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Zusammenfassung

In der vorliegenden Arbeit werden rheologische Experimente zur Charakterisierung der nicht-
lineareren viskoelastischen Eigenschaften disperser Systeme angewendet. Einen Großteil
der Experimente stellen oszillatorische Scherversuche bei großen Deformationsamplituden
dar (engl. Large Amplitude Oscillatory Shear, LAOS). Mit Hilfe von LAOS-Experimenten
lassen sich sowohl Frequenzabhängigkeiten, die Auskunft über elastisches und viskoses
Verhalten geben, als auch Nichtlinearitäten im mechanischen Verhalten mit dem gleichen
Versuch messen. Die dispersen Materialien, die untersucht worden sind, sind konzentrierte
Partikelsuspensionen und kolloidale Gele aus Nanoemulsionen. Weiterhin wurden zusät-
zlich Tensidlösungen, die wurmartige Mizellen ausbilden, Polymerschmelzen und -lösungen
mittels LAOS charakterisiert.

In der Arbeit wurde ein möglichst grundlegendes, phänomenologisches, skalares Modell
zur mathematischen Beschreibung von LAOS-Experimenten entwickelt. Basierend auf
dem linearen Maxwell-Modell zur Beschreibung viskoelastischer Stoffe wurde eine scher-
ratenabhängige Viskosität eingeführt. Dadurch, ist das Modell in der Lage sowohl eine
Abhängigkeit des Speicher- und Verlustmoduls von der Deformationsamplitude, als auch das
Vorkommen von höheren Harmonischen im Frequenzspektrum des Schubspannungssignals
zu beschreiben. Für die Validierung des Modells wurde das vorhergesagte LAOS-Verhalten
mit experimentellen Ergebnissen einer Tensidlösung von Cetyltrimethyammoniumbromid
verglichen. Gute Übereinstimmung für die deformationsabhängigen Speicher- und Verlust-
module, sowie für die relative Intensität der dritten harmonischen Oberwelle wurde bei
niedrigen Frequenzen gefunden, bei denen das viskose Verhalten dominiert.

An einer Suspension von thermosensitiven Kern-Schale Partikeln wurde die Frequenz-
abhängigkeit des nichtlinearen Verhaltens von konzentrierten Suspensionen in der Nähe
des Glasübergangas untersucht. Die Ergebnisse wurden mit Voraussagen der Modenkop-
plungstheorie verglichen. Qualitative Übereinstimmung zwischen Theorie und Experiment
wurde anhand der intrinsischen Nichtlinearität Q0 festgestellt, welche ein Maß dafür ist,
wie klein der lineare Bereich ist.

Der Fließübergang, das heißt der Wechsel von hauptsächlich elastischem Verhalten zu
viskosem Verhalten, eines kolloidalen Gels wurde mit dem LAOS-Experiment untersucht.
Das Gel wurde durch Gelierung einer Nanoemulsion mittels verbrückender kurzkettiger
Polymere erhalten. Durch Korrelation von nichtlinearen mechanischen Parametern, die
aus einer Wellenformanalyse erhalten wurden, mit Strukturparametern aus Neutronen-
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streuexperimenten konnte eine Verbindung zwischen Mikrostruktur des Gels und seinen
makroskopischen mechanischen Eigenschaften hergestellt werden. Dabei ist für das un-
tersuchte Gelsystem die Bildung von großen lösungsmittelgefüllten Poren der wichtigste
Vorgang des Fließübergangs im LAOS Experiment.

Weiterhin wurden instrumentelle Aspekte der LAOS Meßtechnik behandelt. Es wurde
gezeigt welche Einflüsse Faktoren wie Temperaturkontrolle, Geometriewahl und aktive
Steuerungsschleifen in der Anregungskontrolle auf die Reproduzierbarkeit von LAOS
Ergebnissen haben können. Bei optimierten Parametern ist zu erwarten, daß nichtlin-
eare mechanische Kenngrößen wie Q0 mit einer relativen Abweichung von unter 12% zu
bestimmen sind.

Die Dissertation zeigt auf wie LAOS-Experimente an verschiedensten viskoelastischen
Materialien, vor allem Dispersionen, genutzt werden können, um eine erweiterte mechanische
Charakterisierung im nichtlinearen Bereich durchzuführen. Dabei führt die Kombination
von mathematischer Modellierung, Experiment und zusätzlichen strukturaufklärenden
Methoden zu fundamentalen Erkenntissen im Bereich der nichtlinearen Viskoelastizität, die
in Zukunft zur rheologischen Optimierung von weicher Materie und für neue Analysemeth-
oden ihrer Mikrostruktur genutzt werden können.
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Nomenclature

2πβ−1
max . . . . . . Characteristic length scale of the phase separation in a bicontinuous

structure [µm]
Γ . . . . . . . . . . . . decay rate in the MCT [s−1]
γ . . . . . . . . . . . . Shear strain [-]
γ0 . . . . . . . . . . . . Strain amplitude [-]
γc . . . . . . . . . . . . Yield strain [-]
γ̇ . . . . . . . . . . . . Shear rate [s−1]
γ̇0 . . . . . . . . . . . . Shear rate amplitude [s−1]
δ . . . . . . . . . . . . . Phase angle [rad]
δn . . . . . . . . . . . . Phase angle of nth harmonic [rad]
δ(ω) . . . . . . . . . Phase spectrum [rad]
ε . . . . . . . . . . . . . separation parameter in the MCT [-]
η . . . . . . . . . . . . Shear viscosity [Pas]
η′ . . . . . . . . . . . . Dynamic viscosity [Pas]
η′′ . . . . . . . . . . . Out of phase viscosity [Pas]
η0 . . . . . . . . . . . . Zero shear viscosity [Pas]
ηr . . . . . . . . . . . . Relative viscosity, normalized to the viscosity of the solvent [-]
ηs . . . . . . . . . . . . Solvent viscosity [Pas]
η∞ . . . . . . . . . . . High shear rate limiting viscosity [Pas]
λ . . . . . . . . . . . . Relaxation time in rheological models [s]
Σ . . . . . . . . . . . . Specific surface area of voids in a heterogeneous gel structure [m−1]
σ . . . . . . . . . . . . Shear stress [Pa]
σ0 . . . . . . . . . . . Stress amplitude [Pa]
σc . . . . . . . . . . . . Yield stress [Pas]
σred . . . . . . . . . . Reduced stress [-]
Φ(t) . . . . . . . . . Density fluctuation correlation function [-]
φ . . . . . . . . . . . . Volume fraction [-]
φeff . . . . . . . . . Effective volume fraction determined from the high frequency behavior [-]
ω . . . . . . . . . . . . Angular frequency [rads−1]
a . . . . . . . . . . . . Particle radius in suspensions [nm]
B(t) . . . . . . . . . Binormal vector
CMT . . . . . . . . Combined motor transducer rheometer
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CS-80 . . . . . . . . core shell suspension with a particle radius of 80 nm
c . . . . . . . . . . . . . Power index in the Ostwald-de-Waele viscosity model [-]
D0 . . . . . . . . . . . Diffusion coefficient [m2s−1]
De = λω . . . . . Deborah number [-]
FCO . . . . . . . . . Forced convection oven
FRT . . . . . . . . . Force rebalance transducer
FT . . . . . . . . . . . Fourier transform
G . . . . . . . . . . . . Shear modulus [Pa]
G′ . . . . . . . . . . . Storage modulus [Pa]
G′′ . . . . . . . . . . . Loss modulus [Pa]
GR . . . . . . . . . . Residual modulus [Pa]
G′mn . . . . . . . . . Elastic nonlinear coefficient for the strain amplitude power m and the

harmonic number n [Pa]
G′′mn . . . . . . . . . Viscous nonlinear coefficient for the strain amplitude power m and the

harmonic number n [Pa]
I(ω) . . . . . . . . . Intensity spectrum [-]
In/1 . . . . . . . . . . n-th harmonic normalized to the first harmonic [-]
K . . . . . . . . . . . . Consistency in the Ostwald-de-Waele viscosity model
kB . . . . . . . . . . . Boltzmann constant [m2kgs−2K−1]
LAOS . . . . . . . . Large Amplitude Oscillatory Shear
LVR . . . . . . . . . Linear viscoelastic regime
M . . . . . . . . . . . Torque [Nm]
MCT . . . . . . . . Mode coupling theory
Me . . . . . . . . . . . Entanglement molecular weight [g/mol]
Mn . . . . . . . . . . Number averaged molecular weight [g/mol]
Mw . . . . . . . . . . Weight averaged molecular weight [g/mol]
m(t) . . . . . . . . . memory function
N(t) . . . . . . . . . Normal vector
PDMS . . . . . . . Polydimethylsiloxane
PEGDA . . . . . poly(ethylene glycol) diacrylate
Pe0 . . . . . . . . . . Péclet number in steady shear [-]
Peω . . . . . . . . . . Péclet number in oscillatory shear [-]
PNipam . . . . . . Poly(N-isopropylacrylamide)
PI . . . . . . . . . . . Polyisoprene
PIB . . . . . . . . . . Polyisobutylene
Q0 . . . . . . . . . . . Intrinsic nonlinearity [-]
q . . . . . . . . . . . . Scattering wave vector [nm−1] or [Å−1]
q . . . . . . . . . . . . . Absolute value of the scattering wave vector [nm−1] or [Å−1]
R′(t) . . . . . . . . . Time dependent storage modulus [Pa] from the sequence of physical pro-

cesses analysis
R′′(t) . . . . . . . . Time dependent loss modulus [Pa] from the sequence of physical processes
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analysis
RH . . . . . . . . . . Hydrodynamic radius in suspensions as determined by dynamic light

scattering [nm]
SANS . . . . . . . . Small angle neutron scattering
SAOS . . . . . . . . Small Amplitude Oscillatory Shear
SAXS . . . . . . . . Small angle X-ray scattering
SMT . . . . . . . . . Separated motor transducer rheometer
S/N . . . . . . . . . Signal-to-Noise ratio
T(t) . . . . . . . . . Tangential vector
T . . . . . . . . . . . . Temperature [◦C]
Tg . . . . . . . . . . . Glass transition temperature [◦C]
Tgel . . . . . . . . . . Gelation temperature [◦C]
USANS . . . . . . Ultra small angle neutron scattering
Wi = λγ̇ . . . . . Weissenberg number [-]
WLM . . . . . . . . Wormlike micelle
vσ . . . . . . . . . . . stress parameter in the MCT



Chapter 1

Introduction

If our world consisted of solids and liquids that were as ideal as those described by Hooke
and Newton, quite unusual situations would occur. Applying a purely Newtonian paint
to a wall would either be rather exhaustive due to the high viscosity of the paint or the
paint would simply run down the wall before it was dry if the viscosity was too low. This
example shows that a Newtonian fluid, which has a shear rate independent viscosity, is
undesirable for certain applications.
Another example of a liquid that is not ideal, is dough. When mixing dough of sufficiently
high flour concentration, it climbs up the stirrer instead of flowing to the walls of the bowl.
This effect is known as the Weissenberg effect and is caused by an elastic component of
the dough. Therefore, dough is neither an ideal fluid nor an ideal solid.
It turns out that the definitions of solid and liquid depend on the timescale of observation
and on the applied loads, deformations and rates of deformations. In fact, most everyday
materials appear to be solid at certain deformations/deformation rates, but liquid at
others, they are therefore viscoelastic. Additionally, all real life materials display nonlinear
mechanical properties at high enough stresses, large enough deformations or high rates of
deformation. Nonlinear means that the stress is not proportional to the deformation or the
deformation rate. Wall paint with its variable viscosity is a classic example of a material
with nonlinear mechanical properties.
The term ’complex fluid’ is used for many viscoelastic materials which surround us: they
are foods, biomaterials, such as blood and joint fluid, or personal care products (Larson
1999). Some are not as obvious in everyday life but are of equal technological importance:
electronic/optical materials, oil field fluids and freshly mixed cement. It is imperative
to study complex fluids by rheological methods to improve production and application
performance of these products. An intriguing overview of complex fluids, which is not
supposed to be exhaustive, has been recently presented (McKinley 2015). It is reproduced
in reduced form in Fig. 1.1 and contains three main classes: dispersions, surfactant micelles
and polymers. The complexity of the systems’ structures and rheological properties
increases with a characteristic system property, such as volume fraction φ or concentration
c. Encircled classes - particulate gels, concentrated suspensions, wormlike micelles and
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polymer melt and solutions - have been studied in this thesis by means of rheology in
order to characterize their nonlinear viscoelastic behavior. They represent a rather broad
selection from the available possibilities. The boundaries in Fig. 1.1 are by no means strict
and many combinations exist that are not specifically mentioned, for example particulate
dispersions in viscoelastic media or wormlike micelle - nanoparticle mixtures (Helgeson
2010).

Surfactant
Micelles

Dispersions Polymers

ϕ

csurf

cp

dilute
suspensions/
emulsions

particulate gels

colloidal glasses

granular matter

concentrated
suspensions/

wormlike

branched

lamellar

solutions

melts

polymer gels / networks

 
emulsions 

Figure 1.1: Overview of complex fluids, reproduced after McKinley (2015). Three main classes can be
defined: dispersions, surfactant micelles and polymers. The complexity of the systems’ structures and
rheological properties increases with a characteristic system property, volume fraction φ, concentration of
the surfactant csurf or polymer concentration cp. Classes that have been investigated in this thesis are
encircled. Note that this overview is not exhaustive and other classes or combinations of the mentioned
classes exist at the interfaces.

Dispersions, which are systems of at least two immiscible phases, are typical complex fluids
that exhibit viscoelastic behavior over a wide range of compositions. Prominent examples
are concentrated suspensions, emulsions, foams or particulate gels. It is viscoelasticity, linear
and nonlinear, that often provides the necessary functionality of a substance. Dispersions,
such as the previously mentioned wall paint, display nonlinear rheological properties. They
are designed so that their viscosity decreases under increasing stress. This means that
they are easy to apply to a wall but do not flow too fast under the influence of gravity.
An example where viscous and elastic properties are desired is filled rubber, which can
in principle be viewed as a dispersion of carbon black particles in a cross-linked polymer
matrix. Filled rubbers for tires need to be more elastic at lows frequencies to have a small
rolling resistance, but, at high frequencies, they need viscous properties to maintain contact
with the road, especially when the road is wet (Saeed2011 et al. 2011).
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Viscoelasticity originates from the specific microscopic structure of a material, therefore
tuning the structure modifies the initial mechanical properties. These mechanical properties
determine the processing conditions but at the same time certain final properties are desired
for the application of the product. The two requirements often do not coincide. Additionally,
the processing itself can modify the structure. The mutual interdependence of structure,
processing and application conditions can become very complex. Therefore, sophisticated
characterization techniques are required, which provide information about the viscoelastic
properties as a function of the structure. Rheology has therefore been combined with small
angle neutron (Porcar et al. 2011), X-ray (Struth et al. 2011; Meins et al. 2012) and light
scattering (Medronho et al. 2005; McMullan and Wagner 2009) as well as birefringence
measurements (Clasen and Kulicke 2001).
The shear history has an important effect on the final properties of complex fluids in
general and on those of dispersions in particular. First of all, aging and crystallization alter
the dispersion’s structure in the absence of shear (Crassous, Siebenbürger, et al. 2008).
Moreover, pre-shear protocols can be used to rejuvenate dispersions to a reproducible
disordered state (Mewis and Wagner 2012) or to crystallize them (Koumakis et al. 2008;
McMullan and Wagner 2009). For colloidal gels, it has been reported that weak steady shear
leads to more heterogeneous gels with lower moduli whereas high shear homogenizes the
sample. The subsequently reformed gel then exhibit higher moduli than the heterogeneous
gel (Koumakis et al. 2015).
The use of Large Amplitude Oscillatory Shear (LAOS) experiments, where a sample is
subjected to a sinusoidal shear deformation γ(t) = γ0 sin(ω1t), has become a widely known
technique to probe the nonlinear viscoelasticity of complex fluids (Pearson and Rochefort
1982; Giacomin and Jeyaseelan 1995; Wilhelm 2002; Hyun et al. 2011). Its main advantage
is the possibility to investigate the effect of both characteristic dynamic variables, the
Deborah number De and the Weissenberg number Wi using the same experiment.
The Deborah number De = λ/τo is defined as the ratio of a characteristic relaxation
time of the material λ and a characteristic time of observation τo, which is the inverse of
the angular frequency τo = 1/ω for oscillatory shear. De measures the degree to which
the elastic effects influence the overall mechanical response. For De < 1 viscous effects
dominate, whereas for De > 1 elasticity is the main contribution. The Weissenberg number
Wi = λ/τd, is the ratio of λ and a characteristic time τd of the deformation, where τd
is the inverse of the shear rate τd = 1/γ̇ for steady shear or τd = 1/γ̇0 = 1/(ωγ0) for
oscillatory shear (Dealy 2010). Wi can be interpreted as a dimensionless deformation rate
that indicates the importance of nonlinear behavior. For Wi numbers approaching and
exceeding 1, nonlinear effects cannot be neglected.
Further advantages of using LAOS are of instrumental nature and include the omission
of sudden signal jumps in the input, as in step experiments, and the ability to probe
large strain rates without accumulating very large strains that may lead to edge failure
(Blackwell and Ewoldt 2014).
First applications of LAOS to characterize properties which are important for processing



CHAPTER 1. INTRODUCTION 13

include relating blow moldability (Giacomin et al. 1994) to nonlinear shear rheology and
quantification of the branching degree in comb polymers (Kempf et al. 2013). Furthermore,
LAOS has been used to infer microscopic properties of emulsions, such as the droplet radius
or the interfacial tension (Reinheimer et al. 2011; Reinheimer et al. 2012), from nonlinear
oscillatory rheological measurements.
Modeling of LAOS flow by nonlinear constitutive equations is crucial for the development
of such applications and for predictions of flow behavior in complex geometries via fluid
dynamics calculations. Nonlinear models of varying complexity exist already, but so far
they are not powerful enough to quantitatively predict different nonlinear flows (Bird et al.
1987; Morrison 2001; Giacomin et al. 2011). Usually, they are solved numerically due to
their complexity. Recent efforts in constitutive modeling have led to asymptotic solutions
that provide material functions for a couple of nonlinear models, including the corotational
Maxwell model (Giacomin et al. 2011), the Giesekus model (Gurnon and Wagner 2012), the
Pompom model (Hoyle et al. 2014), the molecular stress function model (Wagner et al. 2011;
Abbasi et al. 2013) and a Jefferson model, which includes thixotropic behavior (Blackwell
and Ewoldt 2014). Although analytical solutions are generally to be preferred because
material functions can be calculated explicitly, arriving at these solutions usually involves
careful tedium. In most cases, only truncated power series expanded in strain amplitude
or shear rate amplitude can be obtained. Furthermore, the work needed to determine
higher order terms of the expansions increases disproportionately but yields only little
improvement in accuracy. Therefore, one part of the thesis contains a modeling approach
based on the widely known 1D-Maxwell model, the simplest model of a viscoelastic fluid,
which is modified to account for nonlinear behavior.
The main objective of this thesis is to investigate selected soft matter systems under
LAOS flow in order to gain insight into their microscopic structure. Since rheology is a
macroscopic method, direct interpretations are difficult. Nevertheless, with the help of
constitutive modeling and additional techniques for structural investigation under flow,
such as neutron scattering, correlations are possible.
The thesis begins with introducing the fundamental concepts of shear rheology and Large
Amplitude Oscillatory shear in Chapter 2. Basic physico-chemical descriptions of the
systems under investigation can be found in Chapter 3. Experimental chapters contain
technical aspects of LAOS rheometry (Chapter 4) and results from rheological experiments
on a wormlike micellar solution (Chapter 5), dense colloidal dispersions (Chapter 6) and
colloidal gels based on nanoemulsions (Chapter 7). The wormlike micelles results are used
for the validation of a simple phenomenological model to describe nonlinear viscoelasticity
in LAOS experiments. Measurements of dispersions are compared to predictions of the
mode coupling theory. Colloidal gel data is correlated to a structural investigation by small
angle neutron scattering.



Chapter 2

Linear and nonlinear shear
rheology

This chapter contains some fundamental concepts of rheology and in particular oscillatory
shear rheology, that can be found in every basic text on rheology. Especially recommended
are the works of Macosko (1994); Morrison (2001); Shaw (2012) and Larson (1999). Based
on the fundamentals of linear oscillatory rheology, often called small amplitude oscillatory
shear (SAOS), the extension to larger amplitudes, where nonlinear effects occur, will be
presented. The focus will be set on showing that large amplitude oscillatory shear (LAOS)
experiments are a natural and useful extension of the rheological methods already known.

2.1 Fundamentals of rheology

Rheology is defined as the science of deformation and flow of materials. It is based on
two fundamental quantities: First, the deformation of a body (and connected to it the
deformation rate). Second, the stress acting on the body that is necessary to produce this
deformation. Measuring and describing the relationship between deformation and stress
via constitutive models is the most important goal in rheology. The obvious application
for these relationships is the closure of the Navier-Stokes equations that in principle allow
solving any flow problem. Furthermore, rheology can be used as an analytical tool to
investigate microscopic properties of a material, if appropriate models are available that
connect microstructure and macroscopic flow behavior. An example for such a microscopic
model has been developed for emulsions, where a tensor that describes the deformed droplets
depending on the deformation, was connected to the macroscopic stress (Reinheimer et al.
2011; Reinheimer et al. 2012).
In the most simple, scalar version, the stress and the deformation can be defined using
the simple shear experiment, as depicted in Fig. 2.1. If a cuboid of height h and the area
A is fixed on one side, then a force F acting on the other side in x-direction produces a
shear stress σ equal to the force normalized by the area A, therefore the stress has units of
pressure. The stress leads to a deformation of the body’s dimensions. If the body is a fluid,

14
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Figure 2.1: Simple shear experiment on a cuboid body between two plates: The lower plate is fixed, the
upper plate is pulled by a force F . Geometry independent rheological quantities can be defined as stress
σ = F/A, strain γ = dx/h and shear rate γ̇ = dγ/dt = v/h.

then the upper side will be moving with a velocity v = dx/dt in x-direction. Normalizing
the length dx by the height h, gives the unitless quantity of deformation γ, called strain.
Henceforth in this thesis only the term strain will be used for γ. In the general case, strain
and stress are tensorial quantities of order 2, but in this thesis all descriptions will be kept
scalar.

σ = F

A
(2.1)

γ = dx
h

(2.2)

γ̇ = dγ
dt = v

h
(2.3)

Two idealized archetypes of material behavior that connect σ and γ exist: For the ideal
elastic solid, as defined by Hooke, σ is proportional to γ, with the proportionality constant
G, called the shear modulus (Eq. 2.4) and measured in units of Pa. Equation 2.4 is the
essentially the same law as for a one dimensional spring, where the force F is proportional
to the elongation dx. Examples for ideals solids are pure metals, alloys or amorphous solid
glasses (aluminum, G ~ 25 GPa, steel, ~80 GPa, SiO2, ~26 GPa, Crandall et al. 2012 ).
Values of G are generally temperature dependent and the ones stated are for T = 25◦C.

σ = Gγ (2.4)

For an ideal liquid, σ is not a function of γ but of its time derivative, the shear rate.
Newton’s law states that the ideal liquid resists shear, whereby σ is linear in the shear
rate γ̇. The quantity measuring this resistance is the viscosity η (Eq. 2.5) in units of
Pascal seconds, Pas. Examples for ideal Newtonian liquids are fluids of low molecular
weight molecules, for example water (η = 0.89 mPas, Weast 1976), organic solvents (e.g.
tetrahydrofuran, 0.47 mPas, Hayduk et al. 1973) or biological oils, which are triglycerides
of fatty acids (palm oil ~77 mPas, Chempro). Viscosities are temperature dependent as
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well, again T = 25◦C for the stated values.

σ = ηγ̇ (2.5)

2.1.1 The Maxwell model

Complex fluids behave neither like Hookean solids nor like Newtonian liquids for a wide
range of concentrations and/or molecular weights, but show an intricate combination of
both elastic and viscous effects. The simplest way of incorporating elastic effects for a fluid
is a serial combination of a Hookean solid with a Newtonian liquid, introduced by Maxwell.
A schematic for the Maxwell model is depicted in Fig. 2.2, where the spring is Hookean
and the dashpot is Newtonian.

G

η 

Figure 2.2: Simplest model that incorporates elastic effects for a fluid: a serial combination of a Hookean
solid with a Newtonian liquid, known as the Maxwell model.

The differential equation for this model can be set up by considering that the stress σ in
the spring (indexed with an s) and the dashpot (indexed with a d) are equal, and the sum
of the individual strains equals the total strain. Furthermore, the sum of the individual
shear rates equals the overall shear rate.

σs = σd (2.6)

γt = γs + γd (2.7)

γ̇t = γ̇s + γ̇d (2.8)

Using Hooke’s and Newton’s laws, γ̇s can be replaced by σ̇/G and γ̇d by σ/η. Inserting
these expressions into Eq. 2.8 leads to a first order differential Eq. 2.10, where a relaxation
time λ = η/G has been introduced.
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γ̇t = σ̇/G+ σ/η (2.9)

σ̇ = Gγ̇t − σ/λ (2.10)

The Maxwell model predicts an exponential start-up behavior (Eq. 2.11) for an experiment
in which a constant γ̇ is applied at t = 0 due to the elastic contribution of the spring. The
start-up behavior is depicted in Fig. 2.3 for G = 10 Pa and λ = 1 s at γ̇ = 0.3, 1 and 3
s−1. After some time, that depends on λ = η/G a steady state is reached. In the steady
state the material flows with a stress that is set by the viscosity according to Newton’s law
σ = ηγ̇ as shown in the inset of Fig. 2.3.

σ(t) = Gλ(1− exp(−t/λ)) (2.11)

0 2 4 6 80
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Figure 2.3: Start-up behavior of the Maxwell model for G = 10 Pa and λ = 1 s at γ̇ = 0.3, 1 and 3 s−1.
The steady state stress σss after start-up (open symbols) still follows Newton’s law as shown in the inset.

2.1.2 Shear rate dependent viscosity

The steady shear viscosities of many complex materials, in contrast to the assumptions of the
Maxwell model (Fig. 2.3), are shear rate dependent due to microstructural rearrangements,
orientation effects and, for polymeric systems, chain stretching. Possible shear rate
dependencies are depicted in Fig. 2.4 as σ vs γ̇ and η vs γ̇ plots. They include shear



CHAPTER 2. SHEAR RHEOLOGY 18

thinning (η decreases with increasing γ̇), shear thickening (η increases with increasing γ̇)
as well as the appearance of a high shear rate Newtonian range. In practicem, the most
commonly observed dependency is shear thinning, which is prominent for suspensions,
emulsions, polymer melts and concentrated polymer solutions, surfactant solutions and
many other complex fluids. Due to the complexity of these systems it has not been possible
to develop a general microstructural theory to predict shear thinning. Therefore, a variety
of empirical functions are used to parametrize experimental results. A simple function
to describe shear thinning and shear thickening is given, for example, by the Ostwald-de
Waele model (Ostwald 1925), also known as power law model σ = Kγ̇c. Shear thinning is
captured for c < 1, shear thickening for c > 1. Note that since c does not have to be an
integer, the units of the consistency K have to be [s1−c]. Models that include a high shear
plateau viscosity η∞ are for example the Cross model (Cross 1968) or the Carreau-Yasuda
model (Eq. 2.12, Yasuda et al. 1981). The exact shape of the curve in the transition region
from η0 to η∞ in the Carreau-Yasuda model is determined by the exponents a and c. The
shear rate at which this transition occurs is set by a relaxation time λ. Additionally, the
Bingham (Eq. 2.13) and the Herschel-Bulkley model (Eq. 2.14) are shown in Fig. 2.4,
which are discussed in the next section.

(f)

(a)

(f)

(e)

(d)

(c)

lo
g 

log 

 (a) Newtonian
 (b) shear thinning
 (c) shear thickening
 (d) Bingham
 (e) Herschel-Bulkley
 (f) Carreau-Yasuda

(b)

(a)

(e)

(d)

(c)

(b)

lo
g 

log 

Figure 2.4: Possible shear rate dependencies in steady shear experiments in comparison to Newtonian
behavior (a), shown as flow curves (left panel, σ vs γ̇) and viscosity curves (right panel, η vs γ̇) : shear
thinning (b) and shear thickening (c) according to a power law, σ = Kγ̇c; yield stress models: Bingham
(d), Eq. 2.13, Hershel-Bulkley (e), Eq. 2.14); (f) occurence of zero shear and high shear viscosity plateaus
(e.g. Carreau-Yasuda model, Eq. 2.12).
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σCY (γ̇) = γ̇
(
η∞ + (η0 − η∞)[1 + (λγ̇)a]

c−1
a

)
(2.12)

σB(γ̇) = σBc + ηγ̇ (2.13)

σHB(γ̇) = σHBc + ηγ̇c (2.14)

2.1.3 Yielding

Especially for high volume fraction dispersions and gelled systems in stress controlled steady
shear experiments it has been observed that below a certain stress the samples do not flow
but instead behave like a solid. Above this threshold stress, flow is possible that can be
Newtonian or non-Newtonian, that is displaying a shear rate dependent viscosity. The
solid to liquid transition is termed yielding and the critical stress at which it occurs, defines
the yield stress σc. Phenomenological models that include a yield stress are for example
the Bingham model (Eq. 2.13) and the Herschel-Bulkley model (Eq. 2.14, Herschel and
Bulkley 1926). In the Bingham model the flow after yielding is Newtonian (Bingham 1916),
whereas in the Herschel-Bulkley model a power law behavior similar to the Ostwald-de
Waele model is assumed for the flowing portion.

2.1.4 Small Amplitude Oscillatory Shear (SAOS)

Relaxation times as introduced in the Maxwell model in Section 2.1.1 can be conveniently
probed by an oscillatory experiment, where the sample is subjected to a sinusoidal strain
input γ(t) = γ0 sin(ω1t) with a strain amplitude γ0 at an angular frequency ω. In this time
dependent flow, a material’s stress response is an oscillating function σ(t) = σ0 sin(ω1t+ δ)
with the amplitude σ0 and a phase angle δ relative to the input γ(t) as shown in Fig. 2.5.
In experiments this linearity is only valid for sufficiently small strain amplitudes, which
are material dependent. The solution of the Maxwell model for small amplitude oscillatory
shear flow can be described by either shear modulus and viscosity or the fundamental
frequency moduli of the stress wave, the storage modulus G′ and the loss modulus G′′ that
are defined in Eqs. 2.15 and 2.16 for any periodic signal. The storage modulus, G′, is the
real component as it produces stress in phase with the input γ, representing an ideal solid.
The loss modulus, G′′, is the imaginary component as it gives rise to a stress signal in
phase with the shear rate γ̇(t), therefore phase shifted by 90◦ to the strain γ(t). The loss
modulus then characterizes the viscous contribution in the viscoelastic material.
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G′ = σ0
γ0

cos δ (2.15)

G′′ = σ0
γ0

sin δ (2.16)

 

g, g
  [a

.u.
]

t  [ a . u . ]

 g
 g
 s

p h a s e
a n g l e  d

 

s [
a.u

.]
Figure 2.5: Strain excitation γ(t), its derivative the shear rate γ̇(t) and the stress response of the Maxwell
element σ(t) under oscillatory shear.

Solving the Maxwell model yields explicit expressions for G′ and G′′ as a function of G,
λ and ω (Eqs. 2.17 and 2.18, Morrison 2001). Their frequency dependence is plotted in
Fig. 2.6. For low ω, viscous behavior dominates, G′′ > G′, power law exponents of 1 and
2 for G′′ and G′ are the limits as ω approaches zero. At ωλ = 1 the storage and loss
moduli are equal. For higher frequencies, elastic behavior dominates, evident in G′ > G′′.
Furthermore, G′ saturates whereas G′′ declines proportional to ω−1. Together G′ and G′′

result in the complex modulus G∗ = G′ + iG′′.

G′ = G
λ2ω2

1 + λ2ω2 (2.17)

G′′ = G
λω

1 + λ2ω2 (2.18)

The Maxwell model is a linear model in a sense that the stress amplitude of the signal



CHAPTER 2. SHEAR RHEOLOGY 21

1 0 - 2 1 0 - 1 1 0 0 1 0 1 1 0 21 0 - 5

1 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

1 0 1

∝ w - 1

∝ w 1

 
G',

 G
'' [

Pa
]

w  [ r a d / s ]

  G '
  G ' '

∝ w 2

GG / 2

w l = 1

Figure 2.6: Angular frequency dependence of G′ and G′′ for the Maxwell model according to Eqs. 2.17
and 2.18, G = 1 Pa and λ = 1 s. The cross-over of storage and loss modulus, G′ = G′′ = G/2 is at ωλ=1
and the high frequency limit for G′ is G.

is a linear function of the strain amplitude. Therefore, G′ and G′′ are independent of γ0.
Additionally, the Maxwell model is the mechanical analogon to the resistor-capacitor circuit
in electrodynamics where the resistor is the analogon of the viscosity and the capacitor is
the analogon of the spring. In fact the formalism used in electrodynamics inspired Andrew
Gemant (Gemant 1935; Bird and Giacomin 2012) to define the complex viscosity η∗ which
is related to the complex modulus G∗ as in Eq. 2.19.

iη∗ = η′ − iη′′ = G∗/ω (2.19)

η′ = G′′/ω = Gλ
1

1 + λ2ω2 (2.20)

η′′ = G′/ω = Gλ
λω

1 + λ2ω2 (2.21)

Note that Gemant initially defined the complex viscosity using a slightly more complicated
model, consisting of a dashpot in series with a parallel set-up of a second dashpot and a
spring, which became known as the Jeffreys model. Therefore, his complex viscosity has a
different frequency dependence than the one of the Maxwell model.
The formalism established so far defines a complex material function G∗(ω) that describes
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the linear response. It will form the basis for the modeling approach presented in chapter
5, where the Maxwell model is extended in order to describe nonlinear effects in the stress
response σ(t). These nonlinearities manifest in γ0 dependencies of G′ and G′′ and deviations
from the pure sinusoidal form.
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2.2 Large Amplitude Oscillatory Shear (LAOS)

If the strain amplitude γ0 exceeds a material and frequency dependent limit, deviations from
the simple linear behavior described in Section 2.1.4 occur. This is the Large Amplitude
Oscillatory Shear (LAOS) experiment. The rheological response becomes nonlinear in
the sense that the stress amplitude σ0 is not linear in γ0. Additionally, the wave form
cannot be described by a single sinusoidal wave. The amount of nonlinearity can be
conveniently analyzed using the meanwhile well established Fourier-Transform-Rheology
protocols (Wilhelm 2002; Hyun et al. 2011). Furthermore, many alternative methods have
emerged which are presented in Section 2.2.2.

2.2.1 Fourier transform analysis in LAOS

Fundamentals

An example of a nonlinear but still periodic stress wave that results from a strain controlled
LAOS experiment is shown in Fig. 2.7 (a). It can be described as a superposition of the
angular frequency of excitation ω1 and its higher harmonics nω1.
To obtain information on the higher harmonic content, a Fourier transform according to
Eq. 2.22 is performed, which results in a complex spectrum S∗(ω). The complex spectrum
consists of either real <(ω) and imaginary spectrum =(ω) or intensity I(ω) (Eq. 2.23)
and phase spectrum δ(ω) (Eq. 2.24). For technical aspects of discrete Fourier transforms,
the reader is referenced to work of Wilhelm et al. (1999) and Ewoldt (2013). The two
important parameters of discretization are the sampling rate ts and the acquisition time
tAQ (total length of the signal). Their product determines the point number in the discrete
signal, the complex spectrum then has half this point number. Decreasing ts allows the
detection of increasing number of higher harmonics, nmax = 1

2ts . Increasing tAQ leads to a
higher frequency resolution in the spectra, ∆f = 1/tAQ. For example, sampling 10 cycles
at ω/2π = f = 1 Hz with 200 points per cycle (ts = 0.005 s) means tAQ = 10 s, and a
maximum detectable harmonic of 100 with ∆f = 0.1 s−1. A Fourier transform is defined
as follows:

S∗(ω) =
∫ ∞
−∞

σ(t)e−iωtdt = <(ω) + i=(ω) = I(ω)eiδ(ω) (2.22)

I(ω) = [<(ω)2 + =(ω)2]
1
2 (2.23)

δ(ω) = arctan
(=(ω)
<(ω)

)
(2.24)

After Fourier analysis, the nonlinear shear stress can be expressed by Eq. 2.25 using the
intensities In and phases δn of the integer numbered harmonics (Wilhelm 2002; Dusschoten
and Wilhelm 2001; Hyun and Wilhelm 2009). In and δn are taken from the intensity and
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phase spectra, I(ω) and δ(ω) (Eqs. 2.23 and 2.24), at integer multiples of the applied
fundamental frequency ω1:

σ(t) =
∑
n∈N

In sin(nω1t+ δn) (2.25)

In = I(nω1) (2.26)

δn = δ(nω1) (2.27)

Figure 2.7 (b) shows the normalized intensity spectrum of the respective stress signal in
panel (a). For a symmetrical flow response, the signal contains only odd harmonics (Pearson
and Rochefort 1982; Wilhelm et al. 1999), but even harmonics can appear if the symmetry
is broken by an eccentricity of the measuring geometry or if the sample’s structure is
anisotropic (Sagis et al. 2001). Other sources for the occurrence of even harmonics can
be stick-slip artifacts (Klein et al. 2007) or certain combinations of elasticity and shear
thinning (Atalik and Keunings 2004).
Using trigonometric identities, Eq. 2.25 can be rewritten as Eq. 2.28 with In cos δn/γ0 = G′n

and In sin δn/γ0 = G′′n giving the familiar storage and loss modulus for n = 1 (Eq. 2.29)
and the higher order terms for n > 1 that account for the deviation from pure sinusoidal
response. In Eq. 2.29, G′n and G′n are γ0 dependent. According to Pearson and Rochefort
(1982), this γ0-dependence can be approximated by a power series resulting in a double
series description (Eq. 2.30), where m refers to the γ0 power and n to the harmonic
number.

σ(t) =
∑
n

In cos δn sin(nω1t) + In sin δn cos(nω1t) (2.28)

σ(t) =
∑
n

γ0G
′
n sin(nω1t) + γ0G

′′
n cos(nω1t) (2.29)

σ(t) =
∑
m,odd

m∑
n,odd

γm0
[
G′mn(ω1) sin(nω1t) +G′′mn(ω1) cos(nω1t)

]
(2.30)

In/1 = In
I1

=

√
G′2n +G′′2n√
G
′2
1 +G

′′2
1

=

√
(∑
m
γm0 G

′
mn)2 + (∑

m
γm0 G

′′
mn)2√

(∑
m
γm0 G

′
m1)2 + (∑

m
γm0 G

′′
m1)2

(2.31)

Usually for reasons of higher reproducibility and to compare different samples of varying
moduli, the intensities of the higher harmonics are normalized to the intensity of the
fundamental wave (Eq. 2.31). In the experimental chapters of the thesis, results of γ0-
dependent measurements will be usually compared using the storage and loss moduli G′1
and G′′1, where the index 1 will be dropped because higher harmonics will be compared on
the basis of In/1. This is shown in Fig. 2.7 (c). For increasing strain amplitude γ0, the
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transition from linear to nonlinear behavior can be followed by either a decrease of the
moduli G′ and G′′ or by the emergence of higher harmonic intensities. One advantage of
analyzing the higher harmonic content is the dynamic range: When the moduli for example
change by only 10%, in the same strain amplitude range (indicated by arrows in Fig. 2.7
(c)), I3/1 increases by a factor of over 300.
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Figure 2.7: Schematic depiction of the procedure for conducting LAOS experiments and analysis using
FT-rheology. (a) Application of sinusoidal strain (and shear rate) and measurement of shear stress response
in the time domain. (b) Normalized frequency spectra after the Fourier transformation of the shear stress
exhibit the fundamental peak at the angular frequency ω. Higher harmonics In/1 with n being a positive
integer are detected for a periodic nonlinear shear stress wave. (c) By variation of γ0 the transition from
linear to nonlinear mechanical behavior can be observed in the increase of In/1 or the change of the storage
and loss moduli from their respective plateau values.
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A simple argument for the occurrence of only odd harmonics in the ideal case (symmetric
flow, no shear banding, no stick-slip) can be made by assuming a viscosity that is nonlinear
in the shear rate, as shown by Wilhelm et al. (2000), where the authors used a polynomial
expansion for the viscosity function (Eq. 2.32). They concluded that the absolute intensity
of a higher harmonic In ought to scale with the nth power of the strain amplitude for small
enough deviation from the linear regime, as shown by Eq. 2.34. Therefore, a normalized
intensity is expected to scale as In/1 ∝ γn−1

0 in the transition region between linear and
nonlinear regime (Fig 2.7 (c)).

