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Vorwort des Herausgebers 

Wissen ist einer der entscheidenden Faktoren in den Volkswirtschaften unserer Zeit. 

Der Unternehmenserfolg wird in der Zukunft mehr denn je davon abhängen, wie 

schnell ein Unternehmen neues Wissen aufnehmen, zugänglich machen und 

verwerten kann. Die Aufgabe eines Universitätsinstitutes ist es, hier einen 

wesentlichen Beitrag zu leisten. In den Forschungsarbeiten wird ständig Wissen 

generiert. Dieses kann aber nur wirksam und für die Gemeinschaft nutzbar werden, 

wenn es in geeigneter Form kommuniziert wird. Diese Schriftenreihe dient als eine 

Plattform zum Transfer und macht damit das Wissenspotenzial aus aktuellen 

Forschungsarbeiten am IPEK - Institut für Produktentwicklung Karlsruhe1 am 

Karlsruher Institut für Technologie (KIT) verfügbar. 

Die Forschungsfelder des Institutes sind die methodische Entwicklung und das 

Entwicklungsmanagement, die rechnergestützte Optimierung von Strukturen und 

Systemen, die Antriebstechnik mit einem Schwerpunkt auf den Gebieten 

Antriebsstrang-Engineering und Tribologie und Monitoring von Lager- und 

Funktionsreibsystemen, die NVH mit dem Fokus auf Schwingungen und Akustik an 

Komponenten und am Gesamtfahrzeug, die Mikrosystemtechnik mit dem Fokus auf 

die zugehörigen Entwicklungsprozesse sowie die Mechatronik. Die 

Forschungsberichte werden aus allen diesen Gebieten Beiträge zur 

wissenschaftlichen Fortentwicklung des Wissens und der zugehörigen Anwendung – 

sowohl den auf diesen Gebieten tätigen Forschern als auch ganz besonders der 

anwendenden Industrie – zur Verfügung stellen. Ziel ist es, qualifizierte Beiträge zum 

Produktentwicklungsprozess zu leisten. 

 

Albert Albers 

                                            
1 Eh.: Institut für Maschinenkonstruktionslehre und Kraftfahrzeugbau, Universität Karlsruhe (TH) 



 

 

 



 

 

Vorwort zu Band 91 

In der Fahrzeugantriebstechnik werden unterschiedliche Konzepte zur Anpassung der 

Charakteristik des Verbrennungsmotors an die Lastcharakteristik des Fahrzeuges 

gewählt. Im Allgemeinen werden Getriebe mit unterschiedlichen Gangstufen, oder 

auch stufenlose Getriebe, zwischen Motor und Antriebsrädern eingebracht, um so eine 

geeignete Anpassung der Charakteristiken von Kraft- und Arbeitsmaschine zu 

erreichen. Um einen Gangwechsel zu ermöglichen, ist normalerweise eine 

Umschaltung des Drehmomentflusses notwendig. Im einfachsten Fall, bei manuellen 

Antriebssträngen, wird der Motor zum Gangwechsel vom Getriebe getrennt. Dazu sind 

Kupplungssysteme erforderlich. Diese Kupplungssysteme haben zusätzlich die 

Aufgabe, die Drehzahllücke beim Anfahren zwischen der Drehzahl des Motors und 

den sich zunächst nicht drehenden Antriebsrädern auszugleichen. Für die Erfüllung 

dieser Grundfunktionen werden unterschiedliche Konzepte verwendet. Prinzipiell wird 

hierbei der Wirkmechanismus des Reibkraftschlusses genutzt. Eines der am weitesten 

verbreiteten Grundkonzepte ist dabei die sogenannte trockene Kupplung. Bei diesem 

Konzept werden die funktionserfüllenden Wirkflächenpaare jeweils aus einem 

Wirkkontakt zwischen Friktionsmaterial und einer geeigneten metallischen Oberfläche 

gebildet. Die einfachste Bauform ist dabei die Einscheiben-Trockenkupplung, bei der 

zwei Friktionselemente auf einer Kupplungsscheibe angeordnet sind. Diese werden 

zwischen der Wirkfläche des Schwungrades und der Wirkfläche der Anpressplatte im 

Kupplungssystem verspannt. Zur Verspannung wird im Allgemeinen eine Tellerfeder 

eingesetzt. Die Herausforderung beim Design von Kupplungssystemen ist nun zum 

einen, eine geeignete Modulation zu erreichen, so dass, insbesondere bei manuell 

betätigten Kupplungen der Fahrer den Anfahrvorgang komfortabel umsetzen kann. 

Gleichzeitig entsteht natürlich bei jedem Kupplungsvorgang, also der Angleichung der 

Wirkflächengeschwindigkeiten Schwungrad/ Kupplungsdruckplatte – 

Kupplungsscheibe, eine erhebliche Wärme im Kupplungssystem selbst, da die 

Differenzdrehzahl zwischen beiden Systemen nur über Reibung mit 

Relativgeschwindigkeit – also Gleitreibung - überwunden werden kann. Die so im 

Kupplungssystem entstehende Wärme ist ein entscheidender Designparameter, der 

die Leistungsfähigkeit von Kupplungen wesentlich bestimmt. Ziel muss es dabei sein, 

die Erwärmung des Kupplungssystems unter allen Randbedingungen so zu 

beherrschen, dass das Reibungs- und Verschleißverhalten des Wirkflächenpaares 

zwischen Friktionsmaterial und den Gegenwirkflächen den Ansprüchen genügt und 

eine ausreichende Gebrauchsdauer im Normalfahrbetrieb erreicht wird. Erschwerend 

kommt hinzu, dass durch die zunehmende Leistungsdichte die Bauräume für die 

Komponenten eng begrenzt sind. Der Wärmetransport von den Wirkflächenpaaren in 

die Umgebung ist damit eine Herausforderung. Nur durch ein gezieltes Design dieser 



 

 

Wärmetransportprozesse können Hochleistungskupplungen sicher dimensioniert 

werden. Die Beschreibung des Wärmehaushaltes ist dabei bereits seit vielen Jahren 

Gegenstand verschiedener wissenschaftlicher Arbeiten. Die nun vorliegenden neuen 

numerischen Methoden und auch die Leistungsfähigkeit moderner Rechneranlagen 

erlaubt es, hier weiter vorzudringen und eine verbesserte Modellbildung zu realisieren. 

An dieser Stelle setzt die Arbeit von Herrn Dr.-Ing. Jochen Hauschild an. Er hat sich 

zum Ziel gesetzt, durch die Nutzung der CFD Simulation der Umströmung des 

Kupplungssystems und einer experimentell validierten Bedatung mit den notwendigen 

thermodynamischen Kenngrößen eine neue Möglichkeit zur Simulation des 

Wärmehaushaltes in Kupplungssystemen zu realisieren. Die Arbeit leistet so einen 

wesentlichen Beitrag für die Konstruktion moderner Antriebssysteme im Fahrzeugbau. 

 

 

 

November, 2015      Albert Albers 

 

 



 

 

Preface to Volume 91 

In the field of vehicle drivetrain technology different concepts for the adaption of the 

characteristics of the combustion engine and the load characteristics of the vehicle are 

chosen. Commonly transmissions with different gear steps, or seamless 

transmissions, are placed between engine and the driving wheels to adapt the 

characteristics of force and work machine. A switching of the torque flow is normally 

necessary to realize are gear change. In the simplest case, with manual drive trains, 

the engine is disconnected from the transmission for a gear change. For this clutch 

systems are necessary. These clutch systems have the additional task of 

compensating the rotational speed gap between the engine and the initially not rotating 

driving wheels. For the fulfillment of these basic functions different concepts are used. 

In principle the mechanism of action used here is based on frictional traction. The most 

common basic concept is the so called dry clutch. In this concept the function fulfilling 

Working Surface Pairs are formed respectively of one working contact between the 

friction material and a suitable metallic counter surface. The simplest design is the 

single disc dry clutch, where two friction elements are located on one clutch disc. These 

elements are tensioned inside the clutch system between the working surface of the 

flywheel and the working surface of the pressure plate. For the tensioning a diaphragm 

spring is utilized in general. The challenge with the design of a clutch system is now 

the achievement of a suitable modulation, so that the driver can, in particular with 

manually operated clutch systems, realize a comfortable vehicle launch. 

Simultaneously with every coupling operation, in other words the adaption of rotational 

speeds of the working surfaces of the flywheel/ pressure plate – clutch disc, a 

significant heat amount is generated inside the clutch system itself, as the differential 

speed between both systems can only be overcome by friction with relative movement 

– sliding friction. The hereby generated heat inside the clutch system is therefore a 

crucial design parameter which essentially determines the performance of clutch 

systems. The aim must be to control the heating inside the clutch system under every 

boundary condition, so that the frictional and wear behavior of the Working Surface 

Pairs of friction material and the counter faces masters the requirements and supplies 

a sufficient life time in normal driving operation. This is aggravated by the fact, that by 

the increase of the power density the packaging space for these components is very 

limited. Heat transport from the Working Surface Pairs to the ambient is therefore a 

challenge. Only with specific design of these heat transport processes high 

performance clutch systems can be safely designed. The description of the heat 

transfer processes has been object of different scientific studies over many years. The 

now available numerical methods and the performance of modern computer systems 

permits a further advance and an improved model building. The work of Dr.-Ing. Jochen 



 

 

Hauschild takes this as staring point. With the usage of CFD simulations of the flow 

around the clutch system and experimentally validated data of the necessary 

thermodynamic parameters he targets to realize a new possibility to simulate the heat 

balance of clutch systems. The work provides an essential contribution to the 

construction of modern powertrain systems in vehicle manufacturing. 

 

 

 

November, 2015      Albert Albers 



 

 

Kurzfassung 

Mit steigenden Anforderungen an Qualität und Haltbarkeit wird es in der 

Antriebsstrangentwicklung fortlaufend wichtiger in frühen Phasen detaillierte 

Informationen in Bezug auf Systemverhalten zu Verfügung zu stellen. Diese Daten 

können entweder durch Tests oder durch Simulation erhalten werden, wobei die 

Simulation wegen der Vorteile in Zeit und Ressourcen bevorzugt wird. 

 

Die Dimensionierung einer Kupplung für manuelle Schaltgetriebe wird hauptsächlich 

auf zwei Ebenen durchgeführt: Thermische Kapazität und Verschleißverhalten. Beide 

Zustände sind stark von den Temperaturen, die im Friktionskontakt erzeugt werden, 

abhängig. Die thermische Kapazität einer Kupplung ist durch die thermische Masse, 

welche direkt im Kontakt mit dem Friktionskontakt ist, gegeben. Das Langzeit 

Verschleißverhalten ist durch den Wärmetransport an die Umgebung und durch das 

Lastprofil charakterisiert. 

Das richtige Verständnis für die Einstufung der Wärmeübertragungsmechanismen und 

der Randbedingungen ist eine Schlüsselstelle in der effizienten Ermittlung der 

Kupplungsgröße. In diesem Forschungsfeld bietet die zusammengesetzte 

Wärmeübergangssimulation mittels einer CFD Software ein großes Potential die 

Wärmeübergangscharakteristik im Hinblick auf die Entwicklung vereinfachter 

thermischer Modelle von Kupplungssystemen zu bestimmen. 

 

Diese Arbeit widmet sich der Charakterisierung des Wärmeübergangs von trocken 

laufenden Kupplungssystemen für manuelle Schaltgetriebe, dem Prozess der 

Ergebnisvereinfachung und der Validierung der Ergebnisse, die von einer CFD 

Simulation generiert wurden. 

 



 

 

 

 



 

 

Abstract 

With rising demand in quality and durability it is more and more important to provide 

detailed information on system performance in the early stages of powertrain 

development. This information can either be provided by tests or simulative methods. 

The latter approach is preferred for efficient use of time and resources. 

 

The dimensioning of a clutch system for manual transmissions is mainly performed in 

two stages: thermal capacity and wear performance. Both conditions are strongly 

dependent on the temperatures induced at the frictional interface. The capacity of a 

clutch is primarily influenced by the thermal masses which are directly introduced to 

the frictional heating. Long term wear performance depends on the heat transfer 

properties and also on the load profile. 

 

Correct understanding and characterization of heat transfer mechanisms and 

boundary conditions is a key point to the efficient determination of clutch size. In this 

field the conjugate heat transfer analysis in a Computational Fluid Dynamics (CFD) 

software analysis offers a great potential to determine heat transfer characteristics in 

order to develop simplified approaches for the simulation of clutch systems. 

 

This paper deals with the heat transfer characterization of dry clutch systems for 

manual transmissions, the simplification process and the verification of results 

generated from CFD clutch models. 
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Introduction 

 

1 

1 Introduction 

Before a vehicle program can be brought to market it has to pass numerous verification 

tests. One of the tests is the general durability cycle, which simulates the load condition 

on a vehicle over its lifetime. This cycle is built up by different sections to cover acquired 

customer usage data and the manufacturer’s technical standards. Each section can 

apply to various boundary conditions (e.g. road surface or environmental conditions), 

specific vehicle components (e.g. body, powertrain or auxiliary systems) or driving 

maneuvers (e.g. hill start, high speed, handling). The design of the tests is done in 

regard of the technical standards of the manufacturer, customer data, locally available 

track properties and best usage of the test track. Figure 1 shows an aerial view of the 

different vehicle proving grounds of Ford Motor Company. Each of these proving 

grounds is used to evaluate a vehicle for one specific market. It can easily be derived 

that due to test track complexity in Figure 1 the individual test procedures vary. 

 

Figure 1: Aerial View on Selected Ford Motor Company Proving Grounds 

Aim of the individual durability cycle is either to prove that the vehicle components work 

together as a system and can meet the market based assigned lifetime targets or to 

reveal possible sources of reduced lifetime. The obtained data can be used to provide 

valuable feedback to the vehicle development process and can be seen as reasonable 

input to the verification phase. 

The efficiency of an overall development process can be measured by the strictness 

of the designated targets, the customer feedback and how much resources are needed 
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to fulfill the designated targets. Since expenses in the product verification phase of a 

vehicle program increase with the duration, the running distance in the durability cycle 

is reduced. The cycle events are arranged in a certain order, so that the reduced 

running distance best simulates the designated vehicle life. 

Independent from the section of the test cycle, the powertrain of the vehicle is involved 

almost every time. Therefore the heavily loaded powertrain components require more 

detailed examination. In a vehicle equipped with a dry clutch system the temperature 

of the frictional interfaces is a major design criteria. The event order, load per event 

and how the clutch is operated have a great influence on resulting temperatures and 

thus on wear mechanisms. 

There are many influences on the wear and temperature behavior of dry clutch 

systems, especially for vehicles equipped with manual transmissions. It is therefore 

extremely important to obtain detailed information on the performance of a clutch 

system in an early stage of the development process. A very helpful tool in this area 

can be a design selection tool, calculating the heat transfer and temperature of a clutch 

system based on simplified assumptions for the clutch parts, geometry and heat 

transfer.  
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2 State of Research 

2.1 Structure of Common Vehicle Powertrains 

Due to increasing technical complexity and performance, modern vehicle powertrains 

face rising demand in efficiency, packaging and overall functionality. The basic 

powertrain components of a modern mid-size vehicle are shown in Figure 2. Main task 

of the powertrain is to supply, transform and transfer the demanded energy used for 

propulsion of the vehicle to the wheels.2 

 

Figure 2: Basic Powertrain Components of a Mid-Size Vehicle3 

For the energy supply there exist several concepts. The largest market share is 

represented by conventional thermal combustion engines. All of these systems are 

operated in a circular process in which a fuel air mixture is compressed, ignited (with 

or without additional energy input) and expanded rapidly. Most common fuel types in 

Europe are petrol, gasoline, natural or liquefied petroleum gas. In South America also 

ethanol is largely used as energy source. Due to tightening environmental regulations 

an uprising concept is to use electrical energy for propulsion. Electrical vehicle 

concepts have the advantage of a high effectiveness because the energy carrier can 

be directly transformed into propulsion energy at the wheel compared with combustion 

engines where the energy has to be transformed with the help of a gearbox. A large 

                                            
2 Kirchner 2007, P.1ff. 
3 Kirchner 2007, P.7 
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disadvantage is the range compared to a combustion system due to the battery 

capacity. Still, these systems can be used efficiently in urban regions. To overcome 

the range restrictions of electrical vehicles and to reduce to CO2 emissions of 

combustion engines hybrid concepts are becoming more and more important. In serial 

hybrid powertrains the combustion engine is operated in a fuel efficient manner 

powering a generator which supplies the electrical energy used for propulsion of the 

vehicle. In parallel concepts both, the combustion and the electrical engine, can be 

used for energy supply towards the wheels. With parallel and serial concepts it is 

possible to regain energy, normally dissipated during braking, by recuperation.4 

 

Figure 3: Examples of Vehicle Transmissions: Manual (left), Torque Converter Automatic 
(top right), Continuous Variable Transmission (bottom right)5 

Since most combustion engines supply different torque levels at different engine 

speeds the transmission has the main objective to transform the propulsive power 

supplied by the engine to efficiently cover the current power demanded by road, driving 

and loading conditions.  

The main types of transmissions are:6 

                                            
4 Stan 2005, P1ff., Wallentowitz & Reif 2006, P5ff. 
5 Kirchner 2007, P.36 / P.53 / P.58 
6 Lechner & Naunheimer 2007, P.11ff. 
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 Manual Transmission (MT)  Automated Manual Transmission (AMT) 

 Automatic Transmission (AT)  Double Clutch Transmission (DCT) 

 Continuously Variable Transmission (CVT) 

In Europe the largest market share have manual transmissions, with automatic 

transmissions on a rise. Automatic transmissions have in North America the highest 

market share. In regards of fuel efficiency automatic transmissions have the 

disadvantage that additional energy is needed for the control of the transmission and 

additional losses are possible based on the selection of the coupling technology of 

engine and transmission. All transmission types are available for front, rear and all-

wheel drive configurations.7 

The coupling and decoupling of engine and transmission is performed by the clutch 

system, which can be segmented into the following: 

 Dry Clutch  Wet Clutch 

 Double Dry Clutch  Double Wet Clutch 

 Torque Converter  

 

Figure 4: Basic Components of a Manual Transmission Clutch System8 

Apart from the coupling and decoupling the clutch system in modern vehicles has also 

the target of vibration damping, supply a flexible coupling between the crankshaft and 

the transmission input shaft and to compensate misalignments. 9 

                                            
7 Wallentowitz & Reif 2006, P.29ff. 
8 http://www.zf.com/brands/content/de/sachs/products_sx/pc_sx/products_pc.html 
9 http://www.zf.com/brands/content/de/sachs/products_sx/pc_sx/products_pc.html 

http://www.zf.com/brands/content/de/sachs/products_sx/pc_sx/products_pc.html
http://www.zf.com/brands/content/de/sachs/products_sx/pc_sx/products_pc.html
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The basic components of a clutch system for manual transmissions are shown in 

Figure 4. The flywheel which is connected directly to the crankshaft of the engine 

system can be executed as solid single or dual mass flywheel. The clutch disk is 

located between the pressure plate assembly and the flywheel. It is directly connected 

to the transmission input shaft and is the carrier of the lining material. The pressure 

plate assembly’s main components are the pressure plate, diaphragm spring, clutch 

cover and the lift springs. For a self-adjusting system (SAC) the main components are 

shown in Figure 5. 

 

Figure 5: Structure of a Pressure Plate Assembly of a SAC System10 

Main task of the pressure plate assembly is to supply sufficient clamping force for the 

frictional torque transfer between the engine and the transmission. The clutch cover is 

usually mounted to the flywheel with screws. By applying a force to the inner area of 

the diaphragm spring the clamping force of the pressure plate and therefore the torque 

                                            
10 LUK Brochure 2015 
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capacity reduces. Clutch actuation can be executed mechanically, hydraulically or 

electrically. Most common systems for actuation are concentric slave cylinders (CSC) 

or leverages.11 

In Figure 6 the packaging of a clutch system in a Fiesta ST MK06 is shown. The clutch 

system is surrounded by the bell housing which is a part of the transmission casing.  

 

Figure 6: Structure of a Clutch System of a Fiesta ST MK06 

The durability of a clutch system is highly dependent on wear of the frictionally loaded 

lining surface of the clutch disk. Wear rates of a clutch lining are mainly influenced by 

the surface temperature of the lining, slip time, transferred torque and speed difference 

between engine and transmission input shaft. Transferred torque, speed difference 

and slip time are highly affected by vehicle loading and the driving situation. The main 

influence on the temperature of a clutch is the frequency of engagements and energy 

                                            
11 LUK Brochure 2015 

Flywheel 
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input into the system. A low power input and a high frequency can for example lead to 

equivalent temperatures as obtained by a low frequency and high power input. 

Important for lining wear is the temperature at which the slip energy is transferred into 

the system. Figure 7 shows an example for a wear rate diagram from a typical dry 

clutch lining.  

 

Figure 7: Wear rate of an organic lining12 

The wear rate of clutch linings is measured in volume per energy and is obtained by 

running defined rig tests. In the example shown in Figure 7 it can be derived that an 

increase of 100 °K to 250°C results in duplication of the wear rate. The temperature 

dependence results from the fact, that linings are commonly compositions of different 

materials. The main components are fibrous reinforcements (strength contributors), 

matrix resin binders, lubricators, friction modifiers, heat sinks or dissipators and mating 

member conditioners. Each ingredient has different objectives to fulfill and influences 

the overall behavior of a lining. Wear behavior is primarily influenced by the 

temperature dependent properties of the matrix resin and the bonding between matrix 

and fibrous reinforcements.13 In case a temperature level above a lining specific limit 

is reached during an engagement, the matrix resin loses its strength and fading will 

occur. Fading describes a temperature dependent drop of the friction coefficient µ and 

therefore a reduced torque capacity of the system. This phenomenon can be 

accompanied with burning of the frictional surface (structural damage of several 

                                            
12 Schaeffler Friction Products GmbH Moorbach, Clutch facing material B-8080 S, Data Sheet 
13 Albers et al 2009 a 
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surface layers) and decomposition of the friction surface which will result in smoke and 

smell development.14 

Apart from conventional organic lining materials, new designs with innovative high 

performance materials are currently under development. The use of ceramic as friction 

material can bring advantages of wear behavior and high friction values.15  

 

Figure 8: Clutch Disk with Ceramic Lining16 

A disadvantage of clutch systems with ceramic lining elements is that the overall 

comfort of the entire clutch system is reduced. As shown in 17 these disadvantages can 

be reduced with automated clutch actuation systems with adaptable engagement 

characteristics. 

2.2 Heat Transfer Mechanisms  
The highest influence on the temperature levels reached during an engagement is the 

thermal mass located next to the heat source.18 

Organic materials have a very low thermal conductivity compared to cast iron 

materials. This means that nearly all of the heat generated in the frictional interface is 

transmitted to the casting materials. During an engagement the temperature level 

reached is dependent on the power input into the system and the starting temperature. 

                                            
14 Albers et al 2006 a, P.351 
15 Albers et al 2015 a, Albers et al 2010 a  
16 Albers et al 2015 a, Albers et al 2011 a 
17 Albers et al 2010 b 
18 Beitler 2008, P.123ff. 
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Therefore knowledge of the temperature levels a clutch system is exposed to is 

dependent on the heat dissipation characteristics of the overall system. 

2.2.1 Radiation 

Heat transfer by radiation is mainly evoked by energy transport by electromagnetic 

waves. This form of heat transfer has no need of a direct material connection to transfer 

heat from one part to another. The fluid between the two parts considered can also be 

involved in the heat transfer, or have a negligible influence (air in most cases).19 

To display the highest influencing factors on radiation, the simplified cases found in 20 

will be taken as examples. For the amount of heat transfer by radiation between two 

grey and parallel bodies equation 2.1 can be evaluated.  

  4
2

4
112 TTACQ   (2.1) 

The surface A in equation 2.1 is the resulting visible area between the two bodies if a 

vertical observer is placed on one of the bodies. The constant C12 in equation 2.1 is 

referred to as net radiation factor, which is determined by geometry and the emission 

rates. For the simple case of two parallel surfaces equation 2.2 determines the 

constant C12. Equation 2.3 evaluates the constant C12 for the heat transfer between an 

outer pipe and a shaft located in the center of rotation. 
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For surfaces that are not parallel, the projected surface has to be evaluated to obtain 

the heat transfer by radiation. 21 

A high energy transport by radiation is therefore only possible with high emission rates, 

a large temperature difference and a high visible area between the components 

involved. 

With regards to clutch systems 22 proposed a procedure how to measure the needed 

heat transfer coefficients by radiation explicitly.  

