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Abstract
In this study we investigated the influence of an organic polystyrene brush on the deposition of ZnO thin films under moderate

conditions. On a non-modified SiOx surface, island growth is observed, whereas the polymer brush induces homogeneous film

growth. A chemical modification of the polystyrene brushes during the mineralization process occurs, which enables stronger inter-

action between the then polar template and polar ZnO crystallites in solution. This may lead to oriented attachment of the crystal-

lites so that the observed (002) texture arises. Characterization of the templates and the resulting ZnO films were performed with

ζ-potential and contact angle measurements as well as scanning electron microscopy (SEM), atomic force microscopy (AFM) and

X-ray diffraction (XRD). Infrared spectroscopy (IR) measurements were used to investigate the polystyrene brushes before and

after modification.

102

http://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:stefan.walheim@kit.edu
mailto:bill@imw.uni-stuttgart.de
http://dx.doi.org/10.3762%2Fbjnano.7.12


Beilstein J. Nanotechnol. 2016, 7, 102–110.

103

Introduction
Due to its promising properties like photoemission in the UV

range and its high piezoelectric coefficient, zinc oxide (ZnO;

space group P63mc) is interesting for a wide range of applica-

tions. Several research groups investigate its application in light

emitting diodes, as surface acoustic wave generators or for field

effect transistors [1-8]. Up to now, the fabrication of nanosized

devices requires complex techniques like magnetron sputtering

or pulsed laser deposition. Therefore, it is of high interest to

develop easy-to-handle deposition processes for ZnO nanostruc-

tures. For example, biopolymers can control the mineralization

and the structure formation of inorganic materials in an aqueous

environment. Biopolymeric templates and their structure-induc-

ing properties are in the focus of many recent works and issued

in a recent collection [9-13]. With respect to ZnO, bio-tem-

plates are used for tailoring the morphology and crystallite sizes

of ZnO [13-23], whereas n-type impurity dopants (e.g., Al3+,

Ga3+ or In3+) have a significant influence on its optical proper-

ties [1,2,24-33]. In both cases, properties can be adjusted to

match the requirements for different applications. Also the use

of self-assembled monolayers (e.g., made from 1-thioacetato-

16-(trichlorosilyl)hexadecane [34,35] or 3-aminopropyltri-

ethoxysilane [33]) and polyelectrolytes [36] as organic tem-

plates are known, which can modify the surface charge on the

substrates for ZnO precipitation under moderate conditions.

Based on these studies, we investigated the ZnO film formation

on silicon wafers modified with vinyl-terminated polystyrene

(PS) brushes. Those brushes consist of PS molecules that are

grafted to a silicon wafer forming a very thin film. The ob-

tained ZnO thin films, which were synthesized via chemical

bath deposition (CBD) at 60 °C, were characterized by X-ray

diffraction (XRD), scanning electron microscopy (SEM), AFM

and infrared spectroscopy (IR). Our results imply an activated

dynamic precipitation model of ZnO thin films, which is the

result of a base-catalyzed transesterification of polystyrene

brushes in the early stage of ZnO precipitation.

Results and Discussion
Template characterization
For the deposition of the PS brush, the molecule depicted in

Scheme 1a was grafted to a cleaned Si wafer. Maas et al. [37]

found that the functional vinyl endgroup is transformed into an

alcohol which then can react in a condensation reaction with

silanol groups at the SiOx surface (Scheme 1b).

Prior to the ZnO deposition experiments, Si wafers before and

after PS brush formation were characterized. Figure 1 shows

AFM images and cross sections of the two different substrates.

The SiOx as well as the PS brush have a low roughness of

0.2 nm. After coating the highly polished SiOx surface with the

Scheme 1: a) Structural formula of the α-methyl-ω-p-vinyl-benzoate-
polystyrene molecule. b) Schematic representation of a PS molecule
after brush formation via a condensation reaction.

PS brush, a height profile with more pronounced peaks is ob-

tained. Since the conformation of the polymer chains is

governed by the surroundings, a more irregular structure arises.

