
of the chunks. The process is depicted in Figure 3.

First, the file is split into groups of three equally sized
chunks. Instead of using a file fingerprinting approach (such
as Rabin Karp) the chunks adhere to a fixed size of at
least kMinChunkSize bytes and at most kMaxChunkSize
bytes2. At the time of writing, kMinChunkSize equals to
1 KB and kMaxChunkSize to 1 MB. In the following, each
chunk triple is handled independently.

For each chunk, the pre-encryption hash is computed and
used to encrypt another chunk in the triple to form a circle.
Then, the encrypted chunks are additionally obfuscated by
XOR-ing them with their encryption key. This additional
step serves as additional protection in case the encryption
is attacked. The obfuscated chunks are finally stored in the
DHT (with their post-encryption hashes as key). Those post
encryption hashes are combined with the pre-encryption hashes
to form the DataMap. For data retrieval the process is simply
reverted: first, the encrypted chunks are fetched from the DHT
using the post-encryption hashes as the key, followed by the
de-obfuscation and decryption with the pre-encryption hash.
As the DataMap is key and reference to the file, it is encrypted
using the private key of the user and stored in their passport.

Working this way, Self-Encryption also allows deduplica-
tion: If two stored files share a group of three equal chunks,
they map to the same cipher text at the same position and will
be stored only once in the network.

E. Resulting Identity and Access Control Management Archi-
tecture & Trust Model

In this section we abstract from the mechanisms applied
by MaidSafe and extract the underlying Identity and Access

2see https://github.com/maidsafe/MaidSafe-Encrypt/blob/master/src/
maidsafe/encrypt/self_encryptor.cc for further details.
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Fig. 4. Traditional identity and access control management architecture
(IAM) and existing trust relationships from the perspective of an end-user.
The user trusts the (potentially distinct) operators that implement the identity
provider, the policy administration point, the policy decision point, and the
policy enforcement point at the service provider, because he knows the parties
that run the IAM components.

Control Management (IAM) architecture from the perspec-
tive of the end-user. Due to its wide acceptance we use
the nomenclature of the eXtensible Access Control Markup
Language (XACML) specification [20] and first begin with the
description of the typical IAM architecture of today’s Internet
ecosystem, as shown in Figure 4. Following the nomenclature
of [20], an IAM architecture comprises several components3:
an Identity Provider (IdP), a Policy Administration Point
(PAP), a Policy Decision Point (PDP), and a Policy Enforce-
ment Point (PEP). These component may all be operated by
a single provider, but it is in general possible that they are
operated by distinct parties. This is the case when federated
identity management principles are applied, for instance if a
service provider uses services such as Facebook Connect to
offload the operation of the Identity Provider functionality.
Nevertheless, in either case, the end-user puts trust into the
components, in particular, he trusts the

1) Identity Provider that he returns data only to sub-
jects that know username and password, and that he
implements security monitoring to detect and block
identity attacks (e.g. by limiting the number of login
trials).

2) Policy Administration Point that access control rules
are stored such that they reflect the intentions of the
end-user 1:1.

3) Policy Decision Point that the defined access control
rules are evaluated properly and authorization are
generated only to matching subjects.

4) Service Provider that he implements a Policy Enforce-
ment Point which grants access only to authenticated
and authorized subjects.

The above trust relationships are commonly based on the
fundamental trust that the applied cryptographic algorithms

3Additional components may exist, e.g. a Policy Information Point, but they
are neglected here as their relevance to this analysis is insignificant.

https://github.com/maidsafe/MaidSafe-Encrypt/blob/master/src/maidsafe/encrypt/self_encryptor.cc
https://github.com/maidsafe/MaidSafe-Encrypt/blob/master/src/maidsafe/encrypt/self_encryptor.cc


(e.g. to ensure confidentiality, integrity, authenticity, etc.) are
secure and not broken.

The IAM architecture of MaidSafe looks less trivial, cf.
Figure 5, as the components are distributed over the SAFE
network. Instead of putting trust into an easily understand-
able set of operators, the user has to trust the collective
network of unknown MaidSafe users (which are effectively
operators in this case) and the applied algorithms. The Self-
Authentication mechanism implements the functionality of
an identity provider, which is distributed between the nodes
that store the encrypted passport and the MaidSafe Client
which decrypts it. Policy administration is implemented only
in the client software as it selects the encryption key that
only the target audience knows and also provides the public
key used for signature-based write protection. Policy decision
and enforcement for read operations is implicitly performed
at the client application through data encryption algorithms.
In case of write operations, policy decision and enforcement
is additionally handled by the network as data managers and
data holders perform majority-based evaluations and signature-
checks. All nodes involved in a user’s storage request are of
course considered as service providers. To summarize, when
using MaidSafe the user trusts the

1) Client software that it does not include a backdoor
and applies the cryptographic algorithms in the proper
way.

2) The SAFE network that
a) a successful Self-Authentication is only pos-

sible with known username and password,
and that online password guessing attacks are
effectively infeasible.

b) data holders and data managers apply the
given rules correctly, i.e. they do not ignore
a signature-based write protection or simply
replace the corresponding public-key with a
different one.

c) nodes cannot choose their network position
freely, that neighboring nodes do not collab-
orate, and that the view on the network is
equal for for all nodes4.