                                            
19 Marek & Nitsche 2007, P.238ff. 
20 VDI Wärmeatlas 2006, Ka1-Ka11 
21 VDI Wärmeatlas 2006, Ka1-Ka11 
22 Beitler 2008, P.136ff. 
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2.2.2 Conduction 

Heat conduction is mainly dependent on the heat conduction parameters of the 

materials involved. The amount of heat transferred from one side of a random body to 

another is mainly dependent on the temperature gradient in that direction. For a 

simplified case of a one dimensional and stationary heat transfer inside a wall, the 

conductional heat transfer can be characterized by equation 2.4. 

 

dx

dT
AȜQ   (2.4) 

As can be derived from equation 2.4, the heat conducted through a body can be 

maximized by high thermal conductivities, high connection areas, or high temperature 

gradients. 23 

In the case of instationary heat transfer, the thermal mass of the material involved 

becomes relevant and the gradients inside a component can change over time. For 

this case several simplified solution strategies exist. The most interesting in case of 

thermal networks with conjugate heat transfer is the lumped capacitance method. The 

method is based on the assumption, that a body can be treated as one thermal mass, 

if the resistance for heat transfer out of the body is much higher than the resistance for 

heat transfer inside the body. This means that the resistance for heat transfer out of 

the body becomes the main influencing factor. This method, as shown by Beitler 24, 

can be applied to clutch systems and effectively reduces the simulation effort to 

estimate the temperature inside a clutch system. The basic model structure is shown 

in Figure 9. 

                                            
23 Marek & Nitsche 2007, P.20 
24 Beitler 2008, P.194ff. 
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Figure 9: Model Structure of Beitler 25 

Assuming the validity of the application of the lumped capacitance method to clutch 

systems, one remaining question for conductional heat transfer between two parts is 

which effective area and conduction length to consider. A hint on how to treat this can 

be found in the definition of the finite volume method used in many computational fluid 

dynamics software programs. 

                                            
25 Beitler 2008, P.195 
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The finite volume method is based on the assumption, that the integrals of the integral 

form of the energy conservation equations of a control volume can be approximated 

by the fluxes through its boundary surfaces.  

Between two cells, the conductional heat transfer is determined by the connection 

surface and the distance between the center of masses and the center of the 

connection surface. Now assuming that a component inside a clutch system, which 

can be represented as one thermal mass, represents one cell in the finite volume 

method, the effective conduction surface between the two parts is equal to the touching 

surface.  

The conduction length can be determined analytically according to Figure 10, which is 

based on the assumptions proposed in 26. 

 

Figure 10: Simplified Model for Determining the Heat Conduction Resistances 

The connection length is defined as distance between the center of mass of the two 

components. The distance is to be chosen as the shortest connection between the 

surfaces of the so called cooling elements. 

As the example for the connection between the pressure plate and diaphragm spring 

in Figure 10 shows, symmetry conditions can also be used to determine the resulting 

connection length. Neglecting the connection points to the lift springs and the fingers 

of the diaphragm spring, the connection between the pressure plate and the diaphragm 

spring can be assumed as two ring elements connected via 15 supports.  
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Dividing the two plates into 15 sections with a support located in the middle, the total 

heat transfer between the two parts can then be interpreted as parallel circuit of 15 

serial resistances. The overall resistance can then be evaluated by equation 2.5. It can 

be derived easily from equation 2.5 that if the connection length of the 15 connections 

is equal, it is sufficient to evaluate the connection length for one element as displayed 

in Figure 10. The connection area is equal to the overall touching area in this case. 

This approach is based on the electrical analogy approach displayed in 27. 

                                            
26 Oedekoven 1989 
27 Marek & Nitsche 2007, P.25ff. 
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2.2.3 Convection 

Convectional heat transfer describes the heat transfer between a solid component and 

a fluid. Dependent on the source of the fluid flow, one can divide the convectional heat 

transfer into free convection and forced convection.28 

In free convection flow results from temperature induced density distributions in the 

fluid surrounding the heated component. The differences in fluid density lead to a 

buoyancy flow. The relative speed between the solid structure and the fluid is rather 

small. At the surface of the solid component air is heated up. With a rising temperature 

the density of the fluid is decreased causing an exchange with fluid regions with a lower 

temperature. For a clutch system, free convection has only a large influence in the field 

of cooling down simulations if the engine is turned off.29 

The more relevant area of convectional heat transfer related to clutch systems is the 

forced convection. The amount of heat exchange is in this case mainly dependent on 

flow field and the temperature difference to the fluid. Also the flow structure is of high 

importance. The heat transferred from a surface can be higher if the flow structure is 

turbulent.30 

To display the influencing factors, the flow system around and the closely coupled heat 

transfer from a flat plate will be taken as example. Before doing this, it is necessary to 

firstly present the mathematical and physical basics on how fluid flow systems can be 

described in general. 

2.2.3.1  Mathematical Models for the Description of Fluid Flow Systems 

Fluid flow systems can in general be described by three main conservation laws: the 

mass conservation- the impulse conservation- and the energy conservation law.  

The continuity equations, based on the mass conservation law, are derived from the 

assumption, that inside a control volume no mass is lost. The time dependent change 

in the mass inside a control volume is equal to the sum of all mass flow into and out of 

a control volume. For a compressible fluid this leads to equation (2.6). 31 
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The impulse conservation or Navier-Stokes equations for a laminar fluid flow system 

(eq. 2.7 to 2.9) consider a control volume based impulse balance. A time dependent 

                                            
28 Marek & Nitsche 2007, P.185ff. 
29 VDI Wärmeatlas 2006, Fa1-Fa6 
30 VDI Wärmeatlas 2006, Ga1-Ga9 
31 Oertel et al 2006, P.204ff.; Zierep & Bühler 1991, P.9ff. 



State of Research 

 

15 

change rate of the impulse of a volume element is equal to an addition of the difference 

between the impulse streams into and out of the volume element, the sum of shear 

forces and normal forces on the volume element and the sum of forces acting on the 

mass of the volume element (e.g. acceleration forces). 
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The energy conservation equation is the last equation needed to close the system of 

equations. A time dependent change of the inner energy and kinetic energy is here 

equal to the sum of energy streams into and out of the volume element by convection 

and conduction, the energy input rate caused by pressure, normal or shear forces, 

external energy input and the energy input caused by volume forces (equation 2.10). 
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 (2.11) 

In equation 2.10 Φ is the dissipation term (eq. 2.11), which represents frictional energy 

beeing transferred into heat energy. This process is irreversible. 

The displayed equations are only valid for laminar fluid flow. When turbulent effects 

become more influenting, additional equations and mathematical methods become 

neccessary to discribe fluid flow. In turbulent flows the generation and decay of vortices 

provides an additional fluctuation of the flow quantities.  

To describe turbulent flow a common and well established approach is to use mass or 

time averaged quantities and additional fluctiation quantities to describe the flow 

quantities. This approach is usually refered to as Reynolds averaging process.32 
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Equations 2.12 show how some flow quantities are described. For the first coordinate 

in the Navier-Stokes equations the resulting equation with additional terms due to 

turbulence based fluctuations which have to be considered is displayed in equation 

2.13. 
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32 Oertel et al 2006, P.216ff. 
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To close the system of equations it is necessary to introduce modeling approaches to 

describe the fluctuation quantities. 

2.2.3.2  Modeling Procedures for Turbulent Quantities 

For the modeling of the turbulent quantities different models exist:33 

 Direct Numerical Simulation (DNS) 

 Reynolds Averaged Navier Stokes (RANS) 

 Large Eddy Simulation (LES) 

 Hybrid Methods 

The direct numerical simulation is the most accurate simulation method of turbulent 

flow behavior. In this method all Navier-Stokes equations are solved without any 

averaging or approximation process involved. The method is in need of a very detailed 

discretisized mesh, which increases the computational effort, making this method not 

efficiently applicable to complex engineering problems. A simplified method of the 

direct numerical simulation is the large eddy simulation. In this method large eddies 

are treated more accurate than small eddies, which reduces the complexity, but also 

the accuracy. Compared to other simulation methods it is still coupled to high 

computational effort. For most engineering problems the direct numerical simulation 

methods are way too complex to obtain the desired quantities (e.g. forces, heat transfer 

coefficients, etc.). Based on the equations of chapter 2.2.3.1, in which the instationary 

effects are modeled as part of the turbulence, different approaches can be considered. 

These Approaches can be summarized under Reynolds averaged Navier-Stokes 

approaches (RANS).34 

Two widely applied examples of the RANS model family are the k-İ and the k-ω model. 

Both models use the turbulent energy as one variable to describe the turbulent 

behavior. In the k-İ model the second quantity used is the turbulent dissipation rate. 

The k-ω model uses the energy dissipation frequency as model variable. In regards to 

clutch systems the realizable k-İ model has the advantage of being more accurate for 

swirling flows. A detailed comparison of available RANS turbulence modeling 

procedures and models can be found in35. 

2.2.3.3  Fluid Flow and Heat Transfer over a Flat Plate 

The flow field of a fluid flowing around a solid body can be roughly divided into two 

main regions. In the first region near the surface of the body the fluid velocity tends 

towards the bodies velocity with decreasing normal distance to the surface due to 

frictional forces. This region, where frictional forces have a notable effect, is referred 

                                            
33 Ferzinger & Peric 2008, P.315ff. 
34 Ferzinger & Peric 2008, P.344ff. 
35 Zhai, Zhang & Chen 2007 



State of Research 

 

18 

to in literature as boundary layer. Figure 11 shows the velocity and temperature field 

for a fluid flowing over a flat plate. 

 

Figure 11: Temperature and Velocity Field of a Fluid Flowing over a Flat Plate36 

From the onset of the plate, the boundary layer thickness į(x) increases. As displayed, 

the velocity rises with increasing distance from the plate surface. The boundary layer 

thickness is usually defined as distance from the surface, where the fluid velocity has 

reached 99% of the free stream velocity. With increasing distance from the plates onset 

or with a rising free stream velocity it becomes necessary to further divide the boundary 

layer due to additional turbulent effects.37 

 

Figure 12: Flow Structure of a Boundary Layer over a Flat Plate38 

                                            
36 Kopitz & Polifke 2009, P.210 
37 http://me-lrt.de/warme-stoff-transport-grenzschichten-temperatur-geschwindigkeit 
38 http://me-lrt.de/warme-stoff-transport-grenzschichten-temperatur-geschwindigkeit 

http://me-lrt.de/warme-stoff-transport-grenzschichten-temperatur-geschwindigkeit
http://me-lrt.de/warme-stoff-transport-grenzschichten-temperatur-geschwindigkeit
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Over the length of the plate the boundary layer can be divided into three individual, but 

dependent zones (Figure 12). In the laminar zone, the fluid flow is considered to have 

one main flow direction and the flow system has an organized character. In the 

turbulent zone the flow structure in surface normal direction can again be divided into 

three main layers. Near the surface the fluid flow has almost laminar character. This 

region is defined as laminar sublayer. In this region, as in the earlier defined laminar 

zone of the boundary layer, forces are mainly transferred by viscosity based shear. In 

the turbulent layer, fluid forces are mainly transferred by turbulent mixing. The 

transition region from the laminar sublayer to the turbulent outer layer is referred to in 

literature as buffer or transition layer. In this zone both diffusion and turbulent mixing 

are of same order of magnitude.39 

To describe the velocity inside the boundary layer, a well-established approach is to 

use wall laws. The approach is based on the following main assumptions40: 

1. The flow field inside the boundary layer is mainly one dimensional 

2. The pressure gradient in flow direction is small 

3. Inside the viscous sublayer viscosity based shear forces are larger than 

turbulence based shear forces 

4. In the turbulent layer viscous forces have negligible effect 

With these assumptions eq. 2.14 (valid in the viscous sublayer) and eq. 2.15 (valid in 

the turbulent layer) can be derived from the boundary layer equations.41 
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These wall laws have universal character and are offered and used in mostly all CFD-

codes.  

                                            
39 Oertel et al 2006, P.254ff. 
40 Schlichting & Gertsen 2005, P.27ff. 
41 Schlichting & Gertsen 2005, P.145ff. 
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The heat transfer from a flat plate is closely coupled to the flow field. For most flow 

systems this coupling can be described by the Prandtl-Number.  

 

  







T

ucρ
TT

q
h Ĳp

locfl,w

w
loc


 (2.17) 

   uPrT  (2.18) 

  PuPrT t    (2.19) 

   airfor0.85Prand0.7PrwithPrPr,fP tt   (2.20) 

As can be seen from equations 2.17 to 2.20 the temperature field and therefore the 

overall heat transfer by convection is closely coupled to the flow field around the body 

of interest.42 

A high convectional heat transfer can therefore be obtained by a high density or 

thermal capacity of the fluid, high frictional forces at the surface and a high temperature 

gradient between the fluid and the solid body. 

2.2.3.4  Heat Transfer Coefficient Definitions 

For the description of the heat transfer coefficients inside the clutch system, three main 

possibilities exist: 43 

1. Local heat transfer coefficient together with the local wall temperature and the 

temperature in the cell next to the wall (eq. 2.21) 

2. Local heat transfer coefficient together with a fluid reference temperature at a 

specified y+ value (eq. 2.22), generally known as the “specified wall y+ heat 

transfer coefficient” 

3. Heat transfer coefficient based on a global reference temperature (eq. 2.23) 

For both the first and second option it is necessary to evaluate the temperature 

distribution around the body of interest and the local heat transfer coefficient. This 

approach would increase the complexity of a simplified thermal clutch model, because 

it would be additionally necessary to model the wall temperature and the temperature 

field of the air inside the bell housing.  

The third option offered by the simulation software is to use a heat transfer coefficient 

based on a global reference temperature (equation 2.23). The reference temperature 

is mainly chosen in dependence of the flow system. For pipe flows for instance the inlet 

                                            
42 Schlichting & Gertsen 2005, P.235ff. 
43 Star-CCM+ User Manual 2010 
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or outlet temperature of the flow can be chosen. For the closely related research field 

of mixing vessel flow systems the average temperature of air mainly is chosen as 

reference temperature. 
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Another possibility to describe the convective heat transfer is the adiabatic heat 

transfer coefficient.44 This method applies when the temperature field is facing large 

variations (e.g. cooling of circuit board components). The adiabatic heat transfer 

coefficient is then defined by eq. 2.24.  
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Apart from the other definitions presented earlier, this heat transfer coefficient uses the 

adiabatic wall temperature as reference temperature, which can be obtained with the 

help of CFD simulation and setting the boundary heat flux to zero. The resulting heat 

transfer coefficient is only dependent on geometrical and fluid flow boundary 

conditions. For clutch systems the temperature field is in general relatively stable, with 

regards to the heating source, making the additional simulation effort to obtain the 

adiabatic wall temperature and evaluating the heat transfer coefficient a not very 

effective approach. 

2.2.3.5  Similarity Analysis 

Since the flow field inside the bell housing is mainly caused by frictional and 

displacement effects, the analogy theorems can be a useful baseline for considerations 

on the transferability of heat transfer laws from one clutch system to another.  

Reynolds was the first to discover the close relation between the impulse and energy 

equations. The heat flux at a wall is proportional to the temperature profile which in 

itself is proportional to the fluid velocity gradient. This coupling is generally described 

by equation 2.25 for flow systems with a Prandtl-Number close to or equal to one.45 

                                            
44 Moffat 2010; Li, Zhou & Aung 2009; Rhee 2006 
45 Pischinger et al 2009, P.17 
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For other values of the Prandtl-Number (Prandtl-Number for air: 0.71) equation 2.26 

can be used. It is the modified analogy of Chilton-Colburn46. In both equations the 

remaining task is to identify the dependence of surface friction coefficients on the 

rotation rate. In rotating systems, for example, the Reynolds number can be described 

by equation 2.27 and the Nusselt number can be described by equation 2.28 of chapter 

2.2.3.6. 

2.2.3.6  Rotating Disk in Free Air 

In Figure 13 the flow field in the simplest case of a rotating disk system is shown. Fluid 

is being pumped towards the center of the disk and then is accelerated in 

circumferential direction. Due to centrifugal forces, the fluid moves towards the outer 

radius of the disk. As displayed in Figure 13 force transmission by shear stress also 

causes movement in a small distance above the surface of the disk. It can be observed, 

that the overall flow structure is three dimensional. Theodor v. Karman was the first to 

investigate and present a solution to this boundary layer problem with regards to the 

flow system.47 

                                            
46 Kopitz & Polifke 2009, P.275ff. 
47 Schlichting & Gertsen 2005, P.120ff. 
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Figure 13: Flow Field around a Rotating Disk48 

A detailed and extensive review on Heat transfer from rotating disk systems was 

performed by Shevchuck.49 He summarized the work of different authors and found 

that for laminar flow of an isothermally heated disk rotating in free air, heat transfer can 

most generally be described by equation (2.28) with a good match to experimental 

data. The Nusselt number displayed in equation (2.28) represents the relation between 

convectional and conductional heat transfer normal to a boundary layer with the 

Reynolds number for rotating systems defined by equation (2.29). 
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For the laminar and isothermal case, the heat transferred is therefore dependent on 

the viscosity, engine speed and the disks dimensions. 

In case of a turbulent flow condition the constant K1 changes and the exponent nR 

approaches 0.8. Since on a rotating disk both laminar and turbulent regions can be 

found, Shevchuck introduced an approach using a new relation for the velocity and 

temperature profiles to solve the flow and energy equations inside the boundary layer 

and obtain a solution valid for the entire disk. 
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The relation for the constant K1 from this novel approach is displayed in equation 2.30. 

From this equation it can be derived, that the heat transfer on a rotating disk in free air 

is not only dependent on the viscosity, rotation rate and size of the disk, but also on 

the temperature distribution on the disk (n*), the vorticity of the flow and the surface 

roughness. It can be easily seen that even in this simplified case it is difficult to obtain 

the correct heat transfer characteristics from an analytical equation.50 

Application examples of modeling procedures and measurements on heat transfer 

from rotating disks can be found in 51. 

2.2.3.7  Enclosed Rotating Disk 

For an enclosed rotating disk, the physical considerations from the disk rotating in free 

air are still active. Since the fluid in this case is not taken from an unlimited reservoir 

as in the free air case, the flow structure and the heat transfer will be slightly different. 

The friction torque necessary to maintain the rotation rate of the rotating disk can be 

less than in the free air case, since part of the kinetic energy transferred to the air inside 

the enclosure can be retained.52 

2.2.3.8  Rotating Disk with Stationary Wall / Co-Rotating Disks 

If simplified, the phenomena of two co-rotating disks and a rotating disk with a 

stationary wall can be discussed together. The only difference between the two cases 

is the relation of the rotation rate. 

                                            
50 Shevchuck 2009, P.33ff. 
51 Kreith et al 1958; Wagner 1948; Lavalle & Rahman 2010; Cardone et al 1996; Adair & Tucker 1997 
52 Zierep & Bühler 1991, P.110ff. 
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Figure 14: Flow Structure of Rotating Disks with: (a): Co-Rotation; (b) Rotor / Stator; (c) 
Counter Rotation 

In Figure 14 the different configurations of the flow structure of two in parallel rotating 

disks is shown 53. While in the case of co-rotation, there exists nearly no exchange with 

the ambient air for air located near the center of rotation, the situation changes if there 

exists a relative rotation rate difference.  

 

Figure 15: Nusselt Numbers for a Stationary and a Rotating Disk54 

                                            
53 Soong et al 2003 
54 Hill & Ball 1999 
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As can be concluded from Figure 14, turbulence and also flow exchange with ambient 

air increases with increasing speed difference between the two disks. 

Figure 15 shows the Nusselt numbers for two disks arranged one above the other in a 

rotor-stator case. It can be seen, that for the rotating disk (labeled top in Figure 15) the 

heat transfer increases progressively towards the outer radius due to a large velocity 

gradient. 

2.2.3.9  Rotating Cavity with Radial Outflow 

Figure 16 shows two examples of the flow field of rotating cavities with radial outflow.  

 

Figure 16: Examples of Streamlines for Rotating Cavities with Radial Outflow55 

Air enters the rotating cavity and is forced towards the outer radius of the cavity by 

centrifugal forces. A unique difference to the earlier presented flow systems is, that in 

both configurations an area, which has no mass exchange with the rest of the flow 

field, forms. This area can be assumed rotating as solid mass. The amount of heat 

transferred from the rotating cavity is dependent on the size of the cavity inlets and 

outlets and also on the distance between the axial restrictions.56 

2.2.3.10 Enclosed Rotating Cylinder 

The flow structure of a cylinder rotating inside a closed housing is quite similar to the 

flow system of an enclosed rotating disk. If the cylinder radius is considered small 

against the cylinder length, the flow system displayed in Figure 17 will develop. 

                                            
55 Shevchuck 2009, P.149 
56 Shevchuck 2009, P.147ff. 
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Figure 17: Flow Structure of an Enclosed Rotating Cylinder57 

In Figure 17 the outer enclosure also rotates with a constant rotation rate. If the rotation 

rate is set to zero, the flow system and therefore the heat transfer will be comparable 

to that of a Couette flow. 

 

Figure 18: Taylor Swirls of an Enclosed Rotating Cylinder58 

With an increasing rotation rate of the cylinder it is possible, that instabilities of the flow 

field, known as Taylor swirls occur (Figure 18). These turbulent swirls lead to an 

increased impulse exchange and an increased frictional torque (equal to an increase 

in the heat transfer coefficient).59 

                                            
57 Zierep & Bühler 1991, P.52 
58 Zierep & Bühler 1991, P.60 
59 Zierep & Bühler 1991, P.51ff. 
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2.2.3.11 Simulation Methods for Rotating Systems 

For the modeling of the rotational movement of a clutch system, three main concepts 

exist. The first concept is to simply apply a velocity boundary condition to the surface 

with a pre-defined reference rotation axis. In this simple approach no additional 

acceleration terms are added to the equations of movement. This proceeding can be 

applied if the modeled rotating geometry has no (or very few negligible) faces spanned 

in the axial and radial direction in a cylindrical coordinate system based on the rotation 

axis. If many surfaces are oriented in the explained way, the modeling approach can 

result in high inaccuracies, because displacement effects are not considered.60 

In the second and most widely applied concept, the modeled system is divided into 

individual regions, in best case connected by conformal interfaces. Each region is then 

assigned to a pre-defined coordinate system and a rotation rate around a selected axis 

can be set. This approach is called “moving reference frame” (εRF)61. The main 

concept of this approach is that the flow inside the rotating region is treated and solved 

under stationary conditions. To obtain the stationary conditions additional acceleration 

terms are added to the impulse equations. These terms represent the coriolis and 

centrifugal forces present when describing the movement of a rotating system from a 

stationary observing point. When the MRF region is surrounded with a stationary 

region, two main concepts for coupling these regions exist. In the first concept the 

regions are coupled directly. This results in the often confusing fact, that the flow 

through the stationary part of the flow system is only valid for the current angular 

position of the clutch system. The second approach to this problem is to provide an 

averaging algorithm in circumferential direction on the coupling surface. This approach 

is often referred to as “mixing plane”62. The solution for the exchange between the 

stationary and rotating region is therefore blurred. Application examples of moving 

reference frame can be found in 63. 

The most accurate reproduction of a flow system for a rotating geometry can be 

obtained by applying the third concept, the sliding mesh method. In this method, the 

mesh is divided into two different meshing regions, a rotating and a stationary region 

with a conformal interface between them. After the solution for one relative position 

between these two meshes is obtained, the rotating region is rotated one step ahead, 

so that each cell on the interface is connected to the next partner. This procedure is 

then repeated until a stopping criteria (rotation angle or simulation time) is reached. Of 

                                            
60 Fluent 2001, Chapter 9 
61 Wesseling 2009, P.47 
62 Wu et al, 2013 
63 Tamm 2002; Schütz 2009; Zadravec 2007; Thuresson 2014; Gullberg et al 2009, Hopf & Gauch 2000 
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all the presented methods, this method requires the highest computational resources 

due to the transient structure of the method.64 

2.2.3.12 CFD Simulations and Flow Analysis on Clutch Systems 

Wittig et al65 studied the influence of positioning different orifices or fans on a clutch 

system to increase the heat transfer. They used a rotating reference frame method 

coupled with stationary boundary conditions on an abstracted geometry to solve the 

flow field. Due to periodical symmetry of the clutch system they only simulated a 

reduced pie section. As thermal boundary condition, the hot parts, e.g. pressure plate, 

were set to 200 °C and all other parts to 100 °C.  

