
Identifying and Harnessing Concurrency
for Parallel and Distributed Network Simulation

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenscha�en

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Philipp Josef Andelûnger

aus Weingarten

Tag der mündlichen Prüfung: 10. Februar 2016

Erster Gutachter: Prof. Dr. rer. nat. Hannes Hartenstein
Karlsruhe Institute of Technology (KIT)

Zweiter Gutachter: Dr. Kalyan Perumalla
Oak Ridge National Laboratory (ORNL)

Zusammenfassung

Da Netzwerke von Computern inhärent parallele Systeme darstellen, können Simu-
lationen von Computernetzen häuûg durch parallele und verteilte Ausführung auf
mehreren Prozessoren substantiell beschleunigt werden. Simulationsmodelle von
Computernetzen können sich jedoch grundlegend in ihrer Eignung für eine Paral-
lelisierung unterscheiden. Obwohl sich bereits eine Vielzahl von vorausgehenden
Arbeiten mit der eõzienten parallelen Ausführung von Netzwerkmodellen befasst
hat, besteht ein Mangel an Verfahren, die Entscheidungen bezüglich der Paralle-
lisierung von Netzwerkmodellen und die Wahl geeigneter Hardware-Plattformen,
Simulatorarchitekturen und Synchronisationsansätze unterstützen. Zusätzlich hat die
breite Verfügbarkeit kostengünstiger Manycore-Hardware das Spektrum möglicher
Realisierungen von Simulatoren über die Möglichkeiten traditioneller CPU-basierter
Ansätze hinaus erweitert.
Diese Dissertation betrachtet die eõziente Ausführung von Netzwerksimulationen

aus zwei Perspektiven: zunächst werden Evaluationsmethoden vorgeschlagen, die eine
Abschätzung des Parallelisierungspotentials von Netzwerkmodellen erlauben. Im
Anschluss werden Ansätze vorgestellt, die das identiûzierte Parallelisierungspotential
mittels moderner Manycore-Hardware eõzient ausnutzen.
Identiûzierung von Nebenläuûgkeit: wir stellen einen analytischen Ansatz vor,

der die durchschnittliche Anzahl an Recheneinheiten abschätzt, die von einem ideali-
sierten parallelen oder verteilten Simulationslauf eines gegebenen Netzwerkmodells
ausgelastet werden können. Die Abschätzung erfolgt auf Basis von Modellwissen
und einfachen Netzwerkstatistiken, die in sequentiellen Simulationsläufen gewon-
nen werden. Da das vorgestellte Verfahren nicht auf automatisierten Methoden wie
der “Critical Path Analysis” beruht, erlauben die Schätzungen ein Verständnis von
Zusammenhängen zwischen den Kommunikationsmustern im simulierten Netzwerk
und der resultierenden Nebenläuûgkeit des Netzwerkmodells. Ein Verständnis dieser
Zusammenhänge kann Modelloptimierungen und die Auswahl geeigneter Simu-
latorarchitekturen unterstützen. Das Verfahren basiert auf einer näherungsweisen
Bestimmung des Simulationsfortschritts unter dem Synchronisationsalgorithmus
YAWNS.Wir legen den Zusammenhang zwischen Critical Path Analysis und YAWNS
dar und beweisen die Gültigkeit unseres Ansatzes sowie existierender Arbeiten, die
unsere Annahmen teilen. Eine Evaluation der Akkuratheit konkreter Schätzungen
wird anhand einer Anwendung des Schätzverfahrens auf Implementierungen dreier
Netzwerkmodelle in bekannten Netzwerksimulatoren durchgeführt.

i

Um zusätzlich zu den Eigenscha�en des untersuchten Netzwerkmodells auch die
zur Durchführung verwendete Hardware und den Synchronisationsansatz zu berück-
sichtigen, stellen wir ein Werkzeug vor, dass die Laufzeit paralleler und verteilter
Simulationen auf Basis sequentieller Simulationen und Hardware-Messungen prädi-
ziert. Das Werkzeug führt eine Simulation einer geplanten parallelen oder verteilten
Simulation durch (“Simulation zweiter Ordnung”). Wir zeigen, dass im Falle von
Netzwerkmodellen mit nicht-trivialen Berechnungen pro simulierter Nachricht eine
angemessen akkurate Prädiktion erreicht wird.
Nutzung von Nebenläuûgkeit: traditionelle Ansätze der parallelen und verteil-

ten Simulation greifen zur Ausführung des Netzwerkmodells auf einen Verbund
von CPUs zurück. In einigen existierenden Arbeiten ergaben sich für Modelle von
Peer-to-Peer-Netzwerken durch Parallelisierung der Simulation nur geringe Lauf-
zeitverbesserungen. Wir analysieren und vergleichen zwei Partitionierungsstrategien
für Modelle von Netzwerken, die auf dem Protokoll Kademlia basieren. Ein Beispiel
für ein solches Netzwerk ist die BitTorrent DHT, eines der größten öòentlichen Peer-
to-Peer-Netzwerke. Mittels einer Partitionierung der Simulation basierend auf der
logischen Topologie des Netzwerkes erreichen wir eine Beschleunigung der Simulati-
on um einen Faktor von 6,0 im Vergleich mit einer sequentiellen Ausführung sowie
eine nahezu lineare Reduktion des Speicherbedarfs pro Rechenknoten.
Da die mittels einer CPU-basierten parallelen und verteilten Ausführung erreichte

Beschleunigung einer Simulation die hierzu erforderlichen Hardware-Ressourcen
nicht in jedem Falle rechtfertigen kann, untersuchen wir die Ausführung von Netz-
werksimulationen auf Graûkprozessoren (Graphics Processing Units, GPUs). Heutige
GPUs sind in der Lage, allgemeine Berechnungen auf hunderten oder tausenden
paralleler Recheneinheiten durchzuführen. Eine im Arbeitsplatzrechner eines For-
schers vorhandene kostengünstige GPU kann dazu dienen, die Wartezeit zwischen
Änderungen an einem Netzwerkmodell und dem Erhalten von Simulationsergeb-
nissen zu verringern.
Zuächst vergleichen und evaluieren wir Architekturen zur GPU-Beschleunigung

rechenaufwändiger Schritte einer CPU-basierten detaillierten Simulation drahtlo-
ser Netzwerke. Obwohl eine einzelne simulierte Nachrichtenübertragung bereits
Möglichkeiten zur parallelen Verarbeitung bietet, zeigen unsere Messungen, dass
eine signiûkante Beschleunigung der Simulation es erforderlich macht, mehrere
Nachrichtenübertragungen aggregiert zu betrachten. Um die Korrektheit der Simu-
lation zu gewährleisten, muss hierbei die Möglichkeit von Interaktionen zwischen
mehreren Sendevorgängen berücksichtigt werden. Unsere Ergebnisse demonstrieren
daher, dass bereits im betrachteten Fall einer GPU-Beschleunigung einzelner Schritte
einer durch eine CPU verwalteten Simulation Synchronisationsmechanismen aus
dem Feld der parallelen und verteilten Simulationen erforderlich sind.
Schließlich stellen wir einen rein GPU-basierten Simulationsansatz vor, in welchem

neben dem Netzwerkmodell auch die gesamte Simulationslogik auf einer GPU aus-
geführt wird. Da auf eine Interaktion zwischen einer CPU des Host-Systems und
der GPU weitestgehend verzichtet wird, eignet sich der rein GPU-basierte Ansatz
auch im Falle von Netzwerkmodellen, deren Simulationsereignisse jeweils nur ge-

ii

ringfügige Berechnungen erfordern. Im Gegensatz zu existierenden Arbeiten werden
in unserem Ansatz die simulierten Knoten zu Gruppen zusammengefasst, welche
jeweils gemeinsam betrachtet werden. Diese Aggregation erlaubt es, die Auslastung
der Rechneneinheiten der GPU gegenüber dem Verwaltungsaufwand der Simulation
abzuwägen, indem der Grad an Aggregation basierend auf Messungen der Simu-
lationsleistung dynamisch zur Laufzeit angepasst wird. Eine Leistungsbewertung
unserer Implementierung des Ansatzes anhand eines Modells Kademlia-basierter
Netzwerke und des Benchmark-Modells PHOLD zeigt eine Beschleunigung der Simu-
lationen um einen Faktor von bis zu 19,5 bzw. 27,5 im Vergleich mit einer sequentiellen
CPU-basierten Ausführung, sowie eine Ereignisrate von bis zu 6,8∗106 bzw. 39,3∗106

Ereignissen pro Sekunde auf einer einzelnen GPU.

iii

Abstract

Since computer networks are inherently parallel systems, simulations of computer net-
works can in many cases be accelerated substantially through parallel and distributed
execution on a set of interconnected processors. Still, simulation models of computer
networks vary signiûcantly in their parallelization potentials. Although an enormous
number of works consider the eõcient parallel execution of speciûc network mod-
els, there is still a lack of guidelines that help in decisions on parallelization and in
the selection of hardware platforms, simulator architectures and synchronization
approaches that enable an eõcient execution. Further, the advent of commodity
many-core devices has broadened the range of possible simulator realizations beyond
the possibilities of traditional CPU-based approaches.
his dissertation addresses the eõcient execution of simulation models of computer

networks from two perspectives: we propose evaluation methods to determine a
model’s parallelization potential and provide simulator realizations that eõciently
exploit the identiûed potentials using modern many-core hardware.
Identifying Concurrency: we propose an analytical approach to estimate the con-

currency of network models, i.e., the number of processors that can be occupied
in an idealized parallel and distributed simulation run based only on model knowl-
edge and simple network statistics from sequential simulation runs. By not relying
on an automated “black-box” method such as critical path analysis, our estimation
approach exposes the relationships between the communication patterns in a simu-
lated network and the resulting concurrency of the simulation. Insights into these
relationships may guide model optimizations and the selection of suitable simulator
architectures. Our estimations approximate the progress of simulations performed
using the well-known synchronization algorithm YAWNS. A�er clarifying the rela-
tionship between critical path analysis and YAWNS, we provide a proof that shows
the validity of the general approach and that substantiates the results of previous
works that share our assumptions. Empirical results on the example of three network
models implemented in popular simulators demonstrate that the estimations are
suõciently accurate to evaluate the models’ parallelization potential, while avoiding
an automated “black-box” analysis of sequential simulation runs.
In order to take into account both the properties of the considered networkmodel as

well as the execution hardware and synchronization approach, we present a tool that
predicts the runtime of parallel and distributed simulations on the basis of sequential
simulation runs and hardware measurements. he tool performs a simulation of an
envisioned parallel and distributed simulation (“second-order simulation”). We show

v

that reasonably accurate runtime predictions are achieved for distributed simulation
runs in the case of network models where simulated messages require non-trivial
amounts of computation.
Harnessing Concurrency: traditionally, parallel and distributed simulations rely

on interconnected CPUs for execution of the simulation model. In some previous
works, models of peer-to-peer networks have been reported to beneût only to a small
degree from parallelization in CPU-based execution environments. We analyze and
compare two partitioning strategies for models of Kademlia-based networks such as
the BitTorrent DHT, one of the largest public peer-to-peer networks. When applying
a partitioning strategy based on the logical topology of the network, we achieve
a simulation speedup of 6.0 compared to a sequential execution and a near-linear
reduction of the memory requirements per execution node.
Since high-performance CPU-based parallel and distributed simulations can con-

sume enormous amounts of hardware resources that may not be justiûed by the
achieved runtime reductions, we consider the acceleration of network simulations
using graphics processing units (GPUs). GPUs have evolved to support general-
purpose computations on hundreds or thousands of parallel processing elements. An
inexpensive GPU in a researcher’s workstation can be used to shorten the feedback
loop between changes to the network model and the retrieval of the correspond-
ing simulation results.
We compare and evaluate architectures for a GPU-based coprocessing of detailed

wireless network simulations. Although each simulated transmission already provides
opportunities for parallel processing, we show that signiûcant runtime reductions
require an aggregated consideration of multiple transmissions in parallel. Since,
in order to maintain correctness, the potential for interactions between multiple
transmissions must be considered, the results show that even a simple GPU-based
coprocessing requires synchronization mechanisms from the ûeld of parallel and
distributed simulation.
Subsequently, we propose a fully GPU-based simulation approach that executes all

simulation logic as well as the networkmodel on a GPU. Due to avoiding most interac-
tion between a host CPU and the GPU, the fully GPU-based approach is applicable to
network models where individual events require only small amounts of computation.
Contrary to existing works, our approach aggregates sets of simulated nodes that are
considered jointly. he aggregation enables the exploitation of a tradeoò between the
utilization of the GPU’s processing elements and simulation overheads by dynami-
cally adapting the degree of aggregation according to performance measurements at
simulation runtime. We conduct a performance evaluation of our implementation
on the example of a model of Kademlia-based networks and the well-known PHOLD
benchmarkmodel. Using a single commodity GPU, we achieve a speedup of up to 19.5
and event rates up to 6.8× 106 for the model of Kademlia-based networks. A speedup
of up to 27.5 and event rates of up to 39.3 × 106 events per second of wall-clock time
are achieved in the case of the PHOLD model.

vi

Contents

Zusammenfassung i

Abstract v

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Contributions . 3
1.2 hesis Outline . 5

I Fundamentals 7

2 Parallel and Distributed Network Simulation 9
2.1 Synchronization of Simulated Time 11

2.1.1 Conservative Algorithms . 12
2.1.2 Optimistic Algorithms . 13

2.2 Performance Evaluation . 13
2.2.1 Taxonomy . 14
2.2.2 Strategies . 16

2.3 Simulator Adaptation . 19
2.3.1 Lookahead . 19
2.3.2 Partitioning . 20
2.3.3 Synchronization . 21

3 Considered Network Models 23
3.1 Peer-to-Peer Overlay Network . 24
3.2 TCP/IP in a Fixed Topology . 26
3.3 Wireless Ad-Hoc Communication . 26
3.4 PHOLD Benchmark Model . 28
3.5 Comparison . 29

vii

Contents

II Identifying Concurrency 31

4 Identifying Concurrency – Introduction 33

5 Analytical Concurrency Estimation Approach 35
5.1 Fundamental Algorithms . 37
5.2 Methodology . 40

5.2.1 Consideration of Fixed Lookahead 40
5.2.2 Relationship between Critical Path Analysis and

Synchronization Algorithms 40
5.2.3 Analytical Concurrency Estimation Model 42
5.2.4 Limited Deviation between ACPA- and YAWNS-Based

Concurrency . 43
5.3 Network Model Analysis . 48

5.3.1 Peer-to-Peer Overlay Network 48
5.3.2 TCP/IP in a Fixed Topology 51
5.3.3 Wireless Ad-Hoc Communication 54

5.4 Evaluation . 56
5.4.1 Sensitivity Analysis . 56
5.4.2 Validation of Estimations . 59

5.5 Towards a Consideration of Variable Event
Processing Times . 62
5.5.1 Reûned Concurrency Estimation Model 62
5.5.2 Impact of Variable Event Processing Times 64