η(γ, t) = η∗0 + a∗γ̇2 + b∗γ̇4 + · · · (2.32)

γ̇ = dγ
dt = d(γ0 · eiωt)

dt = iωγ0 · eiωt (2.33)

σ(γ, t) = (η0 + a∗ · i2ω2γ2
0e
i2ωt + b∗ · i4ω4γ4

0e
i4ωt + · · · )iωγ0e

iωt

= η0 · iωγ0︸ ︷︷ ︸
I1

eiωt − a∗ · iω3γ3
0︸ ︷︷ ︸

I3

ei3ωt + b∗ · iω5γ5
0︸ ︷︷ ︸

I5

ei5ωt + · · · (2.34)

It is worth noting that the description of a nonlinear viscosity using Taylor expansions has
an analogon in nonlinear optics (Boyd 2008), where the polarization of a molecule P (t) in
an oscillating electrical field E(t) can be represented by the product of the permittivity of
free space ε0, the electrical field E(t) = E0 sin(ωt) and the nonlinear susceptibility χ (Eq.
2.35). Therefore, it is not surprising that dielectric spectroscopy has also been extended to
the nonlinear range (Schiener et al. 1996; Bauer et al. 2013; Bauer and Loidl 2015).

P (t) = ε0χ(E(t))E(t) (2.35)

= ε0
[
χ1E(t) + χ2E

2(t) + χ3E
3(t) + ...

]
(2.36)

The scaling behavior for the mechanical higher harmonics has been verified experimentally
by Hyun and Wilhelm (2009) and Reinheimer et al. (2011). Subsequently, for every
harmonic an intrinsic nonlinear parameter nQ(γ0, ω) was introduced, together with the
intrinsic nonlinearity at low strain amplitude, nQ0(ω). Through this reduction a single,
only frequency dependent, quantity for every harmonic was obtained (Eq. 2.37):

nQ(γ0, ω) =
In/1

γn−1
0

with nQ0(ω) = lim
γ0→0

nQ(ω) (2.37)

nQ0(ω) can be used to infer the inherent nonlinear material properties of a sample as the
trivial scaling In/1 ∝ γn−1

0 is eliminated. The intrinsic nonlinearity parameter 3Q, that is
derived from the third harmonic, has been shown to be useful in evaluating the topology
of polymer melts (Hyun and Wilhelm 2009), in investigating the droplet size distribution
of emulsions (Reinheimer et al. 2011; Reinheimer et al. 2012) and has also been evaluated
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for the Pom-Pom model (Hyun et al. 2013; Hoyle et al. 2014).
In first approximation, only the first nonlinear term is considered when using the FT
framework (Hyun and Wilhelm 2009; Wagner et al. 2011; Merger and Wilhelm 2014). In
this case, n equals three and 3Q0 is written as Q0. This nomenclature will be adopted
for the rest of the thesis. Even higher harmonics (fifth, seventh, ...) increase in a similar
fashion to I3/1, albeit with different scaling exponents, but have overall smaller intensities.
Since the harmonic intensities are not increasing independently of each other, only the
third harmonic will be used as a representative quantity for the nonlinearity.

3Q(γ0, ω) =
I3/1
γ2

0
with lim

γ0→0
3Q(ω) = Q0(ω) (2.38)

The intrinsic concept implies that in principle no linear viscoelastic range (LVR) exists,
since at any combination of γ0 and ω finite values of higher harmonic intensities exist.
Nevertheless, it is useful to define a threshold below which contributions In/1 can be
neglected and the response is treated as linear. The choice is somewhat arbitrary and
ultimately up to the user of the method (Ewoldt and Bharadwaj 2013) but the current
experimental detection limit for the most intensive higher harmonic, Imin

3/1 = 10−4 − 10−5

(Wilhelm et al. 2012), is a reasonable choice. In practice oftentimes the end of LVR is
taken to be at the strain amplitude where the moduli G′ and G′′ deviate more than 10%
from their plateau values (Mezger 2006).

Overview of nonlinear shear rheology

Nonlinear shear rheology, performed in steady shear or in oscillatory shear (Dealy and
Larson 2006; Morrison 2001; Macosko 1994), can be used to probe different time scales
of a material’s mechanical behavior. Figure 2.8 shows an overview of six characteristic
cases where the complexity of the rheological response increases due to increasing nonlinear
effects.
Case (a) is the standard small amplitude oscillatory shear experiment, where the amplitude
is sufficiently small, therefore no significant structural changes can be induced and only
an equilibrium structure is probed. This results in linear behavior, meaning the stress
amplitude is a linear function of the strain amplitude. Furthermore, the stress amplitude
is constant in time.
In the nonlinear steady shear experiment (case (b)), sufficiently high shear rates lead to
nonlinear behavior: the viscosity η becomes a function of the shear rate γ̇. The shear
rate dependency is captured by models such as the Carreau-Model (a special case of the
Carreau-Yasuda model with η∞ = 0 and a = 2, Section 2.1.2). Although the measurement
is nonlinear, it is still time stationary, as every point in the curve represents a steady state
value of η at the specific γ̇.
LAOS experiments probe nonlinear behavior at a certain angular frequency ω (case (c)).
The structural changes responsible for the nonlinear behavior take place on roughly the
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time scale as the inverse of ω, therefore the structure follows the strain excitation. An
example for such a structural change is the deformation of the droplet surface in emulsions
(Reinheimer et al. 2011; Reinheimer et al. 2012). The nonlinear behavior is quantified by
higher harmonic intensities, which stay constant over time, since no irreversible change of
the structure occur.
If additional shear induced modification of the structure (often accompanied by a change of
the stress amplitude) occurs on a time scale much longer than the length of an oscillation,
this results in a time dependence of the measured harmonic intensities, as indicated in Fig.
2.8 (d). The harmonic peaks have been shifted in ω for clarity. Such long time structure
modification can be monitored by measuring harmonic intensities as a function of time,
as has been done for the orientation of block-co-polymer domains (Langela et al. 2002;
Oelschlaeger et al. 2007; Meins et al. 2012).
Such large scale structural changes can be much faster for colloidal systems, where
thixotropy, is commonly observed (Mewis and Wagner 2012; Mewis and Wagner 2009).
Thixotropy, is defined as a continuous decrease of the viscosity during flow, and a subse-
quent recovery during rest. In contrast to start-up behavior of shear thinning samples, in
thixotropic systems no steady state of the viscosity can be reached even after long times. If
the characteristic time of this change τc approaches the duration of one oscillation cycle Ta,
the peaks in the intensity spectra broaden (case (e)) and the S/N decreases. Quantification
of the peak broadening can then provide information about the rate of the structural
change.
The last case (f) illustrates a chaotic material response in spectral form. If the excitation
is much faster than the material’s ability to respond, the stress signal is random and
not correlated to the excitation anymore. In this case no distinct peaks in the spectrum
are observable, instead the intensity decreases inversely proportional to the frequency
In,1 ∝ 1/ω. Investigation of nonlinear behavior by LAOS experiments is not possible at
such extreme conditions.
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Figure 2.8: Overview of shear rheology tests in steady shear and oscillatory shear. (a) SAOS experiment,
(b) nonlinear steady shear experiments, (c) LAOS experiment, (d) LAOS experiment with slow shear
induced changes in the structure, (e) LAOS experiment with fast shear induced changes in the structure,
(f) no correlation between strain input and stress output signals. τc is the characteristic time of the shear
induced structural change, Ta is the length of an oscillation period.

Pipkin space

The different regimes of material behavior discussed so far, i.e. linear and nonlinear regime,
oscillatory and steady shear, can be summarized in a so called Pipkin diagram (Pipkin 1972).
When using oscillatory shear one can vary the strain amplitude γ0 and angular frequency
ω independently and therefore investigate different regions of a materials behavior in the
Pipkin space as shown in Fig. 2.9. At this point it is useful to reiterate the definitions of
two commonly used dimensionless numbers to describe flow, the Deborah number De = λω

and the Weissenberg number Wi = λωγ0 = λγ̇.
The Deborah number is defined as the ratio of a characteristic relaxation time of the
material λ and a characteristic time of observation τo, which is inverse of the angular
frequency τo = 1/ω for oscillatory shear. It measures to what degree elastic effects influence
the overall mechanical response. For example in the Maxwell model, if De < 1 then
viscous behavior dominates, G′′ > G′, whereas for De > 1, the response is predominantly
elastic, G′ > G′′. The Weissenberg number, is the ratio of λ and a characteristic time
τd of the deformation. τd is the inverse of the shear rate τd = 1/γ̇ for steady shear or
τd = 1/γ̇0 = 1/(ωγ0) for oscillatory shear (Dealy 2010). The Weissenberg number can be
seen as a dimensionless shear rate that indicates the importance of nonlinear behavior.
In Fig. 2.9 at sufficiently low De a viscoelastic material has enough time to relax and
behaves like a Newtonian liquid for small Wi. Increasing Wi at constant De means
applying higher shear rates that result in nonlinear effects such as shear thinning, which
can be modeled by a generalized Newtonian fluid model (Macosko 1994). If De is varied at
small Wi the experiment represents the common frequency sweep in the linear visco-elastic
region (LVR) with G′ and G′′ being only dependent on the frequency. The test the gives
information about the balance of viscous and elastic effects. Increasing Wi at higher
(but constant) De drives the material first into the instrinsic LAOS region (where the
scaling laws of Eq. 2.37 for the departure from linearity apply) and finally even beyond.
Thus a Large Amplitude Oscillatory Shear experiment is not an additional, different test
among steady shear and the classic dynamic measurements in the LVR, but it is a logical
combination for the two tests and covers smoothly the transition between the limiting
cases.
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Figure 2.9: Schematic map of nonlinear rheology as a function of angular frequency ω and strain amplitude
γ0, known as the Pipkin diagramm (reproduced after Pipkin (1972) and Ewoldt and Bharadwaj (2013)).
Simple Newtonian and generalized Newtonian fluid behavior (GNF) are observed for small ω. For higher
ω linear viscoelastic (LVR) properties are probed, which become nonlinear with increasing Wi = λωγ0
(LAOS). For intermediate Wi an intrinsic LAOS regime can be defined. In this range scaling laws (Eq.
2.37) for the departure from linearity can be applied.
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2.2.2 Alternative analysis methods for LAOS

Plenty of other methods besides the formalism using Fourier intensities to quantify and to
interpret the shear stress in LAOS experiments or model predictions have been proposed.
They are summarized in Fig. 2.10. The starting point in this diagram is the measured stress
signal σ(t) on the left. At small enough strain amplitudes (Small Amplitude Oscillatory
Shear, SAOS), the stress wave is a pure sine with a phase shift relative to the input
and plotting σ(t) vs γ(t) or vs γ̇(t) gives Lissajous figures that are ellipses (upper left
corner). Storage and loss modulus, G′ and G′′, are sufficient to completely describe the
signal. Increasing γ0 leads to the occurrence of nonlinearities (LAOS). The nonlinearity is
quantified by a Fourier transform, where an intensity and a phase spectrum is generated
for each stress wave. The nonlinear analysis frameworks will be introduced clockwise.
Nonlinear waveforms can be analyzed directly by a geometric interpretation following Cho
et al. (2005), where σ(t) is decomposed into an elastic contribution, σ′(t), and a viscous
contribution, σ′′(t). They are drawn as black lines going through the origin in the upper
central Lissajous curves. By describing σ′(t) and σ′′(t) as a series of Chebishev polynomials
(Ewoldt et al. 2008; Ewoldt and Bharadwaj 2013), shown in the upper right corner, many
wave forms for increasing γ0 can be compared with a relatively small amount of quantities,
the elastic and viscous Chebishev coefficients.
Furthermore, the waveform can be interpreted as a sequence of physical processes (SPP) of
elastic straining, yielding and viscous or plastic flow (Rogers et al. 2011b). The extension
of the SPP to time dependent moduli R′(t) and R′′(t) is based on a 3D interpretation of
the σ(t) vs γ(t) vs γ̇(t) curves as shown in the lower right corner. It will be introduced in
detail in Section 2.2.4.
The majority of LAOS studies so far have compared nonlinear data using the intensities
and phases of higher harmonics obtained directly from the Fourier transform (Section 2.2.1)
as depicted in the lower central portion of the diagram.
Anharmonic moduli can be used to contrast fundamental frequency behavior to all higher
harmonic content (Poulos et al. 2013; Laurati et al. 2014). They are obtained by subtracting
the fundamental wave σ1(t) from the nonlinear wave σ(t) and analyzing the resulting
anharmonic stress wave σanh(t) = σ(t) − σ1(t) at the peak strain and at zero strain,
γ = γ0 and γ = 0. The anharmonic storage and loss modulus are then defined as
G′anh = σanh(γ = γ0)/γ0 and G′′anh = σanh(γ = 0)/γ0, respectively.
Alternatively, a superposition of the sine wave with other characteristic functions, such as
rectangle, triangle and sawtooth waves can be used to describe the nonlinear stress wave
in LAOS experiments (Klein et al. 2007). The additional, inherently nonlinear, functions
account for effects such as shear thinning (square), shear thickening (triangle) and stick-slip
artifacts (sawtooth). The individual contributions of rectangle, triangle and sawtooth
waves are determined in Fourier space by matching intensity and phase spectra of the
characteristic functions to experimentally determined spectra.
Although all these possible frameworks seem to be quite different from the basic harmonic
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analysis, they mostly rely on the Fourier transform for direct calculation of their own
nonlinear parameters or at least use the FT as comb filter to smooth experimental data
and reduce noise. This is indicated by additional arrows going from the spectrum in the
middle of the diagram to the individual frameworks. Already in SAOS the original stress
signal can be reconstructed from G′ and G′′. For the anharmonic moduli the fundamental
wave σ1(t) is calculated similarly. σ′(t) and σ′′(t) in the stress decomposition method as
well as the Chebishev coefficients can be computed from higher harmonic moduli G′n and
G′′n according to Eqs. 2.39 and 2.40, respectively (Cho et al. 2005; Ewoldt et al. 2008).

σ′(t) = σ(γ, γ̇)− σ(−γ, γ̇)
2 = γ0

∑
n,odd

G′n sin(nωt) (2.39)

σ′′(t) = σ(γ, γ̇)− σ(γ,−γ̇)
2 = γ0

∑
n,odd

G′′n cos(nωt)

en = G′n(−1)(n−1)/2 (2.40)

vn = G′′n
ω

For the sequence of physical processes framework (SPP), which uses local measures in the
Lissajous curves, the stress data is usually reconstructed from the spectra using only odd
harmonic intensities and phases (Rogers et al. 2011b). This effectively removes random
noise. In the generalized version of the SPP, which uses the time dependent moduli R′(t)
and R′′(t), the essential quantity, the binomial vector B(t), is also available from G′n and
G′′n (see Eq. 2.41).
In conclusion, there is hardly an analysis framework that does not employ FT as part of its
data treatment procedure. As FT of any signal is a linear and invertible operation it has
the great advantage that most of the quantities of those frameworks can be recalculated
into the others through the Fourier coefficients. The two approaches known as ’sequence of
physical processes’ developed by Rogers et al. (2011b) are discussed in detail in the next
section, due to their relevance in Chapter 7.
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Figure 2.10: Overview of the most common LAOS analysis methods. Starting point is the measured
stress signal σ(t). From there, the possibilities are Fourier transform, geometric stress decomposition,
Chebishev polynomial analysis, the sequence of physical processes (SPP), the anharmonic moduli analysis
and decomposition to characteristic functions. After the FT, higher harmonic intensities and phases can be
analyzed for varying strain amplitudes and angular frequencies. Based on the stress decomposition method,
Chebishev analysis can be performed, although the Chebishev coefficients are also directly computable
from the Fourier coefficients. As an extension of the SPP framework, time dependent moduli R′(t) and
R′′(t) can be analyzed, which are also accessible from the Fourier coefficients (see Section 2.2.4). The
anharmonic moduli analysis and the description using characteristic function rely on the FT as well. In the
former case the fundamental wave σ1 is calculated from G′ and G′′, in the latter case the intensities of the
characteristic function are optimized such that they reproduce the experimental Fourier spectra. Therefore,
all frameworks shown here rely on FT to either calculate their own parameters from Fourier coefficients
directly or use it as a comb filter when waveform data is reconstructed to reduce experimental noise.

2.2.3 Sequence of physical processes (SPP)

A conceptually different approach to analyze temporal stress signals obtained from LAOS
experiments that will be used for the investigation of the yielding behavior of a colloidal
gel (see Chapter 7), is the sequence of physical processes as it has been established by
Rogers et al. (2011b). Instead of describing the stress wave as an infinite series of basis
functions with their respective intensities and phases, here Lissajous figures, i.e. stress vs.
strain or stress vs. strain rate curves, are directly interpreted as shown in Fig. 2.11. That
means the analysis moves from the time/frequency domain to the deformation/shear rate
domain. Specific parts of the Lissajous curve are associated with certain physical processes,
that follow a sequence that is repeated twice per oscillation cycle. The SPP approach is
especially useful to describe waveforms of yield stress fluids under LAOS, as for example
glassy suspensions (Rogers et al. 2011b; Vaart et al. 2013) or colloidal gels (Kim, Merger,
et al. 2014). It has also been applied to constitutive models such as the Bingham and
the Giesekus model (Rogers and Lettinga 2012). In all these studies the different physical
processes are elastic straining, yielding, plastic and/or viscous flow. These processes can be
quantified with the following parameters that are extracted from elastic Lissajous (stress
vs. strain) plots, see Fig. 2.11. The sequence starts at the point of maximum strain and
flow reversal (circle symbol) and progresses clockwise in the Lissajous loop:

• The cage modulus or residual modulus GR = dσ
dγ |σ=0 quantifies the strength of the

residual elasticity that is recovered in every cycle. It approximates the linear region
of the stress strain curve after reversal of flow direction (circle symbol). For small
deformations, that is in the linear viscoelastic regime, GR is equal to the storage
modulus G′.

• The yield stress σc measures the maximum stress that can be stored in the system
before yielding (diamond symbol in Fig 2.11).

• The yield strain γc measures the maximum strain that is accumulated from the
point of flow reversal at γ = −γ0 (circle symbol in Fig 2.11) to the point of yielding
designated by a local maximum in the stress after the linear region (diamond symbol).
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• The instantaneous viscosity at maximum shear rate ηL = σ(t)
γ̇(t) |γ=0 (square symbol)

that characterized the flowing portion of the half-cycle.

Figure 2.11: Elastic Lissajous plot (stress vs strain) for a colloidal gel (33 vol.-% PDMS droplets in an
aqueous continous phase containing 33 vol.-% of bridging polymer and 230 mM sodium dodecyl sulfate) at
ω = 10 rad/s and γ0 = 0.284. Arrows indicate the reading direction for the interpretation according to the
SPP framework. The local waveform parameters GR, γc and σc have been defined by (Rogers et al. 2011b).

When analyzing a set of LAOS experiments, the proposed quantities can be tracked as
a function of increasing γ0 and provide useful insight into the yielding behavior of the
investigated materials. This approach could distinguish clearly between a hard sphere and
a soft sphere suspension and showed that the soft sphere suspension yields more gradually
in comparison to the hard sphere suspension due to the particle softness (Vaart et al. 2013).

2.2.4 Time dependent moduli R′(t) and R′′(t)

The semi-quantitative framework in section 2.2.3 has been extended by Rogers (2012) to a
fully quantitative level. Rogers described the periodic stress signal with two time dependent
modulus functions, R′(t) and R′′(t), which in the LVE correspond to elastic and viscous
behavior measured by the storage and loss modulus (Section 2.1.4). In the nonlinear case
they are allowed to change in magnitude over the duration of the oscillation cycle. To
arrive at R′(t) and R′′(t), one first has to apply the concept of the Frenet-Serret frame
(Frenet 1852; Serret 1851) to the three dimensional loop in a σ vs γ vs γ̇ representation
of the LAOS data for a fixed pair of ω and γ0 as shown in Fig. 2.12. The data can be
represented by a three dimensional vector r(t) = [γ(t) γ̇(t) σ(t)]. At every point in time
a set of three mutually orthogonal vectors can be defined to describe the curvature of the
loop in three dimensions. The tangential vector T(t) traces the movement along the curve
and is defined as T(t) = ṙ(t)/|ṙ(t)|. The normal vector N(t) = Ṫ(t)/|Ṫ(t)| points towards
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the local center of rotation. The binormal vector B(t) is orthogonal to the tangential and
to the normal vector N(t) (B(t) = T(t)×N(t)) and contains information about the elastic
and the viscous response.

s(t) 

g(t)  g(t) 

- g0 

g0 

0 

- s0 

  s0 

0 

0 

g0 

- g0 

Figure 2.12: Nonlinear stress σ(t) vs strain γ(t) vs shear rate γ̇(t) plot with representations of the binormal
vector B(t), the tangential vector T(t) and the normal vector N(t). The three mutually orthogonal and
time dependent vectors define the Frenet-Serret frame (Frenet 1852; Serret 1851).

For analytical models, if r(t) and its higher derivatives ṙ(t) and r̈(t) can be represented by
explicit expressions, then B(t) can be calculated as B(t) = ṙ(t)×r̈(t)

|ṙ(t)×r̈(t)| . For experimental data
or numerical solutions of models r(t) is discrete in time. Then, B(t) has to be approximated
using a Taylor expansion of r(t) by B(t) ≈ 1

dt3 r(t + dt) × [r(t − dt) + [r(t − dt) − r(t +
dt)]× r(t)] +O(dt3).
If the frequency spectrum is known, then B(t) can be easily calculated by Eq. 2.41 from
the series of G′n and G′′n, that have been defined in in Eq. 2.29 in section 2.2.

B(t) = γ
∑
n,odd

[
{n2G′n sinωt− nG′′n cosωt} sinnωt+ {n2G′′n sinωt+ nG′n cosωt} cosnωt

]
+

+ γ̇
∑
n,odd

[
{n2G′n

cosωt
ω

+ nG′′n
sinωt
ω
} sinnωt+ {n2G′′n

cosωt
ω
− nG′n

sinωt
ω
} cosnωt

]
+ σ [−1]

(2.41)

The phase angle δ(t) and the absolute values of the time dependent complex modulus
|G∗(t)| can be calculated from B(t) using Eqs. 2.42 and 2.43. In these equations, Bγ(t) and
Bσ(t) are the strain and stress vector components, respectively, and Bp(t) is the projection
of Bω(t) = [Bγ ωBγ̇ Bσ] onto the γ - γ̇ plane and β is the angle between −B(t) and
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the vector [0 0 1], that points along the σ axis.

cos δ = Bγ(t)
|Bp(t)|

(2.42)

|G∗(t)| = tan β = tan
[
cos−1

(
Bσ(t)
|B(t)|

)]
(2.43)

Finally R′(t) and R′′(t) can be obtained from Eqs. 2.44 and 2.45.

R′(γ0, ω, t) = |G∗(γ0, ω, t)| cos δ (2.44)

R′′(γ0, ω, t) = |G∗(γ0, ω, t)| sin δ (2.45)

The time dependent moduli R′(t) and R′′(t) have been effectively applied in a recent study
on a hyualuronic acid solution. The solution was used as a model system for synovial fluid
in human joints (Zhang and Christopher 2015). The study revealed that under LAOS, in
the yielded state, elastic behavior of the fluid is still present within an oscillation cycle
at times where the strain is close to its maximum γ0, although the overall behavior was
predominantly viscous. The authors proposed that this prevailing intracycle elasticity is
responsible for the shock absorbing properties of the synovial fluid in the joint.
The R′(t) and R′′(t) framework has also recently been extended to the LAOStress experi-
ment, where the excitation is a sinusoidal stress signal and therefore the response r(t) is
defined in the coordinates of σ(t), σ̇(t) and γ̇(t) (Thompson et al. 2015).

2.2.5 Strain dependent LAOS vs stress dependent LAOS

So far only strain input has been considered and the stress response has been analyzed using
different methods, which is often called LAOStrain (Ewoldt 2013). There is of course the
possibility of conducting a stress controlled experiment and analyzing nonlinearities in the
strain response, which in turn is termed LAOStress. A priori, there is no reason to expect
the ratios of harmonics in the shear stress response in LAOStrain to agree with the ratios
of harmonics in the shear strain response in LAOStress. The two experiments give different
results and are therefore complementary (Läuger and Stettin 2010). Currently, literature
on LAOStress is still scarce although a theoretical framework has been laid out (Ewoldt
2013) and first experimental results have been published recently (Läuger and Stettin 2010;
Dimitriou et al. 2013; Bae et al. 2013; Souza Mendes et al. 2014). However, technical
difficulties regarding the excitation using a sinusoidal stress wave have been reported.
Läuger and Stettin (2010) noted that in the LAOStress experiments they conducted the
input stress wave contained up to 1% of relative third harmonic intensity. In contrast
LAOStrain experiments can be performed with a strain excitation that contains I3/1 lower
than 10−5 as will be shown in Chapter 4. Since the analysis frameworks of LAOStrain
are further evolved, more published experimental data for comparison is available and the
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LAOStress excitation is comparatively less accurate, LAOS experiments in this thesis will
be restricted to the LAOStrain kind. Henceforth, all experiments called LAOS will refer to
sinusoidal strain excitation.



Chapter 3

Structure and rheology of the
investigated materials

The range of materials that can be classified as soft matter comprises the following classes
(Gompper et al. 2003; Larson 1999):

• Dispersions (suspensions, emulsions, foams)

• Gels

• Polymer melts

• Polymer solutions

• Surfactant solutions

• Elastomers

• Liquid crystals

• Polyelectrolytes

These materials cannot be described as ideal elastic nor as ideal viscous bodies, they all show
visco-elastic behavior which is caused by their microstructure and how the microstructure
reacts to external mechanical fields. Within this thesis special interest was taken in the
classes ’dispersions’, ’gels’, ’polymer melts’, ’polymer solutions’ and ’surfactant solutions’.
In the following some fundamental textbook knowledge on the systems under investigation
will be reviewed with an emphasis on their structures and the interactions of their con-
stituents. The structure which results from interactions is ultimately responsible for the
viscoelastic properties in the linear as well as the nonlinear regime.

3.1 Suspensions

Suspensions are heterogeneous systems, comprised of solid particles in a liquid medium.
Important quantities characterizing a suspension are particle concentration or volume

40
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fraction, particle size distribution and shape, but also particle surface properties such as
the charge density or the thickness of a stabilizing layer. This multitude of variables makes
suspensions a complex system with various structures: fluid, glassy crystalline and gel-like
states are possible.

Noncolloidal hard sphere suspensions

The most basic model system for real life suspensions is an ensemble of identical spheres of
radius a suspended in a Newtonian medium of viscosity ηs with no other interactions than
repulsion at contact. Structure and mechanical properties then depend on the particle
number density n or rather the volume fraction φ occupied by the particles.

φ = Vparticle
Vsolvent + Vparticle

= 4πa3

3 n (3.1)

The phase diagram of a hard sphere suspension is only a function of the volume fraction φ
as depicted in Fig. 3.1. Below φf = 0.495 the sample is a disordered fluid, for φc < φ < φf

there is a coexistence region of fluid and crystalline phases. Upon further increasing the
volume fraction a fully crystalline sample is expected if enough time for the crystallization
has passed. In practice such high order can be impeded by the slow crystallization kinetics.
Therefore, above φg = 0.58 one often finds a solid disordered state, that is termed the glass
state. The glass state can exist only up to the maximum volume fraction of random close
packing φrcp = 0.638. If even higher volume fractions are to be achieved, crystallization is
necessary, an ideal face centered cubic (fcc) lattice of spheres in direct contact would have
the maximum volume fraction of φfcc = 0.74.

fluid

glass

crystal fcc

ϕc ϕ
g

ϕ
rcp

ϕ
fcc

ϕf

0.495 0.54 0.58 0.638 0.74

    random
close packingtwo 

phase
region

Figure 3.1: Phase diagram of a hard sphere suspension depending on the volume fraction φ. See text for
detailed description.

For polydisperse samples the crystallization can be avoided if the polydispersity of the
particle radius exceeds approximately 12% (Phan et al. 1998) and the phase diagram
simplifies to only one phase transition from the fluid to the glass. Experimental observations
show that at this transition the relative zero shear viscosity ηr diverges, at the same time a
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yield stress emerges and the suspension becomes viscoelastic. All these rheological effects
at the glass transition can be explained theoretically by the mode coupling theory (Fuchs
1995; Kob 2002; Brader et al. 2012; Brader et al. 2010; Siebenbürger et al. 2009). A simple
local picture for the glassy system is that of the observed particle trapped in a cage of its
neighbors as shown in the phase diagram in Fig. 3.1 for the glass. The escape of a particle
from the cage can only happen by collective movement of several particles. The mode
coupling theory will be introduced in more detail in Chapter 6, where its predictions for
LAOS flow will be compared to experimental data measured on a concentrated suspension
of PS/Pnipam particles (for experimental details see Chapter 8).
The relative zero shear viscosity ηr = η(φ)/ηs of a hard sphere suspension as a function of
φ can be described by several relationships depending on the value of φ (Rutgers 1962):

• dilute range (φ < 0.05)

In the dilute range particles do not interact with each other, solving the flow problem
around one particle suffices to describe the viscosity of the system. ηr is linear in
volume fraction as described by Einstein’s law (Einstein 1906; Einstein 1911):

ηr(φ) = 1 + 2.5φ (3.2)

• semidilute range (0.05 < φ < 0.15)

For increasing φ particle interactions cannot be neglected, then Einsteins equation
can be extended by a quadratic term in φ to account for pair interaction:

ηr(φ) = 1 + 2.5φ+ c2φ
2 (3.3)

The second order coefficient c2 incorporates hydrodynamic effects as well as particle
collisions and has been determined to be between 5 and 6 depending on the initial
microstructure (Mewis and Wagner 2012).

• concentrated range (φ > 0.15)

For even higher volume fractions incremental addition of higher order terms in φ is
not useful anymore, instead effective medium approaches are employed to correlate
ηr and φ. A widely known relationship (Eq. 3.4) was proposed by Krieger and
Dougherty (1959) and is depicted in Fig. 3.4. As soon as the volume fraction
approaches the maximum value for a random close packing structure φrcp = 0.64, the
relative viscosity diverges due to the increase of many body interactions.

ηr(φ) =
(

1− φ

φmax

)−2.5φmax

(3.4)



CHAPTER 3. STRUCTURE AND RHEOLOGY 43

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7
1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

 

 

h r

f

 f m a x = 0 . 6 4

Figure 3.2: The relative zero shear viscosity ηr = η0/ηs as a function of the volume fraction according
to Eq. 3.4 by Krieger and Dougherty (1959). The maximum packing fraction is taken to be that of the
random close packing structure φrcp = 0.64.

Brownian suspensions

For submicron sized particles (a < 1 µm), thermal motion of the solvent molecules introduces
an effective force acting on the suspended particles. This leads to Brownian diffusion with
a characteristic time scale of a2/D0. The Einstein-Smoluchowski diffusivity D0 can be
calculated by Eq. 3.5, where kB is the Boltzmann constant and T the temperature (Einstein
1905). Diffusion maintains an equilibrium structure in the suspension given enough time.
In shear experiments the modification of the suspensions structure by the external forces is
contested by Brownian diffusion which results in shear thinning, relaxation behavior and
viscoelasticity (Larson 1999).

D0 = kBT

6πηsa
(3.5)

It is advantageous to introduce the dimensionless shear rate Pe (Eq. 3.6), known as
Péclet number and the reduced stress σred (Eq. 3.7) to compare suspensions of differently
sized particles. Pe is the ratio of advection by the flow, γ̇ measured by to the rate of
diffusion by Brownian motion. The reduced stress is the ratio of the measured stress to the
natural energy scale per volume of a particle, kBT/a3 (Mewis and Wagner 2012). These
dimensionless numbers will be used in Chapter 6, where nonlinear viscoelastic properties
of a suspension of thermoresponsive particles that change their diameter with T will be
measured.

Pe = γ̇

D0/a2 = 6πηsγ̇a3

kBT
(3.6)
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σred = σ

kBT/a3 (3.7)

In the high frequency limit of an oscillatory shear experiment the particles response is
dominated by hydrodynamic forces. Lionberger and Russel (1994) have developed an
expression for the real part of the limiting high frequency viscosity η′r,∞ of hard spheres,
see Eq. 3.8. It is a relative quantity normalized to the solvent viscosity and is therefore
indexed with an r. The function diverges when the volume fraction is approaching φ = 0.64.
The expression can be used to infer φ by measuring η′r,∞.

η′r,∞ = 1 + 1.5φ(1 + φ− 0.189φ2)
1− φ(1 + φ− 0.189φ2) (3.8)

Charged suspensions

Pure hard sphere interactions are difficult to realize in practice. Charges covalently attached
to the suspended particles and solubilized in the dispersant often remain from the synthesis
and are notoriously difficult to remove. One possibility is extensive dialysis (Sirota et al.
1989; Hellweg et al. 2000). Therefore, interactions other than pure hard sphere repulsion
must be considered. These can be of electrostatic or sterical nature.
Electrostatic stabilization is the most common case. Charges of the same sign attached to
the particles form a repulsive layer. Its thickness decreases with increasing ionic strength
ultimately leading to aggregation if the repulsion is screened entirely. The theory of
Derjaguin, Landau, Verwey and Overbeek, which describes the interface as an electrical
double layer, provides reasonable predictions for the dependence of the interaction potential
on the ionic strength (Dörfler 2002; Mewis and Wagner 2012; Isrealachvili 1997).
Steric stabilization can be induced by grafting and/or adsorption of polymers onto the
particle surface. A polymeric shell of sufficient density and molecular weight can prevent
particles from aggregation by an entropic effect: If two particles approach each other, their
polymeric shells start to penetrate each other. The resulting reduction of the conformational
freedom of the individual polymer coils is unfavorable, hence the interaction is repulsive
(Dörfler 2002).
The effects of a stabilizing layer can be qualitatively understood by assuming an effective
radius which is larger than the core radius and consequently calculating an effective volume
fraction φeff. In doing so, mapping of rheological data of stabilized dispersions to data of
hard spheres using φeff can be performed.
Electrostatic repulsion gives an additional contribution to the zero shear viscosity ηr,0
leading to its divergence at smaller nominal values of φ. Steric stabilizing layers contribute
to both, ηr,0 and η′r,∞, due to the increased hydrodynamic drag of the shell.
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3.2 Colloidal gels

3.2.1 Fundamentals of colloidal gels

Colloidal gels are formed from attractive particles that build up a network as depicted in
figure 3.5. Attractive interactions can be realized by screening the electrostatic repulsion
until only van der Waals forces remain (Shao et al. 2013), by addition of a bridging
agent (Kim, Merger, et al. 2014) or by depletion forces (Koumakis and Petekidis 2011).
Sterical stabilization can be removed by changing the solvent quality for the stabilizing
layer, for example by a change of temperature (Helden et al. 1981), and thus lead to
gelation. The interaction is oftentimes modeled by square well potentials (Mewis and
Wagner 2012). described by Eqs. 3.9, where ∆ defines the width of the well. For distances
(r) smaller that the diameter of the spheres 2ar the interaction is hard sphere repulsion,
for 2a < r < 2(a+ ∆) attraction of ε is present, for even larger r no interaction exists.

2a

2Δ

Usq(r)

-ε

2a 2(a +Δ)

2Δ

0
r

Figure 3.3: Square well potential which combines hard sphere repulsion for distances r smaller than 2a
and an attractive interaction for 2a < r < 2(a+ ∆).

U sq(r) =


∞, r < 2a
−ε, 2a < r < 2(a+ ∆)
0, r > 2(a+ ∆)

(3.9)

The rich phase behavior that can be observed in a suspension of interacting spheres is shown
schematically in Fig. 3.4. The upper part, where interactions are repulsive, resembles the
phase diagram of hard spheres shown in Fig. 3.1, whereas the lower part contains additional
phases, the gel and the attractive driven glass. Increasing φ at constant interaction strength
leads to formation of particle clusters that eventually cross a percolation threshold and
build a sample spanning network, which is then called a gel. At very high volume fractions
and attractive interactions also a so-called attractive driven glass (ADG) state exists. The
ADG differs from the repulsive glass (RDG) in the structure: since the particles are sticking
to each other, the cage trapping an observed particle is much tighter. This results in
qualitatively different dynamics as particle movements are more localized (Kaufmann and
Weitz 2006). It has also an effect on the rheological properties, for example ADG systems
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exhibit higher moduli than respective RDG systems (Mewis and Wagner 2012).
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Figure 3.4: Schematic phase diagram for a suspension of interacting spheres, reproduced after Mewis and
Wagner (2012).

In the presence of attractive forces the suspended particles stick to each other and initially
form dimers, trimers and so forth. These early aggregates, called flocs, have a fractal
structure, that means they are self-similar on multiple length scales ranging from the
particle radius a to the radius of gyration of the floc Rg. The radius of gyration is defined
as the averaged particle distance to the center of mass, Rg = 1/N∑N

i=1 |ri − rcm|2, where
ri and rcm are the vectors defining the position of the individual particles and the center
of mass for the floc (Larson 1999).

Figure 3.5: Schematic structure of a fractal floc formed by attractive spheres. If this structure spans the
entire sample, the system is called a gel.

The density distribution of fractal structures can be characterized by relating the number
of particles N with Rg as in Eq. 3.10. The limits for the fractal dimension are 1≤ Df ≤3.
For Df = 1 the aggregates are chainlike, for Df = 3 they are dense spheres (Mewis and
Wagner 2012). Typical values for real systems are for example Df = 1.7 − 1.8 for gold
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particles or Df = 2.0− 2.2 for silica particles (Larson 1999). Gaussian polymer coils have
a fractal dimension of 2 (Beaucage 1996).

N ∝
(
Rg
a

)Df
(3.10)

With increasing φ the flocs eventually become so large that they connect and form a sample
spanning mechanical network, which is called percolation. The percolation concept is also
applied to other physical phenomena such as electrical conductivity of composite materials.
At the percolation point the rheological properties change drastically, in a narrow φ range
the material turns from a liquid to a viscoelastic solid with a yield stress. An important
rheological criterion for determining the critical gel state has been established by Chambon
and Winter (1987): at the liquid-solid transition the linear moduli follow a power law
behavior, G′(ω) ∝ ωn and G′′(ω) ∝ ωn, which originates from a power law distribution of
relaxation times corresponding to a distribution of length scales. The exponent n is between
0.5 and 1, usually close to 0.5 (Mewis and Wagner 2012). Measuring a full frequency
spectrum depending on the floc volume fraction can be difficult in cases where the gelation
process is time dependent. This is the case for gelations induced by a chemical reaction
or by physical adsorption. Therefore, the simple criterion G′ = G′′ measured at a single
frequency is oftentimes preferred instead. This however, is only correct for gels where the
powerlaw exponents for G′(ω) and G′′(ω) are exactly 0.5 (Winter 1987).
The elastic properties of the resulting gels depend in a complicated way on the inter-particle
potential U(r). Nevertheless, some simple scaling relationships can be provided by theory
for the storage modulus G′ and the yield stress σc. Based on mode coupling theory (MCT)
predictions, Eq. 3.11 has been used to scale G′ with the particle radius a, volume fraction
φ and inter particles potential U(r), which enters into the localization length rloc (Chen
and Schweizer 2004). An introduction to MCT will be given in Chapter 6, page 105.

G′a3

kBT
= 0.29φa

2

r2
loc

(3.11)

Within mode coupling theory, rloc is a finite mean-square displacement of the particles at
long times and serves as a structural characteristic of the gel on a smaller length scale
than the previously introduced radius of gyration of the flocs. Larger scale structures are
considered indirectly through modification of rloc (Mewis and Wagner 2012).
The yield stress is assumed to be proportional to the number of particle contacts in the
system and the force required to break the contacts. The breaking force is given by the
maximum of the first derivative of the potential. Therefore, a relation according to Eq.
3.12 can be used to rescale experimental yield stress data for different concentrations and
potentials (Larson 1999).

σc ∝
φ2

a2

(dU
dt

)
max

(3.12)

Structural heterogeneity in colloidal gels can strongly influence the rheological properties,
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for example Wyss et al. (2004) found that heterogeneous gels of attractive silica particles
exhibit much higher elastic and yield properties than homogeneous gels at the same volume
fraction. In Chapter 7, the nonlinear viscoelastic behavior of a heterogeneous gel under
LAOS will be addressed.

3.2.2 Small angle scattering of fractal gel systems

The fractal structure of colloidal gels can be investigated by scattering methods (Mewis
and Wagner 2012). If the primary particles and the agglomerates are on the nanometer
scale, small angle X-ray and neutron scattering are well established methods to provide
information on structural parameters such as the fractal dimension (Teixeira 1988; Bushel
et al. 2002; Bhatia 2005). In Fig. 3.6 the small angle scattering experiment is shown
schematically.

k0 k0

ks
q=k0-ksθ

Figure 3.6: Schematic depiction of the small angle scattering experiment on a fractal arrangement of
spheres.

If the incident beam, described by the vector k0, is scattered by interaction with a particle,
the resulting scattered beam ks has a scattering angle of θ to k0. The difference q = k0−ks
is called scattering wave vector and is connected to θ by q = 2k0 sin(θ/2) = 4π/λ sin(θ/2),
where λ is the wave length. The inverse q−1 represents the length scale which is probed in
the scattering experiment. For crystalline structures, Bragg’s law of diffraction (Eq. 3.13,
Bragg and Bragg 1913) relates the plane distance D of the lattice with the magnitude of
the scattering wave vector q = |q|.

q = n2π
D

or nλ = 2D sin(θ/2) (3.13)

For less ordered structures (fluids, amorphous solids, fractals), Bragg reflexes are not
observed, however the interpretation of q as a measure for the probed length scale can still
be applied. For example values in the range 0.063 nm−1 < q < 0.63 nm−1 correspond to
probed lengths in the range 10 nm < D < 100 nm.
The q dependent scattering intensity I(q) of a system of scatterers with the number density
N can be described as the product of the scattering produced by an individual scatterer,
the form factor P (q), and the scattering due to the arrangement of the particles, the
structure factor S(q) (Eq. 3.14).

