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The vertically upward Taylor flow in a small square channel (side length 2 mm) is one
of the guiding measures within the priority program “Transport Processes at Fluidic
Interfaces” (SPP 1506) of the German Research Foundation (DFG). This paper pres-
ents the results of coordinated experiments and three-dimensional numerical simula-
tions (with three different academic computer codes) for typical local flow parameters
(bubble shape, thickness of the liquid film, and velocity profiles) in different cutting
planes (lateral and diagonal) for a specific co-current Taylor flow. For most quantities,
the differences between the three simulation results and also between the numerical
and experimental results are below a few percent. The experimental and computational
results consistently show interesting three-dimensional flow effects in the rear part
of the liquid film. There, a local back flow of liquid occurs in the fixed frame of
reference which leads to a temporary reversal of the direction of the wall shear stress
during the passage of a Taylor bubble. Notably, the axial positions of the region with
local backflow and those of the minimum vertical velocity differ in the lateral and
the diagonal liquid films. By a thorough analysis of the fully resolved simulation
results, this previously unknown phenomenon is explained in detail and, moreover,
approximate criteria for its occurrence in practical applications are given. It is the
different magnitude of the velocity in the lateral film and in the corner region which
leads to azimuthal pressure differences in the lateral and diagonal liquid films and
causes a slight deviation of the bubble from the rotational symmetry. This deviation
is opposite in the front and rear parts of the bubble and has the mentioned significant
effects on the local flow field in the rear part of the liquid film. © 2016 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4939498]

. INTRODUCTION

For interface resolving simulation of two-phase flows, various numerical methods are avail-
able.'™* These encompass nowadays well-established methods such as the volume-of-fluid method,
the level-set method, the front-tracking method, as well as emerging methods such as the lattice Boltz-
mann method. Among other areas of fundamental research, these methods are attractive to study
two-phase flows in microfluidics and micro-process engineering numerically. In such applications,
the gas/liquid or liquid/liquid flows are predominantly laminar and the number of bubbles or drops is
sufficiently small to be computationally manageable, see, e.g., the work of Worner” for a recent review.
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An important point for the assessment of the accuracy of these numerical methods and their further
advancement towards valuable tools for engineering applications is the absence of local experimental
data for detailed validation on practical flow problems. Additional difficulties in many technical appli-
cations are caused by contaminants which may influence or even dominate the behavior of moving
interfaces.

A prototypical problem for two-phase flows in narrow channels is the Taylor flow. It is sometimes
also referred to as bubble-train flow, segmented flow, or capillary slug flow® and consists of a regular
sequence of elongated gas bubbles which almost fill the entire channel cross section (Dumitrescu-
Taylor bubbles’®) and are separated by liquid slugs. Gas-liquid Taylor flow in narrow channels is
of interest in micro-process engineering,”!? catalytically coated monolith reactors,'! material syn-
thesis,'>'* and stimulus of biological cells.'> While many experimental and numerical studies on
Taylor bubbles or Taylor flow consider circular channels, square channels are potentially of larger
technological relevance for certain applications, but are less often studied. There is, however, an
increasing interest to investigate bubble train flow and gas-liquid Taylor flow in square or rectangular
channels experimentally'®2” and by three-dimensional numerical simulations.”=3” Recent reviews
on gas-liquid Taylor flow are provided by Angeli and Gavriilidis,*® Gupta et al.,?° Sobieszuk et al.,*°
and Talimi ef al.,*' and the reader is referred to these articles and the references therein for further
experimental and numerical studies on this subject.

Within the priority programme “Transport Processes at Fluidic Interfaces” (SPP 1506) of the
German Research Foundation (DFG), Taylor bubbles and Taylor flow in a circular and square
mini-channel are proposed as physical benchmark problems for interface-resolving simulation
methods.?”*>* In the work of Marschall et al.,*” a combined experimental and numerical study on a
single Taylor bubble in a square vertical mini-channel is presented. The comparison focused on the
non-axisymmetric bubble shape, where precise profiles were measured in longitudinal cuts in lateral
and diagonal directions by synchrotron radiation in conjunction with ultrafast radiographic imaging.?’
The influence of different numerical methods for interface resolving simulations and different surface
tension force approximations is investigated and, in general, a very good agreement between the four
considered codes and the experimental interface profile is found (especially as concerns the curvature
of the front and rear menisci).>’” However, some differences occurred with respect to the minimum
thickness of the liquid film which separates the bubble from the channel walls. A drawback of this
study is that no experimental data on the local velocity field are available for a comparison.

In the present paper, a similar combined experimental and numerical study as in the work of
Marschall et al.’” is performed but with focus on local features of the velocity field, which is measured
within the liquid phase by micro-Particle-Image-Velocimetry (uWPIV). Such measurements are still
rare, especially within the liquid film. Meyer et al.** provide a detailed overview on related experi-
mental studies in the literature. In contrast to our previous study,’ which dealt with a single Taylor
bubble, Taylor flow is considered in the present paper. The liquid slug length is rather short so that the
Poiseuille velocity profile is not fully developed and there is a notable interaction between neighboring
Taylor bubbles.

As a first goal of our combined experimental and numerical study, we provide quantitative local
velocity field information, e.g., velocity profiles for one particular Taylor flow. Obtaining quantitative
benchmark results with a single computer code is difficult, since the accuracy of the code must be
guaranteed which is hard to achieve for the rather complex Taylor flow in a square channel. Here, we
decided to use three academic in-house codes which differ with respect to the numerical method and
certain aspects concerning the numerical setup (due to code-internal restrictions). For many quantities
like bubble velocity, bubble length, liquid slug length, local bubble radius, and local axial centerline
velocity in the liquid slug, the differences between the three simulation results and also between the
numerical and experimental results are below a few percent. We consider these simulations’ results to
be useful quantities for comparison in future fluid dynamic simulations of Taylor flow. Furthermore,
the numerical and experimental results reveal some interesting phenomena, namely, a local backflow
in the rear part of the liquid film. Such a local backflow in a fixed frame of reference was already found
in the numerical simulations of Quan* who studied the effects of a co-current upward and downward
flow on a single Taylor bubble in a round capillary with a diameter of 3.2 cm. His results show that
the velocity profile in the liquid film is almost independent of the mean velocity of the co-current
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flow. Interestingly, the present results for a square channel show that the axial locations of this local
backflow region differ in the lateral film and in the corner film. To the best of our knowledge, this
behavior has not been reported in the literature so far.

As a second goal, it is demonstrated how the present integrated experimental and computational
study can provide a detailed insight and understanding of this local flow phenomenon. The role of the
experiment was to demonstrate that this feature, which is observed in computational fluid dynamics
(CFD) simulations under idealized conditions (clean interfaces), is not a numerical artifact but is
observed in real Taylor flow. The role of the computations was to provide fully resolved information
on the bubble shape, the velocity field, and the pressure field in the entire Taylor flow unit cell (which
consists of one Taylor bubble and one liquid slug). Only these data— which cannot be obtained in their
completeness nowadays by the even most advanced experimental techniques — provide the informa-
tion to understand in detail the underlying hydrodynamics and to derive criteria for the occurrence of
this phenomenon in practical flow systems.

The paper is organized as follows. Section II gives an overview on the experimental setup and
measurement techniques. Section III presents the numerical counterpart. In Section IV, the experi-
mental and numerical results are compared. In Section V, a physical explanation for the local backflow
in the liquid film is given and the conditions under which it may occur are discussed. The paper closes
with conclusions in Section VI.