5.6 Discussion . 65
5.7 Conclusions . 66

6 Second-Order Network Simulation 67
6.1 Methodology . 68

6.1.1 Modeling Levels . 68
6.1.2 Prediction Work�ow . 68
6.1.3 Model Components . 69
6.1.4 Hardware Measurements . 70
6.1.5 Second-Order Simulator Operation 71

6.2 Performance Predictions . 73
6.2.1 Experiments . 74
6.2.2 Evaluation . 74

6.3 Discussion . 76

7 Identifying Concurrency – Conclusions 77

viii

Contents

III Harnessing Concurrency 79

8 Harnessing Concurrency – Introduction 81

9 CPU-Based Distributed Simulation of Kademlia-Based Networks 83
9.1 Related Work . 84
9.2 Partitioning Schemes . 85

9.2.1 ID-Based Partitioning . 86
9.2.2 Location-Based Partitioning 87

9.3 Simulator Evaluation . 88
9.3.1 Performance . 89
9.3.2 Synchronization Eõciency . 91

9.4 Conclusions . 96

10 GPU-Based Parallel Simulation 97
10.1 General-Purpose Computation on Graphics

Processing Units . 98
10.1.1 he Graphics Pipeline . 99
10.1.2 NVIDIA CUDA . 100

10.2 Related Work . 101
10.2.1 Hybrid CPU-GPU-Based Simulation 101
10.2.2 Fully GPU-Based Simulation 103

10.3 Hybrid CPU-GPU-Based Simulation of Wireless
Networks . 107
10.3.1 Proposed Simulator Architectures 107
10.3.2 Evaluation . 108
10.3.3 Discussion . 110

10.4 Fully GPU-Based Parallel Simulation
of Kademlia-Based Networks . 110
10.4.1 Proposed Simulation Approach 111
10.4.2 Evaluation . 115
10.4.3 Discussion . 127

10.5 Conclusions . 127

11 Harnessing Concurrency – Conclusions 131

12 Conclusions and Outlook 133

Bibliography 139

ix

List of Figures

2.1 A simulation round using YAWNS: events in {tmin, tmin + 1, . . . , tmax}
create no events with timestamps below tmax and are thus safe to be
executed in parallel. 13

2.2 Taxonomyof themain factors critical to PADSperformance (L: Looka-
head, P: Partitioning, C: Communication, S: Synchronization). . . . 15

2.3 Example of an event precedence graph for a simulation of a network
of three nodes. An edge e1 → e2 signiûes the precedence relation
“event e1 must be executed before event e2”. Dashed rectangles signify
groups of events that can be executed in parallel. he le�-hand graph
shows the precedence structure on the node level, corresponding to
the full concurrency in the network simulation itself. In the right-
hand graph, nodes A and B are assigned to the same logical process,
which is re�ected by a reduction in the number of events that can be
executed in parallel. 15

3.1 A single campus network of the topology deûned in the context of
the NMS program (Figure adapted from [PR11]). 27

3.2 Sequence of events during a transmission in the wireless network
model. 27

5.1 Critical path analysis of a precedence graph with ûxed event process-
ing times. 37

5.2 Synchronization using YAWNS. Events with timestamps ≤ tmax can
be processed safely. 39

5.3 Relationships between concurrency results of ACPA, YAWNS and
our estimation approach. 41

5.4 Full precedence graph. 45
5.5 Reduced precedence graph. 45
5.6 All cases of event visibility and node assignment when considering

events for execution using ACPA on an arbitrary reduced precedence
graph. Leaf nodes: number of events processed in the current execution. 47

5.7 Processing of a reduced precedence graph using ACPA. Dashed lines
indicate the positions of the YAWNS lookahead windows. Boxes
indicate events that are processed by ACPA in a single execution. In
this example, in all but the ûrst execution, ACPA processes three
events per execution. 48

xi

List of Figures

5.8 Upper bound of XYAWNS/XACPA. 48
5.9 Event patterns inKademliaA: lookups are composed of α overlapping

sequences of RPCs. Node 1 performs a lookup with α = 1 and α = 2. 50
5.10 A campus network in theNMS network model (Figure adapted from

[PR11]). 51
5.11 Event patterns in theNMSmodel: a single packet is transmitted from

node 1 to 3 via node 2. Node 3 replies with an acknowledgement. . . 53
5.12 Concurrency of a single transmission in WirelessA. 55
5.13 Sensitivity analysis of KademliaA. 57
5.14 Sensitivity analysis of the NMS model 58
5.15 Sensitivity analysis of WirelessA, varying the number of nodes and

the beacon rate. 58
5.16 Comparison of YAWNS (Y) with ACPA concurrency (C). 60
5.17 Comparison of analytical estimate (Cest) with ACPA concurrency (C). 60
5.18 Expected and observed distribution of the number of events per

node in the active category in each lookahead window for a run of
KademliaA with n = 1 000, λuser = 300, α = 8, and 0% packet loss. . . 61

5.19 Expected and observed distribution of the number of events per node
of the hub category in each lookahead window for a run of the NMS
model with 16 campus networks, 1 node per LAN, and 1Gbps of hub
bandwidth. 62

5.20 Comparison of our analytical estimate (Cest) with ACPA concurrency
(C) of WirelessA. 62

5.21 Distribution of per-event processing time. 65

6.1 Levels of abstraction in modeling of simulations. 69
6.2 Data �ow during performance prediction. 69
6.3 Finite state machine description of the LP behavior in SONSim. . . . 72
6.4 Accuracy of runtime estimations of the KademliaB model. 75
6.5 Accuracy of runtime estimations of the PHOLDmodel. 75
6.6 Accuracy of runtime estimations of the PHOLDmodel with an arti-

ûcial processing time of 100µs per event. 75

9.1 Example of ID-based partitioning of a simulated network into 4
logical processes. Each logical process contains peerswith IDs sharing
a common preûx. 86

9.2 Binary tree structure of the Kademlia routing table of a peer with ID
preûx 101. Dashed lines denote edges leading to leaf nodes not sharing
the peer’s preûx. Each doubling of LPs leads to a cut that displaces
the peers in a single leaf node of the routing table to a remote LP. . . 87

9.3 In the location-based partitioning scheme, peers are assigned to
ranges of latitudes (“discs”, le�) or longitudes (“slices”, middle), or to
regions of small diameter and equal size (right) on the earth’s surface. 88

9.4 Memory usage per LP for a network size of 1 million peers, varying
the number of logical processes and the partitioning scheme. 90

xii

List of Figures

9.5 Simulation runtime for a network size of 1 million peers, varying the
number of logical processes and the partitioning scheme. 90

9.6 An LP determines its EOT by considering the timestamps of the earli-
est possible incoming remote event and of the next locally scheduled
event. If the earliest of these events will trigger the creation of a re-
mote event, given the lookahead τ, the lowest possible timestamp of
the new event is EOT ∶= min(EIT, ti+1) + τ. 93

9.7 Chronological sequence of activities performed by LPA as an example
for waiting times due to synchronization. LPA waits for its EIT to
advance (1.) before executing further events (2.). At ti + 250ms, a
remote event arrives from LPB (3.). 93

10.1 Hybrid CPU-GPU-based simulation architectures 108
10.2 Speedup achieved by GPU-based parallelization of individual signal

processing algorithms compared to sequential execution on a CPU. 109
10.3 Speedup of the proposed hybrid CPU-GPU-based architectures when

compared to sequential execution on a CPU. 109
10.4 Fully GPU-based simulation. 111
10.5 During event execution, newly created events are appended to the

target LP’s FEL in an unsorted fashion. In a subsequent step, the new
events are inserted into the FEL in non-decreasing timestamp order. 113

10.6 To resize LPs, FELs are aligned to the start of their respective memory
area boundaries and subsequently relocated according to the new
boundaries. 115

10.7 Event rate for KademliaC varying the memory access synchroniza-
tion method of the GPU-based simulator variant, the amount of
traõc in the simulated network, and the number of peers. 120

10.8 Event rate for KademliaC varying the simulator variant, the amount
of traõc in the simulated network, and the number of peers. 121

10.9 Event rate of GPU-based simulation of thePHOLDmodel with λ = 100. 122
10.10 Event rate of GPU-based simulation of the PHOLDmodel with λ = 1. 123
10.11 Event rate of GPU-based simulation of the PHOLDmodel with λ =

0.01. 124
10.12 Event rate of GPU-based simulation of the PHOLD model when

varying the number of GPU threads per block. 125

xiii

List of Tables

3.1 Comparison of the considered network models. 29

5.1 Symbols used in algorithms. 42
5.2 Ratio between reûned and basic estimations for KademliaA with

α = 8 and 0% timeouts. 65
5.3 Ratio between reûned and basic estimation results for the NMS net-

work model. 65

9.1 Average distance between remote peers using location-based parti-
tioning. 89

9.2 Percentage of messages to local peers [%] depending on the partition-
ing scheme. 90

9.3 Percentage of time spent in the diòerent execution states during
simulation runtime. 91

9.4 EOT and EIT quality when varying the number of LPs. 95

10.1 Time complexity of the simulation tasks in the GPU-based simulation
approaches, disregarding potential serialization of operations due to
parallel access to data structures by multiple threads. 117

10.2 Symbols used in the time complexity analysis. 117
10.3 Percentage of runtime spent on simulation steps for KademliaC with

dmax = 10s. 122
10.4 Event rates [106 events/s] using ûxed-sized and adaptive LPs to exe-

cute KademliaC. 126
10.5 Event rates [106 events/s] when varying the LP size and the maximum

speedup achieved through the aggregation of nodes in simulations of
the PHOLD with 0% remote traõc. 126

xv

1

Introduction

he recent decades have seen a vast increase in the scale and complexity of networked
systems. he emergence of smart grids, the expected advent of smart cities and
the Internet of hings will further accelerate the deployment of networked systems
spanning cities or entire regions. he design of these large-scale systems is not possi-
ble without relying on simulations to evaluate diòerent approaches, topologies and
protocols. Frequently, networked systems are evaluated using discrete-event simula-
tions, where changes in system state are represented by events occurring at discrete
points in simulated time. However, the runtimes of discrete-event simulations can
be prohibitively large: accurate simulation of highly dynamic systems at realistic
scale entails processing vast numbers of events representing the complex interactions
between, e.g., vehicles, mobile devices or systems in a smart grid. Parallel and dis-
tributed simulation is an approach to reduce simulation runtime by distributing the
computational workload of an individual simulation run to a number of processors
communicating using shared memory or a network. While parallel and distributed
simulation is commonly applied when investigating systems whose state is subject
to continuous changes, eõcient parallel and distributed simulation of systems that
are adequately described by discrete-event models is still regarded as a challenging
problem, even a�er multiple decades of research. he main challenge in parallel and
distributed discrete-event simulation is the synchronization between processors: to
gain meaningful results, a synchronization mechanism must enforce an ordering
of the simulation events so that the results of the parallel or distributed simulation
are identical to those of a corresponding sequential run. In addition, an eõcient
parallelization depends on a suõcient amount of independence in the behavior of
the components of the modeled system, i.e., suõcient numbers of events that can be
processed independently, and on methods for eõcient parallel execution of events
during simulation runtime. We refer to the largest possible number of events that

1

1 Introduction

can be executed in parallel according to a network model’s properties, averaged over
a simulation run, as the concurrency of the simulation.
Due to the diminishing performance improvements of individual processor cores

and the increasing prevalence of many-core devices with hundreds of cores, parallel
and distributed simulation is becoming a key method to enable the evaluation of
large-scale networked systems. However, since the runtime interactions between a
network model and a simulator realization are diõcult to predict, there is still a lack
of guidance for decisions on whether a given model will beneût suõciently from
parallelization to justify the required development eòort.
he research question motivating this dissertation can therefore be stated as follows:

How can the parallelization potential of discrete-event models
of computer networks be estimated and explained?

Since most existing approaches evaluate the parallelization potential of network mod-
els without a consideration of the causes for the respective results, novel evaluation
approaches are needed to gain insights into the factors in�uencing a model’s par-
allelization potential. Such insights may form guidelines for researchers to decide
whether the parallelization of a model is worthwhile, and what simulator realiza-
tion should be chosen.
While some network models exhibit enormous degrees of concurrency, achiev-

ing large performance gains through traditional parallel and distributed approaches
can require signiûcant hardware resources. Even if high simulation performance is
achieved, the ûne-grained computational tasks and the frequent need for communi-
cation between processors associated with the execution of many network models
can render parallel and distributed simulations a comparatively ineõcient use of
large-scale computing resources.
In the past years, the massively parallel computing resources of graphics cards are

increasingly applied to general computations in various scientiûc domains, enabling
the high-performance execution of ûne-grained parallel tasks. Since today, suchmany-
core devices are readily available in commodity workstations, graphics cards can be
utilized to accelerate network simulations without the need to allocate traditional
high-performance computing resources. However, the heritage of graphics card
architecture in computing three-dimensional graphics requires a reconsideration
of simulator architecture in order to eõciently map the highly irregular tasks of
discrete-event simulations to a graphics card’s computing resources.
Hence, our second research question can be stated as follows:

How can computationally intensive network simulations be
executed eõciently on commodity graphics cards?

Whereas large-scale cluster resources in shared use can substantially reduce the overall
time required for large parameter studies, an acceleration using commodity graphics
cards is particularly applicable in exploratory phases of simulation studies, where
a short feedback loop is the prime concern.

2

1 Introduction

1.1 Contributions
he dissertation addresses the challenges of achieving high performance in parallel
and distributed network simulation from two perspectives: we ûrst consider the iden-
tiûcation of concurrency in network simulation models by analytical and simulation-
based methods. Subsequently, we focus on harnessing concurrency in network models
by proposing high-performance simulator architectures and implementations run-
ning on CPU-based distributed systems as well as on GPU-based many-core devices.

Identifying Concurrency

A�er clarifying the key factors determining parallel simulation performance and the
scope of existing evaluation approaches based on a categorization of the performance-
critical factors such as synchronization costs and partitioning strategies, we expand
the set of available performance evaluation approaches.
Analytical concurrency estimation approach: hemost fundamental requirement

for an eõcient parallel execution of a network model is a suõcient degree of con-
currency in the interactions between simulated nodes. However, the relationships
between a simulated network’s topology and communication patterns, and the re-
sulting concurrency, are still not well understood. We present an analytical model to
estimate the concurrency of network models that enables insights into the sources
of concurrency based on an analysis of the communication patterns in the consid-
ered network model. Such insights are not easily obtained through an automated
analysis of simulation traces in a “black-box” fashion, e.g., using critical path analysis.
Our analytical estimations approximate the concurrency results obtainable using the
well-known YAWNS synchronization algorithm that has been used for concurrency
estimation of simulations in existing works. We provide a proof of the fundamental
result that under common assumptions, the results of a concurrency analysis using the
YAWNS algorithm shows only limited deviation from critical path analysis. Although
a broader range of network models should still be considered in future work, we
consider our results to be strong evidence towards the following statement:

he concurrency of network simulations can be estimated at reasonable
accuracy without relying on an automated analysis of event traces.