S(q) = NP (q)S(q) (3.14)
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For isotropic scattering, the form factor of a sphere of radius a of uniform density ρ is
described by Eq. 3.15, where V is the volume and ρ0 is the density of the dispersant. The
form factors of other simple geometrical objects such as rods or ellipsoids can be found in
Guinier and Fournet (1955).

P (q) = V 2(ρ− ρ0)2[3 sin(qa)− qa cos
(

qa

(qa)3

)
]2 (3.15)

The most challenging part of interpreting scattering curves is the appropriate modeling of
the structure factor S(q). For isotropic systems, S(q) can be written explicitly in terms of
the pair distribution function g(r) (Eq. 3.16).

S(q) = 1 +N

∫
[g(r)− 1]r2 sin(qr)

qr
dr (3.16)

For fractal systems with a fractal dimension Df (Eq. 3.10), g(r) can be written as in Eq.
3.17. The parameter ξ is introduced as a cut-off length above which the structure of the
system is not fractal but homogeneous (Teixeira 1988).

N [g(r)− 1] = Df

4πaDf
rDf−3 exp(−r/ξ) (3.17)

Fourier transform of Eq. 3.17 and substitution in Eq. 3.16 gives S(q), where Γ denotes the
Gamma function:

S(q) = 1 + 1
(qa)Df

DfΓ(Df − 1)[
1 + 1

q2ξ2

]Df−1
2

sin[(Df − 1) arctan(qξ)] (3.18)

At small values of q the scattering is dominated by the large scale structure, whereas
at large q the individual particles form factor dominates (Teixeira 1988). Usually one
measures the form factor independently on a diluted sample, subsequently divides the total
scattering intensity by P (q). The resulting S(q) is then modeled by equations such as Eq.
3.18 to extract the fractal dimension (Courtens and Vacher 1987).

3.3 Polymer melts and polymer solutions

Polymers consist of covalently bonded molecules that assume a coiled conformation due
to their many rotational degrees of freedom. In an ideal solution, Gaussian statistics of
a ’random walk’ in 3 dimensions is an adequate formalism to describe the dimension of
the coil. This gives the average end-to-end distance 〈R2〉 = Nl2, where N is the number
of segments (proportional to the molecular weight M) and l is the length of the segment
(Dealy and Larson 2006).
In dilute solutions (φ < 0.01) the polymer coils swell in the solvent filling a larger volume
than they would in the melt. Their conformation is not perturbed by the neighboring chains
and the ensemble of coils is essentially a dispersion of soft spherical particles. Steady shear
viscosities for a specific molecular weight are linear in concentration in this regime (Einstein
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1906; Einstein 1911). The dependence on molecular weight can be described by the intrinsic
viscosity [η], as defined in Eq. 3.19, where the solvent contribution ηs is subtracted and the
resulting relative viscosity has been extrapolated to vanishing concentrations. The intrinsic
viscosity [η] shows then a power law dependence on the viscosity averaged molecular weight
Mv. The powerlaw exponent f depends on the solvent quality and the proportionality
constant Kc depends on the chemistry of the polymer. The parameters Kc and f are known
as the Mark-Houwink parameters (Young and Lovell 2011) and have been determined
experimentally for many combinations of polymers and solvents (Mark 2007). The intrinsic
concept of extrapolation to vanishing concentration is similar to the definition of nonlinear
parameters like Q0 (Hyun and Wilhelm 2009) or intrinsic Chebishev coefficients, which are
extrapolated to zero strain amplitude (Ewoldt and Bharadwaj 2013), see Chapter 2 for
more details.

[η] = lim
c→0

(η0 − ηs)/ηsc = KcM
f
v (3.19)

Microscopic theory predicts that even dilute solutions are already viscoelastic (Ferry 1980).
The source of viscoelasticity lies in the orientational degrees of freedom and the possibility
to stretch the polymer chain by the flow. Many models of different complexity ranging from
rigid dumbbells to bead spring models exist for the linear properties and give expressions
for the intrinsic storage and loss moduli [G′] = limc→0G

′/c and [G′′] = limc→0 (G′′−ωηs)/c
of polymer solutions (Bird et al. 1987). Viscoelastic behavior of dilute solutions plays a
crucial role for drag reduction (Ting and Hunston 1977) and vortex inhibition in turbulent
flow (Gordon and Balakrishnan 1972).

L

<Rt>

d

b

Figure 3.7: Structure of a polymer melt or a concentrated solution: The macromolecules are disordered
coils that overlap and are entangled. Neighbor chains restrict the movement of the observed chain, therefore
it can only diffuse along a tube shaped path. This mean field approach is the basis of the Doi-Edwards
theory.

Typically, for volume fraction above 0.1 the polymer coils overlap and therefore assume
dimensions that are identical to those in the melt (Graessley 2008). Thus, many of the
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theoretical predictions derived for the melt are also applicable for the concentrated solution.
Figure 3.7 depicts the structure of such a concentrated solution or melt. If the chains
have a higher molecular weight than some critical entanglement molecular weight, Me,
they intertwine and form entanglements. These non-permanent crosslinks are responsible
for elastic effects in polymer melts. The entanglement molecular weight Me decreases
for increasing chain stiffness, which means stiffer chains are more entangled (Heymans
2000). A typical value for Me of for example a cis 1-4 polyisoprene is 4000 g/mol (Mark
2007). However, around 3 entanglement per chain are necessary to significantly change the
rheological properties. For M > 3Me the experimentally observed M -dependence of the
zero shear viscosity (Eq. 3.20) in a melt changes from approximately linear to a power law
with an exponent n = 3.4.

η0 = KMn (3.20)

The dynamics of an entangled polymer system can be effectively modeled by a mean field
approach where a single chain is described in a matrix of the remaining chains, as shown
in Fig. 3.7. The other chains form a constraint that is shaped like a tube in which the
observed chain can diffuse along its contour and to some extent sidewise. This picture
has become the basis for the widely known ’tube theory’ or Doi-Edwards theory named
after its original proposers (Doi and Edwards 1986). Important results of their work are
expressions for the tube dimensions: the tube diameter d (Eq. 3.21), end-to-end distance
of the tube 〈Rt〉, the segment length b = 〈R〉/N and the contour length L = d ·M/Me,
where ρ is the polymer density.

d2 = 4
5
Me

M0
b2 = 4

5
ρRTb2

M0G0
N

(3.21)

Based on the tube dimensions and a monomeric friction coefficient ξf the time needed for
a chain to diffuse from its initial tube (τd), which is the longest relaxation time, can be
expressed by Eq. 3.22.

τd = ξfN
3b4

π2kBTd2 (3.22)

Furthermore, the plateau modulus G0
N (Eq. 3.23) and the molecular weight dependence of

the zero shear viscosity (Eq. 3.24) can be obtained.

G0
N = 4

5
ρRT

Me
(3.23)

η0 = 0.822G0
Nτd (3.24)

As the reptation time τd, according to Eq. 3.22, scales cubic with the molecular weight
M (or N), the exponent n for the general molecular weight dependence in Eq. 3.20 is
predicted to be 3 by the tube model, which is very close to the experimentally observed



CHAPTER 3. STRUCTURE AND RHEOLOGY 52

3.4 (Graessley 2008).
Although the tube model takes entanglements into account it does describe them explicitly
as point contacts of two chains, that is why some experimental effects are not accounted
for by the tube model. An example is the relaxation behavior after large strain steps,
where the relaxation mechanisms covered by the tube theory, chain retraction and chain
stretching (Dealy and Larson 2006), are not suffiecient to describe recent experimental
data (Boukany et al. 2009). Wang (2015) discusses this problem and contrasts the tube
idea to more detailed molecular entanglement theories.

3.4 Wormlike micelle surfactant solutions

Surfactants are amphiphilic molecules with a polar head and a nonpolar tail, which
are widely used as detergents in home and personal care or as stabilizers for colloidal
dispersions. In solution they form aggregates above a certain concentration, the critical
micelle concentration (CMC) (Dörfler 2002). Depending on physico-chemical conditions
like concentration, temperature and ionic strength, these aggregates, most commonly called
micelles. They can have a variety of shapes: spheres, rods, lamellae (Rehage and Hoffmann
1991; Dörfler 2002). Furthermore, liquid crystalline phases can be obtained at even higher
concentrations (Cappelaere et al. 1995). Surfactant molecules with relatively small head
group areas tend to pack in elongated, rodlike aggregates (Isrealachvili 1997). This phase
where the micelles attain a wormlike shape has attracted considerable research interest,
because if the micelles become long enough to entangle, a viscoelastic fluid forms. The
wormlike micelle solution has many structural features that are similar to polymer melts
as shown in Fig. 3.8. The long cylindrical aggregates can be linear or branched (Rogers
et al. 2014). As for polymers longer chains lead to overall higher viscosities of the solution.
The difference to polymeric systems is that the molecules in wormlike micelles (WLMs)
are not covalently bound to each other, therefore breaking and reformation is taking place
continuously.
Typical surfactant systems that form WLMs are depicted in Fig. 3.9: cetylpyridinium
chloride, cetyltrimethylammonium bromide (CTAB), sodium dodecylbenzenesulfonate or
dimethyl(tetradecyl)amine oxide. Additionally, various salts and co-surfactants can be
added to promote chain growth. Salt addition induces chain growth due to enhanced
screening of interactions (Isrealachvili 1997), for WLMs based on CTAB for example
potassium bromide can be used (Khatory et al. 1993). However, at higher concentrations
salt is also known to induce branching of the micelles (Rogers et al. 2014).
Added co-ions, a widely known example is salicylate, interfere with the structure of the
micelles through adsorption and therefore modify the chain length (Rehage and Hoffmann
1991). The effect of the co-ion concentration on the chain length, and therefore the
rheological properties, is non-monotonic. Oftentimes plots of viscosity versus co-ion
concentration exhibit several maxima and minima (Rehage and Hoffmann 1991).
WLMs are widely used as rheological modifiers and as detergents in home and personal
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Figure 3.8: Structure of a solution of wormlike micelles: Amphiphilic surfactant molecules (examples are
shown in Fig. 3.9) assemble into long tube-like micelles that entangle similarly to macromolecules in a
polymer melt (compare to Fig. 3.7).
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Figure 3.9: Chemical structures of some common surfactant systems known to form wormlike micelles:
(a) Cetylpyridinium chloride, (b) Cetyltrimethylammonium bromide, (c) sodium dodecylbenzenesulfonate,
(d) Dimethyl(tetradecyl)amine oxide.

care products (Yang 2002). Another field of application is fluid fracturing in oil drilling,
where WLMs are superior to conventional polymer solutions. Their main advantage is that
clogging as it happens with polymer residue can be avoided since WLM can be reversibly
broken down to the small molecular size of their surfactant constituents (Chase et al. 1997).
WLMs can also serve as drag reducing agents in pumping processes, similar to water soluble
polymers, but with the advantage that chain degradation is countered by their spontaneous
restoration (Rodrigues et al. 2008).
The continuous presence of scission and reformation events in the elongated cylinders leads
to surprisingly simple rheological behavior under small amplitude oscillatory shear: As
long as the chain scission occurs fast enough compared to the observation time of the
experiment, the chain contour is renewed by breaking and recombination (Rogers et al.
2014) and not by reptation as is the case for linear entangled polymers. Therefore, only



CHAPTER 3. STRUCTURE AND RHEOLOGY 54

a single relaxation time is present despite the chains having different lengths. A single
relaxation time leads to Maxwell behavior as pointed out in Chapter 2. Experimentally
determined storage and loss moduli, G′ and G′′, can be easily fitted with Eqs. 2.17 and
2.17, subsequently the model parameters elastic modulus G and relaxation time λ can be
extracted with high precision. More detailed modeling of G′ and G′′ has been used recently
to extract characteristic length and time scales such as average micelle length, breakage
rate, entanglement and persistence lengths (Zou et al. 2015).
The specific microstucture of WLMs is also responsible for their rich nonlinear behavior.
In steady shear experiments, after an initial shear thinning region, a plateau in the stress
versus shear rate curves has been observed (Helgeson, Vasquez, et al. 2009). This has been
explained by shear banding, an instability where the symmetry of the simple shear flow
field is broken and two bands with two different shear rates appear. The cause of this
instability has been attributed to an isotropic-nematic transition (Helgeson, Reichert, et al.
2009) similar to that in liquid crystals.
The particularly simple linear rheological properties of WLMs, especially the Maxwellian
behavior under small amplitude oscillatory shear, make them an ideal model system for
studies of nonlinear viscoelasticity. This will be the subject of Chapter 5, where a simple
extension of the Maxwell model will be verified experimentally using a CTAB sample.



Chapter 4

Current limits of detection and
reproducibility in LAOS
experiments for stress and strain
controlled rheometers

Early Large Amplitude Oscillatory Shear experiments have been conducted by Dodge and
Krieger (1971); Krieger and Niu (1973) using a modified Weissenberg Rheogoniometer. At
that time Fourier Analysis was performed by an oscilloscope. When employing harmonic
intensity analysis, the signal-to-noise ratio (S/N), that is the ratio of an intensity of a
harmonic to the intensity at a point in the spectrum where it is known that no peak is
present, are crucial to estimate the limit of detection. The signal-to-noise ratio in the
spectra of Krieger and Niu (1973) were claimed to be high but no actual numbers were
specified. Excessive LAOS investigations were hampered by the rheometer’s accuracy and
too tedious data acquisition and processing for that time. Later, LAOS measurement on
polymeric samples were made using sliding plate rheometers (Giacomin et al. 1989). Mostly,
Lissajous figures were analyzed by fitting constitutive model predictions to experimental
data (Jeyaseelan and Giacomin 1993; Yosick et al. 1997). However, Fourier Transform was
also employed and S/N ≈ 300 were achieved (Giacomin and Dealy 1998).
Wilhelm et al. (1998) introduced a simple setup that coupled a commercial rheometer to
an analog-to-digital converter, which made the deflection angle and torque data easy to
sample for post-processing on a personal computer. This step was crucial for the increased
availability of LAOS capable instruments. Before that, LAOS tests could still be performed
on commercial rheometers but only G′ and G′′ could be analyzed because the full waveform
data was discarded after calculation of G′ and G′′ to free up memory. With the set-up of
a commercial instrument and custom data processing, which also included oversampling
(Dusschoten and Wilhelm 2001), S/N of up 105 to were possible (Wilhelm 2002).
Nowadays several commercial instruments are available that include at least some forms
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of LAOS analysis routines in their software but the exact data treatment is confidential.
Nevertheless, optimized measuring procedures using commercial routines led to S/N of over
107 (Wilhelm et al. 2012). However, the instruments S/N is not the only limiting factor in
harmonic intensity detection. If the sample’s rheological properties slowly change over time
or sample loading procedures are inconsistent, exact reproduction of harmonic intensities
can be difficult. In this thesis an assessment of the repeatability and reproducibility of
LAOS experiments on different instruments has been performed. The results have been
previously published in references (Merger and Wilhelm 2014) and (Giacomin et al. 2015),
therefore this chapter contains passages and figures which are very similar the ones in the
articles. Specifically, it was investigated if different instruments measure the same values
for I3/1 over a range of γ0 and ω for a given sample. For this purpose, three polymeric
samples were chosen because they are easy to handle, their composition stays constant
over time and they reproducibly showed the expected square scaling of I3/1 with the strain
amplitude on the ARES-G2 rheometer. The samples were an anionically synthesized
1,4-cis-polyisoprene melt (abbreviated: PI-84k, Mw = 84000 g/mol, PDI = 1.04) and two
10 wt.-% solutions of polyisobutylene (PIB, Mw = 1.1·106 g/mol and PIB-2, Mw = 4.8·106

g/mol). More details on the systems can be found in Chapter 8.

4.1 Strain controlled and stress controlled rheometers

Currently, two general rotational rheometer types (Macosko 1994) are commercially available
that can be used for LAOS experiments: controlled strain rheometers and controlled stress
rheometers. Apart from the rotational rheometers, custom built instruments, such as
the sliding plate rheometer by Giacomin et al. (1989) are also suitable, but will not be
discussed here, as they are less common. Furthermore, there are rotational rheometers
available that use closed, pressurized measuring geometries. The LAOS capabilities of
these instruments have been investigated by Debbaut and Burhin (2002). The two common
rotational rheometer types differ slightly in their design and are depicted schematically in
Fig. 4.1. In Fig. 4.1 (a), the setup of a strain-controlled or separated motor-transducer
(SMT) rheometer is shown. Here the sample follows the lower plate that performs a set
deformation profile, so that strain is the input variable and stress is the output variable
(strictly the instruments apply a certain angular displacement that is related to the strain
and measure a torque that is related to the stress, the conversion constants depend on
the geometry type being used). The stress is determined from the electrical voltage and
current that are needed to keep the upper geometry in a fixed position by a second motor,
the transducer. The voltage is directly related to the torque generated by the sample which
is again proportional to the stress. This measuring principle is known as a force rebalance
transducer (FRT). The advantage of the SMT design is that the torque measurement is
completely decoupled from the torque that is applied by the rheometer in order to deform
the sample.
Figure 4.1 (b) shows the basic principle of the stress-controlled rheometer, also known as a
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(a)   SMT
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(b)  CMT

controlled 
deformation
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        =
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     FRT -
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Figure 4.1: Typical design of an (a) separated motor-transducer (SMT) rheometer and (b) combined
motor-transducer (CMT) rheometer. The SMT instrument uses a force rebalance transducer (FRT) for
torque detection, whereas in the CMT instrument the drag cup motor itself is the torque transducer.

combined motor-transducer (CMT) rheometer. The lower geometry part is fixed to the
frame of the instrument and the upper geometry part can be rotated by controlling the
torque produced by the motor. In this case, the torque transducer is the motor itself, the
input signal is the stress and the output signal is the strain (Macosko 1994). The software
of these instruments allows for running an experiment at variable strain amplitudes. When
using this operation mode several, iterative cycles have to be measured before the actual
measurement. During these iterations, the applied torque is adjusted to produce the
desired strain amplitude (Läuger et al. 2002). In contrast to the classical way of amplitude
adjustment, new operating modes of CMT-Rheometers (termed Direct Strain Oscillation
or Continuous Oscillation) use a feedback control to compare the current strain signal γ(t)
at time t to the desired pure sinusoidal signal γd(t) = γd0 sin(ω1t). The control loop then
adjusts the torque accordingly in order to minimize the difference |γd(t+ ∆t)− γ(t+ ∆t)|
for the next step at t+ ∆t. This deformation control enables a CMT-Rheometer to mimic
a strain controlled experiment (Läuger et al. 2002). This holds true even beyond the
linear regime where nonlinear contributions to the strain wave are compensated for and
are then transferred into the stress wave, as the control loop tries to make the appropriate
adjustments to the torque within minimum time.

4.2 Temperature effects

Before one starts to compare reproducibility of LAOS experiments it is important to have
some knowledge on the material’s linear properties and if they are measured correctly by
all instruments. Viscoelastic properties have a significant temperature dependence which
is described by the Williams-Landel-Ferry (WLF) equation and the Time-Temperature-
Superposition principle (TTS) (Macosko 1994; Shaw 2012). According to the TTS principle,
when measuring the frequency behavior of a polymeric sample in a SAOS test, instead
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of increasing the frequency for measuring larger De, alternatively one can lower the
temperature, thus increasing the relaxation times of the polymer. The TTS principle is
therefore used to measure mechanical spectra over a wider range in angular frequency than
it is instrumentally possible. Usually shear rheometers cannot exceed ω higher than ≈
100 rad/s. Higher frequencies are accessed by cooling the molten sample and shifting the
measured G′ and G′′ curves to higher frequencies, thus creating a master curve (Dealy and
Larson 2006).
It is important to confirm that all investigated instruments control the temperature equally
well. For this purpose frequency dependent tests were made for PI-84k and PIB. The data
is displayed in Fig. 4.2 and shows good agreement (less that 12% deviation) for the moduli
and tan δ measured on all instruments with one exception: When using the ARES-LS,
the temperature was controlled with a forced convection oven (FCO) in contrast to the
Peltier plate that was used for the other three instruments. This had a severe effect on
both the linear and the nonlinear measurements. With FCO temperature control the
values for moduli and I3/1 were around 30% smaller than those measured on the other
instruments due to the different thermal conditions of the sample. A direct comparison on
a single instrument between the FCO and Peltier plate heating methods as measured on
the ARES-G2 is shown in Fig. 4.3. Here, it is evident that the moduli differ by the same
horizontal factor across the measured frequencies. The reason for this is assumed to be a
temperature gradient due to the fact that a Peltier plate is heating only the bottom part
of the sample whereas the FCO is assumed to produce a more homogeneous temperature
field. The frequency dependent linear data can be matched by shifting the Peltier data to
higher frequencies using a factor of 1.39, which corresponds to setting the Peltier plate to
57◦C instead of 52.8◦C. The same shift factor was consequently applied to all nonlinear
measurements of the PI-84k sample that were made using Peltier plates at T = 52.8◦C.
For the PIB polymer solution, the results for the moduli and the loss tangent measured
with the different instruments agreed within a range of ± 15%. At angular frequencies
below 5 rad/s the ARES-LS was not able to reliably determine the phase angle, therefore
the loss tangent and the storage modulus scattered strongly. This can be attributed to the
lower instrument sensitivity of ARES-LS relative to the ARES-G2 and DHR. The results
from the MCR 501 show a similar deviation in tan δ and in G′ for angular frequencies lower
than 3 rad/s. In this case the deviation can not be explained by reaching the sensitivity
limit, as the minimum measurable torque for the MCR 501 is comparable to the one of the
DHR-3 instrument (see table 8.2). However, the sensitivity issue plays no role in the LAOS
tests, since at larger amplitudes, the measured torques are sufficiently large to ensure a
precise determination of the nonlinear parameters. Since the PIB measurements were
performed at 25◦C the possible discrepancies between Peltier and oven temperature control
were small enough (the moduli varied by less than 6%) to be neglected and no shift in the
frequency was necessary for the ARES-LS data.
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Figure 4.2: Storage and loss moduli (G′ and G′′) (a) and tan δ (b) for PI-84k and for the PIB solution, (c)
and (d), measured at a strain amplitude of 0.01 for PI-84k and 0.1 for PIB on the four indicated instruments.
The measuring temperatures were 52.8◦C for PI-84k and 25◦C for PIB. Note that for PI-84k the ARES-G2,
DHR-3 and MCR 501 data was horizontally shifted to higher frequencies with the factor α = 1.39 in order
to account for using a Peltier plate for temperature control instead of forced convection oven heating.

Figure 4.3: Storage and loss moduli of PI-84k measured at a strain amplitude of 0.01 on the ARES-G2
using either Peltier plate or a forced convection oven for temperature control. The temperature was set to
52.8◦C . The data obtained using the Peltier plate can be matched to the oven data by multiplying the
frequency axis by α = 1.39.
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4.3 Geometry effects

When performing LAOS experiments on samples with appreciable viscosities (larger than
η ≈ 100 Pas) using parallel disks or cone and plate geometry is preferable to a concentric
cylinders (Couette) geometry due to easier loading procedures. Furthermore smaller sample
amounts are needed than for concenctric cylinders. When deciding between parallel disks
and cone and plate one has to acknowledge the inhomogeneous flow field in the parallel
disks geometry: As the plate distance is constant the strain and the shear rate increases
linearly along the radius (Macosko 1994; Giacomin and Dealy 1998). This has an impact
for linear measurement of G′ and G′′ already. In general, for parallel disks flow the stress σ
can be calculated from the torque M by using Eq. 4.1 with R being the radius of the disks
and θ0 the deflection angle amplitude. However, as the derivative dM/dθ0 enters into the
calculation, a series of narrowly spaced measurements for varying θ0 (therefore varying γ0)
and subsequent numerical differentiation are always needed to calculate σ from M . This
procedure has been used successfully by MacSporran and Spiers (1984) and recently by
Fahimi et al. (2014) for LAOS measurements.

σ = 1
2πR3

(
θ0

dM
dθ0

+ 3M
)

(4.1)

Wilhelm et al. (1999) measured differences between cone/plate and parallel disks geometries
and adjusted by multiplying by the strain amplitude values of the parallel disk experiments
by 0.75 to match parallel disk results to data from cone and plate experiments. This was
done based on the idea of an ’equivalent radius’. This radius is smaller than the actual
disk radius so that the average strain amplitude in parallel disks equals the one from the
cone and plate geometry. This procedure was used successfully to correct I3/1 for solutions
of polyisobutylene. Wagner et al. (2011) corrected using a multiplication factor of 3/2 to
convert M3/1 from parallel disk experiments to I3/1 measured on polystyrene melts. This
procedure was crucial to reach agreement of their experiments with the model predictions
of the molecular stress function model.
Giacomin et al. (2015) used a detailed analysis of the corotational Maxwell model to derive
an analytical expression for the conversion of the relative intensity of the third harmonic
as measured in a parallel disks geometry to the true intensities as they would be measured
in cone and plate geometry. The corotational Maxwell model is a differential, tensorial
model which can be written as Eq. 4.2 (Giacomin et al. 2011; Saengow et al. 2015).

σ + λ
Dσ

Dt
= −η0γ̇ (4.2)

In Eq. 4.2, γ̇ = ∇v + (∇v)† denotes the rate of deformation tensor (Bird et al. 1987).
The difference to the standard Maxwell model (Chapter 2.1.1, page 16) is the use of the
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Jaumann derivative which includes the material derivative Dσ/Dt = ∂σ/∂t+ v · ∇σ:

Dσ

Dt
= Dσ

Dt + 1
2[ω · σ − σ · ω] (4.3)

= ∂σ

∂t
+ v · ∇σ + 1

2[ω · σ − σ · ω] (4.4)

The Jaumann derivative is also known as the corotational derivative because it measures
rates of changes of the stress tensor σ with respect to a coordinate frame that both
translates and rotates with the fluid (Saengow et al. 2015). The rotation invariance is
ensured by using the vorticity tensor which is defined as ω = ∇v− (∇v)†.
In (Giacomin et al. 2015) approximate expressions for the third and fifth relative harmonic
arising in the torque signal when measuring with parallel disks were derived, they are
denoted as M3/1 and M5/1 (Eqs. 4.5 and 4.6, respectively). The expressions are only
approximations as they are Taylor series truncated at fifth order in Wi and the representa-
tion of M3/1 and M5/1 is analogous to the series representation in Eq. 2.31. The Deborah
number (De = λω) dependent coefficients Amn and Bmn are collected in Table 8.3 in the
Appendix.

M3/1 =

√
[Wi2A33 +Wi4A53 + · · · ]2 + [Wi2B33 +Wi4B53 + · · · ]2√

[−1 +Wi2A31 +Wi4A51 + · · · ]2 + [−De+Wi2B31 +Wi4B51 + · · · ]2
(4.5)

M5/1 =

√
[Wi4A55 + · · · ]2 + [Wi4B55 + · · · ]2√

[−1 +Wi2A31 +Wi4A51 + · · · ]2 + [−De+Wi2B31 +Wi4B51 + · · · ]2
(4.6)

Similarly, expressions for third and fifth relative harmonic present in the torque signal
when measuring with a cone and plate geometry were derived. Since they are identical to
the stress harmonic ratios and therefore represent the undisturbed nonlinear parameters
they are denoted as I3/1 and I5/1 (Eqs. 4.7 and 4.8). The coefficients Cmn and Dmn can
be found in Table 8.3 in the Appendix.

I3/1 =

√
[Wi2C33 +Wi4C53 + · · · ]2 + [Wi2D33 +Wi4D53 + · · · ]2√

[−1 +Wi2C31 +Wi4C51 + · · · ]2 + [−De+Wi2D31 +Wi4D51 + · · · ]2
(4.7)

I5/1 =

√
[Wi4C55 + · · · ]2 + [Wi4D55 + · · · ]2√

[−1 +Wi2C31 +Wi4C51 + · · · ]2 + [−De+Wi2D31 +Wi4D51 + · · · ]2
(4.8)

Taking the ratios of Eqs. 4.7 and 4.5, I3/1
M3/1

, and Eqs. 4.8 and 4.6, I5/1
M5/1

, produces corrections
for the third and firth harmonic. These corrections (Eqs. 4.9 and 4.10) have to be multiplied
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with harmonic ratios measured in a parallel disks geometry, M3/1 and M5/1, to convert
them to the true nonlinear parameters, which would be measured in a cone and plate
geometry, I3/1 and I5/1. In first approximation they are 3/2 and 5 for the third and the fifth
harmonic, respectively. Therefore the approach of Wagner et al. (2011) was corroborated
based on a specific constitutive model.

I3/1
M3/1

= 3
2 + 3

8Wi2
[

De(2De+ 1)
(De2 + 1)(1 + 4De2)

]
− ... (4.9)

I5/1
M5/1

= 2 +Wi2
2De2 + 1

2(De2 + 1)(1 + 4De2) − ... (4.10)

In this work, the correction factors have been verified experimentally with the following
LAOS tests using the PI-84k sample (experimental details are in Chapter 8, page 141). In
Fig. 4.4 a fit of the true nonlinear parameters I3/1 and I5/1 with the corotational Maxwell
model is shown. Although the corotational Maxwell model underestimates the magnitude of
I5/1, the scaling law I5/1 ∝ γ4

0 holds. The fitted relaxation time λ was 0.0158 s. Figure 4.5
shows a comparison of M3/1, M5/1 and I3/1, I3/1, confirming the viability of this correction
method. If M3/1 and M5/1 are multiplied with 3/2 and 2, respectively, they are matching
I3/1 and I5/1 for larger Wi (Wi > 0.05 for I3/1 and Wi > 0.164 for I5/1). At smaller values
of Wi, the intensities are dominated by noise.
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Figure 4.4: I3/1 and I5/1 vs Wi = λωγ0 = 0.0158s·6.3rad/s·γ0 for the PI-84k sample measured in a cone
and plate geometry at T = 52.8◦C. Lines are model predictions using Eqs. 4.7 and 4.8.
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Figure 4.5: I3/1 and I5/1 measured in the cone/plate geometry, M3/1 and M5/1 from the parallel disks
geometry vs Wi = λωγ0 = 0.0158s·6.3rad/s·γ0 at T = 52.8◦C. The correction using a factor of 3/2 is
sufficient to map M3/1 onto I3/1. M5/1 is converted to I5/1 by multiplying with a factor of 2.

4.4 LAOStrain experiments on SMT and CMT rheometers

4.4.1 Nonlinear measurements on PI-84k

Transient Data and FT-Spectra

In the case of small deviations from linear behavior, as for a LAOS test on PI-84k at
ω = 6.3 rad/s and γ0 = 1, the distorted stress wave cannot be directly distinguished from
the pure sinusoidal wave in the linear representation of stress versus time, as shown in Fig.
4.6. However, in the frequency domain the deviations are easily detectable and can be
quantified by the intensities of the odd harmonics. In the example shown in Fig. 4.6 the
stress wave contains a relative contribution of 0.188% from the third harmonic.
For the four investigated instruments, ARES-G2, ARES-LS, DHR-3 and MCR 501, nor-
malized magnitude spectra of the torque waves were obtained by Fourier transforming 15
oscillation cycles (Fig. 4.7). The angular frequency was 6.3 rad/s and the strain amplitude
was set to γ0 =1. The signal-to-noise (S/N) - ratio was calculated from the normalized
spectra as S/N , with S=1 and N being the noise level in the spectra, as determined by
the mean values of data averaged in the region 17.07 < ω/ω < 18.3. In this region no
peaks should be present. Since the transient torque data showed a small decay of the
amplitude (few percent over the course of 15 cycles), the data was additionally fitted with
a decaying sinusoidal wave M = M0 · exp(−t/τ) cos(ωt+φ) to determine the characteristic
decay time τ . Subsequently the decay was corrected for by multiplying the transient wave
with exp(t/τ) prior to performing the Fourier transform. The values of τ were of the
order of 103 − 104 s. This procedure increased the S/N -ratio typically by a factor of 2



CHAPTER 4. LIMITS OF DETECTION AND REPRODUCIBILITY 64

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0
- 1 . 0

- 0 . 5

0 . 0

0 . 5

1 . 0

 

 

s/s
0

t i m e  [ s ]
Figure 4.6: Normalized stress wave from a LAOS measurement conducted on PI-84 at ω = 6.3 rad/s and
γ0 = 1 using the ARES-G2 (thick black line). The stress wave contains 0.188% contribution from the third
harmonic relative to a pure sine wave σ = σ0 sin(ωt+ δ) (white line). Typically contributions of up to few
percents of I3/1 can not be detected if viewed in the time domain.

to 8, depending on the instrument, narrowed the peaks and also slightly increased I3/1.
The actual values are summarized in Table 4.1. Note that the decay correction will not
be employed in the subsequent sections because the decay occurred only at amplitudes
above γ0 =1 for PI-84k, its effect on I3/1 was monotonous on the four instruments and is
therefore not significant for the comparison presented here. However, this form of decay
correction can be used to enhance the S/N -ratio, when necessary, for example to determine
the intensities of harmonics higher than the third.
The ARES-LS instrument showed a slightly lower S/N = 9.5·104 in comparison to that
for ARES-G2, which was equal to 1.6·105 under these conditions. For the DHR-3 it was
higher at 6.4·105 whereas for the MCR 501 it was lower (5.2·104) relative to the two
SMT-rheometers. The lower value for the MCR 501 can be attributed to the fact that
for this instrument a smaller diameter parallel plate geometry was used, 8 mm instead
of 13 mm, because the latter was not available. As the measured torque has a cubic
dependence on the plate diameter, decreasing the plate diameter from 13 mm to 8 mm
should decrease the S/N -ratio of the MCR 501 by a factor of (8/13)3 = 0.233 compared to
the other instruments if similar sensitivities are assumed. The actual decrease in S/N for
the MCR 501 caused by a smaller plate diameter is 0.325, which suggest that its sensitivity
is comparable to the ARES-G2. From these results it can be concluded that the S/N
ratio for all instruments, is sufficiently high to reliably detect harmonic intensities down
to 1·10−4. Note that by using larger geometries and averaging more oscillation cycles
even higher S/N ratios of up to 107 can be reached, as shown for example for aqueous
foams (Wilhelm et al. 2012). The actual measured intensities for the third harmonic differ
slightly for PI-84k when measured on different rheometers. In this case the MCR 501
measured a value for I3/1 that is higher by a factor of 1.8 compared those measured on the
ARES-G2, ARES-LS and DHR-3. The latter three intensities agree with each other within
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an uncertainty of 13%. The exact values are shown in Table 4.1.
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Figure 4.7: Normalized magnitude spectra of the torque waves for PI-84k (colored lines) measured on
the investigated instruments: (a) ARES-G2, (b) ARES-LS, (c) DHR-3 and (d) MCR 501. For the DHR-3
the stiff motor setting was used (for details see Section 8.2). In order to account for the temporal decay
of the torque signal a correction was made by multiplying the transient wave with exp(t/τi) prior to the
Fourier transform. The uncorrected spectra are also shown (black lines) and were shifted with respect to
the relative frequency by + 0.5 for clarity. The angular frequency was 6.3 rad/s, the strain amplitude was
set equal to 1, T = 52.8◦C . Fifteen cycles were recorded with the TRIOS software for the ARES-G2 and
the DHR-3 whereas, for the ARES-LS and the MCR 501, the custom written LabView routine (see Section
8.2) was used.
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Instrument S/Nu S/N Iu3/1 I3/1
ARES-G2 8.1·104 1.6·105 1.85·10−3 1.88·10−3

ARES-LS 5.3·104 9.5·104 1.80·10−3 1.86·10−3

DHR-3 8.9·104 6.4·105 2.18·10−3 2.24·10−3

MCR 501 1.7·104 5.2·104 3.22·10−3 3.62·10−3

Table 4.1: Signal to noise ratio S/N and normalized intensity of the third harmonic I3/1 for the spectra
shown in Fig. 4.7 for the PI-84k sample measured at T = 52.8◦C and γ=1. In order to account for the
decay of the torque signal a correction was made by multiplying the transient wave with exp(t/τi) prior to
the Fourier transform. The uncorrected results for S/N and I3/1 are marked with the superscript u.

Intensities of the third harmonic I3/1

The third harmonic I3/1 is the first nonlinear contribution to appear in the transition from
the linear to the nonlinear regime and has the highest intensity of all higher harmonics.
Since it is also the only harmonic that can be reliably measured for both samples in the
investigated amplitude range, further discussion will be limited to I3/1 and the quantities
derived from it. Fig. 4.8 shows the strain amplitude dependence of I3/1 for PI-84k at ω =
6.3 rad/s. Note that for the ARES-LS, the displayed data was measured at a temperature
of 48◦C instead of the usual 52.8◦C, as for the other three instruments in order to account
for the inherent differences when using an oven instead of a Peltier plate for temperature
control, see section 4.2.
In addition to I3/1 from the stress wave (open symbols), Fig. 4.8 shows I3/1 from the
input strain wave (closed symbols). For the ARES-G2, I3/1 present in the strain, Iγ3/1 is
more than three decades smaller than corresponding values from the stress, Iσ3/1, and are
therefore outside the range shown here. Not that here we use σ and γ as superscripts, not
as exponents. For the ARES-LS, Iγ3/1 is around 2·10−4 and approximately independent of
the amplitude. The larger Iγ3/1 might be attributed to higher friction in comparison to the
ARES-G2 caused by the brushes of the motor.
A correlation between Iγ3/1 and Iσ3/1 can be seen for measurements made on the two
CMT-rheometer DHR-3 and MCR 501 and shows that the deformation control is not
able to completely compensate for all the nonlinearity present in the strain. However,
Iγ3/1 was at least one decade smaller than Iσ3/1 for all measurements. The fact that the
deformation control of the CMT - instruments is not able to reduce nonlinear contributions
in the strain wave as effectively as it is done in the case of the ARES-G2 is due to the
compromise between controlling the strain through adjustment of the torque and the same
time, maintaining a certain torque resolution for the measurement. In this respect, the
DHR-3 seems to be more effective than the MCR 501, since for the DHR-3 the ratio of
Iγ3/1/I

σ
3/1 was smaller with ∼ 0.02 compared to a ratio of roughly 0.1 for the MCR 501,

where in the ideal case this ratio’s limit would be zero.
The I3/1 values for PI-84k measured on the MCR 501 were consistently larger than the
ones on the other instruments for all strain amplitudes above the detection limit γd. The
detection limit was determined from the minimum in the fitted curve to the data of the
amplitude dependent I3/1 using the function shown Eq. 4.11. This function combines the
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theoretically predicted quadratic amplitude dependence for I3/1 at medium amplitudes
(Pearson and Rochefort 1982) with a scaling of γ−1

0 in the linear regime (Reinheimer et al.
2012). This scaling of γ−1

0 originates from the consideration that the values for I3 reflect
only the noise level N for γ0 < γd. Therefore I3 ≈ N for γ0 < γd and I3/1 is consequently
inverse proportional to I1, since I1 ∝ γ0.

I3/1 = Aγ−1
0 +Q0γ

2
0 (4.11)

The parameter A depends on the instrument and should decrease with increasing sensitivity
that causes γd to decrease and thus enables the measurement of I3/1 down to smaller
amplitudes. The fitting parameters for the strain sweeps at ω = 6.3 rad/s are shown in
Table 4.2. Very similar values were found for ARES-G2, ARES-LS and DHR-3, which is
surprising since these instruments significantly differ in their minimum detectable torques
(50, 400 and 0.5 nNm, respectively, as specified by the manufacturers). Apparently, an
overall higher sensitivity does not necessarily lead to an improved detection of I3/1.
The detection limits γd for the ARES-G2, ARES-LS and DHR-3 are also very similar (see
Table 4.2), whereas, for MCR 501, γd is lower, due to the fact that for this instrument the
complete I3/1-curve is shifted to smaller amplitudes. In addition to the determination of
γd, the fitted curve also determines the intrinsic nonlinearity Q0. The variations in Q0 are
a consequence of the differences in I3/1 that were shown for ω = 6.3 rad/s in the previous
section.

Instrument A Q0 γd
ARES-G2 9.79·10−5 1.89·10−3 0.30
ARES-LS 1.1·10−4 1.64·10−3 0.32
DHR-3 1.17·10−4 1.97·10−3 0.30

MCR 501 1.24·10−5 3.22·10−3 0.12

Table 4.2: Fitting parameters A, Q0 from Eq. 4.11 and the calculated detection limit γd, which is the
minimum of the curve for the data shown in Fig. 4.8. For the MCR 501 the complete I3/1-curve seems to
be shifted to smaller amplitudes, which leads to an artificially low A and γd as well as a too large Q0 in
comparison to the other instruments.