The main principle of MaidSafe is therefore best described by
‘Do not trust individual operators, but trust the collective of all
operators as well as the security of cryptographic algorithms!’.

IV. SECURITY ANALYSIS

A. MaidSafe-Specific Analysis

In this section, MaidSafe’s security is analyzed w.r.t. the
classical IT security goals: authenticity, integrity, confidential-
ity, availability and anonymity. Non-repudiation, i.e. of Safe-
coin transactions, is neglected, as not enough information is
available regarding the details of the transaction mechanisms.
The analysis uses the terms of MaidSafe’s IAM architecture
we developed in subsection III-E.

The internal security concept of the MaidSafe network is
almost entirely based on the mutual-control of neighboring

4Equal in the sense that all nodes share the same topology information, i.e.
the group of N closest nodes to a given key is equal (or at least almost equal)
for all network members.
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Fig. 5. Illustration of how MaidSafe distributes the different IAM components
within its network. Instead of putting trust into individual operators that he
does not know, a user puts trust into the collective network and his client
software.

nodes within the DHT. This is assumed to be the case due to
the non-manipulable position within the DHT and the P2P-PKI
based detection of such manipulation attempts. An attack on
this property, i.e. if nodes could select specific positions, would
kill the security architecture of MaidSafe completely and
thereby kill most of the above security goals. Consequently,
defeating mutual control among neighboring nodes should be
very expensive for an attacker, and in fact requires that he
either performs a Sybil attack on the MaidSafe network (which
is easier the smaller the MaidSafe network), or that he manages
to successfully break the hash function to generate IDs close
to a desired position. The costs of a successful Sybil attack
can of course be reduced by routing table poisoning [11],
which facilitates the presence of malicious nodes within the
routing tables of well-behaving nodes. Due to these threats the
MaidSafe developers recently published plans to increase the
size of the group of nodes that control and check each others
operation (i.e. the group of data managers, data holders, etc.)
from 4 to 32, and to trust the result provided by the majority
of these nodes, whereas majority is achieved by 28 out of 32.
However, it is not clear why the MaidSafe developers choose
exactly 28 out of 32 and how significant it increases the level
of security.

We want to note that the distributed storage process of
MaidSafe contains one step where randomness is eliminated:
the step in which data holders are selected. In fact, they are
chosen by the data managers, and the exact procedure of this
selection (or agreement) is undocumented so far. Nevertheless,
we don’t see a general security risk here as a very simple
agreement could be that each data manager suggests one data
holder. This does not help in gaining a majority.

Authenticity is the domain of the Identity Provider, which
is between the client application and the network. Successful
authenticated is performed if a valid username and password
combination is provided. No additional security features to dis-
tinguish the user from an attacker is present. An adversary can
therefore execute an online password guessing attack by trying
out any number of username/password combinations, being
only limited by his network connection and the performance



of the MaidSafe network. MaidSafe employs no mechanism
to limit his login attempts in any way or even to detect what
a single node is doing. With prior knowledge about typically
used passwords or password structures, the adversary has a
significant chance of success to impersonate the accounts of
random users that use mediocre passwords. The network itself
cannot defend such an attack, but users can protect themselves
by using good passwords that are only used for MaidSafe and
changed regularly.

In order to perform an offline password guessing attack, the
attacker needs access to either an access packet, or the passport
itself. This can be the case if the access packet (or passport)
of a user is stored on a node that is contributed by an attacker.
The attacker then only needs to determine whether data that
is stored on his node reflects an access packet or passport or
not, which might be possible through traffic analysis. Another
possibility is the interception of access packets or the passport
itself if the attacker runs a node that serves as a client manager
to neighboring nodes.

Decrypting access packet and passport only yields their
current state, as access packet and passport are moved by the
client on each logout. With a moving passport, the position of
the passport has to be re-determined again and again, hence,
a successful attack is limited in time and the gain restricted to
the information that was present in the cracked but potentially
old passport. The same conclusion applies to moving access
packets.

After successful authentication, the Identity Provider sup-
plies the user with full access to his IDs. The possession of
matching private keys to the IDs of a user is what Service
Providers and Policy Enforcement Points use to validate that
the user was authenticated by the Identity Provider. Hence,
authentication can additionally be attacked by circumventing
the Identity Provider and attacking MaidSafe’s hash function
in order to generate IDs with the same fingerprint or the
actually to generate exact same ID. This can be done offline:
the attacker only has to acquire the IDs of the targeted user,
which is easy in case of public IDs, but needs an attack on
anonymity in case of the MAID.

Especially the loss of account credentials in MaidSafe is
highly critical as they allow access to the entirety of the user’s
data, activities and assets, without the possibility to suspend
the account. In addition, all data can be lost if the user has no
local backup of his data and the attacker chooses to delete
it within the MaidSafe network. This means that with an
successful attack on authenticity, other security goals can be
easily attacked subsequently.