We study models of three fundamentally diòerent classes of networks: a peer-to-peer
network, IP-based routing in a ûxed topology, and a wireless network. he analysis
exposes the relationships between the communication patterns among the simulated
nodes of the considered network models, and the resulting concurrency.
Simulation-based performance estimation tool: To take into account both the

properties of the network model as well as the simulator realization and execution
environment, we present a tool that predicts the runtime of simulation runs. he
prediction is performed by a simulation of the execution of an envisioned distributed
network simulator (“second-order simulation”) based onmeasurements of the costs of
individual simulation events and of the communication between processors. he tool
allows researchers to vary the conûguration of the envisioned simulation system, e.g.,
the properties of the network model or the simulation scale, to evaluate performance
potentials and limitations prior to parallelization.

3

1 Introduction

Harnessing Concurrency

Subsequently, we propose and evaluate architectures and mechanisms for parallel
and distributed network simulations for execution on diòerent classes of network
simulation studies and hardware environments.
Analysis of partitioning strategies fordistributed simulationsofKademlia-based

peer-to-peer networks: We consider the performance gains by distributed simulation
of a model of the BitTorrent DHT, a widely deployed public peer-to-peer network
based on the Kademlia protocol currently comprised of about 10 million nodes. Some
previous works have reported models of peer-to-peer networks to beneût little from
parallel and distributed simulation due to ûne computational granularity and a need
for frequent communication between processors. However, we show that for the
considered network model, overheads can be reduced substantially using a parti-
tioning approach that follows the logical topology of the network, whereas a spatial
partitioning can moderately decrease the overheads required for inter-processor syn-
chronization. Performancemeasurements in a high-performance cluster environment
show a simulation speedup factor of up to 6.0 compared to a sequential run.
Evaluation of hybrid CPU-GPU-based simulator architectures: We evaluate the

performance of diòerent GPU-accelerated simulator architectures for acceleration of
wireless network simulation. We show that GPUs can be applied to exploit the data
parallelism inmodels where the low-level details of wireless transmissions are re�ected
by computationally expensive signal processing tasks. Since only the signal processing
steps are executed on the GPU, whereas the remaining simulation tasks are handled by
the CPU, substantial performance gains require a aggregated consideration ofmultiple
packet receptions. Since the aggregation approach must maintain the correctness of
the simulation, even a simple GPU-based coprocessing requires mechanisms from
parallel and distributed simulation.
Adaptive fully GPU-based simulation: We propose a GPU-based simulation ap-

proach that performs all steps of discrete-event network simulations on a GPU and
eõciently executes models that lack explicit data parallelism. Fully GPU-based net-
work simulation entails a tradeoò between the utilization of the GPU’s cores and the
incurred simulation overheads. Contrary to previous works, we take this tradeoò
into account by proposing an aggregated consideration of multiple simulated nodes.
he proposed mechanism enables a runtime adaptation of the degree of aggregation
to balance GPU utilization and simulation overhead according to the parametriza-
tion of the network model and the activity in the simulated network. Our results
support the following statement:

A dynamically adaptable aggregation of simulated nodes
substantially reduces the runtime of fully GPU-based network simulations.

In simulations of Kademlia-based peer-to-peer networks, a speedup factor of up to
19.5 in comparison with a sequential execution is achieved on a commodity graphics
card. In simulations of the PHOLD benchmark model, we observed a speedup factor
of up to 27.5. he simulator achieves event rates of up to 39.3 × 106 events per second
of wall-clock time. In contrast to traditional distributed simulations in CPU-based

4

1 Introduction

supercomputing environments in shared use, the proposed simulation approach can
be deployed on consumer GPUs in researchers’ workstations and hence enables low
turnaround times with respect to simulation results.
Parts of the contributions presented in this dissertation have been published in

the following previous works:

– Philipp Andelûnger and Hannes Hartenstein. Model-Based Concurrency Anal-
ysis of Network Simulations. In Proceedings of the ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation, pages 223–234. ACM, 2015.

– Philipp Andelûnger and Hannes Hartenstein. Exploiting the Parallelism of
Large-Scale Application-Layer Networks by Adaptive GPU-based Simulation.
In Proceedings of the Winter Simulation Conference, pages 3471–3482. IEEE,
2014.

– Philipp Andelûnger, Konrad Jünemann, and Hannes Hartenstein. Parallelism
Potentials inDistributed Simulations of Kademlia-based Peer-to-PeerNetworks.
InProceedings of the Conference on Simulation Tools andTechniques, pages 41–50.
ICST, 2014.

– Philipp Andelûnger and Hannes Hartenstein. Towards Performance Evaluation
of Conservative Distributed Discrete-Event Network Simulations Using Second-
Order Simulation. In Proceedings of the ACM SIGSIM Conference on Principles
of Advanced Discrete Simulation, pages 221–230. ACM, 2013.

– Philipp Andelûnger, Jens Mittag, and Hannes Hartenstein. GPU-Based Ar-
chitectures and heir Beneût for Accurate and Eõcient Wireless Network
Simulations. In Proceedings of the International Symposium on Modeling, Analy-
sis and Simulation of Computer and Telecommunication Systems, pages 421–424.
IEEE, 2011.

1.2 Thesis Outline
he dissertation is structured as follows: in Part I, we ûrst give a brief overview of
parallel and distributed discrete-event simulation. We propose a simple taxonomy
for performance evaluation approaches in the context of parallel and distributed
simulation and discuss related work. Since high simulation performance can require
an adaptation of properties of the simulator to the considered network model, we
discuss existingwork on simulator adaptation. Part I concludeswith a characterization
and comparison of the speciûc network models that will serve as examples in the
remainder of the dissertation.
In Part II, we propose methods to evaluate the parallelization potential of network

models. We present an estimation approach that determines the number of processors
that can be occupied by a parallel or distributed simulation of a given network model
based only onmodel knowledge and basic network statistics obtained from sequential

5

1 Introduction

simulation runs. We provide a proof that shows the validity of the estimation approach.
he estimation accuracy is evaluated empirically on the example of three network
models. We detail the steps towards a reûnement of the estimation approach and
discuss the eòects on the estimation results. Subsequently, we present a simulation-
based tool that predicts the runtime of parallel or distributed simulations based on a
simulation trace generated in a sequential simulation run and on measurements of
the execution environment. he prediction accuracy is evaluated by a comparison
with measurement results of simulations on physical hardware.
In Part III, we propose methods for eõcient parallel and distributed execution of

network simulations. First, we analyze and evaluate two partitioning strategies for
distributed simulation of one of the largest existing peer-to-peer networks and show
that the simulation runtime can be reduced substantially using a partitioning strategy
that follows the logical topology of the peer-to-peer network. Subsequently, we study
two approaches to accelerate network simulations using modern graphics processing
units (GPUs): ûrst, we propose architectures for accelerating a traditional sequen-
tial simulator using GPU-based execution of computationally expensive simulation
tasks. Finally, we propose an approach for fully GPU-based execution of network
simulations without the need for a CPU-based management of simulation tasks. he
approach is evaluated using a comparison of its time complexity with existing works
and measurements of simulation performance.
Chapter 12 provides conclusions from our results and sketches directions for fu-

ture work.

6

Part I

Fundamentals

7

2

Parallel and Distributed Network
Simulation

A frequent goal of researchers and engineers is to gain an understanding of prop-
erties of a real-world or envisioned system. If the system in question is a computer
network, the relevant properties may for instance be the maximum throughput in
a given network topology, the time required to route a packet between two nodes,
or the scalability of a novel network protocol. To determine the desired properties,
a number of evaluation methods present themselves [Law14]: if the network under
study already exists or can be constructed with tolerable eòort, it is possible to per-
form experiments on it directly by triggering the relevant behavior and conducting
measurements of the desired properties. If the topology of the network under study
and the behavior leading to the desired property are suõciently simple, it can be
possible to construct an analytical model that enables a mathematical derivation of
the desired properties. In many cases, however, the network under study does not yet
exist, is expensive to construct and, due to its complexity, deûes analytical modeling.
Such networks under study are typically evaluated using simulation. Averill Law
deûnes the term simulation as follows: “In a simulation we use a computer to evaluate
a model numerically, and data are gathered in order to estimate the desired true
characteristic of the model.” [Law14] he behavior of computer networks is usually
described adequately by simulation models that involve a notion of time, that contain
probabilistic components, and that change their state at discrete points in simulated
time. hese properties characterize the class of discrete-event models. An event is an
“instantaneous occurrence that may change the state of the system” [Law14].
An event is represented by two elements: a timestamp specifying the event’s point

of occurrence in simulated time, and a code segment referred to as an event handler
that performs the required changes in system state. For instance, an event may

9

2 Parallel and Distributed Network Simulation

increment a counter representing the number of messages received by a node in a
simulated network. In addition, an event may schedule new events to be executed
at a later point in simulated time.
A discrete-event simulator performs the task of executing the events in a simulation

in chronological order of their occurrence. In the simulator, the events to be executed
are held in a data structure called the future event list (FEL). he task of executing
events in timestamp order is performed by iteratively removing the earliest event
from the FEL and executing the event by calling its event handler.
A discrete-event simulation model of a computer network (network model) typically

includes the following elements:

– Adescription of a static or dynamic network topology, i.e., of the links between
the nodes in the network. Depending on the modeling detail, the maximum
throughput of each link is speciûed, while the latency of each link or each mes-
sage passing over a link is given as a constant value or drawn from a probability
distribution.

– An implementation of one ormore network protocols that govern the behavior
of the nodes. he protocols are implemented in the form of event handlers
that are scheduled to be called on the arrival of a message at a node or a�er a
certain period of simulated time has passed. For reasons of development cost
or simulation performance, the protocol implementations may abstract from
details of the protocol speciûcation or of a reference implementation.

– An implementation of the behavior of one or more applications. he applica-
tions rely on the functionality speciûed in the implemented protocols.

An initial set of events is inserted into the FEL during initialization of the simulation.
All further behavior of the network model is induced by the initial events and new
events scheduled during simulation.
he complexity and scale of a realistic network model translates to immense com-

putational demands and huge memory requirements to execute the simulation, ren-
dering some simulation studies prohibitively expensive due to the large simulation
runtimes, and others infeasible due to memory constraints.
Frequently, to study the sensitivity of a network model’s behavior to a range of

parameters, simulation studies involve multiple executions of the simulation model
under various parameter combinations. Since most simulations include probabilistic
components, additional repetitions are required to achieve an acceptable degree of
conûdence in the results. Hence, a simple way to reduce the overall time required for
a simulation study is to distribute the required executions of the model to a number
of processors (”Multiple Replications in Parallel“, MRIP [EMP97]). Since the separate
executions can be processed independently, an interaction between processors is
required solely to aggregate the results of all executions. However, MRIP does not
reduce the runtime and memory requirements of individual model executions.
Individual discrete-event model executions can oòer substantial potential for par-

allelization as well. In fact, Le Boudec considers concurrency to be an inherent

10

2 Parallel and Distributed Network Simulation

property of simulations: “A ûrst task of a simulation program is to simulate paral-
lelism: several parallel actions can take place in the real system, and in the program,
they are serialized.” [LB10].
Parallel and distributed simulation (PADS) describes mechanisms to distribute

the computational workload of individual model executions to a set of processors
interconnected using shared memory or a network [Fuj01]. Hence, PADS can be seen
to reverse the serialization of the parallel actions of the modeled system. PADS can
reduce both the runtime and memory consumption of individual model executions.
Similarly to parallel and distributed computing in other domains, one of the challenges
of PADS is to maximize the computational throughput by ûnding a partitioning of the
networkmodel that balances the computational workload evenly between the available
processors. Contrary to the use of the term inmathematics, in the PADS literature, the
term partition refers to only one individual segment of a partitioned network model.
We additionally use the term logical process (LP) to refer to a partition of a network
model together with the simulator instance managing its execution. he interactions
between nodes simulated in separate LPs are re�ected by the exchange of events in
the form of messages between LPs transferred via shared memory or a network. We
subsume these two communication mechanisms under the term interconnect.
In PADS, determining a suitable partitioning can be particularly diõcult due to

the potentially highly dynamic behavior of the simulated entities, which may require
dynamic adaptations of the partitioning strategy. An additional challenge is given
by the requirement for maintaining a consistent behavior of the simulated entities
with respect to simulated time. In other words, it must be ensured that the results
of a parallel or distributed simulation correspond to those of a sequential execution
on a single processor. For instance, the observed behavior of a simulated node may
diòer substantially depending on the ordering of incoming messages. he need for
a correspondence between the results of a sequential simulation run and a parallel
or distributed run is equivalent with the requirement for an execution of all events
pertaining to an individual simulated node in non-decreasing timestamp order. In the
literature, this requirement is referred to as the local causality constraint [Fuj01].

2.1 Synchronization of Simulated Time
here are two fundamental classes of synchronization algorithms that ensure the
correctness of PADS results. Conservative algorithms guarantee a non-decreasing
timestamp order previous to each event execution, whereas optimistic algorithms
detect violations of timestamp order and subsequently perform rollbacks to a pre-
vious correct simulation state.
A survey of the literature on synchronization algorithms, on which the following

overview is based, is given by Fujimoto [Fuj01].