When using the DHR-3 rheometer, the motor mode setting gives the user the ability to
adjust the gain for the active deformation control and thus to define how strong this control
is applied to correct nonlinearities in the strain. This feature has been created by the
manufacturers to optimize the torque resolution and smoothness. The possible settings are
auto, soft, medium or stiff. When performing LAOS experiments one would prefer to set
the setting to stiff, since in that case the suppression of nonlinearities in the strain wave is
most effective. The disadvantage is that a stiffer setting of the motor mode results in a
lower torque sensitivity. Fig. 4.9 shows a comparison of measurements of I3/1 as a function
of the strain amplitude at 6.3 rad/s in the stiff and the auto setting. In addition, I3/1

for the strain signal is also displayed. Using the correct setting stiff leads to very good
agreement of the I3/1-contributions present in the stress wave, Iσ3/1, when compared to
data collected on the SMT-instrument ARES-G2. In contrast, if the auto setting is used,
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Figure 4.8: Results for I3/1 as a function of the strain amplitude at ω = 6.3 rad/s for PI-84k on the
investigated instruments: (a) ARES-G2, (b)ARES-LS, (c)DHR-3 and (d) MCR 501. Open symbols represent
I3/1 from the stress wave, closed symbols I3/1 from the strain wave. The black lines are fitted curves using
Eq. 4.11. The ARES-LS data was measured at a temperature of 48◦C instead of 52.8◦C as for the other
three instruments to account for the differences introduced by using an oven instead of a Peltier plate for
temperature control, see section 4.2.
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nonlinearities in the strain wave, Iγ3/1, are not suppressed efficiently enough and therefore
the determined Iσ3/1-values are too small. Hence, for all further DHR-3 measurements on
PI-84k the motor mode setting was set to stiff.

Figure 4.9: Results for I3/1 in the strain, Iγ3/1, and the stress wave, Iσ3/1, as a function of the strain
amplitude at ω = 6.3 rad/s and T = 52.8◦C for PI-84k on the DHR-3 using the different motor modes auto
and stiff compared to ARES-G2 data.

Another interesting observation concerns the scaling of I3/1(γ0) with the strain amplitude
as measured on the DHR-3 rheometer. For this instrument, measurements on PI-84k
consistently and independent of the motor mode setting, gave slightly larger scaling
exponents that were around 2.5 instead of the expected value of 2 (see Eq. 2.34) as
determined on the other three instruments. A comparison with ARES-G2 and MCR501
data for the frequencies 1.3, 6.3 and 10 rad/s is shown in Fig. 4.10. The deviations in
the scaling exponents lead to the consequence that the data used for the determination of
Q0 had to be restricted to a smaller strain amplitude range where a slope of 2 was still
found. Although this reduction of data points in principle makes the Q0-determination
less reliable for the DHR-3, the values that were extracted were still within a reasonable
range as will be discussed in the subsequent section. Although this is a minor implication
for the current framework of analysis, it can become a serious source of error when using
alternative LAOS analysis methods (see Chapter 2, page 32) where a wider range of γ0

needs to be taken into account.
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Figure 4.10: Strain amplitude dependence of I3/1 at ω = 1.3, 2.5 and 10 rad/s. The slope are determined
by a linear regression with log I3/1 = a log γ0 + b for PI-84k from the ARES-G2, (a), compared to DHR-3
and MCR 501 data, (b) and (c).

Q-coefficient

A plot of the Q-coefficient Q = I3/1/γ
2
0 as a function of γ0 is shown in Fig. 4.11 (see

Chapter 2, page 26 for details on the scaling laws). Here, the data points below the
detection limit have been omitted because they are dominated by noise. At sufficiently
low strain amplitudes, the Q-coefficient is scattered around a plateau value, Q0. Instead
of using the fit function from Eq. 4.11, all values for Q0 were determined by averaging
5-10 points in the plateau regime. This approach proved to give more reliable results in
those cases where only few points below the detection limit were gathered. Deviations
from the square scaling of I3/1 for DHR-3, as previously discussed, caused Q to increase
(Fig. 4.11). Therefore, in this case only the first 5 plotted data points were averaged in
order to determine Q0. Apart from this, the data agreed reasonably well as shown in Fig.
4.11. For the specific angular frequency of 6.3 rad/s the data from the MCR 501 led to an
approximately 60% larger value for Q0 compared to the other three instruments, among
which the deviations in Q0 were less than 10%.
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Figure 4.11: Q-coefficient as a function of γ0, defined as Q = I3/1/γ
2
0 , for PI-84k measured on the

investigated instruments at ω = 6.3 rad/s at T=52.8◦C . Data points which were dominated by noise have
bee omitted.

Intrinsic nonlinearity Q0

Frequency dependent measurements of the Q-coefficient were performed to analyze if
the agreement between the investigated instruments shown in the previous section can
also be observed at other angular frequencies ω. The results are displayed in Fig. 4.12.
Since instruments using a Peltier plate had different temperature settings (see section
4.2), the data from ARES-G2, DHR-3 and MCR 501 were shifted to higher frequencies
using a factor of 1.39 when compared to the data from ARES LS that used a force
convection oven. Note also that all previously shown results of I3/1 and Q were measured
in parallel plates geometries. In the following, the correction from Section 4.3 has been
applied, so all presented Q0 values for the PI-84k and PIB samples have been corrected
for the inhomogeneous strain field in the parallel plates geometry by multiplying with
3/2, and therefore represent values that would be measured in a cone and plate geometry.
The intensities I3/1 reported in the previous sections, however, are not corrected for the
inhomogeneous strain field.
The frequency dependence of Q0 for an entangled polymer was predicted to be quadratic
(Hyun and Wilhelm 2009) at low enough frequencies, therefore, for the data in Fig. 4.12, a
linear regression according to log(Q0) = c+ 2 log(ω/(rad/s)) was used to determine the
intercepts in a plot on logarithmized axes. The intercepts are shown in Table 4.3 and
were used to calculate the relative deviations between the instruments for the whole Q0(ω)
curve. The ratio Q0 = 10c(i)/10c(ARES-G2) shows that ARES-LS and ARES-G2 deliver very
similar results, which was expected, since both are SMT-rheometers, the former being an
older generation of the latter.
To demonstrate the substantial effect of the deformation control setting on the DHR-3
results (previously mentioned in Section 4.4.1), data from measurements using the stiff
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Figure 4.12: Frequency dependence of Q0 for PI-84k at T = 52.8◦C , Q0 is defined as the plateau value
of Q at small strain amplitudes (Eq. 2.38). All values of Q0 have been corrected for the inhomogeneous
strain field in the parallel plates geometry by multiplying with 3/2, and therefore represent values that
would be measured in a cone and plate geometry. The data measured on the ARES-G2, DHR-3 and MCR
501 were shifted to higher frequencies with a factor of 1.39 to account for the difference in temperature
control when using the Peltier plates instead of the forced convection oven (ARES-LS). The lines are linear
regressions with a fixed slope of 2. The line for the ARES-G2 (black) and the DHR-3 (light and dashed)
overlap. The DHR-3 data match only if the motor mode is set to stiff. However, setting the motor mode to
auto for the DHR-3 caused severe deviations as shown by the open symbols.

and the auto setting are shown. The results obtained on the DHR-3 match remarkably
well with the ones from the SMT instruments but only if the correct setting for the motor
mode in the deformation control is used, which was the stiff setting for PI-84k. Other
settings resulted in Q0-values that are smaller by a factor of up to three as shown by the
measurement using the auto setting.
With proper precautions the results for ARES-G2, ARES-LS and DHR-3 agreed well and
the differences are only slightly larger than the reproducibility range of measurements on
a single instrument, which was determined to be in the range 4-8% (relative standard
deviation of three independent measurements).
The MCR 501 delivers Q0-values that are in general larger by a factor of 1.92 for PI-84
when compared to the ones from the SMT-rheometers. The reason for this deviation
is assumed to be connected to the deformation control. The fact that the values were
consistently larger relative to the other instruments suggests that the deformation control
introduces additional nonlinearities into the stress signal. The ultimate source of this
deviation remains unclear and might be sample dependent, but we can exclude several
possible sources. First, the deviation cannot be caused by the use of the smaller diameter
parallel plate geometry and therefore smaller sensitivity in terms of signal to noise ratio, see
section 4.4.1, as in an additional measurement with a 25 mm diameter plate identical results
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were obtained. Furthermore the result was confirmed on an additional measurement using
a different MCR 501, suggesting that the deviation is not a technical problem of the specific
instrument used so far. At last, the relatively large amount of nonlinear contribution that
is still present in the strain wave as evident from Fig. 4.8 d (the ratio of I3/1 in the strain
to I3/1 in the stress is roughly 1/10), can not be responsible for the large deviations in Q0

because these would transfer into the stress wave linearly and therefore would cause an
error on the order of 10% but not 192% of the measured values.
Note that changes of several percent in Q0(ω) seem to be of minor significance, since this
parameter can vary over two to three decades of magnitude (Hyun et al. 2011), but a factor
of two might not be negligible.

Instrument Intercept c 10c · 105 Q0
ARES-G2 –4.365±0.018 4.32 1
ARES-LS –4.413±0.025 3.86 0.90
DHR-3 stiff –4.368±0.019 4.29 0.99
DHR-3 auto –4.800±0.025 1.56 0.37
MCR 501 -4.081±0.028 8.30 1.92

Table 4.3: Intercepts c from linear regression on the PI-84k data in Fig. 4.12 using a fixed slope of 2
and the ratio Q0 = 10c(i)/10c(ARES-G2), which shows the deviations between the instruments using the
ARES-G2 data as the reference.

4.4.2 Nonlinear measurements on PIB

Similar measurements to those on PI-84k were done on a polyisobutylene solution (PIB), for
sample details see experimental Chapter 8, page 141 . Since the measuring temperature was
25◦C a temperature gradient effect when using a Peltier plate was not observed. Therefore,
in contrast to the PI-84k measurements the following data had not be shifted with respect
to the frequency to compensate for temperature gradients.
Moreover, the different motor mode settings of the DHR-3 produced very similar results for
I3/1, except when the stiff setting was used. Using the stiff setting here instead introduced
additional noise in the torque signal and led to a strong scattering in the I3/1 measurements
that made the determination of Q0 impossible. Therefore the medium-setting was used,
since it reduced the nonlinearity in the strain to a minimum and still gave reliable Q0 values.
Therefore, it is not possible to know a priori which setting of the DHR-3 motor mode
will be optimal for an unknown sample. On one hand a stiffer setting of the deformation
control reduces nonlinearities in the strain wave more efficiently, but on the other hand it
introduces additional noise in the torque signal when applied on samples of lower viscosity.
Consequently, we would recommend to set the mode to as stiff as possible as long as
the results for I3/1 are not significantly altered by the additional noise introduced by the
deformation control.
Furthermore, as already shown for PI-84, deviations from the square scaling of I3/1 were
observed when using the DHR-3. In this case, the scaling exponents were usually around
1.5 at intermediate frequencies of ω = 3 - 20 rad/s, whereas at higher and lower frequencies
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slopes equal to 2 were found as expected from theory (Eq. 2.34). This again reduced the
strain amplitude range that was used for the determination of Q0, nevertheless Q0 still
could be extracted.
The frequency dependence of Q0 for the PIB sample is shown in Fig. 4.13. The results for
the two SMT-rheometers and MCR 501 agreed reasonably well, as the relative standard
deviation for specific Q0(ω) values from different instruments was below 25% at most
frequencies, in contrast to the PI-84k sample, where a much stronger deviation was found
for the MCR 501. At low frequencies Q0 shows a quadratic dependance on the angular
frequency ω. Therefore, a similar linear regression as shown for PI-84k in section 4.4.1
was performed on the data in the range -0.06 < log(ω/(rad/s)) < 0.654 in Fig. 4.13. A
comparison of the intercepts (see Table 4.4) reveals that the average deviation between the
instruments is below 12% in this region.
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Figure 4.13: Frequency dependence of Q0, defined as the plateau value of Q at small strain amplitudes
(Eq. 2.38), for PIB. All values of Q0 have been corrected for the inhomogeneous strain field in the parallel
plates geometry by multiplying with 3/2, and therefore represent values that would be measured in a cone
and plate geometry. The DHR-3 A data was recorded using the correlation acquisition mode, whereas for
the DHR-3 B-data, the transient acquisition mode was used. At low angular frequencies Q0 is proportional
to ω2. Additionally, the ratio of the sample torque amplitude to the raw torque amplitude Ms0/Mr0 for the
DHR-3 A data is shown. When Ms0/Mr0 reaches approximately 0.8, i.e. the inertia contribution makes up
20% of the total torque, pronounced deviations in Q0 are observed when no inertia correction is applied.

For the DHR-3, an apparent maximum in the Q0(ω)-curve was observed at 23 rad/s (Fig.
4.13). This maximum is caused by instrument inertia effects. When using the DHR-3 in
the correlation acquisition mode, the transient data that is Fourier-transformed by the
software is the raw torque data. For a CMT-rheometer the raw torque Mr is the sum of
the sample torque Ms and an additional contribution caused by instrument inertia MI

(Franck 2003) as shown in Eq. 4.12.



CHAPTER 4. LIMITS OF DETECTION AND REPRODUCIBILITY 75

Instrument Intercept c 10c · 106 Q0
ARES-G2 -4.882±0.033 1.32 1.03
ARES-LS –4.898±0.026 1.27 0.99
DHR-3 –4.945±0.023 1.14 0.89

MCR 501 -4.861±0.056 1.38 1.08

Table 4.4: Intercepts c from linear regression on the PIB data in Fig. 4.13 in the range -0.06 <
log(ω/(rad/s)) < 0.654 using a fixed slope of 2. The ratio Q0 = 10c(i)/10c shows the deviations between
the instruments using the mean of the four intercepts, c, as the reference.

Mr(t) = Ms(t) + MI(t) (4.12)

= σ(t)/Kσ + Iθ̈(t) (4.13)

= σ(t)/Kσ − Iω2θ0 sin(ωt) (4.14)

MI increases quadratically with the frequency due to the second time derivative of the
deflection angle θ̈, I represents the instrument inertia constant and is calibrated for every
geometry, Kσ is the geometry constant for the torque-to-stress conversion. Due to the
relationship MI ∝ ω2, MI can dominate over the sample torque for low viscosity materials
and high frequencies. Since the DHR-3 software gives the amplitudes for the raw torque
Mr0 and the sample torque Ms0, the ratio of Ms0/Mr0 was calculated to monitor the
frequency at which the inertia contribution starts to dominate the total torque. The
decrease in Q0 began at a frequency of around 23 rad/s and, at these conditions, the
Ms0/Mr0 ratio is roughly 0.8, meaning that the inertia contribution makes up 20% of the
total torque. If this inertia contribution is assumed to be free of nonlinearity, normalization
leads to erroneous values for I3/1 and, consequently, for Q0. It can therefore be concluded
that when conducting LAOS experiments at different frequencies using a CMT-rheometer,
one has to ensure that the inertia effects are negligible by avoiding both high frequencies
and low viscosities. Alternatively, it is possible to transform inertia corrected torque data,
which is the sample torque Ms(t), when using the transient acquisition mode. This was
done for the frequencies above 23 rad/s and is shown by the data points named DHR-3 B
in Fig. 4.13. These values agree better with the data from the other instruments. Although
this acquisition mode is more tedious than the correlation acquisition because the Fourier
transform step is no longer done automatically by the software, it is necessary when working
with low viscosities and high frequencies where instrument inertia contributions become
relevant.
For MCR 501 the software applied an inertia correction, so the sample torque Ms(t) could
be analyzed directly and instrument inertia effects were corrected in the investigated
frequency range.
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4.4.3 Evaluation of the MCR 702 rheometer

In addition to the previously investigated instruments a new controlled strain rheometer,
the MCR 702 (Anton Paar), became available at a late stage of the thesis. The MCR 702
instrument employs two identical motors, one of them can be used for the excitation, the
other motor acts as an FRT-transducer measuring the torque in the sample, resulting in
a truly separated motor-transducer instrument. Since the specific instrument that was
available could not provide any temperature control system, direct comparison to the
previous measurements in Sections 4.4.2 and 4.4.1 were not possible. Therefore, a new test
series was performed on the samples PI-84k and PIB-2. PIB-2 was used instead of PIB
because the specific batch of the latter was not available in sufficient amounts anymore.
PIB-2 (Mw = 4.8 · 106 g/mol) differs from PIB (Mw = 1.1 · 106 g/mol) in the molecular
weight, and therefore has a higher zero shear viscosity and a longer relaxation time, see
Table 8.1, page 142. The MCR 702 results are compared to identical measurements on the
ARES G2.
First, the linear viscoelastic properties are compared. In Fig. 4.14 the angular frequency
dependence of G′ and G′′ for the PI-84k and the PIB-2 sample at T =20.4◦C is shown.
Good agreement (less than 10% variation) confirms that each sample has the same dynamics
in the linear regime on both rheometers.
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Figure 4.14: Frequency dependence of G′ and G′′ for the PI-84k and the PIB-2 sample at T = 20.4◦C
confirming identical dynamics in the samples for both rheometers, the ARES G2 and the MCR 702.

The MCR 702 software does not provide the actually measured raw data, but instead
gives data that has been reconstructed using only odd harmonics. This is evident when
stress data from the software is Fourier transformed. A spectrum of the signal from a
measurement of PIB-2 at ω = 2π rad/s, γ0 = 0.1 and T = 20.4◦C is shown in Fig. 4.15.
Since only one cycle is provided by the software, it was copied seven times to generate a
total signal of eight cycles for sufficient frequency resolution in the spectrum. The odd
harmonic intensities are scattered around an intensity of N = 1.61 · 10−3. Inbetween points
have intensities < 10−16 and represent the numerical noise of the FT. Therefore, the signal
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provided by the software must have been reconstructed using only odd harmonics. Since
at γ0 = 0.1 the PIB-2 sample is still in the LVR, vanishing harmonic intensities should be
present, that are caused by the sample. Consequently, the determined intensities represent
a measure of the noise in the stress wave. The S/N for this measurement is 621, whereas
for the ARES G2 measurements it is 2900. These values are significantly smaller than the
ones presented in Section 4.4.1, due to lower torques. However, the ratio of S/N of the
two instruments, S/NARES G2

S/NMCR 702
≈ 4.7, is close to the one found previously for the comparison

of the ARES G2 instrument with the MCR 501 (Table 4.1), which was 4.8. This suggests
that using the two motor SMT setup of the MCR 702 does not provide improved LAOS
sensitivity.
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Figure 4.15: Fourier spectra of the stress signal measured on the PIB-2 sample at ω = 2π rad/s, γ0 = 0.1
and T = 20.4◦C . Lines indicate the noise levels, 1.61 ·10−3 (S/N = 621) and 3.44 ·10−4 ((S/N = 2900)), for
MCR 702 and ARES G2, respectively. In the MCR 702 spectrum intensities occur only at odd multiples of
the excitation frequency (circles), all inbetween points have intensities < 10−16 and represent the numerical
noise of the FT. Therefore, the signal provided by the software must have been reconstructed using only
odd harmonics.

As for the previous comparisons, γ0 dependent measurements were performed, I3/1 was
determined and converted to the intrinsic nonlinearity Q0. Measurements of Q0 at three
different ω/2π = 0.1, 1 and 10 s−1 are shown in Fig. 4.16. Q0 values for PIB-2 from both
rheometer agree well, whereas for the PI-84k sample, a systematic deviation for all three
angular frequencies is evident. The MCR 702 measures values that are twice as large as
the ARES G2, which is the same deviation as already found for the MCR 501 for the
PI-84k sample. This result suggests that the source of the deviation is not the CMT design
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but rather a general problem of the MCR series, which occurs only for samples of higher
viscosities, corresponding to higher torques.
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Figure 4.16: Comparison of Q0 for the PI-84k and the PIB-2 sample, T = 20.4◦C , measured using the
MCR 702 and the ARES G2 rheometer. The PI-84k data has been multiplied with 3/2 to correct for the
inhomogeneous strain field in parallel plates geometry (Section 4.3). This was not necessary for the PIB-2
data, since cone and plate geometry was used.

4.5 Summary

This chapter deals with the technical aspects of conducting LAOStrain experiments on
stress controlled and strain controlled rheometers. Data from LAOStrain experiments on
a polyisoprene melt and polyisobutylene solutions measured on five different rheometers
is compared to point out experimental details that need to be considered in order to
achieve a reasonable agreement of the measured nonlinear quantities. The instruments
under investigation were: ARES-G2 (TA Instruments), ARES-LS (TA Instruments),
MCR 702 (Antron Paar), all three are separated motor-transducer rheometers, DHR-3
(TA Instruments) and MCR 501 (Anton Paar), which are combined motor-transducer
rheometers. The data was analyzed using the framework of FT-Rheology as introduced in
chapter 2 to obtain the normalized intensity of the third harmonic I3/1 of the stress wave
and the zero-strain nonlinearity Q0 derived from it.
Although the general behavior of I3/1(γ0) was qualitatively the same on all rheometers for
both materials, the absolute values varied. The method of temperature control has an
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important effect on the results when measuring above ambient temperature. Deviations
of up to 30% in Q0 were observed for the polyisoprene melt when a Peltier plate was
used instead of a forced convection oven, but this deviation could be corrected by simply
applying time temperature superposition.
Differences in harmonic intensities arising from using parallel disks geometry due to its
inhomogeneous flow field were addressed. A correction factor of 3/2, that when multiplied
with intensities from parallel disks, converts them to cone and plate intensities, was derived
by A. J. Giacomin using the corotational Maxwell model. This factor could be confirmed
experimentally with LAOS measurements on the polyisoprene sample.
Another instrument control parameter that had a large impact on the results was the
setting for the deformation control on the DHR-3 (motor mode). This setting had to be
chosen correctly in order to mimic a real LAOStrain experiment on a CMT-Rheometer.
Only with the optimal setting could nonlinearities in the strain be sufficiently suppressed
to achieve a good agreement between the measured Q0-values and the results from the
SMT-instruments. Otherwise, nonlinearities were distributed between strain and stress,
which led to smaller Q0-values. As for an unknown sample the optimal setting is not known
a priori, this is a disadvantage of the DHR-3 instrument. Furthermore, measurements on
the DHR-3 resulted in scaling exponents for I3/1 in the range of 2.3 to 2.5 instead of the
theoretically expected values of 2, which might be caused by the deformation control.
The results for I3/1 and consequently also for Q0-values obtained from the MCR 501 and
the MCR702 proved to be larger by a factor of approximately two, which suggests that,
in these cases, the active deformation control may introduce additional nonlinearities in
the stress signal. This deviation occurred only for the polyisoprene sample and so far its
ultimate source could not be elucidated. Further investigations, also in collaboration with
the instrument manufacturer, would be required.
For polyisobutylene, the results for Q0 from all the investigated instruments were found to
be within a reproducibility range of 12%. When using the CMT-rheometer DHR-3, effects
caused by the instrument inertia became noticeable for measurements at frequencies above
23 rad/s leading to an apparent maximum in the frequency dependence of Q0. This artifact
can be avoided by measuring in the transient mode since the inertia corrected stress of the
sample can be Fourier-transformed instead.
Although it was found that the two CMT-instruments, when running a LAOStrain experi-
ment, were not able to reduce the nonlinearity in the strain input wave, Iγ3/1, to a level as
low as that of an SMT-instrument, the measured nonlinearities in the stress, Iσ3/1, were
close enough to results from the SMT-instruments to suggest that the residual nonlinearity
in the strain is negligible.
In summary, if certain precautions, such as careful temperature control, appropriate settings
for the gain of the active deformation control and avoidance or correction of instrument
inertia effects, are taken, then the relative deviations of the measured nonlinear quantities
I3/1 and Q0 for a LAOStrain experiment on different rheometers can be expected to be
below 12%.



Chapter 5

Simple theoretical predictions for
LAOS using an extended 1D
Maxwell model

Constitutive modeling has accompanied the development of the LAOS technique from a
early point on (Bird et al. 1987; Macosko 1994; Morrison 2001; Giacomin et al. 2011). Even
analytical solutions are available in rare cases (Saengow et al. 2015; Boisly et al. 2014).
However, the complexity of most models naturally limits their application. Very general
models that can predict arbitrary flows, such as the Oldroyd 8 parameter model (Bird
et al. 1987), require many parameters that are difficult to determine experimentally.
Therefore, in this chapter a simple LAOS model is presented, that contains only the most
necessary effects that are typical for polymeric substances and dispersions. The first is
viscoelasticity, which will be incorporated by the linear Maxwell model (Chapter 2). The
second is shear thinning behavior, which will be introduced by the Cox-Merz rule (Cox
and Merz 1958). The two parameters that are used are already known from the Maxwell
model, the elastic modulus G and a relaxation time λ. The model is a scalar, 1-D model,
therefore normal forces are neglected as well.

5.1 Modification of the Maxwell model

5.1.1 Differential equation

Starting from the scalar Maxwell model, which is a linear combination of a Hookean
spring and a Newtonian dashpot (Dealy and Larson 2006; Morrison 2001), a simple way to
generate nonlinear behavior is to introduce nonlinear building blocks in the model. As the
viscosity is known to be very much shear rate dependent for many complex fluids (Dealy
and Larson 2006; Morrison 2001; Malkin 2013), the dashpot is described by a function
η(γ̇) instead of a constant material parameter η. The exact function η(γ̇) will be specified
later. Previous work by Zacharatos and Kontou (2015) focused on modeling of strain stress
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curves and start-up of steady shear behavior using a nonlinear phenomenological model
based on the standard solid model (a spring parallel with a Maxwell element). They used
an Eyring type (Bird et al. 1987) nonlinear dashpot as well as a nonlinear spring which
followed a power law. LAOS flow, however, was not modeled. Similarly, but based on
the Maxwell model, Monsia (2011) calculated stress build up with a model consisting of a
generalized spring and generalized dashpot. Both elements were modeled by power laws.
To set up the differential equation for the serial combination of the linear spring with a
nonlinear dashpot as depicted in Fig. 5.1, the same procedure as for the Maxwell model is
used.

G

η = η(γ)

Figure 5.1: Phenomenological model consisting of a linear spring and a nonlinear dashpot in series. The
introduction of a nonlinear dashpot is a simple way to introduce nonlinearity into the Maxwell model.

Both elements, spring and dashpot, have the same stress σ and the sum of the individual
strains in the spring and the dashpot, γs and γd, equals the total strain γt. Also the sum
of the individual shear rates equals the total shear rate.

σs = σd (5.1)

γt = γs + γd (5.2)

γ̇t = γ̇s + γ̇d (5.3)

Assuming linear behavior of the spring, γ̇s can be replaced by σ̇/G using Hooke’s law, for
the dashpot shear rate, γ̇d = σ/η(γ̇d) will be used. This leads to the first order ordinary
differential equation (Eq.5.5), which is the scalar expression for the shear stress of the
White-Metzner model (White and Metzner 1963).
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γ̇t = σ̇

G
+ σ

η(γ̇d)
(5.4)

σ̇ = G

(
γ̇t −

σ

η(γ̇d)

)
(5.5)

5.1.2 Choice of the shear rate dependent viscosity function

When specifying the shear rate dependent viscosity function of a polymer, two major
features are important: a finite zero shear viscosity η0 and shear thinning. Many empirical
viscosity functions have been proposed which capture these two features (Bird et al. 1987),
well known examples are the Carreau-Yasuda (Yasuda et al. 1981) and the Cross model
(Cross 1968). In this work a two parameter viscosity function will be used, that can be
derived from the Maxwell-Model using the Cox-Merz rule (Cox and Merz 1958). This
empirical rule states that for simple viscoelastic materials the angular frequency dependent
complex shear viscosity in a small amplitude oscillatory test equals the shear rate dependent
viscosity in a steady shear experiment, |η∗(ω)| = η(γ̇), where ω is expressed in units of
rad/s and γ̇ in s−1. Snijkers and Vlassopoulos (2014) have evaluated this rule recently
for a variety of polymer melts including linear and branched polymers as well as blends
of linear polymers of the same chemistry. Although the Cox-Merz rule generally lacks a
physical explanation, it is applied frequently in both, academic and industrial research. Its
main use is to easily determine the steady shear viscosity function by measuring the linear
viscoelastic properties using a small amplitude oscillatory shear (SAOS) experiment. This
is advantageous because the SAOS experiment is more robust and more reproducible than
the steady shear experiment. Moreover, higher peak shear rates can be reached without
sample failure and less sample is needed because a rotational rheometer can be used instead
of a capillary rheometer. Especially using Time-Temperature-Superposition (Morrison
2001; Dealy and Larson 2006) allows to measure |η∗(ω)| over many decades in ω, which
then can be converted to η(γ̇).
In the Maxwell model the storage and loss moduli G′ and G′′ are frequency dependent
functions according to Eq. 5.6. The absolute value of complex shear viscosity is connected
to G′ and G′′ by Eq. 5.7 (Bird et al. 1987). Inserting Eq. 5.6 into Eq. 5.7 and simplifying
yields Eq. 5.9 . Applying the Cox-Merz rule, |η∗(ω)| is replaced by η(γ̇) and the angular
frequency dependence is changed to a shear rate dependence, which results in Eq. 5.10.

G′(ω) = G
λ2ω2

1 + λ2ω2 ; G′′(ω) = G
λω

1 + λ2ω2 (5.6)
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|η∗(ω)| =
√
η′2(ω) + η′′2(ω) =

√
(G′′/ω)2 + (G′/ω)2 (5.7)

= Gλ

√( 1
1 + λ2ω2

)2
+
(

λω

1 + λ2ω2

)2
(5.8)

= Gλ

√
1 + λ2ω2

1 + 2λ2ω2 + λ4ω4 = Gλ

√
1

1 + λ2ω2 (5.9)

η(γ̇) = Gλ

√
1

1 + λ2γ̇2 (5.10)

Thus the zero shear viscosity in Eq. 5.10 is η0 = Gλ and the square root term causes shear
thinning behavior for high shear rates. The form of Eq. 5.10 is a particular case of the
Carreau model (Eq. 5.11, Yasuda et al. 1981) with c = 0 and η∞=0.

η(γ̇) = η0 − η∞
(1 + λ2γ̇2)(1−c)/2 + η∞ (5.11)

Using Eq. 5.10 in Eq. 5.5 results in a differential equation according to Eq. 5.12. The
specific choice of η(γ̇) keeps the number of parameters for the whole model minimal, using
only a single elastic modulus G and a single relaxation time λ.

σ̇ = Gγ̇ − σ

λ

√
1 + λ2γ̇2 (5.12)

In the presented model the relaxation time λ defines the balance between elastic and viscous
behavior for a fixed frequency and the nonlinearity of the viscosity function at the same
time, whereas the modulus G sets only the stress scale. In Fig. 5.2 a plot of the storage and
loss moduli as well as the steady shear and the complex viscosity functions for the Maxwell
model are shown. The Maxwell model predicts a constant steady state viscosity for steady
shear (see Fig. 2.3), whereas the complex viscosity is a function of ω. By incorporating
the Cox-Merz rule with the specific choice of the shear rate dependent viscosity (Eq. 5.10),
Maxwellian behavior for the linear oscillatory case is combined with shear thinning in
steady shear, thus enabling the Maxwell model to predict a LAOS response. Therefore,
both steady shear behavior and oscillatory shear for arbitrary strain amplitudes can be
described.

5.2 Model calculations

The numerical solution of the presented model gives an oscillatory stress signal σ(t) for
an applied oscillatory strain input of γ(t) = γ0 sinωt. The relaxation modulus G linearly
determines the stress scale of the results and was arbitrarily set to 10 Pa in all calculations.
Exemplary results of the waveforms for G = 10 Pa, λ = 1 s, ω = 1 rad/s are shown in Figs.
5.3 for three different strain amplitudes. Only the steady state solutions after all transients
have decayed are shown. The elastic (σ vs γ, panel (a)) and viscous (σ vs γ̇, panel (b))



CHAPTER 5. LAOS MODELING 84

1 0 - 2 1 0 - 1 1 0 0 1 0 1 1 0 21 0 - 3

1 0 - 2

1 0 - 1

1 0 0

1 0 1

 
 G

', 
 G

'' [
Pa

]
 |h

*(w
)|, 

 h(
g)  

[Pa
s]

w  [ r a d / s ] ,  g  [ s - 1 ]  
Figure 5.2: The frequency dependence of the storage and loss moduli for the presented model is identical
to the Maxwell model. Furthermore, in contrast to the Maxwell model, the Cox-Merz rule |η∗(ω)| = η(γ̇) is
incorporated. G = 10 Pa, λ = 1 s.

Lissajous plots for a linear response at γ0 = 0.011 show an ellipse. In this case De = 1 and
therefore the phase angle is exactly 45◦, thus elastic and viscous behavior are balanced. At
larger amplitudes, deviations from the elliptical form are visible. For γ0 = 1.33 in panel
a), the increased area inside the loop, which is a measure for the dissipated energy in
a cycle (Giacomin and Dealy 1998; Ewoldt et al. 2010), suggests that viscous behavior
exceeds the elastic behavior in comparison to the case of γ0 = 0.011. For γ0 = 23.7
pronounced nonlinear effects occur. At higher shear rates (γ̇max = γ0ω = 23.7 1/s) the
dashpot is strongly shear thinning within the oscillation cycle (compare the shear rate
dependent viscosity in Fig 5.2). This results in behavior reminiscent of an elastoplastic
body (Rouyer et al. 2008): as long as the stress is well beyond a yield stress that depends
on the magnitude of G, the model gives approximately linear elastic behavior. Exceeding
this yield stress leads to extreme shear thinning (the viscosity of the dashpot decreases
as γ̇−1), resulting in plastic behavior, that means a stress independent of the strain (or
shear rate) for the largest portion of the cycle. At these conditions the model represents
a continuous version of the elastoplastic model with smooth transitions from elastic to
plastic behavior.
After exploring the waveforms qualitatively, quantitative measures for strain amplitude (or
Wi = ωγ0λ) dependent calculations are presented. Figure 5.4 displays the γ0 dependence
of G′, G′′ and I3/1 for G = 10 Pa, λ = 1 s, ω = 1 rad/s. For small γ0, G′ equals G′′, which is



CHAPTER 5. LAOS MODELING 85

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0
- 1 . 0

- 0 . 5

0 . 0

0 . 5

1 . 0

s/s
0

            g 0  
 0 . 0 1 1
 1 . 3 3
 2 3 . 7

s/s
0

g / g 0

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0
- 1 . 0

- 0 . 5

0 . 0

0 . 5

1 . 0( b )

 

 

 

g / g 0

( a )

Figure 5.3: Waveforms from a numerical solution of the model using G = 10 Pa, λ = 1 s, ω = 1 rad/s,
De = 1, represented as elastic (a) and viscous (b) Lissajous figures.

consistent with Maxwellian behavior at De = 1. With increasing γ0 the response becomes
increasingly nonlinear: Both G′ and G′′ start decreasing, but G′ does so more drastically.
I3/1 initially displays the power law behavior I3/1 ∝ γ2

0 , that is also termed intrinsic LAOS
range (Hyun and Wilhelm 2009; Reinheimer et al. 2012; Ewoldt and Bharadwaj 2013) or
MAOS (Medium Amplitude Oscillatory Shear, Hyun et al. 2011). Eventually, I3/1 levels
off at value of 1/3, which is the maximum I3/1 for a shear thinning dashpot. The limit
of 1/3 results from a shear thinning viscosity that follows a power law with an exponent
of -1. This maximum thinning leads to a rectangle wave form for the stress and I3/1 of
a rectangle wave equals 1/3 (Klein et al. 2007). That means at these high values of γ0

(and therefore high shear rates) the effect of the incorporated spring is negligible and the
system behaves like a power law shear thinning fluid for the largest portion of the cycle.
Along with the numerical results, asymptotic analytical solutions are plotted as solid lines
in Fig. 5.4. The differential equation 5.12 has been solved by Mahdi Abbasi in a slightly
generalized form to obtain the first nonlinear terms that scale with γ3

0 or γ̇3
0 , that is the

first terms that describe the deviation of G′ and G′′ from their plateau values. Furthermore
an asymptotic expression for I3/1 (Eq. 5.13) was derived, similar to the one in the work of
Giacomin et al. (2015). The coefficients G′mn and G′′mn in the nonlinear stress representation
according to Eq. 2.30, page 24 for m = 1, 3 and n = 1, 3 can be found in the appendix.

I3/1 =

√
(G′33γ

3
0 + · · · )2 + (G′′33γ

3
0 + · · · )2√

(G′11γ0 +G′31γ
3
0 + · · · )2 + (G′′11γ0 +G′′31γ

3
0 + · · · )2

(5.13)

The asymptotic solutions shown as lines in Fig. 5.4 confirm the numerical results for small
deviations from the linear viscoelastic regime. However, already for γ0 > 1 (for De = 1),
the asymptotic predictions fall below the numerical results, because only the 3rd order
term in γ0 is included. Additionally, G′ and G′′ eventually becoming negative for increasing
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γ0, which is unphysical, therefore not shown in the log-log plots, as well as the apparent
maximum in I3/1 around γ0 = 2.3 are artifacts caused by the truncation. This shows the
limited usability of truncated solutions. In order to reach a description in the full range
that is plotted in Fig. 5.4 for the numerical results, the analytic solution would need to
include many more higher order terms.
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Figure 5.4: Symbols show G′, G′′ and I3/1 from a numerical solution of the model using G = 10 Pa and
ω = 1 rad/s. Panel a) limiting case: λ = 1 s, De = 1, panel b) viscous case: λ = 0.1 s, De = 0.1, panel
c) elastic case: λ = 10 s, De = 10. Solid lines are asymptotic analytical solutions for the model that are
exact only for small enough deformation amplitudes, see the appendix of Merger et al. (2015) for a detailed
derivation.

After dealing with the special case of De = 1, the representative cases of predominantly
viscous (De = 0.1) and predominantly elastic behavior (De = 10) shown in Fig. 5.4 (b)
and (c), respectively, are addressed. The change in De has been made by choosing λ
accordingly, while keeping ω constant. For De = 0.1 (Fig. 5.4 (b)) in the linear regime G′′

is 10 times higher than G′ and in the nonlinear regime both G′ and G′′ decrease. When
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compared to the case of De = 1, the overall decrease of nonlinearity is evident in the
decrease of the moduli occurring at larger γ0. Similarly, I3/1, although it has the same
functional behavior as in Fig. 5.4 (a), shows smaller values, indicating that the transition
from linear to nonlinear behavior occurs at larger γ0.
The initial situation for small amplitudes is reversed in the case of De = 10 (Fig. 5.4 c), G′

is 10 times higher than G′′, again recovering the results of the Maxwell model for the linear
case. Interestingly, for De > 1 the model is able to predict an overshoot in G′′, followed
by a cross-over of G′ and G′′. These are common characteristics for yielding under LAOS
that have been observed for dense colloidal suspensions, gels and foams (Brader et al. 2010;
Kim, Merger, et al. 2014; Rouyer et al. 2008). In filled and vulcanized elastomers this effect
has also been observed and is known as the ’Payne’ effect (Payne 1962; Allegra et al. 2008).
A close inspection of I3/1 reveals an intermediate scaling region (broken line in Fig. 5.4 c)
where I3/1 increases linear with increasing γ0, which coincides with the increase in G′′.
The calculations have been repeated for several other De and the results for I3/1 are shown
in Fig. 5.5. In all cases an initial power law behavior with I3/1 ∝ γ2

0 can be observed
for low γ0, which is confirmed by the asymptotic solutions. Furthermore, for De>1 , the
intermediate scaling region where I3/1 is linear in γ0 extends over a larger range of strain
amplitudes for increasing De. Curves of I3/1 vs γ0 can be superimposed on a master curve
for De < 0.1 when I3/1 is plotted vs Wi = ωγ0λ, as shown in the inset of Fig. 5.5. This is
not possible for De > 0.1 as the functional form of I3/1 changes when elastic contributions
become important. The influence of the elastic spring also leads to different De scaling
behavior of the I3/1 curves.
From the regions where I3/1 ∝ γ2

0 holds, the intrinsic nonlinearity Q0 = limγ0→0
I3/1
γ2

0
(Hyun

and Wilhelm 2009) has been determined. It can be interpreted as a measure of how far
in strain amplitude the linear range of a sample extends. The definition of ’linear’ range
is not fixed, because in the intrinsic concept, I3/1 actually never equals 0. But one can
always assign a range where I3/1 is so small that it plays an insignificant role for the overall
mechanical behavior of a material. Such a limit could be for example I3/1 = 10−4, since for
all γ0 where I3/1 is smaller, the deviation of G′ and G′′ from their respective linear values
is vanishingly small, compare Figs. 5.4 (a) to (c). With this definition of an apparent
linear range in mind, larger Q0, means more narrow apparent linear range, meaning G′

and G′′ decrease from their plateau values at smaller γ0.
The dependence of Q0 on De is displayed in Fig. 5.6. For De << 1, Q0 increases
quadratically with De, whereas for De >> 1 it is linear in De. The quadratic small De
behavior is caused by the shear thinning dashpot. This is not surprising as the dashpot is
dominating the overall response and any viscosity function that can be represented as an
ordered expansion in shear rate leads to Q0 ∝ De2 in the limit of small De (Bharadwaj
and Ewoldt 2014). For De > 1 the influence of the linear spring becomes evident: Coupling
the nonlinear dashpot to a linear spring reduces the increase of Q0 with De from quadratic
to linear. The expectation that increasingly dominating elastic behavior would eventually
lead to a reduction of nonlinearities for very large De is not met. This is due to only one
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relaxation time λ being incorporated in the model. Increasing λ = η/G at constant ω
makes the material more elastic, but at the same time also shortens the linear range of the
dashpot. Therefore in combination this still results in an increase of Q0 with increasing λ
(and thus increasing De for a fixed ω). Decoupling elasticity from the dashpot nonlinearity
by using two relaxation times (Section 5.6), λ1 to control the dashpot nonlinearity and
λ2 for the ratio of η/G, leads indeed to a decreasing Q0 with increasing De = λ2ω when
elasticity dominates.
When compared to predictions of other available models, the present model predicts very
different behavior for the elastic regions (Fig. 5.6). For example, in the corotational
Maxwell-Model (CRM) (Giacomin et al. 2015) Q0 plateaus to a value of 1

24 ≈ 0.0416.
Similarly, a constant value for Q0 is reached in the molecular stress function model for large
De [1/4(α− β/10) ≈ 0.0345, for α = 5/21 and β = 1]. The Giesekus and the Pom-Pom
model, in contrast, predict a decrease in Q0 for De > 1. Which of these different behaviors
is more realistic for a simple viscoelastic fluid will be determined in the subsequently
presented experiments. Analytical expressions for Q0(ω) from different models have been
derived by Mahdi Abbasi (Merger et al. 2015) and are summarized in Table 5.1. Along
with the full analytical expressions that are shown in the second column, in the third
column simplified expressions that capture both limiting behaviors for small and large De
are presented. Surprisingly these simplified versions all show a similar functional form that
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0 holds in Fig 5.5. Lines are analytical solutions for the various
models collected in Table 5.1.

can be written as Eq. 5.14.