Il. EXPERIMENTS

The present experiment considers a co-current upward Taylor flow in a square vertical mini-
channel with cross section 2.076 mm X 2.076 mm and corresponds to scenario “TFSC Small Slug”
in the work of Meyer et al.** The liquid phase is a water/glycerol mixture and the gas phase is air.
Special care has been given to the generation of an almost ideal Taylor flow, where bubbles of identical
volume and shape move with identical velocity and are separated from each other by liquid slugs of
identical length. By a special injection valve combined with an extraordinary compensation pipe, it
was possible to produce a Taylor flow where the standard deviations in bubble length and slug length
are below 3% and that of the bubble velocity is below 2%.**

For accurate pPIV measurements of the velocity in the liquid film, the following procedure is
adopted. To achieve precise optical access without refraction caused by curved interfaces, refractive
index matching (RIM) is used. The glass capillary is surrounded by another (larger) capillary filled
with a mixture of Dimethylsulfoxide (DMSO) and distilled water (volume concentration of DMSO in
the DMSO/water mixture is 95%), see Fig. 1(a). The setup is placed on a compact precision xy-stage
(OWIS, PKTM 100) which is traversed in several steps (e.g., 20 um) to measure the liquid velocity
in the lateral film at different positions. To obtain the velocity profile in diagonal direction, several
points along the diagonal plane are captured (white dots in Fig. 1(b)). The RIM requires a precise
control of the temperature which was set to 20 + 0.05 °C. The liquid density, liquid viscosity, and
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FIG. 1. Cross-sectional view of the experimental test section and setup for the uPIV measurements of the velocity inside the
liquid film: (a) lateral and (b) diagonal.
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coefficient of surface tension for this temperature are p;, = 1197.2 kg/mS, nL = 0.0481 kg/ms, and
o = 0.0624 N/m, respectively. For further details on the experimental setup as well as the instrumen-
tation and measurement technique (including the RIM), see the work of Meyer et al.*

The measured bubble velocity is Ug = 135.9 + 1.9 mmy/s. The corresponding values of the capil-
lary number and Reynolds number are Ca = n .Ug/o = 0.1 and Re = py DyUg/n1. = 7.0, respectively,
where Dy, = 2.076 mm is the hydraulic diameter. The measured values of the total bubble length and
liquid slug length are Lg = 3.26 £ 0.18 mm and Lg = 1.33 + 0.09 mm, respectively, so that the length
of the unit cell is Lyc = Lg + Ls = 4.59 £ 0.27 mm. The gas volume fraction in the unit cell was
measured as € = 0.37 + 0.02. This value was determined by evaluation of 20 images captured by the
high speed camera. The gas volume was evaluated for each image with image processing software
for contour detection assuming rotational symmetry with respect to the channel axis. The numerical
simulations to be discussed below show a slight deviation of the Taylor bubble from rotational sym-
metry. However, this deviation is rather small (cf. Section IV A) so that the error for the estimated
experimental volume fraction is quite low. From the uPIV observations, the liquid film thickness was
estimated at different axial positions. These results and the measured velocity profiles in the liquid
slug and liquid film will be presented and discussed below in Sections IV C and IV D, respectively.

lll. NUMERICAL SIMULATIONS

In this section, the governing equations and the assumptions underlying the numerical simula-
tions are provided. The three computer codes are described in detail in the work of Marschall et al.’’
For this reason, only a brief overview is given in Section III B on the numerical method underlying
each code. In Section III C, the computational setup is described and some global simulation results
are given.

A. General assumptions and governing equations

In the numerical simulations, the gas and liquid phases are considered as two incompressible
immiscible Newtonian fluids with constant density and viscosity. Both phases are separated by an
interface of zero thickness (sharp-interface model). The flow is isothermal and the coefficient of sur-
face tension is constant. The physical properties of the liquid phase and the coefficient of surface
tension are the same as in the experiment (cf. Section II). The values of the gas density and viscosity
in the simulations are pg = 1.3 kg/m® and 5 = 2 x 1073 kg/ms, respectively.

To compute the incompressible two-phase flow, the continuity equation and linear momentum
equation in one-field formulation are solved according to

V-u=0, 9(pu)+V-(puu)=-Vp+V- 1+ pg+fs. (1

Herein, uis the continuous velocity field, T = (Vu + (Vu)T) is the viscous stress tensor, fs = oknsds
is the volumetric interfacial force density due to surface tension, ny is the interface unit normal vector
pointing into the gas phase, k = —Vy - ny is the (total) interface curvature, and 8y is a Dirac distribution
associated with the interface. The set of Equations (1) is complemented by an advection equation for
interface capturing which is method-dependent and, hence, mentioned below.

B. Numerical methods and computer codes
1. FS3D

The volume-of-fluid in-house code FS3D* is based on a finite volume discretization and solves
for the two-phase Navier-Stokes equations along with the phase fraction advection equation adopting
the CGS system of units. The interface is kept sharp during simulations by geometrically recon-
structing and advecting the interface, adopting the Piecewise Linear Interface Calculation (PLIC)
method*’*° and a split advection algorithm.*® The underlying structured Cartesian grid supports stag-
gered variable arrangement with the velocity field being stored on cell faces and the pressure field on
cell centers. The code is massively parallelized using MPI and OpenMP.

The name FS3D means Free Surface 3D. The code is written in Fortran being actively developed
at ITLR (Univ. Stuttgart) and MMA (Center of Smart Interfaces, Technische Univ. Darmstadt). The
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code has been extensively validated, in particular, for hydrodynamics and mass transfer of single ris-
ing bubbles with and without reaction,””>! Newtonian and non-Newtonian droplet collision,’>>? and
for hydrodynamics of falling films,>* in the course of which its discretization practice and numerical
method have proven accurate and reliable.

2. TURBIT-VOF

The TURBIT-VOF code solves the locally volume-averaged two-phase Navier-Stokes equation
in non-dimensional single field formulation for two incompressible Newtonian fluids on a regular
staggered Cartesian mesh by a finite volume method. In each mesh cell containing both phases, the
interface is represented by a PLIC plane of zero thickness. The interface evolution is described by the
advection equation for the liquid volume fraction. This equation is solved by a volume-of-fluid method
which consists of two steps. In the first step, the interface location is geometrically reconstructed by
an in-house PLIC algorithm called EPIRA.> On a 3D structured orthogonal non-equidistant fixed
grid, it reconstructs a planar interface of any orientation exactly. In the second step, the fluxes of
the liquid over the cell faces are computed by an unsplit advection scheme. Time integration of the
momentum equation is performed by an explicit third-order Runge-Kutta method. For approximation
of spatial derivatives, second-order central difference schemes are used. A divergence free velocity
field is ensured at the end of each time step by a projection method. Further details can be found in
the work of Oztaskin et al.*?

3. DROPS

The three-dimensional finite element software package DROPS uses an interface capturing
approach based on a level-set formulation. An adaptive multilevel mesh hierarchy allows for an
efficient resolution of the important flow features on unstructured tetrahedral meshes.