11

2 Parallel and Distributed Network Simulation

2.1.1 Conservative Algorithms

Conservative synchronization algorithms adhere to the local causality constraint by
ensuring a priori, i.e., prior to the execution of each event, that the execution of the
event does not create the possibility of a violation of timestamp order. Events for which
violations can be ruled out are called safe events. Identifying safe events eõciently is
the main challenge in the design of conservative synchronization algorithms.
he earliest well-known ûrst synchronization algorithm was described in publica-

tions by Bryant [Bry77], and Chandy and Misra [CM79] and is commonly referred
to as the Chandy-Misra-Bryant (CMB) algorithm. In CMB, each LP owns queues
that each hold the events that arrive from one of the remote LPs in “ûrst-in ûrst-out”
(FIFO) order. Events both created locally and to be executed locally are also inserted
into a FIFO queue. Since events are assumed to be sent in timestamp order and since
this order is assumed to be maintained by the interconnect, the events in all FIFO
queues are in non-decreasing timestamp order. Hence, the timestamp of the last
received event in each FIFO queue serves as a lower bound for the timestamps of any
event received from the LP associated with the queue. Now, each LP can calculate the
minimum of the last received timestamps in all of its FIFO queues to determine a
lower bound on the timestamp of any further event received by another LP (earliest
input time, EIT [BT00]). All events in the local queues with timestamps lower than
the EIT are safe and can therefore be processed in timestamp order without the risk
of a violation of the local causality constraint. If the EIT does not render any events
safe, the LP blocks until more events are received. Without further mechanisms,
CMB will frequently create deadlocks: if there is a cycle of empty FIFOs and the
timestamps of the last received events in the FIFOs are too small to allow any LP to
execute further events, the simulation cannot proceed. Deadlocks can be avoided
by exchanging null messages containing the earliest possible timestamp of an event
created by one LP to be executed in another LP. he timestamp in a null message
is the sum of the earliest possible timestamp of an event received by an LP and the
minimum timestamp delta between an event and its creation. his minimum times-
tamp delta is called the lookahead τ and must be determined based on knowledge
of the network model. CMB with the addition of null messages is frequently called
the Null Message Algorithm (NMA). Both CMB and NMA are asynchronous algo-
rithms in the sense that the LPs independently alternate between waiting for events
to become safe and the processing of events.
Under synchronous algorithms, the LPs alternate in lockstep between EIT cal-

culation and the processing of events. A well-known synchronous algorithm is
YAWNS [NMI89, Nic93] (cf. Figure 2.1): before events are processed, the global
minimum timestamp tmin of all events in the simulation is determined. he sum
tmax = tmin + τ of the global minimum and the lookahead is the earliest possible
timestamp of a new event created by any event in the simulation. Hence, all events
in the lookahead window {tmin, tmin + 1, . . . , tmax} are safe to be processed. Now, each
LP executes all events in the lookahead window in timestamp order before the next
lookahead window is calculated.

12

2 Parallel and Distributed Network Simulation

Figure 2.1: A simulation round using YAWNS: events in {tmin, tmin+1, . . . , tmax} create
no events with timestamps below tmax and are thus safe to be executed in parallel.

2.1.2 Optimistic Algorithms

Since the remainder of the thesis focuses on conservative synchronization, we give
only a brief sketch of optimistic synchronization algorithms. he main idea of op-
timistic synchronization is to allow for violations of the local causality constraint,
but to perform rollbacks of the simulation to restore correctness a�er a violation. A
well-known optimistic algorithm is TimeWarp [Jef85]: each LP creates periodic check-
points of the simulation state. If an LP receives an event with a lower timestamp than a
non-empty set of previously executed events, the LP restores its state to a point before
the execution of the set of erroneously executed events. Since the erroneously executed
events may have created new events for remove LPs, so-called anti-messages are sent
to these LPs to delete the erroneously created events. To limit the amount of memory
required for checkpoints, the lower bound of the timestamp of a rollback is calculated
periodically. All checkpoints created earlier than this lower bound can be discarded.
Optimistic synchronization can performbetter than conservative synchronization in

cases where violations of the causality constraint can be ruled out for only small ranges
in simulated time, but where actual violations occur only infrequently. In these cases,
small lookahead values lead to slow progress using conservative synchronization. On
the other hand, optimistic synchronization requires the simulator engine to store
suõcient data so that a previous model state can be recovered. Hence, optimistic
synchronization can incur substantial memory requirements. Substantial reductions
in the memory requirements of optimistic synchronization and further performance
increases are possible using reversible computing [CPF99, Per13].

2.2 Performance Evaluation
he beneûts of PADS vary immensely depending on the network model and the
simulator realization. Due to the complex interactions between the behavior of the
network model during simulation runtime and the mechanisms used for communica-
tion and synchronization between the processors executing the simulation, estimating
the performance of parallel and distributed simulations is a diõcult task that has
been the focus of a substantial body of research.
A particular challenge is given by the fact that simulation is typically applied in cases

where the behavior of a system cannot be easily predicted analytically. Hence, since
the runtime behavior of the model can strongly aòect the simulation performance,
predicting the simulation performance becomes diõcult as well.

13

2 Parallel and Distributed Network Simulation

2.2.1 Taxonomy

A multitude of performance estimation and evaluation approaches have been pro-
posed, each focusing on a subset of the factors determining the observed performance
of a real-world execution of a simulation model. In the following, we will give an
introduction to the key performance-critical factors, categorizing previous works in
the ûeld of performance evaluation according to the considered subset of factors.
We motivate our focus on sets of performance-critical factors with the observation

that real-world networked systems are highly parallel and work in real-time. Hence,
in theory it should be possible to simulate these systems in real-time by imitating
the parallelism that is inherent in the real-world systems. However, the reported
beneûts of PADS vary immensely. In some cases, a large speedup compared to a
sequential execution was achieved [PFP04], while in other cases there were only
modest performance gains or runtime even increased a�er parallelization [QRT12].
hese results raise the question: if the modeled system itself contains high amounts
of parallelism, why is the parallelism not exploited by PADS?
To approach this question, we ûrst distinguish between three key metrics that

describe diòerent aspects of PADS performance andwhichwewill return to repeatedly
throughout the remainder of the thesis:

– Speedup is the ratio between the execution time of a sequential simulation run
and a parallel or distributed simulation run. It is in�uenced by the network
model, the synchronization algorithm, the simulator implementation, and the
execution hardware.

– Parallelism is the measured average number of events executed in parallel in a
parallel or distributed simulation run.

– Concurrency is the average number of events in a simulation run that can be
executed in parallel, assuming an unlimited number of processors and no
costs for synchronization and communication between logical processes. he
concurrency is a property of the network model and scenario conûguration
and forms an upper bound for the parallelism in a simulation run.

he distinction between parallelism and concurrency is made in analogy to the use
of the terms in the literature on so�ware engineering. For instance, Briot et al. describe
concurrency as “referring to the non-sequential semantics of a program”, and paral-
lelism as “referring to the actual implementation of a concurrent system” [BGL98].
Note that in contrast to the so�ware engineering domain, where the terms are used
in a more qualitative sense to refer to aspects of so�ware systems and their execution,
we deûne both concurrency and parallelism as speciûc measurable quantities.

To enable a more ûne-grained categorization of performance evaluation approaches,
we propose a taxonomy of the main factors that determine PADS performance (cf. Fig-
ure 2.2), tracing the properties of the network model itself (the root node of the tree)
to the measured or estimated performance of a full simulation run (the leaf node
on the deepest level of the tree).
he literature has focused on the performance-critical factors depicted in Figure 2.2:

14

2 Parallel and Distributed Network Simulation

Figure 2.2: Taxonomy of themain factors critical to PADS performance (L: Lookahead,
P: Partitioning, C: Communication, S: Synchronization).

Figure 2.3: Example of an event precedence graph for a simulation of a network of
three nodes. An edge e1 → e2 signiûes the precedence relation “event e1 must be
executed before event e2”. Dashed rectangles signify groups of events that can be
executed in parallel. he le�-hand graph shows the precedence structure on the node
level, corresponding to the full concurrency in the network simulation itself. In the
right-hand graph, nodes A and B are assigned to the same logical process, which is
re�ected by a reduction in the number of events that can be executed in parallel.

1. Lookahead: Under a conservative synchronization algorithm, in order to ad-
here to the local causality constraint, only safe events are executed. Depending
on properties of the network model, it may be suõcient to determine a global
and constant minimum timestamp delta between an event and its creation and
choose this value as a ûxed lookahead. In other cases, the lookahead must be
determined dynamically for eõcient simulation. Limited lookahead can restrict
the portion of the concurrency of a network model that can be exploited in a
simulation run.

2. Partitioning: Given a limited number of processors to perform the simulation
on, sets of nodes in the network must be assigned to logical processes (LPs),
each handling a segment of the simulated network. Partitioning the network
to n LPs introduces two limitations with respect to the network model’s con-
currency. First, since only a maximum of n LPs can execute events in parallel,
the maximum number of parallel events is n. Second, as events in each LP
are executed in timestamp-order, previously independent events are given a

15

2 Parallel and Distributed Network Simulation

sequential order to be followed in the simulation. We can model the changes in
the number of parallel events by additional edges in an event precedence graph
(cf. Figure 2.3) that describes the order between events that must be maintained
during execution to guarantee the correctness of the simulation. he impact of
the partitioning on the precedence graph and the resulting number of parallel
events can be in�uenced by the number of LPs chosen and the strategy by
which nodes are assigned to LPs. Event precedence graphs are considered in
more detail in Chapter 5.

3. Communication: Simulatedmessages crossing LP boundaries require physical
communication between LPs. In parallel simulations using shared memory,
physical communication takes the form of synchronized accesses to memory.
he amount of inter-LP communication is dependent on the chosen partition-
ing strategy. Hence, all vertices containing the factor C in Figure 2.2 also contain
the factor P.

4. Synchronization: Synchronization is required to maintain the causal relation-
ships between nodes simulated in diòerent LPs. here is a dependence of the
costs of the synchronization algorithm on the partitioning strategy and on the
number of LPs.

he remainder of this section provides an overview of existing work on performance
evaluation of PADS, categorizing the approaches by the considered performance-
critical factors.

2.2.2 Strategies

Measurements

A wide variety of works study the performance of PADS by benchmarking simulation
runs on physical hardware. Measuring the runtime of a simulation run considers the
eòects of the model partitioning, the costs of communication and synchronization, as
well as the available lookahead ({P, L,C , S}). Many works in this category focus on
the impact of the choice of synchronization algorithm (e.g., [RJD89, KY91, BRA95]).
While benchmarking results can accurately represent the simulation performance on
a given hardware platform, the measured runtime is aòected by all of the performance-
critical factors. Hence, it can be diõcult to generalize measurement results.
To isolate the impacts of the costs for synchronization, the Ideal Simulation Protocol

(ISP) [JB96, BT00] enables performance measurements while excluding synchroniza-
tion costs. ISP requires two simulation runs: in the ûrst run, a trace is generated that
contains the timestamp ordering of all events. In the second run, the information of
the trace can be used to execute all events in non-decreasing timestamp order with-
out resorting to a traditional conservative or optimistic synchronization algorithm.
Blocking of LPs is required only when the earliest next event is yet to be created or
is still being transferred over the interconnect. Hence, the second simulation run is
performed with only minimal costs for synchronization. When comparing the simu-
lation performance under a traditional synchronization algorithm with ISP, the costs

16

2 Parallel and Distributed Network Simulation

for synchronization can be studied in isolation. Simulation studies using ISP compare
simulation runs under the performance-critical factors {P, L,C} with runs under
the factors {P, L,C , S}. De Munck et al. [DMVB13] applied ISP to study the costs of
conservative synchronization algorithms in the context of modern hardware environ-
ments. By studying two diòerent simulation models and various traditional and novel
variants of the null message algorithm, their results show the large dependence of
PADS performance on the interaction between the simulation model and the synchro-
nization algorithm, in particular with respect to the null message sending strategy.

Analytical Modeling

While a detailed analytical description of the performance of a full simulation run on
physical hardware is usually unattainable, analyticalmodeling can still provide insights
into the impact of isolated performance-critical factors or give coarse indications
of the expected performance.
Critical Path Analysis is a method that processes an event precedence graph to

determine the path containing the events that must be executed in order, i.e., that
cannot be executed concurrently. If no weights are assigned to the vertices of the graph
representing events, the sum weight of the vertices represents the minimal number
of event execution iterations that must be performed to complete the simulation. If
this number is divided by the total number of events in the simulation, we arrive at
the concurrency of the network model in isolation, i.e., {} in Figure 2.2. Traditional
critical path analysis assumes can be considered to assume suõcient lookahead to
enable optimal synchronization between logical processes. In Chapter 5 we give an
algorithmic description of critical path analysis and propose a variant that assumes
a conûgurable ûxed lookahead value.
Liu et al. [LNPP99] performed micro-benchmarks on physical hardware and per-

formed back-of-the-envelope calculations of the expected performance of parallel
simulations under synchronous conservative synchronization. heir estimations
consider the performance-critical aspects {P, S , L,C} and in an experiment are able
to approximate the runtime of a parallel simulator implementation with an error
below 10%. In Chapter 5, we present an analytical estimation method that predicts
the raw concurrency of a network model. While Liu et al. assume an even distri-
bution of events to LPs, our approach focuses on the imbalances in event counts
between the simulated nodes, enabling concurrency estimations for models of com-
paratively large complexity.
Park et al. [PFP04] constructed an analytical estimation model for the number of

null messages generated in large-scale network simulations. Hence, they consider an
aspect of the synchronization costs ({S}) in a simulation. heir estimations enable pre-
dictions of the synchronization overhead in PADS using the null message algorithm.
Pienta et al. [PF13] modeled the concurrency in simulations of networks with node

degrees following a power law (scale-free networks). Under an assumed communi-
cation pattern between nodes, a recursive term is derived for the number of events
executed in each iteration of a simulation under synchronous conservative simula-
tion. Again, calculated concurrency values re�ect the concurrency of the network

17

2 Parallel and Distributed Network Simulation

model itself, without considering further performance-critical factors, i.e., {}. he
analytical approach presented in Chapter 5 provides more direct insights into a net-
work model’s concurrency by not requiring an iterative model. Like Pienta et al.,
we base our estimations on the YAWNS algorithm (cf. Section 2.1.1). We provide
a proof of the soundness of this approach by determining an upper bound for the
deviation between the results obtained using YAWNS and critical path analysis under
commonly applied assumptions. Additionally, our experiments focus on concrete
network models implemented in popular network simulators.

Second-Order Simulation

PADS is frequently applied for the evaluation of networked systems. However, the
PADS system comprised of a set of interconnected processors, a synchronization
algorithm, and a network model can be considered a networked system in itself
and can consequently be evaluated using simulations. Based on this observation, a
number of previous works have created simulation models of PADS systems similar
to simulation models for performance evaluation of general sequential, parallel, and
distributed applications [BM02, ZKK04, BKR07, HMS+09, RHB+11, BRM12]. We
refer to the simulation of a simulation as second-order simulation.
Using second-order simulation approaches, it is possible to consider all performance-

critical aspects ({P, S , L,C}), while individual aspects can still be suppressed to
determine their impact on performance in isolation.
Swope et al. [SF87] simulate the execution of distributed simulations using assumed

costs for execution of the ûrst-order model code, and for system calls and communica-
tion between processors in the ûrst-order simulator. Similarly to the Ideal Simulation
Protocol (cf. Section 2.2.2), knowledge of the sequence of future events enables opti-
mal synchronization. Hence, their approach enables an evaluation of the expected
simulation performance under the performance-critical factors {P, L,C}.
he following works consider the full set of performance-critical factors {P, S , L,C}.
Wong et al. [WHL95] simulate a conservatively synchronized parallel execution of

a simulation during a sequential run of an instrumented simulator implementation.
Juhasz et al. [JTKG01] propose a second-order simulation tool to estimate the ex-

pected beneût of parallelization of a simulation model. A trace of the events executed
in a sequential run of the ûrst-order simulator is used to guide the execution of the
second-order simulation under a number of synchronization algorithms.
Perumalla et al. [PFT+05] propose a trace-based second-order simulation approach

with a focus on selecting a suitable synchronization algorithm for a given type of
ûrst-order model.
Ewald et al. [EHU+06] present a second-order simulation approach implemented in

the simulation system JAMES II. heir approach extends the execution of an unmod-
iûed ûrst-order simulation model by a second-order simulation model predicting
the time required for the interactions between LPs.
Gianni et al. [GID10] combine network model knowledge with benchmarking

results on physical hardware to generate a queuing network model of distributed

18

2 Parallel and Distributed Network Simulation

simulations. he PADS runtime is determined by simulating the queuing network
in the simulation framework OMNet++.
A key challenge in performance prediction of PADS is the estimation accuracy

given events associated with low computational costs. In such cases, two issues pose
diõculties: ûrst, it is diõcult to accurately measure and predict the costs of ûne-
grained computations. Second, low per-event computation times tend to increase
the impact of network overheads on the resulting simulation performance. However,
without a detailed model of the interconnect between LPs, the costs of individual
communication operations between LPs will be limited.
Previous works have not focused on estimation accuracy with respect to models

with ûne-grained computations. In Chapter 6, we present a second-order simulation
tool that we use to predict the estimated runtime of simulation of multiple network
models with ûne-grained computations. We evaluate the prediction accuracy by
comparing the predictions to the runtime of PADS runs on physical hardware.

