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Zusammenfassung

Diese Arbeit befasst sich mit der Weiterentwicklung, Anwendung und Evaluierung com-
putergestützter Methoden zur Beschreibung der Dynamik von Ladungsträgern in organ-
ischen Halbleitern.

Für eine unvoreingenommene Beschreibung der Ladungsträgerdynamik wird eine vorhe-
rige Festlegung des Ladungstransportregimes vermieden. Anstatt von einer delokalisierten
Bandstruktur oder von lokalisiertem "Hopping" auszugehen, wird in unserem Modell die
Ladung mit der zeitabhängigen Schrödinger-Gleichung propagiert. Diese Multi-Skalen-
Methode – urpsrünglich entwickelt für die Beschreibung des Ladungstransfers in DNA
– musste für die Anwendung auf organische Halbleiter angepasst und erweitert wer-
den. Eine neuer selbstwechselwirkungsfreier Ausdruck für die Gesamtenergie wurde for-
muliert und neue Bewegungsgleichungen für den Ladungsträger und die Kerne wurden
daraus abgeleitet, was sich als notwendig für die korrekte Ladungsträgerdynamik erweist.
Darüber hinaus wurde die Methodik um zusätzliche Fragmentorbitale auf jedem Molekül
erweitert und lokale als auch nicht-lokale Elektron-Phonon-Kopplungen wurden in einer
konsistenten Weise berücksichtigt.

Mit dieser verbesserten Methodik konnten die Ladungsträgermobilität für verschiedene
organische Materialien in guter Übereinstimmung mit dem Experiment simuliert werden.
Von besondere Relevanz ist die Temperaturabhängigkeit der Mobilität, da sie darauf hin-
deutet in welchem Regime der Ladungstransport stattfindet – "Hopping" oder bandartig.
Aus diesem Grund wurde die Temperaturabhängigkeit der Mobilität unterschiedlicher
Systeme untersucht, wobei ein Steigen als auch Sinken der Mobilität mit der Temperatur
in amorphen bzw. kristallinen Systemen reprodizierbar ist.

Das Herzstück der Methodik ist ein Fragmentorbital Hamiltonian, der darüber hinaus in
"Hopping"-Modellen eingesetzt werden kann oder um auf effiziente Weise Informationen
über die elektronische Struktur eines molekularen Systems zu erhalten. Ein eleganterer
Ansatz zur Berechnung seiner Matrixelemente unter Verwendung der semi-empirischen
Methode DFTB wurde entwickelt. Das Benchmarken dieses Vorgehens an einem großen
Satz organischer Moleküle bestätigte, dass diese Methode ausgezeichnet zur effizienten
Berechnung elektronischer Kopplungen geeignet ist. Darüber hinaus wurde der Ein-
fluss des Selbstwechselwirkungsfehlers von DFT auf die Berechnung der Matrixelemente
diskutiert und Korrekturen vorgeschlagen.
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Abstract

This work focuses on the development, application, and evaluation of computational
methods for the description of the dynamics of excess charge carriers in organic semicon-
ducting materials.

For an unbiased bottom-up description of the charge dynamics, we aim to avoid prede-
termination of the charge transport regime. Instead of assuming in our model delocalized
bands or localized hopping we perform a direct propagation of the excess charge with
the time-dependent Schrödinger equation. This multi-scale method – initially derived
for the description of charge transfer in DNA – had to be adapted and further developed
for the application to organic semiconductors. A new self-interaction-free total energy
expression is formulated and new equations of motion for the excess charge and the nu-
clei are derived, which turns out to be essential for the correct evolution of the charge
carrier. Furthermore, the methodology was enhanced by increasing the active space to
an arbitrary number of fragment orbitals per molecule, and local- as well as non-local
electron-phonon coupling was included in a consistent way.

With the advanced method, hole mobilities for several organic materials were simulated
in good agreement with the experiment. Of particular interest is the temperature depen-
dence of the mobility, because it indicates the regime in which the charge transport takes
place – hopping or band-like. Therefore, the temperature dependence of the mobility
was investigated in several systems with the finding that our method is able to repro-
duce both the increase and decrease of the mobility with temperature for amorphous and
crystalline systems, respectively.

The core of this method is the fragment orbital Hamiltonian, which can also be applied
e.g. in hopping models or to obtain the electronic structure of a molecular system in
a linear scaling fashion. A more sophisticated method for the calculation of its matrix
elements in the framework of the semi-empirical method DFTB was developed. Bench-
marking this approach on a large set of organic molecules confirmed the excellent perfor-
mance of this method for the efficient calculation of electronic couplings. Furthermore,
influence of the self interaction error of DFT on the matrix elements are discussed and
corrections proposed.
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CHAPTER 1
Introduction

High electrical conductivity of organic compounds was already observed in 1972 in a
bimolecular charge-transfer salt of tetrathiafulvalene (TTF) as electron donor, and tetra-
cyanoquinodimethane (TCNQ) as electron acceptor.1 In 1976 electrical conductivity was
also found in polymers after oxidation of polyacetylene with halogens by Heeger, Mac-
Diarmid, and Shirakawa,2,3 who were rewarded with the Nobel prize in chemistry for
this work in the year 2000. Today, there exists a large variety of organic semiconducting
materials, consisting of small molecules or polymers. What they all have in common
is that their molecular building blocks are only weakly interacting via van der Waals
(vdW) forces, in contrast to the covalent network that is formed by conventional in-
organic semiconductors (ISCs). This fundamental difference at the atomic scale gives
rise to largely different mechanical and electronic properties and therefore allows distinct
fields of application. The most important advantages and disadvantages of OSCs over
ISCs are summarized in the following.

1.1. Advantages and Disadvantages of Organic
Semiconductors

• Low-cost Production: A significant share of the total production cost of elec-
tronic components is attributed to the complex fabrication process and not to the
material price.4 One of the most interesting properties of OSCs is the possibility
to reduce these costs significantly. Due to their weak intermolecular interaction,
soluble OSC molecules can be synthesized, which gives access to one of the most
inexpensive industrial pattering process: printing. Using the technologies that are
applied to conventional printed products (newspapers, posters, packaging etc.),

1



Chapter 1. Introduction

large circuits consisting of thin-film transistors and other components can be eas-
ily patterned onto a broad range of substrates like plastic, glass, or metal foils.
These printing technologies can be divided into sheet-based and roll-to-roll-based
approaches. Sheet-based inkjet printing is the best solution for low-volume pro-
duction with frequently changing requirements. Applying offset, gravure or felexo-
graphic printing in roll-to-roll processing allows high-volume production of roughly
10.000 m2/h.5 Roll-to-roll processing of organic electronics is still in a development
phase. If the industrial application of this technology succeeds, however, many
OSC devises could be produces at a fraction of conventional ISCs.

• Flexibility: Weak intermolecular interaction and self-assembling properties of the
semiconducting molecules give rise to bendable electronic devices, when a flexible
substrate like a polymer film is used. Circuits may remain functional even when
they are bent with a radius of just 100 µm.6

• Large-area Processing: Inorganic semiconductor devices are quite limited in
size, due to their difficult production process that cannot be up-scaled easily in
most cases. For example, crystalline inorganic solar-cells are assembled from small
wafers that have to be cut from a single crystal. Printing of organic semiconductors,
on the other hand, is a possibility to produce large scale devices in a single step.
Even more pronounced is the difference in the field of lighting. There is a growing
interest in producing large-area organic light-emitting diodes (OLEDs) as novel
lighting solutions.

• Easy Modifications: The molecular structure of organic semiconductors, pro-
vides easy routes to modify the solubility or electronic properties of a compound.
Solubility, for example can be controlled by modifications in the side chains7 and
the carrier mobility and band gap of polymers can be modified by their molecular
weight.8,9

• Bad Performance: The weak intermolecular interaction in OSCs makes these ma-
terials vulnerable to environmental influences like oxygen and moisture. Although
carrier mobilities in organic materials have already improved since the early studies,
they still lack behind the mobilities that can be observed in crystalline inorganic
materials. The low carrier mobility of OSCs manifests in low efficiencies of organic
solar cells and slow switching speeds of organic field effect transistors.10
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1.2. Potentials of Organic Semiconductors

The advantages of OSCs, presented above, give rise to an astonishing potential. OSCs
are applied in a wide range of electronic components like OLEDs,11–13 organic field-effect
transistors (OFETs)10,14,15 and organic solar cells.16–18 Commercial application of OSCs
takes place mainly in form of OLEDs as pixel in thin and/or flexible displays. These
are nice gadgets but OSCs have a potential impact on a much larger scale, that we will
outline briefly in the following. The realization of these visions is, however, dependent
on the ability to produce devices with sufficient performance at a significantly lower cost
than conventional devices, based on ISCs.

Sustainable Energy Supply

One major challenge of the current century is the continuously growing demand for en-
ergy, which is increasing at an alarming rate (see figure 1.1a). In a world with finite
resources it is obvious that such a non-sustainable growth, mainly fueled by fossil re-
sources, has to come to an end. Regenerative energy sources are the only viable solution
in the long run. A virtually infinite source of energy that powers nearly all live on earth
is the sun. From the ∼ 109 TWh of solar energy that reach the ground per year only
∼ 0.5 · 106 − 15 · 106 TWh are estimated to be technical usable,19 which is, however,
still considerably larger than the global energy consumption of ∼ 2.5 · 104TWh.20 The
importance of solar energy is growing with an astonishing rate (see figure 1.1 b) and
with so much open potential there is no physical limit in the near future. Already today,
more electricity is worldwide produced from solar energy than from geothermal sources.
Between 2005 and 2010 the amount of solar electricity increased by a factor of 10. If this
trend continues, solar electricity might be the dominant share of the global renewable
electricity production in 10 years from now.

However, photovoltaic is currently still among the most expensive sources of electricity.
Furthermore, the high amount of energy that is required in the production of inorganic
photovoltaic cells takes more than a year of device operation until it is paid back.21

The energy-saving production of organic photovoltaic has the potential of fast energy
pay-back times and the large-scale roll-to-roll printing may reduce the production cost
of photovoltaic cells dramatically.4 However, organic solar cells lack behind their inor-
ganic counterparts regarding efficiency, and for the design of better materials a more
comprehensive understanding of the processes in organic OSCs is required.22
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Figure 1.1.: a) Global electricity production over the last 20 years broken down to different
sources. b) Contribution of different technologies to the global renewable electricity
production. Source: U.S. Energy Information Administration (Oct 2015)

Ubiquitous Computing and Internet of Things

The idea behind ubiquitous computing is providing access to the digital world at any
time and everywhere. The desktop computer as main gate to the digital world will
be replaced by "smart objects", which can come in any shape and support the user
seamlessly in his everyday live. First steps in this direction are devices like laptop,
smart phone and augmented reality glasses. In a further step, also objects of everyday
live will obtain processing power and network connectivity. This could be realized with
RFID-tags, which are small, printable and enable wireless identification of objects. The
collection and exchange of data from these smart objects is also referred to as "internet of
things" and is seen as the next informational revolution.23 Again, low cost production of
electronic components with sufficient device performance is essential for this technology
to take off.

1.3. Open Challenges

Efficient charge transport in OSCs is essential for their success. One design goal is there-
fore the improvement of charge carrier mobilities by structural modification of existing
compounds as well as syntheses of completely new organic materials. However, the over-
whelming amount of possible compounds makes fast progress on a trial and error basis
unlikely. A detailed understanding of the charge dynamic in OSCs would greatly help to

4



1.3. Open Challenges

guide further efforts in improving device performance, but a comprehensive description
of charge transport in high-mobility OSCs is still missing.

The difficulty in the description of these materials arises from their complex molecular
morphology that is not as perfectly ordered as inorganic crystalline systems but also
not completely disordered like amorphous systems. One important property that influ-
ence charge transfer (CT) is the packing motive of the molecules, since their relative
orientation has a pronounced impact on the electronic coupling elements.24 At finite
temperatures, also the distortion of the equilibrium geometry due to local and non-local
electron-phonon couplings gets important.25 Former introduce fluctuations of the site en-
ergies, whereas latter mainly influence the electronic coupling between molecules, which
in turn has a significant influence on the charge carrier dynamics.26–28 Another factor
that can have a significant impact on the efficiency of OSCs is the presence of impurities
or structural defects in the material. They can trap charge carriers, which will reduce
the mobility tremendously and gives rise to activated transport.15,29 In summary, this
shows the pronounced importance of the atomistic structure and its dynamics for the
charge transport in organic semiconductors.

There are two main challenges for which atomistic simulations are valuable tools:

1) Description of the variety of morphologies that are accessible under experimental
conditions.

2) Unraveling the mechanism of the charge transport.

In this work we will focus on the second problem and will consequently study already
well characterized structures. In the recent decade, different methodologies were suc-
cessfully applied for the description of charge transport in OSCs. On the one hand,
there are several variants of hopping models.30 In these models the charge is restricted
to a single molecule and thermal activation can enable transitions to neighboring sites.
Due to the localized description of the charge carrier, density functional theory (DFT)
calculations of large molecular systems with inclusion of environmental effects are afford-
able. These methods are usually applied to disordered systems like amorphous AlQ3

31

or α-NPD32 but also to more ordered systems like liquid crystals,33–35 polymers36,37 or
partially disordered organic crystals.38–40 On the other hand, model Hamiltonian ap-
proaches, parametrized from ab intio or DFT calculations, have been further developed
and successfully applied to ordered crystal structure, see e.g. ref. 25 and 41 for a recent
review.
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The limits of these models have been intensely discussed, i.e. lack of solutions for the
full-bandwidth case in combination with non-local electron-phonon couplings.41 The im-
portance of the non-local electron-phonon couplings has been emphasized several times,
therefore the restriction of theory to go beyond the small polaron model seems to be
severe.42 Due to the ’non-existence’ of small polarons in high-mobility OSCs, the charge
carrier is no longer localized, and a hopping description becomes inadequate.29,43,44

Therefore, new methods have been proposed based on numerical propagation of the
charge carrier.

Applying a time-dependent Hamiltonian, the charge carrier can be propagated using
stochastic, mean-field (MF: Ehrenfest) or surface hopping (SH) approaches.42,45,46 MF
and SH are semi-classical approaches, where the electronic wavefunction is propagated
with the time-dependent Schrödinger equation and the nuclear degrees of freedom follow
classical trajectories. In principle, the nature of the charge carrier and the transfer mech-
anism is not predetermined in these approaches. Therefore, they allow a localized as well
as delocalized character of the charge carrier. However, since they are approximation to
the full quantum propagation, they exhibit various drawbacks, as discussed for the ap-
plication to OSCs in detail recently.45,46 Valuable insights can already be obtained with
model Hamiltonians, where the atomic resolution is discarded and the nuclear vibration
is reduced to few relevant modes.26,28,47 While model Hamiltonians can give insight into
basic principles, detailed information about structure, dynamics and their impact on the
charge transport parameters has to be included for a quantitative simulation of real ma-
terials. For instance, the electronic structure and electron-phonon interaction has to be
resolved at an atomistic level. Such MF simulations have already been performed at var-
ious levels of quantum treatment, e.g. using a Su–Schrieffer–Heeger model Hamiltonian
to describe fast transport through ordered systems like pentacene,48 using a DFT based
scheme for liquid crystals49 or the intrachain transport in polymers applying an approx-
imate DFT method DFTB.50 Full atomic orbital DFT or DFTB approaches, however,
exhibit a high computational demand, therefore these simulations have to be restricted to
small systems that are arguably representative of the bulk material. Application of lin-
ear scaling fragment orbital (FO) methods, however, allows to tackle significantly larger
systems.
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1.4. Thesis Outline

After introducing the most important theoretical background in chapter 2, we will first
develop a new procedure for the calculation of fragment orbital Hamiltonians in the
framework of DFTB in chapter 3. The electronic couplings derived from this Hamiltonian
will be benchmarked in the remainder of this chapter. Its application to bridge-mediated
charge transfer will be subsequently evaluated in chapter 4. Next, we will advance a
method for the coupled propagation of electrons and nuclei in chapter 5, where this
Hamiltonian will play a central role. In chapter 6 we will evaluate the new method
and look at details of the charge transport mechanism before we study the temperature
dependence of the mobility of various OSCs in chapter 7.
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CHAPTER 2
Theoretical Background

In this chapter, a foundation for the study of charge transport in OSCs will be given.
The fundamentals of the computational methods that are used throughout this work are
shown in section 2.1, and in section 2.2 we will see how these methods are applied in
the calculation of CT parameters. In section 2.3 we will then discuss several theoretical
models for the simulation of charge transport, and in section 2.4 we will briefly summarize
how experimental methods get insight into the charge carrier dynamics.

2.1. Computational Chemistry

The central aim of computational chemistry is the calculation of the total energy of a
system. In the Born-Oppenheimer approximation51 the motion of nuclei and electrons
are separated and the (non-relativistic) electronic energy can be calculated by the time-
independent Schrödinger equation

ĤΨi(r1 . . . rN ) = EΨi(r1 . . . rN ) (2.1)

where Ψi(r1 . . . rN ) is the N -electron wave function (Slater-Determinant) of the ground
(i = 0) and i-th excited adiabatic state. The Hamiltonian Ĥ can be further divided

Ĥ = T̂e + V̂en + V̂ee (2.2)

T̂e =

N∑
i=1

−∇
2

2
, V̂en =

N∑
i=1

n∑
α=1

−Zα
|Rα − ri|

, V̂ee =

N∑
i=1

N∑
j=1

1

|ri − rj |

here T̂e is the operator of the kinetic energy of the electrons, V̂en describes the electron-
nuclei attraction and V̂ee the electron-electron repulsion. Due to the last term the elec-
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Chapter 2. Theoretical Background

trons are correlated, which is difficult to describe. One efficient approach to tackle this
problem is the density functional theory.

2.1.1. Density Functional Theory

The foundation of the DFT is the Hohenberg-Kohn theorem, which shows that there
is a one-to-one relation between the external potential, the electron density ρ(r) and
the electronic wavefunction Ψ, which means that the electronic wavefunction can be
expressed as functional of the electronic density52

Ψ(r) = Ψ[ρ(r)] (2.3)

Consequently, the expectation value of every observable is also a functional of the den-
sity

〈Ψ|Â|Ψ〉 = A[ρ(r)] (2.4)

Therefore, the knowledge of the density should be sufficient in order to calculate e.g. the
total electronic energy

E[ρ] = T [ρ] + Een[ρ] + Eee[ρ] (2.5)

where T [ρ] is the kinetic energy functional of the electrons, Een[ρ] describes the electron-
nuclei attraction and Eee[ρ] is the electron-electron repulsion.

This is an enormous facilitation compared to eq. 2.1, since now we need only the 3 spatial
coordinates of the density in contrast to the 3N spatial coordinates of the N -electron
wavefunction.

However, the exact functional that yields the electronic energy from the electron density
is still unknown. Only for the electron-nuclei attraction the functional form is known to
be

Een[ρ] = −
∑
α

∫
Zαρ(r)

|Rα − r|
dr (2.6)

where Zα is the nuclear charge of atom α at position Rα.

For the remaining terms in eq. 2.5 Kohn and Sham introduced a fictitious system of non-
interacting electrons.53 If we separate the non-interacting system from the electronic
energy expression, eq. 2.5 becomes

E[ρ] = TS [{φi[ρ]}] + Een[ρ] + J [ρ] + Exc[ρ] (2.7)
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where the subscript in TS [{φi[ρ]} indicates that this is the kinetic energy of non-inter-
acting electrons (Slater-determinant), for which

TS [{φi[ρ]}] =
occ∑
i

〈φi| −
1

2
∇2|φi〉 (2.8)

J [ρ] is the classical coulomb energy of a charge density, given as

J [ρ] =
1

2

∫
ρ(r)ρ(r′)

|r − r′|
drdr′ (2.9)

and the difference between the non-interacting and interacting system is captured by the
last term of eq. 2.7, which defines the exchange-correlation functional as

Exc[ρ] = (T [ρ]− TS [ρ]) + (Eee[ρ]− J [ρ]) (2.10)

This way the major part of the electronic energy can be calculated with the known
expressions for the non-interacting electrons and approximations have only be made in
the functional form of Exc[ρ].

For the homogeneous electron gas, an expression for the exchange is exactly known,
whereas the exact correlation is only known in the high- and low-density limit. For inter-
mediate densities quantum Monte-Carlo simulations of the energy can yield the correla-
tion energy.54 There exist a variety of approximations to the exact exchange-correlation
functional. In the local density approximation (LDA) the exchange correlation energy
depends only on the value of the electronic density at each point in space. Derivatives of
the density are additionally included in the generalized gradient approximation (GGA) in
the functional Exc[ρ]. Since exchange is exactly described within Hartree-Fock (HF) the-
ory, a successful strategy for the design of accurate exchange-correlation functionals is to
include a certain percentage of exact HF-exchange in the so called hybrid-functionals.

Kohn and Sham showed that the density that minimizes the interacting many-body
system (as described by a many-body Hamiltonian like in eq. 2.2) is the same as the
density that minimizes a non-interacting (single-body) system in an effective potential
veff (r).53 This gives rise to the famous Kohn-Sham equations[

−1

2
∇2 + veff (r)

]
φi(r) = εiφi(r) (2.11)
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where εi are the single-particle energies and the effective potential is

veff (r) = ven(r) + vH(r) + vxc(r) (2.12)

with the three contributions

ven(r) =
δEen[ρ]

δρ(r)
= −

∑
α

Zα
|Rα − r|

(2.13)

vH(r) =
δJ [ρ]

δρ(r)
=

∫
ρ(r′)

|r − r′|
dr′ (2.14)

vxc(r) =
δExc[ρ]

δρ(r)
(2.15)

By expanding the Kohn-Sham orbitals in atomic basis functions ηµ(r)

φi(r) =
∑
µ

ciµηµ(r) (2.16)

we can write the Kohn-Sham equation from eq. 2.11 as∑
µ

ciµĤ[ρ]|ηµ〉 = εi
∑
µ

ciµ|ηµ〉 (2.17)

with Ĥ[ρ] = T̂ + veff (r). After multiplication from left with 〈ην | we obtain∑
µ

ciµ 〈ην |Ĥ[ρ]|ηµ〉 = εi
∑
µ

ciµ 〈ην |ηµ〉 (2.18)

which can be expressed in matrix notation as

HC = SCε (2.19)

Solution of this matrix equation yields the orbital energies εi and the orbital coefficients
ciµ. The density is then obtained from the occupied Kohn-Sham orbitals

ρ(r) =
occ∑
i

〈φi|φi〉 (2.20)

Since both vH(r) and vxc(r) depend on the solution φi(r) of the Kohn-Sham equations via
ρ(r), they have to be solved iteratively. Once the solution is converged, one can calculate
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the electronic energy from eq. 2.7 or, equivalently and more conveniently, from

E[ρ] =

occ∑
i

εi −
1

2

∫∫ ′ ρ(r)ρ(r′)

|r − r′|
drdr′ −

∫
vxc(r)ρ(r)dr + Exc[ρ] (2.21)

2.1.2. Density Functional Tight Binding

Many chemical problems can be solved with DFT with sufficient accuracy. More efficient
methods are required, however, for large systems with more than 1000 atoms or if a
myriad of calculations are necessary, like in the screening of large molecular data sets or
if calculations are performed at every step along a molecular dynamics (MD) trajectory.
Density functional tight-binding (DFTB) introduces well-controlled approximations to
DFT, which reduce the computational cost by about three orders of magnitude. In the
following we will only outline the basics of the DFTB methods DFTB1 and DFTB2,
whereas a detailed review can be found in ref. 55 and 56.

The computational cost of DFT calculations increases with N3, where N is the number
of basis functions. For the efficiency of a method it is therefore desirable to get along with
a minimal basis, where each atomic orbital (AO) is represented only by a single basis
function η(r). The orbitals of a free atom are quite diffuse and not very well suited for the
description of bonded chemical systems like solids, molecules, or clusters. The presence of
neighboring atoms in these systems confines the AOs compared to the free AOs in vacuo.
In DFTB one uses therefore an optimized minimal basis which is constructed by solving
Kohn-Sham equations of the single atoms within an additional confining potential(

−1

2
∇2 + veff (ρatom) +

(
r

r0

)2
)
ηµ(r) = εµηµ(r) (2.22)

where the empirical parameter r0 is roughly twice the covalent radius of the atom.

Another difference to DFT calculations is the way how the density-dependent Kohn-
Sham matrix elements in eq. 2.18 are constructed. The trick of DFTB1 is to use a
known reference density, namely the sum of neutral atomic densities.

ρ0(r) =
∑
α

ρα(r) (2.23)

Additionally, a two-center approximation is introduced, which means that only the den-
sity of the atoms α and β on which the AOs ηµ and ην are located is considered in the
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Hamilton matrix elements

Hµν = 〈ην |Ĥ[ρ0]|ηµ〉 = 〈ην |Ĥ[ρα + ρβ]|ηµ〉 (2.24)

Since in this approximation the integrals Hµν and Sµν depend only on two atoms, they
can be tabulated for various atom-pairs up to a distance where they vanish due to the ex-
ponential decay of the AOs. During an actual DFTB calculation, the tabulated integrals
can just be read and do not have to be calculated explicitly like in DFT calculations.
Depending on the relative orientation of the atoms the integrals have to be transformed
according to the Slater-Koster rules.57

By comparing with the DFT total energy for this reference system

E[ρ0] =

occ∑
i

εi −
1

2

∫∫ ′ ρ0(r)ρ0(r′)
|r − r′|

drdr′ −
∫
vxc(r)ρ0(r)dr + Exc[ρ0] + Enn (2.25)

which is the electronic energy shown in equation 2.21 plus the nuclear-nuclear repulsion
energy Enn = 1

2

∑
αβ

ZαZβ
Rαβ

, we realize that we still need an expression for the last three
terms, which are usually collected in a single repulsive energy term

Erep[ρ0] =
1

2

∑
αβ

Vαβ(Rαβ) (2.26)

A simple approach for fitting the repulsive potential Vαβ between two atoms α and β

would be performing DFT and DFTB calculations at different interatomic distances Rαβ
and fit the potential such that

Vαβ(Rαβ) = EDFTtot (Rαβ)−
∑
i

εDFTBi (2.27)

In practice, however, a single system is insufficient to provide a transferable repulsive po-
tential. Consequently, the repulsive potential has to be fitted on a whole set of molecular
structures, which is the most difficult task of parameterizing DFTB. The total energy at
the DFTB1 level is thus

E[ρ0] =
∑
i

εi + Erep[ρ0] (2.28)
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Self-Consistent Charges

The reference density, composed of neutral atomic densities, is reasonable as long as little
charge gets transferred between the atoms. In cases where significant charge transfer
between the atoms occurs, one has to explicitly consider these density fluctuations. In
DFTB2 the total energy of the system is expressed as second-order Taylor expansion
of the DFT energy with respect to density fluctuations δρ around the reference density
ρ0.

