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Abstract

The phenomena of heat and mass transport in porous media have sig-
nificant influence in wide range of engineering disciplines such as, solar
energy, chemical, biological, material science, etc. The porous media
are heterogeneous system consisting of solid matrix with several inter-
connected continuous void space (pores) filled with fluids. The project
involved in studying the fluid transport, heat and mass transport in-
side various ceramic porous inserts by Direct Pore Level Simulations
(DPLS). The geometric grid data required for the simulations are re-
constructed from the computer tomographic scan images of the real
porous media. The simulation results are used to study the influence of
the structural properties of porous media on the fluid flow, heat trans-
fer and mass transfer. The flow properties such as permeability and
Dupuit-Forchheimer coefficient are obtained for different porous struc-
tures. The influence of tortuosity on the pressure drop is investigated.
The effect of dispersion on mass transfer is evaluated by determining
the axial mass dispersion coefficient. The use of the Peclet number to
describe the relative importance of molecular diffusion and hydrody-
namic dispersion in spreading the tracer fluid within porous structures
is studied. The heat transfer properties such as heat conductivity and
interface heat transfer coefficient are determined. A correlation for the
heat transfer coefficients of the studied porous media is provided with
the help of generalized Lévêque equation. Apart from DPLS, an in-
house ray tracing code is used to identify the radiation properties such
as extinction coefficient, absorption coefficient and the scattering phase
function. Correlations to calculate the extinction coefficients in terms
of the porous media structural parameters are provided.
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Zusammenfassung

Wärme und Stofftransport in porösen Medien spielen in einem bre-
iten Spektrum von technischen Anwendungsgebieten wie der Nutzung
von Sonnenenergie, chemischer, biologischer und materialtechnischer
Wissenschaft eine große Rolle. Poröse Medien sind heterogene Sys-
teme, die aus einer festen Matrix mit vielen untereinander verbunde-
nen Hohlräumen (Poren) bestehen in denen ein Fluid strömen kann.
Gegenstand der Untersuchungen dieser Arbeit sind die Strömung und
der Wärme- und Stofftransport in verschiedenen porösen, keramischen
Medien durch direkte Simulation auf Porenebene (direct pore level sim-
ulation, DPLS). Die Geometriedaten und das CFD-Netz, das für solche
Simulationen erforderlich ist, wurden durch Rekonstruktion aus com-
putertomografisch erzeugten Bilddaten realer poröser Medien gewon-
nen. Die dabei erlangten Simulationsergebnisse werden dazu verwendet
den Einfluss von Strukturparametern der porösen Medien auf Strömung
sowie Wärme- und Stoffübertragung zu untersuchen. Strömungspa-
rameter wie Permeabilität und Dupuit-Forchheimer-Koeffizient wur-
den für verschiedene poröse Strukturen bestimmt. Der Einfluss der
Strömungstortuosität auf den Druckverlust wurde untersucht und als
Ergebnis ein mathematischer Ausdruck für die Berechnung des Druck-
verlusts in porösen Medien erstellt. Die Auswirkung von Dispersion
auf den Stoffübergang wurde in Form des axialen Stoffdispersionskoef-
fizienten bestimmt. Die Anwendbarkeit der Peclet Zahl zur Beschrei-
bung der relativen Bedeutung der molekularen Diffusion und hydrody-
namischer Dispersion für die Ausbreitung eines Tracerfluides innerhalb
poröser Strukturen wurde untersucht. Größen zur Beschreibung der
Wärmeübertragung, wie Wärmeleitfähigkeit und Wärmeübergangsko-
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effizient wurden bestimmt. Eine Korrelation zwischen den Wärmeüber-
gangskoefizienten der untersuchten porösen Medien wurde auf Basis
der generalisierten Lévêque Gleichung formuliert. Abgesehen von den
DPLS wurde ein hauseigenes Strahlverfolgungsprogramm verwendet
um Strahlungseigenschaften wie den Extinktionskoeffizienten oder die
Streuphasenfunktion zu bestimmen. Als Ergebnis werden Ausdrücke
zur Bestimmung der Extinktionskoeffizienten als Funktion der Struk-
turparameter der porösen Materialien gezeigt.

iv



Preface

This work was performed at the Engler-Bunte-Institute, Division for
Combustion Technology (EBI-VBT) at the Karlsruhe Institute of Tech-
nology (KIT). I would like to express my sincere gratitude and thanks
to Prof. Dr. -Ing. Nikolaos Zarzalis for providing this opportunity,
excellent creative environment, encouragement, funding, international
contacts and a strategic project planning that has enabled me to carry
out this work. His steady trust and optimism is one of the main rea-
sons for the successful completion of this work. I am also grateful for
the numerous publications for conferences and journals to present the
joint work, which enlarges my experiences substantially. I would like
to thank the co-referee Prof. Dr. -Ing. Manfred Aigner, for his interest
in my work.

I wish to thank the present and former members of EBI-VBT for
their friendship, contributions and for providing an open and pleasant
atmosphere at the institute. Especially I am very much grateful to the
current leader of the theory group Dr. -Ing. Peter Habisreuther for
his continuous support and enthusiastic involvement in this research. I
like to extend my sincere thanks to the IT administrator Mr. Walter
Pfeffinger for his professional help. I also like to thank all the adminis-
trative staff and secretaries for their support and kindness. The author
gratefully acknowledge the financial support by the German Research
Council (DFG) through the Research Unit FOR 583 "Solid Sponges-
Application of Monolithic Network Structures in Process Engineering".
Also the colleagues from the research initiative deserve my gratitude
for many productive meetings and evenings.

v



Last but not least I want to thank my father Pandi, my mother
Lakshmi, my brother Padmanabhan and my wife Archana for providing
continuous support and freedom, which finally made this work possible.

Parthasarathy Pandi
Stuttgart
11.03.2016

vi



Contents

1 Introduction 1
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Morphology of reticulated porous ceramics 5
2.1 Porous media characterization using tomography data . 10

2.1.1 Porosity . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Pore diameter . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Specific surface area . . . . . . . . . . . . . . . . 11
2.1.4 Representative elementary volume . . . . . . . . 12

2.1.4.1 Method of local volume averaging . . . 12
2.1.4.2 Representative elementary volume of sponges 14

3 Fluid flow in reticulated ceramic sponges 17
3.1 Low Reynolds number flows . . . . . . . . . . . . . . . . 18

3.1.1 Capillary models . . . . . . . . . . . . . . . . . . 19
3.1.2 Hydraulic radius model . . . . . . . . . . . . . . 19
3.1.3 Drag models for isotropic structures . . . . . . . 21

3.1.3.1 Creeping flow over cylinders . . . . . . 21
3.1.3.2 Numerical solution for flow over cylinder 21

3.2 High Reynolds number flows . . . . . . . . . . . . . . . . 22
3.3 Pressure drop in open cell sponges . . . . . . . . . . . . 23

3.3.1 Determination of K and cF . . . . . . . . . . . . 25
3.3.1.1 Numerical setup and procedure . . . . . 25
3.3.1.2 Results . . . . . . . . . . . . . . . . . . 27

vii



4 Axial dispersion in ceramic sponges 37
4.1 Axial dispersion in open cell ceramics . . . . . . . . . . 42

4.1.1 Numerical setup . . . . . . . . . . . . . . . . . . 43
4.1.2 Numerical procedure . . . . . . . . . . . . . . . . 44
4.1.3 Results and discussion . . . . . . . . . . . . . . . 48

5 Convective and conduction heat transfer coefficient 65
5.1 Heat transfer coefficients for open cell ceramics . . . . . 66

5.1.1 Numerical setup . . . . . . . . . . . . . . . . . . 71
5.1.2 Numerical procedure . . . . . . . . . . . . . . . . 72

5.1.2.1 Determination of interfacial heat trans-
fer coefficient . . . . . . . . . . . . . . . 72

5.2 Effective thermal conductivity . . . . . . . . . . . . . . . 79
5.2.1 One dimensional heat conduction . . . . . . . . . 82

5.2.1.1 Two phase stagnant effective conductivity 87

6 Radiative heat transfer 91
6.1 Radiative Properties identification . . . . . . . . . . . . 98

6.1.1 Extinction coefficient . . . . . . . . . . . . . . . . 99
6.1.2 Absorption coefficient . . . . . . . . . . . . . . . 102
6.1.3 Scattering phase function . . . . . . . . . . . . . 104
6.1.4 Ray tracing validation . . . . . . . . . . . . . . . 105

6.2 Radiative properties of sponges . . . . . . . . . . . . . . 110
6.2.1 Extinction coefficient . . . . . . . . . . . . . . . . 110
6.2.2 Scattering phase function . . . . . . . . . . . . . 114
6.2.3 Absorption coefficient . . . . . . . . . . . . . . . 116

7 Conclusion 117

8 Annex 123
8.1 Pressure loss . . . . . . . . . . . . . . . . . . . . . . . . 124
8.2 Axial dispersion coefficients . . . . . . . . . . . . . . . . 126
8.3 Heat transfer coefficients . . . . . . . . . . . . . . . . . . 127

viii



Nomenclature

Roman units
A m2 area
Ao m2 outer surface area
ce - cumulative probability distribution

function of extinction of a continuous
media

cF - drag constant
cp J kg-1K-1 specific heat capacity
Ce - cumulative probability distribution

function of extinction in local scale
d m diameter
dh m hydraulic diameter
dp m particle or strut diameter
dpore m pore diameter
D m2 s-1 dispersion tensor
De m equivalent diameter
DL m2 s-1 axial dispersion coefficient
Dm m2 s-1 molecular diffusion coefficient
f - friction factor
fa - absorption probability density function

of a continuous media
fe - extinction probability density function

of a continuous media
ftube - tube friction factor
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Roman units
F - probability density function
Fa - absorption probability density function

in local scale
Fe - extinction probability density function

in local scale
h, hfs, hsf W m-2 K-1 heat transfer coefficient
k1, k2 W m-1 K-1 thermal conductivity
keff W m-1 K-1 effective solid thermal conductivity
keff(2phase) W m-1 K-1 two phase effective thermal conductiv-

ity
kf W m-1 K-1 fluid thermal conductivity
kK - Kozeny constant
ks W m-1 K-1 solid thermal conductivity
K m2 permeability
lb m characteristic length associated with

the pore space in the fluid-solid system
ll m axial random mixing length scale
lr m radial random mixing length scale
L m path length
L+ - normalized path length
ṁ kg s-1 mass flow rate
n̂ - normal vector
Nray - number of rays
Nu - Nusselts number
p N m-2 pressure
pa - probability of absorbtion of a continu-

ous media
pe - probability of extinction of a continuous

media
Pa - probability of absorbtion in local scale
Pe - probability of extinction in local scale
PeL - Peclet number (= ud/DL)
Pem - Peclet number (= ud/Dm)
Pep - Peclet number (= udp/Dm)
Pr - Prandtl number
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Roman units
Q̇ m3 s-1 discharge
r m radius
R m2 K W-1 thermal resistance
Rep - particle Reynolds number
Sv m-1 specific surface area
t s time
T K temperature
Tf K fluid temperature
Ts K solid temperature
u m s-1 internal bulk velocity [= ṁ/Aρ]
ui m s-1 intrinsic velocity
us m s-1 superficial velocity
u′ m s-1 velocity fluctuation
V m3 volume
Vf m3 void volume
Vs m3 strut volume
Vt m3 total volume
x - cartesian coordinate direction
y - cartesian coordinate direction
z - cartesian coordinate direction
xsim m mean distance
Y kg kg-1 mass fraction
Y kg kg-1 mass flow averaged mass fraction

Greek units
α - hemispherical absorptance
α′ - directional hemispherical absorptance
αd - diffuse hemispherical absorptance
β m-1 equivalent extinction coefficient
βx m-1 equivalent extinction coefficient in x di-

rection
βy m-1 equivalent extinction coefficient in y di-

rection
βz m-1 equivalent extinction coefficient in z di-

rection
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Greek units
δ - Dirac delta function
ε - porosity
θi rad angle of incidence
θr rad angle of reflection
κ m-1 absorption coefficient
µ N s m-2 dynamic viscosity
µi - cosine of incident angle
µr - cosine of reflection angle
µs - cosine of scattering angle
ρ kg m-3 fluid density
ρ′ - hemispherical directional reflectance
ρ′′ - bidirectional reflectance
τ - tortuosity factor
τs - solid tortuosity factor
σ2 - variance
ϕi rad azimuth angles of incident
ϕr rad azimuth angles of reflection
Φ - scattering phase function

Abbreviations
CFD computational fluid dynamics
CT computer tomography
DPLS direct pore level simulation
IOOS identical overlapping opaque spheres
IOTS identical overlapping transparent spheres
LB lattice Boltzmann
MRI magnetic resonance imaging
NMR nuclear magnetic resonance
OK ordered Kelvin
PIM porous inert media
PPI pores per inch
REV representative elementary volume
RMS root mean square
RMSD root mean square deviation

xii
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Chapter 1

Introduction

The phenomena of heat and mass transport in porous media have signif-
icant influence in wide range of disciplines such as chemical engineer-
ing, biological engineering, material science, etc. The porous media
are heterogeneous system consisting of solid matrix with several inter-
connected continuous void space (pores) filled with fluids. Within the
pores the conservation equations are valid and can be used to describe
the heat and mass flow within it. The difficulty in describing the exact
geometry of the bounding solid surfaces and the requirement of high
computational capacity to solve the conservation equations within the
pores gave rise to a macroscopic continuum approach which is used to
describe the transport process within Porous Inert Media (PIM). The
influence of the solid matrix on the transport process within the pores
is described by effective transport properties. The accuracy in deter-
mining the effective transport properties of the porous media influences
the overall accuracy of continuum approach.

Majority of studies on transport phenomena in porous media were
performed considering packed bed kind of porous media. The emer-
gence of Reticulated Porous Ceramics (RPC) as an alternative to the
packed beds in various engineering applications, unfold the importance
of studying the heat and mass transfer in these RPC structures. Typ-
ically, in engineering applications the porous domain is much larger
than the pore size, and the conservation equations are solved using

1



2 Introduction

continuum models [9, 68]. In the continuum models, the influence of
the material and the structural properties on the transport phenom-
ena is defined by the effective transport properties [9, 68]. In the
case of engineering applications involving high temperature, such as
porous burners, the accurate prediction of heat and species transport
within porous inert media plays an important role in designing and
optimization of such porous media combustors. The effective transport
properties are determined either by using an approximate analytical ap-
proach or by experiments. The analytical approaches have a great deal
of inaccuracy due to the geometric simplification, and the experimental
measurements are tedious and prone to measurement uncertainties and
errors.

A new method to analyze the flow in open-cell foams is given by
the rise in computational speed, which makes it possible to calculate
the heat and mass transport within these structures even with conven-
tional CFD methods. This work involved studying the fluid transport
and the heat transport inside various ceramic porous inserts by Direct
Pore Level Simulations (DPLS). The geometric computational volumes
required for the simulations are reconstructed from the computer tomo-
graphic scan images of the real porous media. The simulation results
are used to study the influence of the structural properties and material
properties of porous media on fluid flow and heat transfer.

1.1 Objectives

The main objective of this work is to calculate the effective transport
properties of reticulated porous inert media by direct pore level simu-
lations and correlate the properties to the structural parameters, such
as porosity, pore density, specific surface area and pore diameter. The
reticulated porous ceramics made of two different ceramic materials,
namely, silicon infiltrated silicon carbide (SiSiC) and alumina (Al2O3)
are studied. The above mentioned materials are predominately used in
porous media combustors and in solar reactors. The ceramic sponges
having different structural parameters are investigated.

X-Ray based Computed Tomographic (µ-CT) imaging and Mag-
netic Resonance Imaging (MRI) are used to generate the tomographic
scan images of the SiSiC and Al2O3 RPC, respectively. The geometric
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computational volumes required for the direct pore level simulations
are reconstructed from the tomographic scan images of the above men-
tioned RPC. The flow properties such as permeability and drag coef-
ficient are obtained for different porous structures, the heat transfer
properties such as heat conductivity and interface heat transfer coeffi-
cient are determined. The effect of axial dispersion in flow is evaluated
by determining the axial dispersion coefficients. Apart from DPLS, an
in-house ray tracing code is used to identify the radiation properties
such as extinction coefficient, absorption coefficient and the scattering
phase function. The influence of the porous media’s structure and ma-
terial on the transport process within the RPC is investigated using
the determined effective properties.

1.2 Outline

Chapter 2 provides a description about the volume imaging process
that was used in this study to reconstruct computational volumes. The
methods used to determine the sponge properties such as porosity, pore
diameter and specific surface area of the sponges are discussed. Intro-
duction to the method of volume averaging in porous media is given,
and finally, the process of identifying the representative elementary vol-
ume size for a sponge is discussed.

In Chapter 3, a review of the pressure drop in porous media is
documented. Discussion on the direct pore simulations to evaluate the
pressure drop in each sponge considering air as the fluid medium is
provided. Methodology used in determining the Ergun constants using
the simulation results is discussed.

Chapter 4 deals with the axial dispersion in the ceramic sponges.
Discussion about the use of the Peclet number to describe the rela-
tive importance of molecular diffusion and hydrodynamic dispersion in
spreading the tracer fluid is provided.

In Chapter 5, information about the study on conduction and con-
vective heat transport in the ceramic sponges is given. The method-
ology used in determining the heat transfer coefficient and effective
conductivity of the sponges is described.

Chapter 6 provides insight into the methodology used in identifying
the radiative properties of the ceramic sponges. The influence of sponge



4 Introduction

properties on the effective radiative properties is discussed.
Finally, a conclusion regarding this study on heat and fluid flow in

reticulated ceramic sponges is provided in Chapter 7.



Chapter 2

Morphology of reticulated
porous ceramics

High porosity reticulated structures are widely used in many industrials
applications such as solar reactors[45], radiant burners & combustors
[32], solar receivers [42], gas filtering [107] etc. In literature, these struc-
tures are typically named as foams. But, as a foam is defined consisting
of closed bubbles, its void phase is not continuous but dispersed (Re-
itzmann et al. [99]). Therefore, the explicit term sponge is used in the
present work, having in focus particularly ceramic sponges. The reticu-
lated sponge structures are associated with very high porosity, and thus
provide comparatively less pressure drop in comparison to the packed
beds, while still providing more mixing or dispersion compared to the
honeycomb type structures. These structures have high specific surface
area, and as both the fluid and the solid phase are continuous, these
structures are being widely used in many heat transfer applications in
recent years. The sponge manufacturing process has reached a level
where it is now consistent enough that the reticulated structures are
widely used in many industrial applications. The properties of these
cellular structures can be modified to suit a wide range of new appli-
cations such as light weight construction, sound and heat insulation
etc. In this study, alumina sponges made of 99% pure Al2O3 and SiSiC
ceramic sponges are investigated. Photographs of alumina and SiSiC

5



6 Morphology of reticulated porous ceramics

sponge samples of pore densities 10 PPI and 20 PPI are shown in Figure
2.1.

Figure 2.1: Photograph of alumina and SiSiC sponges of pore densities 10
and 20 PPI.

The alumina sponges of porosities between 75% to 85%, with pore
densities 10, 20, 30 and 45 PPI are manufactured by Vesuvius Becker
& Piscantor, Grossalmeroder Schmelztiegelwerke, Germany. The SiSiC
sponges of 85% nominal porosity and pore densities of 10 and 20 PPI
are manufactured by Erbicol SA, Switzerland. Both sponges are pro-
duced by the Schwartzwalder process, in which the reticulated polymers
(Polyurethane) are coated with the suspension of ceramic and then the
coated structure is sintered to remove the polymers [105]. After sin-
tering the final sponge struts have inner cavities due to the polymer
precursor. The presence of hollow cavities in the strut of a 10 PPI
alumina sponge is shown in Figure 2.2. In the case of SiSiC sponge,
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after sintering the sponge cavities are infiltrated with silicon so that the
voids in the strut are filled. Apart from the real structures, theoreti-
cal Kelvin structures developed by Habisreuther et al. [52] containing
cylindrical struts as shown in Figure 2.3 are also used in performing the
pore level simulations. In the study of pressure drop, axial dispersion
and effective conductivity in ceramic structures, the results from such
theoretical structures are used as reference to compare them with that
of the real structures.

Figure 2.2: Microscopic view of a cut on the surface of 10 PPI alumina
sponge to illustrate the presence of hollow cavities in the solid strut.

Evaluating the exact geometric properties of the sponges is of great
importance in order to calculate and correlate the fluid flow and heat
transfer in the sponges. Important geometric data includes the equiva-
lent hydraulic diameter, pore diameter, specific surface area etc. In this
study, volume imaging method is applied to determine the structural
properties such as the specific surface area, pore diameter and porosity.
The volume imaging method to determine such geocentric properties
was used by various researchers in recent years [51, 85, 114]. X-ray
absorption tomography is the most commonly used technique for three
dimensional imaging and to determine the sponge structural proper-
ties [85, 114], while Grosse et al. [51] used magnetic resonance imaging
(MRI) to characterise the ceramic sponges. In comparison to the X-ray
absorption tomography, the MRI have limited resolution, although it
still is an adequate method for three dimensional imaging of sponges
[51].
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Figure 2.3: A view of ordered Kelvin structure (a) with randomization
factors C1 = C2 = 0 and randomized Kelvin structure (b) with randomization
factors C1 = C2 = 0.6.
Source: Habisreuther et al. [52]

In this work, the volume images of the alumina sponges are obtained
using magnetic resonance imaging, and X-ray tomography is used in
the case of SiSiC sponges. The MRI experiments were performed in
the MRI-laboratory, Department of Chemical and Process Engineering
at Karlsruhe institute of Technology. The image data acquisition were
done with a Bruker Avance 200 SWB tomography. The MRI resolu-
tion depends on the sample size and on the number of voxels. In this
case, 256×256×256 voxels were chosen in order to achieve reasonable
acquisition time [51]. The resulting resolution was 86 µm for 10, 20, 30
PPI sponges, in which case the samples’ size is 22×22×22 mm3, and
50 µm for 45 PPI sponge of sample size 12.8×12.8×12.8 mm3. The
imaging process is explained in detail by Grosse et al. [51]. The X-ray
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tomographic measurements were made in Department of Surface and
Material Engineering at Aalen University. The imaging was done with
phoenix v|tome|x s X-ray system of GE Sensing & Inspection Tech-
nologies. The resolutions of the X-ray imaging were set as 40 µm per
voxel.