Q0 = a
De2

1 + bDe2+d (5.14)

The coefficients are summarized in Table 5.1. This finding is especially intriguing since a
similar expression has been proposed by Cziep et al. (2015) based on experimental data
covering a range of linear, almost monodisperse homopolymer melts. Therein, the authors
provide experimental values for the parameters in Eq. 5.14 a = 0.32Z−0.5, b = 33.75Z−1

and d = 0.35, where a and b are dependent on the number of entanglements Z = Mw/Me.
Very recently, a similar procedure has been applied to the corotational Maxwell, Giesekus
and MSF model and additionally, to a model for rodlike polymers, an emulsion model as
well as the Curtiss-Bird model (Bharadwaj and Ewoldt 2015), where intrinsic nonlinear
measures were compared based on Chebishev coefficients (Ewoldt and Bharadwaj 2013).
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Model Q0
Asymptotic Q0
for small and large De a b d

Maxwell with Cox-Merz rule,
η(γ̇) = η0

(1+λ2γ̇2)1/2

1
8

De2

(1+9De2)0.5
1
8

De2

1+3De
1
8 3 -1

Pom-Pom De2(1−2.5Z−1
bb

)
2π(1+De2)0.5(1+25De2Z−2

bb
)0.5(1+4De2)0.5

1
2π

(1−2.5Z−1
bb

)De2

1+10Zbb−1De3
1−2.5Z−1

bb
2π 10Z−1

bb 1

Molecular stress function (MSF) 3
2(α− β/10) De2

(1+4De2)0.5(1+9De2)0.5
3
2(α− β/10) De2

1+6De2
3
2(α− β/10) 6 0

Corotational Maxwell (CRM) 1
4

De2

(1+4De2)0.5(1+9De2)0.5
1
4

De2

1+6De2
1
4 6 0

Giesekus α
4
De2(9De2+4α2−12α+9)0.5

(1+4De2)1.5(1+9De2)0.5
α
4

De2(4α2−12α+9)0.5

1+8(4α2−12α+9)0.5De3
α(4α2−12α+9)0.5

4 8(4α2 − 12α+ 9)0.5 1

General form for
linear monodisperse

homopolymers
(Cziep et al. 2015)

a De2

1+bDe2+d 0.32Z−0.5 33.75Z−1 0.35

Table 5.1: Analytical expressions for Q0 for different viscoelastic models. The approximate expressions, which capture the small and large De behavior, in the third
column have very similar functional forms, consistent with the general form found for linear monodisperse homopolymers (Cziep et al. 2015). These expressions have
been calculated using formulas for I3/1 from the following sources: Pom-Pom (Hoyle et al. 2014), MSF (Abbasi et al. 2013), CRM (Giacomin et al. 2015), Giesekus
(Gurnon and Wagner 2012). In the Pom-Pom model, Zbb is the number of entanglements that effectively leads to nonlinearities, for this only the backbone entanglements
of a branched polymer are considered. It is defined as Zbb = ZΦbb, where Z is the number of entanglements and Φbb = Mbb/M is the mass fraction of the backbone.
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5.3 Comparison to experimental data of wormlike micelles
solutions

For the validation of the model predictions a solution of wormlike micelles based on the
surfactant cetyl trimethylammonium bromide (CTAB) was chosen as a model system
because it is known to exhibit Maxwellian behavior for a wide range of De (Gurnon and
Wagner 2012; Khatory et al. 1993; Rehage and Hoffmann 1991). The results of frequency
dependent experiments in the linear viscoelastic regime on a 0.15 M aqueous solution of
CTAB in the presence of 1.5 M KBr are compared to the model predictions in Fig. 5.7.
The model parameters were determined as G = 68 Pa and λ = 0.265 s, respectively using a
fit of the Maxwell expressions for G′ and G′′ (Eq. 5.6), as shown in Fig. 5.7. Furthermore,
the validity of the Cox-Merz rule can be confirmed for the wormlike micelle solution for a
wide range of frequencies/shear rates, as |η∗(ω)| = η(γ̇).
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Figure 5.7: G′ and G′′ of a 0.15 M aqueous solution of CTAB in the presence of 1.5 M KBr at T = 35◦C.
Lines are fits of the Maxwell expressions for G′ and G′′ with G = 68 Pa and λ = 0.265 s. Also shown is
the validity of the Cox-Merz rule for this sample: The dependence of the absolute value of the complex
viscosity |η∗| on ω is the same as the dependence of the steady shear viscosity η on γ̇.

A comparison of the model prediction with experimental LAOS data is shown in the form
of Lissajous figures in Fig. 5.8 for three values of γ0 at ω = 1 rad/s. The predictions
were calculated using G = 68 Pa and λ= 0.265 s which were determined in Fig. 5.7. At
γ0 = 0.0214, which is considered to be in the LVR (Chapter 2.2.1, page 27), the agreement
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is excellent. For γ0 = 2.92, where noticeable distortion form an ellipse is evident, prediction
and experiment still agree well. Only at very large strain amplitudes, γ0 = 7.33, pronounced
differences are visible in the Lissajous curves. In the experimental data the stress slightly
decreases for γ between -2 and 6 and again for γ between 2 and -6 in the second half of the
cycle, whereas in the prediction the stress is constant in this range. I3/1,m, I3/1,e indicate
predicted and experimentally determined values, respectively. At γ0 = 0.214, I3/1 is too
small to be detected experimentally.
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Figure 5.8: Lissajous figures for a 0.15 M aqueous solution of CTAB in the presence of 1.5 M KBr at T =
35◦C and ω = 1 rad/s. Lines are model calculations (Eq. refdgl3) using G = 68 Pa and λ = 0.265 s, De =
0.265. I3/1,m, I3/1,e indicate predicted and experimentally determined values, respectively. At γ0 = 0.214,
I3/1 is too small to be detected experimentally.

A quantitative comparison for more narrowly varying strain amplitudes is presented in Fig.
5.9 in terms of G′, G′′ and I3/1. As expected from the Lissajous figures, in the LVR the
agreement is very good, only small deviations on the order of few percent can be seen in G′

and especially G′′, which result from the good but not perfect fit in Fig. 5.7. For increasing
γ, the model captures the decrease of G′ very well, but overestimates values of G′′, which
decrease stronger in the experiment. I3/1 values however, are underestimated int the model
by approximately 30% in the intrinsic range (0.5 < γ0 < 2). The overall agreement is
comparable to results of (Nam et al. 2010), who modeled data of poly(ethylene oxide) and
poly(acrylic acid) solutions with the more complex multimode Giesekus model.
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Figure 5.9: Strain amplitude dependent G′, G′′ and I3/1 for a 0.15 M aqueous solution of CTAB in the
presence of 1.5 M KBr at T = 35◦C and ω = 1 rad/s. Lines are model calculations (Eq. 5.12) using
G = 68 Pa and λ = 0.265 s, De = 0.265.

1 0 - 2 1 0 - 1 1 0 0 1 0 1

1 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1
 

 

 e x p e r i m e n t
 c u r r e n t  m o d e l
 C R M
 Q 0  =  a D e 2 / ( 1 + b D e 2 + d )

Q 0

D e
Figure 5.10: Q0 of a 0.15 M aqueous solution of CTAB in the presence of 1.5 M KBr at T = 35◦C.
Repeated measurements with separate loadings give an estimate of the reproducibility. Lines are predictions
of the current model (Eq. 5.12) and the corotational Maxwell model (CRM). Additionally, the Eq. 5.14 has
been fitted to the data providing a = 0.2, b = 2.53 and d = 0.158.
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As shown in Fig. 5.9, I3/1 ∝ γ2
0 for a certain range of γ0, therefore the intrinsic nonlinearity

Q0 can be determined. Frequency dependent measurements of Q0 of the CTAB sample
are shown in Fig. 5.10 along with the predictions of the current model. Repeated
measurements with separate loadings give an estimate for the reproducibility of the Q0

values. The corotational Maxwell model has the same model parameters, G and λ, and
therefore is shown as well. In contrast to the current model, in the corotational Maxwell
model, nonlinear behavior arises not from assuming a shear rate dependent viscosity but
is a consequence of using a corotational derivative in the differential equation (Giacomin
et al. 2011). It is a three dimensional, that means tensorial model, where the shear stress is
coupled to normal stresses. The corotational derivative ensures frame invariance for rotating
coordinate systems and defines the coupling of shear and normal stresses. This coupling
allows to predict nonlinear stress signals in LAOS flow. Although generally the modified
Maxwell model predictions (Eq. 5.12) fall below the actually measured nonlinearities for
De < 1, the errors are not too grave, with the predicted values of Q0 being smaller by up
to 50%. Although the predictions of the 3D corotational Maxwell model are better, the
presented simple modified Maxwell model shows reasonable capability of describing the
data for De < 1. Its failure for De > 1 is not that surprising, as the assumption that the
spring is linear and it is only the dashpot that shows nonlinear behavior is not very realistic
at conditions where elasticity dominates the material’s mechanical properties. The power
law exponent for the decrease in the large De range was found to be approximately -0.16 for
the specific sample investigated so far. Fitting Eq. 5.14 to the data gives a = 0.20, b=2.53
and d=0.158. In comparison to measurements on linear, narrowly distributed polymer
melt by Cziep et al. (2015) where a d value of 0.35 was determined, Q0 decreases weaker
for the wormlike micelle solution. It turns out that none of the models shown in Fig. 5.6 is
able to predict the large De behavior quantitatively.
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5.4 Scalar LAOS model with a power law viscosity function

As pointed out in Chapter 2 many different functions can be used to describe the shear
rate dependency of the viscosity. The power law model, which is also known as Ostwald-de
Waele model, is especially useful due to its simplicity. When Newtonian behavior does
not suffice for fluid dynamics calculations it is usually the power law that is employed. In
the preceding calculations in Section 5.2, the shear thinning behavior was restricted by
the Cox-Merz rule inspired function such that η ∝ γ̇−1 for high γ̇. Now, the shear rate
dependent viscosity in the modified Maxwell model is set to follow a powerlaw (Eq. 5.15)
allowing different exponents c and resulting in the differential Eq. 5.16. Since the shear
rate is oscillating and therefore can also be negative but the viscosity is always positive,
the absolute value |γ̇| has to be used.

η(γ̇) = K|γ̇|c−1 (5.15)

σ̇ = G

(
γ̇ − σ

K|γ̇|(c−1)

)
(5.16)

This version of the model, in contrast to the one using the Cox-Merz rule (Section 5.1.2),
now lacks a zero shear viscosity but still captures shear thinning. The model parameters
are now the elastic modulus G, a consistency K and the powerlaw coefficient c. Due to the
lack of a zero shear viscosity no linear viscoelastic regime exists. Frequency dependencies
of the moduli are therefore also strain amplitude dependent. This leads to some interesting
effects. For example, keeping γ0 constant and decreasing ω increases nonlinear effects
because for decreasing ω, the competition of spring and dashpot is shifted more towards
the dashpot, which is inherently nonlinear.
The strain amplitude dependence of G′ and G′′ for different shear thinning coefficients is
displayed in Fig. 5.11 (a). The lack of a zero shear viscosity leads to, in comparison to the
results in Section 5.2, much simpler behavior of the moduli in γ0 dependent calculations.
For small γ0 elastic properties dominate, G′ > G′′. With increasing γ0 the loss modulus
increases with a power law exponent that is decreasing with increasing c. There is no low
γ0 plateau for G′′. The closer c is to 1, which represents Newtonian behavior, the shallower
the increase in G′′. Eventually for further increasing γ0, G′ starts to decrease, which is
followed by a cross-over. Afterwards, both G′ and G′′ decrease but G′ does so faster. Again
the scaling exponents of the decrease are governed by c. Similar trends are evident in I3/1

as shown in Fig. 5.11 (b). Here, the numerical solutions showed that c directly translates
into the scaling exponent of I3/1 that increases proportional to γ1−c

0 . Furthermore, the
maximum value of I3/1 is decreasing when c goes towards 1.
The fractional scaling of I3/1 ∝ γ1−c

0 seems to contradict many other models developed
so far (Giacomin et al. 2011; Gurnon and Wagner 2012; Wagner et al. 2011; Reinheimer
et al. 2011; Abbasi et al. 2013). All of them predict quadratic scaling of I3/1, which is
fundamentally linked to a Taylor expansion using only even order terms as shown in Section
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Figure 5.11: Strain amplitude dependent storage and loss moduli G′ and G′′ from numerical solutions of
the model with a shear rate dependent viscosity according to a power law η(γ̇) = Kγ̇c−1 for various shear
thinning exponents c (a). K/Pa·s(1−c) = 1, G = 1 Pa, ω = 1 rad/s. Corresponding I3/1 dependent on γ0

(b). The exponent c translates directly into the powerlaw behavior of I3/1 ∝ γ(1−c)
0 . The regression lines

have the slopes 0.3, 0.45 and 1 for c=0.7, 0.55 and 0, respectively.

2.2. However, for the power law viscosity function, the Taylor expansion cannot be applied
since, |γ̇|c is not continuously differentiable around γ̇ = 0, hence the qualitatively different
behavior in comparison to all other models that rely on the Taylor series.
Interestingly, Blackwell and Ewoldt (2014) reported linear scaling for I3/1 in their thixotropic
Jeffreys model. They used a 3 element model as shown in Fig. 5.12, which is a Maxwell
element (for the Maxwell element see Section 2.1.4) arranged parallel to a second dashpot
that represents a background viscosity, usually a solvent. Thixotropy was introduced by
linking the dashpot and the spring of the Maxwellian part to a scalar structure parameter
ζ. The structure parameter ζ was shear rate and time dependent through Moore’s kinetic
structure equation 5.17 with two constants gauging the destruction, κD, and rebuilding, κA
of ζ. Appearance of |γ̇| in the structure equation ultimately caused I3/1 to scale linearly
with γ0.

dζ
dt = κA(1− ζ)− κDζ|γ̇| (5.17)

The general shape of G′ and G′′ is the same for a chosen c, no matter what values the
other parameters assume. Varying K moves the curves on the γ0-axis as shown in Fig.
5.13. For larger K, the solid to fluid transition as evident from a cross-over of the G′ and
G′′ delayed to larger γ0. Therefore the ratio K/G acts similar to the relaxation time λ in
the main model that uses the Cox-Merz rule (Section 5.1.2), with the difference that K/G
does not have same unit, because the dimension of K changes with c.
Analyzing the intrinsic nonlinearity Q0 in this variation of the model first needs an adjusted
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η2 

Figure 5.12: The thixotropic Jeffreys model by Blackwell and Ewoldt (2014) consists of a Maxwell element
(spring with a modulus G and dashpot with a viscosity η1) arranged in series to a second dashpot (η2) that
represents a background viscosity, usually a solvent.

definition, because the quadratic power law that was used previously (see definition in
Chapter 2) is now c dependent. Calculations for c = 0, which represents the most extreme
shear thinning case, and c = 0.7, i.e. rather weak shear thinning, show that if the intrinsic
nonlinearity is redefined according to Eq. 5.18, cQ0 decreases with ω−c. That means
increasing the elasticity in the system by increasing ω leads to a decrease of overall
nonlinearity.

cQ0(ω) = lim
γ0→0

I3/1

γ1−c
0

(5.18)
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Figure 5.13: Influence of the parameter K/Pa·s(1−c)= 0.1, 1 and 100 on the γ0 dependent storage and
loss moduli (a) and I3/1 (b). The parameter c was fixed at 1, ω = 1 rad/s, G = 1 Pa. For larger K the
solid to fluid transition as evident from a cross-over of the G′ and G′′ is delayed to larger γ0.
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5.5 Scalar LAOS model with a viscosity function including
a high shear rate limit

The two modifications of the Maxwell model that were presented so far (Cox-Merz rule
based viscosity function and power law viscosity function) predict ever decreasing dynamic
moduli (G′ and G′′) and dynamic viscosities (η′ and η′′) in LAOS for very large γ0 and an
ever decreasing steady shear viscosity for high shear rates. However, molecular interactions
naturally provide a lower limit for the viscosity which is on the order of 0.1-1 mPas for
small molecular weight liquids (e.g. η(water) = 0.89 mPas at T=25◦C).
Therefore in the next variation of the model, the Cox-Merz rule based viscosity function
(Eq. 5.10) is modified to include a high shear rate limiting viscosity η∞ as presented in
Eq. 5.19. A limiting viscosity is also oftentimes introduced to empirically account for
hydrodynamic interactions in dispersed systems (Mewis and Wagner 2012). Furthermore,
if measurements at sufficiently high shear rate are experimentally possible, it is meaningful
to restrict the shear thinning behavior, which in the previous model version was infinite.
Using Eq. 5.19 in the general differential equation (Eq. 5.12) leads to Eq. 5.20.

η(γ̇) = η∞ + (η0 − η∞)
√

1
1 + λ2γ̇2 (5.19)

σ̇ = G

γ̇ − σ

η∞ + (η0 − η∞)
√

1
1+λ2γ̇2

 (5.20)

Numerical calculations of G′, G′′ and I3/1 for η = 1 Pas, η∞ = η0/100 are shown in Fig.
5.14 to demonstrate the effect of incorporating η∞. For small and medium γ0 the results
are identical to the ones in Fig. 5.13 in Section 5.2. But for further increasing γ0 the
influence of η∞ sets in, the decreasing moduli eventually level off to plateau values. At
large γ0, G′′ is larger that G′, that means the model predicts a transition to a viscoelastic
but predominantly viscous state. At the same time as G′ and G′′ decrease, I3/1, instead of
approaching 1/3, decreases linearly.



CHAPTER 5. LAOS MODELING 99

1 0 - 2 1 0 - 1 1 0 0 1 0 1 1 0 2 1 0 3 1 0 4 1 0 51 0 - 6

1 0 - 5

1 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

g 0

 

 

 G
', 

 G
'' [

Pa
]

1 0 - 6

1 0 - 5

1 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

∝  g - 1
0 I 3/1

∝  g 2
0

Figure 5.14: Effect of including η∞ as in Eq. 5.20 on storage and loss moduli and I3/1 for ω = 1 rad/s,
η = 1 Pas, η∞ = η0/100, G = 1 Pa. For large strain amplitudes the moduli decrease to limiting values,
which are set by η∞ and η0, at the same time I3/1 decreases linearly.
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5.6 Scalar LAOS model with two relaxation times

The main model in section 5.2 had a single relaxation time (Eq. 5.21) and required the
Cox-Merz rule to be valid. There are, however, fluids where the Cox-Merz rule does not
apply. Examples for such systems are polymeric fluids which exhibit strong energetic
interactions, like strong hydrogen bonds (Kulicke and Porter 1980), WLM systems where
shear induces the formation of large scale structures (Kadoma et al. 1997) or some dispersion
and emulsion systems (Al-Hadithi et al. 1992). In case of failure of the Cox-Merz rule, the
strict condition of the Cox-Merz rule validity in the model can be relaxed by introducing a
second relaxation time. The functional form of the shear rate dependent viscosity function
η(γ̇) (Eq. 5.22) is retained, such that a zero shear viscosity and shear thinning is predicted.
An alternative approach could be the assumption of a Carreau type viscosity (Eq. 5.11)
function for the dashpot but in order to stay close to the original model (Eq. 5.21), this
approach will not be pursued. In the following modification, the identity of the relaxation
time in the Maxwell model, λ2, with the relaxation time in η(γ̇) = η0

√
1

1+λ2
1γ̇

2 is not forced,
that means η0/G = λ2 6= λ1. This results is the differential equation 5.22, where the first
relaxation time λ1 sets the nonlinearity of the viscosity curve, whereas the second time,
λ2 = η0/G, changes the balance of viscous and elastic effects. When the two times are
varied independently, this has an interesting effect on the predicted Q0 behavior.

σ̇ = G(γ̇ − σ

λ

√
1 + λ2γ̇2) (5.21)

σ̇ = Gγ̇ − σ

η0

√
1 + λ2

1γ̇
2 = G(γ̇ − σ

λ2

√
1 + λ2

1γ̇
2) (5.22)

First, variation of λ1 is addressed. The results in Fig. 5.15 show that upon changing λ1 the
cross-over of storage and modulus can be shifted on the γ0 axis, but as λ2 is fixed at 100 s
the initial values of G′ and G′′ stay unaffected. Thus, the extension of the LVR regime
can be varied independently of the elasticity/viscosity balance. This is also evident in I3/1

where the functional form is identical, but for the larger λ1 the whole curve is shifted to
smaller γ0, signaling an earlier transition from linear to nonlinear behavior. The inset in
Fig. 5.15 shows the dependence of Q0 on λ1. Increasing the relaxation time of the dashpot
λ1 without changing the balance of dashpot and spring (by keeping λ2 constant) leads to a
quadratic increase in Q0, as it would for a simple nonlinear dashpot without the spring
(Bharadwaj and Ewoldt 2014). The spring merely, introduces an off-set as shown by the
difference in the Q0(λ1) dependencies for λ1 = 1 and 100 s (inset of Fig. 5.15).
If λ1 is fixed and λ2 = η0/G is varied, the balance of viscous and elastic behavior can
be changed while at the same time maintaining the nonlinearity level. This, however, is
only possible if the viscous behavior is dominating as displayed in Fig. 5.16. For λ2ω < 1
(predominantly viscous behavior), the ratio of starting values of G′ and G′′ can be adjusted
by changing λ2 as indicated by the arrows, but the transition to nonlinear behavior, marked
by a decrease of G′ and G′′, is fixed at, in this case, γ0 ≈ 1 due to constant λ1. For λ2ω >
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Figure 5.15: Influence of the dashpot relaxation time, λ1, on the γ0 dependent storage and loss moduli
and I3/1, for the two relaxation time model from Eq. 5.22, G = 10 Pa, ω = 1 rad/s. The inset shows the
behavior of Q0 for varying λ1. A quadratic dependece is found.

1 however (predominantly elastic case, Fig. 5.17), this independence is not found. Here,
increasing λ2, therefore increasing the initial ratio of G′/G′′ also shifts the cross-over of
G′/G′′ and the I3/1 curve to larger γ0, thus increasing the apparent linear range.
Since the Deborah number is supposed to describe the relative importance of elastic effects
to purely viscous behavior (Dealy 2010), it is refined for the two relaxation times model
as De = ωλ2. Looking at the Q0 behavior for varying λ2 (Fig. 5.18), reaveals that if the
dashpot nonlinearity is kept constant by fixing λ1, changing the balance of spring and
dashpot, λ2, leads to either constant Q0 when the dashpot is dominating (De < 1), or to
decreasing Q0 when the spring is dominating (De > 1).
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5.7 Summary

In this chapter a simple, scalar, 1D model capable of predicting nonlinearities for the Large
Amplitude Oscillatory Shear experiment using only two parameters, a shear modulus and
a relaxation time, has been presented. The model was obtained by replacing the linear
dashpot in a Maxwell model by a nonlinear function, the spring was kept linear. The
specific function for the nonlinear dashpot was chosen by applying the Cox-Merz rule to
the expression of complex viscosity from the Maxwell model. The shear modulus sets
the stress scale, whereas the relaxation time governs the nonlinearity of the dashpot but
also the balance of viscous and elastic effects. The model is a scalar, special case of the
White-Metzner model.
Numerical solutions of the model have been calculated for a wide range of frequencies and
strain amplitudes. The results analyzed by Fourier transform were presented in terms of
the strain amplitude dependencies of the storage and loss moduli, G′ and G′′, the relative
intensity of the 3rd harmonic I3/1 and the intrinsic nonlinearity Q0. Furthermore, an
analytical solution was provided in the form of a truncated power series in strain amplitude.
Quadratic scaling laws for I3/1 known from previous experiments and predictions of other
models were confirmed and the functional form of Q0(De) was compared to predictions of
alternative, more complicated models (corotational Maxwell, Giesekus model, Pom-Pom,
molecular stress function).
Furthermore, the model predictions were compared to experimental data on a micellar
solution of cetyl trimethylammonium bromide (CTAB). Waveforms were compared using
Lissajous figures and good agreement was found. A quantitative comparison was made
using G′, G′′ and I3/1. It revealed that the model underestimates nonlinear effects as
measured by I3/1 in the intrinsic LAOS range, typical deviation for I3/1 were 30 %. LAOS
measurements on CTAB spanning three decades in angular frequency were performed to
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determine the intrinsic nonlinearity Q0(ω). Agreement of model prediction and experiment
for Q0(ω) is reasonably good considering the simplicity of the model. Deviations occur for
large Deborah numbers (or high angular frequencies), that is when the elastic behavior is
dominating.
Moreover, the model was modified by using a powerlaw viscosity function to be able to
describe varying shear thinning exponents. This led to deviations from the usually observed
square scaling of I3/1 with γ0.
The inclusion of a high frequency viscosity limit η∞ was investigated. Introducing in the
model η∞ had no effect on the intrinsic LAOS region and Q0 but limited the decrease of
G′ and G′′ and forced I3/1 to decrease linearly for very large γ0.
Lastly, the main two parameter model was modified such that the effect of dashpot
nonlinearity was decoupled from the balance of elastic and viscous behavior (η0/G) by
using two relaxation times instead of one. By doing so the validity of the Cox-Merz rule
is not a prerequisite anymore, which can be useful for some experimental systems, where
the Cox-Merz rule fails. The effects of both times were investigated independently. For
increasing dashpot relaxation time λ1, Q0 increased quadratically with λ1. For increasing
η0/G = λ2, Q0 was independent of De = ωλ2 if viscous behavior dominated and decreased
linearly with De if elastic behavior dominated.



Chapter 6

Large Amplitude Oscillatory Shear
investigations of dense colloidal
suspensions

6.1 Introduction to Mode Coupling Theory

In a hard sphere suspension of monodisperse spheres all rheological properties, such as the
relative zero shear viscosity or storage and loss moduli, depend only on the volume fraction
φ, and not on the size of the particles (Mewis and Wagner 2012). Fundamental rheological
properties of hard sphere suspensions have been outlined in Chapter 3, page 40. For
investigations at high volume fractions, that means close to the glass transition φg = 0.58,
one usually prepares a concentrated suspension by centrifugation from which several samples
of varying φ are obtained by dilution. In suspensions of thermo-responsive particles of
Polystyrene/poly(N-isopropylacrylamid) (PS/PNipam), which have been prepared by
Miriam Siebenbürger in the group of Prof. Ballauff at the Helmholtz-Zentrum Berlin,
controlled variations of the volume fraction can be induced by simply changing the
temperature, see Chapter 8, page 142 for experimental details on the system. A PS/PNipam
suspension is therefore a very convenient system to study the nonlinear rheology of
suspensions near the glass transition.
The structure and dynamics in dense suspensions can be described by a fully microscopic
theory called mode coupling theory (MCT) that calculates density auto correlation functions
Φ(t) using first principle mechanics (Fuchs and Cates 2012; Brader et al. 2012). The
correlator Φq(t) as defined in Eq. 6.1 represents all two body interactions over many
decades in time. It is wave vector dependent in the general case, hence the index q. Φq(t)
is connected to the intermediate scattering function f(q, t) = Φq(t)Sq, which is directly
measurable by light scattering experiments (Megen and Pusey 1991; Willenbacher et al.
2011). The structure factor Sq contains particle interactions and introduces experimental
parameters such as temperature and density (Henrich et al. 2009). The density fluctuation
in Eq. 6.1 is taken as ρq(t) = ∑N

j=1 exp(iq · rj(t)), where rj(t) is the position vector of the

105
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jth particle and the wave vector q(t) = (qx, qy − γ̇tqx)T introduces a shear rate dependence
in the correlator. The equation of motion for Φq(t) as expressed in Eq. 6.2 describes
the random Brownian motion of the particles as well as their shear induced migration.
Equation 6.2 contains an initial decay rate Γq and the memory function mq(t− t′), which
is not specified as such by the mode coupling theory. Many ansatz functions of varying
complexity exist for mq(t− t′) that couple flow to Φq(t) and introduce various relaxation
modes. One possible form for mq(t− t′) is Eq. 6.4. Solving Eq. 6.2 for simple shear gives
correlators that are depicted schematically in Fig. 6.1.

Φq(t) =
〈ρq(t=0)ρq(t)〉

NSq
(6.1)

Φ̇q(t) + Γq
(
Φq(t) +

∫ t

0
dt′mq(t− t′)Φ̇q(t′)

)
= 0 (6.2)

log t

Φq(t)
1

0

fluid

glass

fluid near ϕg

shear
 melted
 glass

γ

Figure 6.1: Schematic depiction of the density correlation function Φ(t). For fluids far from the glass
transition (φ << φg), only one decay is present: the α-relaxation that describes random Brownian motion.
When the volume fraction is approaching φg, α-relaxation is preceded by a second relaxation, the β-
relaxation. It describes the limited motion of the particle in a cage of its neighbors. For a glassy system,
the correlator does not decay to zero, the particle is fully trapped in the cage. The application of shear,
however, melts the glassy sample, therefore a final decay to zero is possible.

In the absence of shear, for fluids far from the glass transition (φ << φg) only one decay is
observed in the correlator, the α-relaxation. It expresses random particle movement by
Brownian motion.
When the volume fraction is increased and comes close to φg, the α-relaxation is shifted
to longer times due to the entrapment of the particles in cages of surrounding neighbors.
To escape a cage, collective motion of the neighbor particles is necessary, which is far less
probable. Furthermore, a second relaxation, called β-relaxation, emerges that describes
the localized motion of a particle in its cage. For a glassy system (φ > φg), the correlator
does not decay to zero because the cages become so tight that escape is not possible
anymore. The application of shear increases the decorrelation of the density fluctuations
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by additional velocity contributions in the direction of shear. This can be viewed as shear
induced melting of the glassy sample, ultimately allowing a final decay of the correlator.
As soon as Φq(t) is known, mechanical as well as dielectric properties can be calculated
(Tarzia et al. 2010). Mode cooupling theory has been previously employed to model and
predict various other flows than LAOS. Early work dealt with steady shear and predicted
flow curves (Fuchs 2003; Fuchs and Cates 2003) as well as small amplitude oscillatory
shear, where G′ and G′′ were modeled (Crassous, Siebenbürger, et al. 2008; Siebenbürger
et al. 2009). More recent advances led to investigations of steady shear start-up behavior
(Amman and Fuchs 2014), that is the transient stress evolution after switching on steady
shear. The decay of residual stresses after cessation of steady shear has also been addressed
(Ballauff et al. 2013; Fritschi et al. 2014).
LAOS measurements on high volume fraction suspensions can be used to investigate
their yielding behavior, that is the transition from a solid to a liquid, under oscillatory
and therefore quasistatic conditions. Earlier LAOS studies of suspensions focused on
differentiating samples that seemed to have identical steady shear properties (Kallus et al.
2001) or establishing a new LAOS analysis framework (Klein et al. 2007). Oftentimes LAOS
was used to induce non-equilibrium structures or crystallize the suspensions (Ackerson
1990; Yan et al. 1994; Panine et al. 2002).
Simultaneously they can be used to test the predictive capabilities of the mode coupling
theory. However, solution of the full microscopic (i.e. wave vector dependent) MCT
under LAOS flow is currently not possible. Therefore in the work of Brader et al. (2010),
a schematic version of the MCT was used, where the main features of the correlator
are modeled with a simpler set of equations, that involve model parameters. Schematic
here means that although the simplified model is not based on first principle calculations
anymore it recovers the important features of the fully microscopic MCT. The parameters
of the schematic version cannot be derived from first principles but instead are determined
by fitting rheological data, such as flow curves and G′ and G′′. In the schematic model,
wave vector invariance is assumed, that means shear induced structures are neglected
and the structure stays always isotropic. The argument for this assumption is that flow-
induced ordering should be negligible in the range of small Peclet numbers, Pe0 � 1.
The simplifications in the schematic version allow Eq. 6.2 be solved numerically under
oscillatory shear conditions even for large amplitudes.
Within the schematic model, the time dependent density correlator Φ(t) still remains the
essential quantity that describes the structure of the suspension system and its evolution
with time, but the wave vector dependence is removed. The correlator can be determined
by solving the integro-differential equation (Eq. 6.3).

Φ̇(t) + Γ
(
Φ(t) +

∫ t

0
dt′m(t− t′)Φ̇(t′)

)
= 0 (6.3)

The memory function in the schematic MCT is approximated with a second order polynomial
of the correlator Φ as shown in Eq. 6.4. In the absence of the memory function the dynamics
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is trivial, only one decay is present: Φ(t) = exp(−Γt) (Fuchs 2003). The numerator of m(t)
describes the slowing down of dynamics caused by increasing particle interactions with
increasing volume fraction φ. The denominator controls how strong shear forces accelerate
the correlator decay, despite the inhibition of the decay by particle caging. In the limit of
vanishing shear disturbance, i.e. when γ0 and/or ω go to zero, the denominator in Eq. 6.4
becomes one.

m(t) = ν1Φ(t) + ν2Φ2(t)
1 + (γ0ωt)2 (6.4)

In the memory function, ν1 = 2(
√

2−1)+ε/(
√

2−1) and ν2 = 2. The crucial parameter that
describes the state of the system is the distance from the glass transition ε = (φ− φg)/φg.
It is positive for a glassy suspension and negative for a flowing suspension. In the schematic
MCT all particle interaction effects beyond hard sphere repulsion enter the model only
indirectly via a change in the phase diagram, that is by adjusting φ and φg. A suspensions
is an ergodic system when observing a specific particle over time leads to the same result as
observing many particles, and therefore averaging over the space . Consequently, the fluid
suspension is ergodic, whereas the glassy is non-ergodic (Fuchs 2003). Under shear, the
model describes two competitive phenomena: On one hand, increasing particle interactions
leads to the glass transition and non-ergodicity of the system, which is evident in a plateau
of the correlator Φ(t) for long times. On the other hand, the shear deformation induces an
increased decay of Φ(t), restoring ergodicity.
Solving Eq. 6.2 for the correlator under shear Φ(t) allows to calculate the time-dependent
modulus G(t) according to Eq. 6.5 with vσ as a model parameter that measures the
strength of the stress fluctuations. Additionally, hydrodynamic contributions that are not
covered by MCT are considered by adding a high frequency viscosity η∞, where δ(t− t′) is
the Delta function. Subsequently, G(t) can be used to obtain the shear stress as a function
of time by integration of Eq. 6.6.

G(t, t′) = vσΦ2(t, t′) + η∞δ(t− t′) (6.5)

σ(t) =
∫ t

−∞
dt′γ̇(t′)G(t, t′) (6.6)

Numerical solutions of the schematic model for LAOS flow have been performed by Brader
et al. (2010) and in first approximation showed good agreement with experimental data of
thermo-responsive core-shell particles. In their study the waveforms agreed well, as did
the γ0 dependencies of G′ and G′′. However, higher harmonic contributions were severely
overestimated in the theoretical predictions, for increasing γ0, I3/1 was initially larger than
in the experiments, only for γ0 > 1 agreements was good. Furthermore, the experimentally
observed quadratic scaling of I3/1 at intermediate ranges of γ0, that is the intrinsic LAOS
region (see Chapter 2), was not confirmed.
Therefore, the theoretical approach changed from full numerical solutions to partially
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analytical, asymptotic solutions calculated by Seyboldt (2013). As part of this thesis new
LAOS measurements of the thermo-responsive PS/PNipam core-shell particle suspensions,
covering over 4 decades in angular frequency (or Peω), have been performed to verify the
theoretical advances of the mode coupling theory.
In order to find analytical expressions for the higher harmonics present in the stress wave,
that is calculated by the schematic MCT model, Seyboldt (2013) used a Taylor expansion
of the density correlator Φ in even orders of the strain amplitude γ0 according to Eq. 6.7.
Deriving asymptotic expressions for I3/1 requires at least the consideration of a quadratic
term, higher order terms are truncated for simplicity.

Φ(t, t′) = Φeq(t, t′) + γ2
0Φω(t, t′) +O(γ4) (6.7)

The next order deviations from the equilibrium correlator Φeq(t, t′), described by Φω(t, t′),
can be further decomposed as in Eq. 6.8, which helps obtaining a solution from the original
equation governing the evolution of Φ(t, t′) (Eq. 6.3).

Φω(t, t′) = f0(t− t′) + eiω(t+t′)f ′1(t− t′) + e−iω(t+t′)f ′′1 (t− t′) (6.8)

This ansatz eventually leads to two additional differential equations for f0 and f∗1 = f ′1 +if ′′1
(Eqs. 6.9 and 6.10, see Seyboldt (2013) for more details), which have the equilibrium
correlator Φeq(t, t′) as input. Unfortunately, due to their complexity, they have to be solved
numerically.

f ′0(t) + (1 + ν1 + ν2)f0(t)
+2
∫ t

0 dt′f0(t− t′)Φ̇eq(t′)[ν1 + ν2Φeq(t− t′) + ν2Φeq(t′)]
+(2− cos(ωt))[Φ̇eq(t) + Φeq(t)]
+2
∫ t

0 dt′Φ̇eq(t′) ·meq(t− t′) cos(ω(t− t′)) = 0

(6.9)

f ′1(t) + (1 + ν1 + ν2 + iω)f1(t)
+2
∫ t

0 dt′f1(t− t′)Φ̇eq(t′)[ν1 cos(ωt′) + ν2e
iωt′Φeq(t− t′) + ν2e

iωt′Φeq(t′)]
+1

2(1− cos(ωt))[Φ̇eq(t) + Φeq(t)]
−1

2
∫ t

0 dt′eiωt
′Φ̇eq(t′) ·meq(t− t′)[1− cos(ω(t− t′))] = 0

(6.10)

After solving for f0 and f∗1 , the total correlator Φ(t, t′) can be used in Eqs. 6.5 and 6.6
to calculate the stress signal, or directly its Fourier components, G∗1 for the fundamental
frequency and G∗3 for the 3rd harmonic (Eqs. 6.11 and 6.12). F {Φeq(t) · f0(t)} (ω) denotes
the Fourier transform of Φeq(t) · f0(t) taken at ω. The intrinsic nonlinearity Q0 can then
be computed as in Eq. 6.13. The results calculated by Seyboldt are shown in Fig. 6.7,
page 116, where they are compared to experimentally determined Q0.
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G∗1(ω) = G∗11 + γ2
0G
∗
31 +O(γ4)

= G∗11 + 2vσγ2
0iω [F {Φeq(t) · f0(t)} (ω) + F {Φeq(t) · f1(t)} (0)] (6.11)

G∗3(ω) = γ2
0G
∗
33 +O(γ4)

= 2vσγ2
0iωF {Φeq(t) · f1(t)} (2ω) (6.12)

Q0 = lim
γ0→0

1
γ2

0

|G∗3(ω)|
|G∗1(ω)| (6.13)

6.2 Experimental results

Linear and nonlinear shear experiments have been carried out on the CS-80 dispersion
kindly provided by Miriam Siebenbürger, HZB Berlin, (see Chapter 8.1.3, page 142 for
synthesis and characterization details) in order to investigate the predictive capabilities
of the schematic mode coupling theory. Only fluid states very close to the glass were
considered, as at the current stage, asymptotic predictions of the schematic MCT cannot be
made for glassy states. CS-80 is a polydisperse suspension of thermo-responsive core-shell
particles in 0.05 M potassium chloride solution with a solid content of 8.85 wt.-%. The
hard sphere core consists of polystyrene and has a diameter of 35 nm, whereas the shell is
a network of poly(N-isopropylacrylamide), whose thickness is temperature dependent.