E[ρ] =

occ∑
i

〈φi|Ĥ[ρ0]|φi〉 −
1

2

∫∫ ′ ρ0(r)ρ0(r′)
|r − r′|

−
∫
vxc(r)ρ0(r) + Exc[ρ0] + Enn

+
1

2

∫∫ ′( 1

|r − r′|
+
δ2Exc
δρδρ′

∣∣∣
ρ=ρ0

)
δρδρ′

(2.29)

where
∫ ′ is short for ∫ dr′. The first term can be expanded as

〈φi|Ĥ[ρ0]|φi〉 =
∑
µν

ciµc
i
νH

0
µν (2.30)

where H0
µν are again the DFTB1 matrix elements. The rest of the first line of eq. 2.29

is just the repulsive potential, which was introduced in eq. 2.26. The only new terms at
the DFTB2 level are in the last line of eq. 2.29, .

Like the reference density ρ0(r) in eq. 2.23, also the density variation δρ is divided into
atomic contributions

δρ =
∑
α

δρα (2.31)

Moreover, a charge monopol approximation is used to represent the atomic density fluc-
tuations ρα

δρα ≈ ∆qαF
α
00Y00 (2.32)

where Fα00 denotes the normalized radial distribution function of the density and Y00 is
the angular distribution, which is spheric. Within this approximation the second-order
term can be expressed as

E2nd ≈
1

2

∑
αβ

∆qα∆qβ

∫∫ ′( 1

|r − r′|
+
δ2Exc
δρδρ′

∣∣∣
ρ=ρ0

)
Fα00F

β
00Y

2
00 (2.33)

Even though this expression looks quite complicated, we can still identify two limiting
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cases. First, for large distances between the atoms α and β the exchange-correlation
term vanishes∗ and the summands in eq. 2.33 become

γαβ(Rαβ →∞) =
∆qα∆qβ
Rαβ

(2.34)

which describes the regular Coulomb interaction between two partial atomic charges ∆qα

and ∆qβ which decays with 1/Rαβ . Second, for vanishing interatomic distance, i.e. if
α = β, the terms in eq. 2.33 describe the electron-electron interaction on a single atom

γαα(Rαα = 0) = Uα =
∂2Eα
∂2qα

(2.35)

where Uα is the Hubbard parameter or chemical hardness of atom α. An approximation
that interpolates between these extreme cases was proposed by Klopman and Ohno58,59

γαβ(Rαβ) =
1√

Rαβ + 1
4

(
1
γαα

+ 1
γββ

)2 (2.36)

With the approximations for the second-order terms the DFTB2 total energy can be
written as

E[ρ] = E0[ρ0] + E2nd[δρ] (2.37)

=

occ∑
i

∑
µν

ciµc
i
νH

0
µν + Erep[ρ0] +

1

2

∑
αβ

∆qα∆qβγαβ(Rαβ) (2.38)

For the calculation of ∆qα Mulliken charges are used in DFTB, where

qα =
1

2

occ∑
i

∑
µ∈α,ν

(
ci∗µ c

i
ν + c.c.

)
Sµν (2.39)

are the number of electrons on atom α. Hence ∆qα = qα − q0α, where q0α is the number
of valence electron on atom α.

The variation of eq. 2.38 with respect to the coefficients ciµ under the constraint that
the norm is conserved gives rise to the equivalent to the Kohn-Sham equations in DFTB,

∗This is at least the case if one assumes semi-local exchange-correlation like it is the case for GGA
functionals. Exact exchange decays also with 1/r
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where the matrix elements Hµν are obtained as

Hµν = H0
µν +

1

2
Sµν

∑
ξ

∆qξ (γαξ + γβξ) (2.40)

where AO µ is located on atom α and AO ν on atom β. The elements of the DFTB2
Hamilton matrix depend on the charges ∆q, similar to the elements of the Kohn-Sham
Hamiltonian, which depend on the density. Therefore, also DFTB2 calculations have to
be performed self-consistently.

QM/MM-Coupling

In simulations of large molecular complexes it is often sufficient to treat only the impor-
tant part of the system with quantum mechanics (QM), whereas the remainder of the
system can be modeled with classical molecular mechanics (MM). In such QM/MM sim-
ulations the quantum region is polarized by the classical point charges of the MM region.
By considering also the external MM point charges QA in the DFTB2 Hamiltonian we
can write60

Hµν = H0
µν +

1

2
Sµν

∑
ξ

∆qξ (γαξ + γβξ) +
∑
A

QA

(
1

rαA
+

1

rβA

) (2.41)

2.1.3. Self-Interaction Error of DFT

Perdrew et al. studied the total energy of a system with fractional charge, which can be
described as ensemble of states with integral number of electrons. They showed that the
total energy has to follow a straight line between the states with integer electrons (see
figure 2.1).61 The slope of the line that connects the energy of the systems with integer
charges can be identified as the ionization potential

E(N)− E(N − 1) = −I (2.42)

and the electron affinity
E(N + 1)− E(N) = −A (2.43)

of the N electron system.
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Figure 2.1.: Total energy for a (fractional) number of electrons.

Furthermore, it can be shown that a variation of electron number N has to result only
in a variation of the occupation of frontier orbitals n62

∂E(N)

∂N
=

{
∂E

∂nLUMO
for δN > 0

∂E
∂nHOMO

for δN < 0
(2.44)

In combination with Janak’s theorem,63 which states that the variation of the total
energy with respect to an orbital occupation is equal to the eigenvalue of that orbital,
we can identify the slopes also with the orbital energies of HOMO and LUMO

∂E(N)

∂N
=

{
εLUMO for δN > 0

εHOMO for δN < 0
(2.45)

Approximate methods, however, deviate from the exact straight line. For example DFT
using GGAs shows a convex behavior, whereas Hartree-Fock calculations show a concave
behavior.64 The deviation in DFT is due to the approximate exchange-correlation and
often termed self-interaction (SI). Some of the effects of SI are that dissociation curve
of symmetric ionic radicals are incorrect,65 charge-transfer complexes are often not well
described,66 and delocalized states are artificially stabilized.67

The reason for this self-interaction can be seen on a single-electron system. Even with
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only one electron we get a contribution from the coulomb integral in eq. 2.7

J [ρ] =
1

2

∫
ρ(r)ρ(r′)

|r − r′|
drdr′ (2.46)

This electron should, however, only see the density of (N-1) electrons instead of the total
density, i.e. zero electrons in this case. In principle the exchange-correlation functional
should correct this problem because it is part of its definition (see 2.10), but since we
only know approximations to the real Exc[ρ], a spurious interaction of the electron with
itself remains. In the case of local functionals, which depends only on the electron density
at r, the exchange-correlation potential vxc[ρ](r) decays exponentially like the density,
whereas the exact vxc[ρ](r) has to decay with 1/r in order to cancel the Hartree potential
vH [ρ](r).

Note that like for DFT, also the DFTB2 total energy shows a convex behavior, which is
in this case originating from the second-order terms.

EDFTB2 =
occ∑
i

〈φi|H0|φi〉+
1

2

∑
AB

γAB∆qA∆qB (2.47)

These terms appear by expanding the total energy around a reference density. Also the
orbital energies depend on the fractional charge via the charge-dependent Hamiltonian

Hµν = H0
µν +

1

2
Sµν

∑
ξ

∆qξ (γαξ + γβξ) (2.48)

Therefore, by using the DFTB2 formalism for partially charged systems an artificially
stabilization emerges as was discussed in detail in ref. 68.

2.1.4. Molecular Mechanics

With quantum chemical methods a lot of informations about a system are accessible,
like e.g. excitation energies, polarizabilities, or ionization potentials. For large systems,
quantum mechanical calculations become prohibitive slow, since they usually scale with
N3, where N is the number of atoms in the system. In many cases, however, only
molecular geometries with the corresponding energy are needed, whereas informations
about the electronic structure are dispensable. This goal can be achieved with molecular
mechanics (MM) at a fraction of cost by treating molecules classically. In this method
atoms are approximated as spheres carrying partial charges and their interactions are
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described by parameterized potentials. Since the properties of an atom are dependent
on its chemical environment, atoms are not only classified by their element, but instead
they are described as so-called ’atom-types’. One distinguishes for example sp1- sp2- und
sp3-hybridized carbon atoms or metal atoms in different oxidation states. The potential
energy is a usually divided in bonded and non-bonded interactions between the atoms.

V tot
MM = Vbonded + Vnon−bonded (2.49)

The functional form and parameter set that describes the interactions is termed ’force
field’. In the following we will discuss the force-fields of the AMBER family, like GAFF69

and OPLS,70,71 which are applied in this work.

Bonded Interactions

The bonded interactions describe the energy with respect to all bond lengths, angles and
dihedral angles of a molecule.

Vbonded =
∑
bonds

Vb(R) +
∑
angles

Va(θ) +
∑

dihedral

Vd(φ) +
∑

improper

Vid(ξ) (2.50)

The chemical bonds between atom i and j are approximated as harmonic potential around
an equilibrium length R0

ij with force constant kbij

Vb(Rij) =
1

2
kbij(Rij −R0

ij)
2 (2.51)

Also the deformation of the angles θ between bond ij and jk are approximated harmon-
ically.

Va(θijk) =
1

2
kaijk(θijk − θ0ijk)2 (2.52)

The periodic potential for the torsion around a single bond jk is expanded in a Fourier
series

Vd(φijkl) =
∑
n

knijkl(1 + cos(nφijkl − φ0ijkl)) (2.53)

where n = {1, 2, 3} describes a periodicity of 360◦, 180◦ and 120◦, respectively, φijkl is
the angle between the planes of atom ijk and jkl, and φ0ijkl is the phase shift. This term
is also called proper dihedral potential. The planarity of e.g. π-conjugated molecules, on
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the other hand, is enforced by a harmonic improper dihedral potential

Vid(ξijkl) =
1

2
kijkl(ξijkl − ξ0ijkl)2 (2.54)

where kijkl is a relatively high force constant.

Non-Bonded Interactions

The non-bonded terms in the potential energy consist of a Coulomb potential for elec-
trostatic interactions and the Lennard-Jones potential, which describes Pauli-Repulsion
and vdW interactions.

Vnon−bonded = VLJ(R) + Vel(R) (2.55)

Contributions from atoms, which are separated by less than four bonds are not considered
because their electrostatic and Lennard-Jones interactions are already contained in the
parameterization of the bonded interactions.

The Lennard-Jones potential between two atoms i and j is given as

VLJ(Rij) = 4εij

((
σij
Rij

)12

−
(
σij
Rij

)6
)

(2.56)

where εij is the depth of the potential minimum, which is located at an interatomic
distance of Rij = 6

√
2σij . These parameters are obtained from atom-specific parameters

of atom i and j following force-field-dependent combinations rules like the geometric
mean in case of the OPLS force field.

εij =
√
εiiεjj (2.57)

σij =
√
σiiσjj (2.58)

(2.59)

The electrostatic interaction between two atomic point charges qi and qj at distance Rij
is given by

Vel(Rij) =
1

4πε0εR

qiqj
Rij

(2.60)

where ε0 and εR are the vacuum and relative permittivity, respectively. These interactions
decay only with 1/R and thus converge slowly. The summation can be cut-off at a certain
distance or in periodic systems the particle mesh Ewald (PME) method can be used for
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full-range electrostatics by using a Fourier transformation for the calculation of long-
range interactions.

Molecular Dynamics Simulation

Quantum chemical calculations are often performed on the equilibrium structure. At
finite temperature, however, the optimized conformation loses relevance and thermody-
namic ensemble-averages become important. Accurate prediction of macroscopically ob-
servable quantities therefore requires sufficient sampling of the phase-space. For ergodic
systems, i.e. when the average over time and the average over the statistical ensemble
are the same, we can obtain such an ensemble of structures by propagating the nuclear
degrees of freedom using MD simulations. The initial state of a given system is defined
by the starting positions Ri and velocities vi of all atoms i. New positions and velocities
at time t are obtained iteratively via the leap-frog algorithm72

v(t+
1

2
∆t) = v(t− 1

2
∆t) +

∆t

m
F (t) (2.61)

R(t+ ∆t) = R(t) + ∆tv(t+
1

2
∆) (2.62)

where ∆t is the time step between each iteration, and the force on atom i is the negative
derivative of the total potential energy (eq. 2.49) with respect to the coordinates Ri

Fi =
∂V tot

MM

∂Ri
(2.63)

Propagation with these equations of motions yields a microcanonical ensemble. For the
simulation of different thermodynamic ensembles it is necessary to keep e.g. the tem-
perature and/or pressure constant. For this task there exists a variety of thermostats
and barostats, which achieve this goal by scaling the velocities and system size, respec-
tively.73–77

2.2. Electronic States and Couplings

Application of the Born-Oppenheimer approximation and diagonalization of the elec-
tronic Hamiltonian yields the electronic eigenstates, which are by construction electron-
ically decoupled (adiabatic). By considering also the nuclear Hamiltonian one can show
that these adiabatic states are coupled via nuclear derivative couplings 〈Ψi(r;R)|∇R|Ψj(r;R)〉r,
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2.2. Electronic States and Couplings

where 〈〉r denotes integration over all electronic degrees of freedom. This means that by
going beyond the Born-Oppenheimer approximation, any nuclear motion is coupled to
electronic transitions between adiabatic states.

Diabatic states, on the other hand, are historically defined as states with vanishing
derivative couplings (〈Ψa(r;R)|∇R|Ψb(r;R)〉r = 0). Exactly diabatic states, however, do
not exist in general78 and therefore several alternative definitions of diabatic states can
be found in the literature.79–84 Within the context of charge transfer, the diabatic states
are usually defined as the orthogonalized states before and after the transfer process,
where the excess charge is localized either at the donor D or acceptor A.

In the case where only two diabatic states are considered, the charge transfer can be
described by a second order rate equation.

D+ + A
kCT−−−⇀↽−−−
k−1
CT

D + A+

For simplicity we will assume in the following sections thatD and A are neutral molecules
with the same number of electrons N , i.e., in the initial state D has N − 1 electrons and
A has N electrons, and vice versa for the final state.

The corresponding energy profile along the reaction coordinate is shown in fig. 2.2. The
rate constant kCT for this charge transfer reaction can be derived from Fermi’s golden
rule (or its approximations like Marcus theory shown in section 2.3.2)

kCT =
2π

~
|Hab|2FC (2.64)

where FC is the Franck-Condon factor describing the overlap of the nuclear wavefunc-
tions of initial and final state and

Hab = 〈Ψa|Ĥ|Ψb〉 (2.65)

is the coupling between initial |Ψa〉 and final |Ψb〉 diabatic electronic states and Ĥ is
shown in eq. 2.2.

Adiabatic states, in contrast to diabatic states, diagonalize the electronic Hamiltonian
and are therefore well defined and can be obtained with standard electronic structure
methods. The energies of the diabatic states (Ea, Eb) are related to the potential energies
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Figure 2.2.: Energy profile along the reaction coordinate between an initial diabatic state
(dashed red), where the charge is localized on D, and a final state (dashed blue),
where the charge is localized on A. Adiabatic ground and first excited state are
shown as solid lines.

of the electronic ground state (E1) and first excited state (E2)85

E1,2 =
1

2

(
Ea + Eb ±

√
(Ea − Eb)2 + 4|Hab|2

)
(2.66)

Hence for Ea = Eb, which is the case at point Q‡ in fig. 2.2, we can obtain Hab from the
first excitation energy ∆E12 = E2 − E1

∆E12 = 2|Hab| (2.67)

2.2.1. Generalized Mulliken-Hush

An extension to asymmetric cases where Ea 6= Eb can be made with the generalized
Mulliken-Hush (GMH) method.86,87 The diabatic states are obtained from the adiabatic
states via a unitary transformation. Due to the localized character of diabatic states, it
is assumed that the off-diagonal element of the dipole moment matrix vanishes in the
diabatic basis. The same transformation that diagonalizes the dipole-moment matrix,
expressed in the adiabatic basis, can thus be used to transform the adiabatic into diabatic
states. After transforming the (diagonal) adiabatic Hamiltonian into the diabatic basis,
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we obtain for the off-diagonal elements (electronic couplings)

|Hab| =
|µ12|∆E12√

(µ11 − µ22)2 + 4(µ12)2
(2.68)

where µ11 and µ22 denote the dipole moments of the ground and first excited states
and µ12 is the transition dipole moment between these states. The GMH approach can
be used in combination with any ab initio method but requires the costly calculation
of excited states. Furthermore, for larger systems with more than two charge-localized
centers in a non-collinear geometry, the localization of charge with the GMH method
works less well.88,89 It is therefore obvious that computationally less expensive electronic
structure methods have to be used if one would like to study large molecular systems,
like a bulk of organic semiconducting molecules, especially if coupling calculations are
carried out for a very large number of times (e.g. along an MD simulation).

2.2.2. Constrained Density Functional Theory

In constrained density functional theory (CDFT) the charge localized (diabatic) states
are directly obtained by minimizing the total energy under a charge constraint NC that
is imposed on the density ρ(r) by a spatial weight function ω(r).90

NC =

∫
ω(r)ρ(r)dr (2.69)

The weight function selects the region subjected to the charge constraint and its func-
tional form is dependent on the charge definition that is used to fulfill the constraint.
If we want to constrain for example the difference of Hirshfeld charges91 between donor
and acceptor, ω(r) takes the form

ω(r) =

∑
i∈D ρi(r −Ri)−

∑
i∈A ρi(r −Ri)∑n

i=1 ρ(r −Ri)
(2.70)

where the sums in the numerator run over all atoms of fragment D and A, respectively,
whereas the sum in the denominator runs over all n atoms of the complex and ρi(r−Ri)
is the unperturbed (or pro-molecular) electron density of atom i.

By setting the constraint of the charge difference between donor and acceptor to NC = 1

or NC = −1 one obtains the initial and final diabatic state as a single determinant of
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2N − 1 spin-orbitals

Ψ′a =
1√

(2N − 1)!
det(φ1a . . . φ

2N−1
a )

Ψ′b =
1√

(2N − 1)!
det(φ1b . . . φ

2N−1
b )

(2.71)

where the charge is entirely localized on donor or acceptor. The two states are in general
non-orthogonal, which is why we distinguish them from the orthogonal states in eq. 2.65
by a prime.

With these states we can define the Hamilton matrix

H =

(
HAA HAB

HBA HBB

)
(2.72)

with diagonal elements HAA = 〈Ψ′A|Ĥ[ρA]|Ψ′A〉 and HBB = 〈Ψ′B|Ĥ[ρB]|Ψ′B〉 and off-
diagonal elements HAB = 〈Ψ′A|Ĥ[ρB]|Ψ′B〉 and HBA = 〈Ψ′B|Ĥ[ρA]|Ψ′A〉, where

ρA = 〈Ψ′A|Ψ′A〉 (2.73)

ρB = 〈Ψ′B|Ψ′B〉 (2.74)

Note that in eq. 2.72 the off-diagonal elements are only approximations to the exact
electronic coupling in 2.65. On the one hand Ψ′A and Ψ′B are non-orthogonal, whereas
Ψa and Ψb in eq. 2.65 are orthogonal by definition. Therefore, the matrix H has to be
transformed into an orthogonal basis first.92 On the other hand the exact Hamiltonian
is approximated with the Kohn-Sham Hamiltonian, which is dependent on the charge.
Therefore, for asymmetric systems HAB 6= HBA in general, although the deviation from
hermiticy is usually small. In such cases the coupling matrix element is taken as the
average of the two off-diagonal elements.93

2.2.3. Fragment Orbital Density Functional Theory

In CDFT calculations we first construct charge-localized states Ψ′a and Ψ′b, which are
subsequently orthogonalized to obtain the final basis of diabatic states. In fragment
orbital density functional theory (FODFT) calculations, on the other hand, the diabatic
states are directly constructed by defining different occupations of an orthogonalized set
of orbitals that are localized on donor or acceptor.
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2.2. Electronic States and Couplings

First, two sets of orbitals {φ′iA} and {φ′iD} are obtained from independent DFT calcula-
tions of the isolated donor and acceptor, performed in the respective geometries of the
fragments in the DA complex. The orbitals within a single set are orthogonal by con-
struction, whereas there is a small overlap between orbitals from different sets in general.
The combined set of donor and acceptor orbitals {φ′iA;φ

′i
D} is orthogonalized, e.g. with

the method of Löwdin,94 to yield an orthogonal (unprimed) set of orbitals {φiA;φ
i
D}. The

(orthogonal) diabatic states are then constructed as single Slater-determinant of 2N − 1

spin orbitals by occupying the lowest orbitals of D and A such that the charge of the
complex is either localized at donor or acceptor.

Ψa =
1√

(2N − 1)!
det(φ1D . . . φ

N−1
D , φ1A . . . φ

N
A ) (2.75)

Ψb =
1√

(2N − 1)!
det(φ1D . . . φ

N
D , φ

1
A . . . φ

N−1
A ) (2.76)

If the exact Hamiltonian Ĥ can be expressed by independent-particle operators Ĥ =∑
i ĥ(ri), like in Kohn-Sham DFT†, then95

〈Ψa|Ĥ[ρ]|Ψb〉 = 〈φND |ĥ[ρ](r2N−1)|φNA 〉 (2.77)

This way we need to calculate only the integral between the HOMOs of D and A instead
of the integral between two Slater-determinants like in CDFT.

FODFT with correct electron number

There exists a variety of FODFT methods, which differ e.g. in the number of electrons
that enter the Kohn-Sham Hamiltonian in eq. 2.77 via the density ρ or in the orthog-
onalization procedure that is applied to the orbitals. In one realization,44,92,96 which is
conceptual similar to the CDFT method, the correct number of electrons is used in the
Kohn-Sham Hamiltonian during the calculation of the electronic couplings (eq. 2.77).
Furthermore, one sets the electron number in the monomer calculations such that all
orbitals in eq. 2.76 originate from occupied orbitals of the monomer calculations. This
means each monomer is calculated with N electrons in the case of hole transfer and with
N + 1 electrons in the case of electron transfer.

†Note that the equality is only true for the exact functional. For any approximate exchange-correlation
functional eq. 2.77 is only approximately true.
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Since the KS-Hamiltonian is state dependent, we can again construct two Hamiltonians,
Ĥ[ρα] =

∑
i ĥ[ρα](ri) and Ĥ[ρβ] =

∑
i ĥ[ρβ](ri) where

ρA =
N∑
i

〈φiD|φiD〉+
N−1∑
i

〈φiA|φiA〉 (2.78)

ρB =

N−1∑
i

〈φiD|φiD〉+

N∑
i

〈φiA|φiA〉 (2.79)

A matrix, which is similar to the CDFT matrix in eq. 2.72, can then be constructed

H =

(
hAA hAB

hBA hBB

)
(2.80)

with diagonal elements hAA = 〈φA|hKS [ρA]|φA〉 and hBB = 〈φB|hKS [ρB]|φB〉 and off-
diagonal elements hAB = 〈φA|hKS [ρB]|φB〉 and hBA = 〈φB|hKS [ρA]|φA〉. Note that this
way, the correct number of electrons is considered in the Hamiltonian, which is 2N − 1

electrons for hole transfer and 2N + 1 electrons for electron transfer. However, this
Hamilton matrix is again not guaranteed to be hermitian, as we have already discussed
for CDFT, and averaging of the off-diagonal elements may become necessary.

FODFT of the neutral system

In another common realization97,98 of the FODFT method, the calculations for both hole
and electron transfer (with formally 2N−1 and 2N+1 electrons in system, respectively)
are performed on the neutral system with 2N electrons. Consequently, one difference
arises in the generation of the MOs in the case of electron transfer. Now an unoccupied
MO (LUMO) is used in the construction of the Slater-determinant (eq. 2.76) instead of
the HOMO of a anionic monomer with N + 1 electrons. The second difference arises in
the Hamilton matrix of eq. 2.80, in which the density of the neutral system is entering

ρ =
N∑
i

〈φiD|φiD〉+
N∑
i

〈φiA|φiA〉 (2.81)

instead of the state-dependent densities ρA and ρB.
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2.3. Charge Transport Models

OSCs are flexible materials consisting of weakly interacting molecules. The important
physics can therefore be formulated in terms of molecular sites and their nuclear vibra-
tions. A general Hamiltonian for the description of charge transport can then be given
as99

H = H0
el +H0

ph + Vel + V local
el−ph + V nonlocal

el−ph + Vimpurities (2.82)

H0
el + Vel =

∑
j

εja
†
jaj +

∑
ij

τija
†
iaj (2.83)

H0
ph =

∑
ql

~ωql

(
b†ql + bql +

1

2

)
(2.84)

V local
el−ph =

∑
ql

∑
j

gjj,ql~ωql

(
b†ql + bql

)
a†jaj (2.85)

V nonlocal
el−ph =

∑
ql

∑
i 6=j

gij,ql~ωql

(
b†ql + bql

)
a†iaj (2.86)

Here, H0
el is the electronic Hamiltonian of the noninteracting molecules with site energy

ε, Vel describes the electronic inter-site coupling τij , and, a†j and aj are the creation
and annihilation operators of a charge carrier on site j, respectively. H0

ph is the nuclear
Hamiltonian of the unperturbed vibrations with frequency ωql and b†ql and bql are the
creation and annihilation operators for a phonon with wavevector q in mode l. V local

el−ph is
the local (Holstein) electron-phonon coupling and describes how the occupation of site j
leads to a relaxation of its nuclear structure. V nonlocal

el−ph is the non-local (Peierls) coupling
which describes the dependence of the electronic coupling on the nuclear modes.

Depending on the importance of the individual terms for different systems, one can apply
reasonable approximations, which gives rise to a variety of CT models. For a detailed
review see Ref. 29 and 99. Here, we focus only on few models, which will be addressed
later in this work.

In the presence of static disorder and weak electronic coupling between the molecules
the electronic states become localized. The charge transport then takes place in the hop-
ping regime, where the charge carrier gets occasionally transferred between neighboring
molecules. For these disordered system there exist two different models for the derivation
of hopping rates, which will be briefly summarized in section 2.3.1 and 2.3.2. The Miller-
Abrahams equation is valid at low temperatures and for weak electron-phonon coupling,
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whereas the Marcus equation is valid at high temperatures and for large electron-phonon
coupling.25 In cases where all terms of eq. 2.82 are equally important and the temperature
is sufficiently high, we can apply a semi-classical approximation. Within this approxi-
mation we can propagate the nuclei classically and need the time-dependent Schrödinger
equation only for the excess charge carrier (see section 2.3.3).

2.3.1. Miller-Abrahams Rates and Gaussian Disorder Model

In 1960 Miller and Abrahams derived rate equations for phonon-induced electron hopping
between impurities in inorganic semiconductors, i.e. trap states.100 In the context of CT
in organic semiconductors the rate is usually written as101

kij = ν0 exp(−2γRij)

{
exp

(
− (εj−εi)

kBT

)
for εj > εi

1 for εj ≤ εi
(2.87)

where ν0 is the phonon vibration frequency, which can be understood as the jump-
attempt rate or simply taken as a normalization factor, γ is a decay parameter describing
the decreasing coupling between two sites with distance Rij , and εi is the energy of the
charge carrier on site i.

In his pioneering studies of hopping transport in disordered polymers Bässler used these
rates in Kinetic Monte Carlo simulations in order to calculate charge carrier mobilities
and their temperature dependence.101 In his so called Gaussian disorder model the site
energies εi in eq. 2.87 are assigned according to a Gaussian distribution

ρ(ε) =
1√

2πσ2
exp

(
− ε2

2σ2

)
(2.88)

where σ is the standard deviation of the site energies. A Gaussian shape for the density of
states is a plausible assumption that is supported by the observation that the low energy
tail of the absorption spectrum of disordered polymers can be fitted well to Gaussian
envelope functions.