Figure 2.4: Reconstruction of triangulated iso-surface by means of digital
image processing of a tomographic image: (a) raw tomographic image (b)
median filtered image (c) gray scale value histogram(d) binarized image and
(e) sponge surface (green).

Reconstruction of a solid surface is necessary in order to generate
the discretized computational grid covering the void space and the solid
strut volumes in the sponge. The solid surface was identified using
the procedure shown in Figure 2.4, which results in a closed three-
dimensional surface of the sponge discretized by triangular surfaces, as
in Figure 2.4(f). A sample raw tomographic data is shown in Figure
2.4(a). The raw measurement data contains unwanted noise, the noise
in the raw data has been reduced using a 3×3×3 median filter (Figure
2.4(b)). In order to make a distinction between the strut section and the
void sections, a threshold value of the data had to be found to convert
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the grayscale images into binary images representing the strut and void
sections. The threshold values were chosen by locating local minima of
the histogram curves of individual sponges as shown in Figure 2.4(c).
Once the strut surface was identified using a threshold value, the bi-
narization of the tomographic data was done. Finally, the surface data
was exported to the commercially available computational grid gener-
ating software (ANSYS ICEM) to generate the required computational
grids. The computational grids were produced requiring approximately
8 hours each on 2 Quad-core processors with 8 GB RAM. The result-
ing grids consisted of 4-6 million tetrahedral cells and approximately
0.8-1.1 million grid points.

2.1 Porous media characterization using to-
mography data

2.1.1 Porosity
Porosity ε of the porous media is the ratio of the empty void space Vf
occupied in the media to the total volume Vt. Two types of porosities
are generally defined for the sponge structures. The total porosity, in
which case the void volume includes all kinds of void space, i.e., the
macroscopic voids and the voids present in the struts after replication
method. The other one being the open porosity, in which only the
macroscopic void spaces are considered. In the case of SiSiC sponge
the open and total porosities are nearly equal due to the infiltration of
silicon after sintering process. The open porosities are more relevant
in the study of fluid flow and heat transfer. In this study, only the
open porosity is calculated. For the porous sponges used in this study,
the void volumes were obtained from their respective computational
grids by summation of all the tetrahedral volumes that occupy the void
space. With the measured macroscopic void volume Vf, the porosities
were calculated by dividing total empty space with the total volume of
the porous mediums.
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2.1.2 Pore diameter
Based on the detailed geometry of the samples, an estimation of the
extents of single pores has been derived. The procedure starts with an
estimation of points in the void phase that are assumed to be the pore
centers. These points are determined by first calculating the Euclidean
distance of every point in the void phase to the nearest surface point by
application of the algorithm according to Saito and Toriwaki [104] and
then searching local maxima in the 3-dimensional distance field. Twice
of the local distance at these local maxima gives an estimation of a
minimal pore diameter. The arithmetic average of these pore diameter
values is considered as the pore diameter dpore of the sponge. The pore
size obtained for the sponge was used to find the pore density in terms
of Pores Per Inch (PPI) using the relation dpore = 0.0508/PPI [53].
The measured pore diameters are tabulated in Table 2.1.

2.1.3 Specific surface area
Specific surface area Sv is the parameter that relates the strut outer
surface area to the total volume of the sponge. In the case of fluid flow
and heat transfer between the fluid and the strut, the specific surface
area is an important dimensional parameter that can be used to com-
pare such processes with that of other porous structure such as packed
beds and honeycombs. It has been reported that the physisorption
measurement of gases overestimate the surface area of the strut due to
the presence of cavities in the solid struts [50]. The volume imaging
method was used by Grosse et al. [50] to find the specific surface area of
the sponges. In this study, after the sponge reconstruction, the surface
area of the sponge is found by the summation of the triangular surface
elements that defines the void and the strut boundary. The total sur-
face area thus obtained is divided by the total volume of the sponge to
determine the specific surface area (the total volume includes the void
and the strut volume). In Table 2.1, the specific surface areas found
using reconstructed sponges are provided for each sponge that is used
in this study.
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Table 2.1: Porosities, specific surface areas and pore diameters of sponges
measured using volume image analysis

Sponge descrip-
tion

Measured
porosity [-]

Measured
specific
surface
area [m-1]

Measured
pore di-
ameter
[m]

Al2O3 10 PPI 80%
porosity

0.82 577.5 0.00391

SiSiC 10 PPI 85%
porosity

0.872 476.3 0.00451

Al2O3 20 PPI 75%
porosity

0.769 1146.9 0.00201

Al2O3 20 PPI 80%
porosity

0.82 900.9 0.00239

Al2O3 20 PPI 85%
porosity

0.845 996.3 0.00209

SiSiC 20 PPI 85%
porosity

0.875 647.2 0.00201

Al2O3 30 PPI 75%
porosity

0.744 1336.8 0.00167

Al2O3 30 PPI 80%
porosity

0.822 1264.9 0.00162

Al2O3 30 PPI 85%
porosity

0.847 1214.6 0.00162

Al2O3 45 PPI 80%
porosity

0.791 1610.1 0.00121

2.1.4 Representative elementary volume

2.1.4.1 Method of local volume averaging

The difficulty in describing accurately the geometry of the internal
solid surface that bound the flow inside the porous media gave rise to
the macroscopic approach of local volume averaging. This approach is
similar to the continuum approach in fluid mechanics. In the contin-
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uum approach, the problem of fluid motion is tackled with help of the
statistically macroscopic approach instead of treating the problem at
microscopic molecular level. The volume average method in porous me-
dia requires a much coarser level of treatment. This method involves in
averaging the fluid continuum in the void spaces in the porous matrix.
In the volume averaged method, the usual fluid continuum approach is
considered microscopic. The elementary volume of study in the volume
averaged method should be the smallest differential volume that results
in statistically meaningful average properties.

Figure 2.5: Schematic of representative elementary volume.

In a two phase system of volume V contained within the surface A
as shown in Figure 2.5, let I(x) be a volume element in the fluid phase.
The volume V is occupied by both the fluid volume Vf and the solid
volume Vs. The local porosity ε(x) can be defined as:

ε(x) =
1

V

∫
V

I(x)dV (2.1)

When the volume V is increased step by step, after some point any
additional increase in the volume will not have an influence on the
local properties such as porosity ε(x). For this condition to be reached,
the dimension L of the volume must be much larger than the pore
diameter dpore and must be smaller than the largest dimension of the
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porous matrix Lmax. This volume is termed as the Representative
Elementary Volume (REV) of the porous matrix [9, 68]. The local
volume average for any quantity ψ is defined as:

ψ̄ =
1

V

∫
V

ψdV (2.2)

If ψ is a fluid quantity,

ψ̄ =
1

Vf

∫
V

ψdV (2.3)

In order to solve the volume averaged transport equations, the effective
transport properties of the sponges are required. The effective proper-
ties are usually found by conducting experiments with the real sponges.
The increase in the computational speed and memory capacity provide
a major breakthrough, now it is possible to calculate transport prop-
erties of the sponges with conventional computational fluid dynamics
methods. The transport properties of the sponge depend on the trans-
port properties of the individual sponge phases. If the geometries of
the sponges are well defined in a pore scale, the direct pore level simu-
lations (DPLS) can be performed to determine the effective transport
properties. Many analytical approaches were used to determine the ef-
fective properties by simplifying the geometries, but such analysis are
limited to the assumptions that were made in simplifying the struc-
tural geometry. The computational grids that are reconstructed using
the tomographic scans provide the exact replicas of the sponges. The
reconstructed computational grids are used in this study in determining
the effective transport properties using DPLS.

2.1.4.2 Representative elementary volume of sponges

Before performing DPLS simulations within the reconstructed grids, it
has to be examined whether each individual reconstructed grid geom-
etry is larger than that of the representative elementary volume of the
corresponding sponge. Representative elementary volume is the small-
est possible volume of the sponge having specific properties as those of
the whole reticulated structure. The REV is analogous to the minimum
continuum volume defined in the case of a continuous fluid media.
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Figure 2.6: Variation in the porosity (ε) values with increase in normal-
ized side length (L/dpore), for six different locations within the 30 PPI 80%
porosity Al2O3 porous structure.

Figure 2.6 describes the method used in identifying the REV of a
30 PPI 80% porosity Al2O3 sponge. For six different locations cho-
sen within the sponge, the porosities were calculated with increase in
side length L starting from 0, and were plotted against the normalized
side length (L+ = L/dpore). As by the definition of the porosity, at
a limiting case of L = 0, the porosity takes a value of 0 if the chosen
starting point is on solid strut and takes a value of 1 if the point is on
the fluid. From Figure 2.6, it can be seen that the fluctuations of the
porosity value reduce as the side length increases, and from L/dpore =
2, the fluctuations are within ±7% for all six chosen locations. The
corresponding volume ∆V = 39 mm3 was taken as the representa-
tive elementary volume for 30 PPI 80% porosity Al2O3 sponge. This
method was followed to determine the REV of all the porous mediums
used in this study, and to check whether the sponge volumes are much
larger than the minimum volumes (REVs), a condition that has to be
satisfied to perform the direct pore level simulations.
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Chapter 3

Fluid flow in reticulated
ceramic sponges

Fluids flowing through porous media have an increased bulk flow re-
sistance in comparison to fluids flowing through the ducts of similar
dimension. The first measurement of the increase in resistance to
the fluid flow in porous media was experimentally measured by Darcy
[25]. For fluid flow within the porous media at low Reynolds numbers
(Rep/(1 − ε) < 10, where Rep = ρdpus/µ and dp is the particle di-
ameter), there is an increase in the stress resistance to fluid flow due
to the increase in the solid surface area (wetting surface), where Rep
is calculated using the particle diameter as characteristic length. In
Darcy’s experiment, randomly packed isotropic porous bed made up of
uniformly sized sand particles was used. The flow within the porous
media was gravity driven, one dimensional steady flow. The schematic
of Darcy’s experiment is shown in Figure 3.1.

The experiment showed that the fluid discharge Q̇ is a function of
the flow area A, the difference in hydraulic head dh and the porous bed
length dx.

Q̇ = −κA∆h

∆x
(3.1)

where the proportionality constant κ in Eq. (3.1) is the hydraulic

17
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Figure 3.1: Schematic of Darcy’s experiment on flow of water through sand.

conductivity with dimension [L/T].
The Darcy law can also be written in terms of the pressure gradient

dp/dx and the superficial velocity us as in Eq. (3.2)]

dp

dx
= − µ

K
us (3.2)

where µ is the fluid dynamic viscosity and K is the permeability of the
porous media with dimension [L2]. The superficial velocity us is found
by dividing the mass flow rate of the fluid ṁ by total cross sectional
area of the porous media channel A.

3.1 Low Reynolds number flows

Henry Darcy’s experiments show that at very low velocities the pres-
sure drop inside a porous domain is dependent on the geometry of the
porous matrix. Permeability K is the measure of flow conductance of
the porous matrix [68], i.e., permeability is the property of the porous
matrix which measures its ability to allow fluid to flow through it. In
the Darcy regime, the permeability describes the bulk hydrodynamic
behavior of the fluid flow, it accounts for the influence of the structural
properties of the porous media on the fluid flow. Due to the complex
geometries of the porous structures, there are no universal correlations
available for permeability in terms of porosity, wetting surface area,
etc. A detailed review of the various models used in determining the
permeability of simple porous structures was done by Kaviany [68].
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3.1.1 Capillary models

These models are used for formulating the relationship between per-
meability and structural properties of simple porous matrix. The flow
inside the porous structures is considered to be steady and fully devel-
oped. The Reynolds numbers in these models are very low so that the
hydrodynamic entry length is assumed negligible. The models involve
an application of Navier-Stokes equation to the fluid flow in small di-
ameter channels. Based on the capillary model, for the flow that takes
place inside an arrangement of parallel straight tubes of small diame-
ters, the pressure drop is given by Hagen-Poiseuille equation

dp

dx
= − 128µ

nπd4
us (3.3)

where d is the channel diameter. From Eq. (3.3) the permeability can
be identified as

K = εd2/32 (3.4)

where ε = nπd2/4. This is one of the simplest model for obtaining
the permeability values, but mostly do not agree with porous matrix
of complicated geometries.

3.1.2 Hydraulic radius model

In this model, the packed column is visualized as a bundle of tangled
tubes of weird cross-sections [12]. The sphere packing is considered to
be statistically uniform and so no frequent channelings occur, and the
column diameter of the packed bed to be much larger than the particle
diameter, so that the increase in local porosity and entrance effect is
neglected [34]. The derivation outlined in Bird et al. [12] is as follows:

Friction factor f for packed bed column (analogues to the definition
of friction factor for a flow through pipe) is

f =
1

4

(
dp
L

)(
∆p

0.5ρui2

)
(3.5)

where ui = us/ε is the intrinsic velocity. The pressure drop through a
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representative tube in a bundle is

∆p =
1

2
ρus

2

(
L

rh

)
ftube (3.6)

from Eq. (3.5) and Eq. (3.6), the friction factor of packed bed is

f =
1

4ε2

(
dp
rh

)
ftube (3.7)

with hydraulic radius rh = dpε/6(1 − ε), the friction factor for the
packed beds is

f =
3

2

(
1− ε
ε3

)
ftube (3.8)

For laminar flows in tubes, the friction factor ftube is 16/Reh, where
Reynolds number Reh = 4rhuiρ/µ. For tortuous paths and non-
cylindrical surfaces, the friction factor value 16/Reh of bundled tubes
is replaced by 100/(3 ·Reh), and the pressure drop through the packed
beds is

∆p

L
= 150

(
µus

dp
2

)
1− ε2

ε3
(3.9)

Eq. (3.9) is knows as the Blake-Kozeny equation [13] and is valid
for Rep/(1-ε) < 10, where Rep is the Reynolds number with particle
diameter dp as characteristic length. Carman [22] accounted for the
increase in the average velocity due to the tortuous flow path within
the channel and the coefficient 150 in Eq. (3.9) is replaced by 180. Eq.
(3.10) is the Carman-Kozeny-Blake equation [22].

∆p

L
= 180

(
µus

dp
2

)
1− ε2

ε3
(3.10)

Then the permeability (K) is

K =
ε3dp

2

180(1− ε)2
(3.11)
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Eq. (3.11) is also written as

K =
ε3dp

2

kK(1− ε)2
Svs

2 (3.12)

where kK = k0τ
2 is the Kozeny constant and Svs = 6/dp is the specific

surface area based on the solid volume. For packed bed spheres the
tortuosity τ is 1.4 [22, 34], k0 is approximately equal to 2.5.

3.1.3 Drag models for isotropic structures
In these models the creeping flow over periodic structures of loosely
packed sphere and cylinders are studied. The Navier-Stokes equation is
solved for the flow over the objects and the drag created by the objects
is compared with the Darcy flow resistance to obtain the permeability.

3.1.3.1 Creeping flow over cylinders

Happel and Brenner [56] analyzed the one dimensional parallel flow
in an annulus bounded between a solid cylinder of diameter d and an
outside cylinder of diameter d+ δ, the Kozeny constant kK which can
be substituted in Eq. (3.12) is found to be

kK =
2ε3

(1− ε)
[
2 ln 1

1−ε − 3 + 4(1− ε)− (1− ε)2
] (3.13)

and for flow perpendicular to the cylinder axis, the Kozeny constant is

kK =

2ε3

(1−ε)
1

(1−ε) −
1−(1−ε)2

1+(1−ε)2

(3.14)

3.1.3.2 Numerical solution for flow over cylinder

Sahraoui and Kaviany [103] numerically solved the Navier-Stokes equa-
tion for flow over different arrangements of cylinders by applying the
finite difference approximation. The authors gave the following corre-
lation for permeability

K

d2
= 0.0606

π

4

ε5.1

1− ε
; for 0.4 ≤ ε ≤ 0.8 (3.15)
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where d is the cylinder diameter.

3.2 High Reynolds number flows
Deviations from Darcy’s law is observed by many experimentalists when
the velocity is increased above stokes regime. There exists a non lin-
ear relationship between the pressure gradient and the flow velocity
at higher Reynolds number (Rep > 1) [92]. The reason is due to the
contribution of the inertial term to the flow resistance along with the
viscous term. In order to account for the inertial resistance, the Darcy
equation (Eq. (3.2)) is modified as

dp

dx
= − µ

K
us − cFK−0.5ρus

2 (3.16)

where cF is the form drag constant. Eq. (3.16) is also written as

dp

dx
= − µ

K1
us −

ρ

K2
us

2 (3.17)

where K1 and K2 are generally named as permeability coefficients. The
last term in Eq. (3.16) and Eq. (3.17) is called the Forchheimer term,
and the equations are generally referred as the Forchheimer equation.
A detailed theoretical derivation of the volume averaged momentum
equation with the Forchheimer correction by the application of spatial
averaging theorem to the Navier-stokes equation along with the closure
problem is given by Whitaker [119]. Ward [117] considered cF to be
a constant value of 0.55 for isothermal saturated porous media. For
randomly packed bed spheres, considering the influence of bounding
walls on the inertial drag, Beavers et al. [10] provided a correlation for
cF as

cF = 0.55

(
1− 5.5

d

De

)
(3.18)

where d is the diameter of the sphere and De is the equivalent diameter
of the packed bed

De =
2wh

w + h
(3.19)
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where w is the width of the bed and h is the height. Similar to the
method used in section 3.1.2 to derive the Carman-Kozeny-Blake equa-
tion, the friction factor Eq. (3.8) can be considered for high Reynolds
number flows (Rep/(1− ε) > 1000) [12]. The friction factor is indepen-
dent of the Reynolds number (similar to turbulent flows) and is function
of only the roughness of the tubes. ftube is considered as a constant
and a value of 7/12 is taken as an acceptable value [12]. Substituting
ftube = 7/12 in Eq. (3.8) provides

f =
7

8

(
1− ε
ε3

)
(3.20)

Substituting Eq. (3.20) in Eq. (3.5) results in Eq. (3.21), which is the
Burke-Plummer equation [18].

∆p

L
=

7

4

(
ρus

2

dp

)
1− ε
ε3

(3.21)

For transition flows, i.e., 10 < Rep/(1-ε) < 1000, the pressure drop
equations Eq. (3.9) and Eq. (3.21) are superposed, which results in
the Ergun equation Eq. (3.22) [40].

∆p

L
= 150

(
µus

dp
2

)
1− ε2

ε3
+ 1.75

(
ρus

2

dp

)
1− ε
ε3

(3.22)

Macdonald et al. [83] modified the friction factor proposed by Ergun
[40] as

f =
dp/dx

ρu2
s

dp
ε3

1− ε
=

180(1− ε)
Re

+ 1.8 (3.23)

Eq. (3.23) along with the Carman-Kozeny permeability relation (Eq.
(3.11)) is used to obtain an equation for cF as [68]

cF = 1.8
1− ε
ε3

1

d
K0.5 (3.24)

3.3 Pressure drop in open cell sponges
Most of the studies to describe the pressure drop within reticulated
porous media were based on the Ergun equation (Eq. (3.22)) [79, 90,
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91, 100]. Richardson et al. [100] used the hydraulic diameter model
to calculate the specific surface area based on solid volume by replac-
ing the hydraulic diameter of packed beds by the pore diameter of the
reticulated structures. As the method of replacing hydraulic diameter
of packed beds with open cell pore diameter is physically not correct,
the authors calculated new constants for the Ergun equation by an em-
pirical fit, introducing a dependency on the pore diameter and porosity
of the reticulated porous structure. Moreira et al. [91] compared the
Forchheimer equation and the Ergun equation to establish a relation
between the porosity of the porous media to the permeability coeffi-
cients K1 and K2 in Eq. (3.17), and the experimental pressure drop
results were used to empirically fit the porosity dependent permeabil-
ity coefficients to the pore diameter. Dukhan et al. [35] used a similar
procedure to the correlate permeability coefficients in terms of porosity
and specific surface area. The authors replaced the particle diameter
in the Ergun equation with the reciprocal of specific surface area.

Garrido et al. [47] correlated the permeability coefficients in terms
of pore diameter and porosity to match their measurements. A cubic
cell model is used by Lacroix et al. [74] to find a relation between the
strut diameter of the reticulated porous media to the particle diam-
eter of a packed bed having same specific surface area and porosity.
The particle diameter obtained from the strut diameter is used in the
Ergun equation without modifying the Ergun constants, and no empir-
ical correlation is used. As mentioned by the authors themselves, the
model may not be physical meaningful as it is not possible to obtain a
packed bed composed of spherical particles with high porosities as that
of reticulated structures. Du Plessis [33] correlated their experimental
data using a quadratic polynomial, the pre-factors were modeled with
the tortuosity. Du Plessis and Woudberg [34] specify in their publi-
cation that the Ergun equation is only applicable to Newtonian flow
through packed beds in the porosity range of approximately 0.35-0.5.

Edouard et al. [38] listed a wide range of correlations reported in
the literature and made a comparison with their experimental data.
They concluded that no model is able to correctly predict the pressure
drop, and that the standard deviations between the experimental and
the theoretical values even reach 100%. The authors also reported that
the approach proposed by Du Plessis [33] and Lacroix et al. [74] gave
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a reasonable estimate of pressure drop, with most of the experimental
data in literature lying within ±30% error.