2.3 Simulator Adaptation
A variety of previous works has studied the adaptation of the simulator conûguration
to the given network model. Although some simulations may perform well under a
suitable static conûguration determined prior to the simulation run, network mod-
els with highly dynamic or unpredictable behavior may require adaptations of the
simulator conûguration at runtime to achieve high simulation performance. In this
section, we give an overview of existing approaches to static and runtime adaptation
of the simulator conûguration. he overview is structured according to the consid-
ered performance-critical factors. Since the impact of the performance-critical factor
communication is largely determined by the interconnect and the chosen network
model partitioning, approaches to reduce communication in PADS are discussed
as part of the works on partitioning.

2.3.1 Lookahead

he lookahead is central to the performance of PADS under conservative synchro-
nization, since the lookahead determines the length of periods in simulated time
that LPs can process without blocking to wait for events or null messages from other
LPs. he maximum lookahead that is possible in a simulation is a property of the
network model. Typically, the maximum lookahead in a network model is not fully
exploited, since in general, the answer to the associated question ”What is the earliest
possible timestamp of an event that the current LP will create for another LP“ is not
trivially answered. A common approach in the ûeld of network simulations is the
use of a ûxed lookahead value according to a lower bound on the delta in simulated
time between an activity in an LP and a resulting activity in a remote LP [Nic96], e.g.,
the smallest possible link latency between network nodes simulated in separate LPs.
To extract further lookahead, it is possible to supply model-speciûc knowledge to
the simulator [MB98, LN02, CK06, PVM09, WDYR13]. A more general solution is

19

2 Parallel and Distributed Network Simulation

given by modeling the state and control �ow of the model and analyzing the resulting
graph statically or dynamically to determine the shortest possible timestamp of an
event created in the current LP for another LP [CS89, MB99, ZP01].
Based on the observation that the generation of pseudo-random numbers is con-

ducted in a deterministic fashion, the pseudo-random numbers determining future
event creations can be calculated in advance, so that LPs can determine the timestamp
of future events at an earlier point in simulated time [LL90, BT00, LF00].
he evaluation of approaches to extend the lookahead can be performed based

on the achieved reduction in simulation runtime and of synchronization overhead,
e.g., by measurements of the number of null messages required for conservative
synchronization.
Since the Ideal Simulation Protocol (ISP) enables an evaluation of synchronization

overhead in isolation, some authors applied ISP to study the achieved synchronization
eõciency under their lookahead extension approaches [MB99, PVM09].
A further object of evaluation is the quantity of simulated time between events

created by an LP in measurements of a simulation run, i.e., the maximum lookahead
available in the model, in relation to the lookahead actually extracted by a given
synchronization algorithm. he lookahead ratio [Fuj88] and the null message in-
verse lookahead ratio [PL90] enable an empirical assessment of the fraction of the
maximum lookahead that is extracted in a given simulation run.

2.3.2 Partitioning

When distributing the computational load of the simulation to a number of processors,
intuitively, the largest beneût is achieved under an even distribution over the available
processors. In the case of network simulations, the corresponding partitioning prob-
lem can be formulated based on an activity graph of the network. Vertices represent
the nodes in the network and are weighted by the number of events pertaining to
the node. Edges re�ect direct links between nodes and are weighted by the number
of events, i.e., messages, travelling over the link. A naı̈ve partitioning strategy that
considers only the workload balance between LPs could for instance aim to minimize
the largest sumweight of the vertices assigned to a single LP. However, if the activity in
the network shi�s between nodes over simulated time, it is not suõcient to consider
such a ûxed representation of the network activity. Achieving an optimal partitioning
would potentially require an update on each change in activity in the network. Since
calculating a partitioning and redistributing the simulation workload is associated
with a cost, in practice, dynamic partitioning approaches redistribute the simulated
nodes periodically a�er a certain interval in simulated time or wall-clock time.
he partitioning problem is further complicated by the fact that the simulated

communication between nodes may require physical communication via shared
memory or a network in case the simulated communication crosses LP boundaries.
Tominimize physical communication, theminimumedge cut could be determined for
a desired number of logical processes. However, in general, the maximum workload
balance and the minimum edge cut will be achieved for diòerent partitionings. In

20

2 Parallel and Distributed Network Simulation

addition, the eòect of a given partitioning strategy on synchronization costs depends
on the synchronization algorithm and may be non-obvious.
Finally, a full description of the optimization problem sketched above is not available

in the general case. Whenever the simulation approach implies that the steps leading
to a certain behavior, i.e., the sending and reception of messages, must actually
be performed to observe the behavior we are interested in, the vertex and edge
weights cannot be estimated with full accuracy prior to simulation. Instead, dynamic
partitioning strategies in practice perform the partitioning based on weights gathered
from observing the simulated network activity of the immediate past with respect
to simulated time, under the assumption that past behavior serves as a reasonable
estimate of the immediate future. Additionally, since acquiring a global knowledge
of the vertex and edge weights of the nodes handled by all LPs can be costly, the
partitioning is typically conducted without global knowledge of the model state using
a distributed partitioning algorithm.
In 1993, Nandy et al. [NL93] discussed the challenges of the PADS synchroniza-

tion problem and proposed a distributed partitioning algorithm. hey showed that
when considering a closed queuing network, PADS performance under conservative
synchronization using the null message algorithm depends linearly both on the im-
balance in vertex weights, i.e., of the computational workload of individual simulated
nodes, and on the weight of the total edge cut, i.e., the number of messages passed
between nodes simulated in separate LPs.
A multitude of works have proposed static and dynamic partitioning strategies in

the context of simulations of various domains (e.g., [NS88, KHW95, KY95, BF00,
FGF00, Bou01]).

2.3.3 Synchronization

While it is clear that diòerent synchronization algorithms perform best for diòerent
types of network models, only few guidelines exist for deciding upon an algorithm for
a given simulation study: for instance, optimistic synchronization seems to perform
better than conservative synchronization if only a small amount of lookahead is
available in the network model [Fuj01]. Further degrees of freedom are given by
the exact realization of the algorithm, e.g., the frequency of sending null messages
in a conservative algorithm [PFP04].
Depending on the requirements of the simulation study, it is possible to relax the lo-

cal causality constraint to achieve higher simulation performance. Lin et al. [LPGZ05]
proposed the use of a relaxation window larger than the lookahead window. Whether
the relaxation window can be applied and to what size it can be set depends on the re-
search questions to be answered in the simulation study. Any question whose answer
requires an exact timestamp ordering of events, e.g., the search for deadlock situations
in a distributed algorithm, will not be able to apply the proposed optimization. In the
example given by Lin et al., it is assumed that any delay in the processing of messages
that does not lead to a timeout in the simulated peer-to-peer network can be tolerated.

21

2 Parallel and Distributed Network Simulation

In 2000, Fujimoto [Fuj00] proposed partial orderings of simulation events that
exploit the temporal uncertainty given when modeling many real-world systems.
Instead of ûxed timestamps, events are assigned intervals in simulated time within
which they must be processed. Now, events that would not be considered safe to be
processed in parallel under a traditional conservative synchronization algorithm can
be considered concurrent and can hence be executed simultaneously. Of course, the
applicability of the relaxation of the temporal ordering depends on the requirements
of the given simulation study. While the proposed synchronization scheme enables
comparatively high-performance PADS of models with low amounts of lookahead,
the eòects on the validity of simulation results are diõcult to quantify.
Since the performance of optimistic synchronization algorithms depends strongly

on the frequency of violations of the local causality constraint and the subsequent
rollbacks, optimizations have focused on limiting the optimism so that the rollback
frequency is reduced [Fuj01]. While early approaches were based on a user-conûgured
parameter to restrict the optimism, later approaches monitor the rollback frequency
during simulation runtime and adapt the optimism parameter appropriately [Fuj01].
In [KSGW12], the interactions between events aremonitored during simulation to esti-
mate the likelihood of future causality violations caused by optimistic event execution.

22

3

Considered Network Models

In the subsequent parts of this dissertation, we investigate the parallelization potential
of several network models. he statements that can be made based on analyzing a
network model or measuring the performance of a simulator implementation depend
strongly on the selected type of network model: studying a network model that accu-
rately re�ects aspects of a real-world network enables insights of immediate relevance
to simulationists in the respective domain. However, generalizing the results poses
the challenge of uncovering the causal relationships between the model characteris-
tics and the observed results. In contrast, simulation models created speciûcally for
benchmarking allow researchers to vary keymodel characteristics such as the network
topology and the communication patterns in the network. Hence, the relationship
between model parameters and parallelization results can be studied more directly.
However, the chosen parameters may deviate strongly from the properties of models
of any real-world network, calling into question the direct applicability of the results.
herefore, we investigate both models of real-world networks and benchmark mod-

els. Two of the selected networkmodels – amodel of large-scale peer-to-peer networks
and a model of wireless networks – are intended as close representations of their
real-world counterparts. he models diòer strongly in their computational intensity
and in the communication patterns among the simulated nodes. Additionally, we
consider two models traditionally used as benchmarks for parallel and distributed
simulators: a model of a simple wired network topology, and a purely synthetic bench-
mark model. he characterization of the network models is based on descriptions
presented in our previous publications [AMH11, AJH14, AH15].
he models are applied in multiple ways in this thesis: in Part II, the models are

used for evaluation of the proposed evaluation methods and are investigated with re-
spect to their parallelization potential. In Part III, the models serve as examples

23

3 Considered Network Models

to demonstrate the performance gains through eõcient parallel and distributed
simulator architectures.

3.1 Peer-to-Peer Overlay Network
he ûrst considered network model represents a distributed hash table (DHT) estab-
lished for use by the BitTorrent ûle sharing application1. A DHT is the realization of
a hash table using a peer-to-peer network. Today, the BitTorrent DHT is also used
in the contexts of video streaming2, ûle synchronization3 and instant messaging4.
While the models considered here focus on the BitTorrent DHT, which is a separate
network used to identify peers of the main BitTorrent network that store a desired
piece of information, the main BitTorrent network used to perform data transfers
was previously modeled by LaFortune et al. [LCSH07].

he BitTorrent DHT is based on the Kademlia [MM02] protocol. In the peer-to-peer
network that represents the DHT, peers as well as contents are identiûed by identiûers
(IDs) numbers taken from a 160-bit space. he logical distance between IDs is deûned
by the XOR metric d(x , y) = x ⊕ y. All interactions between peers are performed
using remote procedure calls (RPCs), each of which is comprised of a request and a
subsequent response. RPCs form the basis for lookups. In this description, we focus
on FIND NODE lookups, which serve to identify the closest nodes to a desired target
ID. A FIND NODE lookup is initiated by sending requests to a number of peers, each
message requesting the closest peers to a target ID. Additional requests are sent to
the peers received in the incoming responses to iteratively retrieve closer peers. he
peer that initiated the lookup maintains a sorted list of the peers closest to the desired
key. Once the ûrst k peers in the list have responded to RPCs and have not returned
any closer peers, the lookup terminates. In addition to FIND NODE, further lookup
types are used for the actual storage and retrieval of data. hese lookup types extend
FIND NODE by a ûxed number of RPCs to retrieve the located value or to store the
value on the identiûed nodes. Since the principle mechanisms of all lookup types are
identical, we do not discuss the remaining lookup types in further detail.
Each peer in the DHT maintains a routing table containing other peers in the

network. he topology of the overlay network established by the DHT is comprised
of the entries in the peers’ routing tables. he routing table is a binary tree of k-
buckets, each holding at maximum k, usually 8, peers. Each k-bucket holds peers
in a subsegment of the 160-bit ID space so that the set of all k-buckets in a peer’s
routing table covers the full ID space without overlap. When a peer A becomes aware
of another peer B in the network, an attempt is made to insert B in the k-bucket
covering the ID range corresponding with B’s ID. If the k-bucket holds less than k
peers, B is added to the k-bucket. If the k-bucket is full of alive peers, one of two
possible steps is performed:

1http://www.bittorrent.com/
2http://www.tribler.org/
3https://www.getsync.com/
4http://www.bleep.pm/

24

3 Considered Network Models

1. If the k-bucket covers the ID of peer A itself, the corresponding k-bucket is split
in two, each new k-bucket handling half of the original k-bucket’s ID range. Peer
B is added to the new bucket corresponding to its ID.
2. If the k-bucket does not cover the ID of peer A itself, peer B is discarded.
Due to the splitting mechanism, a peer’s routing table tends to contain more peers

close to its own ID than peers with large XOR-distance.
he sources for traõc induced by the protocol are as follows.

– Bootstrapping: when entering theDHT, each peer is bootstrapped by executing
a lookup targeting its own ID to populate its routing table.

– Routing table maintenance: if a peer attempts to add a new peer to a k-bucket
that is full, requests are sent to peers in the k-bucket that have not sent amessage
in the past 15 minutes. If one of the probed peers does not respond within a
timeout interval, it is replaced by the new peer. Additionally, if the contents
of a k-bucket do not change within 15 minutes, the k-bucket is refreshed by
performing a lookup for a random ID in the k-bucket’s range.

– User-initiated lookups: when a user requests the value associated with a given
key, a lookup is triggered.