In the level-set method, a scalar function ¢ = ¢(x,t), denoted as the level-set function, with the
property ¢(x,t) > 0if x € Qy(¢), p(x,t) < 0if x € Q(¢), and ¢(x,1) = 0if x € Z(¢), is used to describe
the position of the interface. As in the volume-of-fluid method, this description of the interface by
Eq. (2) is only implicit,

Op+u-Vo=0, t>0, xeQ. 2)

For the spatial discretization of velocity and pressure, the LBB-stable Hood-Taylor finite element
pair is used. To account for discontinuities in the pressure field, the pressure space is enriched using an
extended finite element (XFEM) space and a modified Laplace-Beltrami technique is used to describe
surface tension accurately.’® For the discretization of the level-set function, continuous piecewise
quadratics combined with streamline diffusion stabilization are used. For the time discretization, a
backward Euler scheme is used where the nonlinearities are resolved using (modified) fixed point iter-
ation schemes. For a detailed description, the reader is referred to GroB et al.,’” Bertakis et al.,”® and
GroB and Reusken,* and to the DROPS internet page (http://www.igpm.rwth-aachen.de/DROPS/).
Note that some preliminary results of the DROPS code for this test case are already published in the
work of Meyer et al.**

C. Numerical setup and global results

The setup for the numerical simulations is chosen in accordance with the experimental condi-
tions given in Section II. The Taylor flow is represented by a single unit cell in combination with
periodic boundary conditions in axial direction and no-slip boundary conditions at the four lateral
channel walls, see Fig. 2 for a sketch and the coordinate system. The size of the Taylor flow unit
cell is Dy X Dy, X Lyc with Dy = 2.076 mm and Lyc = 4.59 mm. The volume of the Taylor bubble is
Vi = 7.424 mm? which corresponds to a gas volume fraction in the unit cell of € = V3/V;,. = 0.375.

The initial bubble shape differs from code to code. In FS3D, it is a rectangular cuboid. In DROPS,
it is a cylindrical interface with two half-spheres at the top and bottom with the correct initial vol-
ume. In TURBIT-VOF, a semi-analytical axisymmetric profile is employed>® which is based on the
potential flow solution of Dumitrescu.” The initial conditions for the velocity field are as follows.
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FIG. 2. Sketch of computational setup and coordinate system for Taylor flow in a square channel. The longitudinal cuts
where data are evaluated in lateral and diagonal directions are also presented.

In FS3D, the initial axial velocity is set to the experimental bubble velocity and is uniform in the
entire computational domain. In DROPS, both phases are initially at rest. In TURBIT-VOF, the initial
velocity profile is parabolic within the channel cross section and is axially uniform. The interest in
this paper is on the quasi-steady solution and it is assumed that the initial values have only influence
on the computational robustness and time but not on the solution itself.

To make the pressure field compatible with the periodic boundary conditions, from the physical
pressure p, a part is subtracted which decreases linearly with increasing vertical coordinate and corre-
sponds to the pressure drop per unit cell length.?®3? The periodic part of the pressure p serves as an
unknown and is determined by solving a pressure Poisson equation in order to obtain a divergence-free
velocity field. The linear decreasing pressure part transforms to a constant uniform source term in the
axial component of the Navier-Stokes equation. In DROPS and TURBIT-VOF, this term drives the
flow and its value is adjusted such that, finally, the target value for the experimental bubble velocity
Ug = 135.9 mmy/s is achieved. In FS3D, the volumetric flow rate is prescribed and the pressure drop
adjusts accordingly. While all computations are time-dependent, here only results of the quasi-steady
state are discussed where the bubble velocity, bubble shape, and the liquid superficial velocity are
constant in time. The respective stop criteria for the three codes are as follows. For TURBIT-VOF,
the simulation is stopped when in a sufficiently long time interval the temporal change of the bubble
velocity and the maximum bubble diameter were both below certain limits, namely, 0.1 mm/s and
0.5 um. The DROPS simulations have been stopped when the change of the bubble velocity was
below 1% and the changes of the bubble length and maximal diameter were below 0.5%. The FS3D
simulations have been stopped when the change in bubble rising velocity was below 5 um/s.

The computational domain differs in the three codes. In TURBIT-VOF, it is equivalent to the
unit cell. In FS3D and DROPS, one quarter and one eighth of the channel cross section is considered,
respectively, in combination with appropriate symmetry boundary conditions. For specifying a suit-
able grid resolution, we took advantage from the experience gained by our previous study on the flow
of a Taylor bubble.’” FS3D and TURBIT-VOF use a Cartesian grid and Table I lists the equivalent
number of mesh cells for the entire unit cell. DROPS uses an unstructured locally refined grid and
the resolution given in Table I corresponds to that of a Cartesian grid for the entire unit cell. These
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TABLE I. Computational domain, equivalent grid resolution for the entire unit cell, and integral simulation results for the
three computer codes.

FS3D TURBIT-VOF DROPS Experiment
Domain size Vie/4 Vie Vie/8
Grid 64x64x128 100x 100x 220 64x64x128
Bubble velocity (mm/s) 1359 135.9 135.0 1359+ 19
Bubble length (mm) 3.355 3.328 3.329 326 +£0.18
Liquid slug length (mm) 1.235 1.262 1.261 1.33 £ 0.09
Pressure drop (Pa) 117.8 119.2 121.2
Volumetric flow rate (mm?/s) 377.2 391.6 382.6

grids correspond to a resolution of the minimum lateral film thickness (which is considered to be the
smallest length scale of the flow) by about 3 mesh cells. In addition, simulations on a coarser grid
were performed with TURBIT-VOF and DROPS. Based on these preliminary simulations, the results
presented below for both codes are considered to have a numerical error (in velocity, pressure, and
interface location) of at most a few percent. Due to tremendous computational costs for further (space
and time) resolution increase, we are neither able to accomplish comprehensive mesh-independence
studies nor can we provide sound estimates of convergence rates on the basis of the presented Taylor
flow simulations. In fact, this is the main reason for using three different codes, in order to assess the
accuracy of the simulation results.

Table I lists the values of the bubble velocity Ug, the bubble length Lg, the liquid slug length
Lg, the axial pressure drop along the unit cell, and the volumetric flow rate of the gas-liquid flow. To
quantify deviations of the results, the following procedure is adopted. The relative deviation between
computational results is computed as the maximum absolute deviation from the mean value of the
three codes normalized by the mean value. The relative deviation between experimental and numerical
data is computed as the absolute value of the difference between the mean computational and exper-
imental value, normalized by the experimental value. Table I shows that for all codes, the numerical
values for Ug and Lg are within the experimental uncertainty. The deviation between the three codes
for both quantities is less than 0.5%. Notably, the computed value of Lp is for all codes higher than
the nominal experimental value. The axial pressure drop and the volumetric flow rate have not been
measured. For both quantities, the deviation between the codes is less than 2%. The total superficial
velocity is about J = 88-91 mm/s and the volumetric flow rate ratio is about Vg/(Vg + V) = 0.57.

Fig. 2 shows the locations where quantities are evaluated and compared with experimental data
and the associated local coordinate system. For presenting the results in terms of local profiles, appro-
priate non-dimensional coordinates are introduced. In radial direction, the distance from the channel
axis in lateral and diagonal directions is defined as 7, = rp./Dy and 7p = rp/ Dy, respectively. In axial
direction, the vertical distance from the rear meniscus of the bubble is defined as Zg = zg/Lg, and for
the liquid slug the vertical distance from the bubble front meniscus as Zs = zs/Ls.

For comparison of the location of the backflow regions, in addition to the above base case, one
further simulation is carried out for a higher capillary number where the Taylor bubble is axisym-
metric. This simulation is performed with TURBIT-VOF for the same setup and fluid properties as
given above. Only the pressure drop along the unit cell is increased to 168.2 Pa which results in a
larger thickness of the liquid film. This simulation is, therefore, performed on a coarser grid consisting
of 50 X 50 x 110 mesh cells. The respective quasi-steady simulation results of this case (denoted in
the sequel as comparative case) are as follows: Ug = 293.1 mmy/s, Lg = 3.699 mm, Ls = 0.891 mm,
Ca =0.23, and Re = 15.1.