6.2.1 Linear viscoelastic properties, flow curves and model fitting

Flow curves and linear viscoelastic moduli of the CS-80 dispersion at the temperatures
T = 22, 20, 18 and 15◦C are displayed in Figs. 6.2 and 6.3. Dimensionless scales of
reduced stress σred = σR3

H/(kBT ) vs the Péclet number Pe0 = γ̇R2
H/D0 and reduced

moduli G′red = G′R3
H/(kBT ), G′′red = G′′R3

H/(kBT ) vs Peω = ωR2
H/D0, respectively, are

used to allow fitting of MCT predictions to the data. As the temperature is decreasing, the
hydrodynamic radius of the thermo-responsive particles increases, which results in a higher
volume fraction. Therefore, the viscosity as well as the moduli increase, the Newtonian
range in the flow curves shortens and moves outside the experimental window (Fig. 6.2).
Similarly, the terminal regime and the cross-over point of the moduli in the frequency
dependent tests (Fig. 6.3) moves to smaller Peω ranges and eventually the cross-over is
not measurable anymore.
Since the schematic model does not provide analytical expressions for the viscoelastic
moduli and the flow curve depending on the model parameters, the fitting procedure was
not as straight forward as for example nonlinear least squares optimization.
For a given set of schematic model parameters, curves for G′red(Peω), G′′red(Peω) and
σred(Pe0) were calculated numerically using a Python code kindly provided by David
Hajnal from the group of Prof. Fuchs in Konstanz. The curves were then fit to the
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Figure 6.2: Symbols represent the experimentally measured flow curves for the CS-80 suspension at four
different temperatures, T = 22, 20, 18 and 15◦C, φeff = 0.614, 0.62, 0.631 and 0.637, lines show fits of the
schematic model to the data using the parameters in Table 6.1.

experimental data manually, following the procedure described in detail by Siebenbürger et
al. (2009). Briefly, first the separation parameter ε = (φ−φg)/φg, which is the distance from
the glass transition, was adjusted to match the cross-over frequency of the experimental
data and the prediction. Subsequently, the other parameters were fitted: the initial decay
rate, Γ, was kept constant, vσ set the magnitude of the moduli, the critical strain, γc, was
matched using the flow curves and the high frequency limiting viscosity, η∞, was adjusted
to the moduli at high Peω. The parameters obtained by the fits are collected in Table 6.1.
The overall quality of the fits is good for the flow curves as well as for G′red(Peω). For
low Peω however, the measured values for G′′red(Peω) are larger than predicted, which is a
known problem, see for example the fits in Fig. 5 of Siebenbürger et al. (2009) and Fig.
13 of Brader et al. (2010). This suggests the existence of an additional slow relaxation
process that is not covered by the schematic MCT. The discrepancy in G′′red(Peω) caused
by this process is even more prominent for glassy samples. In the glassy state, the MCT
predicts vanishing G′′red(Peω) as Peω goes to zero but the experimentally determined
G′′red(Peω) increases after a minimum for decreasing Peω (Crassous, Siebenbürger, et al.
2008; Siebenbürger et al. 2009). Siebenbürger et al. (2009) hypothesized that this slow
process develops smoothly and therefore, also exists in the fluid state causing the deviations
in G′′red(Peω). Crassous, Siebenbürger, et al. (2008) described this process by modifying
the equation of motion for Φ(t), introducing an additional relaxation time on the order of
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Figure 6.3: Symbols represent the experimentally measured storage and loss moduli for the CS-80
suspension at four different temperatures, T = 22, 20, 18 and 15 ◦C, φeff = 0.614, 0.62, 0.631 and 0.637,
lines show fits of the schematic model to the data using the parameters in Table 6.1.

104 s. However, they found that only one extra relaxation time was not sufficient to match
G′′red at low Peω.

T [◦C] φeff ε vσ [kBT
R3
H
] Γ [ D0

R2
H
] γc η∞ [ kBTD0RH

]

22 0.614 -1.7·10−3 60 100 0.177 0.361

20 0.62 -4.5·10−4 75 100 0.213 0.375

18 0.631 -2.4·10−4 125 100 0.189 0.40

15 0.637 -1.5·10−4 167 100 0.2 0.418

Table 6.1: Fitted model parameters for flow curves and frequency dependent moduli of the thermo-
responsive suspension CS-80. The separation parameter ε = (φ− φg)/φg is a dimensionless distance from
the glass transition, the decay rate Γ sets the Peω axis, the stress vertex vσ scales the stress axis, γc
determines the shape of the flow curve, η∞ determines a high frequency limit for the moduli.

6.2.2 Lissajous curves

Several earlier LAOS studies on high volume fraction suspensions concentrated on waveform
analysis employing Lissajous figures (Brader et al. 2010; Rogers et al. 2011b; Vaart et al.
2013). Therefore, some typical Lissajous figures are presented in Fig. 6.4 as a starting
point of the analysis. From measurements of CS-80 suspension at T = 18 ◦C (φeff =
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0.631) and ω = 4.522 rad/s (Peω = 1.43 ×10−2 ) three wave forms are shown. Note that
these are reconstructed waveforms which have been calculated from G′n and G′′n using odd
harmonics up to n=9. In the linear visco-elastic regime, at γ0 = 9.45 × 10−3 (Fig. 6.4
(a)), the Lissajous figure is an ellipse with a comparatively small area, which is indicative
of predominantly elastic behavior. This is even more evident in the G′ and G′′ values
shown in Fig. 6.5 (a). For an intermediate strain amplitude, γ0 = 6.436× 10−2, nonlinear
behavior is already evident in the Lissajous curve (Fig. 6.4 (b)), which is not elliptical
anymore (I3/1 = 0.024). For even larger γ0, the curves get broader indicating further
increasing dissipation (a circle in the Lissajous plot represents an ideal newtonian fluid)
and increasing nonlinearity (I3/1 = 0.090). For γ0 = 2.4657× 10−1 (Fig. 6.4 (c)), which
is larger than the strain amplitude at which G′ and G′′ cross over, the curve approaches
the behavior of an idealized Bingham model. The Bingham model is used for yield stress
fluids (Bingham 1916; Rogers 2012). The presented waveforms are consistent with previous
work (Brader et al. 2010; Rogers et al. 2011b; Vaart et al. 2013). An exception is the
stress overshoot that was observed by Brader et al. (2010) for very large strain amplitudes
(γ0 = 5). However, this range of γ0, was not probed in the current study, as the focus lay
rather on medium range γ0 measurements (0.01 < γ0 < 0.3) where the quadratic scaling
law for I3/1 (Chapter 2, page 27) could be expected.
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Figure 6.4: Representative wave forms as Lissajous plots (strain vs stress) from a LAOS measurement
of KS-13 at T = 18 ◦C (φeff = 0.631) and ω = 4.522 rad/s (Peω = 1.43 ×10−2). a) linear viscoelastic
regime, γ0 = 9.45 × 10−3 ; b) intermediate nonlinear range , γ0 = 6.436 × 10−2 ; c) highly nonlinear
range, γ0 = 2.4657× 10−1. Arrows in Fig. 6.5 indicate the position of the wave forms in the γ0 dependent
measurement. The data were reconstructed from the Fourier moduli including odd higher harmonics up to
the 9th.

6.2.3 Strain amplitude dependencies of G′,G′′ and I3/1

In Fig. 6.5 (a), strain amplitude measurements of the storage and loss moduli at T =
18◦C for three different angular frequencies corresponding to different Péclet numbers are
presented. As the strain amplitude is increasing, the transition to the nonlinear region can
bee seen in the moduli deviating from their plateau values. The reduced storage modulus
G′red decreases indicating a weakening of the elastic structure that is originating from the
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particles that are jammed in the cages of their neighbors. At the same time, G′′red increases
and displays a maximum. This is a common feature of jammed colloidal systems, as high
volume fraction suspensions (Renou et al. 2010) and colloidal gels (Laurati et al. 2011;
Shao et al. 2013; Kim, Merger, et al. 2014). It is also often observed in measurements of
rubbers, which are filled elastomers (Payne 1962; Allegra et al. 2008), where it is known
as the Payne effect. The increased dissipation signaled by the G′′red maximum is usually
attributed to breaking of inter-particle bonds that are present in colloidal gels and rubbers.
For high volume fraction suspensions, however, no such inter-particle bonds exist. The
calculations using a modified Maxwell model in Chapter 5 could reproduce this feature on
a continuum level, where no structural features are considered explicitly. However, they
enter indirectly by a shear rate dependent viscosity. The requirements for producing this
effect in G′′red are a shear thinning viscosity in combination with predominantly elastic
behavior in the linear visco-elastic regime.
Since storage and loss moduli are not sufficient to describe the material’s response beyond
the linear visco-elastic region, the next higher order Fourier terms in the form of the relative
intensity of the 3rd harmonic in the stress response, I3/1, are considered in Fig. 6.5 (b). For
increasing Peω, I3/1-values are generally lower, indicating that the progression to nonlinear
behavior occurs at larger γ0. At medium strain amplitudes (10−2 < γ0 < 10−1), a quadratic
dependence of I3/1 on γ0 is observed, as predicted by various constitutive models [e.g.
corotational Maxwell (Giacomin et al. 2015) or Giesekus model (Gurnon and Wagner 2012)]
and measured by Hyun and Wilhelm (2009) with polymer melts. Therefore, I3/1 is reduced
to Q = I3/1/γ

2
0 as shown in Fig. 6.6. From the plateau in Q the intrinsic nonlinearity,

Q0, is determined experimentally by averaging 3-8 points depending on the length of this
plateau. The error bars in Fig. 6.6 indicate an estimation for the reproducibility of Q(γ0)
from three separate loadings. In contrast to measurements on polymer melts and solutions
in Chapter 4, where the error in Q(γ0) (and consequently Q0) was less that 12%, for the
suspension it is rather on the order of 20-30%.
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Figure 6.5: Strain amplitude dependent measurements of the CS-80 sample at T = 18 ◦C, φeff = 0.631,
for different Peω = 0.1, 1.43×10−2 and 1.99×10−5 (ω = 32.5, 4.52 and 0.063 rad/s). Storage moduli, loss
moduli (a) and I3/1 (b) indicate that the departure from the linear viscoelastic regime is dependent on
the Péclet number. Arrows indicate the position of the wave forms from Fig. 6.4 in the measurement at
Peω = 1.43× 10−2.
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Figure 6.6: Strain amplitude dependent measurements of the KS-13 sample at T = 18 ◦C, φeff = 0.631,
for different Peω = 0.1, 1.43×10−2 and 1.99×10−5 (ω= 32.5, 4.52 and 0.063 rad/s). Determination of
the intrinsic nonlinearity Q0 from plateau values at intermediate γ0, where the scaling law I3/1 ∝ γ2

0 is
applicable. An estimation of reproducibility has been made by averaging three measurements with separate
sample loading and is shown as error bars.
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6.2.4 Intrinsic Nonlinearity Q0(ω): Experiment and mode coupling the-
ory prediction

The intrinsic nonlinearity, in theory and experiment, shows a dependence on the angular
frequency (or Peω) that depends strongly on the volume fraction (or ε in the MCT).
Figure 6.7 shows a comparison of data collected for the CS-80 sample at four temperatures,
corresponding to different φeff and ε, and the corresponding predictions of the schematic
MCT calculated by Seyboldt using the semi-analytical solution outlined in Section 6.1.
MCT results predict Q0 curves that show quadratic scaling with Peω for small Peω,
followed by intermediate scaling with an exponent b ≈ 0.69 at moderate Peω, a maximum
and finally Q0 ∝ Pe−aω scaling for large Peω, where a ≈ 0.32. A similar exponent for
the high frequency decrease of Q0 was reported by Cziep et al. (2015) for various linear
homopolymer melts. Note that here, a is not the particle radius as used in Chapter 3
and radius dependencies have been rescaled by using the Péclet number. The exponents
a and b are not exact numbers but approximate solutions of Gamma functions. Due to
the intermediate scaling region with an exponent b, a description of the curves using the
general Q0(ω) = a ω2

1+bω2+d function (Eq. 5.14) is not possible. This functional form was
observed for a variety of other models in Chapter 5 but it is able to describe only two
power law regions.
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Figure 6.7: Comparison of experimental results for Q0 (symbols) of the CS-80 suspension to predictions
of the mode coupling theory (lines), calculated by Seyboldt using the Taylor approximation (Section 6.1).

Overall agreement is good, as evident from the experimentally determined exponents a for
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Figure 6.8: Linear regressions for Q0 of the CS-80 suspension (data from Fig. 6.7) according to
logQ0 = logA− a logPeω and logQ0 = logB + b logPeω for the determination of the scaling exponents a
and b in Table 6.2. For T = 15 and 18◦C , measurements could not be extended to small enough Peω to
determine b.

the large Peω behavior, which are shown in Table 6.2. The exponents, 0.29< a <0.46, were
obtained by a linear regression according to logQ0 = logA+ a logPeω, taking data after
the maximum into account as shown in Fig. 6.8. Similar exponents (0.22< a <0.56) were
found by Wilhelm et al. (2012) in an investigation on beer foams. From the rheological
point of view, foams are somewhat similar to dense suspensions, as the yielding behavior
under LAOS looks much alike. For example strain amplitude dependent measurements of
G′ and G′′ of foams display the same features as the data shown in Fig. 6.5: a decrease in
G′ and an overshoot in G′′, with an eventual cross-over of the two (Rouyer et al. 2008).
Further investigations need to clarify if the sublinear decrease of Q0(ω) is a general feature
of jammed dispersions.
For the two higher temperatures (thus lower volume fractions), b could be determined
similarly, but in this case the experimental exponents were half as large as the predicted.
The fact that lesser agreement is found at smaller Peω might be attributable to the
previously discussed slow relaxation process which is already evident in the linear moduli
(Fig. 6.3).

T[◦C] φeff ε a b

22 0.614 -1.7·10−3 0.46 0.29
20 0.62 -4.5·10−4 0.34 0.27
18 0.631 -2.4·10−4 0.29
15 0.637 -1.5·10−4 0.29

Table 6.2: Experimentally determined intermediate and large Peω scaling exponents, Q0 ∝ Pebω and
Q0 ∝ Pe−aω , respectively. The theoretically predicted values are a ≈ 0.32, and b ≈ 0.69.

As ε is decreasing, that means the system approaches the glass transition, the maximum
shifts to smaller Peω in both, experiment and prediction. For ε = −1.7 × 10−3 and
−0.46×10−3, the position of the maximum roughly coincides for experiment and prediction.
The results are consistent with trends found recently by (Poulos et al. 2015). They investi-
gated the frequency behavior of soft particles of poly(ethylene-alt-propylene)-poly(ethylene
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oxide) block copolymers and hard sphere particles of poly-methylmethacrylate in the
nonlinear range. For both systems they found that nonlinear behavior as measured by
I3/1 at a fixed strain amplitude γ0 = 1, increased with increasing ω for ω lower than
the cross-over frequency ωx, that is when the overall behavior is liquid like. However,
for ω > ωx (solid-like behavior), I3/1 decreased with increasing ω. They explained this
difference arguing that for ω < ωx pronounced shear thinning is responsible for increasing
I3/1, whereas for ω > ωx viscous behavior over a large portion of the oscillation cycle leads
to decreasing I3/1 values.
For the smallest ε, a decrease of Q0 for decreasing Peω could not be captured in the
experimental window, so the position of the maximum is unclear. Measurements at even
lower Peω are extremely difficult due to low torques and furthermore, they require excessive
amounts of time due to very low frequencies. Despite the precautions taken to limit solvent
evaporation, measurements longer than three days were not possible on one sample loading.
Agreement between experiment and prediction is less for smaller ε, where exact deter-
mination of ε is more challenging, since the cross-over point of the moduli could not be
measured. Therefore, an error in ε might be responsible for the discrepancy.
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6.3 Summary

In this chapter LAOS measurements on a thermo-responsive suspension of polystyrene-
poly(N-isopropylacrylamide) were presented and compared to predictions by the schematic,
that means wave vector invariant, version of the mode coupling theory (MCT). The particle
radius in the suspension could be changed by variation of the temperature, therefore
adjusting the volume fraction. Measurements were conducted on fluid states close to the
glass transition. Linear visco-elastic moduli and flow curves were fitted to MCT predictions
to obtain model parameters that were used to predict LAOS behavior.
Nonlinear stress wave forms were found to be consistent with previous results on high
volume fraction suspensions close to the glass transition. The frequency dependence of
the mechanical nonlinearities as quantified by γ0-dependent storage and loss moduli and
I3/1 was investigated for four volume fractions φeff = 0.614, 0.62, 0.631 and 0.637. I3/1

was found to scale quadratically with γ0, therefore the intrinsic nonlinearity Q0 could be
determined. Péclet number (or angular frequency) dependent Q0 curves, spanning a range
of five decades, were compared to predictions of the mode coupling theory calculated by
Rabea Seybold (TU Dresden). The predictions had been obtained by Seyboldt using a
Taylor expansion of the density correlator Φ, where the first nonlinear term gave rise to
the occurrence of the 3rd harmonic in the resulting stress waves. In the MCT, Q0 was
found to scale quadratically with Peω for very small Peω. This could neither be confirmed
nor disproved since this range of Peω was not accessible experimentally. At intermediate
Peω, Q0 is proportional to Pebω in the prediction, where b ≈ 0.69. The experimental result
for the exponents, however, were about half as large. The discrepancy might be related to
an additional slow relaxation process that is not covered in the schematic MCT. Another
possibility is that the available data does not extent to small enough Peω to determine b
quantitatively. For large Peω, the MCT states that Q0 ought to decrease proportional to
Pe−aω with a = 0.32. This could be confirmed, as the experimental exponents were around
0.3.



Chapter 7

Yielding of colloidal gels under
Large Amplitude Oscillatory Shear

7.1 Introduction

Recently, LAOS measurements have been employed to investigate the yielding in attractive
suspensions at moderate volume fractions. Oftentimes, a broadened or so-called "two-step"
yielding process is observed, in which the transition from an initially linear, predominantly
elastic behavior to viscous flow occurs in a strain amplitude range, that stretches over
an order of magnitude or more (Chan and Mohraz 2012; Koumakis and Petekidis 2011;
Laurati et al. 2011; Shao et al. 2013). More dilute gels, however, typically exhibit a distinct,
unique yield point defined by a simultaneous maximum in the storage modulus, G′′, and
crossover of G′′ with the loss modulus, G′ (Gibaud et al. 2010; Pignon et al. 1997). The
two-step process of more concentrated gels is identified by two local maxima in either the
strain amplitude dependency of the loss modulus, G′′(γ0), or of the average elastic stress,
σ′ = γ0G

′(γ0). Detailed measurements have shown that the strain amplitude at which the
local maxima occur are relatively independent of the applied frequency of oscillation. The
corresponding values of the stress and moduli, however, can be either frequency dependent
or independent, depending on the specific material system (Koumakis and Petekidis 2011;
Shao et al. 2013). In some studies, two separate maxima were not distinctly evident, but
a rather broad yielding transition was reported (Hsiao et al. 2012; Rajaram and Mohraz
2011). Shao et al. (2013) showed that both behaviors, one-step and two-step yielding, can
be found in the same system, depending on whether interparticle repulsions in a jammed
suspension are present or screened by addition of salt.
The combination of rheology and (ultra) small angle neutron scattering (Rheo-USANS)
allows direct measurement of the microstructural processes that underlie yielding at length
scales ranging from one to thousands of primary particles (Porcar et al. 2011; Barker et al.
2005; Kim, Merger, et al. 2014). The LAOS measurements performed in the thesis in
combination with Rheo-USANS experiments performed by Juntae Kim and Prof. Matthew
E. Helgeson (University of Santa Barbara, California) were used to investigate whether

120
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large-scale heterogeneity in colloidal gels is the fundamental cause for broadened yielding, as
suggested by previous experiments from Helgeson et al. (2012). This chapter is essentially
a reedited version of the joint paper (Kim, Merger, et al. 2014), therefore, the chapter
contains passages and figures similar to the paper, which are not referenced each time.
The gel system under investigation is a well-characterized oil-in-water (O/W) nanoemulsion
(Helgeson et al. 2012; Kim et al. 2013) that is gelled by a temperature-responsive bridging
polymer, poly(ethylene glycol) diacrylate, in the continuous phase. The systems allows for
careful control over interparticle attractions, including the process of gelation, so that it is
possible to prepare gels with reproducible microstructure (Helgeson et al. 2012) without the
need for shear rejuvenation that is required in many systems. Details on the preparation
and characterization of the nanoemulsion system can be found in Section 8.1.4, page 143.

7.2 Linear viscoelastic properties and strain amplitude de-
pendence of storage and loss moduli

The gel transition temperature (Tgel), that is when G′ ≈ G′′, was found to be at 45◦C.
Detailed investigations of the gelation behavior of the system were made by (Helgeson et al.
2014; Helgeson et al. 2012). Their results showed that the so defined Tgel is consistent
with other measures of the gel point, including the criterion of Winter and Chambon,
G′ ≈ G′′ ∝ ω1/2, (Chambon and Winter 1987) as well as the point at which the structure
becomes percolated. Above Tgel, the sample exhibits solid-like viscoelasticity with a plateau
modulus Gp ≈ 20 kPa. For the frequency-dependent linear viscoelasticity above Tgel, a
frequency sweep was performed at a fixed temperature of T = 48◦C and strain amplitude
of γ0 = 5·10−3 (Fig. 7.1). The dynamic shear moduli depend only mildly on the frequency,
in agreement with previous measurements (Helgeson et al. 2012).
The yielding behavior of the nanoemulsion gel was probed at T = 50◦C using LAOS
experiments at various strain amplitudes and angular frequencies. First the fundamental
frequency Fourier coefficients, G′ and G′′, which are displayed in Fig. 7.2, will be analyzed.
The storage and loss moduli introduced in Chapter 2 are often used to describe the
material’s behavior even beyond the linear regime (Kyu et al. 2002). For strain amplitudes
γ0 > 0.01, G′ monotonically decreases from its linear plateau value and shows no frequency
dependence within experimental variability. In contrast, G′′ displays a distinct peak at
γ0 ≈ 0.03. Therefore, according to Hyun et al. (Kyu et al. 2002), it can be classified as a
"Type III" material, which displays a strain overshoot. A maximum in G′′ is known as the
"Payne Effect" in the rheology of filled elastomers, where this maximum is associated with
bond breaking between load-bearing elements (Allegra et al. 2008). The peak position
does not change significantly when the angular frequency is increased, whereas the peak
height increases dramatically, as shown more clearly by normalizing G′′ to its linear value
G′′0 in Fig. 7.2 (intermediate frequencies have also been measured but are not displayed
for clarity). The increasing peak height in G′′ causes the crossover of G′ and G′′, which is
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Figure 7.1: Frequency sweep of the nanoemulsion gel sample (Section 8.1.4, page 143) from 0.2 to 200
rad/s at 48◦C at γ0 = 5·10−3. The gelation temperature Tgel was determined as 45◦C.

often regarded as the onset of yielding, to occur at smaller strain amplitudes for increasing
ω. The peak heights and the cross-over strains amplitudes are summarized in Fig. 7.2 (c).
Interestingly, the observed trend in the peak height is opposite to that reported for glassy
microgel suspensions with effective interparticle attractions (Shao et al. 2013), suggesting
a qualitatively different yielding behavior.
Three different regimes of yielding, meaning a transition from predominantly elastic behavior
of the gel at γ0 to viscous flow at large γ0, are defined based on the waveform analysis
of the nonlinear response (to be discussed subsequently). This definition will aid in the
presentation and analysis of the scattering data to follow (Section 7.5). Although the
borders of the regions have been defined based on waveform parameters they coincide with
characteristic features of G′ and G′′. In Region I, G′ exhibits a modest decrease from its
value in the linear viscoelastic regime (LVR for the gel is where I3/1 < 5 · 10−3), whereas
G′′ increases significantly toward its peak value. Region II begins at the maximum in G′′,
and continues through the crossover strain amplitude, ultimately asymptoting to power
law behavior of G′ and G′′ with increasing strain amplitude. In Region III, the power law
slope of G′′ exhibits an observable decrease.



CHAPTER 7. YIELDING OF A COLLOIDAL GEL UNDER LAOS 123

10-3 10-2 10-1 100

102

103

104

10-2 10-1 100
0

5

10

15

20(b) III IILVR I

  G'     G"   [rad/s]
 1 
 3 
 10
 30 

0

 

 

0

G
', 

G
" 

[P
a]

(a)

 

 

    [rad/s]
 1 
 3
 10
 30

G
''/

G
'' 0

1 1 00 . 0 3

0 . 0 5

0 . 1

0 . 1 5
0 . 2

0 . 2 5
0 . 3

 g 0(G
'=G

")

w  [ r a d / s ]

( c )

0

1 0

2 0

 G
"/G

0

Figure 7.2: (a) Strain amplitude dependence of storage and loss moduli at various angular frequencies of
deformation, measured at T = 50◦C. Lines indicate the linear viscoelastic regime (LVR, for the gel it is
where I3/1 < 5 · 10−3)) and different regions of the yielding stages that will be discussed in Section 7.7.
In Region I, G′ exhibits a modest decrease from its value in the LVR , whereas G′′ increases significantly
toward its peak value. Region II begins at the maximum in G′′, and continues through the crossover strain
amplitude, ultimately asymptoting to power law behavior of G′ and G′′ with increasing strain amplitude.
In Region III, the power law slope of G′′ exhibits an observable decrease. (b) Increasing peak height in the
G′′ curve with increasing angular frequency as shown by the loss modulus normalized to the plateau value
of the linear regime G′′0 . (c) Cross-over strain amplitudes of G′ and G′′ and normalized peak heights of G′′
as a function of the angular frequency.
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7.3 Lissajous curves

In order to gain more insight into the intracycle LAOS behavior of the gel, strain vs stress
curves, so called Lissajous figures are analyzed. In Fig. 7.3 an overview of normalized
strain vs stress curves of the measurements in Fig. 7.2 (a) is depicted in the form of a
Pipkin plot (ω vs γ0).
For small ω vs γ0 the curves are regular ellipses, which means that the sample response
is in the linear viscoelastic regime. However, increasing γ0 at a fixed value of ω leads to
a qualitative change, where the waveform transforms from a simple ellipse, to a complex
nonlinear shape. This transition also reflected in the viscoelastic moduli in Fig. 7.2 (a)
by the strong increase of G′′. Upon further increasing γ0 distinct features develop in the
Lissajous curves, which persist qualitatively throughout the course of the ongoing strain
amplitude sweep (constant ω, increasing γ0). These include an approximately linear region
after the reversal of shear direction and a local maximum in the instantaneous stress in
the upper left quadrant of the elastic representation.
In Fig. 7.4 (a) the stress response is plotted as a function of strain. Note that from now
on all strain axes have been rescaled by the value of the strain amplitude where G′′ is at
its maximum (γr = γ/0.0322), in order to be able to correlate this data to the data of
the sample on which the SANS measurements have been performed (for details see Kim,
Merger, et al. (2014)).
The distinct non-ellipsoidal waveforms can be interpreted using the sequence of physical
processes approach following Rogers et al. (2011b): Starting at the point where the
flow direction is reversed (γ/γ0 = ±1, circle symbol in Fig . 7.4 a) the gel network
of agglomerated droplets is strained, and the material initially behaves elastically and
therefore the stress increases linearly with the accumulated strain. After the initial linear
region, the stress continues to increase until a strain equal to γc has been accumulated
(broken gray line), where it shows a local maximum σc (diamond symbol in Fig . 7.4 a).
This overshoot in the stress curve is due to yielding of the gel network, and afterwards the
sample begins to flow. The stress subsequently decreases with further increasing shear rate
until a minimum is reached. With further increasing strain, the stress begins to increase
again, suggesting thixotropic behavior where the structure gradually rebuilds as the shear
rate is decreasing. This continues until the end of the half-cycle (γ = +γ0, γ̇ = 0), and
subsequently the sequence is repeated in the opposite direction.
The extracted waveform parameters include the residual modulus GR, yield strain γc and
yield stress σc, as well as the instantaneous viscosity ηL at peak shear rate, that were
introduced in Section 2.2.3, page 35. These parameters show strain amplitude dependencies
which are displayed in Fig. 7.4 b, c and d and have been used to define four different regions
throughout the strain amplitude sweep experiment. In Section 7.6, these regions will aid
the correlation of the nonlinear rheological parameters with the structural parameters from
neutron scattering experiments performed by Juntae Kim and Prof. Matthew E. Helgeson.
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Figure 7.4: (a) selected elastic Lissajous plots of a LAOS experiment on a nanoemulsion sample containing
a volume fraction of φ = 0.33 PDMS (ηs = 5mPas at 25◦C ) droplets (radius 21 nm) in an aqueous
continuous phase with 33 vol.-% PEGDA (Mn = 700 g/mol) and cs= 230 mM SDS at ω = 10 rad/s. The
circle and diamond symbols show the points at flow reversal (γr = - γr,0 and γ̇= 0) and the following local
stress maximum, respectively. The broken black line illustrates the accumulated strain γc that is necessary
to yield the material. The black tangent represents the residual modulus after yielding GR (equals dσ/dγ
at σ = 0). (b) Residual modulus GR (equals dσ

dγ
|σ=0) together with the storage and loss modulus at ω =

10 rad/s and the relative intensity of the 3rd harmonic I3/1. (c) Nonlinear yielding parameters extracted
from the waveform data of the LAOS measurements: γc represents the strain that has been accumulated
between the point of flow reversal (circle symbol) and the local stress maximum (diamond) in (a), σc is
the corresponding stress value which is plotted with the stress amplitude σ0 as reported by the rheometer
software. (d) Instantaneous viscosity at the point of zero strain and maximum shear rate (square symbol),
ηL, as a function of increasing shear rate amplitude. All strain axes have been rescaled by the value of the
strain amplitude at which G′′ is at its maximum (γr = γ/0.0322), in order to be able to correlate this data
to the data of the sample on which the SANS measurements have been performed.
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7.4 Time dependent moduli

Based on the work of Rogers (2012), the intracycle yielding is elucidated further by
calculating the instantaneous storage R′(t) and loss R′′(t) moduli. R′(t) and R′′(t) are
projections of the binormal vector in a 3D Lissajous plot (stress vs. strain vs. strain rate)
onto the strain-stress and shear rate-stress plane. More details can be found in Chapter 2,
page 36. These measures can be interpreted as time-dependent analogues of G′ and G′′

and are defined for every point of the response orbit. For brevity the time argument in
R′(t) and R′′(t) will be omitted and time dependence is implied. Figure 7.5 shows R′ and
R′′ for the strain amplitude sweep at ω = 10 rad/s are displayed as surfaces. If viewed
in the R′, R′′ versus strain amplitude projection, Fig. 7.5. is reminiscent of the standard
representation of a dynamic strain amplitude sweep as in Fig. 7.2 a. In the LVR, R′

and R′′ are constant in time and equal G′ and G′′, respectively. As the strain amplitude
increases (moving from the back to the front in Fig. 7.5), the response becomes nonlinear
and distinct features develop in the time dependence of both surfaces. Looking at the
time dependence at a fixed strain amplitude, the sequence of physical processes that was
described previously is evident. However, this analysis reveals additional details about the
intracycle yielding that were not evident from the waveform analysis, where yielding was
assumed to occur at a single point where the stress shows an overshoot.
The fully nonlinear material behavior can be observed by tracing the intracycle response
at a fixed strain amplitude of γr,0 = 0.1. The starting point of the sequence of processes
(i.e. at the point of flow reversal), corresponds in this representation to t/t0 = 0.25 or
0.75. Starting from this point in time, elastic straining is first observed, where R′ > R′′

and both moduli are roughly constant in time. As the cycle proceeds, this gives way to
a small region in which R′ increases (i.e., strain stiffening occurs). The maximum value
of R′ for each strain amplitude is larger than GR by about 30% but has the same strain
amplitude dependence. Therefore, only GR will be used subsequently for the correlation
with the scattering data. Shortly after the maximum in R′, it abruptly decreases (i.e.,
strain softening occurs) and R′′ abruptly increases, until eventually R′′ exceeds R′. Since
this portion of the cycle still corresponds to strains in the region of the waveform where
the stress is increasing approximately linearly with strain, this behavior is attributed to
elastoplastic behavior, in which the deformation is first dominated by softening (R′ > R′′),
followed by viscoplastic behavior (R′′ > R′). After this, a pronounced maximum in R′′ is
observed, which corresponds closely (though not exactly) with the stress maximum in the
Lissajous curves used previously to define the yield stress and strain (yellow line in Fig.
7.5). At this point, the material has yielded and begins to flow. Subsequently, both R′

and R′′ decrease dramatically, indicating shear thinning, after which rejuvenation of the
structure can be observed as a second crossover in R′ and R′′ that occurs at t/t0 < 0.75,
before the end of the half-cycle.
Using the prominent features of the R′ and R′′ landscapes in Fig. 7.5 and the position of
the yield point from Fig. 7.4 a), a "phase plot" for the yielding process is produced in Fig.
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Figure 7.5: Surface plot of the instantaneous moduli R′(t) and R′′(t) as a function of reduced strain
amplitude γr,0 and normalized time throughout the oscillation cycle for a fixed frequency of 10 rad/s. A
single LAOS cycle corresponds to a portion of the surface at fixed reduced strain amplitude, γr,0 and
increasing time, t/t0, where t0 is the duration of one cycle. This is indicated by the black line for γr,0 = 5
(solid line for R′ > R′′ and broken line for R′ < R′′). The yellow line shows the yield point intercycle as
determined from the local maximum in the Lissajous curve (diamond symbol in Fig. 7.4).

7.6 in a space of the normalized instantaneous strain (a) or strain rate (b), which represent
the time within a cycle, and strain amplitude. Lines have been drawn that represent
the various features of R′ and R′′, including the initial maximum in R′, followed by the
crossover where R′=R′′, and finally the maximum in R′′. Also shown is the yield point
defined by the stress maximum extracted from the Lissajous curves (diamond symbol in
Fig. 7.4). The regions in between these curves thus show the boundaries in a nonlinear
deformation space between elastic straining (A), elastoplastic softening (B), viscoplastic
behavior (C), yielding (D) and flow (E). Note that after yielding only flow and restructuring
are present as the shear rate decreases back to zero, and therefore the aforementioned
transitions do not occur in the reverse direction. Accordingly, Fig. 7.6 is not a true phase
plot as all borders indicate "one-way" transitions. The filled symbols represent borders for
the path from γ/γ0 = - 1 to γ/γ0 = 0, whereas open symbols show borders for the path
from γ/γ0 = 1 to γ/γ0 = 0.
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Figure 7.6: Phase plot constructed using the various nonlinear parameters from the waveform analysis
in the (a) elastic and (b) viscous representations, respectively. Starting from γ/γ0 = 1 or -1 (γ̇/γ̇0= 0)
the material’s response changes following the arrow through a series of elastic (A), elastoplastic softening
(B), viscoplastic responses (C), yielding (D), and finally flow (E). Note that after yielding only flow und
restructuring is present, therefore these transitions do not occur in the reverse direction as the shear rate
is reduced to zero. Filled symbols represent borders for the path from γ/γ0 = - 1 to γ/γ0 = 0, and open
symbols show borders for the path γ/γ0 = 1 to γ/γ0 = 0.

Both the surface plots in Fig. 7.5 and the borders in Fig. 7.6 show that with increasing
strain amplitude, the portion of the cycle where the material is yielded (both in time and
in shear rate dimension) increases. This supports the idea that information averaged over
the entire oscillation cycle with increasing strain amplitude, such as the time-averaged
neutron scattering data to follow, increasingly reflects the yielded state. This is shown in
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Fig. 7.6 by overlaying the boundaries of Regions I, II and III obtained from intercycle
analysis of the waveforms (vertical lines) with the phase plot obtained from intracycle
analysis. Doing so, shows that Region I is dominated entirely by elastoplastic softening of
the gel network, i.e. the entire cycle is spent in phases A and B. In Region II, the behavior
transitions from becoming elastically-dominated to viscous-dominated with increasing
strain amplitude, i.e., the fraction of the cycle spent in the flowing state increases with
increasing strain amplitude. Finally, in Region III, the fraction of each cycle spent in flow
becomes insensitive to the applied strain amplitude.

7.5 Scattering under LAOS

Prof. Matthew E. Helgeson and Juntae Kim performed experiments where Small Angle
Neutron Scattering (SANS) and Ultra Small Angle Neutron Scattering (USANS) experi-
ments were combined in-situ with oscillatory excitation to probe the gels structure under
LAOS. Specifications of the Rheo-SANS setup have been published by Porcar et al. (2011).
The specific batch of the nanoemulsion that was used in the Rheo-SANS investigation
had nominally the same composition as the batch used for the ex-situ LAOS experiments
(Chapter 8.1.4, page 143). Despite the identical composition, deviations in the absolute
values of the moduli of approximately 30% were found. The deviations can be explained by
a high sensitivity of the moduli to the droplet size distribution (Helgeson et al. 2012). Some
variation on the droplet size distribution is unavoidable in the high pressure homogenization
process that was used for the preparation of the emulsions. Specifically, the Rheo-SANS
batch had an average droplet radius of 17.5 nm which is smaller than the radius of 23 nm
for the batch in the ex-situ LAOS experiment. This resulted in G′ values of ≈ 16 kPa for
Rheo-SANS batch in the LVR whereas the ex-situ LAOS batch had G′ values of ≈ 12 kPa
at ω = 10 rad/s (Fig. 7.2). The batch to batch variation led furthermore to a difference of
the strain amplitude at which G′′ has its maximum. This was accounted for by rescaling
the respective strain axes to the specific γ0(G′ = G′′) at ω = 10 rad/s of the Rheo-SANS
batch and the ex-situ LAOS batch (Kim, Merger, et al. 2014).
In order to extract structural information from the SANS/USANS spectra (Fig. 7.7 (a)),
Helgeson and Kim fitted a model according to Eq. 7.1 to the data.

I(q)− Ib = K1ξ
3
c1

(1 + (qξc1)2)2 +
K2[ ξc2

1+(q−βmax)2ξ2
c2
− ξc2

1+(q+βmax)2ξ2
c2

]
βmaxq

+K3 sin[(dm − ds + 2) arctan(ξsq)]
(ξsq)[1 + (ξsq)2]

dm−ds+2
2

+ K4 sin[(dm − 1) arctan(ξmq)]
(dm − 1)(ξmq)[1 + (ξmq)2]

dm−1
2

(7.1)

In contrast to a simple fractal scattering model as outlined in Chapter 3, page 48, Eq.
7.1 comprises four terms that capture the scattering in the various ranges of q. At low q,
the first term, weighed by its intensity K1, is a two-phase Debye-Bueche model (Debye
and Bueche 1949) that describes large-scale voids, where ξc1 is their correlation length.
The main structural feature of the spectra in Fig. 7.7 (a) is the local maximum around
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qr ≈ 0.04. This maximum is interpreted as a signature of a phase separated system, where
the two phases are a droplet rich and a droplet lean phase (Helgeson et al. 2014). The
scattering around the maximum is captured by a sum of two Lorentzian terms, weighed by
K2, corresponding to correlated density inhomogeneities consistent with phase separation
under the Cahn-Hilliard model for spinodal decomposition (Li and Ross 1994). In this
term the important parameter is βmax, since its inverse β−1

max gives a characteristic length
scale for the phase separation. The description of the heterogeneous structure as a two
phase system is similar to models for structures of demixing quenched binary systems, such
as alloys (Gaulin and Spooner 1987) or mixtures of liquids (Gaulin and Spooner 1987).
The last two terms with their respective intensities K3 and K4 correspond to a model of
combined surface and mass fractal scattering (Wong and Cao 1992), therefore they are
similar to Eq. 3.18 in Chapter 3. The relevant parameters are the fractal dimensions of
the mass and the surface fractal, dm and ds, respectively and the corresponding cut-off
sizes ξm and ξs. Note that the higher-q scattering due to individual droplets (form factor
P (q)) was not included. From the multitude of parameters that were published in (Kim,
Merger, et al. 2014) only the most relevant are shown in Figures 7.7 (b) and (c). The
specific surface of the voids Σ is derived from a model-independent asymptotic analysis in
the low q limit using Eq. 7.2 (Spalla et al. 2003). This alternative analysis was necessary
because the determined void correlation lengths ξc1 were unphysically large (several hunded
µm) due to the absence of any shoulder or plateau in the extremely low-q scattering (Kim,
Merger, et al. 2014). In Eq. 7.2, ∆ρ denotes the difference in scattering density between
the void phase (assumed to contain no droplets) and the droplet-rich region. Furthermore,
the characteristic length scale of the microphase separation 2π/βmax and ξc2βmax, which
is a measure for the peak sharpness, are shown in 7.7 (c).