Dietrich et al. [29] used their experimental pressure drop mea-
surements of various reticulated ceramics (similar to the ones used in
this study) to model the two Ergun constants for the Ergun equation.
The authors reported that the constants turned out to be independent
of material, void fraction and pore density. In a recent publication,
Dietrich [28] made a comprehensive comparison of a wide range of ex-
perimental data with the general correlation provided in [29]. The cor-
relation is able to predict the non-dimensional pressure drop (Hagen
number) within an error range of ±40% for a wide range of Reynolds
number (0.1− 105).

With the help of direct pore level simulations one can obtain a cor-
relation based on new insight in the internal flow field, as it is the basic
cause of the pressure drop. In this study, the pressure drop correla-
tion is derived from the basic definition of the friction factor for packed
beds, the friction factor is defined as [12, 29, 40]

f =
∆p

∆x

ε2dh
ρu2

s

= ζ/Re+ η (3.25)

And with Re = us · dh/ε · ν and dh = 4ε
Sv

the pressure drop is written
as

∆p

∆x
= ζ · µSv

2

ε3
us + η · ρSv

ε3
us

2 (3.26)

where Sv is the specific surface area based on total porous matrix vol-
ume. Eq. (3.26) is similar to the Forchheimer equation Eq. (3.16).
Comparing Eq. (3.16) and Eq. (3.26) one obtains ζ = ε3/Sv

2K and
η = ε3cF /SvK

0.5. Direct pore level simulations are used to determine
the permeability coefficients values and the constants ζ and η.

3.3.1 Determination of K and cF

3.3.1.1 Numerical setup and procedure

Assuming air to be a Newtonian fluid having a constant density and
with the requirement of steady flow, the governing equations of mass
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and momentum conservation are written using Einstein’s summation
rule as follows:

∂

∂xj
(ρuj) = 0 (3.27)

∂

∂xj
(ρujuk) = − ∂p

∂xk
+

∂

∂xj

(
µ
∂uk
∂xj

)
(3.28)

where xj and uj denote the spatial coordinate and velocity in j-direction,
p is the static pressure and µ stands for the dynamic viscosity of air.
The fluid flowing within the porous matrices is assumed to be a New-
tonian fluid having a constant density and with the requirement of
steady flow. Besides the underlying assumptions of the Navier-Stokes
equations, no simplifications are necessary. Within the limits of the
numerical truncation error (i.e., mesh refinement) and the accuracy of
geometrical representation (i.e., statistical variations), direct pore level
simulation approaches the exact solution. The boundary conditions at
the inlet and outlet were specified using constant gas velocity at in-
let and static pressure together with zero gradient condition for the
velocity at the outlet.

Figure 3.2: Schematic of boundary conditions imposed in DPLS pressure
drop calculations.

The domain surfaces perpendicular to the flow direction were given
with translational periodic boundary conditions. The structure sur-
faces are modelled using wall boundary conditions. The flow domains
were described based on the reconstructed surfaces of the real probes
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as mentioned in Chapter 2. ANSYS CFX commercial CFD software is
used to solve the governing equations. ANSYS CFX employs the finite
volume method of a cell-centered storage arrangement. A hybrid in-
terpolation scheme is used for the finite volume flux calculations. The
schematic of the employed boundary conditions is shown in Figure 3.2.
The flow is presumed to be laminar, and so no turbulence model has
been used. Considering the extreme spatial resolution (1-4 million grid
points for approximately 18000 mm3, i.e., more than 50 points / mm3)
the simulation could be regarded as a direct numerical simulation.

3.3.1.2 Results

Figure 3.3: Nondimensionalized average pressures along the flow direction
in 20 PPI 80% porosity alumina sponge at different Reynolds numbers.

The simulations were carried out for Reynolds numbers ranging from
10 to 1500. The Reynolds numbers (Re = ρdhus/µ) are calculated
using the hydraulic diameter (dh = 4ε/Sv) as the characteristic length.
The nondimensionalized pressures along the normalized length in 20
PPI 80% porosity alumina sponge at different Reynolds numbers are
plotted in Figure 3.3.
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It can be seen that the pressure drops decrease with decrease in the
Reynolds number and tend towards narrowing the difference between
the curves. For very low Reynolds numbers, the curves will fall down to
a single curve representing the Darcy regime. The pressure drop with
respect to superficial flow velocity of 80% porosity alumina structures
with different pore density is plotted in Figure 3.4. Shown in Figure 3.5
are the pressure drops of alumina structures with pore density of 30 PPI
and varying porosities. As expected, it is observed from Figure 3.4 and
from Figure 3.5 that the pressure drops increase with the increase in
the pore density, and they decrease with increase in porosity, and also
the pressure drop values are second order polynomial with respect to
velocity. In order to determine the permeability and the drag constant
in Eq. (3.16) from the DPLS results, quadratic fitting of data points is
done.

Figure 3.4: Pressure drop per unit length versus superficial air velocity for
alumina sponge with different pore density and 80% porosity.
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Figure 3.5: Nondimensionalized average pressures along the flow direction
in 20 PPI 80% porosity alumina sponge at different Reynolds numbers.

Table 3.1 contains the permeability coefficients that are determined
for the investigated structures. The values of constants ζ and η in
Eq. (3.26) are calculated using K and cF . The values of ζ and η
are independent of the geometric and material properties of reticulated
porous media, and the calculated ζ and η values of different porous
matrices have a standard deviation of 1.56 and 0.15, respectively. The
mean values (ζ = 8.1 and η = 0.31) are obtained by calculating the
arithmetic average of the values that are determined for the studied
structures. Eq. (3.26) is used to calculate the pressure drop for the
porous structures with the mean values of ζ and η. The maximum
relative error with reference to the DPLS pressure drop was 45% for 45
PPI Al2O3 80% porosity structure, and the error values for all other
samples are well within 37%.
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Table 3.1: Permeability and friction factor of different sponges determined
using DPLS.

Pore density
(PPI)

Nominal
porosity(%)

Permeability
K (m2)

Drag
constant
cF (-)

10 (Al2O3) 80 2.17E-07 0.101

20 (Al2O3)

75 4.60E-08 0.170
80 1.02E-07 0.123
85 8.21E-08 0.116

30 (Al2O3)

75 3.38E-08 0.224
80 4.58E-08 0.123
85 5.42E-08 0.101

45 (Al2O3) 80 2.18E-08 0.368

20 (SiSiC) 85 1.78E-07 0.096

10 (SiSiC) 85 2.37E-07 0.103

Comparing Eq. (3.26) to the pressure drop correlation Eq. (3.29)
by Dietrich et al. [29], it can be noticed that the constants in the
correlation by Dietrich et al. [29] are A =16ζ and B =4η, which results
in Eq. (3.30) for mean values of ζ and η.

∆p

∆x
= A · µ

εdh
2us +B · ρ

ε2dh
us

2;Hg = A ·Re+B ·Re2 (3.29)

∆p

∆x
= 129.6 · µ

εdh
2us + 1.24 · ρ

ε2dh
us

2 (3.30)

where Hg = (∆p/∆x)(dh
3/ρν2) is the Hagen number. The values of A

and B reported by Dietrich et al. are A = 110, B =1.45. The authors
[29] calculated the values of A and B by minimizing the Root Mean
Square Deviation (RMSD),

RMSD = 10RMSD(ELOG) − 1;ELOG = log(Hgcalc)− log(Hgexp)

(3.31)
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Figure 3.6: Hagen number versus Reynolds number of sponges of different
pore density and porosities.

Figure 3.6 shows the Hagen numbers as a function of Reynolds
numbers for different sponges. As reported by Dietrich et al. [29], it
is seen that the relation between the Hagen number and the Reynolds
number form a single line, denoting the similarity in the geometric
structures of the ceramic sponges. The Hagen number based on the
correlation suggested by Dietrich et al. [29] and the Hagen numbers
found using constant A = 129.6 and B = 1.24 are also plotted in Figure
3.6. Both the correlations match the Hagen number data rather well.
Dietrich [28] reported that the correlation for Hagen number Eq. (3.29)
satisfies a vast amount of experimental results in the literature, and
the RMSD value is within 40%. The Eq. (3.29) when compared to the
DPLS results has a RMSD of 30.5%, which is well within the RMSD of
40% reported by Dietrich [28] for the available literature data. But the
constants A = 129.6 and B = 1.24 provide a lesser RMSD of 26% for
the DPLS results. When the friction factors are calculated using Eq.
(3.25) with A = 110 and B =1.45, the maximum relative error is 57%
with respect to DPLS results, and with A = 129.6 and B = 1.24 the
maximum relative error is 45%, though the values of A and B in this
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study are calculated using the arithmetic mean values of ζ and η, the
mean values also provide the least RMSD. Thus it is concluded that,
though the general pressure drop correlation provided by Dietrich et
al. [29] provides an acceptable correlation for pressure drop values, a
slightly modified value of A = 129.6 and B = 1.24 represents better the
simulated pressure drop values.

Figure 3.7, Figure 3.8 and Figure 3.9 show the comparison of the
friction factors calculated using Eq. (3.25) (with ζ = 8.1, η = 0.31) to
the DPLS friction factors. As mentioned before, the calculated friction
factor of the 45 PPI Al2O3 80% porosity matrix has the maximum de-
viation in comparison to the DPLS friction factor.

Figure 3.7: Comparison between correlated and DPLS friction factors
(shown in lines and symbols, respectively) for 20 PPI sponge.
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Figure 3.8: Comparison between correlated and DPLS friction factors
(shown in lines and symbols, respectively) for 30 PPI sponge.

Figure 3.9: Comparison between correlated and DPLS friction factors
(shown in lines and symbols, respectively).
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In a DPLS study made by Habisreuther et al. [52] to replicate
the pressure drop of real porous structure with Kelvin structure, the
authors noticed that the pressure drop of randomized Kelvin structure
with same porosity, pore density and specific surface area as that of the
real porous matrix had a very low pressure drop in comparison to the
real 45 PPI Al2O3 80% porosity matrix. In order to achieve a pressure
drop close to that of real structures, the authors had to randomly close
the pore windows of the randomized Kelvin structure to increase the
flow tortuosity, maintaining same porosity, pore density and specific
surface area. The manufacturing of high pore density reticulated porous
structures (such as 45 PPI) using replication methods are generally
associated with presence of closed pores [98], which makes the flow to
take a relatively longer flow path and the form (inertial) drag increases
due to the increase in flow obstruction caused by the presence of closed
pores.

In order to study the influence of flow tortuosity on the pressure
drop, the tortuosities of the different structures used in this study are
calculated using the approach used by Habisreuther et al. [52]. Numer-
ical tracking of the path taken by almost mass free particles, that are
used to mark the flow path through the porous matrix. The integration
of the particle path results in the increased path length Lp. The tortu-
osity is calculated from its definition (τ = Lp/L). Lagrangian particle
tracking (LPT) method is used to track the particle in the Eulerian fluid
phase flow. The particle displacement is calculated using forward Euler
integration of the particle velocity over time step δt. The algorithm is
a standard in most flow solvers. Only the drag force of the fluid on
the particle was considered. The coefficient of drag is calculated using
Schiller-Naumann drag model [106], with 0.44 as the limiting value in
the inertial regime. The Particle diameter is taken close to zero (10
nm) with density (2000 kg/m3) to minimize the slip velocity between
the particle trajectory and the flow due to particle inertia, so that the
particle velocity reaches flow velocity. Around 30000 particles are an-
alyzed in each simulation. Habisreuther et al. [52] reported that the
randomized Kelvin structure in absence of closed pores has a flow tor-
tuosity of 1.08, which is taken as a reference value in this study. As the
value of 1.08 denotes a porous matrix without closed pores, in presence
of closed pores the flow tortuosity is expected to increase. The mean
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Table 3.2: Constants ζ and η and flow tortuosity of different sponges de-
termined using DPLS.

Pore density
(PPI)

Nominal
porosity(%)

ζ (-) η (-) τ (-)

10 (Al2O3) 80 7.6 0.20 1.08

20 (Al2O3)

75 7.5 0.31 1.14
80 6.6 0.23 1.08
85 7.4 0.25 1.06

30 (Al2O3)

75 6.8 0.37 1.11
80 7.5 0.25 1.06
85 7.5 0.23 1.06

45 (Al2O3) 80 8.7 0.76 1.31

20 (SiSiC) 85 8.9 0.23 1.08

10 (SiSiC) 85 12.3 0.29 1.12

tortuosity τ values of the sponges are tabulated in Table 3.2. It can
be noticed from Table 3.2, that the increase in η value can be related
to the increase in flow tortuosity. The constant η of 45 PPI Al2O3
80% porosity matrix is much higher than the average value of all other
structures, which also has the highest tortuosity value. A high value
of η denotes an increase in the form drag term, the second term in Eq.
(3.26). In order to accommodate the effect of tortuosity, Eq. (3.25)
and Eq. (3.26) is modified as,

f =
∆p

∆x

ε2dh
ρu2

s

= ζ/Re+
τ

τ ′
η (3.32)

∆p

∆x
= ζ · µSv

2

ε3
us +

τ

τ ′
η · ρSv

ε3
us

2 (3.33)

where, τ ′ = 1.08 is the tortuosity value of a randomized Kelvin struc-
ture without closed pores. The maximum relative error for friction fac-
tor of the sponges in comparison to the DPLS friction factor reduced
from 44% to 38%, and the RMSD error of the Hagen number correla-
tion (Eq. (3.29)) with A = 129.6 and B = 1.24 reduced to 21.5%. It is
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observed from Table 3.2 that the SiSiC structures have the highest ζ
value among the studied structures and have larger deviations from the
mean value. The ζ values in Eq. (3.25) denotes the friction drag, higher
values of ζ denotes higher friction for same surface area. In the case of
DPLS simulations, the reconstructed domain surfaces are smoothened
out and are incapable of capturing the true micro surface roughness of
the material, and thus the increase in the ζ value cannot be related to
the material, but may be to the strut cross-section and node geome-
tries, which effect the velocity boundary layers, and so, the frictional
drag. However, at velocities much above Darcy regime, the effect of
frictional drag term in Eq. (3.26), in comparison to the form drag is
less pronounced. It is thus concluded that the strut cross-section pro-
file may have a considerable effect when the Reynolds number is near
to the Darcy regime and the general correlation Eq. (3.30) may under
predict the pressure drop within the reticulated porous structures.



Chapter 4

Axial dispersion in
ceramic sponges

The process of diffusion is mixing of one type of fluid molecules (tracer)
into a continuum of other fluid molecules. Similarly, thermal diffusion
is the transfer of internal energy by molecular diffusion and collisions of
particles due to the temperature gradient. Diffusion occurs by random
motion of the tracer (or high energy) molecules into the fluid due to
the presence of tracer concentration gradient (or temperature gradient).
Diffusion is a molecular level mixing process, where the fluid molecules
are having random Brownian motion. The term dispersion is similar
to that of diffusion, but it happens in a macroscopic level, where the
mixing of tracer molecules with the fluid molecules is enhanced by the
fluid flow. Dispersion can be viewed as convection induced spreading
or mixing [113]. One of the earliest studies of hydrodynamic dispersion
was by Taylor [110]. Taylor studied the mixing of a tracer fluid in a fully
developed flow through a circular tube. Figure 4.1 shows the schematic
of the study by Taylor. A tracer solution is injected at plane A, and the
concentration moves downstream due to the flow. The velocity field is
fully developed and is given by Hagen-Poiseuille equation (Eq. (4.1)).

u = 2u

(
1− r2

R2

)
(4.1)

37
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Figure 4.1: Mixing and spreading of tracer in a tube caused by fluid flow.

In presence of molecular diffusion, the concentration Y equation is
given by

1

Dm

∂Y

∂t
+

1

Dm
u
∂Y

∂x
=

(
∂2Y

∂r2
+

1

r

∂Y

∂r
+
∂2Y

∂x2

)
(4.2)

For simplicity, Taylor assumed the molecular diffusion coefficient to be
independent of concentration Y , and in his experiments the term ∂2Y

∂x2

is much less than 1
r
∂Y
∂r + ∂2Y

∂r2 . Using the above condition, Eq. (4.2)
becomes

1

Dm

∂Y

∂t
+

1

Dm
u
∂Y

∂x
=

(
∂2Y

∂r2
+

1

r

∂Y

∂r

)
(4.3)

The molecular diffusion in the axial direction is neglected and he con-
sidered the convection across a plane which moves at a constant speed
u. The axial coordinate is transformed according to x′ = x − ut. The
transformation is done so that the variable x′ corresponds to an ob-
server moving with the fluid. Since the mean velocity u across the
plane for which x′ is constant is zero, the transfer of Y across such
planes depends only on the variation of Y in the radial direction. Us-
ing chain rule, Eq. (4.3) is transformed as

1

Dm

(
∂Y

∂t

)
x′

+
1

Dm
[u− u]

∂Y

∂x′
=

(
∂2Y

∂r2
+

1

r

∂Y

∂r

)
(4.4)
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Substituting Eq. (4.1) in Eq. (4.4)

1

Dm

(
∂Y

∂t

)
x′

+
1

Dm
2u

(
1

2
− r2

R2

)
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∂x′
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(
∂2Y

∂r2
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1

r

∂Y

∂r

)
(4.5)

As the observer moves along with the fluid, for large elapsed times the
solute concentration does not change with the time and there exists an
asymptotic behavior (∂Y∂t → 0), Eq. (4.5) becomes

1

Dm
2u

(
1

2
− r2

R2

)
∂Y

∂x′
=

(
∂2Y

∂r2
+

1

r

∂Y
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)
(4.6)

As the observer moves along with the fluid, after large elapsed times the
axial concentration gradient will become independent of radial position,
as a consequence

∂Y

∂x′
∼=
∂Y

∂x′
(4.7)

Using the above approximation, Eq. (4.6) is written as
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(4.8)

As ∂Y
∂x′ is independent of r, Eq. (4.8) is rearranged and integrated with

respect to r

r
dY
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4
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)
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(4.9)

Due to the symmetry of the flow, ∂Y∂r (r = 0, x′) = 0, and therefore the
integration constant C1 equals zero. Eq. (4.9) is divided by r on both
sides, and a second integration with respect to r gives

Y =
R2u

4Dm

∂Y

∂x′

(
r2

R2
− 1

2

r4

R4

)
+ C2 (4.10)
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The constant C2 is independent of r and evaluated using the average
axial concentration Y given by

Y (x′, t) =
1

πR2

∫ R

0

Y (r, x′, t)2πrdr

=
1

πR2

∫ R

0

[
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2
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]
2πrdr

(4.11)

Let z = r/R

Y (x′, t) = C2 +
2R2u

4Dm
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Solving for C2 yields

C2 = Y − R2u

12Dm

∂Y

∂x′
(4.13)

Subsituting Eq. (4.13) in Eq. (4.10) gives

Y = Y +
R2u

4Dm

∂Y

∂x′

[
−1

3
+
r2

R
− 1

2
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(4.14)

Finally, to arrive at the Taylor dispersion coefficient DL, Eq. (4.4) is
multiplied by the differential cross-sectional area 2πrdr and carry out
integration over the pipe radius R

1

πR2

[∫ R

0

1

Dm

(
∂Y

∂t

)
x′

2πrdr +

∫ R

0

1

Dm
2u

(
1

2
− r2

R2

)
∂Y

∂x′
2πrdr

]

=
1

πR2

[∫ R

0

∂2Y

∂r2
2πrdr +

∫ R

0

1

r

∂Y

∂r
2πrdr

]
(4.15)

Changing the order of differentiation and integrating the first term and
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recalling Eq. (4.11) yields(
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At the pipe wall, i.e., at r = R

∂Y

∂r
= 0 (4.17)

Integrating the right hand side in Eq. (4.16) along with the above
boundary condition gives
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Further, differentiating Eq. (4.14) with respect to x′ and substituting
it into the second term on the left hand side of Eq. (4.16) gives(
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Integrating between 0 and 1 yields(
∂Y
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)
x′

=
1

48
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Changing the variable x′ back to x gives(
∂Y

∂t

)
x

= DL
∂2Y

∂x2
(4.21)

where, DL = R2u2

48Dm
is the axial dispersion coefficient, which can be

written in terms of molecular Peclet number Pem = 2Ru/Dm as

DL =
Dm

192
Pe2

m (4.22)
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4.1 Axial dispersion in open cell ceramics
Solid sponges made of ceramic, metal or polymeric material are highly
porous, monolithic materials with excellent mixing properties. Their
open-cell structure consists of stiff, interconnected struts building a con-
tinuous network. Because of the high volumetric porosity, such struc-
tures exhibit a relatively small pressure loss and provide good mixing
properties and thus are an interesting material for chemical process en-
gineering purpose. Additionally, sponges made of ceramics, depending
on the bulk material bear temperatures up to 1700 K and can be uti-
lized in porous burners in order to enhance the volumetric heat release
by enhancing the thermal and mass transport processes. Dispersion can
be described considering a fluid flow in such a porous medium, where
a fraction of the fluid is labelled as tracer. The tracer mixes with the
unlabelled fluid through a non-steady, irreversible process known as
hydrodynamic dispersion. The theory of dispersion for porous media
from its historical development is presented by Bear [9] and several
relevant theoretical predictions are given by Koch & Brady [69]. As
described by Boon et al. [16] hydrodynamic dispersion is analogous
to the turbulent diffusion phenomenon, where the porous matrix plays
the role of eddies in dispersing the flow. A macroscopic description of
the phenomenon was derived by Carbonell & Whitaker [21] from the
convection-diffusion equation by volume averaging in a porous medium:

φ
∂2Y

∂t
+∇ · (φuY ) = ∇ · (φD · ∇Y ) (4.23)

where Y is the tracer concentration, φ is the fluid volume fraction,
u is the fluid velocity within the pores, and D is the hydrodynamic
(macroscopic) dispersion tensor. The relative importance of molecu-
lar diffusion and hydrodynamic dispersion for spreading the tracer is
described by the Peclet number, Pem = ud/Dm, where u is the fluid
velocity within the pores, d denotes a characteristic length of the porous
medium, and Dm is the relevant coefficient of molecular diffusion. For
increasing Peclet numbers, the influence of hydrodynamic dispersion
too increase. The phenomenon of hydrodynamic dispersion has been
investigated by many researchers in the past, Maier et al. [84] give
a good overview over these investigations together with more recent
investigations that have been conducted using new experimental meth-



43

ods (e.g., pulsed-gradient spin echo NMR) and new numerical methods
like the Lattice Boltzmann (LB) methods on the pore level. Delgado
[27] in his recent review analyses vast data on dispersion in porous me-
dia that are available in literature and formulates simple correlations
for the prediction of longitudinal and transversal dispersion coefficients
for gaseous and liquid flow. For relatively high Pem numbers (>60),
the longitudinal component DL of the macroscopic dispersion tensor D
has been found to asymptotically approach a linear function of Pem.
Instead of using the most common representation of dispersion coeffi-
cients that show the dependence of the ratio DL/Dm as a function of
Pem, Delgado [27] uses the definition of a macroscopic Peclet number
in longitudinal direction PeL = ud/DL in order to better resolve the
data found in the literature. For gaseous flow in porous media at high
Pem numbers, an asymptotic value of PeL = 2 can represent the data
for beds with spherical elements in good accordance. Despite the vast
amount of the data available in the literature, dispersion coefficients
for highly porous media like sponge structures are scarce. This is due
to the fact that the dispersion is subject to the internal structure of
the porous media and therefore cannot be described without taking
this structure into account. In addition, such data usually is not avail-
able from the suppliers of the commercially available ceramic sponges.
Thus, the present work aims in calculating the effective axial dispersion
coefficients of various sponge structures.