As each peer’s routing table is biased towards peers with IDs close to its own,
bootstrapping and routing table maintenance induce traõc concentrated in XOR-
proximity of the peer. he traõc resulting from user-initiated lookups converges
against the lookup’s target ID, which in the simulation is drawn from a uniform
distribution on the ID space.
In the remainder of the dissertation, we consider three variants of the Kademlia

model, each representing the network on a diòerent level of abstraction. he diòerent
model variants were created to limit the development eòort incurred by targeting
fundamentally diòerent simulator architectures. Of course, direct comparisons be-
tween two simulator architectures can be made only in the cases where a given model
variant exists for both simulator architectures. Limitations in the statements that are
possible given the available set of network model implementations will be discussed
in the performance evaluation of the simulator architectures presented in Part III.
We consider the following model variants:

1. KademliaA models the behavior and state of the peers accurately according to
the BitTorrent DHT speciûcation [LN08]. Routing table maintenance traõc as
well as user-initiated lookups are part of themodel. he amount of user-initiated
traõc can be conûgured. he transport layer and lower layers are not modeled
explicitly. Instead, the latency of each message between simulated peers is
drawn from a uniform distribution. Given an initial number of peers in the
simulated network, the topology is created by providing each peer entering the
networkwith a ûxed number of remote peers drawn uniformly from the existing
network. Subsequently, as speciûed by the protocol, the new peer performs a
lookup targeting its own ID to learn about further peers. Peers join and leave

25

3 Considered Network Models

the network at a conûgurable rate. he model was originally implemented by
Jünemann, who later presented a reûned model parametrization according to
measurements in the BitTorrent DHT [Jün15].

2. KademliaB is simpliûed in multiple regards. First, the network topology is
generated at the start of the simulation and is not changed during simulation.
Hence, a�er the initialization phase, the set of peers in the network as well as
their routing tables contents remain constant. In consequence, the model omits
the routing table maintenance traõc of the peers.

3. KademliaC is a slight simpliûcation of KademliaB. Each peer executes at most
one lookup concurrently. Still, as in the other model variants, multiple RPCs
can be performed concurrently by each individual lookup.

3.2 TCP/IP in a Fixed Topology
he second considered network model was created as part of the DARPA “Network
Modeling and Simulation” (NMS) program5. he model is distributed with the
popular network simulator NS-36 and is frequently used as a benchmark for parallel
and distributed simulators [LLH09, PR11, SIR14]. his section is based on [AH15].
he simulated network topology is created from so-called campus networks in-

terconnected in a ring topology. Given n campus networks, the campus network i
communicates with its neighboring network (i + 1) MOD n.
Each campus network is composed of three subnetworks (cf. Figure 3.1). he nodes

in Network 0 and Network 1, and between Network 0, 1 and 3 are connected by a
1 Gbps link with 5ms latency. he local area networks in network 2 and 3 contain
a conûgurable number of user workstations connected to a switch using 100 Mbps
links with 1 ms of latency. he campus networks are interconnected using links with
a latency of 200 ms. For each of the LAN nodes, a TCP stream with a constant
data rate of 500 kbps is transmitted by one of the nodes 1:2, 1:3, 1:4 or 1:5 of the
neighboring campus network.
NS-3 accurately models TCP and IP. In the local area networks, media access control

is handled by a simple CSMA mechanism. All other interconnections are point-
to-point links.
In the remainder of the dissertation, we will refer to this network model as NMS.

3.3 Wireless Ad-Hoc Communication
We consider twomodels of wireless communication according to IEEE 802.11 a, g, and
p. he following description of these models is based on [AMH11] and [AH15]. he
considered scenarios re�ect a setup commonly used when studying wireless ad-hoc
communication of vehicles: a conûgurable number of nodes is placed spatially on
one or more straight lines, representing highway segments. he nodes periodically
emit beacon messages containing, e.g., their current location and speed, to establish

5http://www.cs.dartmouth.edu/˜nicol/NMS/baseline/
6http://www.nsnam.org/

26

3 Considered Network Models

Figure 3.1: A single campus network of the topology deûned in the context of the
NMS program (Figure adapted from [PR11]).

Figure 3.2: Sequence of events during a transmission in the wireless network model.

a mutual awareness that can be leveraged by applications to increase traõc safety
and eõciency. To determine whether a transmitted message can be successfully
received by each of the receivers, the eòects of the wireless channel, e.g., by path
loss and fading, must be modeled. Typically, abstract analytical models are used
to model the channel eòects and to determine a probability of successful reception
depending on the distance between the sender and the receiver and the transmission
power. hese analytical models incur only little computational costs, but model each
reception on the level of individual packets as the smallest unit of consideration.
Hence, for instance, changes in signal strength within individual packets cannot be
represented by these models. Mittag et al. presented PhySim, an extension to NS-3
that enables a more detailed modeling of wireless network transmissions [MPHS11].
Using PhySim, instead of considering packet as the smallest unit of consideration,
each wireless transmission is represented by the electromagnetic signals transmitted
and received by the wireless transceivers. Channel eòects are modeled by degrading
the transmitted signal according to one of a number of detailed channel models.
Simulation on the signal level enables an accurate modeling of the physical layer and
the wireless channel. However, PhySim requires the execution of the computationally
expensive signal processing steps of a wireless transceiver. Performing these signal
processing steps in so�ware incurs an increase in the runtime of the simulation of
more than three orders of magnitude [Mit12].
In the signal-level model, the transmission and reception process has to be divided

into several events to represent the temporal extent of the signal representing each

27

3 Considered Network Models

transmitted packet. As illustrated in Figure 3.2, a packet transmission leads to sev-
eral events at each potential receiver: ûrst, an event that indicates the arrival of the
ûrst time sample is scheduled, followed by events that re�ect the points in time at
which the three parts of the packet, i.e., the preamble, the packet header, and the
payload, have been received. At each of these events, a decision is made whether the
reception process of the packet is continued depending on the successful handling
of the previous part of the packet.
In the subsequent parts of the dissertation, we will refer to the packet-level model

as WirelessA and to the signal-level model as WirelessB.

3.4 PHOLD Benchmark Model
In addition to simulation models of speciûc network protocols and scenarios, we
consider the PHOLD model [Fuj87], a synthetic benchmark model frequently used
in the literature to evaluate the performance of simulator implementations and to
compare synchronization strategies. PHOLD adopts the basic mechanisms of the
classical hold benchmark model [VD75, MS81] for sequential discrete-event simula-
tors and extends the model for parallel and distributed simulation. he hold model is
used to determine the raw event rate, i.e., the number of events processed per second
wall-clock time, of a sequential simulator. In the hold model, an initial population of
events is created at the start of the simulation. Now, events are executed in timestamp
order. During the execution of each event, exactly one new event is created. he time
delta between each event and its creation time is drawn from a conûgured probability
distribution. Since the execution of each event entails no computational costs apart
from the generation of a new event, the model mainly exercises the core event man-
agement procedures of the simulator. In particular, the hold model is well-suited to
evaluate the performance of diòerent implementations of the future event list [RA97].
he PHOLDmodel extends the hold model by assigning each event to a speciûc log-

ical process. Hence, newly created events may need to be physically transferred
between logical processes via shared memory or a network. he model can be
parametrized with respect to the following aspects: a conûgured topology connecting
the logical processes is used to decide randomly which logical processes a new event
can be assigned to. Additionally, a conûgured probability distribution determines
which of the neighboring logical processes a new event is forwarded to. Finally,
to imitate the computations associated with events of a network model, a conûg-
ured distribution determines the amount of time spent on dummy computations
during each event execution.
In the remainder of the dissertation, we will refer to this network model as PHOLD.

28

3 Considered Network Models

3.5 Comparison
We illustrate the core diòerences in the properties of the described network models
by comparing the core characteristics that aòect to parallel and distributed perfor-
mance (cf. Table 3.1).

– Computational granularity: In general, a more abstract network model that con-
ûnes itself to a probabilistic representation of low-level details of each network
transmission requires less computation time per event than a network model
that accurately represents all details of each transmission. Hence, the lowest OSI
layer that is represented accurately in the model provides a rough indication of
the costs of each event, i.e., the computational granularity of the simulation. All
else being equal, larger computational granularity tends to increase the beneût
of parallelization, since the relative impact of overheads incurred by commu-
nication and synchronization between processors decreases. We measured
the event processing times of the considered networks models in sequential
simulation runs on an Intel Xeon E5-2670 processor running at 2.6 GHz, using
the accurate cycle counter available in recent Intel processors [Pao10]. While
each event of the packet-level models KademliaA,B,C,NMS,WirelessA and the
synthetic model PHOLD can typically be processed within a few microseconds
of wall-clock time, events of the signal-level model WirelessB require multiple
milliseconds of processing time.

– Topology and communication patterns:he topology of the modeled network
restricts the possible communication patterns between simulated nodes, which
in turn strongly aòect the concurrency of the network model and the require-
ment for physical communication between logical processes with respect to
a selected partitioning strategy. In the KademliaA,B,C models, the topology is
generated by notifying newly created peers about a set of existing peers selected
uniformly at random. Existing peers to insert into the new peer’s routing table
are selected according to the routing table management procedure described
in the BitTorrent DHT speciûcation [LN08]. he protocol aims to maintain

Table 3.1: Comparison of the considered network models.

KademliaA,B,C NMS WirelessA,B PHOLD
Lowest OSI

Layer 5 2 A: 2, B: 1 N/A

Computational
Granularity ≤ 5µs ≤ 10µs A: ≤ 10µs, B: ≈ 5ms ≈ 0.7µs

Topology probabilistic small-
world network

static sub-
networks

broadcast medium
(fully meshed) fully meshed

Communication
Patterns

lookups to routing
table and random IDs

constant-rate
TCP �ows

periodic single-
packet broadcasts

uniform receivers,
exponential delays

Max. Number
of Nodes

10 000000 arbitrary 100 arbitrary

29

3 Considered Network Models

the small-world property, i.e., a low average hop count between arbitrary peers.
heNMS model uses the ûxed topology described in Section 3.2. Each campus
network transmits a TCP �ow with a constant rate to the neighboring campus
network. he network models WirelessA,B re�ect a broadcast medium where a
packet transmitted by a sender is received by all other nodes, analogously to a
fully meshed wired network. In the PHOLD network, an arbitrary topology
can be conûgured. In our experiments, we conûgure the network to be fully
meshed. Messages are passed between nodes uniformly at random. A delta in
simulated time is drawn from an exponential distribution and added to a ûxed
conûgured lookahead value.

– Maximum number of nodes: Finally, the number of nodes in the simulated
networks can aòect both the required physical communication between logical
processes and the memory requirements of the simulation. Additionally, since
the local causality constraints mandates a non-decreasing timestamp order in
the execution of events per node, only event per node can be executed at the
same time. Hence, the total number of nodes is a trivial upper bound for the
concurrency of a network model. he numbers of nodes listed in Table 3.1 are
intended as rough estimates of the upper limits used in typical studies of the
respective domain.

In Part II of the dissertation, we investigate how the diòerences in the core char-
acteristics of the network models translate to diòerences in their concurrency and
expected parallel and distributed simulation performance. In Part III, we present
simulator architectures suitable to exploit the parallelization potentials given by the
diòerent network models’ characteristics.

30

Part II

Identifying Concurrency

31

4

Identifying Concurrency – Introduction

he beneûts of parallel and distributed simulation of network models reported in
the literature vary immensely. In some cases, substantial performance increases are
achieved in comparison to a sequential execution, while in other cases gains are
modest to non-existent. Since the runtime performance of a parallel and distributed
simulation is subject to the complex interaction of the properties of the network
model and the simulator realization, performance estimation and evaluation is non-
trivial. In particular, it is diõcult to determine whether low performance is due to
fundamental limitations given by the network model at hand, or due to the speciûc
choice of synchronization algorithm, hardware platform or simulator implementation.
Hence, there is a need to study these aspects both in isolation and in interaction.
In the past forty years, a multitude of evaluation approaches have been proposed to

determine upper bounds and realistic estimations for parallel and distributed simula-
tion performance. Depending on the level of abstraction chosen by the approaches,
diòerent types of questions about simulation performance are addressed.
In this chapter, we introduce methods to trace the performance of conservative

parallel and distributed simulations from the most fundamental upper bounds given
by properties of the network model to predictions of the real-world simulation per-
formance on physical hardware. he approaches enable an assessment of a network
model’s parallelization potentials on diòerent levels of detail:
First, we propose an analytical approach to estimate the available concurrency in

network simulations based on scenario parameters and the communication patterns
deûned by the network model. In contrast to existing methods, the approach enables
insights into the causes for the given amounts of concurrency, allowing simulation-
ists to analytically estimate the eòects of varying scenario parameters and model
properties without requiring a repeated automated analysis of event traces gathered
from simulation runs. he approach is applied to three models implemented in

33

4 Identifying Concurrency – Introduction

well-known network simulators, exposing fundamental upper bounds on the model’s
potential for parallelization.
Second, to demonstrate the more accurate performance prediction that is enabled

when considering the overheads for inter-processor communication and synchroniza-
tion, we present a simulation-based performance estimation tool. he tool performs
a simulation of an envisioned parallel or distributed simulation (a second-order sim-
ulation) based on measurements gathered from a sequential simulation run and
benchmarking results of the execution network. he resulting performance predic-
tions enable users to evaluate the beneûts of a parallel or distributed variant of a
network model prior to parallelization. At the cost of larger modeling and measure-
ment eòort, the simulation-based approach allows for a detailed modeling of the
simulator realization and the execution platform.

34

5

Analytical Concurrency Estimation
Approach

In Section 2.2, we presented a categorization of the factors that determine the perfor-
mance of parallel and distributed simulations. When abstracting from the concrete
realization of a simulation, i.e., from the costs induced by partitioning, communi-
cation and synchronization, we consider only the properties of the network model
itself. hese properties deûne an upper bound for the speedup by parallelization of
the model, independently of the simulator and hardware in use.
he largest possible speedup through parallelization of a discrete-event network

simulation is achieved in case every event in the simulation is executed as early as
possible given the local causality constraint, i.e., non-decreasing timestamp ordering
of events per simulated node. By the precedence relationships between events, the
minimum simulation time can be calculated. From the minimum runtime, it is
possible to deduce the average number of events that can be executed in parallel. his
number, which we refer to as the simulation’s concurrency, can be interpreted as the
average number of processors that can be occupied by a parallel simulation run of
the model when assigning one simulated node to each processor and disregarding
the overheads of inter-processor communication.
In a real-world setting, a simulator will usually not fully exploit the concurrency

in a network model, since communication overheads tend to increase with larger
numbers of active processors. However, in the context ofmodernmany-core hardware
architectures, large numbers of processor cores can be employed with comparatively
low overhead [Per06, KSGW12, AH14]. Hence, the concurrency of a network model
is meaningful from two perspectives: ûrst, it indicates the parallelization potential
of the model. herefore, the results may help understand the original system or
guide model optimizations. Second, the results may suggest a suitable simulator

35

5 Analytical Concurrency Estimation Approach

architecture to be used for the network model. For instance, given a network model
with very low concurrency, it is obvious that the simulation will not fully exploit
the hardware resources of a many-core device.
Critical path analysis (cf. Section 2.2.2) is a well-known approach to determine

the minimum simulation time from a precedence graph gathered from a sequential
simulation run. However, since critical path analysis determines a simulation’s con-
currency without revealing the underlying model properties, insights into the key
model properties that determine the concurrency may require a sensitivity analysis
based on large numbers of simulation runs and subsequent critical path analysis.
In this chapter, we make the following contributions:

– Analytical estimationmodel: we propose amodel to estimate the concurrency
of networkmodels based onmodel knowledge and statistics describing the com-
munication in the modeled network. he approach exposes the relationships
between model properties and concurrency.