The wafer is homogeneously covered with the polymer tem-

plate and no holes or defects are visible (Figure 1b). A thick-

ness of 1–2 nm of the PS brush was measured by scratching the

template with an AFM tip. This data are consistent with ellip-

sometry measurements (not shown) performed with a single-

wavelength ellipsometer (DRE-ELX-02, DRE, Germany).

Taking into account the molecular weight of the polymer

(Mw  = 2600 g·mol−1) and the monomers weight of

104.15 g·mol−1, the molecules consist of about 25 monomers.

Assuming a monomer length of 0.2 nm, the length of a fully

stretched polymer chain would be about 5 nm. Together with

the specific weight of polystyrene (1.05 g·cm−3), a density of

0.822 molecules per nm2 can be calculated for this densely

packed perpendicular arrangement of the molecules. Since we

measured a thickness of 1–2 nm for our PS films, we can calcu-

late a nominal grafting density of 20–40% (0.164–0.329 mole-

cules per nm2) for our brush system.

The polarity of the different surfaces was investigated by

ζ-potential and contact angle measurements. The isoelectric

point (IEP), measured in water, of the plasma-cleaned SiOx sur-

face and the PS brushes is 1.5 (extrapolated) and 6.3, respec-

tively (Figure 2). At pH 9 of the reaction solution, the ζ-poten-

tial of the Si wafer is much lower (ca. −100 mV) than that of the

brushes (ca. −50 mV). This means that the surface charge of the

SiOx is highly negative whereas under the same conditions, the

PS brush is much less negatively charged. It is noteworthy that

the reaction takes place in methanol instead of water. For mix-

tures of water and alcohol it is known, that the ζ-potential is de-
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Figure 1: AFM height images and corresponding cross sections of a) a Si wafer and b) a PS brush.

creasing with higher alcohol content [38]. This could lead to a

smaller difference in the ζ-potential of the SiOx and PS brush in

methanol as compared to the results in water.

Figure 2: ζ-potential of the Si wafer and the PS brush before and after
modification measured in water.

Water contact angle (WCA) measurements confirm the find-

ings of the ζ-potential measurements. The SiOx surface exhibits

a high hydrophilicity with a WCA below 4°. On the other hand,

the surface decorated with a PS brush is hydrophobic with a

WCA of 85°.

Transesterification of polystyrene brushes
During the ZnO mineralization, a modification of the PS brush

was observed that leads to a hydrophilic surface, which can

improve the interaction with the ZnO nanoparticles in solution.

In the methanolic medium with an alkaline pH at elevated tem-

peratures, a transesterification can take place as indicated in

Scheme 2. This would result in a separation of the polystyrene

chain (R1 in Scheme 1 and Scheme 2) from the short end group

(R2 in Scheme 1 and Scheme 2) attached to the SiOx surface. A

polar ester group, which was previously shielded by the non-

polar polymer chain, now terminates the remaining molecule.

To obtain further information about this reaction, several ex-

periments were carried out. The PS brushes as well as the

polymer powder were treated in a modified reaction solution

without zinc acetate to prevent ZnO deposition.

Scheme 2: Mechanism of the proposed transesterification process,
which modifies the polystyrene brush in the methanolic ZnO deposi-
tion solution with an alkaline pH at elevated temperatures.

ζ-potential and water contact angle measurements on the modi-

fied brushes confirm the formation of a hydrophilic surface

after the treatment. The ζ-potential decreases from −50 mV to

−80 mV as shown in Figure 2. The contact angle decreases to a

value of 60°. On the AFM images (not shown), no change is

visible before and after modification.
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PS powder: Attenuated total reflection (ATR) measurements

were performed on the α-methyl-ω-p-vinyl-benzoate-poly-

styrene powder used to prepare the brushes. Figure 3 shows the

spectra obtained before and after treatment in the modified reac-

tion solution. Characteristic bands originating from PS [39] can

be found for both samples and are listed in Table 1. Some addi-

tional bands can be assigned to the ester group present in the

polymer chain (Table 2).

Figure 3: ATR spectra of PS powder used for the preparation of the
brushes before and after modification. The inlay shows a magnifica-
tion of the range between 700 and 2000 cm−1. After the modification,
the bands attributed to COC vibrations decrease in intensity.