Σ =
lim
q→0

I(q)q4

2π(∆ρ)2 (7.2)

The combined rheo-SANS/USANS measurements (Fig. 7.4 and 7.7) suggest that, as the
intracycle mechanical response becomes progressively more dominated by the yielded and
flowing states, the microstructure of the gel evolves at progressively smaller length scales
(Fig. 7.8). Due to the time-averaged nature of the SANS/USANS measurements, the
changes in microstructure observed with increasing strain amplitude represent a moving
average over the various dynamic stages of nonlinear behavior. As such, the amount of
time per cycle spent in the yielded state will increase with increasing strain amplitude, and
thus the measured time-average microstructure will evolve toward the fully flowing state.
Therefore, in what follows, it is assumed that the contribution of each of the instantaneous
microstructural processes to the overall, time-averaged scattering is proportional to the
time per cycle spent in a particular stage of nonlinear behavior.
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Figure 7.7: Combined rheo-USANS and SANS spectra of a nanoemulsion sample containing φ = 0.33
PDMS droplets with P = 0.33 PEGDA and Cs= 230 mM SDS in 50/50 (v/v) H2O/D2O at the indicated
rescaled strain amplitudes. Lines are fits to equation 7.1. Inset: Magnification of low-q portion of USANS
data with model fitting. (a) Specific surface area from asymptotic analysis at very low q. (b) Characteristic
length scale of the microphase separation (closed squares) and the peak sharpness (open squares) from the
model.
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7.6 Yielding mechanism

The combination of LAOS measurements and neutron scattering allows to propose a
mechanism for the yielding behavior of the investigated heterogeneous gel. This and the
next section have been reproduced from the joint publication (Kim, Merger, et al. 2014)
without much rephrasing, therefore major parts have been originally written by Prof.
Helgeson and Juntae Kim. The mechanism is depicted schematically in Fig. 7.8.

Figure 7.8: Schematic of gel microstructure through the yielding transition. (bottom panel) Fractal
clusters of droplets (yellow) with diameter D. (middle panel) Bicontinuous network structure consisting
of droplet-lean (blue) and droplet-rich (yellow) domains on the length scale of 10-100 times the droplet
diameter. (top panel) Macroscopic structure at a length scale of 100-1000 times the droplet diameter,
adapted from Kim, Merger, et al. (2014).

In the linear regime, the quiescent microstructure is comprised of a bicontinuous network
of droplet-lean "pores" and droplet-rich network strands (middle panel), the latter of which
are comprised of fractal clusters of droplets (bottom panel). The bicontinuous structure
exhibits a domain size proportional to 1/βmax. Upon increasing the strain amplitude into
the nonlinear regime, nonlinear deformation causes compression of the network due to
compressibility of the droplet-rich domains. This results in the formation of voids, quantified
by their specific surface Σ, at length scales significantly larger than the domain size (top
panel). This is evident by the significant low q scattering that develops in Region I, which
then saturates in Region II. Such voids are reminiscent of those observed in other gelling
systems after yielding under startup of steady shear (Rajaram and Mohraz 2011), and
could be a pre-cursor for the shear-induced macroscopic heterogeneities that subsequently
develop at large strains. In order to conserve the overall density of droplets, these voids
must form at the expense of the bicontinuous structure, resulting in compression of the
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network and a decrease in 2π/βmax (middle panel). This requires significant compression
of the fractal droplet-rich domains relative to the droplet-lean domains (Fig. 7.7 c), which
in turn requires yielding of the dense phase. As the strain amplitude is increased further,
the compression of the dense network becomes increasingly difficult, resulting in eventual
saturation of both the voids as measured by Σ and the domain size 2π/βmax in Region II.
Once the void structures saturate, additional strain input becomes sufficient to rupture
the effective "bonds" between network strands, producing discrete agglomerates of fractal
clusters (middle panel, dotted lines in Fig. 7.8). The primary signature of this process is the
observed increase in the sharpness of the distribution of domain sizes, given by the product
ξc2βmax. This occurs because the most likely size of an agglomerate formed by rupturing of
the bicontinuous network will have a characteristic size given by the characteristic domain
size. As such, any irregular network strands will be annealed into smaller, disconnected
domains with an average size given by 1/βmax. This concept could be viewed as similar to
that put forth by Hsiao et al. (2012), who proposed that the yielding of shear-rejuvenated
colloidal gels under step strain was dominated by the rupture of weak network contacts
with a small average contact number. However, it should be noted that in nanoemulsion
gel it is rupture of contacts between network strands, rather than individual particles, that
is responsible for yielding.
Eventually, at a critically high strain amplitude, enough bonds between domains will be
ruptured in order to compromise the integrity of the network, resulting in (on average)
a suspension of disconnected domains with a relatively narrow size distribution around
1/βmax, similar to what has been observed on colloidal gels at much larger strains after
yielding is complete (Rajaram and Mohraz 2011). It is notable that the peak sharpness
ξc2βmax exhibits a maximum precisely at the onset of Region III, suggesting that the
distribution of domain sizes is most homogeneous at the final transition to flow. Previously,
a similar maximum during the incipient gelation of bicontinuous nanoemulsion gels was
observed that corresponded precisely with the critical gel point measured by rheology
Helgeson et al. (2014).
Helgeson et al. (2014) hypothesized that such a maximum in homogeneity is a distinct
signature of percolation of heterogeneous gels, and similar observations have been made in
other gelling colloidal systems exhibiting phase separated microstructure (Laurati et al.
2011). It is thus tempting to consider that the final stage of yielding in the present study
arises from "de-percolation" of the bicontinous gel network into a suspension of disconnected
clusters. However, there is the possibility that this common signature, i.e., of a maximum
in homogeneity of the network at both the critical gel point and the critical yield point, is
merely a coincidence.
Again, it is important to clarify that the preceding is a time-averaged description of the gel
microstructure, which is averaged over the sequence of processes (elastic straining, yielding,
flow and recovery) comprising one LAOS cycle. In reality, it is reasonable to expect that
the intracycle structure will exhibit a continuous transition between the various average
microstructures depicted in Regions I-III. Indeed, this will be explicitly considered to be
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true in order to rationalize the observed time-dependent nonlinear mechanical response
with the observed time-averaged microstructure in what follows.

7.7 Relation between microstructure and nonlinear mechan-
ical response

The LAOS measurements have identified three distinct regimes of yielding in heterogeneous
colloidal gels, where three qualitatively different intracycle responses are observed. In the
following a comprehensive scenario is presented, by which the time-averaged microstruc-
tures observed for each of these regions can be reconciled with the nonlinear mechanical
signatures observed during LAOS. It is stressed again that this scenario implicitly assumes
that the time-averaged microstructure can be seen as a convolution of the instantaneous
microstructures during the various intracycle processes (the elastic strain softening, vis-
coplastic behavior, yielding and flow). As such, in Region I the observed microstructure
is dominated by an elastic response, in Region II it evolves from primarily structures
dominated by elastoplastic behavior to structures dominated by flow, and finally in Region
III it is dominated by flow.

• Linear viscoelastic region (γr,0 < 0.16)

At sufficiently small strain amplitudes the network structure of the material is only
slightly perturbed by the shear forces, such that the gel network remains intact and
the imposed strain produces a linear, predominantly elastic stress response, as can
be seen by the storage modulus being over an order of magnitude higher than the
loss modulus.

• Region I: onset of nonlinearity and pre-yielding (0.3 < γr,0 < 1)

In this regime, it is the internal rupture and reconfiguration of bonds between
clusters within the dense domains (ultimately resulting in compression of the gel
network) that weakens the elastic network due to nonlinear plastic deformation,
resulting in intracycle strain softening. This is evidenced by a moderate decrease
in GR from its plateau value. Furthermore, G′′ and I3/1 increase strongly with
increasing strain amplitude in this regime, signaling the onset of nonlinear behavior,
as visible distortions of the waveform from its elliptical shape appear. Moreover, the
compression of the dense domains requires the expulsion and drainage of interstitial
fluid within the fractal microstructure in order to create additional large voids. This
fluid motion causes a strong increase in the dissipated energy, which is evident in
both the significant increase in G′′ as well as the development of significant viscous
behavior in the nonlinear waveform. The structural changes which are responsible
for the nonlinear mechanical behavior of the gel mark this part of the strain sweep
as a transition region to the highly nonlinear region II. It is also in this region that
the strain dependent moduli G′(γ0) and G′′(γ0) and all other nonlinear parameters
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become time dependent. This time dependence is due to a non quasi-static stress
signal (see Chapter 8, page 150).

• Region II: broad yielding transition (1 < γr,0 < 20)

In this region the most important yielding process occurs: the large-scale, dense
domains of fractal agglomerates are compressed even stronger than in Region I as
evident from a decrease in 1/βmax (Fig. 7.7 c). As the network structure is gradually
disintegrated by the breakup of large dense domains during flow, the number of elastic
junctions in the percolated structure that can be reformed at the end of a half-cycle
is decreasing. This has severe consequences for the rheological properties. Due to the
decreasing number of elastic junctions, the amount of elastic strain that the material
can accumulate within the oscillation cycle is increasing slower than the applied
strain amplitude. This is reflected in a sublinear increase of the yield strain (Fig.
7.4 c). In addition the residual modulus GR decreases markedly, proving a drastic
weakening of the reversible network. In the flowing portion of the cycle, a shear rate
amplitude dependent thinning behavior is observed that is caused by the breakage of
larger dense domains into smaller ones, resulting in the thixotropic behavior observed
during the flowing portion of the intracycle response as a non-monotonicity in the
waveform (Fig. 7.4 a). This process homogenizes the domain size distribution and
leads to an increase in the peak sharpness ξc2βmax. As G′ and G′′ measure only the
average elastic and viscous contributions to the stress, they obscure the fact that
both elastic straining and viscous flow exist well before and after their crossover
point. It is important to note that the flowing portion of the response occurs well
before the crossover in G′ and G′′, even though this is often used to define the yield
point of the gel. This highlights the need for intracycle interpretations of LAOS in
order to better characterize the yielding process.

• Region III: post-yielding flow (γr,0 > 20)

For even higher strain amplitudes, the process of domain rearrangement and break-
down that is predominant in Region II is completed. From this point on, all of the
intracycle measures including the transitions between various intracycle process as
well as the residual modulus GR become independent of strain-amplitude, and the
intracycle yield strain and stress show a linear increase with strain amplitude. Thus,
in every half-cycle only a small fraction of the applied strain is recovered by the
elasticity of the network, and the mechanical response in this region is dominated by
dissipation of the yielded structure. The remaining strain is acquired through flowing
of the now-suspended agglomerated domains. With the number of recoverable bonds
between the dense domains minimized, the increasing strain amplitude results in
further breaking of cluster-cluster bonds, but now within the suspended domains, and
therefore some of the domains decrease in size even further. Thus the domain size
distribution is broadened it this region, which is evident from a decrease of ξc2βmax.
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7.8 Frequency dependencies under LAOS

The previous sections focused on combining LAOS and neutron scattering to find a
correlation of the mechanical behavior with the gels structure for a fixed angular frequency
of ω = 10 rad/s. Since Rheo-SANS measurements are very limited due to long measurement
times, which are needed for sufficient statistics, other frequencies were investigated in
ex-situ LAOS experiments only. To examine the frequency dependence of the yielding
processes in the nanoemulsion gel, waveforms at a fixed value of γr,0 for varying frequencies
in the range from 0.1 to 56.55 rad/s are analyzed. The waveform at a specific amplitude is
distinctively frequency dependent, as can be seen in Fig. 7.9, where waveforms for γr,0 =1,
2.8, and 20 are shown (corresponding to the beginning, middle and end of region II). With
increasing frequency, the Lissajous curves become more box-shaped and the local stress
minimum in the vicinity of the shear rate maximum (γ̇r=0) becomes less prominent. At
the highest amplitudes and frequencies (right panel) a second local minimum in the stress
appears which follows the first one. This feature is not an artifact of the data processing
as it is present also in the raw data and was furthermore observed by other researchers
(Poulos et al. 2013; Renou et al. 2010).

Figure 7.9: Elastic Lissajous plot of reconstructed waveforms measured at different angular frequencies at
γr,0 values of 1, 2.8 and 20. The circle and diamond symbols shown for γr,0 = 2.8 denote the point of flow
reversal (γ = −γ0 and γ̇ = −γ̇0) and the local stress maximum.

The waveform parameters for γr,0 = 2.8 are displayed in Fig. 7.10 and show the trends
of the waveform evolution more clearly. With increasing ω, the yield stress σc increases.
The accumulated strain at which yielding occurs, γc, first shows a plateau for ω < 6 rad/s
and then increases afterward. Figure 7.10 (c) shows the dependence of the instantaneous
viscosity ηL as function of shear rate. As previously shown in the strain amplitude-
dependent waveform analysis, increasing the shear rate leads to shear thinning in the
flowing portion of the oscillation cycle (ηL ∝ γ̇−0.8). In this case, the strain amplitude is
constant and the increasing angular frequency causes higher shear rates. The fact that the
shear thinning exponent varies depending on whether the strain amplitude or frequency
is varied violates the so-called "Delaware Rutgers rule" (Doraiswamy et al. 1991), further
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suggesting thixotropic behavior in the sample. The "Delaware Rutgers rule" is a modification
of the Cox-Merz rule (Chapter 5.1.2, page 82) which states that for yield stress fluids,
the shear rate dependent viscosity in steady shear is identical to the complex viscosity’s
dependence on the peak shear rate γ̇0 = γ0ω in oscillatory shear: η(γ̇) = |η∗(γ0ω)|.
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Figure 7.10: Nonlinear yielding parameters for the nanoemulsion gel sample at T = 50◦C as a function of
angular frequency at γr,0 = 2.8 (center panel in Fig. 7.9): (a) γc is the strain that has been accumulated
from flow reversal to the local stress maximum, (b) local stress maximum σc, (c) instantaneous viscosity ηL
at the point of zero strain and maximum shear rate as a function of the instantaneous shear rate at that
point, which is increasing with increasing angular frequency.

The frequency dependent mechanical measurements clearly indicate that the yielding
process is not only strain amplitude-dependent but strain rate amplitude-dependent, as the
yield strain and yield stress at a fixed strain amplitude increase with increasing frequency.
The frequency dependence of the nonlinear waveform measures is is attributed to the
dominant structural processes, i.e., the internal rupture and compression of dense fractal
domains and the corresponding formation of large fluid voids. As discussed above, these
processes require the expulsion of a significant amount of fluid from the interstices of the
fractal droplet aggregates. Therefore, it is reasonable to expect poroelastic effects to play
a significant role (Showalter and Momken 2002; Song and Huang 2000). Poroelasticity
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describes the mechanics of fluid saturated porous media. First described by Biot, the
poroelastic theory relies on linear elasticity of the porous matrix and uses Darcy’s law for
the flow the fluid through the porous matrix (Biot 1942; Whitaker 1986).
The trends that are observed in the LAOS measurements, including the increase in the
maximum of R′′(t) and the increase in yield stress with increasing frequency are consistent
with an increase in the viscous stress due to a resistance to drainage of fluid from the
porous gel phase into the void phase under compression (Hong et al. 2001).
Darcy’s law states that the volume flux q of a liquid in a porous matrix in one dimension is
proportional to the pressure gradient ∆p and inverse proportional to the liquids viscosity
η, where k is the coefficient of permeability and L is the length of the fluid column (Hunt
et al. 2014).

q = −k∆p
ηL

(7.3)

Based on Darcy’s law, the time scale for the drainage of the voids was estimated in (Kim,
Merger, et al. 2014) to be on the order of 0.01-0.1 s. Thus, at low frequencies, including
that probed by rheo-SANS/USANS, the characteristic time for formation and relaxation
of voids is much smaller than the cycle time. Consequently, the hydrodynamics arising
from drainage of fluid required to form the voids will not contribute significantly to the
intracycle response. However, above a critical frequency where tdrain2πω is on the order
of 1, the suspending medium will begin to introduce a significant viscous contribution to
the stress due to hydrodynamic resistance to drainage during yielding. This is consistent
with the observed increase in the yield stress with increasing frequencies above ∼20 rad/s,
and this frequency is consistent with the preceding argument (tdrain2πω ∼ 0.3). At high
frequencies, these trends ultimately manifest in qualitative changes in the waveform, as
the initially pronounced stress overshoot is gradually smoothed out and the waveform
becomes box-shaped, similar to the results obtained from experiments on colloidal glasses.
This behavior is attributed to the time-averaged structure in region III, i.e., homogenized,
suspended domains at relatively high effective volume fraction dominated by the flowing
portion of the cycle. It is thus reasonable to expect that the waveform at high frequencies
becomes reminiscent of the cage structure in highly concentrated suspensions, since the
suspended clusters can experience caging in the same manner as the repulsive particles in
the suspension (Chapter 6, page 113), though at a much larger length scale.
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7.9 Summary

In this chapter detailed nonlinear mechanical measurements were combined with results
from neutron scattering performed by the group of Prof. Matthew E. Helgeson in order
to elucidate microstructural processes underlying the yielding behavior of a concentrated
colloidal gel with heterogeneous microstructure under LAOS. The observed broad yielding,
in the concentrated gel can be linked to two dominant microstructural processes. First, the
initial yield strain amplitude (at which intracycle flow is initially observed) coincides with
internal rupture and compression of dense fractal domains. Second, the strain amplitude
signifying the completion of yielding (where the intracycle yielding and flow processes
saturate) results from breakage and suspension of dense clusters. At moderate frequencies,
this results in three regions of yielding with increasing strain amplitude. In region I, the
bicontinuous gel structure is only weakly perturbed, and the nonlinear waveform can be
described by an elastoplastic intracycle strain softening of the residual gel network. In
region II, the dense phase undergoes significant compression-mediated viscoplastic rupture
of fractal domains, resulting eventually in a sequence of intracycle yielding and flow. In
this region, significant frequency dependence is also observed, which is hypothesized to
be caused by poroelastic flow of fluid from the dense domains into newly formed fluid
voids at large length scales. Ultimately, the rupture of fractal domains at sufficiently high
strain amplitudes results in degradation of the network, eventually causing suspension
of fractal clusters in region III. This results in a relatively "simple" intracycle yielding
response in the flowing state, where the residual nonlinear elastic modulus, yield stress,
and recoverable strain all become independent of the applied strain amplitude. From the
analysis, it is clear that traditional interpretations of the linearized moduli G′ and G′ are
insufficient to describe yielding. Therefore, a number of nonlinear rheological measures
have been identified that are relevant to the yielding of colloidal gels, including a "phase
map" for intracycle yielding determined by the instantaneous moduli R′ and R′′. This
allows for more specific parameterization of the yielding material, including a residual
modulus characterizing the remaining elasticity of the network, a yield stress and a yield
strain characterizing the intracycle yield point, and a local viscosity during the flowing
portion of the strain cycle reminiscent of that observed in steady shear measurements.
Such measures could easily be applied to the analysis of LAOS measurements on other
colloidal gels, including those with both homogeneous and heterogeneous microstructure.
Comparing these measures across different compositions and material systems could
provide more complete exploration of the differences between various types of gels (dilute
versus concentrated, homogeneous versus heterogeneous, etc.). In the case of the dense,
heterogeneous gels formed in the present system, the yielding process is clearly both strain
amplitude and shear rate amplitude dependent.



Chapter 8

Experimental Details: materials,
rheometers, numerical calculations

8.1 Materials

8.1.1 Polymeric samples

For the comparison of the strain and stress controlled rheometers in chapter 4 three poly-
meric samples were selected. One was an anionically synthesized 1,4-cis-polyisoprene melt
(abbreviated: PI-84k, Mw = 84000 g/mol, PDI = 1.04). It is an entangled (Mw/Me = 21
entanglements per chain, Me = 4000 g/mol, Mark 2007), nearly monodisperse, linear
homopolymer with a glass transition temperature Tg of -61.7◦C as measured by differential
scanning calorimetry. The other two samples were 10 wt.-% solutions of polyisobutylene
(PIB, Mw = 1.1·106 g/mol and PIB-2, Mw = 4.8·106 g/mol) in oligoisobutylene which had
been provided by BASF. The samples were chosen because they are easy to handle, their
composition stays constant over time and they reproducibly showed the expected square
scaling of I3/1 with the strain amplitude on the ARES-G2 rheometer. Their zero shear
viscosities and relaxation times are collected in Table 8.1.

n n

(a) (b)

Figure 8.1: Polymeric samples used in Chapter 4: (a) 1,4-cis-polyisoprene melt, abbrev. PI-84k, and (b)
10 wt.-% polyisobutylene solution in its oligomer, abbrev. PIB.
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sample Mw [g/mol] T [◦C] η0 [Pas] λ [s]
PI-84k 84000 52.8 3990 1.1·10−2

20.4 33000 0.104
PIB 1.1·106 25 3.38 4.8·10−3

PIB-2 4.8·106 20.4 21 1.28·10−2

Table 8.1: Samples used in chapter 4 and their weight averaged molecular weights Mw, zero shear
viscosities η0 and relaxation times λ. Note that the PIB and PIB-2 samples are 10 wt.-% solutions of the
stated molecular weight polymers in oligoisobutylene.

8.1.2 Wormlike micelle solutions

LAOS experiments for the validation of the extended Maxwell-Model in Chapter 5 were
performed on a 0.15 M aqueous solution of cetyl trimethylammonium bromide (CTAB,
obtained from Sigma Aldrich), containing potassium bromide (1.5 M, obtained from Sigma
Aldrich) following the recipe of Khatory et al. (1993). At a concentration of 0.15 M, CTAB
forms wormlike micelles which become long enough to entangle, resulting in viscoelastic
behavior of the solution (Gurnon and Wagner 2012; Khatory et al. 1993; Rehage and
Hoffmann 1991). The high concentrations of CTAB and KBr made it necessary to stir the
sample at 40◦C for 48 hours to ensure complete dissolution of CTAB and KBr. Inbetween
measurements the solution was kept at 40◦C to prevent precipitation of the solutes.

8.1.3 Thermoresponsive suspension

For the rheological experiments in Chapter 6, a polydisperse suspension of thermo-responsive
core-shell particles (Siebenbürger et al. 2009) in 0.05 M potassium chloride solution with a
solid content of 8.85 wt.-% was used, which is abbreviated CS-80 (core-shell, ≈80 nm radius
at 25◦C). The core of the particles consists of polystyrene and has a diameter of 35 nm,
whereas the shell is a slightly crosslinked network of poly(N-isopropylacrylamide) (PNipam)
with a degree of crosslinking of 2.5 mol-%. The crosslinker is N,N’-methylenebisacrylamide.
The synthesis is a two step process: in a first step the polystyrene core is synthesized by an
emulsion polymerization, onto which in a second step the PNipam shell is added. Since in
the second step no surfactant is used, the insoluble Nipam cannot form additional micelles,
that is new primary particles, but rather polymerized at the PS core surface, forming a shell
(Dingenouts et al. 1998). The crosslinking of the shell ensures that core and shell are linked
permanently. The structural, thermal and linear rheological properties of such PS-Pnipam
suspensions are well documented (Dingenouts et al. 1998; Crassous, Wittemann, et al.
2008; Siebenbürger et al. 2009). For the specific sample used here the hydrodynamic radius
shows a linear dependence on the temperature according to RH = −0.6909 nm/◦C ×T [◦C]
+ 94.11 nm in a temperature range 10 < T < 25 ◦C , which had been previously determined
by Siebenbürger using dynamic light scattering experiments (Siebenbürger 2006). The
relative standard deviation of the radius was 14%. The sample was measured at four
temperatures, T = 22, 20, 18 and 15 ◦C, which correspond to the effective volume fractions
of φeff = 0.614, 0.62, 0.631 and 0.637. These volume fractions have been determined by



CHAPTER 8. EXPERIMENTAL DETAILS 143

mapping the parameter η∞, which was obtained from a fit of the high frequency moduli, to
the respective volume fractions using the prediction by Lionberger and Russel (1994), Eq.
3.8, and assuming partial draining of the network, as has already been done in previous
studies (Siebenbürger et al. 2009; Brader et al. 2010). Note that at these conditions the
sample is still in a fluid state. The glass transition volume fraction φg must therefore be
significantly higher than it is for monodisperse hard spheres (0.58). This is possible due to
the appreciable polydispersity of the particles.
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Figure 8.2: The hydrodynamic radius RH of the core-shell particles, consisting of a hard sphere polystyrene
core and a slightly cross-linked PNipam shell, decreases upon temperature increase, because the PNipam
shell gradually shrinks and collapses (Siebenbürger et al. 2009).

8.1.4 Nanoemulsion gel

For the LAOS investigation of colloidal gels in Chapter 7, a gel system based on nanoemul-
sions was used. Nanoemulsions consist of two immiscible fluid phases, where the droplet
size of the dispersed phase is on the order of 20-100 nm (Mason et al. 2006). In contrast to
macroemulsions, which have larger droplet sizes (100 nm - 100 µm), nanoemulsions are
stable over much longer times due to the small droplet size. As the destabilization rate
of an emulsion is linear in the droplet radius (Dörfler 2002), the prolonged stability of
nanoemulsions is a purely kinetic effect. Furthermore, they are not to be confused with
microemulsions, which have comparable droplet sizes but are thermodynamically stable
systems. Microemulsions form spontaneously from a quaternary mixture of water, oil,
surfactant and co-surfactant, such as n-Pentanol (Dörfler 2002).
The nanoemulsion system was prepared by Juntae Kim in the group of Prof. Matthew. E.
Helgeson at the University of California, Santa Barbara. The preparation and characteri-
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Figure 8.3: Schematic gelation mechanism in a oil/water emulsion nanoemulsion. The oil phase consists
of polydimethylsiloxane and is stabilized by sodium dodecyl sulfate. Polymeric chains of poly(ethylene
glycol) diacrylate from the continuous phase adhere to the oil droplets (average droplet radius 20 nm) and
effectively bridge them upon temperature increase. This leads to the formation of a network (Helgeson
et al. 2012).

zation procedures are reproduced briefly from the joint publication (Kim, Merger, et al.
2014), further details can be found therein.
Figure 8.3 shows schematicaly the structure and gelation process of the nanoemulsion.
Polydimethylsiloxane (PDMS, η = 5 mPas at 25◦C) was used as the dispersed phase for
the O/W nanoemulsion sample. The aqueous continuous phase consisted of poly(ethylene
glycol) diacrylate (PEGDA, Mn = 700 g/mol) and sodium dodecyl sulfate (SDS) dissolved
in deionized water. Helgeson et al. (2012) showed that the gelation process depends strongly
on the endgroup of the PEG derivative. Only hydrophobic end groups containing an acrylic
group led to gelation, whereas nanoemulsions containing hydroxy-terminated PEG did not
gel. The gelation mechanism was explained by increased dehydration the acrylic groups
at elevated temperatures, which forces the acrylic groups to adhere to the hydrophobic
surface of the oil droplets (Helgeson et al. 2012).
All chemicals were purchased from Sigma Aldrich. For USANS/SANS measurements,
deuterium oxide (D2O, 99.9%, Cambridge Isotope Laboratories) was used in the aqueous
phase to enhance neutron contrast. Nanoemulsions were prepared using a high-pressure
homogenization method (Avestin Emulsiflex-C5) following a procedure described by Kim
et al. (2013). Dynamic light scattering (DLS) was used to obtain the size distribution of
the nanoemulsion droplets. For the DLS experiments, the nanoemulsions were diluted
to a volume fraction φ = 0.01 using the continuous phase described before. Intensity
autocorrelation measurements were performed at a scattering angle of 90◦ and a temperature
of 25◦C. The average hydrodynamic diameter and polydispersity of the nanoemulsion was
obtained from a cumulant analysis. The specific sample used is a nanoemulsion containing
PDMS with φ = 0.33, the continuous phase containing 230 mM SDS and 33 vol.-% PEGDA.
The average droplet radius measured by DLS was RH = 21 nm with a polydispersity of
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0.238. The specific volume fraction and concentrations of the other constituents were
chosen in order to produce heterogeneous gels with structure resembling arrested phase
separation (Helgeson et al. 2014). Note that, the large pressure jump across the oil-water
interface due to surface tension renders the droplets essentially undeformable under the
conditions measured in the experiment in Chapter 7 (for the most extreme conditions
studied here, the capillary number Ca has been estimated to be smaller than 10−4 (Kim,
Merger, et al. 2014)).

8.2 Rheological instrumentation

The measurements in Chapter 4 were conducted on five different rheometers. Two were
separated motor transducer (SMT)-rheometers, namely the ARES-G2 (TA Instruments)
and the ARES-LS (TA Instruments) with a 1KFRTN1 transducer. The ARES-G2 is
equipped with a brushless direct current motor (also known as electrically commutated
motor), which is used for the excitation of the sample, whereas the ARES-LS employs a DC
motor with brushes. Another two instruments were combined motor transducer-rheometers,
the DHR-3 (TA Instruments) and the MCR 501 (Anton Paar). The DHR-3 is equipped
with a drag cup motor, the MCR 501 uses a brushless DC motor like the ARES-G2. Both
the DHR-3 and the MCR501 are in principle stress controlled instruments, but can be
used for strain controlled experiments when employing the deformation control feedback
option (called continuous oscillation for DHR-3 and direct strain oscillation for MCR501).
Additionally a fifth rheometer became available at a late stage of the thesis, the MCR 702,
which employs two identical motors. One of these motors can be used for the excitation,
the other motor acts as an FRT-transducer, measuring the torque in the sample. Therefore,
the MCR702, in contrast to the earlier model MCR 501, represents a truly separated
motor-transducer instrument. Since the specific instrument that was available could not
provide any temperature control system, direct comparison to the study of the other four
instruments was not possible. Therefore, a new test series was performed on the samples
PI-84k and PIB-2. Apart from the fundamental design, SMT or CMT, the instruments also
differ slightly in their torque sensitivity, which is represented by the minimum measurable
torque according to the manufacturers’ specifications, see Table 8.2.

Instrument Mmin [nNm] Mmax [mNm] d(PI-84k) [mm] d(PIB) [mm]
ARES-G2 50 200 13 40
ARES-LS 400 100 13 50
DHR-3 0.5 200 13 40

MCR 501 100 230 8 50
MCR 702 0.5 230 8 25∗

Table 8.2: Minimum and maximum torques (as specified by the manufacturers) and diameters d for the
parallel plate geometries used for the different samples on the five instruments. ∗ for the comparison of the
ARES G2 with the MCR702 using the PIB-2 sample, a 25 mm cone and plate geometry (cone angle 0.1
rad) was used.
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Measurements for Chapters 5 and 6 were performed on the ARES G2. The LAOS behavior
of the nanoemulsion gel from Chapter 7 was investigated using an ARES-LS at the
University of California, Santa Barbara. This instrument had the same specifications as
the one in Chapter 4. In the gel study the temperature was controlled by a jacket of
circulating water in the lower plate geometry. In order to minimize solvent evaporation, a
solvent trap was used. In-situ Rheo-SANS experiments performed by Helgeson and Kim
were made on an MCR 501 at the NG7 30 m SANS instrument (National Institute of
Standards and Technology, Gaithersburg, Maryland, USA). The sample was measured
in a quartz Couette geometry (50 mm outer diameter and 49 mm inner diameter). The
temperature was controlled by a heated and cooled double air jacket.

8.3 Rheological measurement protocols

8.3.1 Polymeric samples

For the rheometer evaluation in Chapter 4, frequency dependent measurements in the
linear regime were made to test if the four instruments deliver the same results for the
linear viscoelastic moduli G′(ω) and G′′(ω). The angular frequency range was 0.63 to
63 rad/s and the tested strain amplitudes were 0.01 and 0.1 for the PI-84k and the PIB
samples, respectively. Furthermore, strain amplitude-dependent LAOS tests were run at
different frequencies in the range of 1 to 10 rad/s for PI-84k and 0.63 to 63 rad/s for PIB to
measure the frequency dependence of the intrinsic nonlinearity Q0. For the experiments on
the CMT-rheometers (DHR-3 and MCR 501), the active deformation control was used. For
the DHR-3 rheometer, this setting is called continuous oscillation-mode; for the MCR 501,
the corresponding term is direct strain oscillation. Both are feedback control loops that
are employed to produce, in the ideal case, a pure sinusoidal deformation, as mentioned
in Section 4.1. The continuous oscillation-mode of the DHR-3 allows the user to set the
gain of the deformation control thus varying how fast it reacts to nonlinearities in the
strain. This option is called ’motor mode’ and can be set to auto, soft, medium or stiff.
The motor mode was set to stiff for the PI-84k sample and to medium for the PIB sample.
The reasons for these choices are discussed in Section 4.4.1 as the setting has a substantial
effect for the quantitative analysis. The optimal setting for an unknown sample is not
known.
Torque and deflection angle data collected on the ARES-G2 and the DHR-3 was internally
Fourier-transformed by the TRIOS software to give the linear viscoelastic parameters and
the intensities as well as the phases of the higher harmonics present in the response signal.
On both instruments the software routinely transforms only the torque signal but not the
stress signal. This is viable for the ARES-G2 since, for an SMT-rheometer, torque and
stress are in general proportional and only normalized quantities like I3/1 are investigated
within this article. For the DHR-3, the transformation of the torque instead of the stress
can have an effect on the result due to instrument inertia effects, which are discussed in
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Section 4.4.2. Additionally, transient oscillatory data at ω = 6.3 rad/s and γ0 = 1 for
PI-84k was recorded using oversampling and Fourier-transformed using either the TRIOS
software or custom MATLAB routines.
For the ARES-LS, transient torque and deflection angle data was recorded manually using
the 2 analog outputs, an 16-bit analog-to-digital converter (ADC) and custom written
LabView routine (Wilhelm 2002). Oversampling was used to enhance sensitivity to its
maximum and reduce the data amount to a sampling rate of 200 points per oscillation
cycle (Dusschoten and Wilhelm 2001). With the frequency increasing from 0.63 to 87 rad/s,
the number of recorded cycles per strain amplitude was increased from 6 to 25. For the
extraction of the intensities of the higher harmonics a home-written MATLAB routine was
used that employed a half-sided, discrete, complex, magnitude Fourier transform (Wilhelm
2002).
Measurements on the MCR 501 were performed using the LAOS-Package of the commercial
RheoPlus software, provided by Anton Paar. Depending on the frequency, 6 to 25, oscillation
cycles per amplitude were carried out. Out of these cycles, the software gave the time data
for only the last cycle, which consisted of 257 data points and was already corrected for
instrument inertia. The first and the last point were identical, as only 256 were used for
the Fourier transform. In order to check the signal to noise ratio of the spectra, additional
sampling of the raw data with an ADC was required. This sampling as well as the data
analysis was done with the same parameters as for the ARES-LS data.
For the validation of the correction factors based on the corotational Maxwell model in
Section 4.3, measurements of the PI-84k sample had to be extended to strain amplitudes
as large as γ0 = 3. Since at such large amplitudes edge fracture artifacts, where sample is
expelled from the geometry, hamper the measurements (Schweizer 2003), special partitioned
geometries according to the design of Schweizer (2003) were used. The diameters of the
parallel disks were 10 mm, for the cone and plate set-up, the diameter was 10 mm as well,
the cone angle was 0.099 rad. LAOS tests were run at ω = 6.3rad/s and T = 52.8◦C. For
each amplitude, 25 cycles were recorded in the time domain using the commercial TRIOS
software provided by TA Instruments. The first two cycles of the sampled time data for
each strain amplitude were discarded, to ensure a quasi-static stress signal, so that cycles
3 through 27 were then analyzed. For the Fourier transform of the time data, a custom
MATLAB code was used and subsequently harmonic intensities were extracted from the
spectra.

8.3.2 Wormlike micelle solution

Measurements of the linear dynamic moduli (G′ and G′′), flow curve measurements (σ(γ̇))
and LAOS experiments were performed using an ARES-G2 strain controlled rheometer
(TA Instruments), equipped with a concentric cylinders geometry (r1 = 18.6 mm and
r2 = 20 mm) and a Peltier temperature control system. The measurement temperature
was T = 35◦C. The stress signals were recorded using the commercial rheometer software
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TRIOS. For a given strain amplitude 8 cycles were recorded, the first 3 of which were
discarded to ensure a quasi-stationary signal. Data recorded in TRIOS was analyzed using
the same MATLAB code that was employed for the analysis of the numerical solutions.
Repeated measurements were analyzed using the TRIOS software after confirmation that
both analysis routines give identical results.

8.3.3 Thermoresponsive suspension

The rheological experiments on CS-80 were conducted on a ARES-G2 (TA Instruments)
strain controlled rheometer using a Couette geometry (bob diameter 18.6 mm, cup diameter
20.0 mm) with a Peltier temperature control system. The same dispersion was measured
at four temperatures, corresponding to different volume fractions. Each experiment was
preceded by a pre-shear step at a shear rate of 50 1/s for 200 seconds in order to erase the
previous shear history. A solvent trap was used to minimize water evaporation and allowed
experiment durations of up to 3 days. Flow curves were recorded at shear rates in the
range of 1 · 10−4 1/s < γ̇ < 100 1/s, linear viscoelastic moduli were measured at a strain
amplitude of γ0 = 0.01 in the angular frequency range of 2.1 ×10−3 rad/s < ω < 250 rad/s.
Additional high frequency measurements of the linear viscoelastic moduli in the range
60 rad/s < ω < 12500 rad/s were made using a piezo-axial vibrator (PAV) (Crassous et al.
2005). The PAV is a dynamic press (Fig. 8.4) that is used as a squeeze-flow rheometer.
The gap was adjusted using a 50 mm spacer ring.

Upper lid

Sample

Spacer ring
for gap
adjustment

Lower plate
Probe head

Piezo elements

Figure 8.4: The piezoaxial vibrator is a squeeze flow rheometer that can used to measure linear high
frequency behavior (10 and 3000 HZ) of low viscosity fluids. Redrawn after Crassous et al. (2005).

Large amplitude oscillatory shear experiments were carried out on the ARES-G2 rheometer
using the same geometry and preshear protocol as in the shear rate dependent and linear
oscillatory experiments. Strain amplitude sweeps (0.001 < γ0 < 0.3) at different angular
frequencies were conducted to obtain the strain amplitude dependent relative intensity of the
third harmonic I3/1(γ0, ω) from which the intrinsic nonlinearity Q0(ω) = limγ0→0 I3/1/γ

2
0(ω)

was deduced. All LAOS measurements were performed in the correlation mode, where
stress data was internally Fourier transformed by the instruments software TRIOS.
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8.3.4 Nanoemulsion gel

Wall slip of nanoemulsion gels under LAOS

Wall slip artifacts, that is when the sample loses contact with the geometry surface, are
known to severely complicate measurements of soft elastic samples like microgel suspensions
(Dimitriou et al. 2013) and colloidal gels (Laurati et al. 2011). In Chapter 7 this artifact
was prevented by attaching 600 grit sandpaper to the 50 mm cone and plate geometries
(cone angle 0.04 rad) using double sided adhesive tape, following a the procedure reported
by Dimitriou et al. (2013). A recent study by Carotenuto and Minale (2013) showed that
using a rough geometry cannot effectively prevent wall slip even for Newtonian liquids,
since the investigated fluid does not adhere to the rough geometry surface but rather flows
through it.
However, within the thesis the sand paper procedure was tested on a Newtonian fluid and
gave reasonable agreement for the complex viscosity of a visco-elastic silicone oil (|η∗| =
17 Pas at T = 25◦C) with and without the sandpaper, see inset in Fig. 8.5. Therefore,
possible errors caused by the sandpaper (e.g. through a larger gap error or the sandpaper
peeling off during the experiment) could be excluded.
In Fig. 8.5 the effect of using roughened surfaces is shown for a nanoemulsion gel sample.
When smooth geometries are used, G′ and G′′ seems to decrease in two steps. The
reproducibility of the apparent two step yielding with the smooth geometries was poor
and in some measurements G′ and G′′ even displayed a local minimum in the strain
amplitude range 0.01 < γ0 < 0.1. Roughened geometries eliminated slip artifacts and led to
reproducible results with a monotonic decrease for G′ as well as for G′′ after its maximum.
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Figure 8.5: Comparison of LAOS tests using smooth geometries and geometries covered with sandpaper
to prevent wall slip. Inset: Measurement of the complex viscosity |η∗| as function of strain amplitude for
the validation of the sandpaper procedure using a silicone oil (η = 17 Pas at T = 25◦C).
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Thixotropic effects in nanoemulsion gels under LAOS

In all LAOS measurements of the nanoemulsion gel, the raw stress signal started to show
a transient decay in amplitude as soon as the linear visco-elastic regime was exceeded
(γ0>0.01). This decay corresponds to slow intercycle thixotropic behavior or aging, and
prevents the Lissajous-Bowditch curves from forming closed loops. Thixotropic behavior,
is defined as a continuous decrease of the viscosity during flow, and a subsequent recovery
during rest (Mewis and Wagner 2012). In contrast to start-up behavior of shear thinning
samples, in thixotropic systems no steady state of the viscosity can be reached even after
long times. Thixotropy is a common nonlinear rheological feature of gel-like systems
(Mewis and Wagner 2009) and is therefore also present in LAOS experiments, in contrast
to colloidal glasses, where a quasistationary state under LAOS can be reached almost
immediately (Rogers et al. 2011a). Quasistationary refers to a state in which the harmonic
intensities and phases do not change as a function of time. Since the gel measurements did
not reach a quasistationary state even after over 100 oscillation cycles for a specific set of ω
and γ0, data from only the first 8 cycles for each amplitude were used for the analysis. The
8 cycles per amplitude have been decomposed to Fourier coefficients according to Eq. 2.29.
Each representative cycle was then reconstructed in the time domain using only odd
harmonics up to n = 21. Since each odd harmonic with n >21 displayed relative intensities
smaller than 0.1%, all significant contributions to the stress have been taken into account.
Even harmonics were negligible as I2/1, which is the most prominent of them, was always
below 0.3% of the total signal and showed no time dependence. The reconstruction
procedure is essentially a comb filter and all waveform data for the nanoemulsion gel
represent an average over the intracycle transient behavior during a strain amplitude sweep.
This procedure renders the later extracted nonlinear parameters to be time-dependent
to some extent. However, the alternative of waiting for the sample to reach a stationary
oscillatory state is unfeasible due to the long measuring times, especially at low frequencies.
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Figure 8.6: Normalized plots of stress versus (a) strain (elastic projection), and (b) shear rate (viscous
projection) recorded at ω = 10 rad/s and γ0 = 0.046 for the nanoemulsion gel sample (Section 8.1.4). The
gray line represents the raw signal, whereas the black line shows the reconstructed signal from an average
over eight cycles. Arrows indicate the reading direction for the Lissajous curves. The overall stress signal
decays over time as indicated by the additional arrows.