– Proof of validity: our estimations are performed by approximating the progress
of the well-known synchronization algorithm YAWNS. We prove the limited
deviation of the results of YAWNS using critical path analysis: when assuming
ûxed event processing times and ûxed lookahead, the concurrency determined
using YAWNS is at least 1/3 of the concurrency determined using critical path
analysis.

– Network model analysis: we perform a concurrency analysis of three network
models implemented in popular network simulators. he estimations serve as
examples of the application of the proposed estimation approach and are used
for empirical validation of the estimation accuracy.

– Estimation reûnement: we describe the steps required to consider variable
event processing times and discuss the impact on estimations and their inter-
pretation.

his chapter is based on [AH16]. Here, we substantiate our previous results [AH15]
by analyzing the algorithmic relationships between critical path analysis and the
YAWNS algorithm. We provide a proof of a fundamental upper bound on the devia-
tion between the results of the two methods under common assumptions. Further,
we present a reûned estimation model that eliminates the assumption of ûxed event
processing times and study the eòects on the estimation results.
he proposed approach and estimation results apply to parallel simulation using
conservative synchronization, where events are executed only in case future viola-
tions of the local causality constraint can be ruled out. Optimistic synchronization
approaches may in some cases be able to exceed the presented concurrency results.
he remainder of the chapter is structured as follows: in Section 5.1, we discuss

existing trace-based concurrency evaluation approaches that are fundamental to our
analytical estimation approach. In Section 5.2, we show the close relationship between
YAWNS-based synchronization and critical path analysis before introducing the

36

5 Analytical Concurrency Estimation Approach

Figure 5.1: Critical path analysis of a precedence graph with ûxed event processing
times.

proposed analytical concurrency estimation model. We prove the limited deviation
between the analysis results of YAWNS and critical path analysis the two approaches
under the stated assumptions. In Section 5.3, we analyze three concrete network
models to derive concurrency estimations. In Section 5.4, we ûrst study the sensitivity
of the considered network models to scenario parameters. Subsequently, we validate
our estimation results by comparison with the results of a critical path analysis. In
Section 5.5, we investigate the steps necessary to extend the proposed estimation
model to consider measured event processing time distributions and discuss the
eòects on concurrency estimations. In Section 5.6, we discuss the applicability and
limitations of our approach. Section 5.7 summarizes our results.

5.1 Fundamental Algorithms
In this section, we give a brief summary of trace-based concurrency estimation
approaches, which determine the concurrency in a network model by an automated
analysis of event traces generated during sequential simulation runs. hese approaches
determine the concurrency in the model accurately, but are performed in a black-
box fashion that limits insights into the sources of the identiûed concurrency. he
assumptions and terminology of the trace-based approaches will be used when we
propose an analytical estimation model in Section 5.2.3.
In discrete-event network models, communication activities are modeled as times-

tamped events representing instantaneous state changes of the simulated nodes. he
communication patterns in a given network model deûne a precedence relation gov-
erning the event execution order. For instance, subsequent message arrivals at a
single node must be simulated in timestamp order to maintain the correctness of
the node state. An event can safely be executed as soon as no remaining precedence
relationships demand the prior execution of other events.
Critical path analysis [BJ85, Liv85] is a classical method to determine a lower bound

on the runtime of a simulation model by traversing a graph re�ecting the precedence
relationships between the events of a previous sequential simulation run of the con-
sidered model. A precedence graph is a directed acyclic graph G = (V , E) where
vertices represent simulation events, and edges represent precedence relationships.
In the example depicted in Figure 5.1, events are represented by circles. An arrow
between events e1 and e2 re�ects the precedence relationship “e1 before e2”. here

37

5 Analytical Concurrency Estimation Approach

Algorithm 1 Critical path analysis.
INPUT: G = (V , E);Vinitial
OUTPUT: Critical path weight of G
for each u ∈ V do
D(u) ← 0

Q ← Vinitial
while Q ≠ ∅ do

u ← head of Q
remove u from Q
for each v ∈ S(u) do

P(v) ← P(v) − 1
if D(v) < D(u) +W(u) then
D(v) ← D(u) +W(u)

if P(v) = 0 then
insert v at tail of Q

return max({D(u) ∶ u ∈ V})

Algorithm 2 Critical path analysis assum-
ing identical processing times for all events.

INPUT: G = (V , E);Vinitial
OUTPUT: Critical path weight of G
Q ← Vinitial;X ← 0
while Q ≠ ∅ do

X ← X + 1
Qnew ← ∅
for each u ∈ Q do
for each v ∈ S(u) do

P(v) ← P(v) − 1
if P(v) = 0 then

insert v into Qnew
remove u from Q

Q ← Q ∪ Qnew
return X

are two causes of precedence relationships: ûrst, events cannot be processed prior
to their creation in the course of the simulation. Hence, there are edges re�ecting
the precedence of an event e over any new events created by e. Second, to enforce
timestamp ordering of events in each node, there is an edge between an event e and
the latest event that occurs before e and pertains to the same node. In the general
case, vertices are weighted with their associated processing times. he path with
the largest sum of vertex weights in the precedence graph is the critical path. he
sum of the vertex weights on the critical path is a lower bound on the runtime of the
simulation. he pseudo code in Algorithm 1 (from [YM89], modiûed to represent
events as vertices), determines for each event u ∈ V the maximum processing time
sum of any path ending in u. Given an event u, P(u) is the number of predecessor
events of u. S(u) is the set of successor events of u. W(u) is the processing time of
u. In subsequent sections, we will further characterize an event u by its timestamp
T(u) and its assignment to a simulated node N(u). Q is a double-ended queue
that holds the events to be traversed next and is initialized with the set Vinitial ⊆ V
of events that exist at the start of the simulation. he algorithm returns the largest
path weight in the precedence graph G.
Contrary toAlgorithm 1, in the case considered in the following, we assume identical

processing times for all events. his assumption corresponds to a simulation where in
each iteration independent events are executed in parallel, each processor acting on at
most one event. A new iteration begins once all processors have ûnished executing the
current event. We refer to each iteration of such a simulation as an execution. As an
example, some discrete-event simulators running on graphics cards [PF10, AH14] are
instances of the above execution scheme. We are interested in the average number of
events that can be processed in an execution, which we refer to as the concurrency of
the simulation. he concurrency can be interpreted as the average number of events
that can be executed in parallel assuming an unlimited number of processors and no
overheads for inter-processor communication. With a processing time of 1 unit of wall-

38

5 Analytical Concurrency Estimation Approach

Figure 5.2: Synchronization using YAWNS. Events with timestamps ≤ tmax can be
processed safely.

clock time for all events, the sum vertex weight on the critical path is identical to the
maximum number of vertices on any path in the precedence graph (cf. Algorithm 2).
In contrast to Algorithm 1, a speciûc ordering of the events in Q is not required.
he maximum number of vertices on any single path is the minimum number of
executions required to process all events in the graph. From the minimum number
of executions and the total number of events in the simulation, we can determine
the concurrency of the simulation. In Figure 5.1, dashed rectangles indicate groups
of events that can be processed in parallel. Nine events are processed in a total of
six executions. Hence, the concurrency is 9/6 = 1.5.
YAWNS [Nic93] (cf. Section 2.1) is a well-known synchronization algorithm for

parallel and distributed simulation. Synchronization using YAWNS is illustrated in
Figure 5.2. A pseudo code description of the algorithm will be given in Section 5.2.
First, the timestamp tmin of the earliest event is determined. A ûxed lookahead value
τ determined according to model properties gives a lower bound on the timestamp
delta between an event e and any new event created by e. Given tmin ∈ N and τ ∈ N,
all events in the lookahead window {tmin, tmin + 1, . . . , tmin + τ} are guaranteed to
create no events with timestamps below tmin + τ. Events in the current lookahead
window are referred to as safe events. Safe events pertaining to separate nodes can be
processed concurrently without allowing for violations of timestamp order per node.
Still, safe events pertaining to a single node must be processed one a�er the other
in non-decreasing timestamp order. Hence, the number of executions required to
process a lookahead window is the largest number of events pertaining to a single
node. his observation can also be understood in terms of Amdahl’s law [Amd67]:
the largest number of events assigned to a single node is the inherently sequential
portion of the considered partial simulation. Another interpretation is given by
considering the largest sequence of events assigned to a single node as the critical
path within the considered lookahead window. In the example, nine events in the
lookahead window can be processed in four executions. Hence, the concurrency
within the shown lookahead window is 9/4 = 2.25. YAWNS has already been used
as a basis for analytical concurrency estimation in previous works [Nic93, PF13].
Here, we employ YAWNS in two ways: we analytically estimate the expected YAWNS
concurrency based on key properties of networkmodels. Further, we show analytically
and empirically that the results between a concurrency analysis using critical path
analysis and YAWNS are suõciently close to use these approaches interchangeably to
roughly estimate the potential of network models for parallelization.

39

5 Analytical Concurrency Estimation Approach

5.2 Methodology
In this section, we ûrst describe the building blocks and assumptions of our concur-
rency estimation methodology. We then propose an analytical concurrency model
as a basis for the analysis of speciûc network models. Finally, we provide a proof
of the soundness of the estimation approach.

5.2.1 Consideration of Fixed Lookahead

Critical path analysis can be used to perform a trace-based calculation of the concur-
rency in a simulation under the assumption of full knowledge of all events that will be
received by each processor, i.e., assuming optimal synchronization. However, since
parallel network simulation is typically performed under a ûxed lookahead value,
at each point during simulation, only events within a limited window in simulated
time can be considered for parallel execution. hus, the results given by critical path
analysis provide only loose upper bounds on a model’s concurrency.
To gather more realistic estimates, we adapt critical path analysis by applying ûxed

lookahead at each point where events are considered for execution. he adapted
critical path analysis (ACPA) determines an upper bound on the average number
of events that can be executed in parallel given an unlimited number of processors
and assuming no overhead for communication between processors, but under a ûxed
lookahead. A pseudo code description of ACPA is given in Algorithm 3: the set Q
holds events with no remaining predecessors. We now determine the earliest times-
tamp tmin of all events in Q. An event u in Q can be executed, i.e., eliminated from our
consideration, if two conditions both hold: the event is safe, i.e., the timestamp T(u)
of u is in the lookahead window {tmin, tmin + 1, . . . , tmin + τ}, and u has no remaining
predecessors. he set Qsafe ⊆ Q holds the events that are safe to be executed. he
number X of executions required until Q is empty is a lower bound on the number of
executions required to complete the simulation. A�er termination of the algorithm,
the concurrency C, i.e., the average number of events that can be executed in parallel,
can be determined based on the number eglobal of events: CACPA = eglobal/X.

5.2.2 Relationship between Critical Path Analysis and
Synchronization Algorithms

ACPA assumes ûxed event processing times and a ûxed lookahead. he resulting anal-
ysis method closely resembles synchronous conservative synchronization algorithms:
comparing ACPA with a YAWNS-based analysis of a precedence graph (cf. the re-
mark in Algorithm 3), the only diòerence is that with YAWNS, the lookahead window
remains constant as long as any events remain in the current lookahead window,
whereas with ACPA, a new lookahead window is calculated a�er each execution. If
there is a large imbalance in the numbers of events assigned to diòerent processors,
many processors may remain idle with YAWNS, whereas with ACPA, the newly cal-
culated lookahead window may contain new events to consider for execution. Hence,

40

5 Analytical Concurrency Estimation Approach

Algorithm 3 Adapted critical path analysis (ACPA) assumes ûxed event processing
times and ûxed lookahead.

INPUT: G = (V , E);Vinitial; τ
OUTPUT: Number of executions required to process G
Q ← Vinitial;X ← 0
while Q ≠ ∅ do

tmin ← min({T(u) ∶ u ∈ Q})
Qsafe = {u ∈ Q : T(u) ≤ tmin + τ}
while Qsafe ≠ ∅ do

X ← X + 1
for each u ∈ Qsafe do
for each v ∈ S(u) do

P(v) ← P(v) − 1
if P(v) = 0 then

insert v into Q
remove u from Q and Qsafe

tmin ← min({T(u) ∶ u ∈ Q}) [remark: with YAWNS, tmin is not updated at this point.]
Qsafe = {u ∈ Q : T(u) ≤ tmin + τ}

return X

Figure 5.3: Relationships between concurrency results of ACPA, YAWNS and our
estimation approach.

the concurrency determined using ACPA is equal or larger than the concurrency
determined using a YAWNS-based analysis.
Our goal is to estimate the concurrency of network simulations without relying on

the processing of precedence graphs. To this end, ideally, wewould derive an analytical
model to estimate ACPA results directly. However, since ACPA allows for overlapping
lookahead windows, the sets of events contained in consecutive lookahead windows
cannot be considered independently, rendering a mathematical analysis cumbersome.
In contrast, when analyzing YAWNS, each lookahead window can be considered

separately. herefore, our proposed analytical model (cf. Section 5.2.3) estimates
concurrency according to YAWNS. Figure 5.3 illustrates the relationships between the
concurrency results of ACPA, YAWNS and our analytical estimation approach: for the
analytical results to be meaningful, it is important that the estimations are close to the
reference results of ACPA. To show that this is the case, in Section 5.2.4, we prove that
the concurrency analysis results using YAWNS are never larger than 3 of the results
using YAWNS. Further, we show that with larger event densities or larger lookahead,
the upper bound tends towards 2. In Section 5.4, we study the accuracy of our
analytical estimations and show empirically that for the considered concrete network
models, almost all concurrency estimations are above a factor 1/2 of the ACPA results.

41

5 Analytical Concurrency Estimation Approach

Symbol Description
G Precedence graph
V Events in G

Vinitial Initial events
E Precedence relation on V

eglobal #Events in the simulation
N(u) Node assignment of event u
P(u) #Predecessors of event u
S(u) Set of successors of event u
T(u) Timestamp of event u
W(u) Weight of event u

τ Lookahead
tmin Min. timestamp of remaining events

Q Events to consider for processing
Qsafe Events within lookahead window
D(u) Largest path weight of event u
XACPA ACPA: #Executions required to process G

XYAWNS YAWNS: #Executions required to process G
CACPA ACPA concurrency of the simulation
CYAWNS YAWNS concurrency of the simumlation

Table 5.1: Symbols used in algorithms.

5.2.3 Analytical Concurrency Estimation Model

In this section, we propose an approach to derive a concurrency estimation of network
models based only on model knowledge and basic network statistics gathered from
sequential simulation runs. he estimation work�ow can be sketched as follows:

1. Given a network model speciûcation or implementation, we manually deter-
mine the event patterns resulting from the communication patterns in the
modeled network.