4.1.1 Numerical setup
Assuming air to be a Newtonian fluid having a constant density and
with the requirement of unsteady flow, the governing equations of mass
and momentum conservation is written using Einstein’s summation rule
as follows:

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0 (4.24)
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∂

∂t
(ρuk) +

∂

∂xj
(ρujuk) = − ∂p

∂xk
+

∂

∂xj

(
µ
∂uk
∂xj

)
(4.25)

The equations are similar to Eq. (3.27) and Eq. (3.28), respectively,
but are for instationary flow. The boundary conditions at the inlet and
outlet are specified using constant gas velocity at the inlet and static
pressure together with zero gradient condition for the velocity at the
outlet. The domain surfaces perpendicular to the flow direction are
given with translational periodic boundary conditions. The structure
surfaces are modelled using wall boundary conditions.

4.1.2 Numerical procedure

The starting point is the simulation of the stationary flow of air through
the void phase of sponges. Using the converged stationary solution
as a starting condition, a transient calculation is performed, where
the incoming fluid is suddenly changed from air to tracer air having
same properties as that of air and with molecular diffusion coefficient
Dm = 1.3×10-5m2/s. The tracer air is then transported by convection
and diffusion through the sponge structure. In order to calculate an
effective dispersion coefficient from CFD simulation, the instantaneous
three-dimensional mixture fields are reduced into one-dimensional ones
using mass flow average over N cross-sectional planes perpendicular to
the main flow direction:

Y (xk, t) =

M∑
i=1

(Yi(t) · ρuiAi(xk))

M∑
i=1

ρuiAi(xk)

(4.26)

Y (xk, t) denotes the mass flow averaged tracer mass fraction at the
k-th cross-sectional plane at position xk and for the time t, ρuiAi(xk)
stands for the mass flow in the plane with the i-th grid cell, M is the
number of grid cells and Yi(t) is the tracer mass fraction value in the
i-th grid cell at time t. The result of this procedure yields the progress
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of the one-dimensional dispersion field in time. Figure 4.2 shows the
positions of surfaces with constant mass fraction of tracer Y = 0.5.

Figure 4.2: Four instantaneous positions of surfaces with constant mass
fraction of tracer Y = 0.5 (light grey) propagating through a sponge structure
(dark grey).

Following an approach similar to the one of Maier et al. [84] the
dispersion coefficient is evaluated from the time history of the mass
fraction profiles of a tracer species which is introduced into the flow
through the porous media. In contrast to a similar method used in
[54] and more recently in [94], in the present work, the longitudinal
dispersion coefficient was evaluated using a sudden concentration jump
at the inlet of the flow system.

As seen previously, the transient one dimensional transport of con-
centration jump by advection and diffusion is analytically described in
a frame of reference moving with the mean flow velocity (x′ = x−u · t)
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by Fick’s law with the differential equation:

∂Y

∂t
= DL

∂2Y

∂x′2
(4.27)

where Y is the tracer concentration and DL denotes the dispersion
coefficient. The analytical solution of this differential equation is well
known and can be found in standard text books [93].

Y = 1− erf
(

x′

2
√
DL · t

)
(4.28)

As an example the calculated mass fraction profiles for the disper-
sion in a 20 PPI SiSiC 85% porosity sponge with this time behavior
are shown in Figure 4.3.

Figure 4.3: Instantaneous mass fraction profiles at five time steps.

In order to evaluate the effective dispersion coefficient, it is more
convenient to analyze the gradient of the concentration profiles ∂Y/∂x:

∂Y

∂x
= − 2

2
√
π ·DL · t

exp

(
− x′2

4tDL

)
(4.29)

Assuming that the simulated concentration gradient is of Gaussian
type, the dispersion coefficient is evaluated fitting the width of the
gradient curve of the analytical solution to the one of the simulation
results, which is approximated using a central difference scheme:

∂Y (x, t)

∂x
=
Y (xk+1, t)− Y (xk−1, t)

xk+1 − xk−1
(4.30)
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In Figure 4.4 three selected instances of the mass fraction gradient
is displayed for the dispersion in a 20 PPI SiSiC 85% porosity sponge.

Figure 4.4: Instantaneous mass fraction gradient profiles at five time steps.

In order to fit the analytic solution gradient to the simulated gradi-
ent the variance σ2 = 2tDL, i.e., the width of the Gaussian function Eq.
(4.29) has to be adjusted to the second moment σ2

sim of the simulated
gradient which leads to:

DL(t) =
σ2
sim(t)

2t
(4.31)

A presumption of Eq. (4.31) is that there exists an infinite domain
around the initial concentration jump which, for practical reasons, can-
not be realized and is violated especially near the inlet boundary condi-
tion of the numerical simulation in short period of time after the initial
time step. Therefore, it is more accurate to evaluate the average lon-
gitudinal dispersion coefficient DL(t) by comparing two values of the
variance in time t and t+∆t : ∆σ2

sim(t)∆t. This yields the longitudinal
dispersion coefficient to be equal to:

DL(t) = 0.5
∆σ2

sim(t)

∆t
(4.32)

For the calculation of the time dependent variances σ2
sim(t) the first

and second moments of the concentration gradient profiles have to be
evaluated:

xsim(t) =

N∑
k=1

(
∂Y (xk, t)

∂x
· xk(t) · xk+1(t)− xk−1(t)

2

)
(4.33)
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σ2
sim(t) =

N∑
k=1

(
∂Y (xk, t)

∂x
· (xk(t)− xsim(t))2 · xk+1(t)− xk−1(t)

2

)
(4.34)

Figure 4.5: Time evolution of first and second moment (mean: dotted
line and variance: dashed line) of the mass fraction gradients and resulting
dispersion coefficient (solid line).

As an example, Figure 4.5 shows the first and second moment
(xsim(t) and σ2

sim(t)) for the 20 PPI SiSiC 85% porosity structure
as well as the resulting longitudinal dispersion coefficient DL(t) as a
function of time. It is observed that after a short period of time (ca.
3 ms) an almost constant value is obtained. In order to compare the
dispersion of the different structures, one dispersion coefficient of the
time evolution has to be selected. In the present work, the maximum
value of the curve (0.00603 m2 s-1 for the shown example) was chosen.

4.1.3 Results and discussion
Very few studies were carried out in determining the axial dispersion
coefficient of highly porous solid sponge structures [63]. In this study
the simulations were carried for various sponge structures of differ-
ent porosity, pore density (PPI) and material. Taylor [110] examined
the effect of column length from the exact analytical solution of the
convection-diffusion equation for a laminar flow in a capillary tube.
The constraint above which the axial dispersion is independent of col-
umn length is given by Eq. (4.35),

θ = Dm · t/R2 >> 0.14 (4.35)



49

where R is the tube radius, θ is a dimensionless time and Dm is the
molecular diffusivity. Carbonell and Whitaker [21] reported that for
any porous medium, the dispersion coefficient reaches a constant value
if the constraint Eq. (4.36) is satisfied:

θ = Dm · t/l2b >> 1 (4.36)

where lb is the characteristic length associated with the pore space in
the fluid-solid system. Han et al. [55] showed that for a packed bed of
uniform particle size, the axial dispersion coefficient is independent of
the column length, if the dimensionless time θ is equal or above 0.3.

θ =

(
L

dp

)
1

Pep

(
1− ε
ε

)
≥ 0.3 (4.37)

where L is the distance from inlet, dp the particle diameter, Pep is the
Peclet number with particle diameter as the characteristic length and
ε is the porosity. There is no such specific creation found in literature
for highly porous sponge structures. In this study, we used a similar
approach reported in [55] to find the dimensionless time θ. The dimen-
sionless time θ, above which the axial dispersion coefficient becomes
constant is dependent on the porous medium structure. θ is different
for different sponge structure used in this study. In Figure 4.6 the nor-
malized axial dispersion coefficient DL/DL∞ of a SiSiC 20 PPI 85 %
porosity sponge at Pem = 893 is plotted against the dimensionless time
θ, where the dp here is the strut diameter. It is observed for this sponge
structure, the axial dispersion values attain a constant value above θ
= 0.012, which is considerably less than the value reported in [55] for
a packed bed of uniform particle size.

In a packed bed, the dependence of the packing particle shape on
the axial dispersion was studied by several investigators. It was re-
ported that the axial dispersion is dependent on the packing particle
shape even with similar particle size. This dependency on packing par-
ticle shape in packed beds indicates that there may be a considerable
difference in the axial dispersion in the sponges in comparison to the
packed bed.
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Figure 4.6: Axial dispersion coefficient dependence on θ.

In Figure 4.7 the ratio of numerically determined axial dispersion
coefficient to the molecular diffusion results obtained in this study are
plotted versus the molecular Peclet number, to allow the comparison
with the literature data avaliable for gas dispersion in packed beds. The
pore diameter is considered as the characteristic length in calculating
Peclet number.

Figure 4.7: Comparison of axial dispersion of gaseous flow in sponge struc-
tures to packed beds (plotted literature data are taken from Delgado [26]).
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The average pore diameter and the pore density of the sponge are
characterized using the tomography data as described in Chapter 2.
TheDL/Dm ratio of the sponge structures follow the linearly increasing
trend that is widely reported for that of packed beds, but the ratio
values are smaller than that of packed beds. Shown in Figure 4.8 are the
normalized axial dispersion values for the various sponges used in this
study. Similar to the packed beds, the axial dispersion values of sponge
structures increase linearly with increase in molecular Peclet number.
Taylor’s [110] analysis indicates that the process of axial dispersion
is a consequence of lateral mixing in shear flow, and Prausnitz [97]
explained that in porous structures, the radial mixing is result of lateral
movement of the fluid element when it encounters a solid structure in
its flow path. In order to avoid the solid obstacle the fluid is forced
to take a long roundabout route. During the process the fluid element
gets into the region having different axial velocity, so that the axial
dispersion is regarded as a result of the radial mixing and also the
lateral velocity gradient.

Figure 4.8: Axial dispersion of gaseous flow in sponge structures.
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In the case of sponge structures, the magnitude of lateral movement
of the fluid element is less compared to that of packed bed structure due
to small strut diameter, and so less axial dispersion is found in sponge
structures. At low Peclet number, the mechanism of dispersion in a
porous structure is mainly dominated by molecular diffusion. Numer-
ous studies on packed beds indicate that at very low Peclet number the
contribution of axial mixing is reduced by the tortuous path taken by
the fluid element [26, 27, 39, 41, 59, 95], the axial dispersion is related
to molecular diffusivity by Eq. (4.38), where τ is the flow tortuosity.

DL = Dm/τ (4.38)

At high Peclet numbers, there is an augmentation of axial dispersion
as explained in previous paragraph. Many studies have concluded that
for the gas dispersion in packed beds the axial Peclet number of packed
beds reaches an asymptotic value of 2 at high Peclet number [5, 39, 97].
In the intermediate region the axial dispersion coefficient is described
as the sum of molecular diffusion and random mixing [39].

DL = Dm/τ + 0.5udp (4.39)

In Table 4.1 the normalized axial dispersion coefficient values of var-
ious sponges at different Peclet number are shown. It is observed that
for Ordered Kelvin (OK) structures having similar structural proper-
ties (pore density, porosity and specify surface area) as that of alumina
(Al2O3) sponge, the axial dispersion values are different. The reason for
this difference may be due to the fact that the axial flow paths taken
by the fluid flowing in the sponges are different and also the spatial
velocities.
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Table 4.1: The axial dispersion coefficient values of different sponge struc-
tures.

Structure
name

Pem
[-]

Pore
den-
sity
[PPI]

Real
poros-
ity
[-]

Measured
specific
surface
area
[m-1]

Nominal
pore
diam-
eter
[m]

DL/Dm

OK 10
PPI 80%
porosity

1891 10 0.823 577.5 0.00508 315.3

Al2O3 10 1360 10 0.82 577.5 0.00508 230.7
PPI 80% 2040 10 0.82 577.5 0.00508 334.6
porosity 2720 10 0.82 577.5 0.00508 446.9

SiSiC 10
PPI 85%
porosity

1792 10 0.872 476.3 0.00508 500

OK 20
PPI 75%
porosity

686 20 0.769 1144.8 0.00254 138.4

Al2O3 20 677 20 0.769 1146.9 0.00254 207.6
PPI 75% 1015 20 0.769 1146.9 0.00254 315.3
porosity 1354 20 0.769 1146.9 0.00254 423.0

Al2O3 20 769 20 0.82 900.9 0.00254 200
PPI 80% 1154 20 0.82 900.9 0.00254 300
porosity 1538 20 0.82 900.9 0.00254 400

Al2O3 20 758 20 0.845 996.3 0.00254 129.2
PPI 85% 1137 20 0.845 996.3 0.00254 212.3
porosity 1517 20 0.845 996.3 0.00254 280.7

SiSiC 20
PPI 85%
porosity

893 20 0.875 647.2 0.00254 461.5
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Al2O3 30 500 30 0.744 1336.8 0.00169 138.4
PPI 75% 751 30 0.744 1336.8 0.00169 224.6
porosity 1001 30 0.744 1336.8 0.00169 300

Al2O3 30 533 30 0.822 1264.9 0.00169 107.6
PPI 80% 800 30 0.822 1264.9 0.00169 169.2
porosity 1068 30 0.822 1264.9 0.00169 223.0

Al2O3 30 480 30 0.847 1214.6 0.00169 107.6
PPI 85% 720 30 0.847 1214.6 0.00169 161.5
porosity 961 30 0.847 1214.6 0.00169 215.3

Al2O3 45 323 45 0.791 1610.1 0.00113 238.4
PPI 80% 485 45 0.791 1610.1 0.00113 369.2
porosity 647 45 0.791 1610.1 0.00113 500

In Figure 4.9 the axial Peclet number of the simulations done in
this study is depicted against the molecular Peclet number and is com-
pared with the various literature results of packed beds (for packed
beds the particle diameter is used as characteristic length in calculat-
ing the Peclet number). It is observed that the axial Peclet number of
the sponge is much higher than the value of 2, the value that is widely
reported for packed beds. The reason can be understood by utilizing
the mixing-length model proposed by Prausnitz[97] for a packed bed of
spheres.

A detailed explanation of the method used in development of the
mixing length model is found in [97]. According to the model the
axial dispersion coefficient is linearly proportional to the radial random
mixing scale lr, the axial scale of random mixing ll and the lateral
velocity gradient.

DL = lrll

[
∂u
∂r

]
(4.40)

For packed bed structures the author reported that the lateral veloc-
ity gradient is approximately equal to the ratio of intrinsic pore velocity
to the pore diameter. The lateral random mixing scale and the axial
random mixing scale were approximated to 1

4dp and 7
4dp. Substituting

the values, the author was able to arrive at a conclusion that at high
Peclet number the axial Peclet number has an approximate value of 2.
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Figure 4.9: Comparison between axial Peclet number of gaseous flow in
sponge structure and the correlation presented in literature for packed beds
(plotted literature data are taken from Delgado [26]).

In the case of turbulent flows in general, the turbulent eddies create
velocity fluctuations with respect to time. Shown in Figure 4.10 are
the examples for the longitudinal ux and the vertical uy velocities at
a point within a turbulent flow. The velocities ux and uy vary with
respect to time, but in the case where the flow is steady and laminar
the time averaged velocities ux and uy equals ux and uy, respectively
for all time. For turbulent flow, the velocities consists of both mean
and turbulent component and by Reynolds’ decomposition

ux(t) = ux + u′x(t) (4.41)

uy(t) = uy + u′y(t) (4.42)

The presence of turbulence in flow creates fluctuations in concentration
Y too. Similar to the Reynolds’ decomposition of the velocity field,
the concentration can also be decomposed into temporal mean and
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Figure 4.10: Velocities measured at a point in an imaginary turbulent flow.

turbulent fluctuations around the mean

Y (t) = Y + Y ′(t) (4.43)

In the case of one-dimensional mass transport equation

∂Y

∂t
+
∂(uxY )

∂x
=

∂

∂x
Dm

∂Y

∂x
(4.44)

Substituting Eq. (4.43) in Eq. (4.44) gives

∂(Y + Y ′)

∂t
+
∂(ux + u′x)(Y + Y ′)

∂x
=

∂

∂x
Dm

∂(Y + Y ′)

∂x
(4.45)

Time averaging each term in Eq. (4.45) gives

∂Y

∂t
+
∂(uxY + u′xY

′)

∂x
=

∂

∂x
Dm

∂(Y + Y ′)

∂x
(4.46)

where by definition, for any transport variable a, a′ = 0 and a = a.
The term u′xY

′ represents the net mass flux due to turbulent advec-
tion. In order to calculate the turbulent flux, fully calculated turbu-
lent field is required, which is computationally intensive and complex.
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Figure 4.11: Mean concentration along flow.

Generally, a mixing length model is used as an alternative to calcu-
late turbulent flux in terms of mean velocity and concentration, which
are easily known. A mixing length model assumes the turbulent mo-
tions to be characterized by the length scales of the eddies. Shown in
Figure 4.11 is a long narrow tube with linear concentration gradient
∂(Y )
∂x < 0. There is no mean flow in the tube, i.e., ux = 0, considering

that the transport is achieved by a single eddy with length scale ll. At
the locations at the top of the eddy, the eddy carries the fluid of higher
concentration from left to right. At location b−b′, Y ′ > 0 when u′x > 0.
Likewise, at locations where u′x < 0, Y ′ < 0.

The magnitude of the concentration fluctuations is of the scale,
|Y ′| ∼ ll ∂(Y )

∂x . The sign of the fluctuation of the concentration depends
on the sign of the concentration gradient and also on the sign of the ve-
locity fluctuation. Considering Figure 4.11, for which ∂(Y )

∂x is negative,
the part of the eddy for which the u′x is negative produces negative Y ′
and vice versa. In a case where the concentration gradient is positive,
positive u′x produces negative Y ′ and negative u′x produces positive Y ′.
In general, when ∂(Y )

∂x and u′x have same sign, Y ′ has an opposite sign of

the both, and when ∂(Y )
∂x and u′x have opposite sign, Y ′ > 0. Thus, the

sign of Y ′ is opposite to that of the sign of u′x
∂(Y )
∂x . Thus the turbulent
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advection generated by an isolated velocity fluctuation u′x is written as

u′xY
′ = −u′xll

∂Y

∂x
(4.47)

Averaging over a number of random fluctuations associated with many
eddies within the system gives

u′xY
′ = −u′x,RMSll

∂Y

∂x
(4.48)

Eq. (4.48) provides an information that the turbulent flux behaves as
a Fickian diffusion. The flux is proportional to the mean concentra-
tion gradient, and has an opposite sign. Thus the turbulent diffusion
coefficient is modeled as a additional diffusion term

DL = u′x,RMSll (4.49)

u′xY
′ = −DL

∂Y

∂x
(4.50)

Similarly for other lateral directions, Dy = u′yly and Dz = u′zlz. The
turbulent flux can be modeled as an additional diffusion term

∂Y

∂t
+
∂(uxY )

∂x
=

∂

∂x
(Dm +DL)

∂Y

∂x
(4.51)

In general the turbulent diffusivity DL is much larger than molecular
diffusivity and the latter can be ignored, thus

∂Y

∂t
+
∂(uxY )

∂x
=

∂

∂x
DL

∂Y

∂x
(4.52)

In this study, the flow within the porous matrix is laminar, but the
increase in the dispersion can be viewed analogous to that of turbulent
flows, where the spatial velocity fluctuation in the case of flow within
the porous matrix causes the enhancement in the mass dispersion. In
order to find the axial mixing length scale of the sponges, the spatial
velocity fluctuations of the flow through sponges are determined. The
arithmetic average of the RMS value of the velocity fluctuations in each
axial plane is taken as the velocity fluctuation value of the sponge. In
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Figure 4.12 the axial and lateral velocity fluctuations are plotted along
the axial length for 20 PPI Al2O3 75% porosity sponge. By substituting
the dispersion coefficient values and the axial velocity fluctuation values
in Eq. (4.49), the axial mixing length of the sponges used in this study
were determined. From Table 4.2 it is observed that the axial mixing
length scales for the sponges are much less compared to the length
scale reported in [97], thus sponges have lower dispersion coefficient
compared to the packed bed structures.