The model predicts a non-Arrhenius like temperature dependence for the mobility.

µ(T ) = µ0 exp

(
−
(

2σ

3kBT

)2
)

(2.89)
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However, in practice the parameters in the Miller-Abrahams rates as well as the standard
deviation of the site energies are fitted to experimental values. Consequently the model
can be used to rationalize experimental findings, but is unable to provide guidelines for
the modification of chemical compounds in order improved their performance.

2.3.2. Marcus Rates

A more sophisticated description of hopping processes can be achieved by Marcus the-
ory,102–104 which was initially derived for charge transfer processes in solvated metal
complexes and later became popular in the description of CT in biological systems105

and OSCs.25,30

As shown in figure 2.3, the free energy surface of initial and final diabatic state are
approximated by two parabolas. Thermal fluctuation allow the system to reach the
crossing region Q‡, where the transition between initial and final state takes place with
a probability depending on the electronic coupling. Subsequently the system relaxes to
the minimum of the final state. The rate for this process is given as

kET =
2π

~
|Hab|2

1√
4πλkBT

exp

(
−∆G‡

kBT

)
(2.90)

whereHab is the electronic coupling between initial and final state, and the reorganization
energy λ equals to the energy needed to transform the system coordinates into the final
state without charge transfer taking place. The activation free energy ∆G‡ for this
reaction can be obtained as

∆G‡ =
(∆G0 + λ)2

4λ
(2.91)

The assumptions made in 2.90 are weak donor-acceptor coupling, classical harmonic nu-
clear motions, the Born-Oppenheimer approximation and that the transfer process takes
place from a thermally fully equilibrated state with respect to the conformational dynam-
ics of the system. However, even in cases where these assumptions become questionable
and rates according to 2.90 therefore become unreliable, the three parameters still serve
as elementary descriptors of a charge transfer system.

The electronic coupling can be obtained by the methods described in section 2.2 whereas
structural fluctuation in soft matter usually lead to large fluctuations of Hab along a tra-
jectory, which makes statistical sampling and averaging necessary.106 Thermodynamic
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Figure 2.3.: Free energy profile for a donor acceptor system according to Marcus theory. The
reorganization energy λ defines the curvature of the parabolas and ∆G0 is the free
energy difference between the initial and final state. Both parameters together
define the activation free energy ∆G‡ for the reaction over the transition state Q‡.

quantities like ∆G0 can be computed e.g. from free energy methods like thermodynamic
integration. The reorganization energy is usually divided in an inner-sphere (λi) contri-
bution, describing the relaxation of donor and acceptor geometry, and an outer-sphere
(λo) contribution, which captures the relaxation of the environment.

The internal part λi is usually computed quantum chemically as

λi =
[
ED+(D) + EA(A+)

]
−
[
ED(D) + EA+(A+)

]
(2.92)

where the subscript indicates that the calculations are performed for the neutral or
cationic state, respectively, and the argument in the bracket indicates for which state the
geometry was optimized.

In outer-sphere reorganization energy was originally obtained by approximating the en-
vironment with a polarizable continuum

λo = (∆q)2
(

1

2RD
+

1

2RA
− 1

RDA

)(
1

εop
+

1

εs

)
(2.93)

where ∆q is the charge transfered form one reactant to the other, RA and RB are the
radii of the two (spherical) reactants separated by RDA, and εop and εs are the optical
and static dielectric constants of the environment. The molecular structure of the envi-
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ronment can be taken into account explicitly by performing MD simulations of the initial
and final state and then reevaluating the obtained trajectories on the energy surface of
the opposite charge state, respectively.107

λo = 〈EFFD+A〉DA+ − 〈EFFD+A〉D+A (2.94)

Here, the index within the brackets denotes the charge state that is represented by the
force field, whereas the outer index represents the structural ensemble (trajectory) on
which the reevaluation is carried out. Note that the parabolas in figure 2.3 are assumed
to have the same curvature, which means that λ = λ′. If D and A (or their respective
environment) differ strongly, then this is no longer the case in general and λ is usually
taken as average value.

One surprising feature of Marcus theory is the prediction of an inverted region, which was
later also confirmed experimentally.108 Contrary to the usual increase of the rate with
increasing thermodynamical driving force −∆G0, the transfer becomes activation-less for
−∆G0 = λ and starts to decrease once −∆G0 > λ, as can be seen from eq. 2.91.

2.3.3. Coarse Grained Electron Ion Dynamics

The Hamiltonian shown in eq. 2.82 or approximations thereof are often used in simple
parametrized models. For a quantitative modeling of the involved interplay between
nuclear structure and electronic properties, however, simulations with atomistic resolu-
tion are necessary. Quantum chemical simulations for large systems are computationally
very expensive when treated atomistically. A method which reduces the cost for these
atomistic simulations is the coarse-graining of the electronic structure.

Coarse-graining builds a natural basis for the description of CT in molecular systems
and allows for further corrections as we discuss in section 5.6 This model can be used in
different propagation methods like mean-field (or Ehrenfest) simulations109 or in surface-
hopping simulations.110

In its derivation, the model follows closely the concept of DFTB2, and it introduces
further approximations. It can be considered as a coarse-grained variant of DFTB, where
molecular fragments take the role of single atoms. Similarly to the DFTB2 total energy
in eq. 2.37, the energy of the charged system E+[ρ], where the excess charge is missing
in HOMO Ψ0, is expanded around the energy of a neutral reference system E0[ρ0] by
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considering charge fluctuations up to the second order E2nd[δρ]

E+[ρ] ≈ E0[ρ0]− 〈Ψ0|Ĥ[ρ0]|Ψ0〉+ E2nd[δρ] (2.95)

As a further approximation the energy of the neutral system is represented by a classical
force-field energy

E0[ρ0] ≈ EMM (2.96)

The coarse-grained hole wavefunction in expanded in the HOMO orbitals of the neutral
M fragments instead of atomic orbitals.

|Ψ0〉 ≈
∑
M

aMφ
HOMO
M (2.97)

This leads to a linear scaling with the number of fragments and allows furthermore the
parallel computation of all monomers. With this basis set expansion we obtain the CT
matrix elements as

〈Ψ0|Ĥ[ρ0]|Ψ0〉 =
∑
MN

a∗MaN 〈φM |Ĥ[ρ0]|φN 〉 =
∑
MN

a∗MaNH
0
MN (2.98)

which can be seen as coarse-grained version of eq. 2.30.

The density variation δρ relative to the neutral reference system is decomposed into
contributions from each fragment

δρ =
∑
M

δρM (2.99)

which leads to a coarse-grained version of the second-order energy term of eq. 2.29

E2nd =
1

2

∫∫ ′( 1

|r − r′|
+
δ2Exc
δρδρ′

∣∣∣
ρ=ρ0

)
δρδρ′drdr′ (2.100)

The density variations δρM are approximated by charge monopoles (see eq. 2.32), which
simplifies eq. 2.100

E2nd =
1

2

∑
MN

∆QM∆QNΓMN (2.101)

where the excess charge on fragment M can be obtained as

∆QM = |aM |2 (2.102)
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2.3. Charge Transport Models

because the FO basis is orthogonalized.

However, in eq. 2.101 the function ΓMN takes only the form of one of two extreme cases
of eq. 2.34 and 2.35

ΓMN =

{
1

RMN
for M 6= N

UM for M = N
(2.103)

Here, ΓMM is the Hubbard parameter or chemical hardness of site M , which describes
the onsite electron-electron repulsion analogously to the atomic Hubbard, and ΓMN

describes the Coulomb interaction of the delocalized excess charge on fragments M and
N . This is only a simplified notation, whereas the fragment charges ∆Qm are usually
projected on atomic contributions ∆qα in actual calculation, which allows a more accurate
computation of the interaction energy. Note that DFT calculations of radical systems
are prone to SI, and that the major part of this error arises from the unpaired electron.
Therefore, a correction to the second-order term is applied in order to mitigate the effects
of SI. Following the proposed scaling of the contribution of to the unpaired electron to
the Hartree and exchange-correlation energy,112 a common scaling factor of C = 1/5 is
applied to the second-order term E2nd.109

With this expression for the second-order energy, we can write the total energy of the
charged system as

E+[ρ] ≈ E0[ρ0]−
∑
MN

a∗MaNH
0
MN + C

(
1

2

∑
MN

∆QM∆QNΓMN

)
(2.104)

The derivative of the total energy with respect to the FO coefficients yields a charge
dependent Hamiltonian

HMN = H0
MN + δMNC

∑
K

ΓMK∆QK (2.105)

where the Kronecker delta δMN appears due to the orthogonality of the FO basis functions
φm.

In order to achieve a coupled propagation of the electrons and the nuclei, the hole wave-
function is propagated with the time dependent Schrödinger equation

i~Ψ̇ = ĤΨ (2.106)

which can be written after expansion of the wavefunction according to eq. 2.97 and
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multiplication from left with 〈φM |

ȧM = i
∑
N

HMNaN (2.107)

Note that electrostatic interactions between the QM and MM region are accounted for
by calculating the fragment orbitals φM in the presence of the point charges of the
environment, and also the matrix elements H0

MN are calculated with additional QM/MM
coupling terms (see eq. 2.41).

The propagated excess charge is projected subsequently onto the QM atoms α, and the
forces arising from the altered force field energy EtotMM are obtained as

mKR̈k = −
∂EtotMM (q0A,∆qα)

∂Rk
(2.108)

This way, the change of Coulomb interactions with the environment due to the excess
charge is captured well. The molecular relaxation of a fragment due to the presence of
the charge, however, is still missing to a large extent. The reason for that is the way
how empirical force fields calculate the total energy, e.g. non-bonded interactions are not
computed between atom pairs that are within the distance of up to three covalent bonds.
In order to model this molecular relaxation, an effective correction to the Hamiltonian
was applied where the site energies HMM relax depending on the occupation ∆QM by
a precalculated value λi. The complete form of the Hamiltonian that is applied in eq.
2.107 is therefore

HMN = H0
MN + δMN

(
−λMi ∆QM + C

∑
K

ΓMK∆QK

)
(2.109)

2.4. Measurement of Charge Carrier Mobility

As already mentioned in chapter 1, the charge carrier mobility is a figure of merit for
the performance of organic semiconductors (OSCs) in practical applications. Obtaining
this quantity from experiment or simulation is therefore of considerable interest. For the
comparison of simulations and experiment it is essential to know the details of how the
charge carrier mobility µ is derived in the respective method. Here we will briefly discuss
the methods that serve as experimental reference in chapter 6 and 7. For an extensive
overview of techniques see e.g. ref. 113.
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2.4.1. Time of Flight

For the time of flight (TOF) method, the semiconductor has to be prepared as shown
in figure 2.4. The sample is irradiated with a short laser pulse through the transparent
indium tin oxide (ITO) electrode, which creates a sheet of charge carriers in the organic
layer near the contact. Under the influence of an applied electric field E, these charge
carriers drift toward the counter electrode (Ag), resulting in a transient current through
the sample. After the carriers have reached the counter electrode, the current drops to
zero. The duration from irradiation until the current drops corresponds to the transit
time of the carriers (ttr). Depending on the polarity of the applied bias V , electrons
or holes will travel through the sample thickness d. The mobility can be obtained from
following equation:

µ =
v

E
=

d

ttr · E
=

d2

ttr · V
(2.110)

A minimal sample thickness is required to prevent short circuits and typical d exceeds 100
nm. Since the complete sample thickness has to be traversed by the charge carrier, struc-
tural defects like grain boundaries can deteriorate the measured mobility significantly.

Figure 2.4.: Setup for a time of flight measurement. The organic semiconductor sample is
sandwiched between two electrodes and irradiated with a laser pulse, which creates
free charge carriers that get accelerated by the applied bias V .

2.4.2. Pulse-Radiolysis Time-Resolved Microwave Conductivity

In pulse-radiolysis time-resolved microwave conductivity (PR-TRMC) measurements a
short pulse of high energy electrons is used to ionize the organic semiconductor, kick-
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ing off secondary electrons and leaving behind cations (see figure 2.5). Many of these
ionizations events will result in charge pairs that are not able to escape each other’s
Coulomb potential and will recombine rapidly. Some pairs, however, will be created at a
sufficiently large distance and survive long enough to be detected. The produced charge
carriers change the electrical conductivity (∆σ) of the sample which can be measured via
the change in the microwave power that is reflected by the sample. It can be expressed
as

∆σ = eNe−h
∑

µ (2.111)

where e is the elementary charge,
∑
µ is the sum of electron and hole mobilities, and

Ne−h is the density of generated electron-hole pairs. Latter can be estimated from the
total absorbed microwave energy and the energy required to create one electron-hole
pair, multiplied by a survival factor that accounts for pair recombinations during the
duration of the pulse. In contrast to TOF measurements the excess charges are generated
in the bulk and their transport properties are probed on a very narrow spatial scale.
Nevertheless, charges trapped by structural defects or impurities will not respond to the
microwave field and result in a decreased mobility.

Figure 2.5.: Setup for a PR-TRMC measurement. Charge carriers are created in the organic
semiconductor by an ionizing electron beam. Microwaves are routed by a circulator
from a source to the sample, get reflected and are routed to the detector.
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2.4. Measurement of Charge Carrier Mobility

2.4.3. Thin Film Transistors

A thin film transistor (TFT) uses an electric field to control the size and shape of a
conductive channel between source and drain contacts. Applying a voltage at the gate
(see figure 2.6a) imposes an electric field, which attracts or repels charge carriers to
or from a narrow channel (at most a few nm high) at the interface between OSC and
insulator. The density of charge carriers n in turn influences the conductivity (σ = neµ)
and thus the current ISD between the source and drain.

Figure 2.6.: Setup for a TFTmeasurement (a) and schematic output curves (b). Charge carriers
are created at the interface between semiconductor and insulator by applying a gate
voltage VGS and allow a current between source and drain.

The charge carrier mobility µ can be determined from the output curves of the TFT,
that is, the plot of the current between source and drain ISD versus the applied bias VSD
for varying gate voltages VGS . There exists a linear and a saturation region in the output
curves (see figure 2.6b). The source-drain current in the linear region is defined as14

ISD =
W

L
µC

(
VGS − VT −

VSD
2

)
VSD (2.112)

and in the saturation region as

ISD =
W

2L
µC (VGS − VT )2 (2.113)

whereW and L are the width and length of the conduction channel, C is the capacitance
per unit area of the insulator and VT is the threshold voltage. Therefore, the slope of
ISD vs. VGS (I1/2SD vs. VGS) at constant VDS can be used to calculate the mobility in the
linear (saturation) region.
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Chapter 2. Theoretical Background

Since the conductive channel is formed at the interface between OSC and insulator,
the mobility is affected by structural defects within the OSC resulting from the interface.
Furthermore, the contact resistance at the source and drain electrodes has an pronounced
impact on the mobility.114
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Reproduced in part from ref. 115.
("Electronic couplings for molecular charge transfer: Benchmarking

CDFT, FODFT, and FODFTB against high-level ab initio
calculations.")

and also reproduced from ref. 116 with permission from the PCCP
Owner Societies.

("Electronic couplings for molecular charge transfer: benchmarking
CDFT, FODFT and FODFTB against high-level ab initio

calculations. II.")

The efficient construction of an FO Hamiltonian is of considerable interest for the sim-
ulation of charge transport. As described in section 2.2.3 its elements can be used as
approximative description of initial and final electronic states in the calculation of charge
transfer rates within Marcus theory (section 2.3.2) or with Miller-Abrahams equations
(section 2.3.1). The FO Hamiltonian is furthermore useful as a reasonable basis for
Ehrenfest simulations as described in section 2.3.3 and allows also an efficient diagonal-
ization of the electronic problem, which is needed e.g. for surface-hopping simulations
like shown in ref. 110 and 117.

Whenever extensive conformational sampling or calculations on large molecular systems
are needed, it may be required to use semi-empirical methods. In this work we focus on
DFTB as approximation to DFT calculations. As already mentioned in section 2.1.2, the
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Chapter 3. Fragment Orbital Hamiltonian

orbitals that are employed in the DFTB method are optimized to improve the description
of bonded systems. At intermediate distances (e.g. π-stacking), however, this procedure
gives rise to severely underestimated interatomic interactions and thus CT integrals.118

Because it is difficult to achieve an adequate description of the interaction over a long
range of interatomic distances within a minimal basis set, some computational tricks
have to be introduced as shown in section 3.1 and 3.2.

3.1. Conventional DFTB FO Hamiltonian

In earlier studies118 a second parameter set was introduced to DFTB calculations. In
the calculations of interatomic matrix elements the confinement was reduced for this
parameter set, which is beneficial for the description of long-range interactions. Similar
to FODFT calculations (see section 2.2.3), standard DFTB calculations are preformed
in a first step on the individual fragments in order to obtain the (non-orthogonalized)
sets of FOs.

|φm〉 =
∑
µ

c′mµ |ηµ〉 (3.1)

In a second step, however, the Hamilton matrix of the complex is constructed within a
more diffuse AO basis, which is needed for the proper description of long-range interac-
tions.118 This Hamiltonian is subsequently transformed into the FO basis.

H′FO = CT
AOcHAOdCAOc (3.2)

Here, CAOc is a block-diagonal matrix of the coefficients c′mµ of the fragment orbitals
and the subscripts c and d denote that the confined or diffuse basis set was used in the
construction of the respective matrix elements. The FO overlap matrix is constructed
analogously and then used for a Löwdin orthogonalization of the FO basis.

HFO = S
−1/2
FO H′FOS

−1/2
FO (3.3)

By applying different sets of DFTB parameters in the calculation of the matrix elements
ofCAOc andHAOd , the diagonal elements ofH′FO are typically only a poor representation
of the DFTB FO energies εi and the diagonal elements of SFO are not unity. Therefore,
a further correction step is necessary, where the erroneous diagonal elements are replaced
by the εi, obtained from the independent fragment calculations.
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3.2. Improved Block DFTB Hamiltonian

3.2. Improved Block DFTB Hamiltonian

In this work we introduce a more elegant method for the derivation of the FO Hamilto-
nian, which will directly result from a unitary transformation from the AO to FO basis
without the necessity of further corrections. The problem with the optimized minimal
basis of DFTB is the isotropic confinement; i.e. all p-orbitals have the same shape and
differ only by their orientation along the x-, y- and z-axis. In an anisotropic system, like
planar π-conjugated molecules, the AOs would experience compression from the atoms
within the molecular plane of the fragment. Perpendicular to this plane, on the other
hand, they would be quite free to delocalize. In such a case it would be desirable to have
additional basis functions in order to model AOs that are compressed in one direction
but diffuse in another direction. However, this would considerably increase the compu-
tational cost and an anisotropic confinement would add additional fitting parameters to
the DFTB method. Therefore, we take another route and implement the idea of strong
in-plane compression and weak out-off-plane compression by constructing the Hamilton
matrix H0

AO of the complex in a block matrix form

H0
AO =



ε1 α12 · · · β1(N−1) β1N

α21 ε2 · · · β2(N−1) β2N
...

...
. . .

...
...

β(N−1)1 β(N−1)2 · · · ε(N−1) α(N−1)N

βN1 βN2 · · · αN(N−1) εN


(3.4)

where normal DFTB parameters αµν are employed in the diagonal blocks (intramolecular
interactions), parameters from a less confined set βµν are used in the off-diagonal blocks
(intermolecular interactions), and N is the total number of AOs of the complex. The
overlap matrix SAO is constructed analogously and the DFTB2 matrix elements can then
be obtained as

Hµν = H0
µν +

1

2
Sµν

∑
ξ

∆qξ (γαξ + γβξ)

 (3.5)

where H0
µν and Sµν are matrix elements of the block matrix H0

AO and SAO. Again, the
FO coefficients c′mµ of eq. 3.1 are obtained in conventional DFTB calculations of the
independent molecules, applying the standard (confined) parameter set. However, by
using the block matrix form of H0

AO and SAO, the standard AO to FO transformation
shown in eq. 3.2 and the subsequent Löwdin orthogonalization can be performed without
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the necessity of additional corrections.

3.2.1. Inclusion of External Electric Fields

Previous studies with the conventional FO Hamiltonian already allowed QM/MM cou-
pling with the environment. In these cases the FO matrix elements (especially the diag-
onal elements) are affected by the MM point charges QA. Measurements of the charge
mobility often employ an additional uniform electric field (see e.g. TOF in section 2.4).
Therefore, we include in this work also the possible interaction with a constant external
field

−→
E during the calculation of the FO matrix. The matrix elements shown in eq. 3.5

with additional QM/MM interaction and external field are

Hµν = H0
µν +

1

2
Sµν

∑
ξ

∆qξ (γαξ + γβξ) +
∑
A

QA

(
1

rαA
+

1

rβA

)
+
(−→
E · rα +

−→
E · rβ

)
(3.6)

where
−→
E · rα is the scalar product of the external field with the position vector of atom

α.

3.3. Benchmarking

In the following we evaluate the performance of the FODFTB Hamiltonian, presented in
section 3.2, for the calculation of electronic couplings in π-conjugated organic molecules.
We benchmark the couplingsHab for hole- and electron-transfer on 11 and 7 homo-dimers,
respectively, as well as the corresponding exponential distance decay constant

|Hab| = A exp

(
−βd

2

)
(3.7)

The benchmark set consists of small π-conjugated molecules with different number of
hetero-atoms. We investigate how well less-approximative and therefore computational
more demanding methods, like FODFT and CDFT, are able to reproduce the reference
values and discuss their advantages and disadvantages compared to FODFTB. FODFTB
calculations and FODFT calculations with the ADF program were performed by myself,
whereas the remaining calculations of this benchmark were conducted by the coauthors
of ref. 115 and 116. Some comparisons between the conventional and the new FODFTB
method as well as the influence of the basis set confinement are given in the appendix.
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3.3.1. Database

The database for hole transfer and electron transfer consists of 11 and 7 π-conjugated
homo-dimers, respectively, with different sizes and various heteroatoms. See table 3.1 for
an overview. The choice of molecules reflects our interest in organic semiconductors and
charge carrying bio-molecules like DNA or aromatic protein side chains. However, the
large computational cost of the applied high-level ab initio reference methods restricts the
system size of the investigated dimers. For the hole transfer set very accurate calculations
were performable for dimers with up to three conjugated double bonds. For the electron
transfer set the molecules had to be larger than the ones in the hole transfer set, because
all methods that actually include the excess charge need dimers that bind an excess
electron. Small molecules, however, show a negative vertical electron affinity, i.e. show
no stable anion. For example in the series of acenes, the two smallest molecules (benzene
and naphthalene) show a negative vertical electron affinities (-1.30 eV and -0.17 eV,
respectively) at the PBE/aug-cc-pVTZ level of theory. Anthracene is the smallest acene
with a positive vertical electron affinity of 0.64 eV.

Depending on the size of the system, reference calculations were therefore possible at
three different levels of theory:

• For the smallest molecules in the hole-transfer benchmark set, calculations with
multi-reference configuration interaction singles and doubles with Davidson correc-
tion (MRCI+Q) were performable.119–121

• For the larger molecules of this set we were able to apply N-electron valence state
perturbation theory (NEVPT2)122–124

• The benchmark set for electron transfer consists of even larger molecules (which are
needed to form a stable anion) and therefore only spin-component scaled second-
order approximate coupled cluster method (SCS-CC2) is applicable to these sys-
tems.125

To provide rigorous reference values, and to further speed up the calculations, we consider
initially only cofacial homo-dimers (with identical monomer geometries) as shown in
figure 3.1 with the total charge of ±1. For these systems Hab is uniquely defined as half
of the first adiabatic excitation energy and does therefore not depend on the applied
diabatization procedure. Extension to various different orientations is shown in section
3.3.6.
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Table 3.1.: Database of organic molecules for the calculation of electronic coupling matrix el-
ements for hole (left) and electron (right) transfer. For sake of simplicity only
monomers are shown but the actual calculations were performed on cofacial π-
stacks of cationic and anionic homo-dimers, respectively. Furthermore, the method
at which the reference values could be obtained is shown (see section 3.3.2 for de-
tails).

Hole-Transfer Set Electron-Transfer Set

Name Structure Reference Name Structure Reference

Ethylene MRCI+Q

Acetylene MRCI+Q

Cyclo-
propene MRCI+Q

Cyclo-
butadiene MRCI+Q

Cyclo-
pentadiene MRCI+Q

Furane MRCI+Q

Pyrrole MRCI+Q

Thiophene NEVPT2

Imidazole NEVPT2

Benzene NEVPT2

Phenol NEVPT2

Anthracene SCS-CC2

Tetracene SCS-CC2

Pentacene SCS-CC2

Perfluoro-
anthracene SCS-CC2

Perylene SCS-CC2

Perylene di-
imide SCS-CC2

Porphin SCS-CC2
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Figure 3.1.: Schematic representation of the alignment of a dimer. The neutral geometry was
replicated along the axis perpendicular to the plane intercepting all heavy atoms.
Hab values were obtained for d = 5.0, 4.5, 4.0, 3.5 Å.

3.3.2. Computational Details

Geometry Optimizations

The monomers for the hole and electron charge transfer database were generated by the
same protocol. The geometry of each monomer was optimized in the neutral charge state
at the BP86/def2-TZVP level of theory with the resolution of identity approximation and
an enlarged DFT integration grid (m4). The energy and gradient convergence criterion
was set to 10−7 a.u. and 10−4 a.u., respectively. The energy minimum was confirmed
by a subsequent vibrational analysis. The dimers were constructed by replicating the
optimized molecule along the axis perpendicular to the molecular plane.

Reference calculations

In the reference calculations the electronic couplings were derived as half the energy
splitting between ground and first excited state of the charged system (see section 2.2
for details). A state-average complete active space self-consistent field (CASSCF) wave
function of the cationic system was chosen as a reference in MRCI+Q and NEVPT2
calculations. The active space consisted of all π and π∗ orbitals with corresponding
electrons and the averaging was usually performed over ground and first excited doublet
states with equal weights. Because of the small energy differences between these states in
thiophene and acetylene, the averaging was in these cases performed over the four lowest
doublet states. The convergence criterion for the CASSCF energy was 10−7 a.u.. The
aug-cc-pVTZ basis set was used for heavy atoms and the cc-pVDZ basis set for hydrogen
atoms.

The computational cost of MRCI+Q grows rapidly with the number or reference functions
that are extracted from the active space. Therefore only configurations with a CASSCF
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weight of more than 10−4 were taken as references. Furthermore, the core electrons of
carbon, nitrogen and oxygen atoms were treated as frozen.

In the NEVPT2 calculations, only configurations with a weight of more than 10−10 were
taken as references. Because of software limitations, the frozen core approximation was
not applied. The calculations for both multireference methods were carried out with the
ORCA 2.9.1 program.