 

Figure 19: Results for the Flow Field of 66 

Figure 19 shows the flow field results from the investigation. At the engine and 

transmission side of the clutch system, air is being accelerated towards the outer 

diameter. At the transmission or engine wall air recirculates back to the inner diameter 

of the clutch system. This is closely related to a disk rotating close to a stationary wall. 

                                            
64 Ferrer 2015; Schwarze 2013; Benkreira 1996 
65 Wittig et al 1998 
66 Wittig et al 1998 
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They concluded that through intelligent positioning of fans or orifices, heat transfer can 

be increased. They also pointed out that CFD-simulations are highly important for 

optimization purposes and precise heat transfer determination of high speed rotating 

components. 

Lee and Cho67 used a CFD-simulation model to predict the heat transfer characteristics 

of a clutch system and implemented the results into a finite element code to predict the 

temperatures of a clutch system during a cyclic event. They also chose to simulate 

only a section of the total geometry to save computational complexity. As thermal 

boundary conditions, they set the pressure plate and flywheel temperature at a 

constant temperature.  

 

Figure 20: CFD-Modeling Geometry of 68 

A difference to the simulations from Wittig et al is that Lee and Cho did not use a 

rotating reference method, but set the rotating velocity property at the surface. As 

explained in chapter 2.2.3.11 this approach does not consider any displacement 

effects from surfaces oriented in the axial-radial direction inside the clutch system. Still 

the comparison with measurement data showed that the simulations were within an 

error of ± 5 °C. 

Pryzbilla et al69 used a simplified conjugate heat transfer CFD-model of a clutch system 

to gain information of the heat transfer characteristics inside the clutch system, to be 

used as boundary conditions for a clutch size determination tool. Their model used the 

rotating reference frame method and a constant heat input rate of 260 W per frictional 

interface. Their result for the pressure plate temperature for an engine speed of 2500 

rpm can be seen in Figure 21. 

                                            
67 Lee & Cho 2006 
68 Lee & Cho 2006 
69 Pryzbilla et al 2011 
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Figure 21: Simulated Temperature Distribution in the Pressure Plate70 

The Authors focus on the temperatures and the heat transfer coefficients, but give no 

information on the flow structure and on the validity of the CFD simulation. They 

conclude that the CFD analysis is a powerful tool in the design selection process and 

can give valuable information on how the heat is transferred inside the bell housing. 

 

Figure 22: Simulation Domain and Results of 71 

In 72 the general influence of housing size was investigated. The main result of this 

work is that until a specific size of the surrounding domain is reached heat transfer and 

flow rates increase. With increasing domain size the system tends to behave like a 

system rotating in free air. 

The influence of an active cooling concept for commercial vehicles is displayed in 73. 

According to the authors, the efficiency of a heavy duty vehicle can be increased by 6 

to 41 %.  

                                            
70 Pryzbilla et al 2011 
71 Levillan et al 2015 
72 Levillan et al 2015 
73 Neumann & Stürmer 2007 
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A summary of possibilities and current state of research on dry clutch cooling concepts 

can be found in 74. 

2.3 Flow Measurement Principles 

A detailed and extensive summary of possible procedures and devices for measuring 

physical flow properties can be found in 75, on which this section is mainly based. To 

classify the different measurement techniques in regards of this study and their 

functional principle they were segmented as displayed in Figure 23. 

 

Figure 23: Segmentation of Available Measurement Techniques 

2.3.1 Visual / Optical Measurement Techniques 

Nearly all visual flow measurement techniques use particles which are added to the 

fluid for flow visualization. Most important properties of the particles (tracers) are that 

they have a good following behavior and have approximately the same density as the 

fluid observed. If the tracer particles are too large or have a high mass, the fluid flow 

will not be captured correctly due to inertia forces. The tracers are made visible by 

adding a light source, which is most commonly a laser. A selection of different 

visualization techniques is presented in Figure 24. 

                                            
74 Beitler 2008, P.44ff. 
75 Nitsche & Brunn 2006 
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Figure 24: Flow Visualization Techniques76 

The obtained visible particles can then be used to obtain a qualitative image of the flow 

field, or to quantify the velocity vector field through particle image velocimetry (PIV). 

The PIV technique uses a high speed CCD-camera to take two consecutive pictures 

of the luminous particles in the flow field. With a tracking algorithm the movement of 

individual groups of particles can then be identified.  

A technique without the need of adding particles is the interferometry technique. It uses 

the refraction properties of the fluid under investigation. Density distributions cause a 

refraction of a light beam subjected to the fluid. The refraction angle can be used to 

correlate the fluid velocity. 

Manometers are also categorized as visual measurement technique. In the simplest 

case the fluid pressure of a fluid of interest is directly subjected to a fluid inside a 

manometer. The different pressures at the two ends of the fluid in a glass tube cause 

the fluid to rise or fall, making it possible to directly correlate the fluid pressure. 

For rotating flow systems with a high packaging, visualization techniques such as 

adding wool strings to the surface or adding color to the fluid cannot be applied due to 

packaging. Another difficulty of visualization techniques with regards to a clutch system 

is the need of visual access to the flow field of interest. The visual measurement 

techniques can therefore be efficiently used for measurements outside of the clutch 

system. Measurements inside the clutch system can only be performed with additional 

significant effort and resources as parts of the following examples show. 

In literature visual measurement principles have been applied to similar problems. 

Kunisaki et al77 for example used particle image velocimetry to measure the flow field 

inside a torque converter. To get visual access to the inside they constructed one cover 

side out of Plexiglas as shown on the left side of Figure 25.  

                                            
76 Nitsche & Brunn 2006, P.155 & P.161; La Vision Homepage www.lavision.de 
77 Kunisaki et al 2001 
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Figure 25: Modified Torque Converter78 

Kuboti et al79 studied in a similar manner the influences of the flow behavior of the 

working fluid on the lock up operation of a torque converter.  

The tightly coupled flow behavior of rotating disk systems has been studied by several 

authors. Wu80 used the particle image velocimetry and laser section to measure and 

visualize the flow field in between two co-rotating disks. He indicated that the flow field 

between the disks is three dimensional, but can be characterized by a two dimensional 

measurement technique. Moisy et al performed measurements on counter rotating 

disks in 81. They conclude that 2D measurements are possible if a certain ratio between 

the disk distance and disks outer radius is adhered. At higher ratios the fluid flow 

becomes more unstable and the three dimensional proportions of the flow increase. 

Albers et al.82 present the potential of PIV measurements to aid the verification of CFD 

simulations on the example of a wet clutch. They highlight that by the use of a PIV 

system the verification process can be enhanced by the measurement of inner 

variables (e.g. velocity vector). Usual verification processes use external variables 

such as drag torque which result from the flow field inside the considered system. They 

show that their CFD simulation model and the PIV measurements are in good 

accordance, but local differences in the flow field exist. 

Another broad application of PIV in flow field studies of rotating machinery can be found 

in the field of turbomachinery research. A good overview on activities in this topic can 

be found in83. Main interest in these measurements is the flow behavior around the 

turbine blades regarding optimization potentials. 

It can be concluded from literature, that flow measurements inside and outside of 

rotating systems can be performed and aid the understanding and verification of 

                                            
78 Kunisaki et al 2001 
79 Kubota et al 2003 
80 Wu 2009 
81 Moisy et al 2003 
82 Albers et al 2012 b 
83 Wosetschläger & Göttlich 2008 
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rotating flow systems. Compared to other measurement techniques the particle image 

velocimetry has the advantage of delivering the highest amount of information by 

measuring flow planes. The positioning of the measurement planes in the flow field of 

interest has to be performed based on all prior knowledge available. Three dimensional 

influences, flow instabilities and transient effects can influence the measurement 

results. This technique can be efficiently used for flow problems with good visual 

access. With decreasing visual accessibility (e.g. flow inside a clutch system) the 

complexity of the measurement problem rises due to additional measures to gain visual 

access. 

2.3.2 Electro / Mechanical Measurement Techniques 

Electro / Mechanical measurement techniques are based on transforming fluid forces 

acting onto a specified surface of the measurement probe into translational forces. A 

good example is the floating element device.  

 

Figure 26: Floating Element Wall Shear Stress Sensor; adapted from84 

With a floating element device, the wall shear stress can be directly calculated by 

measuring the offset of the floating element under flow conditions with an inductive 

displacement sensor and the elasticity of the support springs. Figure 26 shows an 

example of such a floating element sensor. For a rotating cup measurement device the 

fluid forces acting on the impeller of the probe cause it to turn. The kinetic energy of 

the impeller is then transformed into electrical energy. 

Pressure sensing techniques are nearly all based on a pressure based deformation of 

a diaphragm. The deformation is then transformed by piezo-quartz elements or strain 

                                            
84 Nitsche & Brunn 2006, P.85 
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gages into an electric signal to determine the local pressure. A selection of 

measurement principles is shown in Figure 27. 

 

Figure 27: Pressure Sensing Principles85 

Pressure sensors can also be used for wall shear stress measurements. A widely used 

technique is the Preston-Tube Method. Main advantage is that Preston tubes are 

relatively simple to handle. The method uses the unsymmetrical velocity profile to 

correlate the wall shear stress and has to be calibrated according to the boundary 

conditions of the measurement problem. An enhancement of the procedure is the 

Computer-Aided-Preston-Tube-Method (CPM). The method consists of iteratively 

correcting the wall shear stress value to adjust the velocity profile based on the wall 

laws. An extension of this method is the CPM3 method. In this method three Preston 

tubes with different diameters are used to measure the local effective velocity. The wall 

shear stress of all tubes is then adjusted iteratively to fit the velocity profile until the 

calculated wall shear stress of all tubes is equal. 

 

Figure 28: MEMS Wall Shear Stress Sensor86 

If only small packaging space is available, the group of Micro-Electro-Mechanical 

Systems (MEMS) offers a great potential. The technology of silicon based integrated 

                                            
85 Nitsche & Brunn 2006, P.25 

86 http://www.nasa.gov/topics/aeronautics/features/shear_stress_prt.htm 

http://www.nasa.gov/topics/aeronautics/features/shear_stress_prt.htm
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circuit micromachining makes it possible to construct sensors, actuators and 

microsystems with high performance and a low requirement on packaging space.87 

Figure 28 shows the size of a recently developed MEMS floating element sensor for 

wall shear stress measurements. 

 

Figure 29: Measurement Positions of 88 

One example of applying an electro mechanical measurement technique to a clutch 

related problem can be found in 89. Pitot tubes with a built in temperature sensor are 

used to measure the pressure and temperature distributions at several specific 

positions around the clutch system. The pressure was then transformed into a velocity 

value by using the Bernoulli equation. The Nusselt-Reynolds correlation was then used 

to find a relation between the velocity and heat transfer coefficient, which was not 

successful. The difficulties were related to the assumptions made and additional 

influences from radiation. Figure 29 shows the measurement positions. 

For the measurements inside a rotating clutch system the displayed devices are rated 

as not suitable. The most critical aspects are the packaging of the sensor and the 

acceleration forces acting on the sensor due to the rotation of the clutch. Electro 

mechanical measurement techniques are most suitable for measurements under 

stationary conditions. For the measurements of fluid velocities and pressures of the 

flow outside of the clutch system, the displayed techniques are most suitable. The 

                                            
87 Naughton & Sheplak 2002 
88 Ford Report REP 1485 P.63 
89 Ford Report REP 1485 
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measurement technique can also be used to aid calibration of other sensors as will be 

shown later. 

2.3.3 Thermal Measurement Techniques 

Thermal measurement techniques use tight coupling between the flow field and the 

temperature field. The two most widely used techniques are the hot wire anemometry 

and the pulsed wire anemometry. The latter technique operates by the transmitter / 

receiver principle. An element is used to generate a short heat pulse in the fluid, while 

other elements in direct neighborhood act as receivers. The time delay between the 

emission of the heat pulse and the detection by the receiver elements can then be 

used to calculate the flow velocity. A typical sensor probe is shown in Figure 30.  

 

Figure 30: Pulsed Wire Probe, adapted from 90 

Hot wire anemometry is based on measuring the heat dissipation of the sensor. Like 

resistance thermometers, the electrical resistance of the sensing element is used to 

calculate its temperature (equation 2.31). The author of 91 also differentiates sensors 

between passive mode (negligible self-heating - only applicable for temperature 

measurements) and active mode (strong self-heating – heat transfer / wall shear stress 

/ flow velocity measurements). Operation of a sensor in active mode is also referred to 

in literature as constant temperature anemometry (CTA). 

     r0 TTα1RTR   (2.31) 

When subjected to a fluid with a specific flow velocity, the temperature of the sensing 

element will decrease due to the increase in convectional cooling (free and forced 

convection now active). In active mode the sensor voltage has to be increased to obtain 

the same temperature as under the fluid-at-rest condition. This increase can then be 

used efficiently as quantifier for fluid velocity. 

                                            
90 Nitsche & Brunn 2006, P.56 
91 Mocikat & Herwig 2009 
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The sensitivity of a hot wire anemometer sensor to temperature can be described 

according to by equation 2.32.92 

   αR
T

TR
S 0R 




  (2.32) 

The overall and stationary heat balance without radiation from the sensing element of 

the sensor is displayed in equation 2.33 and 2.34. If the ambient temperature (usual 

value 20°C) is considered as reference temperature, the sensor sensitivity can be 

reformulated by integrating equation 2.35 into 2.31 and differentiating the resulting 

equation with respect to the convectional conductance. 
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The sensitivity towards convection (eq. 2.37) can therefore be maximized by 

enhancing the heat generated in the sensing element, minimizing the conduction 

losses to the support material and a high sensor coefficient (reference resistance 

multiplied with the specific temperature coefficient). These considerations can be 

utilized as design and mounting guidelines for foil sensors. With optimized parameters 

it is possible to measure turbulence related fluctuation quantities with these sensors. 

As pointed out in 93 hot wire anemometry probes for one dimensional flow 

measurements are also sensitive towards flow direction due to sensor geometry. 

Dependent on the flow angle relative to the sensing element the shape and size of the 

thermal boundary layer and therefore the heat transfer will be different. Therefore a 

measurement of a fluid flow with one dominant flow direction with unknown flow angle 

will always require two sensors. Typical hot wire anemometry sensor heads are 

                                            
92 Mocikat & Herwig 2009 
93 Nitsche & Brunn 2006, Chapter 3 
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displayed in Figure 31. The more sensing elements the sensor has, the more 

dimensions can be measured. 

 

Figure 31: CTA Hot Wire Sensor Heads94 

Since the calibration of the sensors is also very resistance dependent, the probes are 

usually calibrated in total (sensor head and mounting tube).  

In principle all measurements performed with electro / mechanical techniques can also 

be performed with thermal measurement techniques without high additional effort. As 

a specific example Elkins uses in 95 several hot wire anemometers to measure 

temperature, velocity and heat flux quantities around a heated rotating disk system. 

With a hot wire sensor in passive mode (referred to as cold wire anemometry) he 

measures the turbulent temperature variations in the flow. He also points out the 

importance of using temperature dependent calibrations for thermal sensors to 

compensate any changes in fluid temperature.  

A group of sensors which require small packaging space are foil sensors. The sensing 

element for this group of sensors is directly placed on a carrier material and can be 

directly mounted onto the geometry of interest.  

 

Figure 32: Foil Sensor 55R4796 

                                            
94 Dantec Dynamics Homepage www.dantecdynamics.com 
95 Elkins 1997 
96 Dantec Dynamics Homepage www.dantecdynamics.com 
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The possibility to flush mount the sensors on the surface minimizes the influence of 

the sensor on the ambient fluid flow. These sensors can be used for measuring wall 

temperature, heat flux, flow velocity, wall shear stress and transition detection.  

An interesting and detailed review of design considerations for foil sensor optimization 

can be found in 97. By placing and operating another sensor of equal design below the 

sensor used for flow measurements the author minimizes the losses due to conduction. 

The sensors are usually manufactured on and to customer demand to match the 

specific measurement task. Figure 32 shows the geometry of a commercially available 

foil sensor. The sensing element made of Nickel has a size of 0.1 x 0.9 mm and is 

connected to gold-plated lead areas which are deposited on a 50 µm KaptonT foil. 

According to the manufacturer as well as general literature on foil sensors it is always 

recommended to calibrate the sensors under mounting conditions. 

The most commonly used calibration formulas for foil sensors are all of the type of 

equation 2.38.98 

    2
B,0

2
Bn

1

w UUBAĲ   (2.38) 
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Equation (2.39) proposed by Kreplin and Höhler for foil sensor calibration has the 

advantage, that it also incorporates temperature dependent coefficients. Both 

equations (2.38) and (2.39) can be simplified to equation 2.40. 

      2
B,0

2
B3

1

w UUTBA(T)Ĳ   (2.40) 

The group of thermal measurement techniques shows a wider range of applicability to 

a clutch system compared to electro / mechanical and visual measurement techniques. 

For measurements outside of the clutch system the technique has no disadvantage 

compared to the electro / mechanical techniques. Both require a flow temperature 

dependent correction of the calibration curve. Properties like low influence on the fluid 

flow, small packaging and low influence of centrifugal forces make foil sensors also 

attractive for measuring flow quantities inside the clutch system. Main advantage is 

that the sensors can be applied directly to the surface of the part of interest and do not 

need additional sensor mounts. 

                                            
97 Mocikat & Herwig 2009 
98 Nitsche & Brunn 2006, P.88ff. 
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2.4 Basis for the Thermal Clutch Temperature Model 
The clutch temperature simulation method presented Beitler99 is used as basis for the 

clutch size selection tool presented later in this work. Therefore the overall procedure 

and base equations used will be detailed in this section. 

Beitler proposed in his publication, that clutch systems can in general be treated as 

interconnected multiple thermal mass models. He simulated the clutch temperature 

based on one partial differential equation per considered part. He considered for the 

clutch system the flywheel with primary and secondary side, pressure plate, diaphragm 

spring and clutch cover.  

Additionally he simulated the air inside the bell housing and the bell housing each as 

a thermal mass. The clutch components are thermally coupled by radiation and 

conduction heat transfer. Between the air inside the bell housing and the clutch system 

or bell housing the heat is transferred by convection. At the outer surface a convection 

heat transfer coefficient can be set with a constant ambient air temperature. To 

consider the influence of a forced cooling, he also considered an additional cooling air 

mass flow having a direct effect on the air temperature inside the bell housing. 

                                            
99 Beitler 2008 
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Figure 33: Clutch Temperature Simulation Model Structure derived from 100 

To determine the radiation and convection heat transfer coefficients between the 

individual parts, Beitler conducted a series of tests. He firstly determined the radiation 

heat transfer parameters by measuring the emission rate experimentally. The more 

important convective heat transfer coefficients were determined in a two stage 

experiment. Firstly the individual volume flows through the different channels inside 

the clutch system where determined on a centrifuge test stand. This was accomplished 

by closing, or blocking individual channels while leaving others open and additionally 

varying the rotation rate. After the volume flow rates were determined in dependence 

of the rotation rate, he conducted cooling down experiments. The tested components 

were heated up in an oven and then subjected to a defined air flow according to the 

prior measurements. 

With the obtained convection and rotation coefficients he derived the remaining 

conduction coefficients between the parts iteratively to match a measured temperature 

profile. 

                                            
100 Beitler 2008, P.195 
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2.4.1 Simplified Friction Energy Calculation 

A simplified established idealized procedure to describe the rotational speed behavior 

during synchronization is displayed in Figure 34. During synchronization the primary 

side (engine) is decelerated, while the secondary side is accelerated until the speed 

difference between primary and secondary side is zero.101 

 

Figure 34: Idealized Engine Speed and Torque Behavior during Vehicle Launch102 

In case of a vehicle launch with constant acceleration forces (constant load torque) the 

clutch synchronization time can be calculated by equation 2.41 which is based on a 

simple torque balance around the primary and secondary side of the clutch system.103 
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The reduced inertia of the secondary side in equation 2.41 (wheel / brakes / 

transmission / etc.) is calculated according to 2.42, the resistance torque by equation 

2.43.104 

With a given clutch torque or a given synchronization time it is then possible to 

calculate the friction energy via equation 2.44.105 

       tωtωMtP transengcl   (2.44) 

                                            
101 Albers et al 2006 a, P.334 
102 Albers et al 2006 a, P.334 
103 Albers et al 2006, P.335 
104 Gauterin & Unrau 2008 
105 Albers et al 2006, P.337ff. 
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2.4.2 Numerical Methods for Differential Equations 

As solver for the iterative temperature estimation, there are explicit and implicit 

methods available. Explicit methods have an advantage, that the temperatures are 

predicted based on the knowledge of the temperatures from the last time increment. 

An example for the basic structure of a discrete temperature estimation problem to 

solve with an explicit method is shown in equation 2.45. For a one dimensional finite 

difference method the main type of equation to solve is displayed if equation 2.46.106 

 
k1k xAx 

 (2.45) 
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Explicit methods can be solved directly, but require the user to define a time increment 

for the selected simulation task, which does not cause stability problems (eq. 2.47). 

The explicit methods are therefore restricted.107 

Implicit methods can be used to predict the system temperatures without limitations to 

the time step used inside the simulation code. An example for the structure of an 

implicitly discretisized finite difference problem is shown in equation 2.48. The 

difference to the structure of the explicit method is that an inverse operation is now 

necessary to solve. 

 bxA 1n  
 (2.48) 

Numerous concepts for the solution equations of this type exist. A good overview of 

possible methods and mathematical background can be found in 108.  

When regarding temperature dependent material properties for the heat capacity and 

thermal conductance the temperature problem becomes nonlinear (eq. 2.49).  
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An approach to this type of equations is to use iterative solvers. A simple method is 

shown in equation (2.48) and (2.50), which is an iterative Gauß-Seidel solution scheme 

adapted from 109. 
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In this method the temperatures of the future time step are estimated iteratively with 

starting temperatures of the iteration procedure set to the temperatures of the current 

state and aii and bi representing the coefficients of the matrices A and b.  

2.5 Parameter Identification with Kalman Filtering 

The Kalman filter algorithm was developed by R. Kalman in the 1960’s and belongs to 
the class of recursive algorithms. Originally the filter was developed for linear systems. 

Main idea behind the filter is to use available measurement data and statistical 

information on the system to improve an estimate for the currently predicted system 

state. The recursive operating procedure also makes it possible to use the algorithm 

for real time estimation problems.110 

In literature different formulations of the Kalman filter can be found. The algorithm can 

be directly applied to the differential equation of interest (Continuous Time Kalman 

Filters) without further discretization.111 

Another possibility is to apply the filtering algorithm to the discretized state and 

measurement equations. This technique is called discrete time Kalman filtering. Due 

to the similarity to the modeling equations of the simplified thermal model and ease of 

application the focus is on discrete time filters. 

2.5.1 Discrete Time Linear Kalman Filter 

A linear system can be described by the discrete time state space equations 2.51 and 

2.52. 

 twuBxAx tt1t 
ˆ  (2.51) 

 
t1t1t vxCy  


 (2.52) 

In this representation A is the state transition matrix, B the control-input matrix, C the 

measurement matrix, x̂  the current prediction of the state vector and u the control 

vector. w and v are the system- and measurement noise vectors usually described by 

zero mean time invariant Gaussian White Noise processed with variance σ. Based on 

the prediction of the system state performed in equation 2.51, the main objective is 

now to find a better estimate for the system state based on a performed measurement. 

                                            
110 Kalman 1960 
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In a Kalman filter this is performed by using equation 2.53 with the Kalman gain matrix 

K. 

  1tm1t1t yyKxx  
ˆ  (2.53) 

The Kalman gain can be interpreted as trust factor. As an example of a scalar case, if 

K would be less than 0.5, the trust in the measurement would be lower. If K would 

exceed 0.5, the confidence in the system model would be lower. The question that 

remains is how to select the Kalman gain for a higher dimensional case. 

A comprehensive and detailed derivation on how to optimally select the Kalman gain 

matrix can be found in 112 and is presented in equation 2.54 for an additive noise case. 
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In equation 2.55 Pxy is the cross covariance between the measurements and the 

current state, Py represents the measurement covariance, R is the measurement error 

covariance, P is the updated covariance matrix of the system state and Q is the system 

error covariance. 

 

Figure 35: Kalman Filter Process for a Linear System with Additive Noise 

The Kalman filter process displayed in Figure 35 can be described as iterative 

alternation of statistical prediction and correction procedures. 

                                            
112 Biering 2001, P.15ff. 
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2.5.2 Extensions to Non-Linear Cases 

For identification tasks that involve non-linear system or measurement update 

equations the linear update equations (eq. 2.51 and 2.52) can no longer be applied. 