Figure 4.12: Spatial velocity fluctuations of the flow through the 20 PPI
75% porosity Al2O3 sponge.

Instead of using the pore diameter as the characteristic length of
the sponge in calculating the Peclet number, it is proposed to use the
axial mixing length as characteristic length. In Figure 4.13 the axial
Peclet number and the molecular Peclet number are calculated using
the axial mixing length as the characteristic length, most of the axial
Peclet numbers of the sponges lie in a very narrow band. From Figure
4.13 and Table 4.2, it is observed that the axial Peclet number for
various sponges used in this study have a value very close to the value
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of 2. This justifies our proposal of using the axial mixing length scale
as the characteristic length. The axial mixing length scale of most
of the sponges used in this study lies within the range 0.27dpore/ε to
0.4dpore/ε. Linear fitting of the data for axial mixing length versus
pore diameter and specific surface area was done, and the best fit is
provided by

ll = d = 0.63d−0.54
pore S

−1.4
v (4.53)

Figure 4.13: Modified axial Peclet number plotted versus modified molecu-
lar Peclet number of gaseous flow in sponge (using axial mixing length scale
as characteristic length), a magnified view shown in dashed box.
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Table 4.2: Axial velocity fluctuation, mixing length scale, modified axial
and molecular Peclet numbers (using axial mixing length scale as character-
istic length).

Structure
name

Pem
[-]

Internal
bulk
ve-
locity
[m/s]

Axial velocity
fluctuation
[m/s]

Mixing
length
scale [m]

PeL
[-]

OK 10
PPI 80%
porosity

621 4.8 2.46 1.67E-03 2.0

Al2O3 10 465 3.4 1.72 1.74E-03 2.0
PPI 80% 670 5.2 2.61 1.67E-03 2.0
porosity 893 6.9 3.48 1.67E-03 2.0
SiSiC 10
PPI 85%
porosity

774 4.5 2.96 2.20E-03 1.5

OK 20
PPI 75%
porosity

251 3.5 1.94 9.29E-04 1.8

Al2O3 20 319 3.4 2.26 1.20E-03 1.5
PPI 75% 479 5.2 3.42 1.20E-03 1.5
porosity 640 6.9 4.58 1.20E-03 1.5

Al2O3 20 388 3.9 2.03 1.28E-03 1.9
PPI 80% 581 5.9 3.05 1.28E-03 1.9
porosity 773 7.8 4.07 1.28E-03 1.9

Al2O3 20 265 3.8 1.89 8.89E-04 2.0
PPI 85% 416 5.8 2.97 9.29E-04 1.9
porosity 549 7.7 3.97 9.19E-04 1.9
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SiSiC 20
PPI 85%
porosity

781 4.5 2.70 2.22E-03 1.7

Al2O3 30 372 3.8 2.21 8.16E-04 1.8
PPI 75% 588 5.7 3.48 8.39E-04 1.7
porosity 745 7.7 4.68 8.34E-04 1.7

Al2O3 30 438 4.1 1.94 7.22E-04 2.1
PPI 80% 658 6.1 2.91 7.56E-04 2.1
porosity 877 8.2 3.89 7.46E-04 2.1

Al2O3 30 228 3.7 1.74 8.03E-04 2.1
PPI 85% 342 5.5 2.61 8.04E-04 2.1
porosity 456 7.3 3.49 8.03E-04 2.1

Al2O3 45 288 3.7 3.08 1.01E-03 1.2
PPI 80% 438 5.5 4.70 1.02E-03 1.2
porosity 584 7.4 6.38 1.02E-03 1.2

The Al2O3 sponge with 45 PPI pore density has a considerable de-
viation from this value, when the sponge structure was examined, we
found considerable number of closed pores which leads to flow stagna-
tion points, which in turn alters the flow path and the flow velocity.
This structural defect mostly observed in high pore density sponges
can be attributed to the reduction in their axial Peclet number. An
almost identical value of axial Peclet number, i.e., u/u′x, implies that
all the sponges used in this study have the same magnitude of velocity
fluctuation for a given internal bulk velocity, irrespective of the struc-
tural parameters. The axial dispersion of a gas flow within a sponge
for a given bulk velocity is a function of axial mixing length scale,
which in turn is a function of the pore diameter and porosity of the
sponge. In order to justify this, a comparison is made between 10 PPI
80% porosity ordered Kelvin structure [52] and corresponding alumina
sponge. For a similar molecular Peclet number, the axial dispersion
coefficients also have nearly the same value. The u/u′x is the same for
both sponges, the axial dispersion coefficient values are also nearly the
same and so the axial mixing length scales do have the same value.
As the porosities of the sponges are the same, the axial mixing length
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scales are only a function of pore diameter. But in the case of the 20
PPI 75% porosity ordered Kelvin structure and corresponding alumina
sponge, the comparison cannot be made as the u/u′x of the real sponge
deviated considerably from 2. This may be due to the presence of struc-
tural irregularities, such as wide dispersed values of the pore diameter,
presence of closed pore, and variations in strut and node sizes. In this
sponge, the presence of large number of pores larger than the nominal
pore diameter causes a noticeable change on the flow velocities.

Figure 4.14: Modified axial Peclet number plotted versus modified molecu-
lar Peclet number of gaseous flow in sponge (using characteristic length given
by Eq. (4.54)), a magnified view shown in dashed box.

In order to relate the axial Peclet number of the sponge with that
of the packed bed (for which PeL = 2), we also provide a characteristic
length d for the sponge as a function of pore diameter and tortuosity
to calculate the axial Peclet number (PeL = ud/DL), by performing a
linear fit.

d = dpore × (−4.4 + 4.5τ) (4.54)
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The method used in determining the tortuosity of the sponges is
described in section 3.3. Shown in Figure 4.14 are the modified Peclet
number of sponge structures in comparison to the correlation found
in literature for packed beds structures [27]. Tortuosity is not an easy
parameter to acquire, so the use of axial mixing length as characteristic
length is preferable, especially as modern tomographic methods can be
used in measuring flow velocities within the sponge.



Chapter 5

Convective and conduction
heat transfer coefficient

In the case of single phase fluid flow through a porous structure, the
assumption of local thermal equilibrium is not valid in all engineering
applications [2, 3, 88]. For example, in the application of porous media
in combustors, there is a significant amount of heat release in the fluid
phase, in this case, the local solid and fluid volumes will not be in
thermal equilibrium, and when accompanied with interstitial fluid flow
within the porous matrix with significantly different thermal properties
than that of solid phase, the local change in temperature between the
two phases will not be the same. In order to calculate the heat flow in
such applications, two energy equations are required to calculate the
heat flow in the solid and fluid phases respectively.

Effective heat transport properties of the solid and the fluid phases
are required to solve the two energy equations. The solid and the fluid
phase energy equations are coupled by convection heat transfer between
the two phases with the use of an interfacial convective heat transfer
coefficient [68]. In order to obtain an accurate result for the heat trans-
fer in the 2-phase model, apart from the interfacial convective heat
transfer coefficient, there is also requirement of effective conductivity
for the solid phase and for the fluid phase.

Wakao and Kaguei [116] provide an elaborate description about the

65
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developments in the 2-phase model or 2-equation model. The energy
equations of the fluid and the solid phase for a 1D flow through a porous
channel are

∂T f
∂t

+u
∂T f
∂x

=
1

ε

(
kf

(ρcp)f
+DL

)
∂2T f
∂x2

+
hsfAsf
εV (ρcp)f

(
T s − T f

)
(5.1)

∂T s
∂t

=
keff

(1− ε)(ρcp)s
∂2T s
∂x2

− hsfAsf
(1− ε)V (ρcp)s

(
T s − T f

)
(5.2)

where keff is the effective thermal conductivity of the solid phase (Ref:
Section 5.2), DL is the axial dispersion coefficient (Ref: Chapter 4),
hsf the interfacial heat transfer coefficient and A0 the contact surface
area.

5.1 Heat transfer coefficients for open cell
ceramics

The two most reliable correlation for convective Nusselt number for
packed beds are given by Wakao and Kaguei [116] and Whitaker [118].
Using experimental results from various sources, Wakao and Kaguei
[116] provide a correlation for the convective Nusselt number for packed
bed of spherical particles as

Nu =
hsfdp
kf

= 2 + 1.1Re0.6Pr0.33 (5.3)

where Re = usdp/ν. Whitaker [118] provided an empirical correlation
for packed beds as

Nu = 2 + (0.4Re0.5
d + 0.2Re0.66

d )Pr0.4 (5.4)

where Red = usdh
ν(1−ε) , Nu =

hsfdp
kf

ε
(1−ε) and dh = 6(1−ε)V

(A0
.

Numerous studies were carried out to determine the interfacial heat
transfer coefficient, and in turn to find convective Nusselt number corre-
lations for reticulated porous materials. One of the early experimental
measurements of interfacial heat transfer coefficient of ceramic sponges



67

is done by Younis and Viskanta [121]. The authors studied alumina
sponges of pore densities from 10 PPI to 66 PPI of porosity 85% and
a cordierite sponge of pore density 20 PPI and porosity 85%. The vol-
umetric heat transfer coefficients between the foam and a stream of
air are determined using a single-blow transient technique, in which
the flowing fluid was preheated to a set temperature and was made
to flow through the sponge sample which was initially maintained at
room temperature. The thermocouples installed in the sponge sample
were used to record the temperature rise with respect to temperature.
The experimental heat transfer coefficients were used to correlate the
Nusselt number in terms of the Reynolds number (Nu = CRem). The
authors noticed that with increase in pore diameter the parameters m
and C increase and decrease respectively. A least square fitting is done
to provide a Nusselt number correlation as

Nu = 0.819[1− 7.33(d/L)]Re0.36[1+15.5(d/L)] (5.5)

The correlation is valid under the conditions, 0.005<d/L<0.136 and
5.1 <Re< 564, where d is the pore diameter and L is the length of
the porous ceramic. The authors also mention that the heat transfer
results of the alumina and cordierite sponge vary considerably, and a
separate Nusselt number correlation is provided for cordierite sponge
(Nu = 2.43Re0.42, 65 < Re < 457). Calmidi and Mahajan [20] studied
the convection in high porosity aluminum metal sponges of different
pore densities and porosities using air as fluid medium. The Nusselt
number is obtained as a function of pore velocity based Reynolds num-
ber (Nu = CRe0.5Pr0.37, Re < 130). The empirical constant C = 0.52
is determined by matching the semi empirical volume-averaged numer-
ical study with the experimental data from the study and also from the
literature. Dietrich [31] reported that heat loss assumption by Calmidi
and Mahajan between the heated and unheated sections of the porous
media in the experiments is not valid. Hwang et al. [64] experimen-
tally studied the high Reynolds number (1900<Re<7800) convective
heat transfer in a duct inserted with aluminum sponges of high porosi-
ties (0.7, 0.8 and 0.95). The interfacial heat transfer coefficients in the
aluminum sponge are determined using a transient single-blow tech-
nique with a thermal non-equilibrium two-equation model. Different
empirical correlations for the Nusselt number are reported in terms of
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pore Reynolds number for different porosities. The authors provide no
general correlations that match their experimental data for different
sponge porosity.

Ricardson et al. [101] determined the radial convective heat trans-
fer coefficient for 30 PPI alumina sponge of 0.82% porosity. In the ex-
periments, air was passed into a quartz tube containing heated porous
sponge, the wall temperature, the inlet and outlet air temperature were
measured. The 1D energy equation was solved to match the measured
parameters to obtain the radial heat transfer coefficient. The energy
balance for a 1D element of the porous bed for any axial position Z is
given by

dtG
d(CpT )

dZ
= he[Tw(Z)− T (Z)] (5.6)

where dt is the radius of the reactor, G the gas velocity in kg/m2/s,
Cp the mean specific heat capacity, he the average radial heat trans-
fer coefficient, Tw(Z) the wall temperature, and T (Z) the mean bed
temperature. The boundary conditions are, T = Tin at Z = 0 and
T = Tout at Z = L. To calculate the outlet temperature of the first
element, T1(Z), T0(Z) were set to Tin and transformed Eq. (5.6) as

dtG[Cp,1T1(Z)−Cp,0T0(Z)] = he[Tw(Z)−0.5T1(Z)+T0(Z)]∆Z (5.7)

By assuming the value of he, Eq. (5.7) was solved, the procedure is
repeated for the next element by substituting T1(Z) for T0(Z), and the
whole procedure is repeated until the final outlet temperature of the
bed equal to that of experiment is obtained. To include the effect of
radiation in the porous domain, the Nusselt number correlation is given
as, Nu = 2.49×10−8εT 3 + 12.6Re. The size of the porous sponge used
in this study is 1.27 cm in diameter and 2.54 cm in length, which may
not be enough to neglect the boundary effects.

There are numerous other correlations found in the literature [60,
67, 77, 82, 111, 112, 123]. Most of the Nusselt number correlations
provided are for specific sponge and for very low Reynolds numbers.
Due to the above reason, the data and the correlations provided are
not reliable and cannot be used for calculating the heat transfer in
different sponges and for high Reynolds numbers. A comprehensive
study of convective heat transfer in various ceramic sponge of different
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material, pore density and porosities was done by Dietrich [31]. The
sponges made up of alumina, OBSic, Mullit were studied. The Reynolds
number of the flow ranges from 50 to 1500. The author developed a
universal correlation to predict the heat transfer in different sponges
with acceptable accuracy. The approach was based on the well know
Generalized Lévêque Equation (GLE) by Martin [86]

Nu/Pr1/3 = 0.404(2xfHgdh/L)1/3 (5.8)

where xf is the frictional fraction of the total pressure drop and L is the
length that represent the average distance between two eddy delami-
nations. Eq. (5.8) is a generalized form of the classical Lévêque heat
transfer for a developing thermal boundary layer in a fully developed
laminar flow in tubes [78]. The GLE was proposed for packed beds and
heat exchangers. The advantage of GLE is that it helps in correlating
the Nusselt number in terms of non-dimensional pressure drop (Hagen
number). The pressure drop measurements in the sponges are relatively
simple, and the GLE helps in calculating the Nusselt number using the
pressure drop results. Dietrich [31] conducted transient experiments.
The schematic of the experimental set-up is shown in Figure 5.1. In
the experiments, the hot fluid (air) was made to pass over the sponges
that are initially maintained at room temperature. The fluid and solid
temperatures were measured with respect to time.

Figure 5.1: The schematic of the experimental set-up: 1-blower, 2-orifice
measuring section, 3-heater, 4-flow straighter, 5-valve, 6-sponge sample test
section
Source: Dietrich [31]

The inlet solid and fluid temperatures were provided as a boundary
condition to one dimensional 2-phase model energy equations. The exit
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fluid temperature of the simulation was made to match the experimen-
tal results to determine the heat transfer coefficient of the sponge. The
author provides a general correlation for ceramic sponges based on the
Hagen number as

Nu = 0.45Hg1/3 · Pr1/3 · CRe · Cgeo (5.9)

The author also provides another correlation in terms of the Reynolds
number, where the exponent for the Reynolds number is derived from
the relation by comparing the Nusselt number dependency on Hagen
number (Nu ∼ Hg1/3) with the Reynolds number dependency on Ha-
gen number (Re ∼ Hg1/2).

Nu = 0.57Re2/3 · Pr1/3 · CRe · Cgeo (5.10)

Both the correlations are able to predict the Nusselt number within
an error range of ±40%. The terms CRe and Cgeo in Eq. (5.9) and
Eq. (5.10) are the correction factors. The correction factor CRe was
proposed by Martin [86] for calculating heat transfer in an arrangement
of inline bundle of tubes. As the GLE over predicted the heat transfer at
low Reynolds number, Martin [86] reported that the length L which is
equal to the longitudinal pitch for an inline tube bundle arrangement,
is not enough to catch the periodically repeating boundary layers in
the case of inline bundles. Hence, the length L was modified as L =
pitch/C3

Re, so that, at very low Reynolds number the length L increases
as a function of Re, and for very high Reynolds number it remains same
as that of the longitudinal pitch. The use of such correction factor was
not required for staggered tube arrangements [86]. The use of the
correction factor in Eq. (5.9) and Eq. (5.10) may not be appropriate
as the flow inside a reticulated sponge as the matrix structure is not
similar to that of flow in an inline bundle of tubes, but resembles more a
staggered tube arrangement, in which case the CRe becomes irrelevant.
The use of geometric correction Cgeo is to find an alternative for the
dh/L term in Eq. (5.8), but has no physical justification, and the
purpose to use such geometric correction Cgeo in the study was to
unify the heat transfer data collected in the work. In the present study,
direct pore simulations are carried out to determine the interfacial heat
transfer coefficient h. An attempt is made to find a new correlation for
the Nusselt number in terms of the Hagen number based on GLE.
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Though the Lévêque equation is developed for the entry region of a
tube, it has been proven suitable for the prediction of heat and mass
transfer coefficients in packed beds and in the cross corrugated channels
of heat exchangers [48, 86]. The GLE’s usage is aided by the fact that
the thermal and viscous boundary layers are periodically interrupted
during the flow through the packed beds and cross corrugated heat
exchangers, where the length L represents the average length of the
flow path or the average distance between two eddy delimitations [48].
As the axial mixing length ll is an analogy to the concept of mean
free path in thermodynamics, it represents the average length of the
flow path before it gets interrupted by a strut or a vortex. It makes
physical sense to replace L in Eq. (5.8) by ll, where ll is the axial
mixing length (4.1). The validity of such a correlation is studied by
comparing the correlated Nusselt numbers with that of the Nusselt
numbers determined using DPLS simulations.

5.1.1 Numerical setup

Assuming the fluid to be Newtonian fluid having constant densities,
the steady flow governing equations of energy conservation is written
using Einstein’s summation rule as follows:

∂

∂xj
(ρcpujT ) =

∂

∂xj

(
kf
∂T

∂xj

)
(5.11)

where xj and uj denote the spatial coordinate and velocity in j-direction,
T is the fluid temperature, cp is the fluid specific heat and kf stands for
the conductivity of the fluid. While the mass and momentum conserva-
tion equations are given by Eq. (3.27) and Eq. (3.28), respectively. The
boundary conditions at the inlet and outlet are specified using constant
gas velocity and temperature at the inlet and static pressure together
with zero gradient condition for the velocity at the outlet. The domain
surfaces perpendicular to the flow direction are given with translational
periodic boundary conditions. The structure surfaces were modelled as
walls with fixed temperature Tw and no slip boundary conditions. Vis-
cous dissipation is neglected. The schematic of the employed boundary
conditions is shown in Figure 5.2.
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Figure 5.2: Schematic of boundary conditions employed in DPLS of steady
state heat convection in porous inert media.

5.1.2 Numerical procedure

In the simulations the solid wall surfaces are fixed at a constant temper-
ature Tw, with the temperature being higher than that of the incoming
fluid. The heat from the solid surfaces is then transported by convec-
tion and diffusion. In order to calculate an interfacial heat transfer
coefficient from a CFD simulation, the three-dimensional temperature
fields are reduced into one-dimensional ones using mass flow average
over N cross-sectional planes perpendicular to the main flow direction:

T (xk) =

M∑
i=1

(Ti · ρuiAi(xk))

M∑
i=1

ρuiAi(xk)

(5.12)

T (xk) denotes the mass flow averaged temperature at the k-th cross-
sectional plane at position xk, ρuiAi(xk) stands for the mass flow in
the plane with the i-th grid cell, M is the number of grid cells and Ti
is the temperature value in the i-th grid cell.

5.1.2.1 Determination of interfacial heat transfer coefficient

The simulations were carried for Reynolds numbers 10, 100, 500, 1000
and 1500. The Reynolds numbers (Re = ρdhus/µ) are calculated using
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the hydraulic diameter (dh = 4ε/Sv) as the characteristics length. The
fluid properties used in the simulations are that of air (Pr = 0.7), salt
water (Pr = 2) and water (Pr = 6).

Figure 5.3: The local Nusselt number and fluid bulk temperature as a
function of normalized axial length, calculated using DPLS at Re = 500 and
Pr = 0.7.

The local heat transfer coefficient in between the axial locations xk
and xk + ∆xk is given as:

hl(xk) =

∫ xk+∆xk

xk
q̇′′dAsf

Asf∆Tlm
(5.13)

where ∆Tlm =
∆Txk

−∆Txk+∆xk

ln(∆Txk
/∆Txk+∆xk)

is the log mean temperature dif-

ference, while ∆Txk
= Tw − T (xk). In Figure 5.3 the local Nusselt

number Nul = hldh
kf

and fluid bulk temperature of a 20 PPI 75% poros-
ity alumina sponge are plotted against the normalized axial distance
L+ = L/dpore. The plot is for a simulation with air as fluid medium.
It is seen that, except in the locations near to the entrance, the Nus-
selt number values are nearly constant along the axial direction. The
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slight fluctuations in the Nusselt number values are due to the statis-
tical random nature of the porous media. Neglecting the peak values
near the entrance, the arithmetic average of the Nusselt numbers along
axial locations is taken as the average Nusselt number Nu of the porous
media.

Figure 5.4: DPLS determined volumetric heat transfer coefficients against
the superficial velocity for different alumina sponges with different pore den-
sity and with same porosity (Pr = 0.7).

In Figure 5.4, plotted are the volumetric heat transfer coefficients
versus superficial velocity for alumina sponges of 80% porosity having
different pore densities calculated using air as fluid medium. It is seen
that the volumetric heat transfer coefficients increase with increase in
pore density. The same tendency is reported by Younis et al. [121]
and Dietrich [31]. It is discussed in [121], that the increase in pore
densities decrease the pore diameter, which in turn increase the specific
surface area of the sponge, given that the porosities remain the same. It
becomes obvious that the increase in the specific surface area increase
the volumetric heat transfer coefficient. It denotes that the 45 PPI
sponge will transfer more heat to the flowing fluid in comparison to the
10 PPI sponge, given that the volumes remain the same.
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Figure 5.5: DPLS determined volumetric heat transfer coefficients against
the superficial velocity for 20 PPI alumina sponges with different porosities
(Pr = 0.7).