8.4 Numerical methods

The model calculation in Chapter 5 were performed using a custom-written code in
MATLAB, which employed a 4th order Runge-Kutta solution scheme (ode45 solver) in
order to solve the differential equations 5.12, 5.16, 5.20 and 5.22. For this 512 equally
spaced points per oscillation cycle were calculated, which is a typical sampling rate in an
experiment. For a set of G and λ the initial value problem was solved for varying strain
amplitudes at a fixed angular frequency, thus varying Wi = ωγ0λ while keeping De = λω

fixed.
Any time dependent model with a memory has its own start-up behavior, as for example
the scalar Maxwell or the corotational Maxwell model (Giacomin et al. 2011). In Fig. 8.7
this start-up behavior is shown for a numerical solution of Eq. 5.12 using the parameters
G = 1 Pa and λ = 1 s at ω = 1 rad/s and γ0 = 0.329. In the time plot left, only upon
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Figure 8.7: Start-up behavior of numerical solutions of the modified Maxwell model (Eq. 5.12) presented
as time evolution of the stress (a) and as Lissajous figure (b), G = 1 Pa and λ = 1 s at ω = 1 rad/s and
γ0 = 0.329.
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close inspection of the maxima in the circles, one can see differences between the first
few oscillations. A Lissajous plot (right) shows the start-up behavior more clearly, as the
initial curves shape does not coincide with the quasi-stationary shape at later times. This
behavior was most pronounced for De > 1 in a γ0 range where G′ was already decreasing
and G′′ was still increasing to its local maximum.
Therefore, for every pair of [γ0, ω] coordinates in the Pipkin space 55 oscillation cycles
were calculated from which the first 50 were discarded to eliminate the start-up behavior.
Cycle 51 through 55 were Fourier-transformed using MATLAB and G′, G′′ and I3/1 were
calculated from the spectra (Eq. 2.23). Weissenberg number dependent calculations were
repeated for various De.



Conclusion

In this thesis, Large Amplitude Oscillatory Shear (LAOS) experiments were employed to
characterize the nonlinear viscoelastic behavior of colloidal suspensions and colloidal gels
based on nanoemulsions. Results for the suspensions were compared to Mode Coupling
Theory (MCT) predictions. LAOS measurements on the gels were correlated to a structural
investigation by neutron scattering performed by the group of Prof. Matthew Helgeson
to elucidate the changing structure during yielding. Furthermore, a simple modeling
approach based on a modification of the Maxwell model was developed and validated with
LAOS measurements on an aqueous solution of cetyl trimethylammonium bromide that
forms a viscoelastic fluid. Moreover, LAOS experiments on model materials, a polyisoprene
melt and polyisobutulene solutions, were performed on five different instruments for an
assessment of reproducibility of LAOS parameters, such as the relative intensity of the
third harmonic I3/1 and the intrinsic nonlinearity Q0.

Chapter 4 focused on the technical aspects of conducting strain controlled LAOS ex-
periments on stress controlled and strain controlled rheometers and reproducibility of
LAOS quantities. Nonlinear data in terms of I3/1 and Q0 from a polyisoprene melt and
polyisobutylene solutions measured on five different rheometers was compared to point
out important experimental precautions that need to be considered in order to achieve a
reasonable agreement of the measured nonlinear quantities. The instruments under investi-
gation were: ARES-G2, ARES-LS, MCR 702, (separated motor-transducer rheometers)
and DHR-3 and MCR 501, which are combined motor-transducer rheometers (CMT). The
method of temperature control (Peltier element or convection oven) was found to cause
deviations of up to 30% in Q0 for the polyisoprene melt even at moderate temperatures
(T = 52.8◦C ) when a Peltier plate was used instead of a forced convection oven due to
inhomogeneous heating. Differences in I3/1 arising from using parallel disks geometry due
to its inhomogeneous flow field can be corrected by multiplying torque intensity ratios by a
factor of 3/2 to convert them to stress intensity ratios as measured by the cone and plate
geometry. The deformation control on the DHR-3 (called motor mode) had to be chosen
such that the CMT-rheometer closely mimics a LAOStrain experiment by producing a
strain excitation as free of nonlinearities as possible. Using the wrong setting of the motor
mode, led to occurrence of nonlinearities in both strain and stress signal of approximately
equal intensities, which resulted in smaller Q0-values in comparison to strain controlled
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instruments. As for an unknown sample the optimal setting is not known a priori, this is a
disadvantage of the DHR-3 instrument.
The results for Q0-values of the polyisoprene sample obtained from the MCR 501 and the
MCR702 was determined to be larger by a factor of approximately two in comparison to
the other instruments, which suggests that, in these cases, the active deformation control
introduces additional nonlinearities in the stress signal.
For polyisobutylene, the results for Q0 from all the investigated instruments were found to
be within a relative reproducibility range of 12%. When using the CMT-rheometer DHR-3,
effects caused by the instrument inertia became noticeable for measurements at frequencies
above 23 rad/s leading to an apparent maximum in the frequency dependence of Q0.
If temperature control, excitation control and instrument inertia are considered and
corrected for, the relative deviations of the measured nonlinear quantities I3/1 and Q0 for
a LAOS experiment on different rheometers can be expected to be below 12%.
In Chapter, 5 a simple scalar model, capable of predicting nonlinear response for LAOS
experiments using only two parameters (a shear modulus G and a relaxation time λ) has
been presented. The model was obtained by assigning a shear rate dependent viscosity
to the dashpot in a Maxwell model while the spring was kept linear. The shear rate
dependence was introduced by applying the Cox-Merz rule to the expression of complex
viscosity from the Maxwell model. In this model G sets the stress scale, whereas λ governs
the nonlinearity of the dashpot but also the balance of viscous and elastic effects. The model
is a scalar, one dimensional, special case of the tensorial White-Metzner model. It was
solved numerically, the resulting stress signals were analyzed by a Fourier transform. The
results agreed well to an approximate analytical solution derived by Mahdi Abbasi (KIT)
that was valid for small deviations from linear behavior. At intermediate strain ampltiudes
γ0, a quadratic γ0 dependence for I3/1 was found (intrinsic LAOS range), subsequently the
frequency dependence of Q0 was determined for the model and the functional form of Q0(ω)
was compared to predictions of other models, such as corotational Maxwell, Giesekus,
Pom-Pom and MSF.
Furthermore, the model predictions were compared to experimental data on a micellar
solution of cetyl trimethylammonium bromide (CTAB). CTAB was chosen as a model
system because it displays Maxwellian linear viscoelastic behavior with a single relaxation
time and also the Cox-Merz rule can be applied. The model parameters, G = 68 Pa and
λ = 0.265 s, were determined by a fit of the Maxwell model to G′ and G′′ data and the
validity of the Cox-Merz rule could be confirmed for the CTAB sample. Predicted and
measured waveforms were in good agreement. However, the quantitative comparison based
on G′, G′′ and I3/1 revealed that the model underestimates nonlinear effects in the intrinsic
LAOS range, typical deviation were on the order of 30 % in I3/1. LAOS measurements
on CTAB spanning three decades in angular frequency were performed to determine the
intrinsic nonlinearity Q0(ω). Agreement of model prediction and experiment for Q0(ω)
is reasonably good considering the simplicity of the model. Quadratic scaling of Q0(ω)
predicted by the model for the viscous regime is in agreement with the experiments, but
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the absolute Q0(ω) values of the prediction were about 50 % smaller than the measured
values. Qualitative deviations occur when the elastic behavior is dominating, that means
for high angular frequencies (or large Deborah numbers).
Lastly, several modifications were explored to broaden the flexibility of the model. The
modifications included the use of a power law viscosity function instead of the Cox-Merz
rule related function, which led to non quadratic scaling of I3/1 with strain amplitude.
Moreover, the inclusion of a high frequency viscosity limit η∞ was investigated as well as
employing two relaxation times in order to investigate the effect of dashpot nonlinearity
separately from the viscosity/elasticity balance.

In Chapter 6, LAOS measurements on a polydisperse, thermo-responsive suspension
of polystyrene-poly(N-isopropylacrylamide) particles were presented and compared to
predictions by the schematic version of MCT. Measurements were conducted on fluid states
close to the glass transition, four effective volume fractions φeff = 0.614, 0.62, 0.631 and
0.637 were investigated. Linear viscoelastic moduli and flow curves were fitted to MCT
predictions to obtain model parameters, which were used to predict LAOS behavior.
Nonlinear stress wave forms agreed with previous results on high volume fraction suspen-
sions close to the glass transition. The frequency dependence, or in nondimensionalized
form, the Péclet number dependence, of the mechanical nonlinearities as quantified by
γ0-dependent G′, G′′ and I3/1 was investigated. Quadratic scaling I3/1(γ0) allowed to
determine Q0. Péclet number dependent Q0 curves, spanning a range of five decades,
were compared to MCT predictions calculated by Rabea Seybold (TU Dresden). The
predictions had been obtained by Seyboldt using a Taylor expansion of the density
correlator Φ. Its first nonlinear term was used calculate I3/1 in the resulting stress waves.
Since the first nonlinear term in the expansion of Φ was quadratic, this led to I3/1 ∝ γ2

0
scaling. MCT predicts Q0 to scale quadratically with Peω for very small Peω, which
could neither be confirmed nor disproved since this range of Peω was not accessible
experimentally. At intermediate Peω, Q0 is proportional to Pebω in the prediction, where
b ≈ 0.69, experimentally determined exponents, however, were about half as large. The
discrepancy might be related to an additional slow relaxation process that is not covered
in the schematic MCT. For large Peω, MCT states that Q0 ought to decrease proportional
to Pe−aω with a = 0.32. This could be confirmed, with experimental exponents close to 0.3.

In Chapter 7, LAOS measurements were correlated to results from neutron scattering
experiments performed by the group of Prof. Matthew E. Helgeson (University of Santa
Barbara, California) in order to investigate microstructural processes during the yielding
transition of a colloidal gel with heterogeneous microstructure. The gel consisted of
nanosized (RH = 21 nm) droplets of uncrosslinked polydimethylsiloxane in water (φ = 0.33),
bridged by polyethylene glycol diacrylate molecules. The structure of the gel can be
described as a two phase system of droplet rich and droplet lean domains reminiscent of
spinodal decomposition in quenched mixtures. The yielding process occured over a γ0 range
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of two decades (0.004<γ0 <1). The yielding was linked to two dominant microstructural
processes. First, the strain amplitude at which intracycle flow is initially observed coincided
with internal rupture and compression of dense fractal domains. Second, the strain
amplitude signifying the completion of yielding (where the intracycle yielding and flow
processes saturate) results from breakage and suspension of dense clusters of interconnected
droplets.
Three regions of yielding were determined based on nonlinear wave form parameters from an
analysis of Lissajous figures as sequence of physical processes. In region I, the bicontinuous
gel structure is only weakly perturbed, and the nonlinear waveform can be described by an
elastoplastic intracycle strain softening of the residual gel network. In region II, the dense
phase undergoes significant compression-mediated viscoplastic rupture of fractal domains,
resulting eventually in a sequence of intracycle yielding and flow. In this region, significant
frequency dependence is also observed, which is hypothesized to be caused by poroelastic
flow of fluid from the dense domains into newly formed fluid voids at large length scales
of tens of microns. Ultimately, the rupture of fractal domains at sufficiently high strain
amplitudes results in degradation of the network, eventually causing suspension of fractal
clusters in region III. This results in a relatively "simple" intracycle yielding response in the
flowing state, where the residual nonlinear elastic modulus, yield stress, and recoverable
strain all become independent of γ0. The wave form analysis revealed that interpretations
of LAOS data based solely on the linearized moduli G′ and G′ are insufficient to describe
yielding. Nonlinear rheological measures that have been used to quantify the yielding of
the gel included an intracycle yield strain and stress, a residual modulus as well as a local
viscosity during the flowing portion of the oscillation cycle. Lastly, a "phase map" for
intracycle yielding, which shows a sequence of elastic, elastoplastic softening, viscoplastic,
yielding and flow behavior, has been constructed from the instantaneous moduli R′ and
R′′.
In summary the results in this thesis show the diversity of the LAOS experiment applied to
dispersed systems and complex heterogeneous fluids in general. Nonlinear phenomena like
yielding and intracycle stiffening or thinning behavior can be characterized in frequency
dependent investigations. This leads to a more detailed description of the materials’
mechanical behavior.



Outlook

The results of this thesis point towards several directions for future research. The assessment
of the reproducibility of LAOS measurements will probably lead to the definition of
standardized testing procedures on certified standard materials. This will facilitate LAOS
experiments for new users and comparisons across different laboratories.
The modeling approach using a simple modification of the most widely known model for
viscoelasticity, the Maxwell model, will draw interest of rheologists who are not proficient
with tensor calculus. It can serve as a basis for better understanding the more intricate
3D constitutive models. Comparing intrinsic nonlinear signatures such as Q0 or intrinsic
Chebishev coefficients from libraries of various constitutive models to experimental data
will lead to enhanced characterization possibilities.
The results obtained in the nanoemulsion gel investigation are a first step into combined
rheo-scattering investigations of colloidal gels and need to be extended to other systems
(depletion-attraction gels and gels of crosslinking polymers) to check the generality of the
found signatures. Furthermore, the intracycle yielding behavior needs to be investigated
by recently developed, time resolved measurements of the structure by binning techniques
in neutron scattering (Kim, Eberle, et al. 2014) or fast x-ray scattering (Lettinga et al.
2012; Meins et al. 2012). Expanded studies should examine the rate dependence of the
applied deformation and combine them with modeling of the compression process of the
dense phase by poroelastic models with viscoelastic matrices.
New measurements of the nonlinearity of colloidal glasses similar to the experiments
presented here for fluid systems will be required to validate mode coupling theory predictions
as soon as they are computable for systems beyond the glass transition. Moreover, the
initial quadratic scaling of Q0 might be investigated by using model suspensions in a
dispersant of higher viscosity than water to overcome sensitivity challenges at very low
angular frequencies. Additionally, a comparison of LAOS behavior across different glassy
and jammed soft matter systems (gels, emulsions, suspensions and foams) is desirable,
similar to a comparison recently made for steady shear measurements (Ikeda et al. 2013).
The samples investigated in this thesis were model systems for fundamental investigations.
Eventually, future applications of LAOS flow will also focus more on complex real life
systems such as foods, examples might be chocolate, dough, sauces, dressings and various
foams and gels. Other dispersed systems which lend themselves to LAOS characterization
can be found in biomaterials, where first investigations have been made: blood (Kempen
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et al. 2015), human skin (Lamers et al. 2013) and other tissues or fluids that are under
repetitive large deformation display fascinating nonlinear mechanical behavior which can
be measured using the LAOS experiment.
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Appendix

Coefficients for the solution of the corotational Maxwell
model

The following table lists the Deborah number (De = λω) dependent coefficients for Eqs.
4.5 through 4.8 in Section 4.3, page 61, rewritten from the work of Giacomin et al. (2015).

m n Amn Bmn

3 1 1
2(1+4De2)

De
(1+4De2)

5 1 − 5
16(1+4De2)(1+9De2) − 15De

16(1+4De2)(1+9De2)

3 3 (1−11De2)
6(1+4De2)(1+9De2)

(1−De2)De
(1+4De2)(1+9De2)

5 3 − (5−130De2)
32(1+4De2)(1+9De2)(1+16De2) − (45−120De2)De

32(1+4De2)(1+9De2)(1+16De2)

5 5 − 1−85De2+274De4

32(1+4De2)(1+9De2)(1+16De2)(1+25De2) − (15−225De2+120De4)De
32(1+4De2)(1+9De2)(1+16De2)(1+25De2)

m n Cmn Dmn

3 1 3
4(1+4De2)

3De
(1+4De2)

5 1 − 5
8(1+4De2)(1+9De2) − 15De

8(1+4De2)(1+9De2)

3 3 (1−11De2)
4(1+4De2)(1+9De2)

3(1−De2)De
2(1+4De2)(1+9De2)

5 3 − (5−130De2)
8(1+4De2)(1+9De2)(1+16De2) − (45−120De2)De

16(1+4De2)(1+9De2)(1+16De2)

5 5 − 1−85De2+274De4

16(1+4De2)(1+9De2)(1+16De2)(1+25De2) − (15−225De2+120De4)De
16(1+4De2)(1+9De2)(1+16De2)(1+25De2)

Table 8.3: Coefficients for the solution of the corotational Maxwell model in Eqs. 4.5 through 4.8 from
Section 4.3, page 61.
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Coefficients for the solution of the modified Maxwell model
with Cox-Merz rule

The following table lists the Deborah number (De = λω) dependent coefficients for the
I3/1 expression in the modified Maxwell model (Eq. 5.13) from Section 5.2, page 85. The
solution has been derived by Mahdi Abbasi.

m n G′mn G′′mn

1 1 G De2

1+De2 G De
1+De2

3 1 −1
2G

De4

(1+De2)2
1
8G

De3(De2−3)
(1+De2)2

3 3 −1
2G

De4

(1+De2)(1+9De2)
1
8G

De3(3De2−1)
(1+De2)(1+9De2)

Table 8.4: Coefficients for the I3/1 expression in the modified Maxwell model (Eq. 5.13) from Section 5.2,
page 85.
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MATLAB code for numerical calculations and Fourier trans-
form analysis

Numerical calculations in Chapter 5 were performed using the following MATLAB scripts
and functions.
The main script that handles parameter input (G, λ, sampling rate, number of cycles to be
calculated, γ0 and ω range), performs data analysis and plots figures is ModelingScript.m.

ModelingScript.m

1 %% Script for numerical solutions of differential constitutive ...

equations
2 % Dimitri Merger 21.08.2015
3

4 close a l l
5 clear a l l
6

7 set (0 , ' d e f a u l t t e x t i n t e r p r e t e r ' , ' tex ' )
8

9 % Switches and ...

parameters__________________________________________________
10 %__________________________________________________________________________
11 f i leName = ' r e s u l t s ' ; %specify name of the results file
12

13

14 l i s s = 1 ; % [0 or 1] switch for lissajous figure display ,
15 %setting to 1 shows lissajous figures for every ...

calculates pair
16 %of angular frequency and strain amplitude
17

18 % Excitation and sampling parameters ...

______________________________________
19

20 w_range = [ 1 ] ; %specify angular frequency w (or range)
21 g0_range = [ 1 ] ; % specfify strain amplitude g0 (or range)
22

23 s_rate = 512 ; % sampling rate, time points calculated per cycle
24 nocy = 35 ; % number of cycles per w and g0
25 Ncycles = [ ] ; % initialize additinal variable for number of ...

cycles
26 Amp = [ ] ; % initialize additinal variable for g0
27

28

29 % Model parameters ...
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________________________________________________________
30

31 lambda = 1 ; % [s] relaxation time in the model
32 lambda2 = 100 ; % [s] additional relaxation time in the two ...

relaxation...
33 % time model , will be ignored in other models
34 G = 10 ; % [Pa] Elastic modulus
35 eta = G∗ lambda ; % [Pas] Zero shear viscosity
36 eta_in f = eta /100 ; % [Pas] high frequency limiting viscosity
37 % (will be only used if the correct model is ...

chosen)
38

39 c = 0 . 6 ; % []alpha = c-1 !!!set to 0 for newton ,
40 % to -1 for max shear thinning
41 % (will be only used if the correct model is chosen)
42 alpha = c−1; % c = alpha + 1, if c = 1 ->Newton
43

44 s c r s z = get (0 , ' ScreenS i z e ' ) ;
45

46 %% _______________________ Calculation loops ...

____________________________
47 for w_index = 1 : length (w_range ) % loop through all w
48

49 w = w_range (w_index ) ; % [rad/s]
50 f = w/2/pi ; % [Hz] frequency
51 T = 1/ f ; % Duration of a cycle [s]
52 De = w.∗ lambda ; % Deborah number
53

54 for index = 1 : length ( g0_range ) % loop through all amplitudes
55

56 Amp{ index } = g0_range ( index ) ; % pick strain amplitude from range
57

58 %__________________________ call solver passing all relevant parameters
59 [ t , s t r a in , rate , s i g 2 ] = s o l v e r (Amp{ index } ,G, lambda , lambda2 , ...

eta , eta_inf , alpha , f , nocy , s_rate ) ;
60

61 %____________________________ cut off start -up ...

_________________________%
62 Ncycles { index } = 5 ; % specify # of last cycles will be analyzed
63 % if 5 then the 5 final cycles go to FT, all
64 % preceding cycles will be discarded for the
65 % analysis
66 s t a r t = ( nocy−Ncycles { index }) ∗ s_rate+1;
67 t_c = t ( s t a r t :end−1) ;
68 s t ra in_c = s t r a i n ( s t a r t :end−1) ; % trimmed strain signal
69 rate_c = ra t e ( s t a r t :end−1) ; % trimmed rate signal
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70 s ig_c = s i g 2 ( s t a r t :end−1) ; % trimmed stress signal
71

72 %____________________________ Call FT function ...

_________________________%
73 [ s t r e s sA0 { index } , s t ressAn { index } , s t r e s sBn { index } ] = ...

Fourier_Transform ( sig_c ) ;
74

75

76 %____________________________ Calculate intensities ...

_________________________%
77 InS{ index } = sqrt ( s t ressAn { index }.^2 + stre s sBn { index } .^2) ; % ...

Magnitude spectrum
78

79 I1 { index } = InS{ index }(1∗ Ncycles { index }) ; % I1
80 de l ta1 { index } = atan ( s t ressAn { index }( Ncycles { index }) / ...

s t re s sBn { index }( Ncyc les { index }) ) ; % 1st phase
81

82 Gp{ index } = I1 { index }/Amp{ index }∗cos ( de l t a1 { index }) ; % G'
83 Gpp{ index}= I1 { index }/Amp{ index }∗ sin ( de l t a1 { index }) ; % G''
84

85 I21 { index } = ...

InS{ index }(2∗ Ncycles { index }) / InS{ index }( Ncycles { index }) ; % ...

relative 2nd harmonic
86 de l ta2 { index } = atan ( s t ressAn { index }(2∗ Ncycles { index }) / ...

s t re s sBn { index }(2∗ Ncycles { index }) ) ; % 2nd phase
87

88 I31 { index } = ...

InS{ index }(3∗ Ncycles { index }) / InS{ index }( Ncycles { index }) ; % ...

relative 3rd harmonic
89 de l ta3 { index } = atan ( s t ressAn { index }(3∗ Ncycles { index }) / ...

s t re s sBn { index }(3∗ Ncycles { index }) ) ; % 3rd phase
90

91 I51 { index } = ...

InS{ index }(5∗ Ncycles { index }) / InS{ index }( Ncycles { index }) ; % ...

relative 5th harmonic
92 de l ta5 { index } = atan ( s t ressAn { index }(5∗ Ncycles { index }) / ...

s t re s sBn { index }(5∗ Ncycles { index }) ) ; % 5th phase
93

94 I71 { index } = ...

InS{ index }(7∗ Ncycles { index }) / InS{ index }( Ncycles { index }) ; % ...

relative 7th harmonic
95 de l ta7 { index } = atan ( s t ressAn { index }(7∗ Ncycles { index }) / ...

s t re s sBn { index }(7∗ Ncycles { index }) ) ; % 7th phase
96

97 InSnorm{ index } = InS{ index } ./ I1 { index } ; % normalized spectrum
98
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99 Q{ index } = I31 { index }/(Amp{ index }^2) ; % Q coefficient , ! not Q0 !
100

101 %_________________________ Plotting Section ...

_______________________________
102 %%%%%%%%%%%%%%%%%%%%%%% X-Axis for FT spectra %%%%%%%%%%%%%%%%%%%%%%
103

104 SpecRes{ index } = 1/Ncycles { index } ;
105 SpecResAxis { index } = ( SpecRes{ index } : SpecRes{ index } : ...

( length ( InS{ index }) /Ncyc les { index }) ) ;
106

107

108 %%%%%%%%%%%%%%Print .txt files for Frequency spectrum of each ...

measurement
109 newfi lename = strrep ( f i leName , ' . tx t ' , ' ' ) ;
110

111 s a v e f i l e = [ 'FT ' char ( '_ ' ) ' Spectrum ' char ( '_ ' ) ' g= ' ...

num2str(Amp{ index }) 'w= ' num2str(w) ' . tx t ' ] ;
112 FFTTable = [ SpecResAxis { index } ; InSnorm{ index } ] ;
113

114 %___________ Lissajous plots and spectra _________________________
115 i f l i s s == 1 ;
116 Ti t l e = [ 'G = ' num2str(G) ' Pa ; ' ' \lambda = ' num2str( lambda ) ...

' s ; ' ] ;
117 Ti t l e = [ T i t l e 'De = ' num2str(De) ' ; ' ' \gamma_0 = ' ...

num2str(Amp{ index } , '%6.2e ' ) ] ;
118 f igure ( ' Pos i t i on ' , [ s c r s z (3 ) /10 s c r s z (4 ) /10 s c r s z (3 ) /1 .4 ...

s c r s z (4 ) / 1 . 4 ] )
119

120

121 subplot ( 2 , 2 , 1 )
122 plot ( rate , s i g 2 ) ; set (gca , ' f o n t s i z e ' , 15 , 'FontWeight ' , ' bold ' )
123 xlabel ( ' shear ra t e [ 1/ s ] ' ) ; ylabel ( ' \sigma [ Pa ] ' ) ;
124 t i t l e ( T i t l e ) ;
125

126 subplot ( 2 , 2 , 2 )
127 plot ( s t r a in , s i g 2 ) ; set (gca , ' f o n t s i z e ' , 15 , 'FontWeight ' , ' bold ' )
128 xlabel ( ' s t r a i n ' ) ; ylabel ( ' \sigma [ Pa ] ' ) ;
129

130 subplot ( 2 , 2 , 3 )
131 plot ( t /T, ra t e /max( r a t e ) , t /T, s t r a i n /max( s t r a i n ) , ...

t /T, s i g 2 /max( s i g 2 ) ) ; set (gca , ' f o n t s i z e ' , 15 , 'FontWeight ' , ' bold ' )
132 xlabel ( ' t /t_0 ' ) ; ylabel ( ' \sigma [ Pa ] ' ) ;
133 legend ( 'norm . shear ra t e ' , 'norm . s t r a i n ' , 'norm . s t r e s s ' ) ;
134

135 subplot ( 2 , 2 , 4 )
136 semilogy (FFTTable ( 1 , : ) ,FFTTable ( 2 , : ) ) ; set (gca , ' f o n t s i z e ' , ...
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15 , 'FontWeight ' , ' bold ' )
137 xlabel ( ' \omega/\omega_0 ' ) ; ylabel ( ' I_{n/1} ' ) ;
138

139 end
140 % _________________ Save Spectra and Time tables
141

142 myf i l e { index } = fopen ( s a v e f i l e , 'wt ' ) ;
143 fpr intf ( my f i l e { index } , 'Frequency \ t InSnorm \n ' ) ; ...

%SpecResAxis{index} ;InSnorm{index}
144 fpr intf ( my f i l e { index } , ' %g \ t %g \n ' ,FFTTable ) ;
145 fc lose ( my f i l e { index }) ;
146

147 t imedatatab le = [ rate ' s t r a in ' s i g 2 ] ;
148

149 s a v e f i l e 2 { index } = [ 'Timedata ' char ( '_ ' ) ' g= ' ...

num2str(Amp{ index }) 'w= ' num2str(w) ' . tx t ' ] ;
150 myf i l e { index } = fopen ( s a v e f i l e 2 { index } , 'wt ' ) ;
151 fpr intf ( my f i l e { index } , ' r a t e \ t s t r a i n \ t s t r e s s \n ' ) ; ...

%SpecResAxis{index} ;InSnorm{index}
152 fpr intf ( my f i l e { index } , ' %g \ t %g \ t %g \n ' , t imedatatable ' ) ;
153 fc lose ( my f i l e { index }) ;
154

155 end % end of strain amplitude loop
156

157 FigureName = [ 'omega = ' num2str(w) ' rad_s−1 ' ] ;
158

159 s a v e f i l e = [ f i leName char ( '_ ' ) 'w= ' num2str(w) ' . tx t ' ] ;
160 %____________ collect and save results from individual strain ...

amplitudes
161 matr ixI31 {w_index} = ce l l 2mat ( [Amp; I1 ; Gp; Gpp ; de l t a1 ; I31 ; I21 ; ...

de l ta3 ; I51 ; de l t a5 ; Q; ] ) ;
162 %____________ note the 'append ' call, data will not be overwritten
163 dlmwrite ( s a v e f i l e , matr ixI31 {w_index } ' , '−append ' , ' d e l im i t e r ' , ' \ t ' )
164

165 %_______ final plots for ...

overview_____________________________________
166 f igure ( 'Name ' , FigureName , ' Pos i t i on ' , [ s c r s z (3 ) /10 s c r s z (4 ) /10 ...

s c r s z (3 ) /1 .4 s c r s z (4 ) / 1 . 4 ] ) ;
167 subplot ( 2 , 1 , 1 )
168

169 loglog ( matr ixI31 {w_index } ( 1 , : ) , matr ixI31 {w_index } ( 3 , : ) . . .
170 , matr ixI31 {w_index } ( 1 , : ) , matr ixI31 {w_index } ( 4 , : ) ) ;
171 set (gca , ' f o n t s i z e ' , 15 , 'FontWeight ' , ' bold ' )
172 legend ( 'G ' ' ' , 'G ' ' ' ' ' ) ;
173 xlabel ( ' \gamma_0 ' ) ; ylabel ( [ 'G ' ' ' ' , ' 'G ' ' ' ' [ Pa ] ' ] ) ;
174
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175 subplot ( 2 , 1 , 2 )
176 loglog ( matr ixI31 {w_index } ( 1 , : ) , matr ixI31 {w_index } ( 6 , : ) , . . .
177 matr ixI31 {w_index } ( 1 , : ) , matr ixI31 {w_index } ( 9 , : ) , . . .
178 matr ixI31 {w_index } ( 1 , : ) , matr ixI31 {w_index } ( 7 , : ) )
179 set (gca , ' f o n t s i z e ' , 15 , 'FontWeight ' , ' bold ' )
180 legend ( ' I_{3/1} ' , ' I_{5/1} ' , ' I_{2/1} ' ) ;
181 xlabel ( ' \gamma_0 ' ) ; ylabel ( ' I_{n/1} ' ) ;
182

183

184 end % end of w loop
185

186 disp ( ' done : ) ' )

The function solver.m is used in ModelingScript.m to calculate σ(t) for LAOS excitation
according to γ(t) = γ0 sin(ωt), specified by ω and γ0. It contains the main model of
Chapter 5 (Maxwell model with the Cox-Merz rule, Eq. 5.12) and the modifications with
the power law viscosity (Eq. 5.16) and high frequency limiting viscosity (Eq.5.20) as well
as the two relaxation time modification (Eq. 5.22). Which of the model is used can be set
by a switch in solver.m.

solver.m

1 function [ t , strain_o , rate_o , s i g 2 ]= s o l v e r ( g0 , G, lambda , ...

lambda2 , eta , eta_inf , alpha , f , nocy , s_rate )
2

3 %close all
4 % initial value , input signal , material parameters
5 sig_0 = 0 ;
6

7 w = f ∗2∗pi ; % [rad/s]
8

9 r a t e =@( t ) g0∗w∗cos (w∗ t ) ; % quick definition of rate function
10 s t r a i n = @( t ) g0∗ sin (w∗ t ) ; % quick definition of strain function
11

12 tmax = nocy/ f ; %
13 Q = nocy∗ s_rate+1;
14 dt = tmax/(Q−1) ;
15 t = linspace (0 , tmax ,Q) ;
16 s i g = zeros (Q, 1 ) ;
17 s i g (1 ) = sig_0 ;
18

19 % LIST of models
20 % 1 - Maxwell type viscosity function using cox-merz = Main model
21 % 2 - Maxwell model for code validation
22 % 3 - nonlinear dashpot only carreau type, explicit calculation
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23 % 4 - Maxwell type viscosity function using cox-merz and high ...

shear rate viscosity
24 % 5 - spring + powerlaw dashpot
25 % 6 - two relaxation times model
26 model = 1 ; % choose model here
27 switch (model )
28

29 case 1 % Maxwell type viscosity function using cox-merz = Main ...

model
30 h = @ ( t ) eta .∗ sqrt (1 ./(1+ lambda ^2.∗ r a t e ( t ) . ^2 ) ) ; % shear rate ...

dependent viscosity
31 f =@ ( t , y ) ( r a t e ( t ) − y . / h( t ) ) ∗G; % differential equation
32 opt ions = odeset ( 'AbsTol ' ,1 e−15, ' RelTol ' ,1 e−6) ;
33 [T, s i g 2 ] = ode45 ( f , t , sig_0 , opt ions ) ;
34

35 case 2 % Maxwell model for code validation
36 f =@ ( t , y ) ( r a t e ( t ) − y/ eta ) ∗G;
37 opt ions = odeset ( 'AbsTol ' ,1 e−15, ' RelTol ' ,1 e−6) ;
38 [T, s i g 2 ] = ode45 ( f , t , sig_0 , opt ions ) ;
39

40 case 3 % nonlinear dashpot only carreau type, explicit calculation
41 s i g 2 = eta .∗ r a t e ( t ) ./(1+( lambda .∗ abs ( r a t e ( t ) ) ) .^ alpha ) ;
42 s i g 2 = s ig2 ' ;
43

44 case 4
45 % maxwell type viscosity function using cox-merz and high shear ...

rate viscosity
46 h = @ ( t ) eta_in f + ...

( eta−eta_in f ) .∗ sqrt (1 ./(1+ lambda ^2.∗ r a t e ( t ) . ^2 ) ) ;
47 f =@ ( t , y ) ( r a t e ( t ) − y . / h( t ) ) ∗G; % DiffEq.
48 opt ions = odeset ( 'AbsTol ' ,1 e−15, ' RelTol ' ,1 e−6) ;
49 [T, s i g 2 ] = ode45 ( f , t , sig_0 , opt ions ) ;
50

51 case 5 % spring + powerlaw dashpot
52 h = @ ( t ) eta .∗ abs ( r a t e ( t ) ) . ^ ( alpha ) ;
53 f =@ ( t , y ) G∗( r a t e ( t ) − y . / h( t ) ) ; % standard DiffEq. with shear ...

rate dependend eta
54 opt ions = odeset ( 'AbsTol ' ,1 e−15, ' RelTol ' ,1 e−6) ;
55 [T, s i g 2 ] = ode45 ( f , t , sig_0 , opt ions ) ;
56

57 case 6 % two relaxation times model
58 eta = G∗ lambda2 ; % uses lambda2 to set zero shear viscosity eta
59 h = @ ( t ) eta .∗ sqrt (1 ./(1+ lambda ^2.∗ r a t e ( t ) . ^2 ) ) ; % shear rate ...

dependent viscosity
60 f =@ ( t , y ) ( r a t e ( t ) − y . / h( t ) ) ∗G; % differential equation
61 opt ions = odeset ( 'AbsTol ' ,1 e−15, ' RelTol ' ,1 e−6) ;
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62 [T, s i g 2 ] = ode45 ( f , t , sig_0 , opt ions ) ;
63 end
64

65 rate_o = rat e ( t ) ;
66 stra in_o = s t r a i n ( t ) ;
67

68

69 end

The Fourier transform in ModelingScript.m is done by the function Fourier_Transform.m.
For a signal σ(t) this functions calculates the real and imaginary spectrum, <(ω) and
=(ω). Fourier_Transform.m has been originally written by Randy H. Ewoldt (University
of Illinois, Urbana-Champaign). It is published under the name FTtrig_MITlaos.m for
the MITlaos software, version 2.1 (Ewoldt et al. 2007; Ewoldt 2009).

Fourier_Transform.m

1 function [A0 , An, Bn ] = Fourier_Transform ( f )
2

3

4 %____________
5 % A0 = offset
6 % An = real spectrum
7 % Bn = imaginary spectrum
8 i f i n t32 ( length ( f ) /2) == length ( f ) /2
9 %do nothing

10 else
11 %trim last data point to force even number of data points
12 %f MUST HAVE EVEN NUMBER OF DATA POINTS!
13 d=f ; % d is placeholder
14 clear f
15 f = d ( 1 : length (d)−1) ;
16 clear d
17 end
18

19 n=length ( f ) ;
20 N=n/2 ; %N will be the number of harmonics to consider
21

22 Fn(n)=zeros ; %initialize complex transform vector
23 % this will make it a ROW vector
24 % which is necessary for combination later
25

26 s i z e f = s ize ( f ) ;
27 i f s i z e f (1 ) == 1 %if ROW vector
28 Fn = f f t ( f ) ; %let Fn be ROW vector
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29 else
30 frow = f ' ;
31 Fn = f f t ( frow ) ; %compute FT Fn=[ low > high | high < low ]
32 %force input to fft to be ROW vector
33 end
34 Fn_new = [ conj (Fn(N+1) ) Fn(N+2:end ) Fn ( 1 :N+1) ] ;
35 %rearrange values such that: Fn_new = [ high < low | low > high ]
36

37 Fn_new ( : ) = Fn_new ( : ) /n ; %scale results
38

39 A0 = Fn_new(N+1) ;
40 An = 2∗ real (Fn_new(N+2:end ) ) ; %cosine terms
41 Bn = −2∗imag(Fn_new(N+2:end ) ) ; %sine terms
42 end

Additionally, if ModelingScript.m is to be used for the analysis of experimental data, the
line which calls solver.m in ModelingScript.m can be commented out, instead experimental
data can be read. This data has to be trimmed such that the stress signal comprises an
integer number of oscillation cycles and the respective strain signal has a phase of zero,
meaning that it starts at γ(t = 0) = 0. For this purpose LAOS_Stress_Trimming.m is
used, which has also been written by Randy H. Ewoldt (cycletrim_MITlaos.m in the
MITlaos package, Ewoldt et al. 2007; Ewoldt 2009). LAOS_Stress_Trimming.m trims
N cycles at the points where the strain changes the sign, resulting in N − 1 cycles, the
respective stress signal is trimmed at the same data points. The trimmed data set has
still a finite, albeit small, phase difference ∆δ due to discretization during acquisition
(Ewoldt 2013), which can be determined by an additional FT of γ(t). Consequently, the
corresponding experimental spectra of the stress signal <exp(ω) and =exp(ω) have to be
corrected for this small phase difference according to Eqs. 8.1 and 8.2. This leads to
the phase corrected spectra <(ω) and =(ω), which are referenced to perfect sinusoidal
strain input. Note that for the numerically calculated signals this phase correction step
was not necessary because the strain input is set to be a pure sine with zero phase in the
calculations.

<(ω) = <exp(ω) cos(∆δ)−=exp(ω) sin(∆δ) (8.1)

=(ω) = =exp(ω) cos(∆δ) + <exp(ω) sin(∆δ) (8.2)

LAOS_Stress_Trimming.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Function to cut strain and stress signals to an interger number of
3 % cycles such that strain starts at 0,
4 % by detection of sign changes in the strain
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5 %
6 %
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8 function [ i s t r a i n , i s t r e s s , i n s t r e s s , Ncycles , i s t a r t , i s t op ] = ...

LAOS_Stress_Trimming ( s t r a in , s t r e s s , n s t r e s s )
9

10 d_zero = [ ] ; %location of sign changes
11

12 k=0; %k is a counter for the number of times gamma changes sign
13

14 sign_gam = sign ( s t r a i n ) ;
15

16 for i = 1 : length ( s t r a i n )−1
17 i f sign_gam( i ) ~= sign_gam( i +1)
18 k=k+1;
19 d_zero (k )=i +1; %index location after sign change
20 end
21 end
22

23 l g th = length ( d_zero ) ; % number of sign changes
24

25 i f l g th /2 ~= round( l g th /2) % Check if lgth is odd
26 i s t a r t = d_zero (1 ) ; %set start of window
27 i s t op = d_zero(end) − 1 ; %set end of window
28 Ncycles = ( l g th − 1) /2 ; % calculate number of full cycles
29 else % lgh is even
30 i s t a r t = d_zero (1 ) ; % set start of window
31 i s t op = d_zero (end−1) − 1 ; %set end of window
32 Ncycles = ( l g th − 2) /2 ; %calculate number of full cycles
33 end
34

35

36 %trim arrays of strain , stress and nstress according to the window
37 i s t r a i n = s t r a i n ( i s t a r t : i s t op ) ;
38 i s t r e s s = s t r e s s ( i s t a r t : i s t op ) ;
39 i n s t r e s s = n s t r e s s ( i s t a r t : i s t op ) ;
40 end
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