Nonlinearities can be caused by non-linear functions or multiplicative combinations of 

state variables in the measurement update or state prediction equation. For the 

application of the filter to nonlinear problems additional linearization is necessary. In 

literature different algorithms can be found to treat this non-linearity. 

The Extended Kalman Filter (EKF) is a direct extension of the linear Kalman filter to 

the non-linear case by linearizing the non-linear terms of the system and/or 

measurement equations around an operation point with the help of Jacobian matrices. 

The system transition matrix and/or the measurement update matrix are then replaced 

by its linearization. 

  ttt1t w,u,xfx 
ˆ  (2.56) 
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For a system with non-linear state equation (eq. 2.56) the derived linearized state 

transition matrix from equation 2.57 can be straight forward implemented into the linear 

algorithm of Figure 35.113 

Another recently developed algorithm is the Unscented Kalman Filter (UKF) which was 

developed by Julier and Uhlmann 114 and belongs to the class of sigma point filters. In 

this filter the system and/or measurement equations remain untouched. By selecting a 

set of so called sigma points described by the statistical properties of the system the 

nonlinearities can be efficiently treated without having to calculate Jacobian matrices 

at every time step.  

 xχ 0   (2.58) 

    ni1PȜnxχ ii   (2.59) 

    n2i1nPȜnxχ ini   (2.60) 

   nκnαȜ 2   (2.61) 

The crucial point of the algorithm is to select the sigma points. The selection has 

similarities to Monte-Carlo type Methods, with the difference that the points are 

selected by a certain procedure and not randomly drawn. For an unscented Kalman 
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filter the selection procedure for the sigma points is shown in equations 2.58 to 2.61. 

The factors in equation 2.61 are selected to represent the statistical properties of the 

regarded problem. For Gaussian random variables, alpha is usually selected a small 

positive number, κ usually zero and n is the number of state variables. The obtained 

sigma points are then propagated through the state transition or measurement update 

equation. After this, the covariances needed for the algorithm can be calculated from 

the propagated sigma points.115 

Another filter belonging to the class of sigma point filters is the Central Difference 

Kalman Filter (CDKF). The main difference to the UKF is in the selection of sigma 

points and weights. While in the UKF several factors are necessary to calculate the 

samples and weights, in the CDKF only one factor is necessary. The sigma point 

selection scheme is shown in Figure 36 for a simple two dimensional case.116 

 

Figure 36: Principle of Sigma Point Selection for a Two Dimensional Case117 

The overall process of a Central Difference Kalman Filter with additive noises and 

nonlinearities in the system and measurement model is shown in Figure 37. 

                                            
115 Julier & Uhlmann 1997 
116 Merwe 2004, P.62ff. 
117 Merwe 2004, P.52 
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Figure 37: Central Difference Kalman Filter Procedure According to 118 

                                            
118 Merwe 2004, P.71ff. 
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2.5.3 Extensions to the UKF 

Based on the work of Julier and Uhlmann, Merwe expanded the algorithm of the UKF 

and provided with his work a framework for parameter and state estimation. Most of 

this sub-section is based on his work.119 

A large problem of the UKF and CDKF algorithms is that with increasing accuracy of 

the estimated states or parameters, the algorithm can become unstable. This is caused 

by small round-off errors, due to the limited accuracy of computer calculations, leading 

to negative diagonal entries in the covariance matrices. To circumvent these difficulties 

a square root algorithm can be applied. In this algorithm the square root of the 

covariance is propagated and updated. With this extension the covariance matrices 

can never contain negative values on the main diagonal. 

Parameter and state estimation can be performed by applying a dual or joint filtering 

algorithm. In the dual algorithm two filters, one for the system states and one for the 

system parameters, are operated alternatively. In the state filter the parameters are 

taken as known constants and in the parameter filter the states are assumed as known. 

Due to the reduction of the order of the matrices the filter requires less computational 

resources than the following joint form. It is in this case also possible to use two 

different types of filters if the non-linearities are restricted only to the state or parameter 

equations. 

A joint approach for state and parameter estimation is based on an augmented state 

vector. The augmented vector contains both the state and parameter value. With the 

augmented state vector, the normal UKF or CDKF algorithm is run. A slight 

disadvantage of this alternative is that the matrices order becomes very large. Still this 

variant of combined state and parameter estimation is regarded superior, because it 

does not except possible interaction between the states and parameters as in the dual 

version. 

The determination of physically meaningful parameters requires additional 

mathematical considerations to limit the parameters to the positive domain. One way 

to treat this setback is to incorporate the parameter limitations (usually inequality 

equations) into the measurement equations. Another way of treating the constraints is 

to use a moving horizon strategy. The best and most adequate way of limiting the 

parameters to a certain domain is to use the concept found in 120. The parameters can 

be limited to a certain domain by not directly estimating them. They are calculated by 

an equation similar to equation 2.62. The estimated parameters are the xi’s in the 
hyperbolical tangent function. 

                                            
119 Merwe 2004 
120 Merwe 2004, P.227ff. 
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  )tanh(xs1pp ii,0i   (2.62) 

With the use of a pre-factor pi,0 (selected as best guess of the parameter) and a scaling 

factor s the values of the parameter estimates are limited to the domain shown in 

Figure 38. 

 

Figure 38: Resulting Parameter Limitation based on 121 

When choosing values for pi,0 and s the operator has to grant, that the finally estimated 

parameters are in the restricted range. Otherwise the incorrect setting will lead to bad 

estimates or cause divergence. 

2.6 The Integrated Product Engineering Model (IPeM) 
The IPeM was developed at the Institute of Product Development at the Karlsruhe 

Institute of Technology and represents a problem oriented approach to the product 

development process. Main target of this model is to standardize the different product 

development processes of different engineering domains into one single framework. 

                                            
121 Merwe 2004, P.228 
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Figure 39: Integrated Product Engineering Model (IPeM) 

IPeM itself is a meta-model, which means the process itself can be used as general 

approach to form a unique process for the specific development task (e.g. new design, 

redesign, market pull…). The general structure of the model is presented in Figure 

39.122 

Main target of the IPeM is to provide a guideline to transfer the system of objectives 

via the operation system into the system of objects. In this approach the main focus is 

on the operation system. The operation system can be divided into four main areas. 

The activities of product engineering form the first area and represent a list of relevant 

operations for the developer in the product development process. The activities in this 

section of the operation system involve from the project planning in the beginning to 

the analysis of decomission all relevant steps in the product development process. The 

steps inside this section can not be seen as choronological step by step procedure but 

as separate engineering activities throughout the process. 

The next cluster inside the operation system is formed by the activities of problem 

solving. The transformation of the system of objectives into the system of objects inside 

                                            
122 Albers 2010 c 



State of Research 

 

54 

the activity matrix is performed by the SPALTEN process. This process can be 

understood as sequential and universal problem solving method. The general process 

steps are displayed in Figure 40.123 

 

Figure 40: SPALTEN Process of the IPeM 

The main activities inside the SPALTEN process are: 

  Situation Analysis 

 Problem Containment 

 Alternative Solutions 

 Solution Selection 

 Analysis of Consequences 

 Deciding and Implementing 

 Recapitulation and Learning 

 

 

The SPALTEN process can fundamentally be interpreted as fractal process, which 

means that all steps inside the process can be SPALTEN processes themselves. 

Resources are a very important field inside the operation system, as they define the 

amount of available manpower, methods, materials, capital, information, etc. available 

to process the steps inside the activity matrix.124 

The last field inside the operation system is formed by the phase model. The phase 

model can in the simplest case be defined by plotting different activities on a timeline. 

It can be interpreted as visualization technique and kind of agenda of the product 

                                            
123 Albers 2011 b 
124 Albers 2012 a 
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development process, which simplifies the project processing for the engineer and the 

control and monitoring.125 

2.7 System Analysis via C&C²-A 

For the simplified description of technical products, systems or processes the contact 

and channel method (C&CM) can be applied. Basic elements of the original method126 

are the Working Surface Pairs (WSP), which carry out functions, and the Channel and 

Support Structures (CSS), which connect the WSPs. Main advantage of this method 

is that coherences in complex structures can be displayed on a very abstract level and 

influencing conditions can be monitored easily.127 

 

Figure 41: Example of a System Discription by C&CM128 

The working surface pair is defined as a pair-wise interface between a component and 

another component or a boundary surface towards its environment which can be a 

liquid, gas or a field permanently or occasionally in contact. Energy, information or 

material exchange takes place at the working surface pairs. It inherits the actual 

functional contact. The channel and support structure is defined as physical 

component or volume of material in different condition of aggregation which directly 

connects exactly two WSPs. Apart from energy-, material- or information transfer the 

CSSs can also store these system variables. Figure 41 shows an example on how a 

planetary gear set can be described with the help of C&CM.129 

                                            
125 Albers 2013 a 
126 Albers 2002 
127 Albers 2005 a 
128 Albers 2009 b 
129 Albers 2009 b 
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Additionally to these two basic elements Albers130 introduced connectors inside the 

contact and channel connector method (C&C²-A). Connectors represent an abstraction 

of the functionally relevant description of the surrounding system environment. 

Connectors are not inside the regarded system and integrate the influencing properties 

which are outside of the system boundaries into the considered system and therefore 

completes the method.  

For the basic definitions of all elements inside the C&C²-A method a good summary 

can be found in 131. 

                                            
130 Albers 2013 b 
131 Albers 2013 c, P29ff. 
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3 Scientific Delta 

Starting point of this work was to develop a temperature determination method for 

clutch system selection. Since it is not always possible or convenient to completely 

determine the heat transfer by measurements or using theoretical considerations on 

heat transfer the possibility to determine the heat transfer coefficients via a CFD-based 

conjugate heat transfer analysis will be taken into considerations. 

On the overall validity of the flow system calculated by a CFD model inside a clutch 

system there exists, to the knowledge of the author, no method or verification 

procedure. It is therefore necessary to perform a categorization analysis on possible 

flow measurement techniques regarding the flow system and packaging conditions of 

clutch systems. 

Regarding the product development process it is also necessary to find a possibility to 

integrate the CFD-analysis and therefore a large part of this work into the product 

development process. 

The main targets regarding the CFD analysis can be categorized into the following 

steps: 

 Derivation of the heat transfer parameters with the help of a CFD simulation 

model for the entire range of engine speeds for a selected clutch system 

 Development of a synthesis and verification process 

 Integration of the CFD analysis in the product development process 

After the CFD simulation results have been generated, they will be used as basis for 

the clutch temperature determination model. For this, it is necessary to develop a 

simplification procedure, which can be used as guideline for future clutch systems. 

Since the clutch systems are not all the same it is also necessary to find a procedure 

on how to treat several clutch systems in one simulation environment. 
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The main targets regarding the simplified thermal clutch model are: 

 Development of a thermal clutch simulation tool capable of calculating the heat 

distribution inside the clutch system for different powertrain combinations and 

load situations based on the considerations of Beitler132 

 Determination of a simplification process for future clutch systems 

 Verification of the flow and heat transfer results created by the CFD model by 

flow and heat transfer measurements 

 

                                            
132 Beitler 2008 
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4 Thermal Clutch Simulation Model 

In this chapter general considerations on thermal modeling of clutch systems are 

displayed. In addition the influence of the driver is presented. In the middle of this 

chapter the modeling procedure is presented. The simplification process as basis for 

the generalization of clutch systems is displayed in the end of this chapter. 

4.1 Influence of Vehicle Verification Procedures on Clutch System 
Life 

Prior to the synthesis of the thermal clutch simulation tool, common durability test 

procedures at Ford Motor Company were analyzed to gain knowledge on basic 

influencing factors of clutch life. As indicated in chapter 1 test procedures can vary 

according to boundary conditions from market targets, available testing facilities and 

resources.  

Vehicle loading, for instance, has a high effect on wear behavior. Dependent on the 

mixture of the loading procedure throughout the durability cycle, the temperature of the 

clutch system can vary. Figure 42 shows a vehicle load condition over the completion 

of the cycle for different vehicle durability tests. 

 

Figure 42: Vehicle Loading Distribution 

It can easily be derived, that for test cycles with a repeating structure clutch wear will 

be more evenly distributed over the entire durability cycle. In test cycles with a structure 
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according to track 1 in Figure 42 the continuous high loading at the second half of the 

cycle can lead to thermal problems and increased clutch wear compared to track 2 

where a possibility for the clutch system to recover exists. 

The ambient air also has effect on the temperature of the clutch system. Figure 43 

displays the temperature throughout a year on the testing locations mentioned in 

Figure 1 are shown. 

 

Figure 43: Ambient Temperature Variation of Different Test Tracks 

Dependent on the starting date of the test cycle, the ambient temperatures can be 

significantly different, resulting in a lower wear rate due to a lower average temperature 

of the clutch system. 

 

Figure 44: Launch Events in Test Procedures 
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Clutch wear mainly occurs during launch events due to the high energy input in a short 

amount of time. Another criterion to judge the severeness of a durability cycle is 

therefore the amount of launches performed. The difference in total amount of launch 

events can be derived from Figure 44. It is obvious that different wear results will occur. 

Comparing the amount of launches in plane to the amount on grades leads to the 

conclusion that not only hill launches have to be observed when designing a clutch. 

Next to the loading of a vehicle and the number of launch events, the driver is highly 

impacting the energy input of a clutch system. In automatic transmissions the variety 

of shift and launch events is reduced because the operation is partially software and 

partly driver controlled. However vehicles equipped with a manual transmission need 

special attention regarding the operation of the clutch and accelerator pedal.  

 

Figure 45: System Levels of Vehicle Operation 

Manual actuation of both, clutch and accelerator pedal, increases the variation 

because the driver has to focus on two pedals which are usually operated dependent 

on each other. The operation is influenced by the drivers’ expertise. Figure 45 shows 

a typical example of vehicle operation system levels related to the launching or shifting 

process and their interaction. This schematic indicates that a different clutch or 

accelerator pedal operation can lead to varying energies. As an example of driver 

variation the launch energy variation vs. the accelerator pedal position is displayed in 

Figure 46. 
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Figure 46: Launch Energy Variation in Dependence of Accelerator Pedal Position 

In Figure 47 a measured energy distribution recorded on a test track is displayed for 

launch events on flat road. The profile shown is skewed with a solid boundary in the 

origin and a large spread. This distribution is an indicator that the recorded profile is 

not only influenced by statistical effects, but by another "noise factor". This is an 

indicator that a major uncertainty in clutch size selection is the driver. 

 

Figure 47: Variation of Energy Input for Plane Launch Events 

The knowledge of the overall vehicle system and the subsystems interaction is also 

very important. System knowledge can be acquired by a “learning by doing” process 
or by understanding the interaction between the different subsystems of a vehicle. 

Figure 48 shows a scheme on how system knowledge can be acquired. 
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Figure 48: System Knowledge Build-Up Scheme 

The driver’s performance is dependent on his skill to adapt, which is mainly influenced 
by the accumulated experience. 

As an example of system knowledge the shifting behavior obtained from different test 

tracks is shown in Figure 49. It can be seen that launch events have a higher impact 

on energy input into the clutch system than shift events. Apart from normal shifting 

behavior also abusive shifting behaviors were recorded on all test cycles. 

 

Figure 49: Monitored Shifting Behavior on Different Test Tracks 

Abusive shifting can be produced by skipping gears or constant depression on the 

clutch pedal in acceleration phases. These events are not part of the driving event 

procedure and are totally accounted to the driver’s influence.  

From the performed test track analysis it can be concluded, that the driver behavior is 

a highly influencing factor on clutch performance and durability. A clutch size selection 

tool is therefore in need of factors characterizing the driver behavior based on 

statistically evaluated measures. 
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4.2 Heat Transfer Analysis 

Before starting the actual analysis of the heat transfer from a clutch system to ambient 

a comparison of heat transfer mechanisms on a simplified experimental setup was 

performed. 

4.2.1 Comparison of Heat Transfer Mechanisms 

For the heat transfer to the ambient all types of heat transfer (convection / conduction 

/ radiation) are involved in a dry clutch system. To estimate the influence of the 

individual heat transfer mechanism, measurements were performed for the heat 

exchange between the diaphragm spring and the pressure plate of a clutch system. 

Figure 50 shows schematically the experimental setup.  

 

Figure 50: Schematic of the Experimental Setup 

The pressure plate was heated up in an oven. After the heat up process the pressure 

plate was placed on an isolating surface. When a temperature of 100 °C was reached, 

the diaphragm spring was put onto the pressure plate. To judge the influence of 

radiation, small isolators were put between the pressure plate and the diaphragm 

spring in one of the performed experiments. 

Figure 51 shows the result of the measurements for the isolated (top), placed on 

diaphragm spring with no additional mass (middle) and placed on diaphragm spring 

with 10 Kg additional mass. Comparing the energy exchange of the isolated and the 

case with no additional mass on the diaphragm spring, it can easily be seen, that the 

energy loss due to radiation is neglectable against the energy loss due to conduction. 

Compared to the case with an additional mass of 10 Kg, the temperature rise of the 

diaphragm spring without additional mass is slightly slower. This is due to the increased 

contact surface between the parts due to the additional mass. 
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Figure 51: Temperature Trace of Pressure Plate and Diaphragm Spring 

In this simplified test the heat exchange between the pressure plate and diaphragm 

spring is a combined process of radiation and free convection. Under operating 

conditions the convectional effects will increase due to forced convection. Therefore in 

this study heat transfer by radiation can and will be neglected. 

4.2.2 Heat Transfer Circuits 

A simplified overall heat flow path is displayed in Figure 52. The heat generated in the 

clutch system is transferred to the ambient mainly by convection. Dependent on the 

engine speed and vehicle speed the amount can vary. Conduction to the transmission 

is only possible through the actuation system or by the transmission input shaft. Both 

are only indirectly coupled with the heat source and therefore this path can be 

neglected. 

From Figure 52 it can also be seen, that the air inside the bell housing has a central 

position in heat transfer. Heat from the clutch system has to be transported to the bell 

housing via air before it can be transferred to the ambient. Convectional heat transfer 

rates inside the bell housing depend on the engine speed, while the rates on the outer 

ring in Figure 52 depend on the vehicle speed. 
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Figure 52: Overview Heat Transfer in a Powertrain System 

For the heat-up of air inside the bell housing and an almost stationary culmination level 

(operating condition of the vehicle), the engine temperature is the most important 

factor. It also influences the temperature of the bell housing and the transmission. 

4.2.2.1  Inner Circuit 

Heat transfer from a clutch system can be divided into three different phases: 

1. Heating Phase 

2. Compensation Phase 

3. Cooling Phase 

In the heating phase the energy input, resulting from the torque transmission of the 

clutch system and the rotational speed difference between the engine and the 

transmission input shaft, causes the components connected to the frictional interfaces 

to heat up. During this phase, high temperature gradients inside the clutch exist and 

the main heat transfer mechanism is heat conduction. The temperature of the 

components next to the frictional interface is highly affected by their thermal mass. The 

pressure plate of the clutch system will, due to its lower mass, always face higher 

temperatures compared to the flywheel. 
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After the clutch system is closed, the high temperature gradients in the components of 

the clutch system are compensated. As in the heating phase, the main heat transfer 

mechanism is heat conduction. High influence on the temperatures in this phase is the 

connectivity to other parts inside the clutch system. The stored heat inside the pressure 

plate for instance can be transferred faster, if the coupling to the diaphragm spring or 

the cover is good. 

In both, the heating phase and the compensation phase, the convectional heat transfer 

can be neglected. The amount of heat transferred by convection or conduction 

depends on the temperature difference between the thermal masses, on the thermal 

conductance and the distance from the heat source to the surface or interface to 

another part. 

After the temperature gradients inside the system have been compensated, the cooling 

of the clutch components begins. The heat transfer from the clutch system to the air 

inside the bell housing is closely coupled to the flow conditions inside the clutch system 

and outside the clutch system. 

 

Figure 53: Simplified Heat Transfer from the Clutch System 

Figure 53 shows a simplified model of the conditions inside the bell housing. The air 

flowing into the clutch system passes the heated components and absorbs a mass 

flow dependent amount of heat. After leaving the clutch system, the absorbed heat is 

transferred to the bell housing or engine.  

The amount of air flowing through the clutch system is dependent on the friction levels 

and the flow structures inside the clutch system. To obtain an overview on the 

influencing factors on heat transfer and the general flow structure, the chosen 

approach in a first step was to divide the flow field inside the bell housing into 

analogous flow fields found in literature (chapter 2.2.3.6 to 2.2.3.10). 
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The flow field inside the bell housing is closely related to the research area of rotating 

disk systems. In Figure 54 a simplified division of the flow field inside the bell housing 

is given. 

Starting from the engine side, the flow field between the flywheel and the engine sided 

wall can be best described by a rotating disk near a stationary wall. Inside the clutch 

system, the flow field can be divided into two main areas. The region close to the input 

shaft, where the disk, the diaphragm spring and the flywheel are located can be 

interpreted as co-rotating disks. 

 

Figure 54: Division of the Flow System inside the Bell Housing 

Towards the outer diameter of the clutch system the region formed by the clutch cover, 

pressure plate, lining and top part of the diaphragm spring is assumed to be highly 

related to a rotating cavity with radial outflow. The outside of the clutch cover and the 

bell housing form additional two regions. At the transmission side of the bell housing 
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the region is again closely related to a rotating disk with stationary wall. The last region 

of this division is the region limited by the bell housing and the circumferential area of 

the clutch cover. The fluid flow inside this region is closely related to an enclosed 

rotating cylinder. 

4.2.2.2  Outer Circuit 

The heat transferred from the powertrain to the ambient air is dependent on the flow 

conditions inside the engine compartment and the vehicle velocity. Figure 55 shows 

the average heat transfer coefficient of the bell housing obtained from an underhood 

CFD (CFD: Computational Fluid Dynamics) simulation for a front traversal mounting of 

the powertrain obtained from an internal study of the local TASE Group of Ford Motor 

Company. Compared to data from literature for common geometries it can be seen 

that the behavior at higher speeds is between a rectangle and a hexagon in 

crossflow.133 

 

Figure 55: Vehicle Speed Influence on the Normalized Average Heat Transfer Coefficient 
(Htc) of the Bell Housing 

The influence of the cooling fan for this vehicle can be seen at lower velocities. The 

heat transfer coefficient there is higher caused by the additional air flow of the cooling 

fan. 

In Figure 56 the heat transfer coefficient distribution for a vehicle speed of 80 kph is 

displayed which was also supplied by the local TASE department. Areas which are 

oriented towards the rear of the vehicle show small heat transfer coefficients. Areas 

which are exposed to direct air impingement show higher values of the heat transfer 

coefficient. 

                                            
133 Marek & Nitsche 2007, P.188 
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Figure 56: Heat Transfer Coefficient of a Transmission Assembly 

4.2.3 Material Data 

Material parameters in a simulation model can be treated as constant or temperature 

dependent. Temperature dependent material parameters have the disadvantage, that 

inside the simulation model the parameters are not treated as constants and have to 

be updated with temperature and time. The material parameters are therefore directly 

influencing the choice of simulation method. 

Material characteristics like heat conductivity, thermal capacity and density are in 

general temperature dependent material parameters. The density of solid materials 

can be treated as constant. For gases or liquids, the assumption of a constant density 

is not always valid. For most gases the density is dependent on its current pressure 

and temperature. The relation can be most generally described by equation 4.1.134 

  
TR

p
Tp


,  (4.1) 

                                            
134 Siekmann & Thamsen 2008, P.106 
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If compressibility effects are neglected and the air pressure is assumed constant (equal 

to ambient pressure), the density of air inside the bell housing can be assumed only to 

be temperature dependent. 

From the cold condition when the engine is started, the mass of air inside the bell 

housing is heated up and therefore decreases through openings to ambient (e.g. 

drainage holes, misalignments, etc.) until stationary temperatures inside the bell 

housing are obtained. In case of a slip event, the temperature of the air inside the bell 

housing increases, the air mass again decreases. As displayed in Figure 57, a 

temperature increase of 100 °K can lead to a 20% decrease of the air mass inside the 

bell housing. 

 

Figure 57: Relative Temperature Dependency of Air Density 

It is therefore necessary in a simulation model for a clutch system to consider the 

changes in the thermal mass of air. 

To judge the temperature dependence of the clutch material parameters, material 

measurements were performed. Target of the measurements was the determination of 

the temperature dependent thermal capacity and conductivity. The measurements 

were performed by NETZSCH Gerätebau GmbH with a NETZSCH LFA 447 

NanoFlash (DIN EN 821 / ASTM E-1461). 
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Figure 58: NETZSCH LFAQ 447 NanoFlash Operating Principle135 

The operating principle of the NanoFlash is presented in Figure 58. A flash lamp 

located on one side of the material probe is used to create a thermal pulse. The flash 

intensity and duration can be adjusted in the system electronics. An IR detector is used 

to measure the temperature response on the opposite side of the probe. The resulting 

time dependent temperature function is then used to correlate the thermal diffusity. 