Plotted in Figure 5.5 are the volumetric heat transfer coefficients of
20 PPI sponges having different porosities. It can be noticed that the
influence of porosity on the heat transfer coefficients is not quantifiable
and it is a similar conclusion that is reported in literature [31, 48,
121]. Shown in Figure 5.6 is the comparison of numerically calculated
interfacial heat transfer coefficients with the experimental interfacial
heat transfer coefficients [31] for similar sponges as the ones used in
this study. The results’ trend and values make a reasonable comparison
with those of the experiments.
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Figure 5.6: Comparison of DPLS determined heat transfer coefficients with
that of experiments (Pr = 0.7).

In Figure 5.7, the interfacial heat transfer coefficients h of various
sponges used in this study are plotted against the superficial flow ve-
locity us. It is seen that the material and the structural properties of
the sponges have little or no considerable impact on the heat transfer
coefficient. This is similar to the observations that are found in the
literature[31, 48].

In Figure 5.8, are the Nusselt numbers of the sponges to the corre-
sponding Hagen number. The plot contains values for the simulations
with fluids having three different Prandtl numbers (Pr = 0.7, 2 and 6).
Though the results are scattered, through an arithmetic regression of
all the data, it is found that the results have nearly a linear trend with
respect to Hg1/3 (the actual exponent for Hg obtained through regres-
sion being 0.34). The goodness of the fit is found using R-squared value,
which is about R2 = 0.97. However, due to scattered data, nearly 18%
of the data are above the relative error of 35% and the maximum being
59%. Even for packed beds the Nusselt number correlation in terms of
the Hagen number has errors around 38% [49], so for sponges, given
their structural complexity and manufacturing difficulty in replicating
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similar structures, having error range within 38% will be acceptable.

Figure 5.7: Comparison of the DPLS determined heat transfer coefficients
for alumina and SiSiC sponges (Pr = 0.7).

In order to correlate the Nusselt number to the Hagen number, the
generalized Lévêque equation is used in this study. For the packed beds
and periodically repeating structures, Martin [86] proposed correlations
for L in Eq. (5.8) in terms of porosity and hydraulic diameter. But
in the case of reticulated structures, the length L has not yet been
defined in the literature [48]. As there is no correlation available for L
for reticulated structures, Dietrich [31] and Garrido [48] used correction
factors to correlate their heat transfer coefficients and mass transfer
coefficients to the pressure drop. As discussed earlier, the length L
represents the average distance between the two eddy boundaries for a
flow within the sponges, or the length of the flow without interruption.
In this study, L is replaced by ll, as it represents the average length of
the flow path before it gets interrupted by a strut.
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Figure 5.8: Lévêque analogy for all sponge structures used in this study,
dashed lines indicate ±35% error band (fluid Prandlt numbers Pr = 0.2, 2
and 6.).

In Figure 5.9, the new correlation (Eq. (5.14)) values are plotted
against the Hagen number. It can be seen that the new correlation
was able to bring down the error values within a range of ±35%, which
is much better than the error range of ±40% for a GLE based general
correlation found in the literature for ceramic sponges [31]. Though the
correlation (Eq. (5.14)) works better for the DPLS values, the use of
such correlation requires the knowledge of axial mixing length values of
the sponge, which is nearly impossible to find using simple experiments.
Here in this study, a relation between the axial mixing length and the
structural properties such as pore diameter and specific surface area is
provided (Eq. (4.53)), but again the relation is specific to the sponges
used in this study.

Nu = 0.17(Prdh/LdHg)1/3,where Ld = ll (5.14)
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Figure 5.9: Lévêque analogy for all sponge structures used in this study,
dashed lines indicate ±35% error band (fluid Prandlt numbers Pr = 0.2, 2
and 6.), with dh/L = dh/ll

5.2 Effective thermal conductivity

Numerous theoretical and experimental studies have been carried out
to determine the effective thermal conductivity of porous media [36, 66,
68, 113]. The studies provide a number of empirical, semi-empirical and
theoretical models to calculate the effective conductivity of the porous
media, and are applicable to specific material, structure and temper-
ature range. Fu et al. [43] grouped the thermal conductivity models
into the following groups: 1. pure stagnant conductance 2. Stagnant
thermal conductance with thermal dispersion (convection) 3. Stagnant
conduction with radiation, and finally, 4. Stagnant conduction, ra-
diation and convection. In most of the literature, the pure stagnant
conduction is studied, and the effect of radiation and local dispersion
near the strut walls are usually accounted separately. In the case of
thermal equilibrium between the fluid and the solid struts or particles,
there are many macroscopic 2-phase effective conductivity models that
exist. There are two main approach followed by several groups in de-
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veloping the models to determine the effective conductivity [73], the
macroscopic 2-phase approach and the micro structural approach. In
the case of packed bed of spherical particles the macroscopic approach
is widely used and the microscopic structural analysis is used in the
study of reticulated porous structures. The simplest models in the case
of the macroscopic approach are the parallel and the series models [68],

keff(2phase) = ε1k1 + (1− ε1)k2 (5.15)

keff(2phase) =
1

ε1/k1 + (1− ε1)/k2
(5.16)

In the first case, the fluid and the solid are assumed to be parallel to
the heat flow, and in the second case they are assumed perpendicular to
the heat flow. In the case of the parallel model, most of the heat flows
straight through the high conductivity regions thus forming the upper
bound for the thermal conductivity in porous media, and in the case
of the series model, the heat flow cannot avoid the low conductivity
region, thus forming the lower bound. Maxwell-Eucken [87] developed
models for non continuous media and thus tightening the upper and
lower bound for porous media.

keff(2phase) = k1
2k1 + k2 − 2(k1 − k2)ε2

2k1 + k2 + (k1 − k2)ε2
(5.17)

keff(2phase) = k2
2k2 + k1 − 2(k2 − k1)(1− ε2)

2k2 + k1 + (k2 − k1)(1− ε2)
(5.18)

Eq. (5.17) is suitable for media in which the conductivity of the continu-
ous phase is higher than that of the dispersed phase. Eq. (5.18) is more
suitable for media in which the continuous phase is lower than that of
the discontinuous phase (packed beds). Landauer [75] derived an equa-
tion for effective conductivity for a matrix of random mixtures of two
materials based on effective medium theory (EMT). This model is suit-
able when one component has higher thermal conductivity compared
to the other, and the components are randomly distributed. Krischer
[70] recommended a model based on the weighted harmonic mean of
the serial and the parallel models for the effective thermal conductivity
of heterogeneous materials, which is given by,

keff(2phase) =
1

(e/kseries) + (1− e)/kparallel
(5.19)
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where e is the empirical weighting parameter for the weighted har-
monic mean model and is specified for each material and porosity. In
the case of the micro structural analysis, the unit cell approach has
been widely used. Due to the periodical nature of the porous media,
the unit cell approach is considered to be valid. In the unit cell ap-
proach, the resistance to heat flow through solid struts, particles and
fluid are analyzed individually, and are used to calculate the effective
thermal conductivity based on serial or parallel models. Hsu et al. [61]
studied a unit cell made of inline touching cubes, the authors proposed
a one dimensional model for effective thermal conductivity. The model
has a good agreement with the experimental values of packed beds. Fu
et al. [43] developed two representative unit cell models, one with a
cubic unit cell and other with a hallow sphere in a cube to predict the
stagnant effective thermal conductivity of cellular ceramics using the
thermal-circuit method. Both the models provide a reasonable predic-
tion of the effective conductivity. The authors reported that the models
are not critically assessed for intermediate and for high temperatures.
Calmidi and Mahajan [19] experimentally investigated highly porous
metal sponges with air and water as fluid medium. They proposed a
theoretical model based on a two dimensional array of hexagonal struc-
ture of the metal sponge matrix with square lump nodes. The model
matches well with their experimental results for a ratio of cross-section
area of strut to intersection area of 0.09. Bhattacharya et al. [11] ex-
tended the model by Calmidi and Mahajan [19], replacing square nodes
with circular nodes obtained an area ratio of 0.19. The model predicts
the effective conductivity well for aluminum metal sponges, but overes-
timates the values for other sponges. Edouard [37] used a pentagonal
dodecahedron structural model to study the effective conductivity of
reticulated sponge. The author assumes either slim or fat description
of the strut depending upon the sponge porosity, i.e., slim for sponge
with porosities less than 90%, and fat for sponge with porosities more
than 90%. The author compared the model results with that of experi-
mental results of sponges with porosities between 75% to 85% [30], and
reported that the fat strut model gives a good agreement and the error
values vary between 16% to 23%. Boomsma and Poulikakos [15] pro-
posed a model based on 3-D tetrakaidecahedron geometry with cubic
nodes. The experimental values were used to find a non dimensional
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fitting parameter e = cubic node length
ligament length = 0.16. The model is not valid for

porosities above 90%. Dietrich et al. [30] proposed a model for effective
conductivity of ceramic sponges similar to the sponges that are used
in this study. The model was based on the Krischer and Wast model
[71]. In the study by Dietrich et al. [30], the microscopic intrinsic solid
phase thermal conductivity of the ceramic sponges are measured exper-
imentally, and are used to replace the solid conductivity of the ceramic
material. This is a significant difference from all other models that are
found in literature, in which the material conductivity of the ceramic or
metal at their natural state is considered, neglecting the change in con-
ductivity due the difference in micro structure of the sponge material in
comparison to their naturally occurring form. In recent years, the three
dimensional simulations based on real structure and Kelvin structure
are used to determine the effective thermal conductivity [14, 73]. The
calculations are done using simple resistor network model [14, 115] or by
using full foam geometry [62, 72]. In this study, the three dimensional
foam structures are used to determine the solid thermal conductivity
of the solid structure (excluding the saturated fluid medium). This
effective solid conductivity is the property that is required in the 1-D
solid energy equation (Eq. (5.2)). A term called solid tortuosity is de-
termined for each sponge, and the parallel model (Eq. (5.15)) is used
to calculate the 2-phase effective conductivities to compare them with
that of experimental results [30].

5.2.1 One dimensional heat conduction

The steady-state one dimensional heat flux due to conduction in any
media can be calculated using Fourier’s law of heat conduction

q′′ = −ks
dT

dx
(5.20)

where k is the material thermal conductivity. For a constant thermal
conductivity k and for a temperature difference of ∆T , the Fourier’s
heat equation can be written in terms of resistance to heat flow

q′′ = −∆T

R
(5.21)
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Figure 5.10: Schematic of steady-state heat conduction in solid rods: (a)
heat flow in a straight solid, (b) heat flow in a solid rod with bends.

where R = ∆x/ks is the thermal resistance. The thermal resistance
is proportional to the length parallel to the path taken by the heat
flow and is inversely proportional to the thermal conductivity of the
material. For a solid rod as shown in Figure 5.10(a), the length x is the
distance between the two planes at position 1 and position 2, but for a
rod as shown in Figure 5.10(b), though the distance between the two
planes remains the same, the path taken by the heat to flow from plane
1 to plane 2 is increased due to the structural profile of the rod. The
increase in the path taken by the heat to flow from plane 1 to plane 2
can be accounted into the resistance by use of the term solid tortuosity
τs

τs =
actual distance taken by heat to flow
distance between plane 1 and plane 2

(5.22)

The heat resistance R can be expressed in terms of tortuosity τs, dis-
tance ∆x and thermal conductivity k as

R = τs
∆x

k
(5.23)
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With the use of Eq. (5.23), the effective conductivity keff of the rod
in Figure 5.10(b) can now be used in Eq. (5.20)

q′′ = −keff
∆T

∆x
(5.24)

where the effective conductivity keff = k/τs, the effective conductiv-
ity depends on the material conductivity of the rod and also on the
structural profile of the rod.

Figure 5.11: Schematic steady-state heat conduction in a Kelvin structure
in a particular orientation, with temperature boundary conditions on plane
1 and plane 2, and adiabatic boundary condition on the remaining Cartesian
planes.

Similarly, in the case of porous structures the effective conductivity
of the solid structure is less than that of the material conductivity due
to the increase in the path taken by the heat to flow for a given distance.
In order to check the above assumption, a test case was validated using
a tetrakaidecahedron structure (ordered Kelvin structure) with equal
strut lengths. The tetrakaidecahedron structure is the idealized shape
that resembles the reticulated porous structures. The topology of the
Kelvin structure that is used for this case is well defined. Figure 5.12
is a schematic representation of a strut of a pore in the case of ordered
Kelvin structure. From Figure 5.12 the tortuosity of the strut can be
calculated using trigonometry, which is

√
2. Thus, the heat flow path
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in the case of ordered Kelvin structure should be approximately equal
to
√

2 times the distance.

Figure 5.12: Schematic steady-state heat conduction in a Kelvin structure
in a particular orientation, with temperature boundary conditions on plane
1 and plane 2, and adiabatic boundary condition on the remaining Cartesian
planes.

Direct pore level simulations were performed to determine the ef-
fective conductivity of solid phase of the Kelvin structure with the
orientation as shown in Figure 5.11. The temperature at plane 1 and 2
are fixed and an adiabatic boundary condition is imposed on all other
Cartesian planes. The average heat flux value is obtained from the
simulation. For a fixed conductivity ks, the effective conductivity can
be obtained using (5.25).

keff =
k

τs
(5.25)

From the effective conductivity value, the solid tortuosity can be ob-
tained using Eq. (5.23). The calculated value of the solid tortuosity of
the simulated Kelvin structure was 1.39, which is slightly less than

√
2,

the reason may be that at the nodal points the path taken by the heat
to flow may not be as sharp as in Figure 5.11. In the case of the Kelvin
structure, the structural tortuosity remains the same for different PPI
and the solid tortuosity will also remain nearly the same. The porosity
of the Kelvin structure can be increased or decreased only by increasing
or decreasing the strut diameter, but the change in strut diameter does
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not change the average heat flux q̄′′, though there is a change in the
net heat flow. As the heat flux remains the same and also the solid
tortuosity, the effective conductivity should not vary with a change in
PPI and porosity.

In order to determine the solid tortuosity of the real sponges, direct
pore level simulations were performed with the boundary conditions
as mentioned above in the case of Kelvin structure. The schematic
diagram of the sponge structure with the employed boundary conditions
is shown in Figure 5.13.

Figure 5.13: Schematic of steady-state heat conduction in a sponge, with
temperature boundary conditions on plane 1 and plane 2, and adiabatic
boundary condition on the remaining Cartesian planes.

Table 5.1: Solid phase effective conductivities of alumina sponges (consid-
ering the alumina material conductivity to be 18 W/mK)

sponge Porosity(%) keff Tortuosity(τs)

10 PPI Al2O3 80 6.50 2.7

20 PPI Al2O3

75 8.20 2.2
80 9.62 1.8
85 6.09 2.9

30 PPI Al2O3

75 6.29 2.8
80 7.00 2.5
85 7.01 2.5

45 PPI Al2O3 80 6.44 2.8
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Table 5.2: Solid phase conduction tortuosity of alumina sponges

RMS 2.6

STD.DEV 0.37

The calculated solid phase effective conductivities are tabulated in
Table 5.1 and Table 5.3. From Table 5.1 it is seen that the effective ther-
mal conductivities of alumina sponges are nearly the same for different
pore densities and porosities. The slight difference in the magnitudes
may be due to the difference in number of nodes because of the differ-
ence in pore density and also the structures used may not have exactly
similar structure to yield exactly same solid tortuosity.

Table 5.3: Solid phase effective conductivities of SiSiC sponges (considering
the SiSiC material conductivity to be 145 W/mK)

Sponge Porosity(%) keff Tortuosity(τs)

10 PPI SiSiC 85 38.6 3.7

20 PPI SiSiC 85 36.76 3.9

In Table 5.3, the effective thermal conductivities of SiSiC sponges
with two different pore densities and with the same porosity are tabu-
lated. In Table 5.2, the RMS of the solid tortuosity values of alumina
sponges is tabulated. The solid tortuosity of the two SiSiC sponges is
approximately 3.8. The solid tortuosity of alumina sponges and the
solid tortuosity of SiSiC sponges differ in their magnitudes, which is
due to the structural difference between the alumina and SiSiC sponges.
The material and manufacturing process of the sponge have a strong
influence on the structure of the sponge and so the solid tortuosity.

5.2.1.1 Two phase stagnant effective conductivity

The two phase effective conductivities are the values that are reported
in the literature. So in order to compare the use of solid conduction
tortuosity to find the solid effective thermal conductivity of the sponge
with that of the experiments, there is a need to find the two phase
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stagnant effective conductivity of the sponges, i.e., the conductivity of
the sponge including the stagnant fluid phase.

Table 5.4: Comparison of 2-phase phase effective conductivities of alumina
sponges with that of experiments [30]

Sponge keff(2phase) Experimental
keff(2phase)

Error(%)

10 PPI Al2O3 80%
porosity

1.9 2.6 27.0

20 PPI Al2O3 75%
porosity

3.0 3.4 10.8

20 PPI Al2O3 80%
porosity

2.8 2.7 3.7

20 PPI Al2O3 85%
porosity

1.3 2.0 31.7

30 PPI Al2O3 80%
porosity

2.1 2.8 21.9

45 PPI Al2O3 80%
porosity

1.9 2.8 30.7

As the increase in resistance to the flow of heat through the solid
phase of the sponge is calculated using the solid tortuosity, and the
solid and the fluid phase being continuous, the two phase effective con-
ductivity can be found using the simple parallel model (Eq. (5.15)).
In Eq. (5.15), the conductivity k2, is the solid effective conductivity
keff and k1 is the fluid conductivity kf , which is the property of the
fluid. The values of keff and kf are dependent on the temperature,
and so, the two phase stagnant effective conductivity is also a function
of temperature. In the case of ceramics, the conductivity increase with
increase in temperature and the change in the conductivity of fluid is
less in comparison to that of ceramics, while from Eq. (5.15) it can
be seen the influence of fluid conductivity on the two phase effective
conductivity is less in comparison to that of solid. In general, the two
phase effective conductivity increases with an increase in temperature.
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In the case of porosity, when there is an increase in porosity the con-
ductivity decreases due to the decrease in the influence of k2 in Eq.
(5.15), which is the same influence that is reported in literature [30].

In this study, the results are compared with those of Dietrich [30].
The value of conductivity k used in Eq. (5.25) to calculate the solid
effective conductivity is the intrinsic conductivity of alumina [30] (k =
26.8W/mK) at 25◦C. With k = 26.8W/mK, kf = 0.03W/mK and
with τs from Table 5.4, the two phase effective conductivities using Eq.
(5.15) are provided in Table 5.4 along with the experimental results
and their relative errors. Though the maximum relative error is about
31.7%, it is expected given the complexity in the structure and the
problem in exactly replicating the sponges used in the experimental
study. In the literature, the models for ceramic sponges have maximum
error values of about 23% [37] and 45% [30]. It is also reported in [30],
that even for a small change in the solid material conductivity (about
5 W/mK) the authors model had the error value changed to around
8%.
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Chapter 6

Radiative heat transfer

All substances in the universe continuously emit or absorb radiation in
the form of electromagnetic waves or photons by virtue of their internal
energy. The internal energy is proportional to the temperature of the
substance, and thus the radiation is dependent on the temperature. In
the case of convection and conduction, the heat transfer between two
locations is dependent on the first power of the temperature difference
of the locations. But the thermal radiative heat transfer between two
bodies depends on the difference between the absolute temperature of
the bodies, each raised to the fourth power [89, 108]. Because of this
basic difference between the radiation and the other two modes of heat
transport, the contribution of radiation is substantial, particularly at
very high temperatures. The fundamentals of continuum treatment in
a participating media can be found in standard radiative heat transfer
texts. In the continuum treatment, the radiation transfer equation
(RTE), i.e., Eq. (6.17), is used to quantify the change in the spectral
radiative intensity Iλ along a given direction ŝ at any location inside
a participating medium. In a radiatively participating medium, any
radiative beam is continuously attenuated by absorption and scattering
while it travels through the medium, as schematically shown in Figure
6.1.

91
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Figure 6.1: Attenuation of radiative intensity by absorption and scattering.

In the case of a medium with constant refractive index, the electro-
magnetic waves travel in a straight line, and for a stationary, non polar-
izing medium under thermodynamic equilibrium the absolute amount
of absorption of the radiative intensity by the medium is proportional
to the incident energy and as well as the distance travelled by the beam

(dIλ)abs = −κλIλds (6.1)

where Iλ is the radiative energy flux per unit solid angle and wavelength
and κ is the proportionality constant, which is also known as the linear
absorption coefficient. Integrating Eq. (6.1) over the geometric path s
gives

Iλ(0)− Iλ(s)

Iλ(0)
= 1− exp

(
−
∫ s

0

κλds

)
(6.2)

where Iλ(0) is the incoming beam intensity. The term
∫ s

0
κλds in Eq.

(6.2) is called the optical thickness of the medium.
Similarly, the incoming beam is also attenuated due to scattering

by the medium. Unlike absorption, in which case the incident energy
is partially or fully absorbed by the medium and converted to internal
energy. In the case of scattering the, the scattered energy is redirected
into all other directions, thus augmenting the energy in the scattered
direction, which is known as "in-scattering" in the scattered direction.
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The reduction of incoming beam intensity traveling in direction s is
given by

(dIλ)scat = −σλIλds (6.3)

where σλ is the proportionality constant, which is the linear scattering
coefficient for scattering from the pencil of rays under consideration into
all other directions. The total attenuation of the intensity in a pencil
of rays by both absorption and scattering is considered as extinction.