For the SCS-CC2 calculations the same basis set was applied as in the multireference
calculations. The reference was an unrestricted Hartree-Fock determinant in the case
of hole-transfer and a restricted open-shell wave function in the electron-transfer calcu-
lations. In both cases the energy and density convergence criterion was 10−7 a.u.. As
scaling factors for same and opposite spin components of the elements of the Jacobi ma-
trix the parameters of Grimme (cos = 6/5 and css = 1/3) were applied.126 The resolution
of identity (RI) approximation was used in all calculations,127,128 which were performed
with the Turbomole suite of programs.129,130

CDFT

The CDFT calculation were carried out with the CPMD program.131 The difference of
Hirshfeld charges were used to constrain the charge to the donor or acceptor (see section
2.2.2 for details). Convergence was achieved when the charge difference between donor
and acceptor was one elementary charge with a tolerance of 5 × 10−5. The calcula-
tions were carried out in vacuo using the PBE functional.132,133 In order to evaluate the
impact of exact exchange, the approximate GGA-exchange of PBE was replaced gradu-
ally with increasing percentages of exact Hartree-Fock exchange. In the following these
hybrid-functionals will be denoted “CDFT/X", where X represents the percentage of
GGA exchange replaced with Hartree-Fock exchange. The dimers were centred in a rect-
angular box with a minimum distance of 4 Å from the box edges. Only valance electrons
were treated explicitly, whereas Troullier-Martins pseudopotentials were used for the de-
scription of core electrons.134 The reciprocal space plane wave cutoff for KS-orbitals was
set to 80 Ry in CDFT calculations with 100% GGA-exchange and was decreased by a
factor of two in calculations where exact Hartree-Fock exchange was included.
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FODFT

In the benchmarked FODFT calculations, 2N − 1 and 2N + 1 electrons were present in
the case of hole and electron transfer, respectively, where N is the number of electrons
of one monomer (see section 2.2.3). The calculations were performed with the CPMD
program131 using the PBE functional and the same plane-wave cutoff, box dimensions
and pseudo-potentials as in the CDFT calculations.

Further calculations with 2N electrons were performed in section 3.3.7 in order to evaluate
the influence of the electron number on the coupling. These calculations were performed
with the ADF software suite.135 Again, the PBE functional was used, but this time with
2N electrons in the system and the TZ2P all-electron Slater-type basis set. Furthermore,
it is to note that in ADF the electronic couplings are calculated between non-orthogonal
fragment orbitals. To be consistent with the rest of our calculations, the Hamilton
matrix in the basis of non-orthogonal HOMOs was transformed into an orthogonal basis
according to the method of Löwdin.94

FODFTB

In the FODFTB calculations, the block-matrix method described in section 3.2 was used
at the DFTB2 level of theory. For the diagonal blocks, the halorg-0-1 parameters136–139

were used, whereas a weaker confinement was applied for the parameters of the off-
diagonal blocks. For latter parameters, a confinement radius of 8 a.u. was applied for the
wave function and ∞ for the density. The total energy of the monomer calculations was
converged within 10−7 a.u.. Only (degenerate) HOMOs were considered on each molecule,
which were orthogonalized according to the method of Löwdin.94 In isolated acetylene
molecules there are two sets of degenerate HOMOs. In order to be in accordance with the
other calculations, we had to generate the HOMOs consisting of p-orbitals parallel and
perpendicular to the stacking direction by the transformation shown in the appendix,
and present here the coupling between the first ones.
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3.3.3. Hole Transfer Couplings

In the following we will see how well FODFTB is able to reproduce the reference data in
the hole transfer set compared to more elaborate methods like FODFT and CDFT. The
numerical values for all 11 molecular dimers is presented in table 3.2. The quality of the
results will be measured by the mean unsigned error (MUE), the mean relative signed
error (MRSE), the mean relative unsigned error (MRUE) and the maximal error (MAX)
evaluated over all molecules and distances.

The first thing to notice is that the reference values of the electronic couplings are very
similar for a certain intermolecular separation distance, irrespective of the size or het-
eroatoms present in the molecule. Values of 450, 200, 100, and 50 meV are found for a
distances of 3.5, 4.0, 4.5 and 5.0 Å, respectively.

Interestingly, the fragment orbital methods, FODFTB and FODFT, systematically un-
derestimate the electronic coupling but are very similar, considering the approximate
nature of DFTB. FODFTB yields only slightly worse electronic couplings than FODFT
with a MRUE of 44.2% compared to 37.1%. Moreover, the decay constants are nearly
identical for both FO methods, but the couplings drop too fast at higher distances, which
results in an overestimation of the decay constant of 13%.

In a recent study the magnitude of the electronic coupling of fragment orbital approaches
was related to the amount of non-local exchange used in the DFT method.140 The authors
observe a linearly increasing coupling with increasing amount of non-local exchange in the
applied global hybrid-functionals. They attribute this behavior to the different distance
dependences of (semi-)local and non-local exchange-correlation potentials. While former
decays exponentially, latter decays with 1/r and yields therefore larger contributions at
large distances. We also use a functional with semi-local exchange-correlation (PBE) in
the FODFT calculations and PBE is also applied in the parametrization of the electronic
parameters of DFTB.Therefore, we can attribute the underestimation of the couplings
to the applied approximate exchange-correlation potential, which is also reflected in the
overestimation of the decay constant compared to the reference calculations.

The errors of CDFT/0 are comparable to FODFT (MRUE = 38.7%), but of opposite sign,
i.e. the coupling is overestimated. By admixing exact non-local exchange the artificial
self-interaction error of (semi-)local DFT methods can be decreased. Various percentages
were tested and the best results were found with 50% non-local exchange (CDFT/50),
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which yielded an MRUE of 4.3%. Note that higher amounts of non-local exchange lead
to an underestimation of the electronic coupling.115

Surprisingly, in CDFT calculations the inclusion of non-local (Hartree-Fock) exchange
leads to an systematic decrease of electronic couplings, whereas in FO methods an in-
crease with the amount of non-local exchange was observed.140 Considering that one
effect of the self-interaction error is the overestimation of delocalization of the excess
charge (see section 2.1.3), it is maybe surprising that it has such a pronounced influence
in CDFT calculations, where the charge is constrained to donor or acceptor and never
free to delocalize. However, even though the charge is not free to delocalize over the
dimer, it can still reside in more or less compact orbitals on one monomer, depending on
the fraction of exact exchange. The electronic coupling, however, is approximately pro-
portional to the overlap between the charge carrying orbitals in the two diabatic states,
and will therefore be smaller for compact orbitals resulting from higher percentage of
exact exchange.

Table 3.2.: Absolute values of the electronic coupling Hab (in meV) between cationic dimers
in the noted distance and its exponential decay constant β (in Å−1) as defined
in eq. 3.7. Statistical evaluation of both quantities is given by means of mean
unsigned error MUE = (

∑
n |ycalc− yref |)/n, mean relative signed error MRSE =

(
∑
n((ycalc − yref )/yref ))/n, mean relative unsigned error MRUE = (

∑
n(|ycalc −

yref |/yref ))/n and maximum unsigned error MAX = max|ycalc − yref |.

Dimer CDFT/0 CDFT/50 FODFT FODFTB Reference

Ethylene

Hab

3.5 Å 621.5 556.9 367.7 343.7 519.2
4.0 Å 314.8 278.5 169.9 171.5 270.8
4.5 Å 158.3 138.2 76.0 81.1 137.6
5.0 Å 78.4 68.0 32.6 35.6 68.5

β 2.76 2.80 3.23 3.02 2.70
Acetylene

Hab

3.5 Å 563.7 459.1 316.9 300.3 460.7
4.0 Å 273.2 218.2 139.9 151.8 231.8
4.5 Å 131.2 103.4 59.7 73.0 114.8
5.0 Å 62.4 48.7 24.3 32.5 56.6

β 2.94 2.99 3.43 2.90 2.80
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Cyclopropene

Hab

3.5 Å 816.1 585.7 418.8 367.4 536.6
4.0 Å 369.6 259.5 179.2 168.5 254.0
4.5 Å 164.8 116.1 75.9 75.2 118.4
5.0 Å 73.9 52.2 31.7 32.3 54.0

β 3.20 3.22 3.44 3.24 3.06
Cyclobutadiene

Hab

3.5 Å 646.3 395.9 323.3 261.6 462.7
4.0 Å 326.8 195.1 148.9 117.3 239.1
4.5 Å 164.5 95.8 67.9 50.5 121.7
5.0 Å 87.9 43.7 30.5 20.5 62.2

β 2.67 2.93 3.15 3.39 2.68
Cyclopentadiene

Hab

3.5 Å 702.1 490.5 343.3 283.2 465.8
4.0 Å 346.4 234.5 157.7 130.5 234.4
4.5 Å 167.4 113.3 71.8 57.7 114.3
5.0 Å 80.9 54.9 32.3 24.0 53.4

β 2.89 2.92 3.15 3.29 2.89
Furane

Hab

3.5 Å 598.2 452.4 315.6 280.3 440.3
4.0 Å 292.5 213.7 141.6 128.2 214.9
4.5 Å 141.0 101.5 62.8 56.2 101.8
5.0 Å 67.0 48.2 27.5 23.2 46.0

β 2.92 2.99 3.25 3.32 3.01
Pyrrole

Hab

3.5 Å 629.8 469.8 328.7 286.2 456.3
4.0 Å 314.8 225.7 150.0 131.1 228.6
4.5 Å 155.5 109.4 67.8 57.5 111.3
5.0 Å 75.7 53.2 30.3 23.8 52.2

β 2.82 2.90 3.18 3.32 2.89
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Thiophene

Hab

3.5 Å 669.9 476.9 341.2 264.8 449.0
4.0 Å 332.3 225.1 154.1 133.5 218.9
4.5 Å 162.4 107.1 68.8 66.1 106.5
5.0 Å 77.4 50.9 30.4 31.2 54.4

β 2.88 2.98 3.22 2.85 2.82
Imidazole

Hab

3.5 Å 590.1 443.4 310.7 277.5 411.6
4.0 Å 286.3 209.3 139.4 127.6 202.8
4.5 Å 136.8 99.5 61.9 56.2 99.1
5.0 Å 64.3 47.3 27.1 23.4 49.7

β 2.95 2.98 3.25 3.29 2.82
Benzene

Hab

3.5 Å 647.8 475.5 342.4 299.9 435.2
4.0 Å 321.7 223.5 154.8 142.2 214.3
4.5 Å 155.6 105.6 69.2 64.5 104.0
5.0 Å 73.8 49.8 30.6 27.4 51.7

β 2.90 3.01 3.22 3.19 2.85
Phenol

Hab

3.5 Å 557.3 397.8 190.5 231.4 375.0
4.0 Å 271.3 182.8 81.1 105.4 179.6
4.5 Å 129.4 84.9 34.7 46.5 85.2
5.0 Å 58.9 39.3 22.4 19.4 41.3

β 3.00 3.09 2.91 3.31 2.95

MUE Hab [meV] 83.0 11.8 69.4 82.4 –
β [1/Å] 0.07 0.13 0.37 0.33 –

MRSE Hab [%] 38.7 -0.8 -37.3 -42.9 –
β [%] -1.5 4.4 12.8 11.7 –

MRUE Hab [%] 38.7 5.3 37.6 42.4 –
β [%] 2.3 4.3 13.0 12.5 –

MAX Hab [meV] 279.5 66.8 184.5 201.1 –
β [1/Å] 0.14 0.25 0.63 0.71 –
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3.3.4. Electron Transfer Couplings

Now we will evaluate how well FODFTB reproduces the reference data in the electron
transfer set, compared to FODFT and CDFT. The electronic couplings and its decay
constant are collected in table 3.3 and the same error estimates are applied as in section
3.3.3. In contrast to the hole-benchmark, the reference values were obtained with the
SCS-CC2 method.

Again, the FO methods underestimate the electronic coupling for electron-transfer, like
before in the case of hole-transfer, which we already attributed to the missing non-local
exchange. However, in contrast to the cationic systems, where FODFT and FODFTB
yielded very similar results, we find here more pronounced differences between both ap-
proaches. FODFT calculations perform even better than in the cationic systems (MRUE
= 27.9%), whereas FODFTB shows larger deviations from the reference with a MRUE
of 53.5%.

Also the value of the decay constant β is now no longer the same but much more overes-
timated with FODFTB (MRSE = 25.8%) compared to the very good value of FODFT
(MRSE = 5.0%). One could ask, what causes the much weaker similarity of FODFTB
and FODFT in the anionic systems compared to the cationic ones. There are two main
differences between the FODFT and FODFTB calculations. One is obviously the approx-
imate nature of DFTB. Another difference is the number of electrons that are present in
the calculations. In FODFTB we obtain the FOs from the neutral monomers (LUMOs)
and the Kohn-Sham Hamiltonian that is used to evaluate the coupling between these FOs
has 2N electrons, whereas in the benchmarked variant of FODFT the FOs are obtained
from anionic monomers (SOMOs) and the Hamiltonian in the coupling calculation has
2N+1 electrons. The LUMOs that are used in the case of DFTB have arguably the
same meaning as the SOMOs in the DFT calculations. However, in section 3.3.7 we
will see that the poorer performance of FODFTB in the electron-transfer set can not be
attributed to the difference between SOMOs and LUMOs. Therefore the weak coupling
in FODFTB and its strong decay can be attributed to the employed minimal basis set.
The basis employed for the parametrization of intermolecular interactions is nearly un-
confined, but it is still derived from the atomic orbitals of a neutral atom. Even diffuser
orbitals would be necessary to describe the electronic couplings in a negatively charged
system, however.

CDFT/0 shows also a larger error than in the cationic systems and overestimates the
couplings now by 60.8% (MRUE) and is therefore worse than the FODFTB results.
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Note that again the sign of the deviation differ between CDFT and FO calculations.
As before, we find an overestimation of the electronic coupling in CDFT, whereas FO
methods underestimate the electronic coupling. Nevertheless, the decay constant agrees
still very well with the reference (MRUE = 7%) Inclusion of exact exchange can mitigate
the overestimation of the electronic couplings in CDFT and again a value of 50% exact
exchange was found to yield the best results (MRUE = 8.2%).

Table 3.3.: Absolute values of the electronic coupling Hab (in meV) between anionic dimers
in the noted distance and its exponential decay constant β (in Å−1) as defined
in eq. 3.7. Statistical evaluation of both quantities is given by means of mean
unsigned error MUE = (

∑
n |ycalc− yref |)/n, mean relative signed error MRSE =

(
∑
n((ycalc − yref )/yref ))/n, mean relative unsigned error MRUE = (

∑
n(|ycalc −

yref |/yref ))/n and maximum unsigned error MAX = max|ycalc − yref |.

Dimer CDFT/0 CDFT/50 FODFT FODFTB Reference

Anthracene

Hab

3.5 Å 637.0 479.2 316.9 237.8 421.1
4.0 Å 324.5 227.8 147.3 98.8 212.3
4.5 Å 169.4 113.1 68.0 39.4 106.1
5.0 Å 87.9 58.0 30.7 14.8 52.3

β 2.64 2.81 3.11 3.70 2.78
Tetracene

Hab

3.5 Å 628.8 466.0 322.9 242.9 417.2
4.0 Å 313.1 213.8 149.2 101.6 204.3
4.5 Å 160.8 102.4 69.2 40.8 97.9
5.0 Å 81.5 50.4 32.5 15.5 45.4

β 2.72 2.97 3.07 3.67 2.96
Pentacene

Hab

3.5 Å 618.3 451.3 323.2 243.9 411.0
4.0 Å 303.0 202.4 148.5 102.7 198.0
4.5 Å 154.0 95.1 68.5 41.4 92.4
5.0 Å 77.7 45.7 32.0 15.8 41.0

β 2.76 3.05 3.08 3.65 3.07
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Perfluoroanthracene

Hab

3.5 Å 479.6 349.7 236.1 198.4 310.9
4.0 Å 227.2 152.7 101.0 80.9 139.1
4.5 Å 107.9 68.5 44.0 31.9 59.9
5.0 Å 49.6 30.6 18.7 12.4 24.0

β 3.02 3.24 3.38 3.70 3.41
Perylene

Hab

3.5 Å 633.7 460.7 324.6 236.3 423.7
4.0 Å 324.5 222.7 156.4 98.5 220.7
4.5 Å 174.0 114.1 77.0 39.3 116.6
5.0 Å 94.4 61.1 39.0 15.0 62.8

β 2.54 2.70 2.83 3.68 2.55
Perylene diimide

Hab

3.5 Å 541.8 417.7 285.1 227.0 373.8
4.0 Å 261.0 187.4 130.5 94.1 179.2
4.5 Å 131.2 89.2 60.9 37.5 84.1
5.0 Å 65.1 44.0 29.1 14.4 38.0

β 2.82 3.00 3.05 3.69 3.05
Porphin

Hab

3.5 Å 577.7 408.5 288.5 216.0 374.5
4.0 Å 285.0 184.8 131.1 88.7 182.9
4.5 Å 146.6 87.7 60.2 35.1 89.4
5.0 Å 74.7 42.7 28.1 13.2 44.1

β 2.72 3.01 3.10 3.72 2.85

MUE Hab [meV] 96.7 15.0 46.5 85.3 –
β [1/Å] 0.21 0.08 0.15 0.74 –

MRSE Hab [%] 60.8 7.5 -27.9 -53.5 –
β [%] -6.8 0.8 5.0 25.8 –

MRUE Hab [%] 60.8 8.2 27.9 53.5 –
β [%] 6.8 2.9 5.3 25.8 –

MAX Hab [meV] 215.9 58.1 104.2 187.4 –
β [1/Å] 0.39 0.17 0.33 1.13 –
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3.3.5. Compensation for Missing Non-Local Exchange

We find a very systematic deviation from the reference couplings for all methods in
the cationic as well as anionic benchmark sets. This is shown in figure 3.2 (top) for the
cationic systems. The correlation between the benchmarked methods and the reference is
nearly linear with R2 values of 0.9869, 0.9904, 0.9788 and 0.9853 for CDFT/0, CDFT/50,
FODFT and FODFTB, respectively. A similar correlation is found for the anionic sys-
tems, which is shown in figuer 3.2 (bottom). In this case the R2 values are 0.9990, 0.9988,
0.9985 and 0.9879 for CDFT/0, CDFT/50, FODFT and FODFTB, respectively.

Hence, this suggests that a constant scaling factor for each method could improve the
final results tremendously. The scaling factors were derived as the inverse of the slope of
a linear fit to the data shown in figure 3.2. The final values are presented in table 3.4 and
the scaled methods will be labeled with an "s"-prefix. The scaling factors for hole and
electron transfer are comparable. The best method in the benchmark (CDFT/50) can
practically be used without any scaling. For all other methods a significant improvement
of the electronic couplings can be achieved. An interesting feature is the nearly identical
scaling factor for FODFT of 1.3 for hole and electron transfer that yields couplings very
close to the reference values with quite low computational cost. The scaling factors of
FODFTB are quite large with 1.540 and 1.795 for hole and electron transfer, respectively.
Nevertheless, after scaling the couplings for the cationic systems are even better than
with sFODFT and even in anionic systems it is still possible to significantly reduce the
problems of DFTB that originate from the too confined minimal basis.

3.3.6. Transferability of the Correction

In the benchmark set all dimers were in a perfect cofacial, π-stacked orientation. We
found that FODFT and FODFTB systematically underestimate the electronic couplings,
whereas CDFT/0 overestimates them. In the following we will further examine how
well the methods perform for different orientations, where the monomers are no longer
perfectly cofacial. The main question is if the same systematic error as in the cofacial
orientation can be observed also for randomly orientated molecules. In this case the
scaling procedure from section 3.3.5 can be a valuable tool to systematically improve the
electronic couplings along an MD simulation in a black-box manner.

For the case of hole-transfer a thiophene dimer was chosen to evaluate different ori-
entations as shown in figure 3.3: (a) One monomer is rotated about the axis through

57



Chapter 3. Fragment Orbital Hamiltonian

Figure 3.2.: Correlation between calculated CDFT/0, CDFT/50, FODFT, FODFTB |Hab| val-
ues and reference data in the cationic systems (top) and the anionic systems (bot-
tom). The black dashed line represents perfect correlation.
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Table 3.4.: Errors of Hab after applying a method-specific scaling factor ("s" prefix) to each
method. The original errors of the unscaled methods as derived in table 3.2 and 3.3
are given in parentheses for comparison.

Scaling MUE [meV] MRSE [%] MRUE [%] MAX [meV]

CDFT/0 h+ 0.721 10.6 (83.0) -1.8 (38.7) 5.2 (38.7) 71.1 (279.5)
e− 0.660 5.9 (96.7) 6.1 (60.8) 7.3 (60.8) 16.2 (215.9)

CDFT/50 h+ 0.962 11.7 (11.7) -6.6 (-0.8) 7.1 (5.3) 81.7 (66.8)
e− 0.915 6.2 (15.0) -1.7 (7.5) 4.9 (8.2) 17.3 (58.1)

FODFT h+ 1.348 24.7 (69.4) -17.3 (-37.3) 17.6 (37.6) 142.1 (184.5)
e− 1.325 7.0 (46.5) -4.4 (-27.9) 5.9 (27.9) 17.2 (104.2)

FODFTB h+ 1.540 20.0 (82.4) -12.7 (-42.9) 13.9 (42.4) 69.7 (201.1)
e− 1.795 21.6 (85.3) -15.9 (-53.5) 19.5 (53.5) 47.7 (187.4)

the center of masses of the molecules, (b) both monomers are simultaneously rotated in
order to gradually break the π-stacking, (c) the monomers are put in random relative
orientations at a constant centre of mass distance.

Figure 3.3.: Thiophenes in additional orientations: (a) the top monomer was rotated by angle
α about the centre of mass with α ranging from 0◦ to 180◦ with a step size of
20◦. (b) Simultaneous rotation of two monomers in opposing directions by angle
β ranging from 0◦ to 90◦ with a step size of 10◦. The intermolecular distance was
set to 5, 6.57 and 4 Å in (a), (b) and (c), respectively.

As can be seen in figure 3.4 all methods show the same trend for the electronic couplings
in case (a). Especially the minimum couplings of 0.0 eV coincide very well. This results
from the similar nodal structure of the involved HOMOs, whose overlap is in first approx-
imation proportional to the electronic coupling. Also in the out of plane rotation (case b)
all methods show a similar trend. Almost all methods find a maximum at β = 60◦. Only

59



Chapter 3. Fragment Orbital Hamiltonian

for CDFT/0 the maximum is shifted by 10◦ to β = 70◦. For the random orientations
(case c) the reference values can no longer be derived from the adiabatic splitting due to
the broken symmetry of the system. The GMH approach (see section 2.2.1) was therefore
applied in these cases. As can be seen in table 3.5 FODFTB and FODFT show similar
performance (especially after scaling) and the results for these random orientations are
comparable to the values from the electron and hole benchmark sets. CDFT/0 performs
with MRSE of 124.9% much worse than for the symmetric systems. This might be re-
lated to the tendency of the PBE functional to over-delocalize the charge, combined with
the ambiguous choice of a constraining potential in CDFT. Inclusion of exact exchange
mitigates the problem (MRSE=17.1%), but still the performance of CDFT/50 is not as
superior as in the symmetric systems.

Figure 3.4.: Variation of electronic coupling along a rotation shown in figure 3.3 with angles α
(a) and β (b). The right side shows the curves after application of the method-
specific scaling factors (see table 3.4)

Also for the electron transfer case we investigated the performance for randomly rotated
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Table 3.5.: Statistical evaluation of the error of Hab calculated for 15 randomly rotated cationic
thiophene dimers (see figure 3.3c). The reference data were obtained at the NEVPT2
level of theory using the GMH approach. The errors of the scaled methods ("s"-
prefix) are shown together with errors of the unscaled methods in parentheses for
comparison.

MUE [meV] MRSE [%] MRUE [%] MAX [meV]

sCDFT/0 72.1 (160.3) 62.2 (124.9) 62.3 (124.9) 158.6 (256.0)
CDFT/50 – (26.8) – (17.1) – (23.3) – (55.8)
sFODFT 25.6 (48.2) 1.4 (-24.8) 17.7 (26.6) 58.7 (94.4)
sFODFTB 26.8 (64.9) -4.5 (-38.0) 17.1 (38.0) 69.2 (110.3)

structures. The large size of the molecules in the electron transfer set, however, re-
stricted our calculations to 6 different orientations of the smallest member (anthracene),
which are presented in table 3.6. As one could expect, the electronic couplings increase
with decreasing interatomic distance between closest atoms. However, due to the nodal
structure of the singly occupied orbitals, small distance is no sufficient criterion for high
couplings. This can be seen on dimer 4, which shows nearly vanishing coupling for a
relative close interatomic distance of 3.5 Å. Dimers 5 and 6 show larger couplings, be-
cause of a relatively short contact between fragments of about 2 Å. Nevertheless, these
couplings are still smaller then in the cofacial orientations due to the reduced overlap.
The small couplings of dimers 1 to 4 are prone to numerical noise of the calculations but
the ordering of dimers from higher to lower electronic couplings is still relatively well re-
produced with all methods. For the larger couplings of dimers 5 and 6 we can again find
the same trends as in the cofacial sets with underestimation of the couplings by the FO
methods and overestimation with CDFT/0. The inclusion of exact exchange (CDFT/50)
can mitigate the CDFT errors only partially. A main problem of CDFT at such small
distances may be, that the results are expected to exhibit a significant dependence on the
choice of the weighting function, leading to increased uncertainties in Hab, as discussed
in refs. 93 and 92.

3.3.7. Influence of Electron Number in FO Calculations

In CDFT calculations we are obtaining an initial and final diabatic state for the charge
transfer reaction in form of two constrained Slater dereminants. In the FO methods,
however, we are only approximating the initial and final diabatic state with a single
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Table 3.6.: Electronic coupling matrix elements calculated for six randomly oriented anionic
anthracene dimers (in meV). For each molecule the closes contact is given. Unscaled
|Hab| values are given in brackets

Dimer
Closest
contact
[Å]

sCDFT/0 sCDFT/50 sFODFT sFODFTB Ref.

1 5.46 0.9 (1.3) 0.7 (0.8) 1.3 (1.0) 0.1 (0.0) 0.0

2 4.79 8.7 (13.2) 5.3 (5.8) 5.7 (4.3) 3.3 (1.8) 2.6

3 4.59 6.0 (9.1) 4.6 (5.0) 5.6 (4.2) 2.0 (1.1) 1.7

4 3.52 0.9 (1.4) 2.7 (2.9) 2.8 (2.1) 0.3 (0.1) 2.3

5 2.24 174.4 (264.2) 73.6 (80.4) 31.3 (23.6) 27.3 (15.2) 46.4

6 2.14 287.7 (435.9) 200.6 (219.2) 70.6 (53.3) 52.3 (29.1) 91.5
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orbital (HOMO/LUMO in case of hole and electron transfer, respectively). Up to now,
we constructed the dimer Hamiltonian in our FODFT calculations with (2N±1) elec-
trons, i.e. the actual number of electrons in the system. In contrast to this, FODFTB
as well as several other different FODFT implementations perform both the monomer
and dimer calculations for neutral systems, i.e. introduce an additional approximation.
We tested the influence of the number of electrons on the resulting electronic coupling
for all molecules of both benchmark sets at a separation distance of 3.5 Å and present
the results in table 3.7. FODFT(2N±1) denotes the CPMD implementation with cor-
rect number of electrons that was also used up to now, whereas FODF(2N) denotes
results for ADF calculations where the systems are neutral (see section 3.3.2 for details).
Interestingly, FODFT calculations with (2N) electrons yield smaller MRUE than with
(2N±1) electron for both sets, even though the charged system is approximated with the
neutral one. Note that the influence of other factors besides the electron number, like
application of different basis sets in ADF and CPMD, was found to be negligible in ref
115. This is especially surprising for the electron transfer set, because in FODFT(2N)
calculations the coupling is evaluated between LUMOs, which have no real physical
meaning whereas in FODFT(2N±1) the coupling is evaluated between SOMOs, which
should in principle be a better representation of the charge residing on one molecule.
While both DFT methods perform better in the electron benchmark set, FODFTB(2N)
shows the opposite trend. The reason can be found in the minimal basis set. Even
though special parameters resulting from uncompressed atomic orbitals are used, these
orbitals are nevertheless resulting from a neutral reference atom. For the description of
the electronic coupling in anionic systems, however, more diffuse orbitals are required.
If we compare FODFTB(2N) with FODFT(2N) instead of FODFT(2N±1) the error in-
troduced by the minimal basis of DFTB and its approximate nature seems to be slightly
more pronounced. After scaling, however, the differences between FODFTB(2N) and
FODFT(2N) will again decrease since FODFT(2N) will just need a smaller scaling factor
to optimize the electronic couplings.