Table 1: Bands of PS found in the ATR spectra and their assignment.

wavenumber [cm−1] assignment [39]

3028–3026 aromatic H-stretching modes
2922–2849 (CH2)
1600–1311 aromatic vibrations
1070–1028 aromatic H-bending modes
908 aromatic vibrations
754 aromatic vibrations

Table 2: Characteristic IR bands of the ester group.

wavenumber [cm−1] assignment [40]

1716 (CO)
1274 as(COC)
1107 s(COC)
860 (COC)

During the transesterification, the PS molecule is split into two

parts. The smaller part R2 with the ester group is soluble in

methanol, whereas the longer chain R1 remains insoluble. Due

to the washing steps during modification, the smaller molecules

are removed from the reaction vessel. Therefore, the number of

ester groups present in the powder should decrease after the

treatment. Indeed, the intensities of the corresponding bands in

the ATR spectra decrease as well. The intensity of the bands

coming from the phenyl groups on the other hand nearly

remains the same. The amount of phenyl groups in the end

groups is very small compared to those in the polymer chain

(ratio about 1:25). The decrease in intensity is therefore very

small. Additionally, the transesterification seems to be incom-

plete, since the ν(COC) bands do not disappear completely after

three modification cycles.

PS brush: In order to prove our conclusions, infrared reflec-

tion absorption spectroscopy (IRRAS) measurements were per-

formed on a PS brush grafted to the Si wafer. In this case, the

main part of the chain detaches from the surface and only the

small rest with the ester group remains, since it is covalently

bound to the substrate (compare Scheme 1b). Indeed, the spec-

tra (see Supporting Information File 1) show a decrease in in-

tensity for the aromatic bands after the modification reaction,

confirming the ATR results. Here it also seems that the transes-

terification process is incomplete and a PS Brush with modified

properties (increased polarity and charge) is the result.

XRD investigation
ZnO films were deposited within methanolic solution under

moderate condition (60 °C) on SiOx and as-prepared PS brush.

The obtained ZnO thin films were characterized by XRD mea-

surements of the 20 mineralization cycles sample (Figure 4). As

expected, the characteristic (100), (002), (101), (102) and (110)

reflections of hexagonal ZnO are visible in the XRD patterns

(cf. JCPDS no. 01-079-0206). For the PS brush sample

(Figure 4b), a pronounced preferred orientation of the ZnO

crystallites with the hexagonal c-axis perpendicular to the plane

of the Si substrate is indicated by the strong (002) reflection

within the XRD pattern. The corresponding film grown on SiOx

on the other hand shows no texture (Figure 4a). A value for the

average crystallite size of precipitated ZnO on PS brushes was

determined to be around 4.2 ± 0.1 nm. This calculated crystal-

lite size is in the range of similar systems prepared by similar

procedures [33-35].

AFM and SEM results
The characterization of the surface and structure was done with

AFM and SEM measurements. In the case of SiOx as substrate,

big islands of ZnO can be seen on the AFM- (Figure 5a) and

SEM- (Figure 5c) images of the 20 cycle sample. This

Volmer–Weber-like growth [41] indicates that the surface

energy of Si is smaller than the interface energy between ZnO

and SiOx plus the surface energy of ZnO.
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Figure 4: XRD diagrams of ZnO films deposited on a) SiOx and b) PS brushes after 20 mineralization cycles. The ZnO film on the PS brushes shows
a preferred crystal orientation along the (002) direction.

Figure 5: a) AFM topography and cross section of ZnO islands deposited on SiOx after 20 mineralization cycles. The corresponding SEM top view is
shown in c). b) AFM topography and cross section of ZnO film deposited on PS brush after 20 mineralization cycles. d) Film thickness of the films on
PS brush measured from SEM cross sections plotted against the number of mineralization cycles. e) SEM cross section of the film on PS after 20
mineralization cycles.
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In the case of the PS template, the growth of a homogeneous

film is favored (Figure 5). A representative cross section of a

ZnO film grown on PS is shown in Figure 5e. In Figure 5d the

film thickness is plotted in dependence on the number of depo-

sition cycles. The growth rate seems to decrease with increas-

ing film thickness. This might indicate a stronger interaction of

the particles in solution with the template compared to the inter-

action with the already deposited ZnO film. This strong interac-

tion with the substrate also supports our conclusion that the PS

brush is modified in the deposition solution towards a functio-

nalized surface.