IV. RESULTS

This section starts with results for the shape of the Taylor bubble. This is followed by a discussion
of the streamlines and the flow within the gas bubble. Finally, a comparison of the measured and
computed velocity profiles in the liquid slug and liquid film is presented. In this section, only the base
case is considered; results of the comparative case will be discussed in Section V.
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A. Bubble shape and liquid film thickness

In the experiment, the bubble radius and liquid film thickness in a horizontal cross section were
not measured directly. Instead, their values were estimated from uPIV observations, however, only
for the lateral cut. The respective values are listed in Table II for the axial positions Zg = 0.25, 0.5,
and 0.75. Also given is the computed bubble radius and liquid film thickness in lateral and diagonal
directions for the three codes. The latter data are obtained by different post-processing procedures. In
FS3D, the profile is extracted from the f = 0.5 isosurface of the liquid volume fraction; in DROPS, it
is obtained from the location where the level-set function is zero; and in TURBIT-VOF, it is extracted
from the geometrically reconstructed interface (set of geometrical centers of the PLIC faces). The
relative difference of the bubble radius in lateral and diagonal directions between the three codes is
below 0.6% for all three axial positions. The relative difference between the estimated experimental
lateral bubble radius and the respective mean value of the three computer codes for the three axial
positions is below 2.7%.

Also given in Table I is the maximum bubble radius and the minimum thickness of the liquid film.
The deviation in the maximum bubble radius between the three codes is less than 0.8%. Experiments
in circular capillary tubes show that the maximum bubble diameter and the minimum liquid film
thickness increase/decrease with increasing bubble length, but become independent from the bubble
length for sufficiently long bubbles.’%®! Recently, Klaseboer et al.®? proposed a criterion for the min-
imum bubble length in circular channels such that “entry and exit effects” are no longer important for
the developed film thickness. Evaluation of this criterion for Ca = 0.1 yields Lp i = 4.8D. While
there is no such criterion for square channels, it is obvious that the present bubble has to be considered
as “short.” Clearly, an expression is missing in the literature which correlates the maximal bubble
diameter not only with Ca but also with Lg, both for circular and square channels. In the absence of
such a correlation, the computed maximum bubble diameter in diagonal direction is compared with
the following experimental correlation of Kreutzer et al.'! for the developed region of long Taylor
bubbles in a square channel,

D
% = 0.7 + 0.5 exp (—2.25Ca"*) . 3)
h

TABLE II. Bubble radius and liquid film thickness (in pm) in lateral (L) and diagonal (D) directions at three different axial
positions. The positions refer to the distance from the bubble rear normalized by the computed bubble length of each code.
Also listed are the maximum bubble radius and the minimum film thickness and the respective axial positions.

Cut ZB FS3D TURBIT-VOF DROPS Experiment
Bubble radius L 0.25 952 961 960 946 + 8
0.50 918 925 922 940 + 8
0.75 824 825 824 847 £ 8
D 0.25 983 991 993
0.50 949 953 954
0.75 839 845 839
Film thickness L 0.25 86 77 78 92 +8
0.50 120 113 116 98 + 8
0.75 214 213 214 191 +£9
D 0.25 485 477 475
0.50 519 515 514
0.75 629 623 629
Extreme value L ZB 0.198 0.173 0.194
Max. bubble radius 959 973 967
Min. film thickness 79 65 71
D ZB 0.273 0.270 0.275
Max. bubble radius 985 991 994

Min. film thickness 483 477 474
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Evaluation of Eq. (3) gives a bubble radius of 958 um. The present numerical results for the maximum
bubble diameter are about 3.3% larger than this value.

The minimal liquid film thickness and the maximum bubble diameter are directly related. Due
to the much smaller dimension of the film thickness, the relative deviation between the codes for this
quantity is much larger than for the bubble diameter. While in diagonal direction the difference in
the minimum numerical film thickness is only about 1%, it is about 10% in lateral direction. This
relatively large error is probably due to poor spatial resolution of this region (about three mesh cells)
which is insufficient to provide high precision results. The deviations for the axial position where the
liquid film is thinnest are about 0.3% and 1.5% of the bubble length for the lateral and diagonal films,
respectively. The smallest minimum film thickness in lateral direction is computed by TURBIT-VOF.
Furthermore, the axial position of the minimum film thickness in TURBIT-VOF is somewhat closer
to the rear meniscus of the bubble than in FS3D and DROPS. This behavior was already observed in
our previous paper on the flow of a single Taylor bubble in a square channel.?’

To compare the computed shapes of the Taylor bubble in more detail, in Fig. 3, axial profiles of
the interface in longitudinal cuts in lateral and diagonal directions are shown. In FS3D, the bubble is
slightly longer than in TURBIT-VOF and DROPS. Nevertheless, the computed bubble shapes agree
very well. This is especially true for the curvature of the front and rear menisci and for the bubble
body. The largest differences occur at the rear part of the bubble at z/ Dy, ~ 0.1-0.3. In this range,
TURBIT-VOF predicts a slightly larger bubble diameter as compared to the two other codes (see the
insets in Fig. 3). The interfacial profiles in Fig. 3 show that there is no “developed” film region, where

2.0
Diagonal Lateral
{—— Fs3D
| - - - TURBIT-VOF
1.5-
< 1.0-
~
m
N
0.35
0'5_ 0.30
0.25
0.20
0.50 045 0.40 045
0.0

‘05 00 05
VD/Dh [-] rL/Dh [-]

FIG. 3. Profiles of the computed Taylor bubble shape in a longitudinal cut in lateral and diagonal directions.
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the bubble diameter and the liquid film thickness are axially uniform. The latter is a common feature of
long Taylor bubbles. In the present case, the Taylor bubble is rather short as the ratio between bubble
length and hydraulic diameter is only Lg/Dy, = 1.6, while the ratio between the volume equivalent
bubble diameter and Dy, is only about 1.17.

From the interface profiles displayed in Fig. 3, the local ratio of the bubble radius in diagonal
and lateral directions is calculated. The axial profiles of this aspect ratio are very similar for all codes
and reveal an interesting result. In the front part of the bubble, namely, in the range 0.19 < Zp < 1,
the bubble radius is larger in the diagonal direction than in the lateral direction so that the cross-
sectional aspect ratio is larger than unity (cf. Table II). The maximum value is about 1.04 and occurs
at Zg = 0.32-0.35. In the rear part of the bubble, i.e., in the range 0 < Zg < 0.19, the value of the
cross-sectional aspect ratio is in contrast less than unity. Thus, at the bubble rear, the bubble radius is
larger in the lateral direction than in the diagonal one. The smallest value of the aspect ratio is about
0.96-0.97 and occurs at Zg ~ 0.09-0.1. This change of the aspect ratio from values larger than 1 at
the bubble front and body to values smaller than 1 at the bubble rear was also observed in the experi-
ments?’ and computations®’ of our previous study on a single Taylor bubble in a square channel, where
the capillary number was similar (Ca = 0.088) but the Reynolds number was higher (Re = 17.0) and
the Taylor bubble was much longer.