The thermal conductivity can finally be derived from formula 4.2. 

        TaTcTρTȜ p   (4.2) 

The determination of the density was obtained by using the hydrostatic balance 

method at room temperature. The thermal capacity was determined by the comparison 

method after ASTM-E 1461-2007 with a pure iron probe as reference. 

To characterize the thermal material properties at different temperatures, the device in 

Figure 58 also contains an oven to pre-heat the material sample. All material probes 

were measured in new condition at 20 °C / 50 °C / 100 °C / 200 °C. At each temperature 

5 measurements were performed and the average was applied. The overall maximum 

standard variance of the performed measurements was below 2% for each 

temperature. Figure 59 shows an example of the sample preparation.  

A measurement of the material properties at different mileages to consider aging 

effects in the materials was not performed due to time constraints. The effect of the 

mileage on the material properties is recommended to be characterized in an additional 

study. 

                                            
135 Product Brochure: Netzsch LFA 447 NanoFlash 
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Figure 59: Sample Preparation: left: Lining; middle: Diaphragm Spring; right: Pressure Plate 

A clear advantage of this method is that also compound materials can be measured. 

This makes it possible to also characterize the thermal properties of the lining material, 

which is usually a mixture of numerous materials. All clutch related materials can 

therefore be characterized by using the same method, which increases the profitability 

of this procedure. 

 

Figure 60: Temperature Dependence Thermal Capacity of Clutch System Materials 

In Figure 60 the results of the thermal capacity measurements for the main clutch parts 

are displayed. All materials show similar behavior. From the normal operating condition 

of approximately 100 °C, an increase of 100 K results in a 12% increase of the thermal 

capacity. For the lining material, the thermal capacity is approximately 3 times higher 

than for the steel components. 

For the thermal conductivity, the behavior is different. In Figure 61 the thermal 

conductivity dependences are displayed. While the thermal conductivity of the 

pressure plate and the diaphragm spring increases moderately with a temperature 
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increase, the thermal conductivity drops moderately for the flywheel and the clutch 

cover.  

 

Figure 61: Temperature Dependence Thermal Conductivity of Clutch System Materials 

The level of the thermal conductivity for the individual clutch parts is also different. The 

highest conductivity was measured for the clutch cover. The average increase / 

decrease from an operating condition of 100 °C and a temperature rise of 100 K is 

approximately 8%. As expected, the lining material has the lowest thermal conductivity. 

From the results of the material measurements it can be quickly derived, that a correct 

knowledge of the material parameters of the clutch system components is of high 

importance. To display the effects of using constant instead of temperature dependent 

material parameters, a simplified example for heat conduction between the flywheel 

and the clutch cover will be applied. 

The simplified heat balance for the conductional heat transfer between the flywheel 

and the clutch cover with negligible heat transfer by convection and radiation can be 

described by equation 4.3. 

  FWCov
FWp,FW

effFW TT
cml

AȜ
dt

dT





  (4.3) 

Now assuming that in one case the material parameters are constant and in another 

case they are temperature dependent, with a temperature difference of 100 K between 

both cases, the relation between the temperature changes at each time step can be 

described by equation 4.4. 
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(4.4) 

Assuming that the masses and geometrical parameters are constant together with the 

assumption that the thermal capacity of the flywheel rises by 8% and the thermal 

conductivity of both parts drops by 8% at a temperature increase of 100 K, equation 

4.4 simplifies to equation 4.5. 
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(4.5) 

This means that in this simplified case there exists already an offset of 17% if constant 

material parameters are assumed. It is therefore recommended to use temperature 

dependent material parameters. 

4.2.4 Conclusion 

For the heat transfer from clutch to ambient convection and conductional heat transfer 

play a major role for the heat transfer. As shown, heat transfer by radiation can be 

neglected. For convectional heat transfer it can be seen, that correlations found in 

literature for the Nusselt-Number are very problem specific and dependent on many 

geometrical and physical parameters. The problem with describing a flow or heat 

transfer for a clutch system with the theory of rotating disk systems is not only that the 

geometry is heavily abstracted, but also that the solution for one area is the starting 

condition for the next area in the flow system. This means, that small errors in one 

region are propagated through the system and make it less likely to obtain a correct 

solution in other regions. All correlations for the flow and heat transfer of rotating disk 

systems were obtained under constant, homogenous or idealized boundary conditions, 

which do not exist for the flow inside the bell housing. It is therefore seen impractical 

to correlate heat transfer quantities inside a clutch system by using literature data of 

simplified rotating disk cases. 

Overall, CFD simulations in chapter 2.2.3.12 seem to offer a good way of determining 

the heat transfer characteristics. The possibility of calculating the heat transfer 

characteristics with geometrical and physical boundary conditions close to reality is 

seen as highest potential of obtaining the correct heat transfer characteristics of a 

clutch system.  

As displayed in last part of this chapter thermal material parameters have to be 

modeled temperature dependent, which increases the model complexity. 
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4.3 Clutch Thermal Model 
The first step in the development of a simulation tool, capable of simulating different 

clutch systems, is to perform a screening analysis on the general structure and the 

components of clutch systems. Main parts of a clutch system for an automotive 

application are (see chapter 2.1): 

  Pressure Plate 

 Flywheel 

 Diaphragm Spring 

 Clutch Disk (with Lining) 

 Clutch Cover 

 

 

Dependent on the functionality additional components can be present in a clutch 

system. For instance a self-adjusting clutch system (Figure 5) additionally has 

components that compensate the lining wear in order to obtain constant leaver 

relations and therefore a constant engagement force behavior of the clutch system. 

The additional components on one side enhance the thermal capacity and on the other 

side provide additional heat conduction paths through the pressure plate assembly. 

Another difficulty arises, when a closer look is taken on the flywheel. With higher 

demands on vibration damping, it becomes necessary to apply dual mass flywheels. 

Dual mass flywheels consist of a primary and a secondary mass, which are connected 

via springs. These springs between the two masses are, for lubrication purposes, 

running in a grease or oil filling.  

In both cases, for the self-adjusting clutch system and the dual mass flywheel, the 

additional parts would have to be treated as individual thermal masses. It would 

therefore be necessary to implement different clutch systems into the simulation tool 

to be able to reflect the differences in part numbers. Since it cannot be foreseen, what 

the future holds, it would be more convenient to find a way to treat all clutch systems 

with the same amount of thermal masses. 

The main components presented earlier are always present for all clutch systems. It 

was hence decided to choose these components as main model parameters. The 

procedure how to still account for the additional components will be shown in chapter 

4.4. 

4.3.1 Model Structure 

The principle model structure is shown in Figure 62 and is an adapted form of the 

model structure used in Figure 33 from 136. The model was derived based on initial 

C&CM analysis with the help of the methods presented in chapter 2.7. Additionally to 

the thermal masses the model also includes the engine, transmission and clutch lining. 

                                            
136 Beitler 2008 
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Convectional interfaces are shown in orange, conductional interfaces in black and the 

frictional interface in blue. All parts in Figure 62 are treated as single thermal masses, 

except for the parts in direct contact with the frictional interfaces. For these parts, 

additional surface layers (green) are simulated to obtain a proper correlation towards 

the surface temperature. A total of three boundary layers per part was selected as 

standard. 

 

Figure 62: Boundary Diagram of Clutch Temperature Model based on initial C&CM Analysis 

The engine temperature can be chosen as constant value, or be defined as input 

parameter together with the ambient temperature, vehicle speed and engine speed in 

the input file. Due to this, the convectional boundary is shown in a dashed line. 
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Figure 63: Model Layers 

Figure 63 shows the general structure of the model. The model is divided into different 

layers. In the main layer, the user can choose or define different materials, clutch 
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systems, auxiliary systems, powertrain / vehicle data and define an input cycle for the 

model. The material, clutch system and auxiliary systems layer define objects with the 

properties and objects listed in the component and property sub-layer. A clutch system 

object consists for example of a pressure plate, flywheel, clutch cover, diaphragm 

spring and clutch lining object. Each component of the clutch system is an object with 

the properties listed in the property sub-layer. The applied object oriented 

programming helped to minimize the programming complexity by using similar code 

structures for similar objects. Properties like thermal conductivity, thermal capacity, 

density and convection resistances are implemented temperature, engine speed or 

vehicle speed dependent via tables.  

When the user has defined the clutch system, auxiliary system, powertrain, vehicle 

data necessary to run the model (including their individual sublayer properties), the last 

step is to define the input cycle. The user can choose between a frequent launch 

calculation, a single launch event both with settings defined in the vehicle / powertrain 

data table or run a temperature calculation with input data from a data file. In the 

frequent or single launch calculation the frictional power needed as input for the 

simulation is calculated according to the energy calculation procedure in chapter 2.4.1. 

The ambient conditions, engine speeds and vehicle speeds are assumed constant for 

these cycles. Figure 64 shows the flowchart of the frequent launch cycle. 
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Figure 64: Flow Chart of Frequent Launch Cycle 
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After launching the temperature calculation, the calculated temperatures are written to 

an output text-file which can be processed in an external data processing software 

(e.g. MS EXCEL). It is also planned to implement a life cycle simulation which can be 

implemented as extension of the frequent launch cycle. The extension can be easily 

implemented with an additional iteration loop around the iterative temperature 

estimation block in Figure 64. Different power distributions, ambient temperatures, 

engine and vehicle speeds could be implemented in a simple way. 

The simulation model was programmed in JAVA Eclipse 3.1. A main advantage of said 

proceeding is, that it can be run on almost any PC operating system, since JAVA uses 

a virtual machine to execute the desired program code. The software is therefore 

platform independent and thus assumed to have a bigger life span. 

Based on the findings in chapter 2.4.2 it was chosen to use an implicit method as solver 

to preserve the possibility to implement varying time steps to save simulation time 

(small time step at power input – large time step at cooling). 

    

   ]TTαTTȜ

TTȜTT[Ȝ
)(Tcm

1

Δt
TT

1n
PP

1n
BHAirPP

1n
PP

1n
1kPPPP

1n
PP

1n
CCCCPP

1n
PP

1n
DSDSPP1n

PPpPP

n
PP

1n
PP




















 (4.6) 

From equation 2.49 (chapter 2.4.2), equation 4.6 can be derived which is shown here 

as an example of an implicit temperature equation (index n: current state; index n+1 

next state in time after the current state). Since the thermal capacities are temperature 

dependent and the solution of equation 4.6 would therefore lead to extensive 

mathematical effort, it was chosen to use an iterative scheme according to equation 

2.50 to solve the equation. 

For the launch energy input calculation, the simplified equations from chapter 2.4.1 for 

power intake calculations for a manual clutch system where adapted according to 

equations 4.7 to 4.9 to implement factors describing the driver behavior as outlined in 

chapter 4.1. 
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In the equations d1 represents the engine speed drop factor and d2 represents the 

driver factor. They are calculated according to equations 4.10 and 4.11. The 

transmission or secondary side rotational speed at vehicle start is assumed to be zero. 

All engine speed changes in this approach are assumed to have a linear character. 
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The engine speed drop factor (4.10) is the relation between the engine speed at the 

start of the launch and the synchronized engine speed when the clutch is closed. The 

driver factor (eq. 4.11) is the relation between the launch acceleration and the 

maximum available acceleration determined from the engine map and the engine 

launch speed. The transferred clutch torque in equation 4.7 can therefore be 

interpreted as representing the sum of the powertrain resistances together with the 

remaining torque used for accelerating the vehicle. 

These factors can be used to characterize driver performance and vehicle 

characteristics. For the precise determination of these factors measurements of the 

clutch power input are necessary. First measurements of the driver behavior of expert 

drivers on a test track (chapter 4.1) show, that it is possible to characterize drivers with 

these formulas. It could be shown, that taking one launch of a driver as basis and 

extrapolating all other launches from this basis, only a constant factor was between 

the slopes of the calculated (blue line) and measured (red line) energy intake as 

displayed in Figure 65. 

 

Figure 65: Comparison of Calculated and Measured Launch Energy Input 
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With equations 4.7 to 4.11 the frictional power input can be evaluated according to 

equations 4.12 to 4.15. 
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4.4 Heat Transfer Simplification Process 

For the simplification of the surface averaged heat transfer coefficients several 

considerations were taken into account. In a first step it was tried to use similarity 

analysis to select proper geometrical aspects of the clutch system and relate the heat 

transfer data to these parameters (see chapter 2.2.3.5). Main driver for this 

consideration was the idea to find globally valid mathematical descriptions for the heat 

transfer of the individual parts.  

As equations 2.25 and 2.26 indicate, there exists a relation between the surface friction 

and the heat transfer at the surface of the body of interest. For a clutch system under 

vehicle mounting conditions this relation can be used if the flow system inside the 

clutch system and the recirculation flow outside the clutch system could be decoupled. 

The problem that arises here is that in vehicle powertrains mostly the clutch system 

size varies and due to cost optimization considerations the bell housing of a 

transmission does not, so that the clearance between the outer diameter of the clutch 

system and the bell housing changes. This change then has influence on the 

recirculation flow and therefore on the surface friction in and outside of the bell housing, 

making the relations found for the same clutch system for one application not relatable 

to another application.  

With the possibility to have different engines, transmissions, clutch systems and 

actuation systems, there are simply too many parameters that can be changed. A 

similarity analysis based description is therefore seen from this standpoint as 

impractical. It was chosen to neglect the description of the convectional heat transfer 

by analogy relations and to use a description related only to the powertrain application 

under consideration. With an increasing number of investigated powertrains it is 

recommended here to come back to the point of considering the description with 

analogy relations. 
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For the simplified model, a heat transfer coefficient based on a global reference 

temperature is seen as the most promising approach and was therefore implemented, 

because no additional changes in the model structure are necessary.  

A problem that can arise with the use of a heat transfer coefficient based on a global 

approach is if the temperature difference between the wall and the reference 

temperature approaches zero, resulting in values close to infinity. To overcome this 

difficulty, the averaging process was adapted.  
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By using equation 4.17 instead of the implemented equation 4.16 to describe the 

surface averaged heat transfer due to convection, the difficulties of heat transfer 

coefficients close to infinity are avoided. This step can be seen as additional filtering 

process necessary to avoid numerical difficulties. 

If the temperature difference in equation 4.17 is set as the difference between the 

average fluid temperature and the average temperature of the solid body under 

consideration, the additionally necessary modeling of the wall layer of the solid 

structure in the simplified model can be avoided. This again reduces the overall 

complexity. 
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Figure 66: Example of the Heat Transfer Simplification Process for a SAC Clutch System 
(Figure 5) 

After the definition of a heat transfer coefficient to be used for the simplification 

process, it is necessary to find a way on how to reduce the components of the clutch 

system to match the structure of the model presented earlier. 

For the reduction of the parts inside the clutch system it is necessary to have a close 

look at the overall energy balance inside the clutch system. In Figure 66 the 

simplification process is shown for the heat transfer between the pressure plate, 

diaphragm spring and the clutch cover. The connection of the pressure plate and clutch 

cover will be used to explain the simplification process. 

Heat from the pressure plate is transferred to the clutch cover by heat conduction 

through the lift springs. The lift springs are not considered in the thermal clutch model, 

because they have a low thermal mass. Still, the overall heat balance of the thermal 

system has to be maintained. The heat conducted from the pressure plate is not fully 

conducted into the clutch cover. Part of the heat is lost via convection to the air inside 

the bell housing. In order to capture the heat transfer correctly and address it to the 

right phenomena, the heat loss by convection has to be added to the convectional heat 

transfer of the pressure plate. The heat transferred by conduction from the 

“augmented” pressure plate is therefore less than from the component itself (with an 
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increase in convectional heat transfer). This approach can also be displayed for this 

connection, when regarding the simplified energy balance between the three 

components. 
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From the energy balance of the lift springs (equation 4.18) and the assumption, that 

the thermal mass of the lift spring can be neglected, equation 4.20 can be directly 

derived. While nothing changes for the energy balance of the clutch cover 

(equation 4.21), the energy balance of the pressure plate (equation 4.18) is now 

replaced by the augmented form (equation 4.22). 

For parts, where the thermal mass cannot be neglected as in the simple case for the 

lift springs, other measures have to be taken. The heat exchange between two thermal 

masses with additional convection can be described by equation 4.23 and 4.24. 
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Solving equation 4.24 for the conductional part and substituting the result into equation 

4.23 results in equation 4.25. 
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As displayed in equation 4.26 the heat transferred by convection can be summarized 

into one variable. Target is now to transfer equation 4.26 into equation 4.27. 
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By setting equation 4.26 equal to 4.27 and multiplying the result by a time increment dt 

one obtains equation 4.29. With an average thermal mass described by equation 4.30 

and taking the differential between two small time steps (indicated by + and -) one 

finally obtains equation 4.32, which is the needed definition for the average 

temperature. In equation 4.30, the thermal capacities are temperature dependent. The 

simplification can still be performed, since the difference between the individual 

capacities is small and the temperature difference between the directly coupled parts 

is rather small. 

Since in the simplified model, the convectional heat transfer coefficients will be 

calculated in dependence of the engine speed, it is important to monitor the heat 

amount transferred by a component and the component temperature itself in the CFD 

simulation model. To calculate the augmented heat transfer coefficients (see equation 

4.33), the heat amount by convection can be summarized to obtain its final value, but 

the average temperature has to be calculated according to equation 4.32. 
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For the heat conduction parameters this process of averaging the temperatures is also 

necessary. The conductivity between two masses will be evaluated according to 

equation 4.35. 
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For the surfaces in equation 4.35, either the contact surfaces between the two parts 

will be taken as conduction area, or the smallest cross section in the heat conduction 

path. 
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With equations 4.32 to 4.35 all necessary equations to define the simplified heat 

transfer are available. In the simplification procedure the clutch cover, support rivets of 

the sense spring and the cover screws will be simplified to represent one thermal mass. 

The diaphragm spring together with the sense ring and sense spring will also be joined 

to represent one thermal mass. And finally, the lift springs and the pressure plate will 

be taken as one part (see Figure 66). The main reason for this choice was the heat 

transfer path and the contact surface to the neighboring part. The touching surface 

between the diaphragm spring and the sense spring or sense ring is significantly larger 

than between the mentioned parts and the clutch cover. The heat between these parts 

is therefore spread much easier. 
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5 CFD Based Heat Transfer Determination of a Vehicle 
Clutch System 

The simulation of a clutch system under vehicle mounting conditions is treated in this 

chapter. The main focus is on how the rotating movement of a clutch system can be 

modeled, how the temperature is spread inside the clutch system and how the flow 

field inside the bell housing can be described. As will be shown, a conjugate heat 

transfer model of a clutch system can aid the identification of optimization potentials.  

5.1 CFD Model 
For the evaluation of the heat transfer characteristics of a clutch system under vehicle 

mounting conditions, a CFD model was set up in Star CCM+. The model is primarily 

based on the initialization calculations of the CFD model presented in 137, which was 

developed by cd-Adapco for transient simulation of a clutch system during a launch 

procedure.  

During initial discussions with cd-Adapco, a simplification of the overall mesh by only 

using a section of the geometry was considered. This option was then neglected due 

to lack of symmetry of the bell housing. 

The geometry modeled consisted of a self-adjusting clutch system (composed of the 

pressure plate assembly, clutch disk with lining and the single mass flywheel), 

crankshaft, clutch actuation cylinder with release bearing, bell housing of the 

transmission, rear face of the engine block, and the starter engine from a Ford Fiesta 

ST MK06 (Figure 67). To optimize the simulation, only the primarily necessary parts 

were considered. For instance the engine block or the starter motor have been cut off 

and the rest of the transmission was neglected. 

                                            
137 Ford Development Report 371-218552-R1 2012 
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Figure 67: Modeled Geometry 

The rotating movement of the clutch system was modeled by a moving reference frame 

approach (see chapter 2.2.3.11), together with a rotation rate applied to boundary 

surfaces with suitable orientation (e.g. backside surface of flywheel, crankshaft or 

transmission input shaft). The air region between the clutch system and the bell 

housing was divided according to Figure 68. 
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Figure 68: Division of Air inside Bell Housing138 

Main target of the simulations was the determination of the conduction and convection 

heat transfer coefficients under different engine speeds. It was therefore chosen to use 

a conjugate heat transfer modeling approach for the simulations. In this approach both 

the fluid and solid regions thermal balances are evaluated together, allowing direct 

interaction between the temperature fields of the air inside the bell housing and the 

other solid components. An additional advantage of this approach is that only one 

model has to be run to obtain the results (compared to the hill launch CFD model in 
139).  

As boundary conditions for the simulations, a constant specific heat input of 

15000 W/m² at the flywheel or pressure plate frictional interface was considered. The 

engine speed was set constant at 750 / 1500 / 3000 / 4500 / 6000 rpm. It was hereby 

possible to obtain a heat distribution in the system close to the conditions faced by a 

clutch system in reality. A relative movement between the clutch disk and the clutch 

system itself was not considered. The clutch system was considered closed. The 

temperature of the engine block and the crankshaft was set constant at 87 °C (derived 

from measurement data). For the outside surface of the bell housing (including the 

                                            
138 Ford Development Report 371-218552-R1 2012, P.11 
139 Ford Development Report 371-218552-R1 2012 
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starter motor) a convection boundary condition with a heat transfer coefficient of 

20 W/(m²K) and a reference temperature of 60 °C, which are reflecting the conditions 

of a vehicle launch. Under driving conditions (gear shift) the outside conditions will 

change according to the vehicle speed, but the energy input will not be as high as 

under launch conditions. To represent the heat transfer conditions at the transmission 

side of the bell housing a convection boundary condition with a heat transfer coefficient 

of 10 W/(m²K) and a reference temperature of 60°C was set. At the openings to the 

ambient a pressure outlet boundary condition was chosen with an air temperature of 

60 °C. The openings to the ambient air are displayed in Figure 69. One opening is 

located at the starter engine and one opening results from a misalignment between the 

engine and the bell housing. The small drainage hole at the bottom (Figure 69) was 

neglected). 

 

Figure 69: Openings to the Ambient Air (red) (Adapted from 140) 

As initial temperature of the bell housing 85 °C was chosen. For all other solid bodies 

(except the engine block) and the air inside the bell housing 70 °C was chosen as initial 

temperature. 

The air inside the bell housing was considered as ideal gas. In an additional simulation 

run, it was also treated with the constant density option. This separation between the 

two models was performed due to the fact, that because of the large outer diameter of 

the clutch system and the high rotary speeds (above 5500 rpm) a Mach number of 

above 0.3 would be reached. 

The values for the materials of the clutch and peripheral structure where set according 

to the results of the material measurements (chapter 4.2.3). For the aluminum casting 

                                            
140 Ford Development Report 371-218552-R1 2012, P.22 
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of the bell housing standard values from literature were taken. The data for the clutch 

actuation cylinder was set according to the lining data. 

A mesh on the basis of polyhedral cells was used for the simulation. Polyhedral 

meshes have the advantage for systems with poorly known velocity vector field, that 

the cells faces have a high probability to be oriented advantageous to the flow field. 

For the mesh settings the tight packaging of the clutch assembly and the direct 

connection of the cell size to the overall simulation steps needed for a converged 

solution were taken into account. It was decided to model the boundary layer between 

the solids and the air inside the bell housing with one layer together with a global 

boundary layer thickness of 0.5 mm. Figure 70 shows the mesh structure inside the 

pressure plate assembly. 

 

Figure 70: Mesh Structure inside the Pressure Plate Assembly 

This definition results in the need to choose the all-wall-y+ treatment for the boundary 

layer. Since for a pre-defined thickness of the boundary layer, the y+ values will not be 

in the recommended region, the all-wall-y+ treatment allows the simulation to switch 

between the wall treatment for a resolved boundary layer and the wall-law treatment. 

At interfaces between solid parts an additional boundary layer per part was considered. 

Since high gradients were expected at the interface between the lining and the flywheel 

/ pressure plate, the amount of boundary layers was increased. As quality thresholds 

the minimum face validity was set to 0.8, the minimum cell quality was set to 10-6 and 

the minimum volume change was set to 10-4. The face validity is a measure of how 
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faces are oriented towards the cell center. A face validity below 0.5 is an indication for 

negative volume cells, which can result in poor quality of the obtained volume mesh.141 

As turbulence model, the reasonable k-İ model was used, which is the standard 

turbulence model in Star-CCM+. The use of a large eddy or detached eddy turbulence 

model was not considered, since the transient simulation would cause a significant 

increase in the discretization effort (time and space). The need to solve seven 

conservation equations with a Reynolds-Stress-Model would also increase the 

calculation time and resources. 