3.4. Discussion and Conclusion

For DFT calculations at the GGA level (and also of DFTB, which is parametrized using
a GGA functional) we found that FO methods perform as well as CDFT calculations,
even though they approximate the electronic coupling between diabatic states with a cou-
pling between fragment orbitals. We furthermore found that the errors are systematic,
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Table 3.7.: Comparison of electronic coupling matrix elements calculated with and without
explicit charge in the system for the hole transfer set (top) and electron transfer
set (bottom). Expressions in parentheses denotes number of electrons used in the
dimer Hamiltonian. The MUE is evaluated over both sets. Reference values are
reported in the last column at the same level of theory as in table 3.2 and 3.3. All
couplings are in meV.

FODFT(2N±1) FODFT(2N) FODFTB(2N) Ref(2N±1)

Ethylene 367.7 388.4 343.7 519.2
Acetylene 316.9 345.3 300.3 460.7
Cyclopropene 418.8 439.4 367.4 536.6
Cyclobutadiene 323.3 345.6 261.6 462.7
Cyclopentadiene 343.3 358.7 283.2 465.8
Furane 315.6 333.7 280.3 440.3
Pyrrole 328.7 347.7 286.2 456.3
Thiophene 341.2 356.1 264.8 449.0
Imidazole 310.7 328.2 277.5 411.6
Benzene 342.4 354.1 299.9 435.2
Phenol 190.5 279.5 231.4 375.0

MRUE [%] 28.6 22.7 36.3 –

Anthracene 316.9 342.1 237.9 421.1
Tetracene 322.9 339.2 242.8 417.2
Pentacene 323.2 335.4 243.9 411.0
Perfluoroanthracene 236.1 237.8 198.4 310.9
Perylene 324.6 344.9 236.4 423.7
Perylene diimide 285.2 292.5 227.0 373.8
Porphin 288.5 300.7 215.9 374.5

MRUE [%] 23.3 19.9 41.1 –
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of similar magnitude, but with different sign. Both FODFTB and FODFT calculations
underestimate the electronic coupling for electron and hole transfer, whereas CDFT/0
overestimates it. We found that inclusion of non-local exchange in CDFT calculations
can significantly reduce the electronic couplings and good results are obtained by replac-
ing 50% of GGA exchange with non-local exchange. The opposite trend was reported for
FODFT calculations, where inclusion of non-local exchange lead to an increases Hab.140

The dependence of the electronic coupling in FODFT calculations was attributed to
the exponentially decaying exchange-correlation potential in semi-local functionals (like
PBE), whereas the correct potential had to decay with 1/r in order to cancel the SI. As
a result, these functionals yield too small contributions to the coupling at intermolecular
distances. By varying the amount of exact HF exchange from 0% to 100% the elec-
tronic coupling increases by roughly a factor of two.140 The same underestimation can
be expected using DFTB, since electronic coupling integrals are obtained with the PBE
functional during its parametrization.

As computationally inexpensive alternative to the inclusion of non-local exchange, a
simple scaling of the electronic couplings with a constant method-specific factor was
tested. This also enables an easy correction for DFTB, which otherwise could include
non-local exchange only implicitly via a complete re-parametrization, using a non-local
exchange correlation functional instead of PBE. We found that by scaling the electronic
coupling, relative errors can be reduced by at least a factor of 2.

We found that the performance of FODFT is similarly good for both cations and anions.
When results are scaled by a factor of 1.3, FODFT with PBE is almost as accurate
as the significantly more demanding CDFT/50 method. For FODFTB, larger errors
were found in electron benchmark set compared to the hole benchmark set. This was
attributed to the applied minimal basis set, which is obtained from neutral atomistic
calculations and is therefore probably not sufficiently diffuse for an adequate description
of the LUMO orbitals. However the deviations are systematic and a larger scaling factor
can mitigate the error. After scaling, a similar MRUE for the positively and negatively
charged systems is found, with 14% and 20%, respectively. The number of electrons in
FO calculations has only little impact on the results, and for the studied cases the errors
were even smaller for calculations on the neutral system.

The transferability of this scaling factor was tested on rotated and randomly orientated
dimers for hole and electron transfer. A systematic improvement of the results in any
cases could be observed, which suggest that our findings can be likely generalized to
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larger π-conjugated systems of relevant organic semiconductors. We furthermore ob-
served that FO calculations perform equally well for the randomly oriented dimers as for
the symmetric benchmark set, whereas CDFT calculations showed a deterioration of the
performance. The robustness of the FO methods for arbitrary geometries is a necessary
feature for a method that will be applied along MD simulations.

For practical applications one has to balance the accuracy that is achievable within the
method with the computational efficiency, which allows for more thorough sampling and
investigation of larger systems. Our FODFTB implementation is about six orders of
magnitude faster than FODFT as implemented in CPMD (see figure 3.5 for comparison)
with a sufficiently small error especially if scaling is applied. To put the accuracy of
FODFTB into perspective, we note that a MRUE of 20% leads to an uncertainty of
a factor of 1.4 in the non-adiabatic charge transfer rate (k ∼ |Hab|2, see figure 3.5
bottom). This is similar or even smaller than the uncertainties in the rate resulting
from the DFT calculation of the other quantities that enter the rate expression such as
reorganization energy44,141 and driving force.142 In conclusion, scaled versions of FODFT
or FODFTB are the best choice for large molecules, to obtain fast estimates, and for series
of calculations on different structures.
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Figure 3.5.: Total CPU time for Hab calculations with respect to the system size for selected
methods (top panel) and corresponding relative errors in the ET rate due to the
error in Hab (bottom panel). The latter is shown for the unscaled (dotted line)
and scaled (solid line) variant of the FODFTB and FODFT method calculated
as max[

HSCS−CC2
ab

Hab
; Hab

HSCS−CC2
ab

], where HSCS−CC2
ab is the SCS-CC2 reference value.

Results for ethylene, benzene and naphthalene are for hole transfer, while the
results for anthracene and perylene diimide are for electron transfer.
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CHAPTER 4
Bridge-mediated Couplings

In the last chapter we have seen how we can calculate the direct (through vacuo) coupling
between donor and acceptor. In systems where donor (D) and acceptor (A) are sepa-
rated by a bridge (B), however, super-exchange over the bridge becomes the dominant
contribution to their total electronic coupling TDA. The calculation of bridge-mediated
couplings becomes important e.g. for CT in bimolecular organic crystals143 or charge
recombination in dye sensitized solar cells.144

TDA can be calculated exactly for small systems by fixing the nuclear coordinates at
the configuration where the non-adiabatic D and A energy surfaces cross, diagonalizing
the Hamiltonian of the total system, and extracting TDA as half the energy splitting
between the eigenstates with the most dominant D and A character.145–147 A more
general approach to calculate TDA, which is also applicable when donor and acceptor
are not in resonance, is the partitioning according to Löwdin.148,149 The Schrödinger
equation in an orthogonalized basis takes the form

HC = EC (4.1)

In fragment orbital calculations, as shown in the last chapter, we apply an orthogonalized
basis set consisting of the HOMOs of the donor, acceptor and all intermediate bridge
molecules, respectively. By partitioning the basis into D/A (P) and bridge (Q) subspace,
and reordering eq. 4.1, we can write(

Hpp − E1pp Hpq

Hqp Hqq − E1qq

)(
Cp

Cq

)
= 0 (4.2)

Here, Hpq is a submatrix of H with elements Hij , where i is a basis function in subspace
P and j in subspace Q. After solving one linear equation for Cq and substituting the
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result into the other equation, one can contract the original secular equation 4.1 to an
equivalent secular equation of only the D/A subspace.

Heff
pp Cp = ECp (4.3)

with the effective (contracted) 2× 2 Hamiltonian

Heff
pp = Hpp + Hpq(E1qq −Hqq)

−1Hqp (4.4)

However, the effective Hamiltonian, entering equation 4.3 is itself dependent on the
eigenvalue E and therefore a self-consistent calculation has to be applied. If the states
in subspace P are energetically separated from and weakly coupled to the states in Q,
then the energy E of the tunneling charge carrier will be close to the unperturbed D(A)
energies. As a starting point E is set to the average of the D and A state energies,
and then iteratively converged as the average of the resulting eigenvalues of Heff

pp , until
self-consistency is reached within a defined tolerance. TDA is finally obtained as the
off-diagonal element of Heff

pp , which can be written as150

TDA(E) = HDA +

bridge∑
ij

HDiGij(E)HjA (4.5)

where HDA is the direct electronic coupling matrix element between D and A, HDi (HiA)
is the coupling of the donor (acceptor) to the bridge orbital i, and Gij is an element of
the Green’s function matrix of the bridge G = (E1bb −Hbb)

−1.

Here, we implement this method with the FODFTB framework shown in section 3.2, and
test it against CDFT calculations, where the density of the D-B-A system is constrained
to donor and acceptor. The FODFTB calculations were performed by myself, whereas
the CDFT calculations were conducted by my collaborator Natacha Gillet.

4.1. Studied Systems

Here, we study hole-transfer between equivalent donor and accepter molecules over vari-
ous bridges. Our aim is to measure the influence of barrier height (IP or HOMO energy
difference), and barrier width on the electronic coupling. To this end we consider a group
of D-B-A system built from hetero-cyclopentadienes such as pyrrole, imidazole or furane
shown in figure 4.1. In these systems the type and number of bridging molecule can
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vary, as well as the distance between donor and acceptor. The distance between each
molecule is 3.5 Å (for system 1, 2, 3, 6, 7), 4.5 Å (for system 4), or 5.5 Å (for system
5). The angle between the π-system has obviously a great influence on the electronic
coupling, but in order to facilitate the modeling and to increase the coupling, we choose
parallel stacks of the molecules. For modeling of hole-transfer, the bridge needs to have a
higher energy than the donor and acceptor molecules in order to avoid barrierless charge
transfer to the bridge. This was confirmed by calculation of the ionization potential (IP)
and HOMO energy for each molecule at the DFT level with various functionals and with
DFTB.

Figure 4.1.: Hetero-cyclopentadiene sytems for studying various factors that affect TDA. First
set (system 1, 2, 3): influence of the energetic separation between B and D/A.
Second set (systems 3, 4 and 5): influence of D-A distance. Third set (systems 3,
6, 7): influence of the number of bridging molecule.

4.2. Computational Details

4.2.1. Geometry Optimization

The monomers of all hetero-cyclopentadienes were optimized within the GAMESS com-
putational chemistry software, using the DFT functional B97-D,151 a very fine grid, tight
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convergence, and the triple-ζ basis KTZCPP.152 The energy minimum of the monomers
was confirmed by a subsequent vibrational analysis. The D-B-A systems were constructed
by placing the monomers in a cofacial orientation at the respective distances shown in
figure 4.1.

4.2.2. DFTB Calculations

In the calculations of the bridge-mediated coupling, the block-matrix method described in
section 3.2 was used for the construction of the FO Hamilton matrix at the DFTB2 level
of theory. For the diagonal blocks, the mio-1-1 parameters136,138,139 were used, whereas
a weaker confinement was applied for the parameters of the off-diagonal blocks. For
latter parameters, a confinement radius of 8 a.u. was applied for the wave function and
∞ for the density. The total energy of the monomer calculations was converged within
10−7 a.u.. Only HOMOs were considered on each molecule, which were orthogonalized
according to the method of Löwdin.94 All the other DFTB calculations were performed
with the DFTB+ program153 with the same energy convergence criterion and the mio-1-1
parameters.

4.2.3. CDFT Calculations

CDFT calculations were performed with the deMon2k program using various GGA and
hybrid functionals and the cc-pVTZ basis set. The applied functionals were PBE132 (0%),
TPSS154,155 (0%), B3LYP156 (20%), PBE0157 (25%), PBE50 (50%), BHHLYP158 (50%)
with the different fraction of non-local Hartree-Fock exchange indicated in the brackets.
An SCF energy convergence criterion of 10−8 a.u. was requested for all calculations and
a convergence criterion of 10−4 were requested for CDFT constraint. An adaptive grid
with a tolerance of 10−6 a.u. was used for the numerical integration of the XC energy
and matrix elements of the associated potential. Fixed fine-grid accuracy is also specified
for the Hirshfeld charge analysis.

4.3. Results

The results for all systems are collected in table 4.1. For FODFTB the contribution
of direct through space coupling between D and A to the total electronic coupling TDA
can be distinguished. As expected, this contributions is quite small (<10%) for the
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studied systems and gets negligible at larger distances. In general, CDFT calculations
yield decreasing values for TDA with increasing fraction of exact exchange included in
the functional. This is the same behavior that we already observed in section 3.3.

Table 4.1.: Total electronic coupling TDA (in eV) for systems shown in figure 4.1 with D-A
distance RDA (in Å). For FODFTB also the direct through vacuo coupling HDA is
given.

CDFT FODFTB
sys. RDA PBE TPSS B3LYP PBE0 PBE50 BHHLYP TDA HDA

1 7.0 0.1923 0.1657 0.1480 0.1297 0.0961 0.0957 0.1580 0.0114
2 7.0 0.1742 0.1500 0.1330 0.1154 0.0849 0.0852 0.1700 0.0092
3 7.0 0.1714 0.1509 0.1257 0.1096 0.0777 0.0767 0.0804 0.0079
4 9.0 0.0163 0.0124 0.0088 0.0064 0.0040 0.0044 0.0031 0.0002
5 11.0 0.0004 0.0003 0.0003 0.0002 0.0001 0.0001 0.0001 0.0000
6 10.5 0.1859 0.1523 0.0794 0.0575 0.0251 0.0250 0.0412 0.0003
7 14.0 0.2648 0.2198 0.0712 0.0401 0.0085 0.0085 0.0221 0.0000

Stretching the System

Lets start with the simplest set of systems. Systems 3, 4, and 5 are basically the same
D-B-A complex with exceedingly increased D-A distance, which allows us to describe
the distance dependence of the electronic coupling. All methods give similar results,
which are shown in figure 4.2. As expected, a strong exponential decay can be observed
following TDA ∼ eβRDA with a decay constant β of roughly -1.5 Å−1. This value is in
agreement with the decay constants found in section 3.3.3 for cyclopentadien, considering
the slightly different definition of the decay constant (see eq. 3.7).

Increasing the Length of the Bridge

In a second set of systems (systems 3, 6, 7) we investigate how the decay changes, when
we increase the D-A distance by placing additional bridge molecules in the system. Note
that the nature of D,A, and B molecules and their nearest neighbor distance still remains
the same. Again, an exponential dependence of TDA on the distance can be observed.
However, largely different values for β can be found.

For FODFTB calculations, we find a decrease of TDA with distance, but the decay
constant β is only about 10% the value of the previous set. The weaker decay is expected,
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if we consider that by placing bridge molecules in the gaps we decrease the tunneling
barrier from the vacuum level to the bridge HOMO level in this regions.

For CDFT calculations, the exponential decay of TDA gets weaker with decreasing frac-
tion of non-local exchange in the functional, up to the point where TDA increases with
the length of the bridge. This unexpected behavior might be explained in the context of
fragment orbitals. Strong coupling between the HOMOs of the bridge molecules leads to
an energetic splitting between delocalized bridge orbitals. If this splitting is sufficiently
large, the barrier between D/A and lowest bridge orbital decreases, which counteracts
the decrease of TDA resulting from the increased distance. How well this fragment orbital
consideration carries over to CDFT calculations is uncertain, however.

Changing the Barrier Height

Last we study the set where the bridge molecules are altered in order to change the
tunneling barrier height ∆E. Before turning to the electronic coupling, we first check
what values of ∆E are predicted by each method. The barrier height is defined as

∆E = IB − ID/A (4.6)

where IB and ID/A are the vertical IPs of the B and D/A molecule, respectively. As
can be seen in table 4.2, all DFT calculations agree that the highest barrier is found in
system 1, followed by system 2 and system 3. However, there is a significant deviation
of more than 0.3 eV from barriers that are calculated from the experimental IPs.159

For the last systems no experimental reference is given, because no experimental data
was available for the IP of 1H-pyrrole-2,5-diamine. Compared to DFT, DFTB2 gives a
different ordering for the barrier heights of these systems.

Nevertheless, we compare the resulting TDA of all methods with the respective ∆E in fig-
ure 4.4. Here, we see that the effective Hamiltonian method yields the expected decrease
of TDA with increasing barrier height. In CDFT calculations, on the other hand, slightly
increased values of TDA are obtained with higher barriers. This unphysical behavior
might partly result from our definition of ∆E, which is calculated from the IP of iso-
lated molecules in vacuo, whereas in the complex interactions with neighboring molecules
would affect the IP of the individual molecules. Nevertheless, CDFT calculations seem
to experience serious problems in the description of these systems.
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Figure 4.2.: TDA for increasing D-A distance (system 3, 4, 5). For all methods a similarly
strong exponential decay with increasing distance can be found. The dashed line
serves as a guide to the eye and shows a decay constant of 1.5 Å−1.

Figure 4.3.: Dependence of TDA on the length of the bridge (system 3, 6, 7), which can nicely
be fitted with TDA = C ∗ exp (n ∗RDA) (dashed lines) with the resulting exponent
n (in Å−1) shown in the graph. A weaker decay than in figure 4.2 can be observed,
strongly dependent on the fraction of non-local exchange in the DFT functional.
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Table 4.2.: Tunneling barriers for the systems shown in figure 4.1 calculated as difference be-
tween vertical IPs of B and D/A. Reference values are differences of experimental
IPs (8.88, 8.21, and 8.81 eV of furan, pyrrole and imidazole, respectively).159

Method System
1 2 3–7

PBE 1.161 0.701 0.681
TPSS 0.789 0.693 0.630
B3LYP 1.029 0.700 0.608
PBE0 1.117 0.691 0.600
PBE50 1.071 0.678 0.553
BHHLYP 1.023 0.681 0.536
DFTB2 0.416 0.330 0.652
Reference 0.67 0.60 –

For the same barrier height we find higher couplings for functionals with smaller fraction
of non-local exchange. This shows that different barrier heights are not the cause for the
observed functional dependence of TDA. This is in agreement with the findings in section
3.3, where the same trend was observed for barrier-less transport between donor and
acceptor molecules. In ref. 115 the decreasing CDFT coupling with increasing fraction
of non-local exchange was attributed to more confined spin densities and thus smaller
overlap between the localized states.

4.4. Discussion and Conclusion

In conclusion we find that the dependence of TDA on the conformational changes of
the systems is quite well reproduced within all methods. Here, we only investigated an
increase of the D/A distance, whereas in further studies also other changes in the relative
orientation of D,A and B have to be investigated. Nevertheless, these first results are
promising for the application of FODFTB for the sampling of TDA in different molecular
conformations along MD simulations.

In contrast, the effect on TDA resulting from molecular changes of the system, like in-
crease of the bridge length or altering the bridging molecules, is difficult to predict. One
problem that arises in this context is the precise prediction of the tunneling barrier height.
Due to approximations in the exchange-correlation potential of presently available DFT
functionals, the relative energy levels of D,B, and A are not always well reproduced,
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Figure 4.4.: TDA for different bridging molecules (system 1, 2, 3) and thus barrier heights.
The expected decrease of TDA with increasing barrier height is only found with
the effective Hamiltonian DFTB method, whereas in CDFT calculations even a
slight increase can be observed.

which obviously affects the resulting TDA. With an effective FO Hamiltonian approach,
however, it is possible to correct the erroneous energy landscape, as we have discussed
in ref. 173 in detail. This is achieved by calculating site energies accurately at a high
level of theory in order to obtain reliable reference values. The erroneous site energies
can then be corrected by applying a constant shift during the TDA calculation.
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CHAPTER 5
Advancements in Coupled

Electron Ion Dynamics

Reproduced in part with permission from
A. Heck, J. Kranz, T. Kubař and M. Elstner, J. Chem. Theory

Comput., 2015, 11, 5068–5082.
c© 2015 American Chemical Society.

Our goal is to derive an approximate simulation technique that is efficient while still
making use of essential atomistic information. After revealing the shortcomings of the
conventional coupled electron ion dynamics (CEID) method (see section 2.3.3) in section
5.1, we derive in the same spirit a total energy expression of the system, which allows
to make use of established time-propagation schemes. Since a time-dependent QM de-
scription of a realistic system consisting of more than 1000 atoms is too costly, several
approximations are needed, which can be summarized as follows:

• First (section 5.2), we restrict the dynamic evolution of the electron density to
certain parts of the electronic system, considering the remainder as electronically
frozen. On the one hand, we divide the system into two regions: a quantum
mechanical (QM) region, where the charge carrier is located, and the remainder
of the system, which is described by a classical force field (molecular mechanics:
MM), i.e. we introduce the common QM/MM separation. However, we further
simplify the description of the charge carrier by considering only several frontier
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orbitals around the Fermi level, e.g. highest occupied molecular orbitals (HOMOs)
in case of hole transfer and lowest unoccupied molecular orbitals (LUMOs) in case
of electron transfer, whereas strongly bound core states are approximated to stay
unaffected in the charged system.109 The wave function |Ψ〉 describing the state
of the charge carrier is then expressed as a linear combination of these orbitals.
Therefore, we go beyond the standard QM/MM separation, freezing not only states
that are spatially, but also states that are energetically well separated from the
orbitals that are relevant for charge transport.

• Second (section 5.2.1), we partition the system via a fragment orbital (FO) formal-
ism, which leads to a linear scaling with the system size. In molecular semiconduc-
tors, this partitioning refers to the molecular building blocks naturally. Therefore,
the QM region is dissected into N QM regions (fragments) containing one organic
molecule each. For every fragment, a quantum chemical calculation is performed,
and the orbitals |φm〉 at each molecular fragment are used to build the wave func-
tion |Ψ〉 of the charge carrier. As will be discussed below, several HOMO or LUMO
orbitals per molecule can be included for the representation of |Ψ〉.

• Third (section 5.2.2), we use an approximate DFT method for the QM calculations
on the fragments, the density functional tight-binding (DFTB) method. This is a
method derived from DFT, which is roughly 2-3 orders of magnitude faster than
DFT with medium sized basis sets and thus accelerates the simulations significantly.

• Fourth, to derive coupled equations of motion for the electronic (section 5.3) and nu-
clear (section 5.4) subsystems, we apply the standard mean-field (Ehrenfest) prop-
agation techniques. This allows a classical propagation of the nuclei combined with
a propagation of the time dependent Schrödinger equation for the hole/electron
wave function.

5.1. Influence of Self-Interaction on the Charge Evolution

In our model we describe the molecular organic semiconductors in a basis of charge
localized diabatic states, where each state describes the charge carrier residing on one
molecule. However, by propagating the charge we go beyond a hopping description and
allow the excess charge to delocalize in a linear combination of these states, which leads
to partial charged molecules. In section 2.1.3 we have seen how partial charged systems
get stabilized by the self-interaction. Ultimately, however, we are not interested in the
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total energy but rather the charge carrier dynamics. To this end, we will study the time
evolution of the charge carrier in a simple model system. Our model consists of two
sites A and B without any electron-phonon coupling. First, we use a charge-independent
Hamilton matrix as self-interaction-free reference

H = H0 =

(
εA J

J εB

)
(5.1)

where the matrix elements represent 〈ΨA|Ĥ|ΨB〉 with Ĥ being the exact Hamiltonian
shown in eq. 2.2 and |ΨA〉 as well as |ΨB〉 are charge-localized diabatic states as in eq.
2.65. We choose for the site energies εA = εB = 0 and for the electronic coupling J = 50
meV, which is a reasonable value for π-stacked molecules.

Propagation of an initially localized wave function with this Hamiltonian leads to the
expected time evolution shown in the top panel of figure 5.1. Since we do not start in an
eigenvector of H0, an oscillation of the wavefunction can be observed, where the charge
gets completely transferred between site A and B with a frequency of about 40 fs.

In previous applications to biomolecules109,110 the QM energy term from eq. 2.104 was
used with additional charge dependent contributions

E+
QM = −

∑
AB

c∗AcBH
0
AB +

1

2

∑
AB

|cA|2|cB|2ΓAB (5.2)

which leads to a charge dependent Hamiltonian

HAB = −H0
AB + δAB

∑
K=A,B

(ΓAK)∆QK (5.3)

where ΓAA is a molecular Hubbard parameter, describing charge dependent relaxation
effects, ΓAB describes electrostatic interactions between the charged sites with 1/RAB,
∆QK is the occupation of site K, and δAB is the Kronecker delta. We consider the
same H0 as in eq 5.1, set ΓAB = 4.0 eV/e2, representing the electrostatic repulsion of
partial charges in 3.5 Å distance, and take a molecular Hubbard parameter of ΓAA = 5.4
eV/e2, which is a reasonable value for medium sized π-systems. When this Hamiltonian
is used for the propagation, the charge transfer is completely suppressed, and the initial
wave function stays localized at its initial site. It was pointed out that the introduction
of charge dependent terms to achieve a self-consistent Hamiltonian has effects similar
to the SI in DFT, leading to over-delocalization and erroneous dissociation behavior.68
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Figure 5.1.: Time evolution of the occupation of the acceptor in a two-site system. Without
artificial stabilization of the delocalized state (top panel) the occupation oscillates
between donor and acceptor. With a Hamiltonian where the charge-dependent
terms are reduced to 20%, like in eq. 5.3, only little charge gets transfered (second
panel). The threshold where complete charge transfer gets possible is when the
charge-dependent terms are further reduced such that the artificial stabilization
of the delocalized charge is 1 meV larger (third panel) or smaller (bottom panel)
than the coupling J . The transfer is nevertheless hindered in both cases.

Therefore, this example is to some extent also showing the problems one might encounter
with SI-prone methods in general. It was proposed to scale the second terms in eq 5.3 with
a factor of 0.2 in order to mitigate the SI of the additional charge carrier.109 However,
even with the scaled second order terms only a small fraction of charge gets transferred
to the acceptor as can be seen in the second panel of figure 5.1.

Following the work of Irle et al. we will quantify the artificial stabilization.68 Minor
differences are that the QM energy of the cationic system is calculated relative to the
neutral MM reference system and spin polarization is ignored in our QM/MM framework.
The general findings are, however, the same. Like above we consider a symmetric dimer
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and calculate the site energy of a monomer in different charge states.