Of interest is a discussion of the observed deviation of the bubble shape from rotational symmetry
in context with the literature results for a semi-infinite bubble that displaces liquid from a square
capillary. Kolb and Cerro® performed experiments on the coating of the inside of a square capil-
lary and found that the bubble becomes non-axisymmetric for Ca = 0.1 so that the ratio between the
maximum bubble radius in lateral and diagonal directions becomes less than unity for lower values
of Ca. This result is consistent with the tip asymmetry found by Hazel and Heil®* for the steady
propagation of a semi-infinite bubble into a square channel by a finite-element based direct solu-
tion of the free-surface Stokes equations. The authors argue that this tip asymmetry is caused by the
non-axisymmetric passage of fluid around the front meniscus. In square channels, the fluid tends to

FIG. 4. Computed Taylor bubble shape and contour plot of the (non-dimensional) periodic pressure field p in two different
horizontal cross sections at Zg =0.15 and 0.325 (results of TURBIT-VOF).
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move towards the corners, which offer less resistance to the flow than the thinner regions along the
channel sides. The resulting transverse flows induce a transverse pressure gradient that lowers the
fluid pressure in the corners, where the air-liquid interface moves radially outwards.®*

In view of this, contour-plots of the computed (non-dimensional) periodic pressure field p in a
horizontal cross section are shown in Fig. 4 for two different axial locations (results of TURBIT-VOF).
In the cross section at Zg = 0.325, the pressure at the channel sides is larger than in the corners,
in agreement with Hazel and Heil.** In contrast, in the cross section at zg = 0.15 (i.e., close to the
rear meniscus), the pressure at the channel sides is smaller than in the corners. At each point of the
interface, there is in normal direction a balance between capillary, viscous, and pressure forces. Here,
normal viscous stresses are expected to be negligible. The non-uniform azimuthal pressure distri-
bution in a horizontal cross section is then locally balanced by azimuthally non-uniform capillary
forces. As the coefficient of surface tension is constant in our simulations, this can only be achieved
by a change of the local interface curvature which results in the observed deviation of the Taylor
bubble shape from rotational symmetry. In Section V, it will be shown that the difference between
the maximum bubble radius in lateral and diagonal directions and the axial variation of the bubble
aspect ratio has strong implications on the local flow field in the rear part of the liquid film.

B. Streamlines

Fig. 5 shows streamlines of the flow in a frame of reference moving with the bubble in a lateral and
diagonal cut in combination with a contour-plot of the vertical velocity component in a fixed frame of
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FIG. 5. Streamlines in the frame of reference moving with the bubble and vertical velocity in fixed frame of reference (color
code) in a lateral and diagonal longitudinal cut (results of FS3D).
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reference (results of FS3D). The streamlines within the bubble indicate the presence of three toroidal
vortices. The large central vortex in the body of the Taylor bubble exhibits high upward gas velocities
close to the channel axis and low upward velocities close to the interface. This main central vortex
drives two smaller toroidal vortices at the bubble front and bubble rear. The direction of rotation of
both smaller vortices is opposite to that of the main vortex. The position of the center of the main
vortex differs considerably in the lateral and diagonal cuts. This shows that the flow in the bubble is
not axisymmetric but three-dimensional, especially in the lower part of the main vortex.

In the liquid slug, there is one main toroidal vortex which rotates in the same direction as the main
vortex in the bubble. The occurrence of this recirculation pattern in the liquid phase was postulated
by Taylor® and was experimentally verified by Cox.% Also visible is the dividing streamline, which
separates the liquid slug in two regions, one with recirculating flow in the channel center and one with
bypass flow close to the channel walls.!” The knowledge of the position of the dividing streamline
is important for mechanistic modeling of mass transfer in Taylor flow.!7:7 In the bypass region, the
liquid velocity is low and one can identify in Fig. 5 local areas in the rear part of the liquid film where
the liquid is flowing downwards.

Visualizations equivalent to Fig. 5 were also made for TURBIT-VOF and DROPS. Though the
streamlines and contour lines are similar to those for FS3D displayed in Fig. 5, there are some notable
differences in the location of the vortex centers and the radial position of the dividing streamline.
These differences partly result from the different post-processing tools used by each code to obtain the
streamlines. Furthermore, in the region near the front and rear menisci, the velocities are very small
in the moving frame of reference (from which the streamlines are computed) so that the evaluation
of streamlines becomes inaccurate. This may also explain why the streamlines in these regions are
not closed in Fig. 5.

C. Velocity field in the liquid slug

For a detailed quantitative analysis of the velocity field in the liquid slug, local profiles of
the axial and radial velocities are shown in Fig. 6 at three different axial positions, where also
experimental data are available for comparison. Close to the front and rear menisci, the velocities
show strong axial gradients. Therefore, the numerical profiles displayed in Fig. 6 were interpolated
from the closest computational nodes to the specific respective axial position. The computed profiles
of the axial velocity agree very well in the lateral near wall and corner regions with bypass flow,
where they almost overlap for all three axial heights. Differences in the profiles of the axial velocity
occur, however, in the channel center. These can partly be attributed to the different volumetric flow
rates of the three codes. According to Table I, the volumetric flow rate of FS3D and DROPS is almost
the same whereas the volumetric flow rate of TURBIT-VOF is about 3% larger. The profiles of the
axial velocity of FS3D and DROPS are virtually identical in Figs. 6(b) and 6(c), while close to the
bubble rear a slight difference can be observed in the channel center, see Fig. 6(c). The higher axial
velocity in the channel center computed by TURBIT-VOF (as compared to FS3D and DROPS) in
Figs. 6(a) and 6(b) is consistent with its larger volumetric flow rate. Close to the bubble nose, the axial
velocity in the channel center of TURBIT-VOF is, however, smaller as compared to the other codes,
while the profile is slightly wider, see Fig. 6(c). In summary, the deviation of the computational and
experimental results for the local centerline axial velocity is about 3%—5% for the three considered
axial positions, while the deviation between the codes is less than 3%.

The ratio between the maximum and mean axial velocity in the liquid slug is about 1.9. This value
is lower than 2.096, which is the corresponding value of the fully developed laminar flow in a square
channel. Thus, the liquid slug is not long enough for the velocity profile to become fully developed.
This observation is consistent with experimental results from the literature. Cox®® reports a Poiseuille
velocity distribution at a distance of 1.5 tube diameters ahead of the bubble, while Thulasidas et al.'”
found that the Poiseuille profile within the liquid slug is fully developed for Lg/Dy, > 1.5. In the
present case, the ratio between slug length and hydraulic diameter is only Lg/Dy, = 0.6.

The comparison of the computed lateral profiles of the axial velocity in the liquid slug with the
experimental data yields a rather sophisticated picture. Close to the bubble rear the agreement is quite
good, Fig. 6(a). The same holds for the magnitude of the axial velocity in the channel center close



012109-13 Falconi et al. Phys. Fluids 28, 012109 (2016)

—~
Q
~—

] Diagonal Lateral
19017 =09 ===
] p
9
£ 100+
é .
B FS3D
3“ 504 TURBIT-VOF — — ---
3 ] DROPS
] Experiment a
O: = —— = - =
I 00 05
ro/D, [-] r./D, [
(b) 200 _
]  Diagonal Lateral
150_ ZS=0'5 //(, NG
w 4
E 100+
3 ] \
504 )
0 . 0. _ - - 0
® : 5
rD/Dh ['] r L/ Dh [_]
(c) _
] Diagonal Lateral
150- 2S=0.1 4 7~
/,
E ] / \
£ 100- // D
E , :
S / )
~ 904 )
) &
0 1 o mm R ’ ]

05 00 05
rD, -] riD [

FIG. 6. Lateral and diagonal profiles of the axial and radial velocities in the liquid slug at different axial positions: (a) close
to bubble rear (Zs=0.9), (b) in the middle of the liquid slug (Zs=0.5), and (c) close to the bubble nose (Zs=0.1).

to the bubble nose, Fig. 6(c). In the middle of the liquid slug, the maximum axial velocity in the
experiment is slightly higher than in the simulations, Fig. 6(b). A rather large deviation between the
experimental data and the numerical profiles occurs close to the channel walls, both in the middle of
the liquid slug, Fig. 6(b), and close to the bubble nose, Fig. 6(c). In both regions, the numerical results
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appear to be more reliable than the measured data. Uncertainties in the experimental data arise from
the temperature dependence of the refractive index. Even minor changes in temperature may lead to
optical refractive index mismatch at the channel wall. It is expected that a further development of the
experimental setup (RIM and temperature control) will improve the accuracy of near wall velocity
measurements.