Iλ(0)− Iλ(s)

Iλ(0)
= 1− exp

(
−
∫ s

0

βλds

)
(6.4)

Thus, the extinction coefficient of the medium is defined as

βλ = κλ + σλ (6.5)

The total optical thickness is defined as

τλ =

∫ s

0

βλds (6.6)

The beam travelling into the medium in direction ŝ is not only atten-
uated by the medium, but also augmented by the scattered energy in
direction ŝ from other directions and also by the emission in direction
ŝ by the medium itself. The rate of emission from a volume element is
proportional to the magnitude of the volume, and so, the emitted inten-
sity along any path is proportional to the length of the path and to the
local energy possessed by the medium. In the case of thermodynamic
equilibrium, the intensity must be equal to the blackbody intensity,
thus

(dIλ)em = κλIbλds (6.7)

where κλ is the proportionality constant which is same as that of ab-
sorption. Combining Eq. (6.1) and Eq. (6.7) provides

(dIλ)em = κλ(Ibλ − Iλ)ds (6.8)
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Figure 6.2: Redirection of radiative intensity by scattering.

The total incoming energy in direction ŝi falling on area dA in
Figure 6.2 is given by

Iλ(ŝi)(dAŝi · ŝ)dΩidλ (6.9)

As per Eq. (6.3) the total scattered energy while the energy travels
through volume dV for a distance ds/(ŝi · ŝ) is given by

σλ(Iλ(ŝi)(dAŝi · ŝ)dΩidλ)
ds

ŝi · ŝ
= σλIλ(ŝi)dAdΩidλds (6.10)

Of this scattered energy, only a portion of it is scattered in direction ŝ,
the probability of which is given by Φλ, which is the scattering phase
function. The constant 4π is arbitrary, and its importance will be
discussed later. The amount of energy scattered in direction ŝ is then

σλIλ(ŝi)dAdΩidλds

(
Φλ(ŝi, ŝ)

4π

)
(6.11)

The amount of energy scattered into direction ŝ from all incoming di-
rections is given by

(dIλ)scat(ŝ)dAdΩdλ =

∫
4π

σλIλ(ŝi)dAdΩidλdsΦλ(ŝi, ŝ)
dΩ

4π
(6.12)

thus

(dIλ)scat(ŝ) = ds
σλ
4π

∫
4π

Iλ(ŝi)Φλ(ŝi, ŝ)dΩi (6.13)
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From Eq. (6.11) the energy scattered in all directions from solid angle
dΩi is

σλIλ(ŝi)dAdΩidλds
1

4π

∫
4π

Φλ(ŝi, ŝ)dΩ (6.14)

This should be equal to Eq. (6.10), which results in

1

4π

∫
4π

Φλ(ŝi, ŝ)dΩ = 1 (6.15)

If an equal amount of energy is scattered in all directions, then Φλ =
1, and this explains the inclusion of constant 4π in Eq. (6.11)

The augmentation due to scattering in a particular direction has
contributions from all directions. The energy flux scattered into the
direction ŝ from all incoming directions ŝi is given by

(dIλ)scat = ds
σsλ
4π

∫
4π

Iλ(ŝi)Φ(ŝi, ŝ)dΩi (6.16)

where Φ(ŝi, ŝ) is the scattering phase function, which describes the
probability that a ray from one direction ŝi is scattered into certain
other direction ŝ. The change in intensity for rays traveling in direc-
tion ŝ within an element as in Figure 6.2 is found by summing the
contribution of emission, absorption and scattering. Eq. (6.17) is the
radiation transfer equation (RTE)

dIλ
ds

= ŝ · ∇Iλ = κλIbλ− βλIλ(ŝ) +
σsλ
4π

∫
4π

Iλ(ŝi)Φ(ŝi, ŝ)dΩi (6.17)

The augmentation by emission is given by the first term on the right
hand side of the equation. The second term quantifies the attenuation
of the intensity by extinction. In scattering is taken care by the last
term. Radiative heat transfer in porous media can be treated as a
continuum at macro level or as a group of particles at pore level. In
the case of the macro level, the effective transport properties (κ, β, σs)
are averaged over a representative elementary volume. The spectral
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radiative heat flux vector in the case of radiative heat transport is
given by Eq. (6.18) [89, 108]

qr,λ =

∫
4π

Iλ(ŝ)ŝdΩ (6.18)

The divergence of the spectral radiative heat flux vector provides the
spectral radiative source or the amount of energy stored per differential
volume element per unit wavelength. Integrating Eq. (6.17) for all solid
angles provide the total radiative source.

∫
4π

ŝ ·∇IλdΩ =

∫
4π

κλIbλ − βλIλ(ŝ) +
σsλ
4π

∫
4π

Iλ(ŝi)Φ(ŝi, ŝ)dΩi

 dΩ

(6.19)

which can be written as

∇·
∫
4π

ŝIλdΩ = 4πκλIbλ−
∫
4π

βλIλ(ŝ)dΩ+
σsλ
4π

∫
4π

Iλ(ŝi)

∫
4π

Φ(ŝi, ŝ)dΩ

 dΩi

(6.20)

Since the direction and the space coordinates are all independent from
one another [89], in Eq. (6.19) the integral and the direction vector
were taken into the gradient. On the right hand side of Eq. (6.20), the
order of integration changes by applying the Ω integration only to the
part dependent on it, i.e., the scattering phase function Φλ. The last
integration in brackets is given by Eq. (6.15), thus

∇ · qr,λ = 4πκλIbλ − βλ
∫
4π

Iλ(ŝ)dΩ + σsλ

∫
4π

Iλ(ŝi)dΩi (6.21)

In order to solve the above equation, knowledge of the intensity Iλ
at a point along direction s is required (at the boundaries the inten-
sities are usually specified) and also the medium’s effective radiative
properties. This study involves in the pore level study of the sponges
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to determine the effective transport properties which can be used in
continuum approach.

Most of the initial studies on radiative properties of heterogeneous
media were done to calculate the heat transport in porous insulating
materials with very high porosity. Larkin and Churchill [76] used the
two flux method to calculate the radiation heat transport within foam
and glass fiber insulations having different bulk density, pore and fiber
diameters. The extinction and scattering parameters defined in the
two flux equations were obtained by experimental transmittance mea-
surements and also by electromagnetic theory. The obtained radiative
parameters were used to find the effective radiative conductivity of the
insulating materials. The two flux equations are non linear equations,
in order to have an approximated analytical solution, the temperature
gradient across the insulation was assumed constant. This assumption
is valid only if the rate of heat transfer by radiation is small or otherwise
constant. A similar study [23] was made to calculate the heat transfer
inside isothermal beds of spheres, cylinders and grains. Yang et al.
[120] used the Monte-Carlo technique at a local scale to trace the en-
ergy bundle traveling through numerically modeled randomly packed
spheres of uniform diameter. The Monte-Carlo simulation was used
to obtain the intensity transmission data as a function of bed thick-
ness and sphere surface radiative properties. With the use of two flux
equations and transmission data, the effective absorption and scatter-
ing coefficients were evaluated. A similar kind of study was reported
by Argento and Bouvard [4]. Detail review of experimental and theo-
retical methods in the determining of thermal radiation properties of
dispersed media was done by Baillis et al. [8]. Spectral absorption,
scattering coefficients and spectral phase functions were quantified for
ceramic sponges by Hendricks and Howell [57, 58]. They used inverse
analysis technique based on discrete ordinate radiative models to ob-
tain the radiative properties from the spectral hemispherical reflectance
and transmittance measurements. The experimental methods in char-
acterization of radiative properties of foams made of different materials
are found in literature [7, 6, 122, 102]. Ray tracing techniques provide
a great advantage in replicating the experimental radiation measure-
ments using computer simulations, but it requires a precise knowledge
about the porous structure morphology to have accurate results. Tan-
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crez and Taine [109] developed a method to identify the absorption
coefficient, scattering coefficient and scattering phase function of an
Identical Overlapping Opaque Spheres (IOOS) and an Identical Over-
lapping Transparent Spheres (IOTS) arrangements using Monte-Carlo
ray tracing technique. Evolution of 3D visualization techniques such as
computer tomography using X-rays scans, magnetic resonance imaging
using the effect of Nuclear Magnetic Resonance (NMR) and light mi-
croscopy gave a possibility to capture topological heterogeneities typical
for porous structures. This provided the prospect of using the ray trac-
ing techniques to identify the radiative properties of reticulated porous
structures, which were previously employed only in theoretically sim-
ulated randomly packed sphere structures. The theoretical approach
obtained by Tancrez and Taine [109] was subsequently used along with
the computer tomography (µ-CT) geometrical data by Petrascha et al.
[96] to find the radiative properties of a 10 PPI reticulated ceramic
sponge. The present work used the theoretical approach mentioned in
[109] along with the computational grids generated from the tomogra-
phy scan data of different high porosity reticulated ceramic sponges to
find their extinction coefficients and the scattering phase functions. The
effect of the sponge structure on the radiative properties was studied.
The scattering phase functions of the sponges were obtained considering
the surface to be diffusely and specularly reflecting.

6.1 Radiative Properties identification

The objective of the work was to identify the ceramic porous inert me-
dias’ equivalent semi transparent extinction and scattering properties.
The structural morphology of the sponges was initially assumed to be
isotropic and later was tested for statistical isotropy using the identified
equivalent radiative extinction coefficients. The solid strut structure of
the porous media was considered as opaque and the vacant space in
between the solid strut was considered transparent to radiation. The
typical strut thickness of a sponge is much larger than the thermal ra-
diation wavelength range, so the effect of diffraction was neglected and
the medium was assumed to follow the laws of geometric optics. By
excluding polarization, the scattering depends only on the reflection
property of the strut.
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6.1.1 Extinction coefficient
An in-house ray tracing algorithm was used to track the rays inside the
sponge structure. The ray tracing code is a modified (simplified) ver-
sion of an in-house Monte-Carlo radiative heat transfer code developed
by Brunn [17]. In the case of the Monte-Carlo code developed by Brunn
[17], each surface element and volume element emits rays, and the en-
ergy contained in each ray depends on the temperature of the element
and material/gas radiative property. The emission location for each ray
is calculated and assigned. The rays are assigned with a wavelength
based on cumulative distribution function of the spectral distribution
of the radiative properties of surface and volume elements. The emitted
rays are traced and the absorption, scattering of the rays at the wall
and in the volume elements are used to calculate the radiative heat flux
and the source respectively.

In the modified Monte-Carlo code that is used in this study, the
subroutines to allocate individual rays with energy and wavelength are
deactivated, and void volume elements are considered to be transpar-
ent. The wall emission is made inactive and the ray emission takes
place only in the volume elements. The details of selection of emission
locations for the rays and the methodology used in assigning random
direction and ray tracing are well documented by Brunn [17]. The
ray-tracing algorithm [17] can in principle be operated with both tetra-
hedral meshes as well hexahedral grid. The computational grids are
generated using ICEM software, the flow calculation program ANSYS
CFX is used to set the boundary conditions during pre-processing, then
the grids are then exported with the additional information about the
boundary conditions. The grid information is then converted so that
all necessary connectivities can be determined. The flowchart of the
ray tracing process is shown in Figure 6.3.
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Figure 6.3: Flowchart representing the ray tracing process.
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In this study, the emission locations E within the representative
elementary volume (REV) are randomly chosen by the ray tracing al-
gorithm and a direction is assigned to each of the rays for its travel.
The algorithm then tracks the path of each ray starting from the REV
until the ray encounters an opaque strut surface of the sponge. At the
point E0 where the ray encounters the solid opaque strut, a part of
each ray is absorbed and the remaining is reflected back in different di-
rections based on the reflective properties of the strut material. When
the ray encounters the solid strut it is completely extinguished in that
particular direction of its travel (by absorption and scattering) and are
not traced further. The rays which cross the total domain length with-
out any interaction with the strut are also not traced further. The
extinction of the rays completely depends on the sponge’s structural
geometry and is independent of the frequency of the ray. The path
length Le traveled by each ray are determined using the ray tracing
algorithm. Statistically large numbers of rays Nray = 107 are traced
for their path lengths, which are used to find out a probability based
extinction coefficient of the sponge media. A schematic representation
of the ray tracing technique is shown in Figure 6.4.

Figure 6.4: Schematic diagram of the ray tracing technique used in the
identification of the radiative properties of the porous structure.
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Using the ray tracing code, large numbers of rays are traced for
their path length of extinction Le. With the path length of extinction
data, the extinction probability of a ray within range [L, L + dL] in
the local scale is calculated using

Pe(L) = Fe(L)dL =
1

Nray

Nray∑
j=1

δ(L− Le,j) (6.22)

where Fe(L) is the extinction probability density function at location
L and δ is the Dirac delta function. The cumulative probability distri-
bution function of extinction in local scale is given by

Ce(L) =

∫ L

0

Fe(L
′)dL′ (6.23)

In a continuous absorbing and scattering media, the probability den-
sity function fe(L) and the cumulative probability distribution function
ce(L) of extinction are given by Eq. (6.24) and Eq. (6.25). Eq. (6.4)
becomes identical to Eq. (6.25), when β in Eq. (6.4) is independent of
location within the continuous medium.

fe(L) = βe−βL (6.24)

ce(L) = 1− e−βL (6.25)

where β is the extinction coefficient of the continuous media. The
equivalent extinction coefficient β of a sponge can be obtained by de-
termining Ce(L) and equating it to Eq. (6.25) and by performing a
least square fit.

6.1.2 Absorption coefficient
Similar to extinction, the absorption probability of a ray within range
[L, L + dL] in the local scale is given by

Pa(L) = Fa(L)dL =
1

Nray

Nray∑
j=1

α′δ(L− Le,j) (6.26)

where α′ is the directional hemispherical absorptance of the strut ma-
terial. The absorptance α′ depends on the angle of incidence θi, i.e.,
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the angle between the incident ray Ii and the local normal vector n̂ at
the surface of incidence, as shown in Figure 6.4. The probability of the
angle of incidence within range [µi, µi + dµi] is given by the following
relation

P (µi) = F (µi)dµi =
1

Nray

Nray∑
j=1

δ(µi − µi,j) (6.27)

where µi, is the cosine of incident angle θi. With the use of Fe(L) and
F(µi), Eq. (6.26) can be written as

Pa(L) = Fa(L)dL = Fe(L)dL

∫ 1

0

α′(µi)F (µi)dµi (6.28)

For a continuous absorbing media, the probability of absorption of a
ray is given by

pa(L) = fa(L)dL = κ · e−βLdL (6.29)

If the reflection by the sponge strut is considered diffuse, the absorp-
tance is independent of the incident cosine, Eq. (6.28) simplifies as
below

Pa(L) = Fa(L)dL = αd · Fe(L)dL (6.30)

For a continuous media, Eq. (6.30) can be simplified to Eq. (6.31),
from which the equivalent absorption coefficient of a diffuse reflecting
sponge can be obtained

κ = β · αd (6.31)
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6.1.3 Scattering phase function

Figure 6.5: A schematic representing incidence and reflection on a surface.

The scattering phase function Φ describes the probability that a ray
from one direction will be scattered into a certain other direction [89].
As mentioned previously, in the present study the sponges were as-
sumed to be isotropic, so that the scattering phase function is indepen-
dent of the incident ray direction and assumed to be only the function
of the cosine of scattering angle (Ii·Ir), i.e., the angle between the inci-
dent and reflected ray. For any incident ray as shown in Figure 6.5, the
x, y and z components of a unit vector Ii representing the direction of
incidence are written as

Ii = (−sinϕi
√

1− µ2
i , cosϕi

√
1− µ2

i ,−µi) (6.32)

Similarly, for the reflected ray, the components representing the unit
vector Ir for the reflected direction are

Ir = (sinϕr
√

1− µ2
r,−cosϕr

√
1− µ2

r, µr) (6.33)
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The cosine of scattering angle µs for all possible incident, reflection and
azimuth angles at any point E on a surface is given by

µs = Ii · Ir = −
√

(1− µ2
i )(1− µ2

r)cos(ϕi − ϕr)− µiµr (6.34)

In the case of specular reflection the reflectance ρ′′ depends only on the
incident angle and according to the laws of specular reflection, θi = θr
and ϕr - ϕi = π, thus

µs = 1− 2µ2
i (6.35)

The scattering phase function can be determined using Eq. (6.36)
[96, 109].

Φ(µs) =

1∫
0

2π∫
0

1∫
0

δ(Ii · Ir − µs)ρ′′F (µi)µrdµrd(ϕi − ϕr)dµi

1∫
0

2π∫
0

1∫
0

ρ′′F (µi)µrdµrd(ϕi − ϕr)dµi

(6.36)

where the numerator represents the scattered energy for any given µs
and the denominator represents the total scattered energy in all possible
directions. The bidirectional reflectance ρ′′ in Eq. (6.36) is a function
of the incident angle θi and the reflection angle θr and it is assumed to
be independent of azimuth angles of incidence ϕi and reflection ϕr. For
uniform irradiation on a specular surface, the bidirectional reflectance
is

ρ′′ = ρ′/µr (6.37)

where ρ′ is hemispherical directional reflectance. For a diffuse reflecting
surface, the bidirectional reflectance ρ′′ is given by Eq. (6.38)

ρ′′ = ρ′/π (6.38)

6.1.4 Ray tracing validation
The validation of the ray tracing code was done with IOOS and IOTS
computer simulated structural arrangements [109]. The structures were
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constructed with randomly packed spheres having diameter of 0.1 cm
within a cube of volume 27 cm3. The porosity of the IOOS structure
was 80% and that of the IOTS was 60%. In the case of IOOS structure
the rays were traced in the void space filled in between the spheres
outer surface and in the case of IOTS structure the rays were traced
within the interconnected sphere volume. Due to the change in the
volume in which the rays were traced, the definitions of void space in
calculating porosity are different for IOOS and IOTS structures.

Figure 6.6: The cumulative distribution function of extinction along the
normalized side length (L+ = L/dpore) of the IOTS structure.

Figure 6.6 shows the extinction cumulative probability distribution
function Ce(L) of the IOTS structure in local scale calculated using
Eq. (6.23) and the continuous media cumulative extinction probability
distribution of extinction ce(L). The obtained profiles are similar to
the results provided in [109] for a similar case. In the case of the IOOS
structure, the arrangement is made of a large number of opaque spheres
and the probability density function of incidence cosine is expected to
be same as that of a single sphere irradiated by a beam of light [F(µi)
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= 2µi] as described in [96, 109].

Figure 6.7: Comparison of the probability density functions of incident
cosine of the IOOS structure computed by the ray tracing method to the
analytical solution for that of a sphere.

Figure 6.7 shows the probability density function of the IOOS struc-
ture determined by the ray tracing method matching exactly with that
of a single sphere. The scattering phase function of a diffuse sphere
is independent of the reflectance [89], but depends on the probability
density function of the angle of incidence F(µi). The expression for the
scattering phase function of a large opaque diffusely reflecting sphere
irradiated by uniform intensity is [89]

Φ(µs)Diff.sphere =
8

3π
[sin(µs)− µscos(µs)] (6.39)

As shown in Figure 6.7, in the case of the IOOS structure, the F(µi) is
the same as that of a sphere and for any reflectance value, the scattering
phase function of the IOOS structure should also be the same as that
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of a large diffusely reflecting sphere. The ray tracing calculation per-
formed with the IOOS structure provided the expected result as shown
in Figure 6.8 and thus validates the ray tracing code and procedure
used to calculate the scattering phase function for diffuse reflection.

Figure 6.8: Diffuse scattering phase function of the IOOS structure com-
puted using the ray tracing technique and the analytical scattering phase
function of a large diffusely reflecting sphere.

In the case of specular reflection, the scattering phase function is
dependent on the reflectance of the surface and also on F(µi). The
approximate expression as in Eq. (6.40) was used by Tancrez and Taine
[109] to calculate the directional hemispherical reflectance in terms of
the hemispherical absorbtance α. The same expression is used in this
study in order to compare the results with that of Tancrez and Taine
[109].

ρ′ = 1− (3/2) · α · µi (6.40)
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Form the definition of scattering phase function

Φ(µs)dµs =
F (µi)ρ

′(µi)dµi
1∫
0

F (µi)ρ′(µi)dµi

(6.41)

For specular reflection, Eq. (6.35) is rearranged as

µi =

√
1− µs

2
(6.42)

From which

dµi = − dµs

4
√

1−µs

2

(6.43)

µi has limits, 0 to 1, for which µs has limits, 1 to -1. By reversing µs
limits, and substituting Eq. (6.43) in Eq. (6.41) provides

Φ(µs)Spec =
F (µs)ρ

′(µs)dµs

4
√

1−µs

2

1∫
0

F (µi)ρ
′(µi)dµi

(6.44)

For a sphere irradiated with uniform intensity, F(µi) = 2µi, then Eq.
(6.41) becomes

Φ(µs)Spec.Spheredµs =
2µiρ

′(µi)dµi
1∫
0

2µiρ′(µi)dµi

(6.45)

Substituting Eq. (6.40) and Eq. (6.43) in Eq. (6.45) and integrating
the denominator gives

Φ(µs)Spec.Sphere =

1− 3
2α

(√
1−µs

2

)
2(1− α)

(6.46)

To validate the method for specular reflection, the scattering phase
function of the IOOS structure was compared with that of a sphere.
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The comparison of the specular phase functions for different values of
α is shown in Figure 6.9.

Figure 6.9: Specular scattering phase functions of the IOOS structure com-
pared with those of a sphere with different surface absorbtance values.

6.2 Radiative properties of sponges

6.2.1 Extinction coefficient

The numerical simulations were carried out for grid structures gener-
ated from tomographic scans of different sponge structures. Parallel
rays were emitted from the chosen REV in each Cartesian direction
and were traced for their path length of travel. The path length data
obtained in each individual direction was used to find the directional
equivalent extinction coefficients (βx, βy, βz) using Eq. (6.23) and Eq.
(6.25). The simulations were carried out from three different locations
within each sponge structure to avoid any influence of local structural
errors and the arithmetic average of the three values was consider as
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the directional equivalent extinction coefficient of the sponge in a par-
ticular direction. The directional equivalent extinction coefficients of
the 30 PPI 80% porosity alumina sponge structure are given in Table
6.1 along with their standard deviation values. Figure 6.10 shows the
normalized intensity and its exponential fit values along the normalized
path length of the 30 PPI 80% porosity alumina sponge structure. The
obtained directional equivalent extinction coefficients (βx, βy, βz) were
compared to justify the structure isotropy assumption.