E(A) = 0 (5.4)

E(A+) = −εA + 1
2γAA (5.5)

E(A+0.5) = −1
2εA + 1

2 × 0.5× 0.5× γAA = −1
2εA + 1

8γAA (5.6)

where E(A), E(A+), E(A+0.5) are the energies of the molecule with a net charge of zero,
one, and one half, respectively. The delocalization energy (Edel), that is, the stabilization
of the delocalized solution compared to the localized one, is at infinite distance given as:

Edel(R =∞) = 2E(A+0.5)− (E(A) + E(A+)) = −1

4
γAA (5.7)

While the delocalization error is the largest at infinite distance, a spurious stabilization of
the delocalized solution can be expected at all distances. At shorter distances, however,
additional contributions to the delocalization energy emerge. For fragments at vdW
distance and beyond, the electronic coupling is small, and the interaction between the
two fragments is dominated by Coulomb interactions. This causes an additional charge
repulsion term for the delocalized solution

Ecoul = 0.5× 0.5× γAB(RAB) (5.8)

which is positive for all separation distances RAB of the monomers and therefore coun-
teracts the delocalization. The delocalization energy due to the self-interacting charge is
therefore

Edel(RAB) = 2E(A+0.5)− E(A)− E(A+) + Ecoul = −1

4
(γAA − γAB) (5.9)

After quantifying the artificial stabilization we want to see what happens for |J | > |Edel|
and |J | < |Edel|. As long as the delocalization energy is larger than the coupling, the
charge never gets completely transferred to the acceptor, as can be seen in the third panel
of figure 5.1. For the case where the coupling is larger than the delocalization energy,
there is an oscillation between site A and B, however, the transfer is hindered significantly
compared to the SI-free propagation shown in the first panel. The qualitatively different
dynamics for Edel > J and Edel < J further confirms the delocalization energy as the
cause of the unphysical dynamics.

Note that the fluctuation of site energies, caused by electron-phonon coupling, will ob-
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scure the erroneous dynamics. In aqueous environments, the polarization of the environ-
ment leads to site energy differences of more than 1 eV,109,110,160,161 which completely
overrules the effect of the SI error. In organic semiconductors, however, the site en-
ergy differences are significantly smaller. Therefore, simulations of anthracene with the
charge-dependent Hamiltonian lead to the described trapping of the charge carrier on a
single site.

5.2. Self-Interaction-Free Total Energy Expression of the
Charged System

Since the SI leads to erroneous charge dynamics, we will set up a SI-free total energy
expression, from which we can derive equations of motions for the excess charge and the
nuclei. The starting point is the DFT energy of the charged system where environmental
effects are included via classical force field terms.

E+ = EDFT [ρ] + EMM + EQM/MM (5.10)

Here, ρ is the density of the QM zone including the hole charge carrier, and EQM/MM is
its electrostatic coupling to the neutral MM environment EMM .

According to Janak’s theorem, EDFT [ρ] of a cationic system can be divided into the
energy of the neutral QM zone with density ρ0 and the negative of its HOMO energy.

E+ = EDFT [ρ0]− 〈Ψ0|H[ρ0]|Ψ0〉+ EMM + EQM/MM (5.11)

Note that the calculation of a charged system with an odd electron number is avoided
also, this way. For such cases, it is known that the SI error of DFT has tremendous in-
fluence on the localization of the charge.67 In principle, there are three factors that may
reduce the SI error: a high relaxation energy, a short distance between the fragments,
and asymmetric fragment energies.67 However, the opposite is the case in organic semi-
conductors regarding all factors. Note that anionic systems would be treated analogously
by adding the LUMO energy in eq 5.11. For clarity, we will restrict ourself to the cationic
case in this work.

Next, also EDFT [ρ0] will be approximated with the MM force field, which reduces the
complexity dramatically and enables to combine the energy of the neutral QM zone with
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that of the environment

EDFT [ρ0] + EMM + EQM/MM ≈ EtotMM + ∆EQM/MM (5.12)

where EtotMM is the force field energy of the whole neutral system including all atoms of
the MM as well as QM region, and ∆EQM/MM is the change of QM/MM interaction
relative to the neutral system. Note that this approximation may even be superior to
the original expression in eq 5.11, since it ensures that unoccupied molecules inside the
QM region experience the same potential energy surface as the molecules of the classical
environment. For example, the unit cell of molecular crystals might have a slightly
different geometry when calculated with QM or MM methods. Therefore, treating equal
molecules at different levels of theory, depending on their classification as QM or MM,
could compromise the translational symmetry of the crystal.

5.2.1. Fragmentation of the System

In the following, we make use of the morphology of organic semiconductors, which consist
of weakly bound molecules. In contrast to Bloch waves of inorganic crystalline semicon-
ductors, organic bulk materials preserve the underlying molecular electronic structure to
a large extent (see Figure 5.2). This allows a coarse graining of the electronic structure
of the complex by expressing the total density as a superposition of molecular densities,
and expanding the hole wavefunction as a linear combination of molecular orbitals |φm〉
on fragment molecules A.

|Ψ0〉 =
∑
A

∑
m∈A

am |φm〉 (5.13)

ρ0 =
∑
A

ρ0A (5.14)

The orbitals and densities of the fragments can be obtained in independent calculations
leading to linear scaling and parallelizability. Inserting eq 5.12 and 5.13 into 5.11 we
obtain the total energy expressed in a fragment orbital basis

E+ ≈ EtotMM −
∑
AB

∑
m∈A

∑
n∈B

a∗man 〈φm|H[ρ0]|φn〉+ ∆EQM/MM (5.15)

85



Chapter 5. Advancements in Coupled Electron Ion Dynamics

Whenever needed, the representation in the atomic orbital basis is available via the
expansion of FOs in AOs

|φm〉 =
∑
µ

cmµ |µ〉 (5.16)

leading to
E+ ≈ EtotMM −

∑
µν

b∗µbν 〈µ|H[ρ0]|ν〉+ ∆EQM/MM (5.17)

with bµ =
∑

A

∑
m∈A amc

m
µ . However, the FO description gives access to corrections of

the QM method. On the one hand, the off-diagonal elements can be scaled, as suggested
in section 3.3.5, in order to compensate for missing non-local exchange. On the other
hand, the FO representation allows to correct the relative site energies by applying a
shift to the FO diagonal elements.

Figure 5.2.: Highest occupied molecular orbitals obtained at the PBE/def2-SVP level during a
molecular dynamic simulation. The MOs of the complex are linear combination of
MOs of the individual molecules.

In many cases, the HOMO of the system |Ψ0〉 is already well described by a linear
combination of the HOMO of each fragment. Additional FOs can be included in cases
where lower lying orbitals have similar energy. The construction of coarse grained FO
basis functions shows some analogies to contracted basis sets like GTOs. Whereas several
Gaussians are contracted to yield a suitable atomic basis function, in our case, several
AOs are contracted into an FO basis function that can properly describe a hole on this
fragment. The dimension of the Hamilton matrix in this coarse grained representation
is significantly reduced compared to a full AO basis, while it is still able to describe
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the hole wavefunction accurately. While FOs on the same fragment are orthogonal by
construction, there is a small overlap between FOs on different fragments. To facilitate
further calculations, the included FOs are orthogonalized at every step with the Löwdin
method.94 In this work, fragment orbitals |φm〉 and their FO coefficients cmµ will denote
the respective quantities after the orthogonalization procedure, whereas a prime will be
added to denote their non-orthogonalized counterparts.

5.2.2. Approximations in the Quantum Calculations

In a next step, the matrix elements 〈µ|H|ν〉 in eq 5.17 have to be computed with a
quantum chemical method, which can be HF, DFT or a semi-empirical one. For simu-
lations over several picoseconds and meaningful statistical sampling, DFT calculations
are prohibitively slow, and greater efficiency is needed. Recent tests have shown that
semi-empirical methods are able to compute such matrix elements in DNA with a very
good accuracy, comparable to HF and DFT.118,162 Furthermore, in chapter 3 we have
proven the applicability of DFTB for the calculation of electronic couplings in a wide
range of organic π-conjugated molecules, explicitly.

For this reason, we use the approximate DFT method DFTB described in section 2.1.2,
which provides an additional speed up of three orders of magnitude compared to DFT-
GGA calculations.56,163

By equating 〈µ|H[ρ0]|ν〉 = HDFTB
µν we obtain e.g. within the DFTB2 formalism (see

section 2.1.2)

HDFTB
µν = H0

µν +
1

2
Sµν

∑
ξ

∆qξ (γαξ + γβξ) (5.18)

H0
µν are DFTB1 Hamilton matrix elements between atom α and β, where the neutral

atomic densities are used in the effective Kohn-Sham potential. The γ functions are
introduced in DFTB2 and describe how deviations from the reference density (expressed
as Mulliken charge differences ∆qξ on atom ξ) affect the total energy. The charge-
dependent terms require a self-consistent solution, which is beneficial for polar systems
with a sizeable charge transfer between the atoms. For non-polar molecules like the
organic molecules studied in this work, the charge-density fluctuations are negligible, i.e.
the DFTB1 approach gives nearly identical results to DFTB2, as discussed in detail in
ref. 164. At the same time, the self-consistent solution due to the charge dependence
in DFTB2 requires about ten times more computation time than the non-self-consistent
DFTB1 scheme. Therefore, we limit our calculations in this work to DFTB1 due to
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the non-polar character of the investigated molecules, gaining an additional order of
magnitude in speed.

For long-range interactions, the density is represented in DFTB as atomic point charges,
which leads to the following QM/MM term:

∆EQM/MM =
∑
A

∑
m∈A
|am|2

∑
K

∑
α∈A

(
∆qmα q

0
K

|Rα −RK |

)
(5.19)

where q0K is the force-field partial charge on atom K of the neutral environment, and
∆qmα = 1

2

∑
µ

∑
ν∈α(cm∗µ cmν Sµν + cm∗ν cmµ Sνµ) is the change of Mulliken charge on atom α

resulting from a hole residing in orbital m.

By applying the variational principle, we obtain an additional term in our Hamiltonian

HQM/MM
µν =

1

2
Sαβµν (ϕα + ϕβ) (5.20)

where µ is located on atom α, ν is on atom β. The electrostatic potential on the position
of atom α is given as

ϕα =
∑
K

q0K
RαK

(5.21)

where RαK is short for |Rα − RK |. This potential can be obtained from summation
in real-space or for periodic systems the calculation of long-range electrostatic can be
performed with the particle-mesh Ewald method, which is already implemented in MD
programs like Gromacs.165,166

5.3. Propagation of Electronic Degrees of Freedom

With the total energy expression at hand, equations of motions for atoms and elec-
trons can be derived in the framework of time-dependent DFT. Similarly to previous
work,109,110 we apply the Lagrangian formalism:

L = T − V (5.22)

T =
∑

K
1
2mKṘ

2
K + 〈Ψ| − i ∂∂t |Ψ〉 (5.23)

V = EtotMM − 〈Ψ|H[ρ0]|Ψ〉+ ∆EQM/MM (5.24)
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The Lagrangian in FO basis reads

L =
∑
K

1

2
mKṘ

2
K − i

∑
mn

[
a∗man 〈φm|φ̇n〉+ a∗mȧn 〈φm|φn〉

]
(5.25)

−EtotMM +
∑
mn

a∗man 〈φm|H[ρ0]|φn〉 −
∑
m

|am|2
∆qmα q

0
K

RαK
(5.26)

Using the Lagrangian equation for the electronic degrees of freedom

∂L

∂a∗m
− d

dt
∂L

∂ȧ∗m
= 0 (5.27)

where
∂L

∂ȧ∗m
= 0 (5.28)

we arrive at

∂L

∂a∗m
= −i

∑
n

[
an 〈φm|φ̇n〉+ ȧn 〈φm|φn〉

]
+
∑
n

an

[
〈φm|H[ρ0]|φn〉 − δmn

∑
α

∑
K

δqmα q
0
K

RαK

]
(5.29)

Since we are using an orthogonal basis (〈φm|φn〉 = δmn) we arrive at

ȧm = −i
∑
n

Hmnan −
∑
n

an 〈φm|φ̇n〉 (5.30)

where Hmn are the matrix elements of the FO Hamiltonian from eq 3.2, incorporating
QM/MM interactions. The last term in eq 5.30 vanishes if a spatially fixed orthogonal
basis (e.g. plane waves) is used. In an atom-centred basis set, however, additional
terms arise from the time dependent origin of the basis functions.167 By writing 〈φm|φ̇n〉
as 〈φm| ∂∂R |φn〉

∂R
∂t , it becomes clear that the coupling gets important for high-velocity

collisions and atoms that are close to each other, but it vanishes for sites that are far apart
and at low temperature. As a first approximations, these terms are therefore omitted in
the propagation according to 5.30.

However, the coupling terms 〈φm|φ̇n〉 give also rise to transitions between orbitals on
the same molecule, whose impact we will examine in section 6.7. In general, if the non-
adiabatic coupling between |φm〉 and |φn〉 is small while they are energetically crossing,
the charge carrier will follow its initial state through the crossing region and end up in
the excited state. If, on the other hand, the coupling is large, the charge carrier will stay
in the ground state all the time. To evaluate the influence of the non-adiabatic coupling
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between the degenerate FOs, we apply two different approaches in the simulation of HBC.
(1) We take no special care in the expansion of the charge carrier wavefunction when the
(nearly) degenerate FO basis functions of one molecule cross. A charge carrier residing
in the highest FO will therefore remain in the highest FO after a crossing event, which
corresponds to the limit of a large non-adiabatic coupling. (2) After the propagation
t1 → t2 performed in the basis at t1, we project the obtained wavefunction |Ψ(t2)〉t1 onto
the new basis at t2.

|Ψ(t2)〉t2 =
∑
m

|φm(t2)〉 〈φm(t2)|Ψ(t2)t1〉 =
∑
mn

an |φm(t2)〉 〈φm(t2)|φn(t1)〉 (5.31)

This way, the charge carrier is forced by projection to the orbital with the same char-
acter, which corresponds to the limit of zero non-adiabatic coupling. We approximate
〈φm(t2)|φn(t1)〉 by calculating 〈φ′m(t2)|φ′n(t1)〉 on each site in the non-orthogonal ba-
sis.∗ Note that a projection would only be norm-conserving with a complete basis set.
Therefore the wavefunction has to be renormalized after the projection.

5.4. Propagation of Nuclear Degrees of Freedom

The Lagrange equation for the nuclear degrees of freedom is given by

d
dt

∂L

∂Ṙk
=

∂L

∂Rk
(5.32)

which yields

mKR̈k = −
∂EtotMM

∂Rk
+
∑
mn

a∗man
∂

∂Rk
〈φm|H[ρ0]|φn〉 −

∂

∂Rk
∆EQM/MM (5.33)

where k denotes x, y, z of atomK. The first term originates from the force field and would
be the only contribution in a standard molecular dynamic simulation (MD) of a neutral
system. The sum contains the diagonal and off-diagonal elements of the coarse grained
Hamiltonian. The derivatives of diagonal elements with respect to atomic coordinates
are related to the internal relaxation of a single fragment. The derivatives of intermolec-
ular electronic couplings yield the forces resulting from bonding and anti-bonding linear
combinations of FOs; terms that are missing in a localized hopping description of the

∗During a 100 fs simulation of a dimer of HBC, which is studied in chapter 6, the largest difference in
these matrix elements was as small as 7.3× 10−3 and the RMSD was only 1.2× 10−5.
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charge dynamics. The last term covers the interaction of the charge carrier with the MM
environment and is related to the external (outer-sphere) reorganization energy.

By expanding the FOs in AOs
|φm〉 =

∑
µ

cmµ |µ〉 (5.34)

and by approximating H[ρ0] with the DFTB1 Hamiltonian, we obtain for the second
term on the right hand side of eq 5.33

∑
mn

a∗man
∂

∂Rk
〈φm|H[ρ0]|φn〉 =

∑
mn

∑
µν

a∗manc
m
µ c

n
ν

∂H0
µν

∂Rk
(5.35)

with ∂H0
µν

∂R = 〈 ∂µ∂R |H|ν〉 + 〈µ|∂H∂R |ν〉 + 〈µ|H| ∂ν∂R〉 being the derivative of the tabulated
DFTB1 matrix elements.

However, the FOs are not only explicitly dependent on R via |µ〉. The displacement of
an atom is also accompanied by a change of the expansion coefficients cmµ in order to
restore the norm of the FO φm. In order to obtain correct forces, it is therefore necessary
that the change of the total energy with respect to all quantities depends on the atomic
coordinates explicitly as well as implicitly.168,169

The change in overlap between two AOs is the largest for neighboring atoms of the same
fragment, whereas atoms located on different fragments have significant smaller overlap
due to its exponential decay. Following this reasoning, the implicit dependence on R is
only considered in the diagonal elements of the coarse grained Hamiltonian.

∂

∂Rk
〈φm|H[ρ0]|φm〉 =

∑
µν

cmµ c
m
ν

∂H0
µν

∂Rk
+
∑
µν

(
∂cmµ
∂Rk

H0
µνc

m
ν + cmµ H

0
µν

∂cmν
∂Rk

)
(5.36)

Here, the first term is the derivative of quantities explicitly dependent on R, which was
already present in eq 5.35, whereas the second term captures the additional change of
cmµ that is necessary to conserve the norm.

Since the FOs are (orthogonalized) eigenfunctions of the respective fragment, we approx-
imate ∑

µ

H0
µνc

m
ν ≈ εm

∑
µ

Sµνc
m
ν (5.37)
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which transforms the second sum of eq 5.36 into

∑
µν

εmSµν
∂(cmµ c

m
ν )

∂Rk
= εm

∂

∂Rk

(∑
µν

Sµνc
m
µ c

m
ν

)
− εm

∑
µν

cmµ c
m
ν

∂Sµν
∂Rk

(5.38)

Now, we can demand that the norm of the FO does not change

∂

∂Rk
〈φm|φm〉 =

∂

∂Rk

(∑
µν

Sµνc
m
µ c

m
ν

)
= 0 (5.39)

which eliminates the first term on the right hand side of eq 5.38. With this, we get for
the diagonal terms of eq 5.36

∂

∂Rk
〈φm|H[ρ0]|φm〉 =

∑
µν

cmµ c
m
ν

(
∂H0

µν

∂Rk
− εm

∂Sµν
∂Rk

)
(5.40)

Within the DFTB1 method, this is equivalent to ∂(E0−E+)
∂R , where E is the total energy of

one fragment molecule in the neutral state and with the charge in orbital φm, respectively,
within the frozen orbital approximation.

For a practical evaluation of the QM/MM coupling term of eq 5.33

∂

∂Rk
∆EQM/MM =

∂

∂Rk

∑
αA

∆qαq
0
A

|Rα −RA|
(5.41)

the instantaneous Mulliken charges of the hole wavefunction ∆qα are added to the force
field, which then handles the calculation of forces. The total force expression for the
complex is therefore

mKR̈k = −
∂EtotMM (q0A,∆qα)

∂Rk
+
∑
mn

∑
µν

a∗manc
m
µ c

n
ν

(
∂H0

µν

∂Rk
− δmnεm

∂Sµν
∂Rk

)
(5.42)

where EtotMM (q0A,∆qα) denotes the force field energy of the total system with adapted
partial charges.
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5.5. Outlook: Electronic Polarization

In our method, the polarization of the neutral sites by the point charges of the environ-
ment are considered via the QM/MM coupling terms. Since we add the excess charge to
the force field we also capture the slow polarization of the environment originating from
the reorientation of the atomic point charges. The instantaneous electronic polarization
of the environment, however, is missing as long as non-polarizable force fields are applied.
Application of a polarizable force field and considering not only the atomic point charges
but also the polarizable dipoles in the QM/MM coupling terms could therefore be a next
step in the improvement of the accuracy of CEID simulations.

Furthermore, the FO basis that we obtain within our method can also be seen as ap-
proximation to a basis of diabatic states, as described in section 2.2. These diabatic
states, represented by a (N ± 1) electron wave function with the excess charge localized
on a single molecule, can be obtained with CDFT calculations (see section 2.2.2).170

By taking the excess charge explicitly into account in CDFT calculations of the coarse-
grained Hamilton matrix elements, the effect of electronic relaxation on the site energies
can be captured. However, describing the whole complex with CDFT is computation-
ally too expensive for reasonable system sizes. Furthermore, CDFT calculations are
computationally less stable than FO calculations and therefore difficult to apply along
MD simulations in a black-box manner. Besides that, the constraint will place the ex-
cess charge always in the HOMO/LUMO of the respective molecule, whereas in cases
of (nearly) degenerate orbitals there are several states close in energy that are equally
important for the transport (see also section 6.9).

A better suited method for capturing the shift of site energies due to electronic polariza-
tion is the recently proposed quantum patch approach.32,171 Here, electronic relaxation
is achieved in independent molecular calculation similar to our FO procedure. In order
to capture the effect of electronic polarization on site i, molecule i has to be charged and
self-consistency is obtained by relaxing the density of every molecule of the complex in
the electric field of its neighbors. The same procedure has to be repeated for every site
in order to get its site energy including electronic polarization effects. Since the molec-
ular densities are relaxed stepwise in individual molecular calculations, linear scaling is
achieved.

However, as long as all sites have (nearly) the same environment, like in most of the crys-
tal and liquid crystal studied in this work, the stabilization due to electronic polarization
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is only a constant shift to the site energies, which can therefore be omitted. In amorphous
materials, on the other hand, the sites have environments with different polarizabilities
and their site energies will consequently experience different stabilizations.

5.6. Discussion

In the development of quantum chemical approaches one strives to balance the compu-
tational speed and the accuracy required for the specific application. Here, we focused
on a fragment orbital approach in combination with a QM/MM algorithm. This has a
computational advantage but also one connected with accuracy:

First, the fragmentation allows for an independent calculation of the molecular subsys-
tems. This leads to a linear-scaling (O(N)) computational scheme, where the computer
time increases linearly with system size. There is no threshold in system size for the
efficiency gain, since no larger systems than the monomers have to be considered, in
contrast to other O(N) schemes, where dimers/trimers or larger buffer regions have to
be computed, depending on the particular implementation. This is obviously due to the
combination with a force field and the particular constitution of the systems treated here,
where no covalent bonds are dissected upon the fragmentation of the system.

Equally important is the aspect of accuracy, which is also enhanced by this approxi-
mation. There are two problems to be considered when using an approximate method
like DFT or HF approaches with small (minimal) basis sets. One is connected to the
basis set issue, and the other is related to the inherent limitations of mean field elec-
tronic structure calculations. An efficient way to deal with a minimal basis was shown
in section 3.2, where two different basis sets are combined in the block matrix form of
the FODFTB Hamiltonian. This approach was proven to yield couplings comparable to
triple-ζ DFT calculations in chapter 3 if an appropriate correction factor is applied. The
FO scheme also allows to correct the methodology for the SI error, which shows up in
the total energy and the coarse-grained matrix elements:

a) SI occurred in the total energy of the original CEID method shown in section 2.3.3
as second order energy term, which depends on the square of the charge density. The
self-interaction hinders the dynamics of the charge carrier, as shown in section 5.1. In an
uncorrected scheme, SI leads additionally to an over-delocalization of the charge carrier
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over the different fragments. The SI-corrected total energy in eq 5.11 has the QM con-
tribution 〈Ψ|H[ρ0]|Ψ〉. This term is a simple tight-binding Hamiltonian, which depends
only linearly on the electron density. This implies, that this energy contribution exhibits
the desired ’straight-line’ behavior when computing the charge dependent energies,172

i.e. it is SI-free.

b) Furthermore, the SI-error is also present in the calculations of the CT parameters i.e.
the FO matrix elements:

• On the one hand, HOMO and LUMO orbital energies εm = Hmm show large devia-
tions from the respective IP and EA values. These errors are not systematic, i.e. a
different error occurs for a different chemical species. This does not pose a problem
for the homogeneous materials studied in this work, but if different molecular sites
are present like in the simulation of donor acceptor interfaces or doped materi-
als, then a correct reproduction of relative energies becomes crucial. A correction
scheme has been discussed in detail in ref. 173, where the relative site energies
have to be calculated only once at a high level of theory to obtain the reliable
reference values. During the Ehrenfest simulation the erroneous site energies can
then be corrected by applying a constant shift. In the coarse grained description, it
is therefore straightforward to correct collectively several shortcomings of the QM
method that lead to wrong relative energies, whereas this is not possible in AO
methods.

• On the other hand, the SI (more precisely non-exact exchange correlation) leads
to a systematic underestimation of fragment orbital couplings J = Hmn,140 as we
already discussed in section 3.4. In chapter 3, it has been shown that the deviation
is systematic and that the intermolecular DFTB coupling can be corrected with a
universal scaling factor of 1.540 for holes115 and 1.795 for electrons.116 The same
correction factors for the intermolecular coupling elements are applied throughout
this work.

Therefore, the FO scheme not only accelerates the computations significantly, it allows
also to improve the accuracy in a simple way by correcting (i) for basis set effects (ii) for
SI at the FO total energy level and (iii) constructing a very accurate FO Hamiltonian
Hmn, where the site energies εm = Hmm are corrected to reproduce IP/AE differences,
and the electronic couplings Hmn(m 6= n) are corrected by scaling.115,116

The method includes local and non-local electron-phonon couplings explicitly via coupled
equations of motion for the charge carrier and the nuclear degrees of freedom. We
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therefore expect that such a bottom-up approach can complement experimental efforts
in the understanding of the complex interplay between molecular structure and charge
transport characteristics, and that it will become a valuable tool in the rational design
of OSC with improved charge transport properties. The method is expected to show
its strengths for materials where a crossover of mechanisms is expected, because it does
not rely on a specific mechanism. For the description of totally disordered amorphous
materials, hopping models are definitely better suited, because simulation time scales
have to be very long due to their very low mobilities and the localized character of the
charge carrier. Pure crystals, on the other side, can be treated with model approaches
parametrized from DFT in most cases, due to their high periodic order. Therefore, they
are also not the main application area of this multi-scale approach. Definitely interesting
are materials with morphologies that are in between totally ordered and disordered, where
the excess charge gets partially localized by fluctuations, which may require a dynamic
approach.
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CHAPTER 6
Evaluation of Coupled Electron

Ion Dynamics on Anthracene and
HBC

Reproduced in part with permission from
A. Heck, J. Kranz, T. Kubař and M. Elstner, J. Chem. Theory

Comput., 2015, 11, 5068–5082.
c© 2015 American Chemical Society.

For the evaluation of the method we need a test system that is experimentally well-
defined. Uncertainties, like the concentration and depth of trap states that result from
impurities and defects, would make a comparison between experiment and simulation
very difficult.15 We will therefore apply CEID to an anthracene single crystal, which can
be obtained at very high purity.174 Experimental data for the anisotropic mobility along
different crystallographic axes (see figure 6.1) is available and can be compared with our
simulations.111

For wide-range applications, single crystals are not very well suited. Their major draw-
backs are both the cost and time-effort associated with the growth of sufficiently large
single crystals. Promising materials are liquid crystals since they obtain self-assembling
and self-healing properties.175 A second system for the testing of CEID is therefore a liq-
uid crystal of hexabenzocoronene (HBC) with racemic branched (3,7-dimethyloctanyl)
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side-chains (HBC-LC).7 This molecule features an interesting electronic structure with
degenerate frontier orbitals and gives rise to more disordered morphologies, showing 1-
dimensional transport.