Mineralization mechanism
By correlating the transesterification of the PS brush with the

observed homogeneous ZnO mineralization, the deposition

process can be explained. We put forward the following growth

model: At the beginning of the mineralization process, some

few PS molecules are modified by the transesterification. As it

was shown by Turgeman et al. [42,43], the polar ZnO particles

can interact with the ester groups during the mineralization.

Therefore, they act as preferred sites for deposition of ZnO par-

ticles. With increasing reaction time, the number of available

reaction sites is increasing as more and more PS molecules are

removed. After a few deposition cycles, a complete ZnO film is

formed. The methyl ester can coordinate the polar ZnO crystal-

lites. This in turn can support an oriented attachment of the

nanoparticles to the surface and an anisotropic orientation of the

entire film, which was observed by XRD (Figure 4) [42,43].

Conclusion
ZnO thin films were grown by chemical bath deposition under

moderate conditions. On a SiOx surface, island growth of the

ZnO was observed. A polystyrene brush on the other hand acts

as a structure-inducing template and leads to the formation of a

homogeneous, compact film that shows a preferred crystal ori-

entation along the (002) direction. IR spectroscopy measure-

ments indicate that the nonpolar PS brush partially decomposes

via a transesterification reaction, resulting in a polar surface.

This new surface interacts with the ZnO crystallites, which are

simultaneously formed within the solution and assemble in an

anisotropic fashion, forming a compact ZnO film.

Experimental
Preparation of the PS brush
Silicon wafers with a surface orientation of [100] and a native

oxide layer with 2–3 nm thickness (Wacker Burghausen,

Germany) were used as substrates. Before cleaning them with a

CO2 snow jet [44] in order to remove organic residues, they

were cut into pieces of 10 mm × 20 mm. Now, approximately

100 µL of a solution (3% by weight in toluene) of α-methyl-ω-

p-vinylbenzoate-polystyrene molecules (vinyl-terminated PS,

Polymer Standard Source, Canada, Mw = 2600 g·mol−1;

Mn = 2400 g·mol−1) was cast on the surfaces and left evapo-

rating. This process was repeated three times, yielding a final

film thickness of several micrometers. The samples were then

placed into a massive aluminum vacuum chamber, pumped with

a scroll vacuum pump with a pressure of less than 1 mbar. The

chamber was placed onto a hot plate at 145 °C for 12 h [37].

Excess molecules were removed by a 3-step counterflow rinsing

(cascaded rinsing) of the samples in tetrahydrofuran (THF). The

samples were dried by a stream of nitrogen after each rinsing

process.

Preparation of the deposition solution and
mineralization
Deposition experiments of ZnO films were carried out as de-

scribed by Eisele et al. [33]. Stock solutions of polyvinylpyrro-

lidone (Mw = 10,000 g·mol−1, Lot#BCBF4168V, Sigma-

Aldrich), zinc acetate (ZnAc2, Zn(CH3COO)2·2H2O, puriss

p.a., ACS reagent, ≥99.0%, Sigma-Aldrich) and tetraethyl-

ammonium hydroxide (TEAOH, 1.5 M in methanol, Sigma-

Aldrich) in methanol (VLSI Grade, J. T. Baker) with concentra-

tions of 20, 40 and 85 mM, respectively, were mixed. The reac-

tion solution was prepared by mixing the stock solutions in a

volume ratio of PVP/ZnAc2/TEAOH 3:2:2. Thereby, the

TEAOH solution was added drop wise to the PVP–ZnAc2 mix-

ture with a peristaltic pump at a flow rate of 1.044 mL·min−1

under gentle stirring. The reaction solution was prepared anew

every day to prevent agglomeration of particles.

The functionalized Si wafers and the reference samples without

brush were immersed in 1 mL of the precursor solution in a

closed vessel, each. The vessels were heated within an oil bath

at 60 °C. After 1.5 h, the substrates were washed abundantly in

methanol and dried with N2. For each cycle, a new vessel and

fresh solution was used. To get thicker films, several cycles

were carried out.