Figs. 6(a) and 6(c) also show profiles of the radial liquid velocity in a lateral and diagonal cut. In
the middle of the liquid slug, the radial velocity is virtually zero; the respective profiles are, therefore,
not included in Fig. 6(b). The radial velocity profiles of all three codes are very similar but differ
slightly in magnitude. Due to the recirculation pattern in the liquid slug (cf. Fig. 5), the radial liquid
velocity is non-zero close to the front and rear menisci. Close to the bubble nose the liquid flows in-
ward (i.e., toward the channel axis), while close to the bubble rear the liquid flow is outward. Figs. 6(a)
and 6(c) show that at both locations, i.e., Zs = 0.1 and 0.9, the magnitude of the radial velocity is only
about 10% of the axial velocity.

D. Velocity field in the bubble and the liquid film

Figs. 7(a)-7(c) show similar velocity profiles as in Fig. 6 but for the bubble region. The respective
axial positions correspond to Zg = 0.25, 0.5, and 0.75. Each velocity profile belongs partly to the
liquid film and partly to the gas flow within the bubble. The exact radial positions of the interface
in the lateral and diagonal cuts can be calculated for each code from the data given in Table II. In
Figs. 7(a)-7(c), the average bubble diameter of the three codes at the respective axial position is
marked by vertical dashed lines.

First, the velocity profiles inside the bubble are discussed. The results of FS3D and DROPS
almost overlap for Zg = 0.25 but deviate by a few percent for Zg = 0.5 and 0.75. TURBIT-VOF pre-
dicts a smaller magnitude of the axial velocity as compared to FS3D. The deviation in the magnitude
of the computed centerline axial velocity between the different codes at the three considered axial
positions is about 1.5%—-5% and is the largest in the bubble nose. These differences are rather large,
given the fact that the bubble velocity in all codes is very similar (the corresponding deviation is only
0.4%). This can be attributed to the fact that the flow inside the bubble is more complex than that in
the liquid slug.

For sufficiently large values of »/ Dy, the profiles in Figs. 7(a)-7(c) correspond to the velocity in
the liquid film (say rp;./Dy > 0.4-0.48 depending on axial position). First, the results for the radial
velocity are discussed qualitatively. In the diagonal cut, the magnitude of the radial velocity is very
small close to the walls and the profile for radial velocity exhibits a horizontal tangent for all three
axial positions. In the lateral cut, the magnitude of the radial velocity close to the wall is larger than
in the diagonal cut and the horizontal tangent exists only for Zg = 0.75, see Fig. 7(a). The profiles for
Zg = 0.25 and 0.5 show that liquid flows towards the wall. This is related to the axial profile of the
bubble shape. Namely, the bubble diameter is increasing as Zg decreases (cf. Fig. 3), and the bubble
pushes liquid toward the wall, where it is redistributed laterally toward the channel corners. This
results in a draining of the lateral liquid film which will be discussed further in Section V.

For the axial velocity in the liquid film, experimental results are available for a comparison and
included in Figs. 7(a)-7(c). The agreement between the three codes and the experimental results is
rather good, both for the lateral and the diagonal cuts. This indicates that the slight differences in the
computed bubble shape have only a minor effect on the flow in the liquid film. For Zg = 0.75 and 0.5,
an upward flow in the liquid film can be observed. For Zg = 0.5, the velocity profile in the liquid film
is linear and of “Couette type” as discussed by Meyer et al.** At Zg = 0.25, there is a local backflow
of liquid in the film, both in the experiment as well as in the three computations. The magnitude of
this backflow is much larger in the diagonal cut than in the lateral cut; see the inset in Fig. 7(c). This
is consistent with the contour-plot of the vertical velocity shown in Fig. 5.

Since this paper considers co-current upward flow, one might conjecture that this local backflow
is related to gravitational forces. However, this is not the case as is checked by a simulation with FS3D
for the same value of Uy but without gravitation forces (g = 0). Also in this case, a local backflow in
the rear part of the liquid film is found.
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FIG. 7. Lateral and diagonal profiles of the axial and radial velocities at different axial positions in the bubble and the liquid
film: (a) Zg=0.75, (b) Zg =0.5, (c) Zg =0.25. The inset graphics in (b) and (c) show the lateral profiles of the axial velocity
close to the wall. For the legend, see Fig. 6(a). The vertical dashed lines denote the average bubble diameter of the three codes
at the respective axial position.

During the passage of a bubble, the local backflow causes a temporal reversal of the sign of the
wall shear stress at a fixed position. This is of importance for heat and mass transfer applications
with Taylor flow in various technical fields. An example in material science is the synthesis of parti-
cles with narrow size-distribution.®® In biology and medicine, lab-on-a-chip applications with Taylor
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flow are of interest for cell stimulus.!® Here, the shear stresses exerted on cells are of importance for
the cell viability.*” In membranes for ultrafiltration, the alternating shear stresses of slug flow are of
benefit for the cleaning and fouling control.”®’! Taha and Cui?*’? performed in this context numerical
simulations with the volume-of-fluid method in the FLUENT code. They considered a single Taylor
bubble in a vertical tube’? (20 mm inner diameter) and in a square capillary? (D, = 2 mm) and stud-
ied among others the wall shear stress distribution. For the square capillary, they found a reversal of
the shear stress in lateral and diagonal directions both for upward and downward flows of the Taylor
bubble. Moreover, the axial location of the wall shear stress reversal was found to be different in the
lateral film and the channel corners. The authors did, however, not discuss the local velocity field in
that region, nor did they give an explanation for the shear stress reversal.

V. ANALYSIS OF LOCAL BACKFLOW IN THE REAR LIQUID FILM

The most interesting result of Section IV is the occurrence of local backflow in the rear part of
the liquid film. This section provides a physical explanation for this feature and gives criteria for its
occurrence.

To investigate the phenomenon in more detail, advantage of the full simulation results is taken and
the three-dimensional flow field is visualized at different locations. Fig. 8(a) shows the bubble shape,
the isosurface of u, = —16 mm/s, and velocity vectors at the horizontal cross sections Zg = 0.17, 0.29,
and 0.52 (results of TURBIT-VOF). The velocity vectors indicate that the flow in the liquid film is
upward at Zg = 0.52 and is downward at Zg = 0.29 and 0.17. From the volume enclosed by the iso-
surface for u, = —0.16 m/s, it is evident that the backflow region in the liquid film is much larger in
the channel corners than at the channel sides. For the two upper horizontal planes, the velocity in the
lateral liquid film is quite small. In contrast, large downward velocities exist in the lowest plane close
to the bubble rear, where the lateral film is the thinnest. The magnitude of the liquid velocity there is
as high as the largest velocities in the corner region (cf. the local profiles of u, in Fig. 10 which will
be discussed below).

The local backflow in the rear part of the liquid film is further illustrated in Figs. 9(a) and 9(b),
where contour-plots of the vertical velocity u, are displayed for those two axial positions where the
liquid film thickness is minimal in diagonal direction (Zg = 0.27) and in lateral direction (Zg = 0.17),
respectively. Both figures confirm that the axial position where u, is minimal is different in both diag-
onal directions (cf. Fig. 8). A detailed inspection of the velocity fields displayed in Figs. 9(a) and 9(b)
and in Fig. 8(a) indicates for Zg = 0.27 a draining liquid flow out of the lateral film into the channel

(b)

u,=-16mm/s u,=-16mm/s

FIG. 8. Illustration of local backflow in the rear part of the liquid film (results of TURBIT-VOF). Visualization of the bubble
shape, the isosurface of the vertical velocity u, = —16 mm/s, and the velocity field in three different horizontal cross sections.
(a) Base case with Ca=0.1 and (b) comparative case with Ca =0.23.
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FIG. 9. (a) Contour plot of the vertical velocity u in one quarter of the cross section at position Zg = 0.27 where the diagonal
liquid film is the thinnest (the red line indicates the interface, every 2nd velocity vector is displayed in x- and y-directions,
results of TURBIT-VOF). (b) Same but for position Zg =0.17 where the lateral film is the thinnest. (c) Interface profiles in
cross section Zg = 0.27 (red solid line) and Zg = 0.17 (blue dashed line) and illustration of the lateral and diagonal liquid film
areas.

corners, in agreement with the numerical study of Hazel and Heil.** At zg = 0.17 close to the rear
meniscus, the flow direction in the liquid film is opposite, i.e., from the corner regions towards the
lateral film.

