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Abstract. This paper introduces a novel design for a hybrid micromachined contactless
suspension, whose operation is based on combining electromagnetic inductive and electrostatic
actuation. Wirebonded microcoils provide the electromagnetic inductive actuation, while
electrodes patterned on a Si wafer provide electrostatic control. The coil structure and the
electrode structure are independently designed and fabricated, and are finally assembled into
one device by flip-chip bonding. We demonstrate vertical linear positioning of an aluminium
disk-shaped proof mass in a range from 30 to 200 µm based on the coil structure. The electrode
structure is employed to dynamically adjust the sti↵ness components during the operation of
the suspension, to control the tilting in a range from ±1� to ±4�, as well as to control the
oscillation about the vertical axis with a displacement of 37� at about 1.5 Hz frequency.

1. Introduction

This work is continuing the research e↵orts in our group in the field of micromachined inductive
suspensions [1–3] and relates to a more general interest in the micro-engineering community
to develop miniaturised actuators such as micro-gyroscopes and micro-motors, by completely
eliminating the physical contact between the moving parts of these devices. Many of these
devices where the technological solution involves some sort of mechanical contact such as spring
structures, hinges, ball bearings, face a series of drawbacks: limited displacements, decrease in
sensitivity or in the delivered output force. In order to overcome these limitations, levitation has
been employed as a solution to eliminate mechanical contact, therefore to completely eliminate
friction and wear in miniaturised sensors and actuators in a series of applications such as
as micro-inertial sensors [4–7], frictionless micro-bearings [1, 8], bistable switches [9], micro-
accelerator [10], linear-micro-actuator [11], and nano-force sensor [12].

Moreover, the combination of electromagnetics and electrostatics opens new avenues in terms
of device capabilities and performance. If levitation and rotation of micro-objects have been
demonstrated in a relative straightforward manner only exploiting electromagnetic levitation,
by integrating electrodes for electrostatic actuation in the same device, Kraft et al. [10] have
achieved an additional feature, i.e., accelerating micro-objects along a predefined path. Improved
energy performance of a contactless suspension based on combining diamagnetic and inductive
principles has been demonstrated as opposed to employing diamagnetic or inductive suspension
separately [13].
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Figure 1. The hybrid suspension: a)
fully assembled device with the Al proof
mass during operation; b) 3D schematic
of the device identifying the coil and the
electrode structure; c) top view of the
electrode structure identifying each set
of electrodes: 1-suspending, 2-rotating
and 3-tilting electrodes.

We have previously reported micromachined inductive suspensions based on electromagnetic
levitation using 3D microcoils obtained by means of an automatic wirebonder. We have
extensively characterised the performance of these suspensions [2] and we have developed an
analytical model to predict the behaviour as a function of design parameters and input values [1].
In this work, in addition to electromagnetic induction, we employ electrostatics by integrating
a series of electrodes in the suspension structure in order to have direct control on the sti↵ness
components of the device. Significantly increased operational capabilities, i.e., linear and angular
positioning with adjustable dynamics is also demonstrated herewith.

2. The hybrid suspension

2.1. Design and fabrication
The device reported here combines electromagnetic induction and electrostatic actuation and a
comprehensive visual description is given in Figure 1. For each actuation principle a dedicated
structure is designed, namely a coil structure for electromagnetic induction actuation, and
an electrode structure for the electrostatic actuation. The coil structure is similar to those
reported previously [14] and consists of two coaxial solenoidal microcoils obtained by automatic
wirebonding. These coils are wound around 450 µm tall SU-8 structures defined by UV
photolithography. Electrical contacting of the coils is realised via CrAu pads defined on the
Pyrex substrate by metallisation, UV patterning and wet etching. In this work the diameters
of the two coils are: 2000 µm and 3800 µm. As explained in the next section, the role of the
inner coil is to provide levitation of the proof mass, while the role of the outer coil is to provide
stabilisation of the proof mass during the levitation. In this work the inner (levitation) coil has
20 windings and the outer (stabilisation) coil has 12 windings. The wire used here is 25 µm
insulated gold wire.

The electrode structure is fabricated on a Si wafer by sputtering CrAu (20/150nm), followed
by UV photolithography and wet etching. Subsequently, the substrate wafer is etched by deep
reactive ion etching (DRIE) from the backside in order to accommodate the coil structure. In
the final stage, the electrodes are supported by a silicon membrane with a thickness of 40 µm.
The function of these electrodes is to control the vertical and angular actuation of the proof
mass.

In the final fabrication step the electrode structure is mounted on top of the coil structure
and the final device is assembled by flip-chip bonding having the following dimensions: 9.4 mm
x 7.4 mm x 1 mm. For this work we have used a disk-shaped aluminium proof mass with a
diameter of 3.2 mm. Throughout this work we will refer to the very recent results obtained
with a disk-shaped aluminium proof mass with a diameter of 2.8 mm [3] and we will place both
data sets in the context of the theoretical model developed and reported in [1]. In this way we
demonstrate that the experimental data is confirming our theoretically-generated stability map
presented in [1].
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Figure 2. The ex-
perimental setup: a)
schematic and measure-
ment chain; b) Snapshot
of the levitating proof
mass during the experi-
ment.

2.2. Operation of the device
The two coaxial solenoidal coils are biased through a current amplifier (LCF A093R) with square
wave AC signals having a phase-shift of 180�, thus providing stable levitation of a circular
conductive proof mass. The typical rms current values used in this paper range between 100
and 130 mA for a frequency of 9 MHz, whereas the levitation height varies from 30 to 180 µm,
having the top of the electrode structure as reference. A function generator (Arbstudio 1104D)
was used to modulate the amplitude and the frequency of the coil currents. A schematic of the
experimental setup together with the measurement chain is presented in Figure 2.