For the investigation of the transesterification process of the

brushes during mineralization, a modified deposition solution

was used. To prevent ZnO formation, the ZnAc2 stock solution

was replaced by pure methanol. The modification was per-

formed according to the standard deposition experiments for

three cycles.

Powder X-ray diffractometry
Grazing incidence X-ray diffraction measurements with an inci-

dence angle of 2° were performed using an X’Pert MRD

(PANalytical) using Cu Kα radiation parallelized with polycap-

illary optics and using a flat graphite monochromator in the

diffracted beam in a diffraction angle, 2θ, range of 25 to 60°.

Data evaluation was done using a full-pattern Pawley refine-
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ment on the basis of the diffraction data using the TOPAS soft-

ware [45]. For that the instrumental profile as determined from

a LaB6 powder standard (Standard Reference Material SRM

660a, National Institute of Standard and Technology NIST,

Gaithersburg, USA) was fitted and taken fixed for evaluation of

the diffraction data from the ZnO. The line broadening of the

latter was evaluated by refining Lorentzian-shaped size broad-

ening having, for each hkl, an integral breadth on the diffrac-

tion angle scale, β2θ, of

(1)

Equation 1 basically corresponds to Scherrer’s equation with λ

as the wavelength of radiation and with D as an average of the

crystallite size.

Scanning electron microscopy
Micrographs were taken with a DSM 982 Gemini (Zeiss). An

accelerating voltage of 3 kV and a working distance of 2–3 mm

were used. To ensure conductivity, the samples were sputtered

with a 0.8 nm thick layer of Pt/Pd (80:20). The thicknesses of

ZnO films were determined using freshly prepared cross

sections.

Atomic force microscopy
AFM measurements were performed on a Bruker Multimode 3

using commercially available cantilevers (PPP-NCHR,

Nanosensors).

Water contact angle measurements
The static contact angle of Milli-Q water on the modified and

unmodified samples were measured on a Contact Angle Mea-

surement System G10 from Kruess. The results are an average

of at least five measurements.

Zeta-potential measurements
Measurements of the ζ-potential were performed on a SurPASS

Electrokinetic Analyzer (Anton Paar GmbH). Samples were

glued on the stamps of an adjustable gap cell (10 mm × 20 mm)

with double-sided tape and a gap height of 100 µm was used. A

1 mM KCl solution was purged with nitrogen prior and during

the measurements. For automatic titration, a 0.1 M HCl

solution was used. For each measurement point, four pressure

ramps from 0 to 400 mbar were performed and the streaming

current was measured. The ζ-potential was calculated with a

Fairbrother–Mastin approach.

Infrared spectroscopy
IRRAS: The IRRA-spectra were recorded on a Bruker Vertex

80 purged with dry air under a fixed angle of incidence of 80°.

The data were collected on a narrow band liquid nitrogen

cooled mercury cadmium telluride (LN-NB-MCT) detector with

a resolution of 2 cm−1. Perdeuterated hexadecanethiol-SAMs on

Au/Ti/Si wafer were used for reference measurements and

1024 scans were taken. To enhance the signal-to-noise ratio, PS

brushes grafted to a Si-wafer coated with 10 nm SiO2, 100 nm

Au and 5 nm Ti as adhesive layer between Au and Si were pre-

pared [46]. For the sample measurement between 900 and

1300 scans have been cumulated, the spectra were recorded

until no water bands could be observed in the spectra. The

absorption band positions are given in wavenumbers  in cm−1.

ATR: PS powder used to prepare the brushes was treated in the

modified reaction solution. After each cycle, the powder was

washed with methanol. Untreated powder was used for refer-

ence measurements. The ATR spectra were recorded on a

Bruker Tensor 27 with Platinum ATR accessory. The data were

collect on a room temperature deuterated L-alanine doped

triglycine sulfate (RT-DLaTGS) detector with a resolution of

4 cm−1. The empty diamond crystal was measured against air as

background. For background and sample 64 scans have been re-

corded.

Supporting Information
Supporting Information File 1
Results of IRRAS measurements on the PS brushes grafted

to Si before and after modification.

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-7-12-S1.pdf]
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