5.2 Simulation Results 

The principle structure of the flow field is shown in the vector field plot of Figure 71. In 

this figure, the vector length was set constant, so that only the color represents the 

velocity magnitude. The smaller the vectors are, the larger the velocity component in 

tangential direction is. The flow field can be divided into two major recirculation regions 

divided by the flywheel. The developing recirculation flow structures are indicated by 

the schematic arrows in Figure 71.  

The first recirculation flow is located at the pressure plate assembly side of the bell 

housing. After entering the clutch system through the openings in the cover or the 

diaphragm spring openings, air is mainly passing through in tangential and radial 

direction. As indicated there exists very little flow exchange between the air enclosed 

by the clutch disk and the flywheel and the rest of the air inside the clutch system. After 

the flow has passed the pressure plate, the flow leaves the pressure plate assembly 

through the holes in the clutch cover. The flow then impacts on the bell housing and is 

directed back towards the openings of the clutch system. 

                                            
141 Star-CCM+ User Manual 2010 
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Figure 71: Flow Field Inside the Bell Housing 

The first expectation here was, that because of the angle of the bell housing wall there 

would be a flow exchange happening with the flywheel sided air. The ring gear at the 

outer diameter of the flywheel and the small clearance to the bell housing wall act here 

as flow field separators. 

 

Figure 72: Flow Field Separation Inside the Bell Housing 

As shown in Figure 72 the flow at the flywheel side is circulating back towards the 

engine side of the powertrain and air at the pressure plate assembly side of the 

flywheel is circulating back towards the transmission side of the powertrain. This 

phenomenon was monitored at all engine speeds. The separation between the left and 

right sided air of the flywheel has also effect on the temperature field. 
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Figure 73: Temperature Field Inside the Bell Housing at 1500 rpm 

Figure 73 shows the temperature field at 1500 rpm. It can be seen that there is an 

obvious temperature difference between the left and the right side of the flywheel. The 

temperature difference results from the hotter pressure plate, the engine sided 

openings to the ambient causing cool air being transferred into the bell housing and 

the low mixing of the air inside the bell housing on the left and right side of the flywheel.  

 

Figure 74: Streamline Plot with Origin at the Starter Engine Opening 

To see how the colder air from the outside of the bell housing is distributed inside the 

bell housing a closer look at the streamlines from the opening of the starter engine was 

taken. 
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Figure 74 shows the streamlines with an origin at the starter engine opening. The 

streamline color represents the temperature of the air flow. It can be seen, that air 

entering the bell housing domain follows the rotation direction and mixes with the air 

inside the bell housing. To maintain the mass balance, the same amount of air entering 

the bell housing leaves the bell housing at the misalignment between the engine and 

the bell housing located on the right side of Figure 74.  

The mentioned flow field separation is also an area of optimization potentials. Looking 

at the heat transfer coefficient of the engine one discovers, that due to the relatively 

small clearance between the flywheel and the engine side, the heat transfer to the 

engine is at a comparable level to the bell housing.  

 

Figure 75: Local Heat Transfer Coefficient at 750 rpm at the Engine Side 

In Figure 75 the distribution of the local heat transfer coefficient at the engine side is 

shown. The higher and approximately constant heat transfer coefficient of the retainer 

is accounted to the small clearance to the flywheel and the low distance to the rotation 

axis of this part. If a high energy event occurs, e.g. multiple launches in short period of 

time, the air inside the bell housing will be hotter than on the engine side. It would 

therefore be an additional benefit, if the mixing between the left and right sided air of 

the flywheel would be high. The thermal mass of the engine together with the engine 

cooling circuit could then be used more efficiently to reduce the bell housing air 

temperature. 

The bell housings of modern vehicles are usually closed (only a drainage hole at the 

bottom of the bell housing is left open) to reduce water ingress and corrosion. The 
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displayed flow exchange to the ambient therefore does not exist in most vehicle 

powertrains. Still, as will be shown in chapter 7, the ambient air exchange is an 

interesting and efficient way to reduce the air temperature inside the bell housing. 

 

Figure 76: Local Heat Transfer Coefficient at the inside of the Bell Housing at 750 rpm 

Figure 76 shows the distribution of the local heat transfer coefficient on the inside 

surface of the bell housing at 750 rpm. It can be seen, that areas close to the clutch 

systems outer diameter have a high local heat transfer coefficient. Compared to this, 

the surface towards the transmission has a lower local heat transfer coefficient. The 

local heat transfer coefficient is directly related to the wall friction and therefore to the 

flow field. As shown earlier in Figure 71, the flow velocity at the transmission side of 

the bell housing is low due to numerous ribs acting as flow resistance. The resulting 

wall shear stress profile of the inside of the bell housing indicates, that most of the heat 

generated inside the clutch system is transported directly into the lateral surface of the 

bell housing, making the assumption of neglecting the rest of the transmission a 

reasonable choice. 
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Figure 77: Division of Heat Transfer to Ambient 

Figure 77 shows the division of the overall heat transfer to ambient. It can be seen, 

that the convection heat transfer towards the engine can be neglected compared to 

the amount of heat transferred out of the system by flow exchange and convection 

towards the bell housing. 

 

Figure 78: Mass Flow into the Bell Housing 

Figure 78 shows the mass flow engine speed dependency. With an increase in engine 

speed, the air flow into the bell housing is increased. In Figure 79 the overall integrated 

surface friction of the clutch system is shown in dependency of the engine speed. The 

diagram shows the same behavior as the last diagram – with increasing engine speed 

the frictional torque rises. It is also obvious, that the mass flow into the bell housing 

and the frictional torque on the surface of the clutch system are directly connected. 
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Figure 79: Overall Drag Torque of the Clutch System 

In Figure 80 the wall shear stress profile for the flywheel is shown. The grey surfaces 

in the diagram are interfaces to other parts and have therefore no wall shear stress 

values. The Backside of the flywheel shows a distribution close to a rotating disk in 

free air. The wall shear stress values increase from the inner radius to the outer radius.  

 

Figure 80: Wall Shear Stress Distribution on Flywheel at 3000 rpm: Frontside (left), Backside 
(right) 

On the front side of the flywheel wall shear stress profile is more disturbed than on the 

backside, due to flow obstacles. Still, some flow structures, like the slightly outward 

and tangential dark blue areas, can be identified. These areas are due to the geometry 

of the clutch system and the radial and tangential outflow of the clutch system 
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“protected from the wind” and there exists no or very few relative movement between 
the clutch system and the air.  

For the clutch cover similar flow structures as for the flywheel can be identified, as 

shown in Figure 81. Inside the clutch cover, the dark blue areas again indicate no 

relative movement between the cover and the air inside the clutch system. On the 

outside of the clutch cover an increase of the wall shear stress values with the radius 

can be observed. The most significant difference between the inner and outer surface 

of the clutch cover can be obtained when comparing the magnitudes of the wall shear 

stress values. 

 

Figure 81: Wall Shear Stress Distribution on Clutch Cover at 3000 rpm: Outside (left), Inside 
(right) 

The values on the outside of the clutch system are approximately two to four times 

higher than at the inside of the cover. This phenomenon can be explained if the flow 

field structure inside and outside of the clutch system is taken into consideration. At 

the inside of the clutch system the air is accelerated in angular direction, causing the 

air to move towards the outer diameter of the clutch system due to centrifugal forces. 

This means, that the relative velocity inside the clutch system will be smaller compared 

to the relative velocity at the outside of the clutch system. The relative velocity at the 

outside is comparably larger due to the deceleration of air at flow obstacles like ribs or 

plain surface friction on the inner surface of the bell housing. 

Similar structures can also be identified when looking at the wall shear stress profile of 

the diaphragm spring shown in Figure 82. At the surface towards the clutch disk the 

wall shear stress values are significantly smaller than on the outer surface. Again this 

is due to the fact, that the air region restricted by the clutch disk and the flywheel is 

nearly rotating like a solid body with relatively small velocity difference to the clutch 
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system itself. This can also be observed at a closer look at Figure 71. At the connection 

interfaces to the sense spring or the pressure plate areas with low wall shear stress 

magnitudes due wake effects are visible. 

 

Figure 82: Wall Shear Stress Distribution on Diaphragm Spring at 3000 rpm: Frontside (left), 
Backside (right) 

At the outer side of the diaphragm spring, the magnitude of wall shear stress values is 

a little more homogenous than on the inside. Compared to the flow structure on the 

clutch cover or on the backside of the flywheel, the wall shear stress values on the 

diaphragm spring seem to have no distribution dependent on the radial coordinate. 

This can be explained by the relative speed difference. The fingers of the diaphragm 

spring experience a higher relative speed, as they are directly in contact with the air 

outside of the diaphragm spring. The other surfaces of the diaphragm spring 

experience similar relative velocities due to the more advanced position towards the 

outer diameter of the clutch system. 

The wall shear stress distribution for the pressure plate is shown in Figure 83. Here, 

as for the flywheel and the clutch cover, a radial distribution of the wall shear stress 

magnitudes can be observed. Towards the outer diameter the highest wall shear stress 

values are present. At the diaphragm spring supports wake effects, indicating low 

relative speed differences between the pressure plate and the air inside the clutch 

system, can be observed.  



CFD Based Heat Transfer Determination of a Vehicle Clutch System 

 

103 

 

Figure 83: Wall Shear Stress Distribution on Pressure Plate at 3000 rpm 

Figure 84 shows exemplarily the influence of how the air inside the bell housing is 

modeled in the heat transfer coefficient of the pressure plate. It can be seen, that the 

highest influence is at lower engine speeds.  

 

Figure 84: Influence of Modeling Treatment of Air 

This is due to the higher temperatures of the air inside the bell housing, which can 

result from the lower volume flow rates in and out of the simulation domain and the 

lower heat transfer towards the bellhousing.  
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Figure 85: Engine Speed Influence on Air Temperature 

The air temperature dependency on the engine speed is shown in Figure 85. As can 

be seen the air temperature drops for both modeling approaches until an engine speed 

of about 4500 rpm is reached. The following increase in temperature is suspected to 

be coupled to the earlier mentioned flow field separation. The highest temperature 

difference between the two models is approximately 4 °C. 

The overall heat transfer coefficients calculated with the simplification procedure for 

the ideal gas case for the pressure plate, diaphragm spring, clutch cover and flywheel 

(see chapter 4.4) are shown in Figure 86. While the heat transfer coefficient increases 

for the pressure plate, flywheel and bell housing, the clutch cover and diaphragm spring 

heat transfer coefficient also decreases after a certain engine speed. 
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Figure 86: Simplified Overall Heat Transfer Coefficients 

This phenomena observed for the clutch cover can be related to almost equal heat 

transfer to and from the component resulting in an almost leveled heat balance making 

the heat transfer coefficient approach zero. Other possible reasons for this behavior 

are the good coupling to the flywheel and the calculation of a heat transfer coefficient 

based on a global air temperature as reference and the decreasing air temperature 

behavior with increasing engine speeds. A study of the overall heat balance for the 

clutch cover revealed, that at 6000 rpm the direction of the heat transfer of the clutch 

cover changed, resulting in a negative heat transfer coefficient. 
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Figure 87: Influence of Simplification Process on HTC Values: Pressure Plate (Top); 
Diaphragm Spring (Bottom) 

Figure 87 shows two examples of the influence of the simplification process on the 

heat transfer coefficients. The top shows, that for the pressure plate the heat transfer 

coefficient drops a small amount with rising engine speed. This is due to the increasing 

amount of heat being transferred over the backside of the pressure plate by convection, 

while the heat transferred by conduction is reduced and the overall thermal mass is 

increased. The same can be observed for the diaphragm spring as shown in the bottom 

part of Figure 87. Here, the distance between the two curves decreased from the 

starting engine speed to the maximum speed. This is due to an increase in 

convectional heat transfer of the summarized parts. 
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5.3 Transferability of Results 

After the presentation of the results for one clutch system, the question of transferability 

of the generated results to other clutch or vehicle system remains. A general problem 

regarding this topic is that due to increasing restrictions in packaging, resources or 

functionality the components used for one vehicle application may not be sufficient for 

another application.  

 

Figure 88: Packaging Conditions in Different Vehicle Applications 

Figure 88 shows an example of the variety of packaging conditions of a dry clutch 

system in different vehicle applications. It can be derived from these conditions that 

the recirculation flow structure will definitely vary and therefore the heat transfer 

conditions will too.  

To judge and display the influence of different clutch designs on the heat transfer a 

short study in free air was performed. Target is the analysis of geometrical variations 

and the impact on the heat transfer. Main focus was on the heat transfer from the 

pressure plate.  

The boundary conditions for the simulations are: 

 Steady state simulation in free air 

 Closed condition 

 Three clutch systems with equivalent outer diameter 

 Constant heat input rate at frictional interfaces (15 kW/m²) 

 Engine speed range: 750 / 1500 / 3000 / 4500 / 6000 rpm 
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The free air simulation domain condition was chosen to meet the requirement of equal 

conditions for all systems. Figure 89 shows the calculation domain. The air space was 

divided in a rotating region containing the clutch system and a stationary region as 

ambient.  

 

Figure 89: Calculation Domain and Clutch Geometry 

Figure 90 shows the results for the pressure plate of the clutch systems. Usually the 

heat transfer coefficient in rotating systems can be expressed by an exponential 

function of the rotation rate. If the exponent if close to 0.5 heat transfer is dominated 

by laminar, if it is close to 0.8 it is dominated by turbulent effects. The exponents of the 

fitted trend lines show different behaviours.  

 

Figure 90: Normalized Heat Transfer Coefficients of Analysed Clutch Systems 
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Looking at the heat transfer coefficients in combination with the mass flow (Figure 91) 

through the clutch system, an indication on the origin of these differences can be 

derived. The mass flow shows linear behaviour with engine speed. 

With rising volume flow through the system, the air has a lower residence time inside 

the clutch system. Figure 92 shows a vector plot of the flow inside two clutch systems. 

 

Figure 91: Normalized mass flow through clutch system 

For the left system, it can be seen, that after the air passes through the gap between 

diaphragm spring and pressure plate (Inflow) and remains in the clutch system for a 

while (Delay Area) before leaving the domain between the cover and the pressure plate 

(Outflow). 
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Figure 92: Tangential Projection of the Velocity Vector for two Systems at 1500 rpm 

From the heat transfer coefficient and mass flow results, it could be assumed, that the 

overall performance of system C is reduced compared to system A and B. A judgement 

of overall system performance needs to consider the entire heat path. The heat division 

for system C is displayed in Figure 93.  

 

Figure 93: Heat Division in System C 
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It can be seen on Figure 93 that at lower engine speeds the heat transferred from the 

pressure plate is dominated by conduction to the diaphragm spring. As the engine 

speed increases, the amount of conduction decreases because of the rise in mass flow 

through the system. Due to the geometry of the lift springs (thin strips of sheet metal), 

the heat transferred from the pressure plate by conduction is very low. This 

phenomenon could be observed for all clutch systems. 

As can be concluded from these results, the transferability of the results from one 

clutch system to another is very difficult because not only frictional surface effects are 

influencing the heat transfer. Additionally another variable is the clutch size itself. With 

larger outer diameter, the flow rates inside the clutch system will definitely rise and 

therefore the heat transfer coefficients will as well. Under these circumstances and with 

the overall variability in mind it is seen as most practical to simulate individual clutch 

and vehicle applications by CFD to obtain the heat transfer related data. 
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6 Model Verification 

The verification of the simulation results of chapter 5 is treated in this chapter. Main 

focus is on how well the CFD simulation model reproduces the flow and heat transfer 

conditions. Also important is the validity of the simplified clutch life cycle simulation 

tool, which will be provided at the end of this chapter. Since the flow field is of high 

importance the chapter will start with a short review of different flow measurement 

principles displayed in chapter 2.3 and then detail the overall verification procedure. 

6.1 Conclusions on Measurement Principles 

In chapter 2.3 various measurement techniques for flow systems are displayed. 

Dependent on the measurement task, level of information needed on the flow system, 

packaging space and available resources, these techniques are more or less suitable 

compared to each other. 

Flow field measurements (two and three dimensional) with optical access for example 

can be efficiently performed by visual / optical measurement techniques (e.g. particle 

image velocimetry). This technique offers the lowest influence on the flow system and 

maximizes the amount of information being captured. It can be used for stationary and 

transient cases. The direct need of a visual access to the area of interest and high 

resources needed for the equipment can be seen as the only disadvantages. The 

technique is therefore predestinated for accurate measurement of the flow outside of 

the clutch system. 

All of the other measurement techniques can be seen as point wise techniques, 

because they only deliver data on a certain point in the flow field. If properly calibrated, 

the techniques of electro / mechanical and thermal techniques have no advantages or 

disadvantages compared to each other. As displayed the possible application of foil 

sensors inside the clutch system extends the field of application of thermal 

measurement techniques to the rotating system. 

6.2 Verification Procedure 

Main objective of the verification procedure is to demonstrate that the CFD modeling 

procedure displayed in chapter 5 and the simplified thermal model outlined in chapter 

4 are capable of reproducing flow and heat transfer conditions for a manual dry clutch 

system under vehicle mounting conditions. 

In chapter 5.2 it was demonstrated that heat transfer is tightly coupled to the flow 

conditions in and outside the clutch system. A split up of the CFD verification procedure 

into three main segments is therefore considered: 
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1. Validity of the recirculation flow outside of the clutch system 

2. Validity of flow inside the clutch system 

3. Validity of the heat transfer from and between the clutch components 

The validity of the recirculation flow outside of the clutch system can be performed with 

various measurement devices. It was selected to measure the absolute velocity at 

arbitrary chosen points between the clutch system and the transmission bell housing 

with a thermal anemometer. In addition it was decided to measure the flow field around 

a clutch system rotating in free air with a particle image velocimetry system to 

circumvent packaging and application issues. 

For the validity of the flow and heat transfer inside the clutch system the validity of the 

conditions around the pressure plate are of high importance. It was thus decided to 

validate the flow and heat transfer around this part.  

As displayed in chapter 6.1 it is difficult to obtain information from inside the clutch 

system. The central problems that arise here are on one side due to the rotation of the 

clutch system and on the other due to minimization of the influence of the measurement 

device on the flow field (packaging). The only measurement techniques available for 

the selected measurement task are therefore the application of an optical / visual 

technique or the use of flush mounted thermal measurement sensors. The possibility 

of spanning thin wires between the support points of the diaphragm spring on the 

pressure plate to measure the average velocity was also considered but was neglected 

due to the lack of information on the flow angle, as well as handling and centrifugal 

influences on the wire.  

To obtain visual access to the surface of the pressure plate severe modifications to the 

clutch system would be necessary (modification of cover, diaphragm spring, sense 

spring, sense ring). It was therefore decided to apply a thermal measurement 

technique to measure flow quantities inside the clutch system.  

In order to optimize the measurement effort to validate the heat transfer and flow 

conditions, it was considered to validate conditions inside the clutch system using a 

quantity which both phenomena are highly dependent on. As outlined in 

chapter 2.2.3.3 heat transfer and flow conditions are mainly dependent on surface 

friction. The correctness of the local wall shear stress was therefore taken as 

verification measure for the flow and heat transfer inside the clutch system. 

As the heat distribution inside the clutch system is dependent on conduction heat 

transfer between the individual parts, it was decided to take the conductional 

resistances between the main clutch parts as additional verification parameter on the 

thermal side.  
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Finally, temperature measurements from vehicle test track are used to verify the simple 

model and therefore prove the correctness of the simplification procedure. 

 

Figure 94: Verification Procedure 

In Figure 94 the overall process of verification measurements and their interrelations 

are shown. It can be seen that all performed measurements have the crucial target of 

providing enough information to ensure the validity of the simplified thermal model. 

6.3 Average Flow Velocity Measurements 

For the average flow velocity measurements outside of the clutch system a test rig was 

prepared. The rig consisted of the clutch system, flywheel, bell housing of a 5-speed 

manual transmission, clutch actuation cylinder and a cover plate to close the bell 

housing. The individual components where mounted to a rig, which is normally used 

to test the burst speed capability of flywheels (Figure 95). The rotational speed could 

be adjusted manually by a potentiometer. A sensor mount was used to position the 

sensor manually at the desired points. 

Since the complete reproduction of all geometrical features of a vehicle model on a 

test rig is not always possible and feasible, a simplified version of the overall vehicle 

model used in the last chapter, was also assembled in the CFD environment. The 

engine side was replaced by a simple cover plate and in addition the starter engine 

was neglected to reflect test rig conditions. Initial measurements with a different clutch 

actuation cylinder showed, that the correct geometry on the test rig and inside the CFD 

model is highly important and care should be taken at this point. 
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Figure 95: Test Rig Set-Up 

A comparison between the CFD rig model and the vehicle model can be seen in Figure 

96. It shows a comparison of the flow field in the individual models at 3000 rpm. The 

flow field on the pressure plate side in the two models has negligible difference 

compared to the flow field between the flywheel and engine / cover plate. The reduced 

clearance and missing ribs and crowning of the engine / oil pan surface make the flow 

in the test rig model more stable and organized compared to the vehicle model. 

The flow field on the transmission side of the clutch system is very similar to the flow 

field in the vehicle environment. This in fact aids the thesis of no (or few) exchange or 

interference of air between the flywheel sided and transmission sided air. 
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Figure 96: Flow Field Similarity (left: Test rig Configuration; right: Vehicle Configuration) 

Figure 97 shows an example of measurement positions in the vertical measurement 

plane through the assembly.  
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Figure 97: Measurement Positions Vertical Plane Section 

For the measurements of the average flow velocities a 54T29 reference velocity probe 

of Dantec Dynamics was considered. The probe has the advantage of a built in 

temperature compensation and is known as being highly robust.  

In the first tests performed prior to the measurements, the selected sensor head of the 

54T29 CTA probe was damaged and could not be repaired. As a replacement for the 

sensor a locally available testo 425 CTA was taken. With a measurement range of 0-

20 m/s, a resolution of 0.01 m/s with an accuracy of ±0.03m/s +5% of measurement 

value, the sensor was considered capable of performing the measurement task. 

An advantage of this device compared to the original device can be seen in Figure 98. 

The tangential and axial direction of the flow can be measured independently due to 

the shielding of the sensor head. Disadvantage was, that the flow measurement signal 

could not be acquired digitally and that due to safety reasons the built in flow velocity 

averaging function could not be used. 
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Figure 98: testo 425 Velocity Probe142 

To circumvent these challenges it was chosen to monitor the measurement device with 

a camera and to record 15 consecutive values displayed manually to capture some 

time dependent turbulent properties of the flow. After this, the 15 values were averaged 

and compared to the values obtained by the simulation. 

The rotary speeds where chosen from the range of 1000 rpm to 3000 rpm with a step 

size of 500 rpm. Since the utilized test rig does not have high requirements on rotary 

balance and there was no option to adjust any imbalance of the clutch system, the 

engine speed was limited to 3000 rpm. The ambient temperature in the test rig room 

was kept constant at 20°C. In addition temperature compensation is implemented in 

the measurement device. 

 

Figure 99: Evaluation Positions with a Measurement Example 

Key point to the success of the measurements is to know the correct location of the 

measurement sensor. As can be observed from Figure 99, a small change in position 

in all directions in the measurement plane can cause a velocity change. 

                                            
142 Testo Homepage www.testo.de 
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To help overcome these obstacles, the simulated velocities were evaluated at one 

central position and additional 6 adjacent positions with an offset of 5 mm.  

Figure 100 shows a selection of final measurement and simulation results. In the 

diagrams the line represents the simulation result in the position from the left side of 

Figure 99 with best fit to the obtained measurement data. 
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Figure 100: Measured and Simulated Velocity Distributions 
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6.4 Wall Shear Stress Measurements 

For the wall shear stress measurements the overall measurement procedure is divided 

into four sections: 

1. Setup of a test rig for sensor behavior and calibration purposes 

2. Calibration of the foil sensors against a reference wall shear stress 

measurement principle 

3. Determination of influencing factors and study of general sensor behavior 

4. Application of sensors to the pressure plate of the clutch system and to measure 

wall shear stress levels under different rotary speeds 

6.4.1 Rig Configuration for Reference and Sensor Behavior Testing 

The first and most important decision in performing the reference measurements was 

the selection of a reference measurement technique. As shown in the earlier chapters, 

all measurement principles have some advantages and disadvantages. The 

application of a floating element sensor as reference technique was disregarded since 

the flexibility of its application is poor. If the sensor is applied to different parts of the 

clutch system, it would have to be mounted on similar positions, which is not always 

possible due to packaging and material thicknesses. Wall fence techniques were also 

neglected due to similar reasons. 

