KIT | KIT-Bibliothek | Impressum | Datenschutz

Space-time discontinuous Galerkin discretizations for linear first-order hyperbolic evolution systems. Revised March 2016

Dörfler, Willy ORCID iD icon; Findeisen, Stefan; Wieners, Christian

Abstract:

We introduce a space-time discretization for linear first-order hyperbolic evolution systems using a discontinuous Galerkin approximation in space and a Petrov-Galerkin scheme in time. We show well-posedness and convergence of the discrete system. Then we introduce an adaptive strategy based on goal-oriented dual-weighted error estimation. The full space-time linear system is solved with a parallel multilevel preconditioner. Numerical experiments for the linear transport equation and the Maxwell equation in 2D underline the effciency of the overall adaptive solution process.


Volltext §
DOI: 10.5445/IR/1000053080
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2016
Sprache Englisch
Identifikator ISSN: 2365-662X
urn:nbn:de:swb:90-530800
KITopen-ID: 1000053080
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 21 S.
Serie CRC 1173 ; 2015/4,revised
Schlagwörter Space-time methods, discontinuous Galerkin finite elements, linear hyperbolic systems, transport equation, wave equation, Maxwell's equations
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page