Figure 6.1.: Crystal structure of anthracene (top) and HBC-LC (bottom), where monomers
(black/red) stack with a mutual twist of 30◦ around the columnar axis.

6.1. Simulation Setup

The anthracene single crystal was modeled as a super-cell consisting of 20×20×20 unit
cells, each containing two molecules amounting to a total of 8000 molecules. The initial
coordinates of a unit cell were obtained from the herringbone crystal structure known
from experiment.176 The atomic partial charges were fitted according to the RESP proto-
col.177 All MD simulations of anthracene in this chapter were performed at a temperature
of 300 K.

The HBC liquid crystal was modeled as 9 columns arranged in a hexagonal lattice, each
consisting of 110 molecules. The molecules were stacked with a twist of 30◦, and a
random configuration at the stereogenic centers of the side chains was used. Extracting
partial charges according to the RESP protocol was not possible with the antechamber
tool-kit,178 due to technical problems caused by the molecular structure of HBC. For this

98



6.2. Evaluation of Site Energies

reason, Mulliken-charges were derived with DFTB and corrected according to the CM3
method.179 HBC was simulated in its liquid crystalline phase at 400 K.

In both systems bonded and vdW interactions were modeled with the GAFF69 force field
parameters. Periodic boundary conditions with particle-mesh Ewald180 electrostatics
were used in all simulations. The temperature and pressure equilibration of the neutral
systems was performed with the Berendsen73 scheme and lasted for several nanoseconds
in both cases. During the production runs, the Parrinello-Rahman76,77 barostat and the
Nosé-Hoover74,75 thermostat were used to yield a correct canonical ensemble at 1 bar and
the respective temperature for each system. The electron ion dynamic is implemented in
a local version of Gromacs 4.6,166 which was also used for the equilibration runs.

6.2. Evaluation of Site Energies

The diagonal elements of the coarse-grained Hamiltonian represent the energy of the
system with one electron taken out of the HOMO of the respective molecule. This
value would be exactly the vertical IP of that molecule in SI-free DFT. In most practical
calculations, however, the orbital energies are not corrected for the SI, which is the reason
why the HOMO energy is merely an approximation to the IP. To assess if the difference
between IP and HOMO energy will have any effect on our calculations, we compare their
time evolution during an MD simulation of an anthracene crystal. The IP is calculated as
difference of the self-consistent DFTB2 total energies of the cationic and neutral molecule,
and compared to the (non-)self-consistent HOMO energy at the (DFTB1) DFTB2 level.
As can be seen in Figure 6.2, there is a large difference between site energies obtained
with the different approaches. However, the difference constitutes a constant shift and
has therefore no effect on the physics of the system. The energy fluctuations, on the
other hand, are the same with all approaches. Note that in systems containing multiple
types of molecules, like organic polymer blends or doped materials, special care has to be
taken in order to correctly reproduce the relative energies. Approximating site energies
with HOMO energies might lead to erroneous energetics in these cases. In a previous
work, we presented a detailed comparison between DFT and DFTB2 site energies and
their fluctuations along MD trajectories.118
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Figure 6.2.: Comparison of HOMO energies obtained without (black) and with self-consistency
(red) to the ionization potential (green) of an anthracene molecule in an MD sim-
ulation of the crystal. Site energies are shifted but show the same fluctuations.

6.3. Evaluation of Electronic Couplings

The electronic couplings obtained with DFTB were recently benchmarked against high-
level ab initio calculations for hole115 and electron116 transfer. Here we further assess
if the excellent performance of DFTB is also transferable to the herringbone crystal
structure of anthracene by comparing the electronic coupling between nearest neighbors
to DFT calculations. As can be seen in Table 6.1, remarkably good agreement with DFT
calculations at the B3LYP/TZ2P level is achieved. The highest electronic coupling is
found along the b-direction with 48 meV. The coupling between the two molecules in
the unit cell is with 21 meV about a factor of two smaller and the coupling along the
c-direction is nearly zero. Note that structural fluctuations during the MD simulation
will also give rise to non-zero electronic couplings along the c-direction.

Table 6.1.: Electronic coupling between nearest neighbors for the anthracene crystal structure
obtained with FODFTB and with FODFT at the B3LYP/TZ2P level

Direction to nearest neighbor Electronic coupling [meV]
DFT DFTB

Same unit cell 20.8 25.5
b-axis 47.9 41.0
c-axis 0.8 0.0
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6.4. Influence of the Environment

To evaluate the influence of the environment, the site energies of a single HBC molecule
were calculated at every step along a 100 ps MD simulation, including and excluding
the electrostatic potential (ESP) of the environment. The standard deviation of the site
energies increases from 61 meV to 81 meV due to the electrostatic interactions with the
environment. The time scale of those fluctuations was examined with a power spectrum
(Fourier transform of the autocorrelation function).

As can be seen in Figure 6.3, the site energies are mainly modulated by an intramolecular
vibration with ν̃=1720 cm−1. The environment, on the other hand, gives rise to several
site fluctuations with lower frequencies, with dominant contribution below 100 cm−1.
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Figure 6.3.: Power spectrum of site energies with and without the electrostatic potential (ESP)
of the environment. Intramolecular vibrations give rise to a distinct peak at ν̃=1720
cm−1 whereas a broad distribution of slow oscillations are introduced by the envi-
ronment.

6.5. Electron-Phonon Coupling

An important aspect of our method is the inclusion of electron-phonon coupling. We
tested how the molecular relaxation affects the site energies of anthracene and HBC. The
energy (eq 5.15) of a single molecule A was minimized in the neutral (|am|2 = 0 ∀m ∈ A)
and cationic (|am|2 = δm,HOMO) state. As expected the relaxation of the structure is
accompanied by a decrease of the site energy |Hmm| thus effectively lowering the IP. As
can be seen in Figure 6.4, the HOMO of anthracene gets shifted by 84 meV. For HBC,
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Jahn-Teller distortion can be observed, causing the degenerate site energies split by 86
meV. The relaxation of 60 meV with respect to the neutral HOMO level corresponds to
approximately 3/4 of the anthracene value. This is in accordance with the finding that
larger aromatic cores exhibit smaller internal reorganization energies.181 These values
are slightly smaller than DFT results at the PBE/def2-TZVP level, where a shift of 97
meV is found for anthracene and the splitting and relaxation in HBC are 94 meV and 71
meV, respectively.
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Figure 6.4.: Relaxation of site energies upon charging. Data for anthracene and HBC molecules
obtained with the presented multi-scale approach as well as DFT calculations at
the PBE/def2-TZVP level.

6.6. Picture of the Charge Transport

The QM zones during the charge transport simulations are shown in figure 6.5 and figure
6.6 for anthracene and HBC, respectively. Transport along each crystallographic axis of
anthracene was modeled with 18 sequential molecules in the QM zone. The QM zone of
HBC consisted of 30 molecules along a single columnar stack, and a capping scheme was
applied to substitute the side-chains.

Each charge dynamics simulation was preceded by a 500 fs simulation where the charge
was restricted to a single molecule to allow for the relaxation caused by the excess charge
carrier. In the subsequent charge dynamics simulations, the lowest eigenvector of the
coarse grained Hamiltonian was used as the starting wave function. The time step of the
MD was 1 fs; note that the Runge-Kutta method used to integrate the time-dependent
Schrödinger equation performs a large number of shorter time steps internally.
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Figure 6.5.: The three QM zones of anthracene along the a (red), b (green), and c (blue)
crystallographic axis. 18 sequential molecules from the 8000 molecules in the box
were selected.

Figure 6.6.: QM zone (green) of HBC. From the 9 columns in the box the QM zone was con-
structed as 30 sequential molecules in a single column.
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Every single simulation of the propagation of a charge carrier evolves differently due to
different initial conditions, and averaging over an ensemble of simulations is needed to
derive observable quantities. Nevertheless, all these individual simulations share some
common features, that will be discussed on two selected trajectories.

First, we take a look at a simulation of anthracene. As can be seen in Figure 6.7 (left),
the charge initially forms a polaron that travels over several sites. After about 50 fs, the
charge gets scattered on a phonon and the polaron dissociates. Following this event, the
localized wave function gets continuously broadened, and it is delocalized over nearly the
entire system after less than 500 fs. Notably, the charge carrier gets transferred very fast
between neighboring molecules without significant residence time. The occupation of one
site lasts only a few tens of femtoseconds. Such an activation-less transfer is expected
considering the relatively high electronic coupling and small reorganization energy of
anthracene, and it underlines the impact of nuclear vibrations on the dynamic evolution
of the charge carrier.

A similar behavior is found for HBC (Figure 6.7 right) with a progressive broadening of
the charge carrier wave function. Additionally a splitting of the wave packet can be seen,
especially after 300 fs two diverging wave packets can be observed. Such a behavior is a
result of the Ehrenfest approach where the system evolves on an ensemble of adiabatic
states. In contrast to surface hopping simulations it is not possible to relax to a single
adiabatic surface, either where the charge is represented by the left wave packet or by
the right wave packet. Similar observations were made with a very similar approach
in DNA.110 Application of a mean field approach led to partial delocalization in poly-
adenine stacks, whereas restricting the nuclear dynamics to a single adiabatic surface by
applying a surface hopping approach led to a localized charge. However, application of
a surface-hopping description to our systems is quite involved due to frequent crossings
of adiabatic surfaces resulting from the relatively small electronic coupling and energetic
disorder of the molecular sites.

6.7. Charge Carrier Mobilities

Next, we calculate hole mobilities and compare them to experimental values. The mobil-
ity µ is derived from the diffusive motion of the charge carrier according to the Einstein-
Smoluchowski equation

µ =
eD

kBT
(6.1)
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Figure 6.7.: Exemplary time evolution of the hole in anthracene and HBC. The initially lo-
calized polaron in anthracene gets scattered at around 50 fs and dissociates until
it is completely delocalized at the end of the simulation. For HBC the polaron
dissociates after 300 fs into two separate wave packets.

where kB is the Boltzmann constant, and e denotes the elementary charge. The diffusion
constant D is obtained as

D =
〈∆x2(t)〉

nt
(6.2)

where 〈∆x2(t)〉 is the mean squared displacement of the charge at time t and n takes
the value of 2,4 or 6 for 1-,2- or 3-dimensional systems respectively. The mean squared
displacement is defined as

〈∆x2(t)〉 =
∑
A

(xA(t)− x0)2pA(t) (6.3)

with xA(t) denoting the center of mass of molecule A, and x0 is the initial position
of charge carrier at t = 0. pA(t) is the occupation of molecule A at time t given as
pA(t) =

∑
m∈A |am|2, where am is the wave function coefficient in the FO basis. To

capture the influence of different starting conditions, the mean square displacement is
averaged over 100 simulations. The mobility was obtained from a linear fit of 〈∆x2(t)〉
versus time during the first 100 fs.
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Table 6.2.: Hole mobilities for anthracene at 300 K along crystallographic axes as well as for
liquid crystalline HBC at 400 K along the columnar stacking direction. HBC(1) and
HBC(2) denote the different approaches to intramolecular orbital transitions (see
section 5.3).

System Mobility [cm2/Vs] Reference
calculated experimental

Anthracene (a) 0.80 1.14 (TOF) 111
Anthracene (b) 1.94 2.93 (TOF) 111
Anthracene (c) 0.48 1.05† (TOF) 111
HBC(1) 1.16 ∼ 0.4 (PR-TRMC) 182
HBC(2) 1.55 ∼ 0.4 (PR-TRMC) 182

† The crystallographic c direction used in our simulations differs by about 35◦ from the
orthogonalized coordinate system a⊥b⊥c’ that was used in the experiment.

As can be seen from Table 6.2, an excellent agreement with time-of-flight (TOF) exper-
iments is achieved for anthracene. The crystallographic b direction has been correctly
identified as the best transport direction, with a mobility of 1.94 cm2/Vs. The transport
along the a and c directions is similarly fast but slower than along the b direction. The
calculated mobilities are within a factor of two of the experimental values.

The calculated mobilities for HBC deviate slightly more from the experimental values
obtained with the pulse-radiolysis time-resolved microwave conductivity technique (PR-
TRMC), but are still within the same order of magnitude. The different treatment
of transitions between degenerate orbitals discussed in section 5.3, leads to a notable
difference in the calculated mobilities, however, both values are still reasonable compared
to experimental results. Without non-adiabatic coupling between the degenerate HOMOs
(method 2), the charge can pass the crossing events of the HOMOs and continue in
the excited state. This excitation counteracts the energetic relaxation due to polaron
formation and aids in achieving resonance with non-relaxed (unoccupied) neighboring
sites. Therefore, a higher mobility can be observed within this approach. The mobility
is overestimated in HBC in contrast to anthracene. However, these values can be seen as
upper boundary, since impurities, defects and losses at the contacts are not taken into
account in our simulations. A further explanation for the underestimated mobility in
anthracene in contrast to the overestimation in HBC is that our anthracene simulations
are artificially restricted to one dimension whereas the charge carrier can circumvent
mobility bottlenecks introduced by thermal vibrations in actual 3-dimensional system.
Note that the charge transport through HBC, on the other hand, is truly 1-dimensional.
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6.8. Charge Transport Mechanism

The time evolution of the wave function following Ehrenfest dynamics shows a spreading
similar to that of a 1-dimensional wave packet propagated with the Schrödinger equation
known from quantum mechanics text books. The spreading is an ensemble property, and
therefore does not directly inform about the localization/delocalization of the charge
carrier. A measure of intrinsic delocalization can be obtained from the delocalization of
the adiabatic states.

|ϕi〉 =
∑
m

cim |φm〉 (6.4)

Therefore, we calculated the adiabatic states for HBC and the anthracene b-direction
along the 100 simulations by diagonalizing the fragment orbital Hamiltonian at every
step. The number of molecules over which one adiabatic state i is delocalized was de-
fined as N i

del = 1∑
A(p

i
A)

2 where piA is the charge on molecule A in state i given as

piA =
∑

m∈A |cim|2. The delocalization fluctuates strongly, and the wave function was
occasionally delocalized over up to 20 HBC molecules or 10 anthracene molecules. How-
ever, these are quite rare events, and the delocalization is significantly smaller in average.
The averaged delocalization for a certain energy interval as well as the density of states
(DOS) are shown in Figure 6.8. As can be seen from these figures, the DOS can be
described very well by a Gaussian distribution with a standard deviation of 0.11 eV and
0.12 eV for HBC and anthracene, respectively. The states at the tails of the DOS are
significantly stronger localized compared to the states near the center. However, even
the localized states at the tails are still not restricted to a single molecule. Note that
for anthracene, in contrast to HBC, the DOS and delocalization do not represent bulk
material properties since we are restricting our simulations to 1-dimensional QM zones.
Rather are these quantities meant to facilitate the understanding of our charge-dynamics
simulations.

For the ideal crystal or stack (no static and dynamic disorder), a delocalization over the
entire system would occur, while dynamic disorder leads to localization of the states to
2-4 sites for the systems at finite temperatures. Since the adiabatic states, especially
those at the tail of the DOS, are quite localized compared to the wave function that is
observed in our Ehrenfest simulations, we can already conclude that the transport is non-
adiabatic and occurs via occupation of higher adiabatic states. This is further quantified
in Figure 6.9 where we show the percentage of adiabatic states that are occupied on
average during our simulations. The occupation Pi = |bi|2 of an adiabatic surface is

107



Chapter 6. Evaluation of Coupled Electron Ion Dynamics on Anthracene and HBC

Figure 6.8.: Density of states and the number of molecules over which these states are delocal-
ized. Shown values are averages over each simulation of the anthracene b-direction.

obtained by projecting the wave function on the adiabatic states

Ψ =
∑
m

am |φm〉 =
∑
im

|ϕi〉 〈ϕi|φm〉 am =
∑
i

bi |ϕi〉 (6.5)

The ratio of occupied adiabatic states is defined as Nadi = 1∑
i P

2
i
× 1

Ntot
where Ntot is the

total number of adiabatic surfaces. Note that only the highest adiabatic states, resulting
from linear combinations of the HOMOs, are present in our calculations. At the end
of our simulations, about two thirds of the adiabatic states are occupied in anthracene,
and nearly all states of HBC. Surprisingly, the occupation of additional adiabatic states
sets in significantly more quickly in HBC compared to anthracene. This might in part
be explained by the smaller nuclear relaxation of HBC (see Figure 6.4) which leads to a
smaller stabilization of the adiabatic ground state at the starting conditions, facilitating
the occupation of higher states. The faster transition from a single adiabatic state into an
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Figure 6.9.: Percentage of adiabatic states that are occupied, averaged over 100 simulations.
The simulation of the anthracene b-direction and HBC(1) are shown.

ensemble in HBC compared to anthracene gives rise to a stronger impact of the mean-field
error, which also leads to an overestimation of the mobility in this case.

6.9. Relevance of Lower-lying Orbitals

As mentioned before, the basis set of the FO Hamiltonian can be expanded if desired
for a more accurate description of the system. For anthracene, this has only negligible
influence on the mobility since the HOMO-1 lies about 1 eV below the HOMO. Our
calculations showed an increase of mobility by ∼10%, which is within the error of our
method. HBC, on the other hand, features a much more involved electronic structure.
Besides the degenerate HOMO orbitals, there is also a relatively high-lying HOMO-2.

To evaluate the energy difference between HOMOs and HOMO-2, the SAOPmethod183,184

was applied as a reference, since it yields accurate orbital energies due to the correct
asymptotic description of Coulomb interactions. The reference calculation on the struc-
ture optimized at the PW91/TZ2P level yields 0.271 eV for the energy difference, which
is reasonably well reproduced by the DFTB1 value of 0.390 eV. Note that Hartree-
Fock calculations, on the other hand, overestimate the energy difference of these orbitals
tremendously with 0.685 eV. Further orbitals are well separated by more than 1 eV and
therefore omitted safely.
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A further factor that increases the importance of the HOMO-2 is the staggered stacking of
molecules along the liquid crystalline columns, leading to a minimal electronic coupling∗

between the degenerate HOMOs of neighbouring molecules, whereas the coupling between
the HOMO-2 shows a maximum (see Figure 6.10).
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Figure 6.10.: Dependence of the electronic couplings on the relative rotation of two HBC
molecules around the columnar axis.

The cumulative effect of these large couplings leads to the surprising behaviour that
the HOMO of the stack is not a linear combination of the HOMOs of the individual
molecules but rather of their HOMO-2, as can be seen in Figure 6.11. Therefore, the
HOMO-2 plays the dominant role in the propagation of the charge carrier and its inclusion
increases the mobility tremendously, from 1.16 to 7.05 cm2/Vs, whereas inclusion of the
HOMO-3 has no further impact on the mobility (7.15 cm2/Vs). Note that the inclusion
of the lower-lying HOMO-2 increases the deviation of the calculated mobility from the
experimental value. However, experimental preparation conditions can have a much
larger influence on the device performance and affect the mobility by several orders of
magnitude.185,186 Therefore, the importance of the HOMO-2 can not be discarded solely
by comparison of the calculated mobility with the experiment. Furthermore, since our
method overestimates the energetic difference between the HOMOs and the HOMO-2
compared to the reference calculation, we are confident that the HOMO-2 actually plays
an important role.

∗Note that there are four different coupling elements between degenerate orbitals on two molecules and
an effective coupling can be derived as Heff

AB =
√

1
2

∑
m∈A,n∈B |Hmn|2.
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Figure 6.11.: Energies of molecular orbitals for an HBC stack of different size calculated at the
PBE/def2-TZVP level. Only the energetically highest(N) and lowest (H) linear
combination of HOMOs (black) and HOMO-2 (red) of the single molecules are
shown.

The dominant influence of lower-lying FOs is an uncommon mechanism and usually not
considered when the optimization of mobilities is discussed. The prevalent guiding prin-
ciple is still maximization of the intermolecular HOMO coupling as well as minimization
of the energetic disorder and reorganization energy. Our calculations suggest that also
the maximization of the coupling between lower-lying FOs and the minimization of their
stabilization with respect to the HOMO level should be considered as an additional
route. Hopping calculations, as previously performed for HBC,33,34,187 usually consider
only the (degenerate) HOMOs or use constrained DFT to calculate electronic couplings.
This way the influence of lower lying orbitals can not be captured. Ehrenfest simulations
in a AO basis, on the other hand, incorporate the influence of lower molecular orbitals
only implicitly. Further analysis of the simulated charge dynamics is necessary to make
the explicit connection between the transport through the bulk material, described in an
AO basis, and the MO structure of the individual molecules. The FO method presented
here is therefore a valuable tool for guiding the design of new molecular semiconductors
by drawing a connection between the electronic structure of the synthesized monomer
and its performance in the bulk material.
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6.10. Discussion

In this chapter we applied the CEID method, presented in chapter 5, to anthracene
and HBC-LC. Essential features of this method are the combination of a linear-scaling
fragment orbital approach with classical molecular dynamics, which allows to access
extensive length and time scales that are necessary for a realistic description of bulk
materials. Furthermore local and non-local electron-phonon couplings are considered
and SI errors were corrected for.

As a result, CEID can reproduce the absolute value as well as anisotropy of hole mobility
for the studied systems. Besides reproduction of experimental measurements, a detailed
understanding of the charge transport mechanism is also accessible. The adiabatic eigen-
states of the system are localized on few molecules at all times, due to thermal disorder.
We consider the estimates of the localization to be reliable, since the DFT delocalization
error was corrected for. Even though the adiabatic states are delocalized over only a
few molecules, no stable polaron was found for both materials at the simulated temper-
ature, a finding similar to recent reports for other systems.29,188 The ’non-existence’ of
the small polaron for materials with high mobility has been discussed in detail in ref.
43. Therefore, the success of hopping models for such materials33,34,187,189 may be based
on fortunate cancellation of errors. Furthermore, we have observed that it is insufficient
to consider only the two degenerate HOMOs of HBC in the hole dynamics, as often as-
sumed in hopping models, because lower lying orbitals can have significant influence on
the mobility.

Despite its strengths, the proposed approach also has several shortcomings, which have
been characterized well:

1) Quantum back reaction and mean field error:

The presence of the excess charge introduces a distortion in the nuclear system
(quantum back reaction), which in turn changes the electronic dynamics. In the
Ehrenfest description, the charge is not restricted to a single adiabatic surface, be-
cause the propagation of the time dependent Schrödinger equation allows to occupy
an ensemble of adiabatic states. This way, however, the potential energy of the
system is also an average over all (adiabatic) states, weighted by their occupation.
The nuclear dynamics of the system then follows this mean potential energy surface
(PES), whereas each member of the ensemble should in principle relax according
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to its respective adiabatic PES, leading to diverging trajectories. Therefore, re-
laxation of the molecular structure will be progressively underestimated with the
increasing degree of delocalization. This drawback is significant e.g. whenever two
adiabatic states with localized charge diverge in a polar environment, which has
been discussed in detail for CT in DNA.109 The different PESs, arising from each
adiabatic state will differ significantly, and propagating the atoms on an averaged
PES will therefore lead to a qualitatively wrong dynamics. In the studied OCS,
on the other hand, the adiabatic states are already spread out over several sites,
and the local relaxation (reorganization energy λi) is very small. The relaxation of
site m can be written as a function of charge as Emrel = 1

2λiQ
2
m,109 i.e. it becomes

negligible for a delocalization over 4 sites compared to the thermal site energy
fluctuations (assuming the reorganization energies λi ≈ 0.1eV ). Therefore, the
Ehrenfest mean-field error probably does not contribute much to the error in the
mobilities.

2) Non-Boltzmann population in Ehrenfest simulations

On one hand we have the problem, that an entire ensemble is described with a
single Ehrenfest trajectory. On the other hand we have seen that the adiabatic
state populations, reached during our Ehrenfest simulations, do not obey a Boltz-
mann distribution. Note that this behavior is an intrinsic problem of the Ehrenfest
method and not resulting from the approximations of our methodology. Similar
spreading over all adiabatic states was also found in ab initio Ehrenfest dynam-
ics.190 By restricting the transitions from lower to higher surfaces with a Boltz-
mann factor, however, the authors were able to suppress this behavior and achieve
dynamics similar to a surface hopping simulation.

One could ask, whether the artificial population of thermally non-accessible states
may affect the calculated mobilities. In the case of anthracene, all adiabatic states
are built from the same fragment orbital, due to the large energetic separation
of the HOMO from the remaining molecular orbitals. Therefore, we find similar
electronic couplings between the sites no matter which adiabatic state is occupied.
Therefore, we do not expect the CT characteristic to be affected here. In the case
of HBC, on the other hand, adiabatic states can be built either from degenerate
HOMOs or lower-lying HOMO-2, whereby the electronic couplings between the
latter ones are significantly stronger than between the former ones. Therefore, one
can expect that allowing the occupation of thermally forbidden states affects the
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CT depending on the contribution of HOMOs and HOMO-2 to the respective state.

To summarize, for the two materials with sizeable mobilities, no polaronic effects were
found, and the charge carriers are substantially delocalized. This, however, implies that
the quantum back reaction is not a critical issue, and it has been neglected from the
beginning e.g. in ref. 190. We have argued that Ehrenfest dynamics, which has several
flaws that should be considered seriously, is applicable in this context. Since polaronic
effects are small, the factors governing CT in these materials are the values and the
fluctuations of the CT parameters, i.e. the site energies εm and the couplings Hmn. As
has been shown before, the average couplings for a certain material can be very small, but
the fluctuations can be such that transfer is governed by non-equilibrium structures.42

This highlights the importance of bottom-up modeling, since the dependence of Hmn

on the molecular structure is quite complex and not easy to implement into simple
models. Therefore, atomistic simulations may be indispensable to understand material
characteristics.
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CHAPTER 7
Temperature Dependence of

Mobilities

The correct reproduction of the temperature dependence of the mobility is a formidable
challenge, because completely opposite trends can be observed in different materials. In
single crystals the temperature usually decreases with increasing temperature following
a power-law

µ(T ) = C · T−n (7.1)

with an exponent typically in the range between 0.5 and 3. This temperature dependence
is typical for band transport and originates from increased scattering of the charge carrier
at higher temperatures.

On the contrary, in disordered materials the mobility usually increases with temperature,
which is typical for hopping transport. In these materials the charge is trapped in a local-
ized state and needs thermal activation for a transfer to a neighboring site. The trapping
can originate from (1) a disordered morphology, giving rise to a broad distribution of site
energies, (2) guest molecules (i.e. impurities) with lower site energies acting as trapping
centers, (3) or due to self-trapping, if the response of the nuclei to the charge causes a
sufficiently large relaxation (λ >> Hab).

There are two widely used rate equations that are applied to disordered systems. As-
suming a Gaussian disorder of site energies and applying Miller-Abrahams rates for the
charge transfer, the temperature dependent mobility can be obtained as

µ(T ) = µ∞exp

{
−
(
T0
T

)2
}

(7.2)
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The second common rate equation was derived by Marcus, and features a more involved
temperature dependence with temperature intervals where the rate may also decreases
with increasing temperature. When applying Marcus rates to derive mobilities, its tem-
perature dependence therefore strongly depends on the system parameters entering the
equation and no universal trend can be given. Nevertheless, the temperature dependence
of the mobility can be used as indication of the underlying physics in these materials.