The Ideal technique would have to be flexible in regards of measurement position on 

the clutch system, provide repeatable results and have the desired range of 

measurement value. Techniques like the near wall Pitot-tube measurements would be 

possible, but the unknown thickness of the momentum layer would also have to be 

tested to obtain the optimal sensor probe for this specific problem. Due to the local 

availability of a boundary layer probe, it was decided to use it to measure the velocity 

distributions in surface normal direction and evaluate the wall shear stress values by 

curve fitting. 

The second assignment in planning the rig setup is selecting a thin foil sensor for the 

measurements on the surface of the pressure plate. Typically these sensors are 

custom made for a specific application. During general research the sensor displayed 

in Figure 32 from Dantec Dynamics was the only industrial available sensor found and 

therefore was selected for this application. 
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According to 143 this type of sensor has a high dependence on flow angle, temperature 

and the support material on which the sensor is mounted. To test and characterize 

these influences on the sensor, the dependencies were considered as boundary 

conditions for constructing the test rig. This step is of high importance, because it 

defines (or even limits) the accuracy of the desired measurements on the pressure 

plate component. It is therefore beneficial to choose simple flow and ambient 

conditions for calibration purposes or to study sensor behavior. In preliminary planning 

the desired ambient conditions for the flow measurements were chosen to be 

stationary in order to have one dimensional character in sensor area and to have a 

constant temperature (component and ambient air). The one dimensional character of 

the flow is important, because also the boundary layer probe does only allow pressure 

characterizations in one direction. 

For the design of the test rig different considerations were taken into account. Primarily 

it is important to check if mounting conditions of the sensor have an impact on the 

sensor behavior. The application of the sensors on different materials is regarded as 

an efficient way to determine the influence caused by mounting conditions. The rig 

needs to offer the possibility to mount different sensor and material combinations. This 

can be provided by mounting the sensors on small inlays which can be individually 

applied to the rest of the rig. 

As mentioned before, a highly influencing factor is the angle between the sensing 

element and the ambient flow. To measure the flow angle influence, the test rig has to 

contain a rotary functionality with the tough constraint to have the same flow conditions 

under all possible flow angles.  

 

Figure 101: Wall Shear Stress Profile for a Round Disk 

In a first attempt it was decided to construct the support plate in shape of a disk with a 

radius chamfer on the circumference and rotate the entire support plate to test angular 

                                            
143 Nitsche & Brunn 2006, P.87ff. 
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dependence. Simulation results for a wind tunnel outlet velocity of 20 m/s is displayed 

in Figure 101. For a round disk shape it is indicated that the flow direction and wall 

shear stress on the surface of the support plate are not one dimensional as required.  

It was therefore necessary to redesign the support plate. The resulting rectangular 

support plate shape can be seen in Figure 102. The rotary functionality was maintained 

by splitting the support plate into a sensor mounting which can be rotated individually 

(as indicated in the left diagram of Figure 102) and a support plate.  

 

Figure 102: Wall Shear Stress Profile for the Second Plate Configuration 

The simulation results in Figure 102 show that the flow and wall shear stress near and 

on the surface are suitable for the anticipated measurements. The leading edge of the 

plate was rounded with a radius of 5 mm. To allow the flow to stabilize itself, it was 

selected to have a length of 100 mm from the leading edge to the center of the sensor. 

Compared to the angular dependencies and the mounting conditions of the sensor, the 

temperature sensitivity does not have a high constraint on the test rig. It can be treated 

as external boundary condition and varied individually. The study of the temperature 

sensitivity of the sensor does not have any constraints on test rig geometry. 

The final rig configuration is displayed in Figure 103. It was designed based on local 

available expertise and CFD simulations to obtain ideal conditions for the wall shear 

stress measurements.  

The main components of the rig are a wind tunnel and a support plate. At the end of 

the wind tunnel a flexible tube was used to connect the wind tunnel to a fan. The 

support tray can be divided into three main components: support plate, sensor mount 

and inlay. The sensor mount can hold different inlays to either study the sensor 

behavior or to measure the wall shear stress in the center of the plate. 
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Figure 103: Test Rig Configuration for Reference Wall Shear Stress Measurements 

To perform an angular dependency study, the sensor mount in the middle of the 

support plate can be rotated. Figure 104 displays the main components of the 

measurement equipment are displayed. 

 

Figure 104: Measurement Equipment for Wall-Shear-Stress Test Rig 

At the entrance of the wind tunnel a Pitot tube was put in place to measure the inlet 

velocity of the air. A temperature sensor (thermocouple type K-1) was placed at the 

end of the wind tunnel to obtain the air temperature exiting the wind tunnel. 

The measurement transducer offers the operator to adjust the wall (or working) 

temperature of the sensor via a resistor decade. For the calibration and sensor 
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behavior measurements the resistor decade was set to represent a wall temperature 

of 120 °C since the temperature limit of the foil sensor is 150 °C. Besides this, it is also 

possible to adjust the voltage output of the sensor by using two potentiometers (gain 

and offset adjustment). The before mentioned temperature correction is then no longer 

applicable. 

6.4.2 Reference Wall Shear Stress Measurements 

Main objective of these measurements is to obtain the inlet velocity dependent function 

of the wall shear stress levels in the center of the support plate as enabler for 

calibration and sensor behavior testing. 

As indicated in the general wall laws for turbulent flow, the boundary layer can be 

separated into a laminar sub layer (eq. 6.1) and a full turbulent layer (eq. 6.2). Between 

these layers there exists a transition zone (12 < y+ < 30) which connects the two 

regions. Equations 6.1 and 6.2 point out, that the wall shear stress level at the surface 

is dependent on the flow velocity profile in surface normal direction and temperature 

dependent quantities such as density and viscosity. 
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Assuming that the near-surface laminar sub layer is too small to be measured by the 

boundary layer probe, the focus has to be on the determination of the velocity profile 

of the turbulent boundary layer. Taking equation 6.2 and the simplifications in 

equations 6.3 for boundary layers (chapter 2.2.3.3) leads to equation 6.4.  
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Using this equation together with the result of a curve fitting of the measured velocity 

profile, one can obtain the wall shear stress by comparing the coefficients. This 

operation can be done, because in equation 6.4 the unknown wall shear stress value 

can be treated as constant. The only variable in this equation is the surface normal 

distance. For the values of density, viscosity and kappa, standard values for air where 

used in the performed experiments. The constant C in the equations was chosen to 

match with a smooth surface. 

Figure 105 shows a measured velocity profile determined with the boundary layer 

probe. The probe was connected to a Baratron-Manometer from MKS Instruments. 
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The manometer offers a pressure measurement accuracy of ±0.5 % of the 

measurement value. Additionally pressure manometers are usually calibrated at room 

temperature and therefore have a temperature dependent zero point offset coefficient 

which has a value of for example 0.02% of the measured value per degree Celsius. 

The temperature dependent measurement error can be neglected because all 

measurements will be performed at room temperature. 

 

Figure 105: Measured Velocity Profile 

The velocity profile in Figure 105 shows a good fit to a logarithmic function. The 

process of comparing coefficients to obtain the desired wall shear stress values was 

accompanied by some major challenges. The issue of the curve fitting is that it does 

not directly consider a measurement error caused by position inaccuracy. As can be 

derived from equation 6.4 the knowledge of the correct position of the boundary layer 

probe is of highest importance. The performed curve fitting procedure is not open to 

measurement errors. 

For the solution to this complex of finding the correct wall shear stress values at the 

surface, the problem was reformulated to incorporate a position measurement error.  
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Taking equation 6.4 and substituting the position y with an average position, 

representing the known offset of the probe from the surface adjusted with thickness 

gauges and an offset error (eq. 6.5). Taking equation 6.5 as initial point for an 

optimization scheme with variables, one loosens the tight coupling of the position and 

velocity values and makes it thus more convenient for the proposed wall shear stress 
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measurements. Since the distance levels from the surface for the individual velocity 

measurement is known, the remaining unknowns in equation 6.5 are the offset and the 

wall shear stress level at the surface. 

As optimization scheme a Kalman filter (see chapter 2.5) was selected. Main 

advantage of the Kalman filter algorithm is that it directly incorporates measurement 

and system noise resulting from inaccuracies from measurements and modeling. 

6.4.3 Application of the Kalman Filter to the Measurement Task 

The state space formulation needed to evaluate the problem can be obtained by taking 

the unknown wall shear stress and position offset as state variables, together forming 

the state vector displayed in eq. (6.6).  
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The position offset error was assumed equal for all measurements at one wind tunnel 

velocity. This helps the convergence of the algorithm due to the reduction of variables. 

The measurement update equation is formed by augmenting all velocity 

measurements into a single vector (eq. 6.7).  

  Tnmmm uuu ,0, ...


 (6.7) 

 

























 C

yy
u wiiw

iu 








ln
1

,  (6.8) 

Taking the measurement vector of eq. 6.7 the measurement update can be formulated 

by eq. 6.8. As can be seen by equation 6.8 the parameter identification task has a non-

linear measurement update function. The stated problem can be characterized as 

stationary non-linear parameter identification task. A nonlinear filtering technique is 

therefore needed to overcome this hurdle. The Unscented Kalman Filter Algorithm 

(chapter 2.5.3) was chosen with a parameter definition according to equation 6.6.  

To confirm the identified parameters of the calibration test rig an additional simulation 

model was set up. The model geometry is shown in Figure 106. By using a symmetry 

plane boundary condition the geometry modeled can be reduced to one half of the test 

rig. 
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Figure 106: Test Rig Simulation Model 

As boundary condition the inlet velocity was set to the desired value. The surface of 

the inlet tube and the plate were treated as no-slip condition. All other surfaces (except 

the symmetry plane) were set as pressure outlets. 

The parameters were limited by a pre-factor (pi,0) for the offset error of 0.5 mm and a 

shear velocity of 4 m/s. These values were chosen based on the possible air speed of 

the test rig (max. 24 m/s – 4 m/s ≈ 16%) and the assumed maximum displacement 
error (assuming that an error of 0.5 mm is obviously detectable by the operator). The 

scaling factor was chosen close to 1, to be able to use the entire range of positive 

parameter values. System and measurement noise were assumed constant, additive 

and of Gaussian type.  

 

Figure 107: Convergence Behavior Example 

The system covariance was set as 2x2 matrix with diagonal entries of 10-4 and the 

system noise covariance was set as 2x2 matrix with diagonal entries of 10-3. The 

measurement noise matrix was chosen as diagonal 6x6 matrix with entries 10-2. For a 
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parameter identification task, this matrix can in fact be chosen arbitrary, because it 

cancels according to 144 out of the algorithm. 

In Figure 107 the convergence behavior is shown for one example. It can be observed, 

that the wall shear stress converges to its final value in the first 10 iterations while the 

offset error needs 30 iterations to converge. For this example the obtained final 

parameter xi inside the hyperbolic function was estimated as  

(-0.61, -1.29)T. The final system covariance matrix had corresponding diagonal entries 

of (0.0032, 7.63*10-6). The limits, as displayed in Figure 38, were therefore not 

achieved and the result can be regarded as valid. 

                                            
144 Merwe 2004, P.89 
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Figure 108: Wall Shear Stress (Top) and Position Offset (Bottom) Results 

A comparison of simulated and measured parameters can be seen in Figure 108. The 

wall shear stress values have a good match to the simulated values (Figure 108 top). 

The bottom diagram in Figure 108 shows the identified position offset error, which has 

an average value of 0.27 mm. To test the algorithm additional 0.5 mm was added in 

one measurement run to the thickness gauges. The result shows that the algorithm 

works and correctly identifies this additional inaccuracy. 

The dependency between the inlet velocity of the wind tunnel and the wall shear stress 

levels at the center of the plate has therefore been identified and is used as basis for 

the following tests of sensor behavior. 
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6.4.4 Influencing Factors and Sensor Behavior 

For sensor calibration the coefficients A and B of equations 2.38 and 2.40 of chapter 

2.3.3 have to be quantified for temperature, mounting conditions and angular changes 

between the air flow and the sensing element in order to be able to apply the sensor 

to the clutch system. To analyze the influencing factors on the sensors the following 

variation studies were performed: 

 Temperature Dependency 

 Mounting Conditions (Material) 

 Flow Angle 

6.4.4.1  Temperature Dependency 

Formulas 2.21 to 2.23 show that the heat transfer from a surface is highly dependent 

on the ambient and wall temperature. The higher the temperature difference (assuming 

equivalent local heat transfer coefficients) between the wall and the ambient air, the 

higher the transferred heat will be. To test the temperature dependencies of the 

sensors, the rig was set up in a climate chamber which allowed setting the ambient 

temperature at a desired level. 

 

Figure 109: Temperature Dependency of Calibration Curve 

Figure 109 shows the temperature dependency for the sensor placed on the plastic 

inlay. It can be seen, that not only the values change, but also the sensitivity of the 

sensor (increase in slope) drops with increasing temperature. It is therefore necessary 

to calibrate the sensors against varying ambient temperatures. 
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6.4.4.2  Mounting Conditions 

The mounting conditions are highly responsible for how the heat is removed from the 

sensing element. Heat generated by the sensing element is dissipated by conduction 

into the carrier material, radiation to peripheral components and convection to the 

ambient. To minimize the conductive heat transfer to the support material, a blind hole 

was placed under the sensing element. According to 145 this helps to improve the 

sensor sensitivity.  

 

Figure 110: Sensor Positioning Principle 

To study the mounting condition influence two sensors where placed onto different 

support materials. One sensor was placed onto cast iron (pressure plate material – 

CGI) and the other was placed on plastic material. It can therefore be quickly derived 

how big the influence of the mounting condition and carrier material is, since one 

material has nearly insulating properties. 

In Figure 111 the results of the tests at ambient temperature of 20°C are displayed. 

The sensor placed on the metal support has a lower sensitivity than the sensor placed 

on plastic.  

                                            
145 Nitsche & Brunn 2006, P.89 
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Figure 111: Influence of Mounting Conditions on Sensor Behavior 

The behavior is similar to the ambient temperature change experiments conducted 

earlier. Reason for the similarity is that due to the lower thermal conductivity of the 

plastic material the heat transferred by conduction is lower and therefore the 

convective heat flux is higher with unchanged ambient conditions. 

6.4.4.3  Flow Angle Dependency 

The flow angle has a high impact on the heat transferred from the sensing element to 

the ambient air by convection. Changing the angle between the air flow and the sensing 

element results in a change of the overflown length.  

 

Figure 112: Change of overflown Length with Flow Angle 

For a simplified rectangular geometry with a width 10 times as large as its height, 

Figure 112 shows the change in overflown length. According to Figure 112 the sensor 

should show a low sensitivity to small changes in flow angle. At an angle of 

approximately 60° the sensitivity increases dramatically. 
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In Figure 113 the measured angular dependencies are shown. Both plastic and metal 

mounted sensors show the same behavior if normalized to the squared bridge voltage 

difference at a perpendicular flow angle.  

 

Figure 113: Sensitivity of Sensors to Flow Angle 

The above mentioned behavior was not fully obtained by the measurements. Angular 

changes can be characterized by a trigonometry function, but the stated high drop at 

angles larger than 60° could not be observed. This phenomenon is related to the small 

size of the sensing element, reducing this influence. The results indicate that the angle 

between air flow and sensing element can be characterized by a general function and 

is not mounting condition or temperature dependent. 

6.4.4.4  Conclusions 

As shown, foil sensors cannot be applied to different measurement problems with the 

use of a global calibration formula. Mounting conditions and temperature changes have 

high impact on the sensor behavior and have to be calibrated individually. An important 

result of the conducted experiments is that the flow angle dependency obtained in 

Figure 113 is not dependent on mounting or temperature conditions and can be treated 

as globally valid law. This simplifies the calibration procedure for the clutch system 

measurements as will be shown later. 

6.4.5 Clutch System Measurements 

For the measurements of the wall shear stress inside the clutch system, the test rig 

used for the average flow velocity measurements was modified. Since the sensor 

signal had to be transferred from the surface of interest out of the rotating system, a 
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rotary signal transmitter was used. For this, the input shaft of the transmission was 

modified to obtain a free end from which the signal could be transferred. 

 

Figure 114: Rotary Transmitter (left) and Maintenance Hatch (right) 

For a simplified assembly of the clutch system with surface mounted wall shear stress 

sensors, a maintenance hatch was cut into the bell housing of the transmission (Figure 

114). With this hatch it was possible to mount the entire assembly and to connect the 

wires of the foil sensors to the rotary transmitter wires with the transmission mounted 

to the test rig at the end of the procedure. 

For the placement of the transducer two options were considered: 

1. Placement on the rotating shaft as close as possible to the foil sensors to 

minimize additional resistances by additional wires and the rotary transmitter 

2. Stationary placement and transfer of unamplified signal through transmitter 

Both options have advantages and disadvantages. The placement of the transducer 

on the rotating shaft for instance would make it possible to transfer the amplified 

voltage through the transmitter but would also cause an imbalance on the through 

shaft. Placement of the measurement transducer after the rotary transmitter would 

make the installation simpler but would increase the value of the pre-resistor of the 

sensor due to additional wires and the inner resistance of the rotating transducer. 

To test both options and see the effects of transducer placement on the measurement 

signal initial tests were performed. During these tests it was discovered that high 

voltage signal disturbances occur, when the transducer is placed before the rotary 

transmitter, making precise measurement impossible. By placing the transducer after 

the rotary transducer, the measurement noise was completely removed. Disadvantage 
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of the placement of this configuration was an increased total resistance before the 

transducer. This disadvantage could be overcome by manually adjusting the sensor 

with the gain and offset voltage potentiometers. The manual adjustment was 

performed iteratively, so that a maximum sensitivity was obtained in the desired range.  

 

Figure 115: Wall Shear Stress Distribution of the Pressure Plate at 750 rpm 

The pressure plate of the clutch system was chosen as suitable object for sensor 

positioning. Figure 115 shows the wall shear stress distribution on the surface of the 

pressure plate. Between the diaphragm spring supports the wall shear stress shows 

low gradients at all engine speeds, making this position a good choice for the 

measurements. The remaining uncertainty is the sensor orientation on the pressure 

plate. As shown in the previous section the foil sensor is sensitive to angular changes 

in flow direction. 
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Figure 116: Sensor Positions on Pressure Plate 

To solve the issue of unknown flow direction, a second sensor was applied to the 

pressure plate with an angle of 45° to the other sensing element. With this configuration 

it is possible to obtain the unknown flow direction and wall shear stress level as follows: 

With a reformulation of equation 2.40 one can obtain equation 6.9. By substituting 

equation 6.9 into the flow angle equation from Figure 113, equation 6.10 is obtained 

 

   TB

A(T)-Ĳ
U-U

3

1

w
0

2
0

2   (6.9) 

 
 

 
 TB

A(T)-Ĳ

U-U
f

3

1

w

2
0

2

   (6.10) 

With equation 6.10, the calibration constants for both sensors and the knowledge that 

the flow angle at one sensor is the same angle plus 45° at the other sensor, the 

problem becomes well posed (two equations for two unknowns).  

Figure 116 shows the sensor positions on the pressure plate. The sensors where 

placed between the diaphragm spring supports in the middle of two lift springs (120° 

between both sensors). To simplify the application of the sensors, the remaining 

surface roughness was leveled by application of glue. The third position left on the 
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pressure plate was also prepared for sensor application but left blank for reference 

measurements (velocity measurements with the boundary layer probe). As can be 

seen in Figure 116, the riveted connection of the lift spring to the cover was drilled out 

and replaced by a common thread screw connection. 

The remaining tasks are now to identify the wind tunnel velocity / wall shear stress 

dependence for the pressure plate and to find the temperature dependent calibration 

constants for both sensors on the pressure plate under mounting conditions. As shown 

in Figure 117 an additional casing of the pressure plate was necessary to perform the 

measurements. 

 

Figure 117: Casing of Pressure Plate 

With the application of the casing the flow at the sensor positions became similar to 

the flow over a flat plate and the reference wall shear stress measurements were 

therefore possible. 

The calibration of the sensors was then performed at different ambient temperatures. 

In the evaluation of the calibration curves care has to be taken with the sensor which 

has an orientation of 45° to the flow from the wind tunnel. For this sensor the measured 

calibration curves at one ambient temperature have to be transformed by the angular 

dependence equation to obtain the desired calibration coefficients. 
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Figure 118: Comparison of Simulated and Measured Wall Shear Stress Profiles 

The results of the performed clutch system measurements can be seen in Figure 118. 

The points M1 represents the first day measurements, M5 the last day. The measured 

wall shear stress shows good match with the simulation results.  

 

Figure 119: Flow Angle at 1000 rpm 

For the solution of equation 6.10 a graphical solution method was chosen. In Figure 

119 an example of the graphical evaluation is shown. The angle between the sensor 

and the flow at 1000 rpm is approximately 35°.  
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Figure 120: Flow Direction inside the Clutch System 

This reflects the flow conditions inside the clutch system quite well. Figure 120 shows 

the flow direction inside the clutch system around the pressure plate. It can be derived 

that the simulated flow angle also is about 35° to 40°. 

6.5 Flow Field Measurements 

The prior measurements all had in common, that validity of the simulation was proven 

by point wise measurements of flow specific quantities. To gain more confidence in the 

overall capability of the simulation tool to reflect the flow conditions, additional particle 

image velocimetry measurements were performed. As outlined earlier, the 

measurement technique makes it possible to evaluate the velocity vector field and 

therefore provides the most information on how precise the simulation is compared to 

the measurements. 

Since no literature data could be found on PIV measurements of dry clutch systems, it 

was decided to measure the outside flow field of a clutch system rotating in free air. 

The restrictions caused by packaging of the clutch system itself or inside the 

transmission bell housing could therefore be circumvented. This step can be 

interpreted as first step towards measurements under vehicle mounting conditions. 

6.5.1 Simulation Model 

The simulation model used as basis is the same as the simulation model in chapter 

5.3. To reflect the free air condition the clutch system was placed in a cylinder with a 

radius of half a meter and a total height of 1 meter. Figure 89 shows the simulation 

model domain. Again the air region was split into a stationary and rotating part. 
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6.5.2 Measurement Preparation 

For the preparation of the measurements there are two main areas to be covered: 

1. Selection of suitable seeding particles 

2. Choice of possible measurement plane positions 

For the selection of seeding particles the density and size of the particles are of high 

importance. The higher the density and the smaller the particles are, the smaller the 

measurement window has to be for the algorithm to detect the particle groups.  

In a first trial, fog from an industrial fog generator was used for particle generation. As 

can be derived from Figure 121 the fog has a high density and rather small particles. 

It is therefore not appropriate for the measurements. Tests with water vapor or smoke 

from coal had equivalent properties. The issue with the seeding material could be 

resolved after using a PALAS AGF 10.00 particle generator, which was kindly supplied 

by the “Institut für Thermische Strömungsmaschinen” (ITS) at the Karlsruhe Institute 
of Technology. The particle generator uses compressed air which flows over a small 

pipe which has oil inside to generate the desired seeding particles. By adjusting the air 

pressure and the amount of oil flowing into the small pipe, the size and density of the 

fog can be tuned. 

 

Figure 121: Trial Measurements with Industrial Fog Generator 



Model Verification 

 

142 

As pointed out the density of the fog is a very important factor for the success of the 

measurements. Additionally it is desirable to have the same density of particles in the 

entire test chamber. Air flowing out of the clutch system has to have the same particle 

density as air flowing around the clutch system in the ideal case.  

To obtain the highest degree in freedom of choice in the measurement plane 

positioning, it was chosen to surround the test rig with an additional casing (Figure 

123). This makes it possible to firstly adjust the particle density in the air inside the 

casing and to measure under constant seeding conditions in case the casing is 

properly sealed. The measurement time is then only dependent on how fast the 

particles sediment on the test rig surfaces. This configuration is also necessary since, 

due to health considerations, it is not recommended to be subjected to seeding 

particles over a long period of time.  