Integrity is protected by Service Providers and Policy
Enforcement Points, and relies on authenticity checking by
those components. This check can be attacked by fooling the
components into believing the attacker was correctly authenti-
cated, which in turn requires a successful attack on authenticity
as described above. The check can also be circumvented
by controlling the remote Policy Enforcement Point, i.e. the
majority of data managers, and ignore update and delete
operations or to allow write operations by nodes that are
not authorized by the data owner. This also works if the the
majority of data holders or data holder managers is owned by
the attacker.

With a majority of client managers an attacker can also
simply deny service by not forwarding the user requests to the
data managers. The client cannot detect this kind of attack as
he cannot verify whether the data was actually stored. Yet, the
attacker cannot delete data that was already stored previously.

Confidentiality is provided by transport layer encryption
between the components of the architecture and end-to-end
encryption of stored data or messages sent to other users.
Transport layer encryption can be circumvented by being a
Service Provider that gets in contact with the unencrypted data.

End-to-end-encryption is provided by the Self-Encryption
mechanism, which can be attacked by attacking authenticity
and using the data maps stored in the passport, or by a direct
attack on the encryption algorithm. If the attacker does not
want to attempt decryption of random data, he needs to know
the position of the target data, but can then request it and
perform an offline attack. The attacker can also use the fact
that Self-Encryption is not indistinguishable under a chosen-
plaintext attack (not IND-CPA).

To attack end-to-end encryption of messages between
users, the attacker can again choose between an attack on au-
thenticity or a direct attack on the cryptography. As MaidSafe
does not employ Perfect Forward Secrecy (PFS), an attack on
authenticity combined with the logging of prior messages sent
between the users yields the additional benefit of being able
to decrypt former communication for free.

Availability is a property of the Service Providers or the
remote part of the Identity Provider. If the adversary controls
the majority of neighboring nodes w.r.t. a given key, the adver-
sary can either isolate users by dropping all communication,
or attack the integrity of the user’s data, i.e., deleting the data,
which also attacks MaidSafe’s data availability guarantee.

Anonymity can be provided as long as the attacker cannot
learn sufficient amount of information about the user in order
to de-anonymize him. Service Providers inevitably learn some-
thing about the user that uses them. An attack on anonymity
does not require majorities in groups, but only a single node,
as all nodes receive the same communication. With one client
manager or data holder manager, the adversary is able to
establish a mapping between the MAID, MPID or PMID and
the IP address of the user, which he can then use to de-
anonymize the user with information from outside of the scope
of the MaidSafe network. This threat can be circumvented
easily and cheaply by using a VPN access or TOR to separate
MaidSafe and non-MaidSafe data traffic, though.

B. Generic Security Analysis

The two biggest problems found with MaidSafe are the
full dependence of the security on username and password
in combination with the non-existence of security monitoring
capabilities. Through these problems, successful attacks always
lead to total loss or, respectively, full disclosure of all user data
– in case the attack is actually noticed. Once the encrypted data
is spread out in the MaidSafe network and therefore distributed
globally, there is no way to limit potential damage whenever
cryptographic keys are compromised. This problem is inherent
in a completely distributed approach such as the one employed
by MaidSafe. The user does not know where and by whom his



data is actually stored. With centralized or federated systems,
the user knows who is in charge of storing his data, which
enables damage limitation and continuous security monitoring
in cooperation with the provider.

A solution to this problem would be to combine the com-
pletely centralized and completely decentralized approaches
into a single solution. A certain subset of a user’s data, e.g.
very sensitive data like MaidSafe’s passport, could be stored
on trusted entities, while other less sensitive data is stored on
nodes operated by random entities.

V. CONCLUSION

In this paper we analyzed and evaluated the security of
the MaidSafe architecture. MaidSafe is an emerging personal
cloud platform that runs completely decentralized and aims to
replace today’s centralized service approach by dropping its
key design principles. To this ends, it employs and combines
a set of mechanisms, protocols and algorithms such as Self-
authentication, Self-encryption, and P2P-based PKIs. We first
provided a condensed description of these key mechanisms and
extracted the only implicitly given identity and access control
management architecture (IAM) as well as the corresponding
trust relationships from the perspective of an end-user. We then
analyzed how these IAM components and trust relationships
can be attacked and also which type of knowledge or resources
would be required to perform such attacks. Our analysis shows
that MaidSafe has potential to fulfill its design goals, and we
believe that MaidSafe provides sufficient protection against
mass surveillance attacks. Yet, attacks that target individual
users are possible if the attacker has enough resources or
knowledge in order to break the Self-authentication mechanism
for a given user. As a more generalized result, we come to
the conclusion that it is not yet clear whether a completely
decentralized approach such as MaidSafe (which stores all
user data in the public network) really reduces the risks:
the probability of a successful attack can be reduced with
MaidSafe, but at the cost that the damage is more severe if an
attack is successful, due to the lack of containment features.

In our next steps we want to analyze and quantify how
routing table poisoning attacks can reduce the required re-
sources when trying to dominate the network. We also want
to evaluate how additional counter-measures which enable
distributed security monitoring, e.g. limiting the number of
login trials or detecting attacks, have to be designed and
integrated.
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