In section 6.7 we have already obtained room temperature mobilities in very good agree-
ment with the experiment. We will now try to validate that our CEID simulations also
model the correct physics that are necessary to reproduce the correct temperature depen-
dence of the mobility. In section 7.2 and 7.3 we will therefore compare the temperature
dependent mobility of the anthracene single crystal to amorphous α-NPD; systems for
which significantly different transport mechanisms are expected. Furthermore, we will
extend our study to polymers and liquid-crystals whose morphologies fall in between
completely ordered and disordered and try to rationalize the experimental findings with
help of our simulations. Finally, we will investigate how modifications in the morphol-
ogy may lead to a better transport properties. The lewis structures of the respective
molecules are shown in figure 7.1.

7.1. General Simulation Setup

Bonded and vdW interactions were modeled in all systems with the GAFF69 force field
parameters if not stated otherwise. Periodic boundary conditions with particle-mesh
Ewald180 electrostatics were used in equilibration runs and in the CEID simulations.
The temperature and pressure equilibration of the neutral systems was performed with
the Berendsen scheme73 and lasted for several nanoseconds in all cases. During the CEID
runs, the Parrinello-Rahman barostat and the Nosé-Hoover thermostat were used to yield
a correct canonical ensemble at 1 bar and the respective temperature for each system.
The global time step of the MD was 1 fs, but note that the Runge-Kutta method used to
integrate the time-dependent Schrödinger equation performs a large number of shorter
time steps internally to achieve a sufficiently accurate integration.

The mobility for each temperature was obtained as described in section 6.7. Averages
were again taken over 100 runs. The feasible duration of the runs was limited by the
time it takes for the excess charge to reach the edge of the quantum region and therefore
depends on the mobility of the material and size of the QM zone.
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Figure 7.1.: Molecular building blocks of the systems studied in this chapter. a) anthracene b)
α-NPD c) P3HT d) HBC-LC e) HBC-SAM.

7.2. Study of an Ordered Material: Anthracene

As a typical ordered system we again studied a single crystal of anthracene. The same
simulation setup as in section 6.1 was used with the QM zone shown in section 6.6, with a
single HOMO per molecule entering the CEID calculations. Simulations were performed
for temperatures in the range of 150 to 400 K and the duration of each individual CEID
run was 500 fs.

7.2.1. Results and Discussion

As can be seen from figure 7.2, the simulated hole mobilities range from 0.3 to 5.8
cm2/Vs and decrease with temperature. The temperature dependence is well described
by a power-law and least square fitting of µ = C · T−n to the simulated data yields
exponents n between 1 and 1.5, depending on the crystallographic axis with coefficient
of determination for the fits of r2 > 0.988. Such a thermal dependence of the mobility
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is characteristic of large-polaron, band-like behavior. Since anthracene is an ultra-pure
organic crystal this is the behavior one would expect.

Figure 7.2.: Hole mobilities in anthracene at different temperatures in direction of the three
crystallographic axes as shown in figure 6.5 and fits of µ = C∗T−n to the simulated
data.

The simulated mobilities are in very good agreement with the experiment as can be
seen in table 7.1. Compared to TOF measurements on highly purified single crystals,
the simulated mobilities deviate by less then a factor of 2. The same holds true for the
exponent in the power law, which describes the temperature dependence of the mobility.
The slightly underestimated mobility in anthracene could be caused by the artificial
restriction of the QM zone to one dimension, whereas in an actual 3-dimensional system
the charge carrier could circumvent bottlenecks introduced by thermal fluctuations in
the CT parameters.

7.3. Study of a Disordered Material: α-NPD

As a typical disordered material, we studied the amorphous phase of N,N’-bis(1-naphthyl)-
N,N’-diphenyl-1,1’-biphenyl-4,4’diamine (α-NPD, also called NPB), which is widely used
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Table 7.1.: Comparison of the simulated hole mobilities of anthracene with experimental values
obtained from TOF measurements.111 Mobilities are only shown for three selected
temperatures at which the mobility tensor was given in ref. 111 together with the
exponent n after fit of µ = C · T−n to all simulated and experimental data, respec-
tively.

a-direction b-direction c-direction†

sim. exp. sim. exp. sim. exp.

200 K 1.37 2.22 3.95 5.05 1.41 1.98
250 K 1.14 1.51 3.09 3.74 0.96 1.20
300 K 0.87 1.14 2.01 2.93 0.70 0.85

n 1.09 1.50 1.45 1.34 1.46 2.38
† An orthogonalized coordinate system a⊥b⊥c’ was used in the experiment, where c’
differs by about 35◦ from the crystallographic c direction used in our simulations.

in OLEDs as a hole-injection layer,191 hole-transport layer192,193 or electron-blocking
layer.194

7.3.1. Simulation Setup

Hole transport in the amorphous phase of α-NPD was modeled at temperatures from 150
to 400 K. Force field parameters were provided by Denis Danilov and consist of GAFF69

parameters for bonded interactions with partial charges from PM6 calculations. For the
generation of the amorphous starting structures an annealing procedure was performed
where a simulation box of 300 molecules was first melted at 700 K and then successively
cooled down. The cooling steps consisted of a temperature reduction of 50 K over 1 ns,
followed by a 1 ns simulation at constant temperature, from which the starting structures
were extracted.

A subset of 27 molecules was included in the QM region shown in figure 7.3. To picture
the energetic disorder realistically and capture the rate-limiting detrapping steps, the
HOMO energies of all 300 molecules were scanned at the start of each simulation. The
initial position of the hole was then assigned to the molecule with the highest HOMO
energy (lowest site energy) and the QM zone was constructed around this molecule with
the closest 26 neighbors. Because of the low mobility of α-NPD, the individual charge
transport runs could be performed for 10 ps before the charge reached the QM/MM
boundary.
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Figure 7.3.: QM zone of α-NPD (green). From the 300 molecule in the box the QM zone was
constructed as cluster of 27 molecules around the single molecule with the lowest
IP.

7.3.2. Results and Discussion

As can be seen from figure 7.4a, a completely different temperature dependence com-
pared to the previous system is found. The mobility increases with temperature, which
indicates activated hopping, and ranges from 2.3 × 10−2 to 4.5 × 10−2 cm2/Vs. Such a
temperature dependence can be expected considering the strong disorder in the amor-
phous material. The temperature dependence can be explained by the Gaussian disorder
model and is fitted quite well by µ = µ∞ · exp[−( 2σ

3kT )2] with r2 > 0.892 (see 7.4b). The
fit yields a high-temperature limit of the mobility of µ∞ = 4.8× 10−2 cm2/Vs.

TOF measurements at room temperature on vacuum vapor deposited thin films yield
hole mobilities of 3−4×10−4 cm2/Vs,195–197 and similar results are also obtained under
the same preparation conditions but applying admittance spectroscopy,198 whereas TFT
measurements yielded mobilities one order of magnitude lower.197 Therefore, compared
to experimental values our calculated room temperature mobility is about two orders of
magnitude too high. However, the room temperature mobility (µRT ) is strongly affected
by impurities and defects inside the material and is therefore not a very good estimate
for the intrinsic transport properties of an organic material. For amorphous materials
such as α-NPD, the purification is more difficult than for crystalline materials and the
reduction of µRT due to defects and impurities can be expected to be a dominant factor.
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(a) Absolute value of the mobility for different
temperatures.

(b) Fit of µ = µ∞ · exp[−( 2σ
3kT )2] to the simu-

lated mobilities of α-NPD.

Figure 7.4.: Simulated mobilities of α-NPD for different temperatures in the range of 150 to
400 K.

It was argued that the high-temperature limit of the mobility (µ∞) is better suited for
the description of the intrinsic mobility, because at high temperatures the temperature
activated detrapping of the excess charge ceases to be the limiting factor.199 This was
illustrated in ref. 199 for α-NPD, doped with various compounds. Nearly the same µ∞
was found for all dopants, whereas µRT differed by more than one order of magnitude.

Our simulated high-temperature limit of the mobility µ∞ = 4.8 × 10−2 is very similar
to the experimental value of µ∞ = 1.7× 10−2 cm2/Vs. The weaker increase of mobility
with temperature points to smaller energetic disorder in our simulations compared to
experiment. Reasons for this behavior could be the lack of impurities in our simulations
or the simulation of a too ordered morphology. Latter may be caused by non-optimal
force field parameters or by different routes to the amorphous morphology (evaporation
in the experiment and freezing a melt in the simulation).

7.4. Study of a Semi-Ordered Material: P3HT

Many conjugated polymers exhibit complex morphologies, where crystalline domains are
embedded in an amorphous matrix.200 The simulation of such an involved structure
is, however, beyond the scope of this work. Therefore, we focus on a single aspect of
CT in polymers, namely the interchain transport in crystalline domains. The model
system we are studying is poly(3-hexylthiophen) (P3HT), which is widely used in bulk

121



Chapter 7. Temperature Dependence of Mobilities

heterojunction solar cells as hole transporting layer together with phenyl-C61-butyric
acid methyl ester (PCBM) as electron transporting layer.

7.4.1. Simulation Setup

Inter-strand hole movement in an ordered section of regioregular P3HT has been consid-
ered at different temperatures ranging from 150 to 350 K. The simulation box consisted
of 400 parallel strands, each built of 20 monomers. Force field parameters were taken
from ref. 201, where OPLS-AA70,71 force field parameters were used with partial charges
from ref. 202 and dihedral parameters were fitted to a B3LYP/6-311+g(d,p) potential
energy scan. The initial structure corresponds to morphology I’ as described in ref. 201.
A single fragment in the CEID calculations was formed of 10 sequential monomers on a
single strand, and for each fragment the 10 highest occupied orbitals were taken to form
the basis for the hole wavefunction. This ensures that the whole length of the fragment
may be covered with, potentially localized, states. The remainders of the strands were
cut off from the QM zones and capped by hydrogen atoms. The total quantum region
consisted of 20 sequentially π-stacked fragments (see figure 7.5).

Figure 7.5.: QM zone (green) of P3HT. The central 10 monomers of 20 strands were selected
from the 400 strands in the box.
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7.4.2. Results and Discussion

As can be seen from figure 7.6, we find mobilities in the range of 1.5 to 4 cm2/Vs,
which decrease with increasing temperature. Again the mobility follows a power-law
(µ ∼ T−n) with an exponent of n = 1.05, indicating large-polaron, band-like behavior.
The coefficient of determination of the fit is r2 = 0.981.

In carefully prepared FETs mobilities as high as 0.1 cm2/Vs are obtainable,203 which
is one order of magnitude smaller than our simulated mobility. Direct comparison of
these values to experiment is difficult, however, because, we face again uncertainties
regarding the purity of the material and its influence on the mobility as discussed already
in section 7.3.2. This difficulty is illustrated by the fact that the field-effect transistor
(FET) mobility of regioregular P3HT can change by three orders of magnitude depending
on the preparation conditions and applied solvent.204 Additionally, the morphology of
P3HT is dependent on its molecular weight and can change after annealing.205 While
we simulate a single crystalline domain, standard experiments like TOF or PR-TRMC
probe polycrystalline materials with grain boundaries between the crystallites, which
reduce the observed direct current (DC) mobility. The formation of grain boundaries
appears to be strongly dependent on the molecular weight of the polymer with low
molecular weight P3HT layers being more crystalline than their high molecular weight
counterpart.9 It was further proposed that long polymer chains might bridge crystallites
in high molecular weight P3HT, leading to higher mobilities.8

One possibility to get rid of grain boundaries and measure the pure interchain transport in
crystalline domains of P3HT is the study of Nanofibers. In these fibers the P3HT chains
align perpendicular to the fiber direction and stack on top of each other.206 Contacting
opposing ends of a fiber thus allows measurement of interchain transport along the fiber.
Four-point-FET measurements yield a mobility of 0.06 cm2/Vs for the transport along a
single fiber.207 Activated transport was found in webs of these fibers, in contrast to the
band-like temperature dependence of our simulations. However, reducing the polarity of
the SiO2 surface by treatment with hexamethyldisilazane reduces the activation barrier
from 108 meV to 65 meV,207 which indicates a strong influence of the surface on the
intrinsic mobility. Furthermore, the polymer in our simulation is 100% regioregular,
which is not achievable in the experiment. The best commercially∗ obtainable P3HT has
a regioregularity of >98%, but values around 95% are also quite common.

∗Sigma-Aldrich, October 2015
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Figure 7.6.: Simulated mobility of P3HT at different temperatures, which can be fitted by a
power-law.

7.5. Enforcing Order: HBC

In this section we will continue the simulations of HBC-LC, which were performed for
constant temperature in section 6.7 and additionally study the temperature dependence.
Furthermore, we will investigate how HBC can be modified to engineer materials with
higher mobilities.

In the liquid crystalline phase of HBC, the molecules stack in an unfavorable confor-
mation, where the intermolecular coupling between the molecular HOMOs is near its
minimum (see figure 6.10). By modifying the side chains, the relative orientation of
molecules in columnar liquid crystals can be changed, which can result in higher mo-
bilities.208 However, one drawback remains in these liquid crystals: The hardly known
degree of impurities and defects in solvent-processed HBC derivatives, combined with
their strong impact on the charge carrier mobility, complicates the comparison between
experiment and simulation. For example in ref. 34 the mobility from PR-TRMC mea-
surements and hopping simulations of a disordered columnar liquid crystal agree quite
well, but as soon as the disorder is removed in the simulation by proper annealing, the
mobility increases by nearly 2 orders of magnitude, indicating that structural defects
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may play an important role in these materials.

Interesting systems that have the potential to reduce the amount of defects and allow to
monitor intrinsic mobilities are self-assembling monolayers (SAMs) of π-stacking organic
molecules. With SAMs it is possible to obtain very ordered stacks, where the absence of
defects can be probed with scanning tunneling microscope (STM) scans.209,210 Band-like
behavior was proposed for a similar SAM209 and room temperature mobilities of up to
6.8 cm2/Vs were found,210 which clearly exceeds the performance of liquid crystalline
phases.

In this section we will simulate the temperature dependence of the mobility in HBC-LC
to enable a better comparison with the experiment. Additionally, we will study a SAM
derived from HBC, where two side chains are functionalized with thiol groups that anchor
the molecule to a gold surface and compare how the altered morphology influences the
charge transport characteristics.

7.5.1. Simulation Setup

For hexa(3,7-dimethyloctanyl)hexa-peri-hexabenzocoronene (HBC-LC) the same simula-
tion setup as in section 6.1 was used with the QM zone shown in section 6.6, with two
degenerate HOMOs per molecule entering the CEID calculations. The duration of the
individual simulations was 500 fs. The simulations were performed in the temperature
range from 400 K to 600 K, because below 350 K a phase transition from the liquid
crystalline to the crystalline phase occurs.7

2,5-bis[4-(S-acetylthiomethyl)phenylethynyl]-8,11,14,17-tetrakis(3,7-dimethyloctanyl)hexa-
peri-hexabenzocoronene (HBC-SAM) is a derivative of HBC where two side chains are
functionalized with thiol groups. The SAM was modeled as 110 molecules in a single
stack. The last atom of both anchoring side chains were kept fixed during the simulation
to mimic the anchoring to the surface. The gold surface was not modeled explicitly,
since in such an upright orientation the molecules stand on their anchoring side chains,
leaning on each other, and therefore no significant interaction with the surface can be
expected. The angle between the molecular plane and the surface correlates with the
degree of surface coverage. Several degrees of molecular coverage were tested, and the
experimental NEXAFS angle of 65◦ was reproduced best with an intermolecular spacing
of 3.9 Å along the stacking direction.210 No pressure coupling was applied, with fixed
box dimensions in the surface plane of 42.9 nm and 3 nm along and perpendicular of
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the stacking direction, respectively. 3-dimensional periodic boundary conditions were
applied, enabling particle-mesh-Ewald (PME) electrostatics. However, the box axis per-
pendicular to the surface was increased to 6 nm to avoid steric interactions and a force
and potential correction was applied in the PME calculations to produce a pseudo-2D
summation.

Figure 7.7.: The 30 molecules in the QM zone (green) of HBC-SAM. The monolayer was mod-
eled as a single column of 110 molecules with increased box dimension perpendic-
ular to the virtual gold surface.

7.5.2. Results and Discussion

As can be seen in figure 7.8 we find decreasing mobility with increasing temperature for
both systems. In HBC-LC the mobility ranges from 1.81 cm2/Vs at 400 K to 1.19 cm2/Vs
at 600 K and follows a power-law (µ ∝ T−n) with an exponent of n = 1.06. A band-like
behavior is less expected in the HBC liquid crystal compared to the anthracene single
crystal, due to the increased disorder. However, the good fit (r2 > 0.965) of µ = C ∗T−n

to the simulated data and the exponent of n = 1.06, which is in the typical range
for band-like transport, strongly indicate that large-polaron, band-like transport is the
predominant charge transport regime for the defect-free liquid crystal.

Due to the different morphology, significantly larger values were observed in HBC-SAM
ranging from 3.99 to 4.93 cm2/Vs. At 400 K the mobility is larger by a factor of two,
compared to HBC-LC, and also the temperature dependence is significantly weaker with
an exponent of n = 0.45.

Compared to PR-TRMC measurements on the liquid-crystalline phase of HBC deriva-
tives we overestimate the mobility roughly by a factor of five.182 Furthermore, the ex-
perimental mobility is observed to be nearly temperature independent in this phase. As
already mentioned in section 6.7, missing impurities and defects would explain an overes-
timation of the mobility. Furthermore, since the detrapping of the charge is temperature-
activated, the inclusion of defects in the simulation will counteract the trend of decreasing
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Figure 7.8.: Simulated mobility of the liquid crystalline derivative of HBC (HBC-LC) and of the
self-assembling monolayer of HBC (HBC-SAM) for different temperatures fitted by
a power-law (µ = C ∗ T−n).

mobility at higher temperatures, yielding a temperature dependence in better agreement
with the experiment. Another observation, strengthening the assumption that defects
may be responsible for the differences in the mobility between experiment and simulation,
is that even in the crystalline phase of a variety of HBC derivatives an increasing mo-
bility with higher temperatures was found.182,211 It was argued that such a temperature
dependence in crystalline materials points to insufficient purification and does not reflect
the intrinsic mobility of the material.29 Furthermore, it is known that rotations of the
molecular disks around the columnar axis are possible in the liquid crystalline phase.212

Considering the strong dependence of the electronic coupling on the relative orientation
of two molecules (see figure 6.10), such structural defects can have a strong impact on
the charge carrier dynamic of the system. In our MD simulations, however, these slow
structural changes are not observable on the nanosecond time scale. In order to get bet-
ter insight into these kind of defects, more elaborate methods like umbrella sampling213

have to be applied. The calculation of relative activation barriers for the rotation of a
single molecule versus the concerted rotation of a larger part of the columnar stack could
be a first step, followed by a CEID simulation of systems with such structural defects.
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For the single molecular layer in HBC-SAM it is not possible to derive mobilities with
standard techniques like TOF, PR-TRMC or TFT measurements. However, it is possible
to derive some estimates from STM data.209,210 For this system a mobility of 6.8 cm2/Vs
was estimated, significantly higher than the PR-TRMC experiments of the liquid crystal,
and in good agreement with our calculation. Furthermore, for a similar system with a
single anchoring side chain an increasing mobility at lower temperatures was derived
from the STM data, which is in agreement with our predicted temperature dependence
for pure HBC-SAMs and liquid crystals.

7.6. Conclusion

In summary we were able to predict mobilities in a range of three orders of magnitude as
shown in figure 7.9 and were also able to reproduce the typical temperature dependencies
that are significant for band-like transport in single crystals like anthracene, as well
as activated hopping in amorphous materials like α-NPD. However, we find decreasing
mobility with increasing temperature also in semi-crystalline materials like the liquid
crystal HBC-LC and the polymer P3HT, in contrast to experimental observations. From
the extrapolation of the mobility to the high-temperature limit in α-NPD we concluded
that we are underestimating the depth of the charge-trapping. This can result either
from a too small energetic disorder, a too weak molecular relaxation or the absence
of impurities. Furthermore, we have shown for HBC that small modifications of the
molecules can lead to higher and less temperature sensitive mobilities, which is a desirable
feature for high-performance devices. Atomistic bottom-up simulation of charge carrier
dynamic with the CEID method is thus a valuable tool for complementing experimental
results and might be used for the rational design of OSCs in the future.
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Figure 7.9.: Summary of the temperature dependent mobilities of all system studied in this
chapter. System specific temperature dependences are obtained and mobilities in
a range of three orders of magnitude are accessible.
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CHAPTER 8
Summary and Future Work

In this work, several efficient methods for the investigation of electron transfer in OSCs
were developed, advanced, and assessed.

In particular in chapter 3 we have further developed and benchmarked an efficient frag-
ment orbital method based on the semi-empirical method DFTB. We found that the cou-
pling of fragment orbital methods is underestimated systematically, which was attributed
to the non-exact calculation of exchange-correlation. The application of constant scaling
factors was proposed, which reduces the errors both for hole and electron transfer signifi-
cantly. This efficient correction scheme makes FODFTB comparably accurate to FODFT
calculations with the PBE functional, while being six orders of magnitude faster. This
shows that FODFTB is suitable for applications like scanning of the electronic couplings
of large data bases, or for propagation of the charge carrier along an MD simulation with
the CEID method.

Furthermore, in chapter 4 we tested this Hamiltonian for the calculation of bridge-
mediated electronic coupling. We found that the distance dependence of the elec-
tronic coupling, obtained with our FODFTB Hamiltonian, is similar to CDFT results.
Both methods, however, experience difficulties in the correct reproduction of the barrier
height.

In chapter 5 we have shown that conventional CEID simulations may fail for OSCs be-
cause of the SI error in the total energy expression. We developed an SI-free variant of
CEID, where we included additionally (non-)local electron-phonon coupling in a consis-
tent manner.

In chapter 6 we applied this method to two well-characterized OSCs and found that we
can reproduce the absolute values as well as the anisotropy of experimental mobilities
with excellent accuracy. We furthermore showed for HBC that it may not be sufficient to
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consider only the degenerate molecular HOMOs in the charge transfer, as usually done.
Inclusion of energetically lower lying orbitals was found to have a significant influence on
the charge carrier dynamics.

In chapter 7 we have investigated the temperature dependence of the mobility for different
systems. Band-like temperature dependence as well as activated hopping were observable,
depending on the morphology of the OSC. Usually, we found higher mobilities compared
to the experiment, which can be expected considering that we simulate only pristine
materials without any dopants or impurities.

Future studies will therefore focus on the investigation of the effect of structural defects
and impurities on the CEID simulations. While we studied only interstrand transport in
the polymer P3HT in section 7.4, it would also be desirable to simulate intrastrand trans-
port. However, the fragmentation of polymer chains is much more difficult than the frag-
mentation of OSCs consisting of small molecules. Application of specially parametrized
capping atoms can facilitate the fragmentation of such systems, as we have recently
demonstrated for CT over peptide backbones.173 Furthermore, the inclusion of electronic
polarization effects, is a necessary next step for the simulation of more heterogeneous sys-
tems like interfaces, as we have discussed in section 5.5.
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APPENDIX A
Appendix

A.1. Electronic Couplings with Degenerated States

In the case of degenerated HOMOs (or LUMOs) there exist in general several charge
transfer integrals between two fragments. For two degenerated orbitals {φan, φbn} on each
of two fragments n the Hamilton matrix can be written as

H =


ε1 0 Vaa Vab

0 ε1 Vba Vbb

Vaa Vba ε2 0

Vab Vbb 0 ε2

 (A.1)

with Vab = 〈φa1|Ĥ|φb2〉. However, there is a unitary transformation

U =


cos(α) sin(α) 0 0

− sin(α) cos(α) 0 0

0 0 cos(β) sin(β)

0 0 − sin(β) cos(β)

 (A.2)

where α and β are the rotation angles for orbitals on fragment 1 and 2, so that

H ′ = U−1HU =


ε1 0 V ′aa V ′ab
0 ε1 V ′ba V ′bb
V ′aa V ′ba ε2 0

V ′ab V ′bb 0 ε2

 !
=


ε1 0 V ′aa 0

0 ε1 0 V ′bb
V ′aa 0 ε2 0

0 V ′bb 0 ε2

 (A.3)
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The requirements

0
!

= V ′ab =
1

2
((Vab − Vba) cos(α− β) + (Vab + Vba) cos(α+ β)

+ (Vaa + Vbb) sin(α− β)− (Vaa − Vbb) sin(α+ β))

0
!

= V ′ba =
1

2
((−Vab + Vba) cos(α− β) + (Vab + Vba) cos(α+ β)

− (Vaa + Vbb) sin(α− β)− (Vaa − Vbb) sin(α+ β))

the sum of these two equations leads to:

(Vab + Vba) cos(α+ β)− (Vaa − Vbb) sin(α+ β) = 0 (A.4)

tan(α+ β) =
Vab + Vba
Vaa − Vbb

(A.5)

α+ β = arctan(
Vab + Vba
Vaa − Vbb

) (A.6)

and the difference to:

(Vab − Vba) cos(α− β) + (Vaa + Vbb) sin(α− β) = 0 (A.7)

tan(α− β) =
Vba − Vab
Vaa + Vbb

(A.8)

α− β = arctan(
Vba − Vab
Vaa + Vbb

) (A.9)

This defines α and β and thus lead to a new set of orbitals where “cross-couplings” are
zero due to symmetry reasons (e.g. one set σ- and one set π-interacting orbitals).

In this symmetry adapted basis the orthogonalized Hamiltonian can be written as

H ′ortho = U−1S−
1
2UU−1HUU−1S−

1
2U = U−1S−

1
2HS−

1
2U (A.10)

A.2. Test of Basis Sets and FODFTB Methods

In ref. 118 the influence of compression radius on electronic coupling was studied. It was
found that increasing the density confinement radius rdens0 yields systematically larger
couplings. When the wave function confinement radius rwf0 is increased, however, this
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is not generally true, because a more diffuse wavefunction leads also to larger wavefunc-
tion overlap. The orthogonalized coupling elements, which are the ones of interest, can
therefore decrease with weaker confinement.

We therefore tested both FO methods presented in section 3.1 and 3.2 with the pa-
rameterization that was proposed for DNA (rdens0 = 7 a.u. and rwf0 = 8 a.u.) and
also with weaker confined parameterizations, without any confinement of the density.
The couplings were calculated for 11 molecules of the hole-transfer set shown in table
3.1 and additionally pyridine, pyrimidine, 4(3H)-pyrimidinone, naphthalene, anthracene,
tetracene and pentacene. The monomers were optimized as in section 3.3.2 and the
cofacial dimers were build with a stacking separation of 3.5 Å.

As can be seen in figure A.1 we find that with the block matrix method we get typically
a little bit lower couplings. However, the differences are quite small and the two methods
differ mainly conceptually and less in their numerical results. Furthermore we see that
the actual value of the compression radii has only minor impact once the wavefunction
is already free enough to expand, which is already the case with the originally proposed
set for DNA.

Figure A.1.: Average coupling of 18 π-conjugated molecules with the conventional and the
block matrix method Both methods were tested with different confinement radii
rwf0 ; rdens0 .
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