For the positioning of the measurement planes, the results of the simulation model 

were taken as guideline. As described in the beginning of this chapter, the particle 

image velocimetry is a two dimensional measurement principle. The technique can 

measure three dimensional flow systems in case one component of the velocity vector 

is relatively small and can be neglected against the other components. Inside a 

cylindrical coordinate system the radial component is always necessary to span a 

plane. The decision to be made has therefore to be between the tangential and axial 

component of the velocity vector. The left part of Figure 122 shows a plot of the relation 

between the axial and tangential velocity component. In front and in the back of the 

clutch system the axial velocity is much higher than the tangential velocity.  
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Figure 122: Measurement Plane Positioning 



Model Verification 

 

144 

In these areas it would be recommended to span a measurement plane in the radial 

and axial direction. Above the clutch system the tangential component of the velocity 

vector has a higher influence. It is therefore advantageous to span the measurement 

plane in the radial-tangential direction. The selected positioning of the measurement 

planes is shown in the right part of Figure 122. 

6.5.3 Test Rig Setup 

Figure 123 and Figure 124 show the test rig setup. The rig basically consists of an 

electric motor which is connected to a support bearing by a bellow coupling.  

 

Figure 123: Test Rig Front-Side 

The clutch system is directly mounted to the support bearing shaft. It consists 

according to the simulation model of a pressure plate assembly, a clutch disk and the 

flywheel. To consider the cylinder dummy, a substitute was build out of cardboard and 

placed in front of the clutch system. Two ropes attached to the bottom of the cylinder 

make it possible to adjust the axial position of the cylinder. Translations in radial 

direction are possible by adjusting the length of the four welding wires attached to the 

top of the cylinder. To be able to measure radial / axial and radial / tangential planes it 

is necessary to have at least a visual access in the front and at the side of the test rig. 

To be able to position the measurement planes freely, the front and the side wall of the 

casing was at the beginning of the tests made of Plexiglas. 
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Figure 124: Test Rig Side View 

The remaining walls of the casing were made of plywood. Gaps between the plywood 

sides or between the plywood and the Plexiglas were sealed by silicone. A pressure 

reducer was placed in the feed line of the particle generator to be able to reduce the 

air pressure. To be able to dispose the air inside the casing when the testing is done, 

an exhaust pipe which was attached to an extraction system was connected to one 

side of the test box. The PIV system itself consists of a CCD-Camera, a laser and a 

control unit. 

During initial tests it was discovered that all camera images had a striped pattern. It 

was supposed, that the accuracy of the result of the PIV detection algorithm would 

suffer. As root cause of the striped pattern the Plexiglas window was identified. When 

passing through the Plexiglas the laser light seems to experience interference effects. 

After exchanging a small part of the window in the desired measurement position with 

glass, the striped patterns dissolved. The left side of Figure 125 shows an example of 

the observed striped pattern.  
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Figure 125: Left: Observed Striped Pattern; Middle: Clutch Reflections; Right: Visible 
Particles 

The center section of Figure 125 shows the experienced laser light reflections on the 

clutch system. Due to these reflections the aperture had to be closed-in so far that the 

particles were not visible anymore (black graining of the image). As a first solution to 

this issue it was decided to spray-paint the clutch system and the background of the 

casing in black. By this measure the reflections could be reduced, but still not to a 

satisfactory level. To be able to perform the measurements it was decided to measure 

the flow field right next to the clutch system. In the right section of Figure 125 an 

example of the resulting particle images is shown. It can be observed, that the 

mentioned stripes are not visible and the particles are clearly visible. 

The measurements next to the clutch system make it difficult to relate the clutch 

rotation position to the images taken. To resolve this issue the CCD-Camera was 

triggered by an incremental rotational position sensor. Since the clutch system has a 

120° symmetry, it was decided to monitor the clutch system at 0° / 40° / 80°. 

6.5.4 Measurements 

The measurements planes were positioned according to Figure 122, with high focus 

on the flow entering and leaving the clutch system. The axial / radial measurement 

plane at the flywheel side of the assembly was not measured. The engine speed was 

limited to 2000 rpm due to safety reasons. 

Figure 126 shows the simulation results of the vector field in front of the clutch system. 

It can be observed, that here the air flows in a rather organized manner towards the 

clutch system.  
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Figure 126: Flow Field In front of Clutch System at 1500 rpm 

It can also be observed that the air mainly enters the clutch system at diaphragm spring 

opening near the rotation axis.  

 

Figure 127: Measured Vector Field In Front of Clutch System 

The result from the PIV measurements in front of the clutch system for 1500 rpm is 

shown in Figure 127, which was recorded as close as possible to the clutch system 

and to the cylinder dummy without recording any reflections. It can be seen that the 

flow direction of the obtained vector field is in good accordance to the vector field of 

the simulation. The average velocity of the measurements and the simulation is 

according to Figure 126 and Figure 127 in the same range of about 1 – 1.5 m/s. In 
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total, the performed measurements in front of the clutch system showed good 

accordance to the simulation at all engine speeds.  

In the center section of Figure 127 the correlation of the performed measurements is 

at a first glance not very good. The reason for this inaccuracy can be found by 

regarding Figure 128.  

 

Figure 128: Blurred Area of CCD Camera 

The middle and the lower section of the image have a blurred area. In this area, the 

tracking algorithm produces high errors. During the measurements the cause behind 

was not found. It is assumed that reflections or the camera itself are the main root 

causes. 

After the measurements in front of the clutch system, the measurements above the 

clutch system were performed. Figure 129 shows an example of an obtained vector 

field for a rotary speed of 1500 rpm.  
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Figure 129: Flow Field above Clutch System at Measurement Plane FW3 

Compared to the flow field of the simulation in Figure 130, it is difficult to find similarities 

apart from the velocity range, which is in very good accordance. At a closer look it is 

possible to divide the flow field of the simulation into different types of areas. 

 

Figure 130: CFD Flow Field Measurement Plane FW3 

The air flowing around the clutch system can be segmented in areas where the flow is 

moving in a circumferential direction, areas where air is flowing towards the center of 

the rotation axis and swirling areas. Taking this information as background to the post 

processing of the measurement data, similarities between the measurements and the 

simulations can be found. 
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Figure 131: Flow Field above the Clutch System at 1500 rpm 

Figure 131 shows examples for all three types of areas. Close to the rotating surfaces, 

the flow field around the clutch system is compared to the flow in front of the clutch 

system not stationary and does not have a preferred flow direction. Due to the viscosity 

based relative movement between the clutch system and the air flowing around the 

clutch, it was also not possible to obtain stationary vector fields by triggering the 

camera.  

From these observations it could be concluded, that inside the simulation model the 

choice of stationary flow field is inadequate. This statement can be weakened when 

looking at the average and maximum velocities, the entire structure of the flow field 

and the calculation procedure of the CFD software. 

As shown in Figure 130 and Figure 131 the maximum and average velocity of the flow 

field is in good accordance. The overall structure of the flow field in the far field is well 

reflected by the simulation as can be seen in Figure 130. Close to the clutch system 

high velocity gradients occur. With increasing distance to the clutch system the 

absolute velocity and the instationary effects decay which are then again well reflected 

by the simulation. When using a moving reference frame to simulate rotation in CFD 

code, the solver only solves the flow field for one position of the clutch system relative 
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to a fixed coordinate system. Instationary effects like movement of the flow field 

relatively to the clutch system are not considered. If this specific flow field is then 

rotated with a relative speed proportional to the total viscosity of air surrounding the 

clutch system, the same flow field as the obtained measurements would be observed. 

6.5.5 Conclusions 

Particle image velocimetry measurements for a dry clutch system were performed in 

the last chapter. It was shown, that the overall flow conditions around a clutch system 

can be captured by a two dimensional measurement technique. The flow conditions in 

front of the clutch system are in excellent accordance with the simulations. Turbulent 

and instationary effects near the clutch system make a direct identification of flow 

structures difficult, but not impossible. The overall accordance of the simulation model 

with the reality is rated as being high. 

6.6 Conduction Heat Transfer Parameters 

For the heat transfer from a clutch system the conduction resistances are of high 

importance because they determine the way heat input is spread from the frictional 

interface throughout the clutch system. The affirmation of the obtained conduction heat 

transfer parameters is therefore a highly important step in the verification of the CFD 

model. 

The first step in measuring the heat conduction resistances is the selection of an 

identification procedure. For this it is beneficial to divide the clutch system into several 

groups of interest. These groups are according to the simplified multiple thermal mass 

model of chapter 4.3.1:  

  Pressure Plate 

 Flywheel 

 Diaphragm Spring 

 Clutch Disk (with Lining) 

 Clutch Cover 

 

Parts like sense spring, sense ring, rivets, etc. are treated as content of one of the main 

thermal masses. A simple way of determining the heat conduction parameters between 

the individual parts could now be performed in two steps: 

1. Measure the cooling temperature head of a part heated up to a specified 

temperature to obtain the convectional resistances of the individual parts 

2. Measure the cooling / heat up temperature head between two parts in contact 

from which only one is heated up to a specified temperature 

When the contact conditions and the ambient conditions can be repeated according to 

the assembled condition, this method supplies the easiest way to determine the heat 

conduction resistances.  
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As equations 6.11, 6.12 and 6.13 show the system of equations necessary to evaluate 

the heat conduction resistances is well posed (four equations for two convection 

resistances and one conduction resistance). 

When only regarding the clutch system (mounted to the flywheel) the necessary 

parameters to be estimated, according to the model of chapter 4.3, are shown in the 

table below. 

 Heat Conduction  Convection  

 Pressure Plate – Diaphragms Spring  Pressure Plate  

 Pressure Plate – Clutch Cover  Diaphragm Spring  

 Diaphragm Spring – Clutch Cover  Clutch Cover  

 Flywheel – Clutch Cover  Flywheel  

 Pressure Plate – Lining  Clutch Disk  

 Flywheel – Lining  Lining  

     

Table 1: Heat Transfer Parameters for a Clutch System 

With a total of one heat balance equation for each considered thermal mass (number 

equivalent to the number of convectional parameters) it can be concluded, that the 

system of equations describing the heat transfer of a clutch system is heavily under-

determined (six unknown heat conduction parameters plus six unknown convection 

parameters for six heat transfer equations). A direct solution to this problem is therefore 

not available. The Joint Central Difference Kalman filter algorithm presented in chapter 

2.5.3 was therefore applied to overcome this hurdle. 

To aid the algorithm, following simplifications were performed: 

1. Use of a global convection coefficient for all parts 

2. Thermal capacity of the lining is neglected (conduction resistance only between 

flywheel and pressure plate) 
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3. According to the translational behavior of component interfaces, it is assumed, 

that only the contact conditions between the pressure plate and diaphragm 

spring change if the pressure plate assembly is mounted to the flywheel 

A temperature head close to the conditions faced by the clutch system in a vehicle was 

obtained with the use of a flywheel thermal shock test rig. The rig is usually used to 

characterize the thermal shock behavior by inductively heating the flywheel in the 

frictional area with a certain power. After the heat up cycle is completed, the flywheel 

is subjected to water causing high cooling rates and therefore thermally induced 

tension inside the flywheel. For the performed tests the rig was adapted to mount a 

complete test rig with temperature sensors applied. As stopping condition the surface 

temperature, measured by a pyrometer, was used. Figure 132 shows the setup. 

 

Figure 132: Thermal Shock Rig Configuration 

The measurement procedure was split into different stages: 

1. Measurement of temperature head for pressure plate assembly only, to 

determine the heat conduction resistances between the pressure plate and the 

clutch cover 

2. Measurement of the temperature curves for the complete assembly to 

determine the conduction resistances between flywheel – clutch cover, pressure 

plate – diaphragm spring and flywheel – pressure plate 

The measurement positions on the main thermal masses were selected with the usage 

of the 120° symmetry condition in a clutch system. Figure 133 shows the measurement 

positions inside the clutch system.  
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Figure 133: Temperature Measurement Positions Clutch System 

In the frictional area of the pressure plate and flywheel the temperatures were 

measured 4 mm below the frictional surface. The flywheel temperature was 

additionally measured at the interface to the crankshaft. For all other measurement 

points (e.g. clutch cover or diaphragm spring) the surface temperatures were 

measured. In Figure 134 the boundary conditions and number of measurement cycles 

is displayed. 

 

Figure 134: Measured Cycles 

During the evaluation of the test-runs, it was defined to use the heat up runs with a 

power input of 10 kW and a 300 °C surface temperature for the estimation of the heat 
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transfer parameters to minimize the non-linear effects of temperature spread 

throughout the assembly. 

Different to the algorithm for the wall shear stress reference measurements, the 

parameters were determined directly. As starting conditions for the temperatures the 

first values from the measurements were taken. The initial conduction resistances were 

set according to the results from the CFD simulations. Since the overall cycles were 

relatively short, the estimation procedure was restarted with the obtained parameters 

after all measurement data has been processed.  

The results of the performed measurements for the pressure plate assembly are shown 

in Figure 135. 

 

Figure 135: Results of Parameter Estimation for the Pressure Plate Assembly 
(Conductances: RPPDS: Pressure Plate – Diaphragm Spring; RPPCC: Pressure Plate - 

Clutch Cover; RDSCC: Diaphragm Spring – Clutch Cover; Alpha: Global Convection 
Coefficient) 

In the top part of Figure 135 the convergence behavior is shown. After the first 2000 

iterations (one complete measurement cycle contains 5500 iterations) the parameters 
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have almost reached a stable level. The bottom part of Figure 135 indicates that the 

resulting parameters are too low compared to the results of the CFD simulation for the 

connection between the pressure plate and diaphragm spring and the diaphragm 

spring and clutch cover. Different ambient conditions were also set for the filter (20 °C 

and 25 °C) to test the sensitivity to ambient temperature changes. 

As explained above, the obtained parameters were taken as constant for the 

parameter estimations of the clutch assembly. The results are shown in Figure 136. 

 

Figure 136: Results of Parameter Estimation for the Pressure Plate Assembly 
(Conductances: RPPDS: Pressure Plate – Diaphragm Spring; RPPFW: Pressure Plate - 

Flywheel; RFWCC: Flywheel – Clutch Cover; Alpha: Global Convection Coefficient) 

As the top part of Figure 136 indicates, the converged condition is reached after the 

first 1000 iterations in this case. The heat conduction resistances, as shown in the 

bottom part of Figure 136, have a better match with the CFD results, except for the 

connection between the flywheel and clutch cover. The overall convection coefficient 

is lower than in the pressure plate assembly case. This is caused by the change in the 
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convectional heat transfer conditions. By mounting the flywheel to the pressure plate 

assembly, the flow rate through the clutch system is reduced. 

From the two performed experiments, it seemed that the heat conduction conductance 

between the individual parts is either underestimated by the filter algorithm or 

overestimated by the CFD simulation model. To solve this question, the obtained heat 

conduction parameters were applied to the simplified model (convection coefficients 

were set according to the CFD results for both runs). As basis of the simulation, vehicle 

measurements were performed with the same vehicle as used for the CFD simulations. 

The cycle is shown in Figure 137 and Figure 138. It can be divided into a heat up 

section by multiple launches and a cooling section at the end of the cycle. The 

measurements were performed on the local proving ground at the John Andrews 

Development Center at Ford Merkenich. 

 

Figure 137: Velocity Profile of the Considered Cycle 

In Figure 139 the results for the two parameter sets are indicated. It can be clearly 

seen, that the fit of the filtered parameters is better than the fit of the CFD values. This 

is clearly an indication, that the filtered parameters reflect the real conditions more 

accurately. 
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Figure 138: Power Input of Clutch System 

The cause for the difference between the CFD parameters and the filtered values was 

identified after taking a close look at the contact conditions in the CFD model. During 

the process of reverse engineering (x-ray based reconstruction) and meshing, the 

contacts between the pressure plate and diaphragm spring or clutch cover and 

flywheel were modified and therefore not accurately reflected in the model (contact 

surfaces too large). 

 

Figure 139: Results of the Simplified Simulation Model for Filtered and CFD Resistances 
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It can be derived from Figure 139 that the difference between the maximum 

temperatures is below 6 %, which is according to the defined boundaries still in a 

reasonable range. Moreover, at the end of the cycle the temperatures all reach the 

same level. This is an indication, that the overall heat balance is correct. 

6.7 Conclusions 

In this chapter the overall validity of the CFD and simplified clutch temperature model 

of chapter 4 and 5 was shown. The flow field measurements indicated that the resulting 

flow field is in good match with the simulation results. The newly developed wall shear 

stress measurement method provided excellent results. It could also be shown, that 

for a three dimensional flow, two dimensional measurements can be performed in case 

the measurement planes are positioned with care. Overall the identified heat 

conduction parameters showed better, but not superior, performance compared to the 

identified CFD parameters. Accurate reproduction of the contact conditions is an 

important factor for heat transfer in clutch systems. 

The presented methods in this chapter can be used to validate any other clutch system 

in future and enhance the verification environment presented in 146. 

 

                                            
146 Albers 2012 b 
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7 Integration of CFD Based Analysis in the Product 
Development Process 

The simulation based CFD-analysis of engineering problems can be implemented into 

the IPeM inside the system of resources (see 2.6). In the most general case it can be 

seen as addition to the method pool of available approaches for problem solving. It can 

therefore be a part of all stages of the product development process. 

The first example of application can be given when looking at the modelling of principle 

soluition and embodiment stage of the IPeM and the process of this work. As shown 

in the previous chapters, a CFD based simulation of a clutch system can give valuable 

information on heat transfer of a vehicle clutch system. The information from a CFD 

model can be used as a base for simplified models or efficiently provide valuable input 

for future designs of a vehicle powertrain. As presented in Figure 140 the information 

available on a clutch system can be used to define different stages of modelling. The 

information gained on one stage can again be used to influence other higher or lower 

stage models. A basic size selection can be performed with stage one models. For a 

wear analysis the stage two model would be an appropriate choice with regards to 

simulation time and detail. The clutch temperature simulation model presented in the 

chapter 4 is an example for such a model. A CFD model is an example for a stage 3 

model. It has the highest complexity, but also high accuracy and detail. The process 

of selecting a clutch system can therefore be seen as an optimization procedure with 

several models active in a loop-like procedure. 

 

Figure 140: Modeling Stages of a Clutch System in a Development Phases 

Inside the idea and profile detection stages of the activities matrix of Figure 39, the 

CFD based analysis can also provide valuable information to support the product 

development process. Optimization studies usually help to find a new design for an 

already developed product in order to optimize the performance or optimize the 
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resources necessary to manufacture the product. An example of an optimization study 

can be given when looking at the CFD based initial design considerations of the test 

rig for the wall shear stress measurements of chapter 6.4.1. 

As an example on how physical coherences can be investigated with the help of a CFD 

model, the study of comparing the heat transfer and flow conditions inside and different 

clutch systems (see chapter 5.3) can be taken. The results from this CFD based 

comparison of three different clutch systems can be used to generate optimization 

potential. By additional venting or flow increase measures, the heat transfer from the 

clutch system to ambient air can be increased for example. 

The CFD based analysis of clutch related development tasks does not necessarily 

always have to be on stage 3. It can also be used to solve physics based questions 

regarding flow and cooling problems inside the idea detection phase. To demonstrate 

the value and effectiveness of a simplified CFD based analysis, a study on the 

influences on the cooling behavior of a clutch system from a dual-dry clutch 

transmission will be taken as example. The main target was here to determine whether 

it is possible to lower the surface temperature by adding a ventilation principle to a dual 

clutch in a short amount of time.  

 

Figure 141: Schematic of Considered Cooling Cases 

Figure 141 shows a schematic of the considered cases. The red arrows indicate 

additional part ventilation by removing material of the pressure plates, center plate or 

clutch cover. Blue arrows indicate additional air flow exchange with the ambient. The 

focus in this analysis was mainly on the clutch system. Additionally the effect of 

external cooling, by ventilation of the bell housing, was considered in the scope of the 

performed analysis. In a first step an abstracted base geometry of a dual clutch system 

was generated. Figure 142 shows the abstracted dual clutch model used for the 

simulations. The geometry consisted of two pressure plates, a clutch cover, a center 
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plate and a diaphragm spring surrounded by a bell housing. As shown in Figure 142, 

the model reflects the packaging conditions in a real dual clutch transmission. 

 

Figure 142: Packaging of Simplified Dual Clutch CFD Model 

In Figure 143 the modifications of the center plate and the pressure plate are shown. 

Both parts were split into a solid part (light and dark gray in Figure 143) and so called 

ventilation parts (light and dark blue in Figure 143). The same considerations were also 

applied to the clutch cover and the second pressure plate. Main idea behind the part 

ventilation was to increase the volume flow through the clutch system and to bring the 

cool air to hot regions inside the individual parts. 

 

Figure 143: Center Plate (left) and Pressure Plate (right) Modifications 

The concept of splitting parts into a ventilation and an always solid part allowed to use 

a single mesh to perform a series of variation analyses by simply switching the 

ventilation parts to a solid or fluid region in dependence of the case considered. 

Between the parts it was chosen to define boundary layers of constant cell size, which 
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could be used inside the solid as additional cell layer and as boundary layer if the 

region is simulated as fluid. 

It was decided to simulate a constant heat input into the primary side of the dual clutch. 

This case reflected the worst case scenario, since the primary clutch is packaged 

inside of the clutch system and the amount of air passing the clutch is low in the 

standard clutch system.  

 

Figure 144: Concepts for Air Exchange with Ambient147 

It was also considered to use an additional pump or the rotational movement of the 

clutch system to promote an air exchange with the ambient air. Figure 144 shows a 

concept of using the rotation of the clutch system to force air in and out of the bell 

housing. 

                                            
147 European Patent 102013215589.1 
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Figure 145: Results of Dual Clutch Cooling Study 
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The results of this study are displayed in Figure 145. It was concluded, that an 

intelligent positioning of inlets and outlets to and from ambient air inside the bell 

housing together with part ventilation of the clutch system can have a positive effect 

on the temperatures inside the clutch system. With the CFD study as basis, other 

concepts and solutions were derived. 

As shown by these examples the CFD analysis CAE methods in general extend the 

system of resources of the IPeM model and therefore increase the solution quantity 

and quality. It can therefore be concluded that CAE methods have a high and valuable 

position in the product development cycle. 

 

Figure 146: Implementation Example of a CFD Analysis 

An example of how a CFD analysis can be implemented in the product development 

process is shown in Figure 146 from a research and advanced development 

departments perspective. The process contains many procedures developed in this 

study. The effectiveness and practicability of the developed methodology supporting 

the daily development tasks in clutch system development was not evaluated in this 

study. This is an important section which has to be evaluated in further studies. 
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8 Conclusion and Outlook 

In this study the process of obtaining a temperature determination tool with the help of 

a CFD based conjugate heat transfer analysis was displayed. After determining the 

highest influencing factors on heat transfer in regard to a clutch system, the individual 

heat transfer paths were displayed and analyzed. It was shown, that a conjugate heat 

transfer analysis is a strong and powerful tool inside the powertrain development.  

A process how to treat and simplify clutch systems with different number of 

components to fit a general model structure was presented in chapter 4 which can and 

should be used to enhance the powertrain library of the temperature determination 

model. 

The general flow structure and heat transfer of a clutch system was displayed in 

chapter 5. It could be shown that the flow structure can be divided into recirculation 

flow systems. Between these systems there exists the possibility of flow field 

separation. The model presented can be used to determine the conductional and 

convectional heat transfer coefficient parameters inside a dry clutch system. 

In chapter 6 the verification process was developed by rating and categorizing the 

individual measurement principles by their application and measurement principles in 

regards to the measurement task (chapter 6.1). Based on this information, the 

verification of the CFD and temperature determination model was performed. By using 

different approaches, like wall shear stress measurements (chapter 6.4) and dry clutch 

system PIV measurements (chapter 6.5), the verification environment presented in 148 

could be extended. It was shown, that wall-shear stress measurements inside complex 

and highly packaged systems are possible with simple means when appropriate 

methods or measures are applied for the evaluation. The Kalman filter method 

provided a good method for the determination of unknown nonlinear parameters.  

The CFD-based analysis and performed verification proved, that high quality results 

can be obtained, even by applying a stationary assumption on an obviously 

instationary flow system.  

The implementation of the CFD-analysis into the integrated product development 

model was shown in chapter 7 together with examples from engineering projects. It 

could be demonstrated, that this kind of CAE method can produce valuable information 

and aid the overall problem solution strategy in regards of clutch systems inside the 

product development process. 

                                            
148 Albers et al 2012 b 
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As a next step, the buildup of a powertrain library containing different clutch, engine 

and transmission systems should be performed. Once the library contains enough 

individual systems, the information can then be used as basis for a large scale similarity 

analysis in order to find simplified approaches for future clutch and powertrain systems. 

In order to optimize the simulation time, the effect of using segment models inside the 

CFD-software should be investigated. By using this simplification together with 

periodical boundaries, it can be possible to reduce the simulation effort proportional to 

the resulting mesh size. Together with this analysis the influence of the bell housing 

shape should also be investigated. 
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