The ensemble of the electrode structure fulfils several functions: modulates the vertical
actuation, controls the tilting about two horizontal axes, as well as the oscillation about the
vertical axis. When central electrodes (“1” - in Figure 1c and Figure 2a) are energised, the
levitation height and the dynamics of the proof mass are modulated while maintaining the same
amount of current in the coils. The set of electrodes “2” operate according to the variable
capacitance principle and determine the angular oscillation of the proof mass when a voltage
is applied. We control the tilt of the proof mass with respect to two orthogonal axis in the
horizontal plane by biasing the set of electrodes “3”.

A laser distance sensor (LK-G32) with a resolution of 10 nm was used to measure the linear
displacements of the proof mass. The red dot visible in Figure 2b represents the spot from the
laser distance sensor.

3. Interpretation of experimental results

The dynamics of the suspension is governed by the sti↵ness components. For a complete
characterisation of the suspension capabilities, the sti↵ness components must be measured. To
this end, the linear displacements have been recorded simultaneous with the voltages applied on
the respective electrodes.

Figure 3a shows the vertical displacement of the proof mass as a function of the applied
voltage, along with the vertical force. The electrostatic force between two plates that are
oppositely charged is given by the product between the field produced by one of the plates
and the charge on the other. In terms of actual physical dimensions and applied voltage, the
electrostatic force is given by:

F = ✏0✏r ·
A
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where the free space electrical permittivity is ✏0, the relative permittivity for air is ✏r, V is the
applied voltage, A is the overlapping area between the electrodes and the proof mass and h is
the distance between the plates, in this case the vertical displacement given in Figure 3. The
value for the overlapping area A for electrodes “1” is 8.0 · 10�7m2, and for electrodes “3” is
4.3 · 10�7m2. The measurements presented in Figure 3, combined with the analytical model
developed and presented in [1] yield the values for the vertical and angular sti↵ness components,
which are included in Table I, column I, for the proof mass with a diameter of 3.2 mm used
in this paper. As predicted by the theoretical model [1], we observe a consistent increase in
sti↵ness compared to the experimental values reported in [3] when using a smaller proof mass,
with a diameter of 2.8 mm.

In Figure 4 we provide a contextual overview by consolidating the experimental results
obtained in this work using a proof mass with 3.2 mm diameter, as well as the results reported
previously [3] using a lighter proof mass with 2.8 mm diameter, on the same map of sti↵ness
components elaborated using our analytical model presented in [1]. Integrating the electrode
structure o↵ers the possibility to modulate the vertical positioning of the proof mass not only
by changing the current in the coils, but also by applying a voltage to the electrodes, in this

Table 1. Measurement and modelling.

Proof mass 3.2 mm Proof mass 2.8 mm *

Measurement no. I II III IV

Measured sti↵ness
Angular, [Nm · rad�1] 1.1 · 10�8 0.7 · 10�8 0.6 · 10�8 2.1 · 10�8

Vertical, [N ·m�1] 0.040 0.040 0.026 0.026

Modelled sti↵ness**
Angular, [Nm · rad�1] 0.8 · 10�8 0.5 · 10�8 0.4 · 10�8 0.9 · 10�8

Vertical, [N ·m�1] 0.042 0.042 0.024 0.024

Parameters
Levitation height, [µm] 100 70 120 100
Voltage on electrodes “1”, [V] 0 54 0 42
Coil current, [mA] 115 115 115 115

* reported in [3]
** developed in [1]

PowerMEMS 2015 IOP Publishing
Journal of Physics: Conference Series 660 (2015) 012005 doi:10.1088/1742-6596/660/1/012005

4



(a)

89.9°

(b)

52.8°
Figure 5. a) Angular os-
cillation in the horizon-
tal plane around the ver-
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case the electrodes labeled “1”. Using the electrostatic force generated while applying a voltage
on electrodes “1”, the proof mass can be maintained at a certain height even when the current
in the levitation coil is increased, therefore changing the angular sti↵ness of the respective proof
mass. This is demonstrated by applying a voltage of 54 V on electrodes “1” and recording a
levitation height of 70 µm, as opposed to 100 µm for the same current in the coil structure, but
no voltage applied to the electrodes.

The analytical model presented in [1] predicts a very slight change in the vertical sti↵ness
when electrodes “1” are biased and the current in the coils is maintained constant. This is
confirmed by the experimental results obtained here, as well as in [3], and reported in Table
I: the vertical sti↵ness components both with and without applying the additional electrostatic
force are 0.040 N · m�1 and 0.026 N · m�1 for the 3.2 mm and 2.8 mm diameter proof mass,
respectively. The analytical model also predicts that the variation of the angular sti↵ness
depends on the diameter of the proof mass. For the 2.8 mm diameter proof mass the angular
sti↵ness increases upon biasing electrodes “1” (0.9 · 10�8 versus 0.4 · 10�8Nm · rad�1), whereas
for the 3.2 mm diameter proof mass the angular sti↵ness decreases upon biasing electrodes
“1” (0.5 · 10�8 versus 0.8 · 10�8Nm · rad�1). This excellent agreement between the theoretical
predictions and the experiment is synthetically presented in Figure 4.

Figure 5 shows the operation of the device upon biasing electrodes “2” with a voltage of ±10V,
thus creating two phases. The proof mass oscillates with 37� amplitude at 1.5 Hz frequency.
4. Conclusion

This work consolidates our studies on inductive suspensions and together with the results
reported recently [3] confirms the predictions of our linear analytical model presented in [1].
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