A useful concept in Taylor flow is a macroscopic material balance of the liquid flow. By consid-
ering a cross section where gas and liquid are present and a cross section through the liquid slug, a
relation between the average liquid velocity and the bubble velocity can be established.®’* In a frame
of reference moving with the bubble, this mass balance leads — under the assumptions of quasi-steady
state and incompressible phases — to the relation

(J — Up)A = [Ur(zg) — Ug] Ar(zp). “4)

Here, Ur(zp) is the average axial velocity in the liquid film in a cross section at a certain axial posi-
tion zg, J is the total superficial velocity, A is the area of the channel cross section, and Ag(zg) =
A — Ag(zp) is the cross-sectional area of the liquid phase. Abiev’* pointed out that Eq. (4) implies that
Ur becomes negative for Ag(zg)/A > J/Ug which corresponds to a local flow reversal in the liquid
film.
For an axisymmetric bubble in a square channel, it is Ag/A = 7TD]23/4D}21 and Eq. (4) yields

2
J - Ut 28

| — = Paw)
4 D}Z1

Uk(zp) = ®)

This relation can be used to compute Ug(zg) from the axial profile of the bubble diameter Dg(zg). In
the present case, the bubble is not axisymmetric and has slightly different dimensions in lateral and
diagonal directions (cf. Fig. 3 and Table II). Here, the main interest is in the local axial velocity u, in
the lateral and diagonal liquid film regions and not in the mean axial velocity Ur. Nevertheless, it is
interesting to evaluate Eq. (5) under the hypothetical assumption that the bubble is axisymmetric, once
with the lateral bubble diameter profile Dy (zg) and once with the diagonal bubble diameter profile
Dy p(zg) from Fig. 3. Given the similar interface profiles for the three codes, the respective curves
for Ur(zp) are very similar, too. Therefore, in Fig. 10, only the curves computed from the interface
profiles of TURBIT-VOF are shown. The figure shows that for both the bubble profile in lateral and
in diagonal directions, there is a region where the predicted value of U is negative which indicates
backflow. In lateral direction, the predicted axial region with backflow is smaller and located at a
lower height as compared to the diagonal direction. These results are consistent with the contour-plot
of the velocity field of u, in Fig. 5 (from FS3D) and the isosurface for u, = —0.16 m/s in Fig. 8(a)
(from TURBIT-VOF). Both figures show that the axial region where u, is negative differs in the lateral
and diagonal cuts.

Also shown in Fig. 10 are local velocity profiles of u, in the middle of the lateral and diagonal
liquid films (results of TURBIT-VOF). The profiles of u, in the lateral and diagonal liquid films at
other radial positions (not shown here) are qualitatively very similar to those displayed in Fig. 10, but
differ in magnitude. Comparing the profiles of Ur and u, in Fig. 10 shows that Eq. (5) predicts the
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FIG. 10. Vertical profile of the mean axial velocity in the liquid film, U, as computed by Eq. (5) from the lateral and
diagonal interface profiles, and vertical profile of the local axial velocity u in the lateral and diagonal liquid films at positions
7L =0.484 and 7#p = 0.592, respectively (results from TURBIT-VOF). The two dashed horizontal lines at Zg =0.17 and 0.27
indicate the positions where the liquid film thickness is the thinnest in lateral and diagonal directions, respectively.

region with backflow in lateral direction quite well. For the diagonal liquid film, however, the local
velocity profile indicates that the region with backflow is actually located somewhat closer to the rear
meniscus than is predicted by Eq. (5). The reason for this discrepancy is probably the drainage of
the lateral liquid film and the associated movement of liquid toward the corners which is visible in
Fig. 9(b) and which is not taken into account by the above simplified analysis.

Nextitis investigated why the locations where Ur is minimal differ so much in lateral and diagonal
directions. By taking the derivative of Eq. (4) with respect to zg, one obtains

OUr(z) _ Us — Ur(zs) 0AK(z8) ©)
0zp Ar(zg) oz
—_———
>0

From Eq. (6) it follows that the axial position where Ur is minimal is identical to the position where Ag
is minimal. For an axisymmetric bubble in a circular pipe, the thickness of the liquid film is uniform in
azimuthal direction so that the axial position where Up is minimal is azimuthally unique. In a square
capillary, the thickness of the liquid film is not uniform within an axial cross section but varies in
azimuthal direction. The liquid film is the thinnest in lateral direction and the thickest in diagonal
direction. To account for this, the area of the liquid film is represented as a sum of two parts, i.e.,
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Arp = AgL + Agp. Here, Apy(zp) is the area of the lateral liquid film and Agp(zp) is the area of the film
in the corner. The experiments by Fries et al.? for capillary numbers in the range 0.0002-0.01 show
that the corners can contribute with about 70% to the total film area. An exact definition of both areas
is, however, difficult. Fig. 9(c) shows the interface profiles in one quarter of the channel cross section
at the two axial positions where the thickness of the liquid film is minimal in lateral and diagonal
directions, respectively. In the present case, both curves intersect at an angle of 18.5° and Agy, and
Agp are defined accordingly.

By splitting the liquid volumetric flux in two parts (i.e., through area Agy or Agp), the liquid
mass balance from Eq. (4) becomes

(J — Up)A = |UrL(zp) — Us| Ar1(zB) + [Urp(z8) — Us] Arp(zB)- (N
Taking the derivative of Eq. (7) with respect to zg gives
oU; oU; 0A 0A
AgL kg Arp —2 = [Us — Urp(zs)] =2 [Us — Urr(zp)] E (8)
—/— 0zB —— 0z N 0zp —_— 0zp

>0 >0 >0 >0

To discuss the implications of Eq. (8), it is useful to consider again Fig. 10 where three axial re-
gions in the liquid film can be distinguished. In region I at the bubble front it is dAgp/dzg > 0 and
0ApL/0zg > O (cf. the interface profiles in Fig. 3) so that the right-hand side of Eq. (8) is positive.
For this region, one may expect from Eq. (8) dUpL/dzg > 0 and OUgp/dzp > 0. In the liquid film
near the bubble rear (region III) it is dAp1/0zp < 0 and d Arp/dzp < 0 so that the right-hand side of
Eq. (8) is negative. In this region, one may expect from Eq. (8) dUg/0zg < 0 and dUgp/dzp < 0.
Of special interest here is region II where dAp/0zg > 0 and 0 Agp/dzp < 0. The magnitude of Ug, 1,
and U p in this region is about one order smaller than that of Ug. Therefore, in the right-hand side
of Eq. (8), the approximations Ug — Ugp(zg) ~ Ug and Ug — Up1(z) = Ug can be introduced which
yields

0 UF,D aA]: 6UF,L

~Up—— ] . )

6zB aZB aZB

This equation establishes a relation between the axial derivatives of the mean velocity in the lateral
and diagonal liquid films. For the present case, the local profile of u, in the lateral film in Fig. 10 indi-
cates that in the entire region Il it is Ugy /dzp > 0. Somewhere within region I, the film area Ap(zp)
takes its minimum value. Thus, within region II there are two sub-regions, one where dAg/dzg < 0
(close to region III) and one where dAg/dzg > 0 (close to region I). In the former sub-region, the
right-hand side of Eq. (9) is negative; thus it follows 0Ugp/dzp < 0 and the vertical derivatives of the
mean velocity in the liquid film in lateral and diagonal directions have opposite signs. This behavior
is clearly reflected by the local profiles of u, in the lateral and diagonal films in Fig. 10. In the latter
sub-region of region II, the right-hand side of Eq. (9) may be positive or negative and a clear statement
about the sign of the derivate dUgp/0zg is not possible.