Figure 6.10: Normalized intensity and its exponential curve fit as a function
of the normalized path length L+ = L/dpore of a 30 PPI 80% porosity Al2O3

sponge.

Figure 6.11 shows the normalized intensity as a function of nor-
malized length in all the three Cartesian directions of the 30 PPI 80%
porosity sponge structure. It can be seen that the normalized intensity
in all three directions are similar and have exponential reduction with
increase in path length, thus supporting the isotropic assumption. The
arithmetic average of the three directional equivalent extinction coeffi-
cients (βx, βy, βz) was taken as the equivalent extinction coefficient of
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the sponge structures.

Table 6.1: Directional equivalent extinction coefficients with their standard
deviation values and the mean extinction coefficient of a 30 PPI 80% porosity
alumina sponge.

Al2O3 30 PPI
80% porosity

Directional Equivalent

Extinction Dir-x Dir-y Dir-z 0.391

coefficient (mm-1) 0.377 0.397 0.399

Standard deviation 0.009 0.013 0.021 0.012

Figure 6.11: Normalized intensities along the normalized path length in all
three Cartesian directions of a 30 PPI 80% porosity Al2O3 sponge.
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The values of the equivalent extinction coefficient obtained for var-
ious sponge structures are given in Table 6.2. From Table 6.2, it can
be seen that for the same pore density, the extinction coefficient values
increase with a decrease in the porosity values. This can be attributed
to the fact that the porosity of the sponges having same pore density
varies only due to the variation in the strut diameter. Thinner struts
provide higher porosity in comparison to thicker struts. As the strut
diameter increases, the extinction of rays also increases due to the in-
crease in specific surface area. For the same porosity, with an increase
in the pore density, the surface area of the structure increases and so
does the extinction coefficient, which is justified with the results given
in the Table 6.2. The equivalent extinction coefficient of a SiSiC sponge
with 20 PPI 85% porosity was found to be different in comparison to
that of an alumina sponge with the same structural properties.

Table 6.2: The mean equivalent extinction coefficient and absorption coef-
ficient values of different sponge structures identified using the ray tracing
technique.

Pore density
(PPI)

Porosity(%) Extinction
coefficient
(mm-1)

Absorption
coefficient
(mm-1)

10 (Al2O3) 80 0.194 0.058

10 (SiSiC) 85 0.149 0.124

20 (Al2O3)

75 0.362 0.109
80 0.344 0.103
85 0.313 0.094

20 (SiSiC) 85 0.211 0.175

30 (Al2O3)

75 0.504 0.151
80 0.391 0.117
85 0.388 0.116

45 (Al2O3) 80 0.776 0.233

Hendricks and Howell [57] proposed a correlation for the extinc-
tion coefficient based on their experimental results for zirconia and SiC
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sponges. The extinction coefficient is related to the porosity and the
pore diameter of a sponge using

β =
4.4

dpore
(1− ε) (6.47)

For the SiSiC sponges, the correlation proposed by Hendricks and How-
ell [57] Eq. (6.47), in comparison with the extinction coefficient values
in Table 6.2 has a RMSD of 4.7%. For the alumina sponges, a correla-
tion is proposed as in Eq. (6.48)

β =
3.9

dpore
(1− ε) (6.48)

which in comparison with the alumina sponge extinction coefficient
values in Table 6.2 has a RMSD of 6.3%.

6.2.2 Scattering phase function

Figure 6.12: Comparison of the probability density functions of incident
cosine of various sponge samples to the analytical solution of a sphere.
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The sponges used for this study were all made of non metallic materials
and have a rough microscopic surface [31]. The surfaces are most prob-
ably expected to have a diffuse reflection (though in visible light SiSiC
sponges are found to be having some shiny surfaces, predominantly the
sponges seem to be diffusive). As mentioned in the code validation
section, in the case of diffuse reflection, the scattering phase function
is independent of the reflectance property of the material. Thus the
phase function is only dependent on the structural tomography and is
specific to the probability density function of incidence cosine.

Figure 6.13: Diffuse scattering phase function of different sponge samples
and that of the IOOS structure, computed using ray tracing code.

As the struts are cylindrical in nature and are oriented in all the
directions within a sponge, the probability density function of incidence
cosine have a profile similar to that of a single sphere irradiated by a
beam of light. Figure 6.12 shows the F(µi) of all the sponges studied
in this work as a function of incidence cosine µi. The comparison
of the values of F(µi) agrees well with that of a sphere. The slight
variation between the F(µi) curves to that of a sphere might be due to
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the concave surfaces of the nodes in the sponge structures. The phase
function identification was carried out with a hemispherical reflectance
value of 0.5 for all the sponges. The value of incident cosine probability
density function required for solving Eq. (6.36) was obtained from a
fifth degree polynomial curve fit to the curves plotted in Figure 6.12.
As the F(µi) are similar to that of the IOOS structure or a sphere,
the diffuse scattering phase functions are expected to be similar to that
of the IOOS structure as shown in Figure 6.13. The back scattering
effect is very strong for all the sponge structures. If metallic sponges
were studied, the scattering effect should be predominately forward
due to the shiny, polished metallic surface and should be similar to the
specular phase functions obtained for the IOOS structure.

6.2.3 Absorption coefficient
The sponges were assumed to be diffuse reflecting due to their rough
microscopic surface [31]. Eq. (6.31) was used in determining the equiv-
alent absorption coefficients with the values of equivalent extinction
coefficients and the absorptance of the sponges. The absorption coef-
ficient values of different sponges used in this study are given in Table
6.2. The absorptance values (αAlumina = 0.3 and αSiSiC = 0.83) were
taken from [89], with the assumptions that the alumina sponges were
made of grains of size 10 µm and working temperature between 1010◦C
- 1565◦C.
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Conclusion

The main objective of this study was to determine the heat transfer
and fluid flow properties of the ceramic sponges, and to express them
in terms of the known geometric parameters of the sponges. The con-
ventional CFD tools were used in calculating the fluid flow and the heat
transfer. The computational volumes required for such analysis were
regenerated using three dimensional tomography imaging techniques.
The computational grids thus obtained represent the real three dimen-
sional structure of the sponges. The geometric parameters such as
porosity, pore diameter and specific surface area were measured using
the reconstructed geometries. Sponges made of two different ceramic
materials, SiSiC and alumina, were studied. The porosities of the alu-
mina sponge were in the range of 75% to 85% and the pore densities
are of 10, 20, 30 and 45 PPI. While in the case of SiSiC sponges, two
sponges were studied, one of pore density 10 PPI and other of 20 PPI.
Both the sponges had porosities around 87%.

The study involved in the simulation of pressure drop in fluid flow
within the sponge structures. For the simulations, air was used as
the fluid medium and the simulations were performed for Reynolds
numbers (Re = ρdhus/µ) 10, 100, 500, 1000 and 1500. Using the
simulation results, a general correlation (similar to that of the Ergun
equation) for the pressure drop in ceramic sponges was proposed. In
order to study the influence of the tortuosity on the pressure drop.

117
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The tortuosity value for each sponge was calculated using Lagrangian
particle tracking (LPT) method to track the particle in the Eulerian
fluid phase. The influence of the solid tortuosity on the pressure drop
was included in the general pressure drop correlation.

∆p

∆x
= ζ · µSv

2

ε3
us +

τ

τ ′
η · ρSv

ε3
us

2

The above correlation is able to predict the pressure drop within a root
mean square deviation of 21.5%.

In the next step of this work, the direct pore level simulations were
performed to determine the axial dispersion coefficient values of gaseous
flow in sponge structures. It was found that the spatial velocity varia-
tions of the sponges with respect to the bulk flow velocity remain the
same irrespective of the sponges’ structural parameters. For a given
internal bulk velocity, the axial dispersion of a gas flow within a sponge
structure is a function of pore diameter of the sponge and its porosity.
The axial mixing length is recommended as the characteristic length in
calculating the Peclet number, and also a new correlation to determine
the characteristic length based on pore diameter and tortuosity of the
sponges was formulated.

d = dpore × (−4.4 + 4.5τ)

With the proposed characteristic lengths, the Peclet numbers (PeL =
ud/DL) of sponges are approximately equal to the value of 2, which is
reported in literature as the Peclet number for packed bed.

The convective heat transfer within porous beds are well known to
be a function of the pressure drop. The dependency of the convective
heat transfer on the pressure drop in porous media is given by the gen-
eralize Lévêque equation (GLE). The applicability of the generalized
Lévêque equation in the case of reticulated ceramics is studied in re-
cent years. In this study, the heat transfer coefficients for the sponges
were calculated for three different fluids with Prandtl numbers 0.7, 2
and 6, respectively. The simulations were performed for Reynolds num-
bers (Re = ρdhus/µ) 10, 100, 500, 1000 and 1500. Based on GLE, a
correlation for the Nusselt number in terms of non-dimensional pressure
drop (Hagen number) was developed. Instead of incorporating correc-
tion factors in the GLE to match the experimental results, the axial
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mixing length is used as one of the parameter to correlate the Nusselt
number and the Hagen number.

Nu = 0.17(Prdh/LdHg)1/3,where Ld = ll

The correlation is able to bring down the error values within a range
of ±35%, which is better than the error range of ±40% found in the
literature for ceramic sponges. In the case of heterogeneous models,
there is a need to find the solid effective conductivities of the sponges.
In this work the solid effective conductivity was related to the solid
structure tortuosity. Using the heat transfer simulation results, the
solid tortuosity values of the sponges were calculated with the help of
one dimensional Fourier’s law of conduction. It is found that for a
given ceramic sponge, the solid conduction tortuosity is independent
of the sponges structure properties such as pore density and porosities
etc. The two phase effective conductivity was found by substituting
the solid phase effective conductivity in the parallel two phase model.

keff(2phase) = ε1k1 + (1− ε1)k2

Finally, an in-house ray tracing code was used along with the tomogra-
phy based computational grids to obtain the equivalent radiative prop-
erties of different porous structures. The porous media were found
to be isotropic in structure. The extinction coefficient increased with
decreasing porosity for the same pore density and decreased with in-
creasing pore density for the same porosity. The diffuse and specular
scattering phase functions were found to be independent of structural
properties of the porous media, such as the porosity and the pore den-
sity. The diffuse scattering phase functions of the porous media were
found independent to the surface reflectance and were similar to that
of a large diffusely reflecting sphere. The specular phase functions were
dependent on the surface reflectance. Similar to the correlation that
was found in literature, a correlation for extinction coefficient of the
alumina sponges in terms of pore diameter and porosity was formu-
lated.

β =
3.9

dpore
(1− ε)

In conclusion, with the help of direct pore level simulations, the
correlations to calculate the heat transfer properties of heterogeneous
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reticulated ceramic sponges were proposed. The correlations are based
on the readily available sponge properties, so that they can be readily
used in the design and the optimization of the processes and applica-
tions where the ceramic sponges are widely used, and also to aid in
developing new applications.

Future outlook

The major problem in dealing with the reticulated porous structures is
that of accurately describing their morphological properties. Though
the reconstruction of these structures using computer tomographic im-
ages helps in accurately quantifying the properties of a given structure,
they may not be the same for any other RPC structure of same material,
pore density and porosity. The relation between the properties such as
specific surface area and pore diameter with that of easily measurable
properties such as porosity or pore density are not well correlated. The
problem in defining the morphological properties reflects in the diffi-
culty in studying their flow, heat and mass transfer properties and also
in developing reliable correlations. With additive manufacturing tech-
nologies such as elective electron beam melting, selective sintering, 3D
printing etc., it is now possible to manufacture open cell structures to a
predefined geometry with high accuracy [65]. With these technologies,
it is now possible to produce open cell structures with required pres-
sure drop, heat and mass transfer properties. Well defined structures
can be studied using DPLS simulation even without computer aided
reconstruction of these open cell structures. It will greatly help in the
study of different well defined morphological structures and will aid in
attaining the required properties for specific applications. For example,
in case of two step thermochemical solar reactors (step 1: metal oxide
reduction at high temperatures, step 2: cooling and oxidation of metal
oxide which results in reduction of H2O and CO2) that are presently
studied for syngas production using sun light [1, 24, 44, 46, 80, 81], the
heat transfer process in form of conduction, convection and radiation
within RPC plays an important role. The rate of reduction of metal
oxide (ceria, ZnO2, etc.) is greatly dependent on the rate of increase
in the temperature of the RPC [44], and also, in the cases of reduction
of CO2 and H2O into CO and H2, the specific surface area of the RPC
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plays a major role. Increasing the specific surface area of RPC beyond
its natural level helps in further increasing the oxidation surface area of
the metal oxide. Thus it increases the reduction of H2O and CO2 [46].
One of the methods presently studied to increase the specific surface
area of the RPC structure is to manufacture the RPC structures with
increased micro porosity [46]. The strut structures contain micro pores
to increase the specific surface area, but it reduces the overall conduc-
tivity of the sponges. With the number of operating cycles there are
possibilities that these pores could get closed due to sintering at high
temperatures. Another promising possibility is to increase the surface
area by imparting projections/fins to the struts. This can be achieved
by additive manufacturing technologies. With regular structures such
as the ordered kelvin structure and by imparting protrusions on to its
struts, it is possible to alter the pressure drop, heat and mass transfer
and radiation properties as required. This may be a better way than
the complex process of trying to impart randomness to the ordered
structures to achieve required results, because the artificially induced
randomness imparts similar structural uncertainties as that of the RPC
structures manufactured by Schwartzwalder process.
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Chapter 8

Annex

8.1 Pressure loss

Table 8.1: Superficial air velocities and the corresponding pressure drops
per unit length in the sponge structures.

Structure name us [m/s] Pressure
drop
[kPa/m]

Al2O3 10 PPI 80% porosity 0.0185 1.7
0.1862 28.4
0.9313 350.6
1.8626 1149.0
2.7939 2372.8

SiSiC 10 PPI 85% porosity 0.0196 1.6
0.1959 27.5
0.9797 363.3
1.9595 1223.3
2.9392 2546.3

Al2O3 20 PPI 75% porosity 0.0384 16.8
0.3841 310.8
1.9206 4523.4
3.8412 16193
5.7618 34970
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Al2O3 20 PPI 80% porosity 0.0346 6.8
0.3460 125.4
1.7297 1745.1
3.4595 6257.3
5.1892 13541

Al2O3 20 PPI 85% porosity 0.0374 9.1
0.3736 158.5
1.8678 2167.3
3.7356 7712.8
5.6035 16638

SiSiC 20 PPI 85% porosity 0.0243 2.7
0.2433 45.2
1.2163 581.3
2.4327 1976.3
3.6491 4163.8

Al2O3 30 PPI 75% porosity 0.0496 30.3
0.4962 613.6
2.4810 10048
4.9619 37634
7.4429 82817

Al2O3 30 PPI 80% porosity 0.0501 21.8
0.5010 380.1
2.5048 5405.1
5.0098 19437
7.5146 42102

Al2O3 30 PPI 85% porosity 0.0433 15.9
0.4329 271.4
2.1642 3510.1
4.3286 12283
6.4928 26322

Al2O3 45 PPI 80% porosity 0.0649 66.9
0.6493 1789
3.2463 27615
6.4925 98559
9.7387 212788
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8.2 Axial dispersion coefficients

Table 8.2: Superficial air velocities and the corresponding axial dispersion
coefficient values of the sponge structures.

Structure name us [m/s] Axial dispersion
coefficient × 10-3

[m2/s]

Al2O3 10 PPI 80% porosity 2.85 3.00
4.28 4.35
5.70 5.81

SiSiC 10 PPI 85% porosity 4.00 6.50

Al2O3 20 PPI 75% porosity 2.66 2.70
3.99 4.10
5.33 5.50

Al2O3 20 PPI 80% porosity 3.23 2.6
4.84 3.9
6.46 5.2

Al2O3 20 PPI 85% porosity 3.28 1.68
4.92 2.76
6.56 3.65

SiSiC 20 PPI 85% porosity 4.00 6.03

Al2O3 30 PPI 75% porosity 2.86 1.80
4.30 2.92
5.73 3.90

Al2O3 30 PPI 80% porosity 3.37 1.40
5.06 2.20
6.75 2.90

Al2O3 30 PPI 85% porosity 3.13 1.40
4.69 2.10
4.69 2.80

Al2O3 45 PPI 80% porosity 2.94 3.10
4.41 4.80
5.89 6.50
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8.3 Heat transfer coefficients

Table 8.3: Superficial velocities for a fluid of Pr = 0.7 and the corresponding
heat transfer coefficient values of the sponge structures.

Structure name us
[m/s]

Heat transfer
coefficient
[W/m2K]

Al2O3 10 PPI 80% porosity 0.0185 8.69
0.1862 34.97
0.9313 96.43
1.8626 125.89
2.7939 177.71

SiSiC 10 PPI 85% porosity 0.0196 11.69
0.1959 32.99
0.9797 79.27
1.9595 122.13
2.9392 170.13

Al2O3 20 PPI 75% porosity 0.0384 19.03
0.3841 51.01
1.9206 166.74
3.8412 228.78
5.7618 262.81

Al2O3 20 PPI 80% porosity 0.0346 18.35
0.3460 55.11
1.7297 101.63
3.4595 247.05
5.1892 317.66

Al2O3 20 PPI 85% porosity 0.0374 21.53
0.3736 64.21
1.8678 171.39
3.7356 227.80
5.6035 339.77

SiSiC 20 PPI 85% porosity 0.0243 13.51
0.2433 29.46
1.2163 100.13
2.4327 148.31
3.6491 174.85
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Al2O3 30 PPI 75% porosity 0.0496 27.41
0.4962 71.97
2.4810 190.98
4.9619 230.92
7.4429 466.08

Al2O3 30 PPI 80% porosity 0.0501 25.21
0.5010 56.05
2.5048 240.48
5.0098 376.39
7.5146 483.73

Al2O3 30 PPI 85% porosity 0.0433 32.39
0.4329 85.34
2.1642 217.34
4.3286 257.26
6.4928 460.86

Al2O3 45 PPI 80% porosity 0.0649 27.56
0.6493 85.58
3.2463 244.44
6.4925 370.67
9.7387 509.56

Table 8.4: Superficial velocities for a fluid of Pr = 2 and the corresponding
heat transfer coefficient values of the sponge structures.

Structure name us ×
10-3

[m/s]

Heat transfer
coefficient
[W/m2K]

Al2O3 10 PPI 80% porosity 0.40 433.79
4.00 1194.05
20.02 2282.03
40.03 3027.26
60.05 5860.20
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SiSiC 10 PPI 85% porosity 0.42 278.88
4.21 1013.33
21.06 2487.53
42.12 3879.97
63.17 5252.72

Al2O3 20 PPI 75% porosity 0.83 667.01
8.26 2213.26
41.28 4917.62
82.56 7635.16
123.84 9868.63

Al2O3 20 PPI 80% porosity 0.74 556.76
7.44 1651.66
37.18 3881.17
74.36 8155.72
111.53 10523.90

Al2O3 20 PPI 85% porosity 0.80 754.01
8.03 1934.86
40.14 4295.47
80.29 6513.20
120.44 10591.11

SiSiC 20 PPI 85% porosity 0.52 488.50
5.23 1274.89
26.14 3014.50
52.29 5461.18
78.43 6956.50

Al2O3 30 PPI 75% porosity 1.07 796.57
10.66 1921.86
53.32 4991.61
106.65 12935.07
159.97 15821.44

Al2O3 30 PPI 80% porosity 1.08 985.24
10.77 2712.59
53.84 5698.78
107.68 9388.62
161.51 10579.92
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Al2O3 30 PPI 85% porosity 0.93 917.80
9.30 2204.46
46.52 4380.25
93.03 7526.26
139.55 10788.62

Al2O3 45 PPI 80% porosity 1.40 1009.08
13.96 2862.98
69.77 7677.98
139.54 9312.47
209.31 14432.48

Table 8.5: Superficial velocities for a fluid of Pr = 6 and the corresponding
heat transfer coefficient values of the sponge structures.

Structure name us ×
10-3

[m/s]

Heat transfer
coefficient
[W/m2K]

Al2O3 10 PPI 80% porosity 1.07 458.98
10.76 1227.77
53.80 3036.29
107.60 4594.91
161.39 6283.98

SiSiC 10 PPI 85% porosity 1.13 341.26
11.32 941.38
56.60 2849.23
113.19 4397.04
169.79 5657.96

Al2O3 20 PPI 75% porosity 2.22 921.44
22.19 2665.55
110.94 5806.76
221.89 10948.47
332.84 14467.74
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Al2O3 20 PPI 80% porosity 2.00 636.63
19.99 1828.61
99.92 5219.16
199.84 7981.15
299.76 8863.51

Al2O3 20 PPI 85% porosity 2.16 829.59
21.58 2155.42
107.90 5775.61
215.79 8199.15
323.69 11635.19

SiSiC 20 PPI 85% porosity 1.40 380.59
14.05 1361.26
70.26 3905.05
140.53 4946.23
210.79 5683.76

Al2O3 30 PPI 75% porosity 2.87 1014.65
28.66 2659.18
143.32 8017.54
286.63 13716.49
429.95 15289.51

Al2O3 30 PPI 80% porosity 2.90 947.45
28.94 3053.08
144.70 7811.51
289.40 11310.23
434.09 14259.38

Al2O3 30 PPI 85% porosity 2.50 892.23
25.01 2401.57
125.02 6737.88
250.05 10129.93
375.07 12618.77

Al2O3 45 PPI 80% porosity 3.75 1188.01
37.51 3698.52
187.53 10246.65
375.05 12115.95
562.57 19422.89
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