In summary, it follows by a mass balance of the liquid flow in the corner and at the channel sides
that it is the axial change of Apy. and Agp displayed in Fig. 9(c) which gives rise to region Il in Fig. 10
with different axial locations where u, is minimal (and negative) in lateral and diagonal directions.
The axial change of Apy. and Agp in the rear part of the liquid film is related to the axial variation of
the bubble aspect ratio which is caused by the non-uniform azimuthal pressure distribution within a
cross section (cf. Section IV A and Fig. 4).

An implication of the conjecture from the last paragraph is that the size of region II should
diminish or even disappears for Taylor bubbles with higher capillary number since these are axisym-
metric. This is tested by the comparative simulation, where Ca = 0.23 (cf. last paragraph in Sec. III C).
For this comparative case, the ratio between the maximum lateral and maximum diagonal bubble radii
is 0.99 as compared to 0.98 for the base case. Furthermore, the relative difference between the axial
positions where both maxima occur (i.e., the length of region II) takes a value of Azg/Dy = 0.080
while it was 0.175 for the base case. Fig. 8(b) shows for the comparative case a visualization equivalent
to the one displayed in Fig. 8(a) for the base case (where Ca = 0.1). The maximum local downward
velocity occurs within the isosurface for u, = —16 mmy/s. Both in Figs. 8(a) and 8(b), the isosurface
volume is larger in the corners than in the lateral film. However, in contrast to Fig. 8(a), the isosurface
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forms in Fig. 8(b) a connected tube around the bubble and the axial position of the isosurface is about
the same in the lateral and diagonal films. The downward velocity vectors in Fig. 8(a) increase in
magnitude from the plane at 7 = 0.29 to the one at 0.17 in the lateral film, but decrease in the diagonal
film. In Fig. 8(b), the downward velocity vectors increase in magnitude from the plane at 7 = 0.25
to the one at 0.17, both in the lateral and the diagonal films. Thus, there is no region visible where the
axial gradients of the axial velocity show opposite signs in the lateral and diagonal films. This and
the significant decrease of the size of region II as the capillary number is increased from Ca = 0.1
to 0.23 confirm the conjecture from the previous paragraph. Finally, it is worth to remark that even
for Ca = 0.23 the Taylor bubble is still locally non-axisymmetric. Similar to the base case, the ratio
between the local lateral and diagonal bubble diameter is larger than unity close to the rear meniscus
(with a maximum of about 1.04), while it is smaller than unity at the bubble body and nose (with a
minimum value of about 0.97). Thus, as compared to the base case, this local deviation from rotational
symmetry has decreases as well, as did the global deviation from rotational symmetry (measured by
the ratio of the maximum lateral to maximum diagonal bubble radius).

For practical applications with Taylor flow it may be useful to estimate beforehand whether a
local backflow in the liquid film is to be expected or not. From Eq. (4), it follows that a sufficient
condition for local backflow is

AB,max UB

A

where Ap max 1 the maximum value of the cross-sectional area of the bubble. The first ratio on the
left-hand side of Eq. (10) is always less than unity, whereas the second ratio is always larger than unity.
Both ratios depend on the capillary number. Liu et al.'® performed experiments in capillaries with
circular and square cross section for various fluids and derived a correlation for Ug/J. For circular
channels, the correlation of Abiev®’ for Ug/J (which is valid for a wider range of capillary numbers)
can be used as well while the ratio Ag max/A can be estimated from the correlation of Aussillous and
Quere”” for the liquid film thickness. This allows to test the inequality in Eq. (10) for circular channels.

For square channels, the determination of Ag max/A is more subtle and one has to distinguish be-
tween globally axisymmetric bubbles and globally non-axisymmetric bubbles. According to Kreutzer
et al.,'" the transition between both regimes occurs at Ca ~ 0.04. The latter authors provide a correla-
tion for the bubble diameter in the axisymmetric regime. For the non-axisymmetric regime, they pro-
vide correlations for the bubble diameter in lateral and diagonal directions. For the non-axisymmetric
case, these correlations allow in combination with the geometrical considerations reported in the ap-
pendix of Kolb and Cerro® to estimate AB,max/A and thus to test the criterion in Eq. (10). Alternatively,
one can use the correlation for Ag given by Haase and Bauer?® which is based on the assumption
Dg max:L./ Dn = 0.95. In the present simulations, the latter ratio has a value of about 0.93. Finally, it
is noted that in the present study and in our previous one’’ the bubble is already slightly globally
non-axisymmetric for Ca = 0.1. If the Taylor bubble in a square channel is not globally axisymmetric,
then the local backflow in the lateral and diagonal film will occur in different axial regions as shown
above.

> 1, (10)

VL. CONCLUSIONS

This paper presents a coordinated numerical and experimental study on local flow phenomena
in co-current upward laminar Taylor flow through a small square channel. In the computations with
three academic computer codes, the bubble volume and velocity as well as the size of the Taylor flow
unit cell are chosen in accordance with the experiments (with values of the capillary and Reynolds
number of 0.1 and 7, respectively). For these parameters, the local numerical results for the bubble
radius agree with a deviation of about 0.6%. For the local centerline axial velocity, the results agree
with a deviation of less than 3% in the liquid slug and of less than about 5% for the flow within the
bubble.

Parameters which are sensitive with respect to the numerical method are the minimum thick-
ness of the lateral liquid film and the axial position where the minimum thickness occurs. While
the agreement regarding the bubble shape and the velocity field in the liquid slug and in the liquid
film is reasonably good, the differences concerning the flow in the bubble are larger. From this, one
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can conclude that a reasonable good agreement for the bubble shape and bubble velocity does not
automatically imply a good agreement in the local velocity field within the bubble. The reasons for
the rather large discrepancies concerning the flow within the bubble are yet unclear. Uncovering them
requires detailed experimental data on the velocity field within the Taylor bubble as well as further
computational studies and benchmark data on the local velocity and pressure fields within the Taylor
bubble.

The present experimental and computational results consistently show a local backflow region
in the rear part of the liquid film in the fixed frame of reference. This is associated with a temporal
reversal of the wall shear stress during the passage of a Taylor bubble. This local backflow occurs
at different axial positions in the lateral film and in the corner region. By a detailed analysis of the
full three-dimensional simulation results, it is shown that this novel phenomenon has its origin in a
slight deviation of the Taylor bubble shape from rotational symmetry. Of special importance is the
crossover of the local bubble aspect ratio (defined as the local ratio between the bubble diameter in
diagonal and lateral directions at a certain axial position) from values larger than unity at the bubble
nose and bubble body to values smaller than unity at the bubble rear.

Our study considered two specific values of the capillary number. Future studies may investigate
the existence and size of this local backflow region for capillary and Reynolds numbers varying in
a wider range. So far, approximate criteria are given for the conditions under which the shear stress
reversal occurs in circular and square channels. These and the detailed understanding of the underly-
ing physical mechanism shall be useful for some technical applications with gas-liquid Taylor flow
(e.g., material synthesis). Finally, it is likely that similar phenomena will also occur in channels with
other polygonal cross section, such as trapezoidal or equilateral triangular channels.
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