2. Based on the event patterns, categories of nodes with approximately identical
numbers of event per unit of simulated time are identiûed.

3. he expected number of events within each lookahead window in each node
category and in total is determined based on the desired scenario parameters.

4. From the expected number of events within a lookahead window in each
node category and in total, the estimated concurrency of the network model is
calculated.

In the following, we detail the calculation of the concurrency in step 4 given the
results of the previous steps. Examples of the analysis of the event patterns of concrete
network models are given in Section 5.3.
In Section 5.1, we have seen that the concurrency within a single lookahead window

of a YAWNS-based simulation is the total number of events etotal in the lookahead
window, divided by the largest number m of events pertaining to a single proces-
sor. Since our goal is to estimate the number of processors that can be occupied

42

5 Analytical Concurrency Estimation Approach

when fully exploiting the independence of events, we assume an assignment of a
single node to each processor. Hence, given estimates of m and etotal, the estimated
concurrency of the network model is:

Cest ∶=
etotal
m

While etotal can easily be estimated based on the communication activity in a network
model, we need to derivem from an estimate of the distribution of events to simulated
nodes, i.e., we need to answer the question “what is the expected largest number m of
eventswithin a lookaheadwindow that are assigned to single node?” Our estimation of
m is based on the hypothesis that is it possible to identify categories of simulated nodes
so that within each category, events are distributed approximately uniformly among
the nodes. he number of nodes in each category and the number of events assigned to
each category are the inputs fromwhich our analytical model derives m. In Section 5.3,
we will show how these inputs can be determined for concrete network models.
More formally, we divide the nodes of the simulated network into c categories so that

all ni nodes in category i share the same estimated number of events ei per lookahead
window. Within each category, we consider the assignment of events to nodes as a
sequence of Bernoulli trials with probability pi = 1/ni each. he probability that a
single node of category i is assigned ≤ k events follows the binomial distribution:

Fi(k) =
k

∑
j=0

(ei
j
)pi

j(1 − pi)e i− j

he probability that all nodes of category i are assigned ≤ k events is:
Gi(k) = Fi(k)n i

By considering all node categories, we arrive at the probability that all nodes of all
categories are assigned ≤ k events:

G(k) =
c

∏
i=1

Gi(k)

We are interested in the expectation of G, i.e., the expected largest number of events
any single node is assigned in a lookahead window [ABN92]. Using the probability
density function g of the cumulative distribution function G, the expectation is:

m =
∞

∑
k=1

kg(k)

In a YAWNS-based analysis limited to a single lookahead window, m is identical with
X, the expected number of parallel event executions required to process the lookahead
window. Now, the estimated concurrency of the simulation is: Cest ∶= etotal/m.

5.2.4 Limited Deviation between ACPA- and YAWNS-Based
Concurrency

heproposed concurrency estimation approach approximates the results of a YAWNS-
based analysis, even though ACPA may expose larger concurrency. In this section,
we show that considering YAWNS in place of ACPA introduces only a limited error.
To this end, we prove the following statement:

43

5 Analytical Concurrency Estimation Approach

heorem 1 he concurrency determined using YAWNS is at least 1/3 of the concurrency
determined using ACPA.

Before providing the full proof, we ûrst sketch the individual proof steps: let G be an
arbitrary precedence graph containing eglobal(G) events. Let XYAWNS(G), XACPA(G) be
the number of executions required to processG using YAWNS andACPA, respectively.
Since CYAWNS(G) = eglobal(G)/XYAWNS(G), CACPA(G) = eglobal(G)/XACPA(G), and
eglobal(G) is constant, it suõces to prove XYAWNS(G) ≤ 3XACPA(G):

1. We show how a reduced precedence graph G′ can be constructed from G so
that YAWNS still requires the same number of executions, i.e., XYAWNS(G′) =
XYAWNS(G).

2. Since the events in G′ are a subset of the events in G: XACPA(G′) ≤ XACPA(G).
3. By exhaustively analyzing all cases of event executions with respect to G′, we

show: XYAWNS(G′) ≤ 3XACPA(G′).
4. Applying 1. to 3. shows: XYAWNS(G) ≤ 3XACPA(G′).
5. With 2.: XYAWNS(G) ≤ 3XACPA(G′) ≤ 3XACPA(G).

For the full proof, we begin with the observation that when considering a ûxed
precedence graph G, YAWNS and ACPA both process the same number of events
eglobal(G). Both with YAWNS and ACPA, the concurrency is the mean number of
events processed in each execution, i.e., the total number of events divided by the num-
ber of executions XYAWNS(G) or XACPA(G), respectively. For instance, CYAWNS(G) =
eglobal(G)/XYAWNS(G). he number of events eglobal(G) is independent of the analysis
methodused. Hence, to prove the above statement, only the ratio XYAWNS(G)/XACPA(G)
is of interest.
1. We now consider the analysis of a precedence graph using YAWNS in more detail.

We make two observations: First, in YAWNS, the placement of each lookahead win-
dow in simulated time is determined by the earliest event that exists in the simulation
at the time a new lookahead window is calculated. Second, the number of executions
required to process the events in a single lookahead window using YAWNS is equal to
the largest number of events in the lookahead window that pertain to a single node.
Given an arbitrary precedence graph, we can utilize the two observations to con-

struct a reduced precedence graph that contains only the earliest event zearliest,i of the
i-th lookahead window and the set Zlargest,i of events pertaining to the node with the
largest number of events in the i-th lookahead window. If there is a non-empty subset
of Zlargest,i of events that have the lowest timestamp in the i-th lookahead window, let
zearliest,i be an arbitrary element of this subset instead of an event ∉ Zlargest,i , if any.
he reduced precedence graph has the property that a YAWNS-based analysis re-

quires exactly the same number of executions for processing the reduced precedence
graph as for processing the original full precedence graph. Figures 5.4 and 5.5 depict
an example of a full precedence graph and its reduced counterpart. Let τ be the
ûxed lookahead value of the considered network model. Each lookahead window
covers an interval LYAWNS,i = {tmin,i , tmin,i + 1, . . . , tmin,i + τ}, which is identical for

44

5 Analytical Concurrency Estimation Approach

1
2

Node

3
4

simulated time

tmin,0 tmax,0= tmin,0 + tmin,1 tmax,1= tmin,1 + tmin,2 tmax,2= tmin,2 +

Figure 5.4: Full precedence graph.

1
2

Node

3
4

simulated time

tmin,0 tmin,1 tmax,1= tmin,1 + tmin,2 tmax,2= tmin,2 +

Zlargest,0

Zlargest,1

Zlargest,2

zearliest,0

zearliest,2zearliest,1

Figure 5.5: Reduced precedence graph.

the full and reduced precedence graph. Since further, YAWNS processes at least
one event in each execution, the following holds true: XYAWNS(G′) = XYAWNS(G) ≤
eglobal(G′) ≤ eglobal(G).
2. Since all events in the reduced precedence graph are also contained in the full

precedence graph, ACPA, just as YAWNS, must process at least the events of the
reduced precedence graph. Hence, the number of executions required to process G′

using ACPA is a lower bound on the number of executions required to process G.
3. We now consider all cases of event executions that are possible when analyzing a

reduced precedence graph using ACPA to show XACPA(G′) ≥ eglobal(G′)/3 by proving
the invariant “at most 3 events can ever be processed in a single execution”.
ACPA iteratively selects the timestamp T(zcurrent) of the earliest remaining event

zcurrent in the precedence graph and processes all events without remaining predeces-
sors in the lookaheadwindow LACPA,current = {T(zcurrent), T(zcurrent+1, . . . , T(zcurrent)+
τ} in a single execution. Let Vremaining be the set of events in G′ that have not been
processed previously and let Qready be the set of events ready to be processed. N(u)
is the node an event u ∈ Vremaining pertains to. If all events in a set U pertain to the
same node, N(U) is the node the events pertain to. An event u ∈ Qready has three
properties: u is in the lookahead window, no other event in Qready pertains to the
same node as r, and r has the earliest timestamp of any event pertaining to N(r), i.e.,
(T(r) ≤ T(zcurrent) + τ) ∧ (∀u ∈ Qready ∶ N(u) ≠ N(r) ∨ u = r) ∧ (∀u ∈ Vremaining ∶
T(r) ≤ T(u) ∨ N(r) ≠ N(u)).
We now consider an arbitrary execution of ACPA on a reduced precedence graph.

he current lookahead window begins at T(zcurrent) = T(zcurrent). If there are multiple
events that share the timestamp T(zcurrent), the event zcurrent can be chosen arbitrarily
from these events without aòecting any statements made in the following.
We investigate the event zcurrent by comparison with a YAWNS-based analysis. Any

event apart from zcurrent may have already been processed previously. he timestamp
T(zcurrent) of zcurrent is in a YAWNS-based lookaheadwindow LYAWNS,i = {tmin,i , tmin,i+

45

5 Analytical Concurrency Estimation Approach

1, . . . , tmin,i + τ} for a ûxed i ∈ N. Figure 5.6 illustrates the diòerent cases. We ûrst
diòerentiate by the position of T(zcurrent) in LYAWNS,i . here are two possibilities:

1. T(zcurrent) = T(zearliest,i): then, LYAWNS,i = LACPA,current = {T(zcurrent), T(zcurrent)+
1, . . . , T(zcurrent) + τ}. In this case, the current ACPA lookahead window coin-
cides with one of the YAWNS-based lookahead windows. Due to the construc-
tion of the reduced precedence graph, the events in a single YAWNS-based
lookahead window pertain to at most two separate nodes: the node of the
event at T(zcurrent) that deûnes the lower bound tmin,i of the i-th YAWNS-based
lookahead window, and a possibly empty set of events Zlargest,i that all pertain
to a single, but arbitrary node. LACPA,current fully covers the timestamps of any
events in Zlargest,i .
Due to the construction of the reduced precedence graph, all events in the set
Zlargest,i pertain to the same node. Now, there are three possibilities:

– Zlargest,i∖{zcurrent} = ∅, i.e., zcurrent is the only event in LYAWNS,i . hen, only
zcurrent, i.e., a single event, is processed in the current execution.

– Zlargest,i ∖ {zcurrent} ≠ ∅ ∧ N(Zlargest,i) = N(zcurrent). hen, only zcurrent, i.e.,
a single event, can be processed in the current execution.

– Zlargest,i ∖ {zcurrent} ≠ ∅ ∧ N(Zlargest,i) ≠ N(zcurrent). hen, zcurrent and the
earliest event in Zlargest,i, i.e., two events, can be processed in the current
execution.

2. T(zcurrent) > T(zearliest,i): again, T(zcurrent) is in {tmin,i , tmin,i + 1, . . . , tmin,i +
τ} for a ûxed i ∈ N and the current lookahead window is LACPA,current =
{T(zcurrent), T(zcurrent) + 1, . . . , T(zcurrent) + τ}. We consider two disjoint seg-
ments of this interval separately: due to the construction of the precedence
graph, all events in {T(zcurrent), T(zcurrent)+1, . . . , tmin,i+τ} pertain to the same
node. Hence, only a single event from this interval can be processed. he re-
mainder of the lookaheadwindow is {tmin,i+τ+1, tmin,i+τ+2, . . . , T(zcurrent)+τ}.
For any event znext of the set of events Znext in this interval, we must diòerentiate
two cases:

– znext is the earliest event in the next YAWNS lookahead window LYAWNS,i+1,
i.e., znext = zearliest,i+1 and T(znext) = tmin,i+1. hen znext can pertain to an
arbitrary node. Since the i+2nd lookahead window begins at a timestamp
of tmin,i+1 + τ + 1 or larger, there can be at most one event of this kind in
{tmin,i + τ + 1, tmin,i + τ + 2, . . . , T(zcurrent) + τ}. If such an event exists, we
refer to the event as za .

– znext ∈ Zlargest,i+1 ∖ {zearliest,i+1}. All events in Zlargest,i+1 pertain to the same
node. Hence, only an event with the lowest timestamp in the set can be
processed in the current execution. If such an event exists, we refer to the
event as zb .

Considering the set of candidate events for concurrent processing {zcurrent} ∪
Znext, the maximum number of events that can be processed in the current

46

5 Analytical Concurrency Estimation Approach

Figure 5.6: All cases of event visibility and node assignment when considering events
for execution using ACPA on an arbitrary reduced precedence graph. Leaf nodes:
number of events processed in the current execution.

execution is 3. his is the case when N(zcurrent) ≠ N(za) ≠ N(zb). Since za is
the earliest event of a YAWNS-based lookahead window, this situation arises
at most once per lookahead window of the YAWNS-based analysis. Since the
width of each lookahead window is τ + 1, in a precedence graph that covers
t units of simulated time, three events can therefore be processed in a single
execution at most t/(τ + 1) times. In all other cases, at most two events can be
processed in a single execution.

We have now considered all possible cases of processing events in ACPA. Since the
largest number of events that can be processed in a single execution is three, ACPA
requires at least eglobal(G′)/3 executions to process the reduced precedence graph G′.
4. Since YAWNS requires at most eglobal(G) executions to process both the reduced

and the full precedence graph, so far we have shown XYAWNS(G) ≤ 3XACPA(G′).
5. Since G′ ⊆ G: XYAWNS(G) ≤ 3XACPA(G′) ≤ 3XACPA(G).
he concurrency is given by CYAWNS(G) = eglobal(G)/XYAWNS(G) and CACPA(G) =
eglobal(G)/XACPA(G), respectively. Since eglobal(G) is independent of the analysis
methodused, the factor between the calculated concurrency isCACPA(G)/CYAWNS(G) =
XYAWNS(G)/XACPA(G), which we showed to have an upper bound of 3. ◻
As stated above, the situation that three events can be processed arises at most

once per YAWNS-based lookahead window. All remaining events are processed in
sets of at most two events. In Figure 5.7, we illustrate an extreme case where three
events can be processed by ACPA in all but the ûrst execution on the example of an
artiûcial precedence graph. here are at most eglobal(G) YAWNS lookahead windows
and the lookahead windows are pairwise disjoint intervals. Hence, we can state an
upper bound on the number of executions in which three events can be processed:
EACPA,three,max(G) = ⌊min({t/τ + 1, eglobal(G)/3})⌋, where t is the number of units of
simulated time covered by the precedence graph. In all other executions, two or fewer
events are processed. A tighter lower bound on the total number of executions is then
given by the term EACPA,three,max(G) + ⌈max({0, eglobal(G) − 3EACPA,three,max(G)})/2⌉.
In Figure 5.8, we plot the resulting upper bound for XYAWNS/XACPA, varying eglobal and
the lookahead. We can see that with higher event densities in simulated time and with
larger lookahead, the ratio approaches 2. In Section 5.4 we evaluate the concurrency
of three network models implemented in popular network simulators to empirically
study the deviation between ACPA and YAWNS by concrete examples.

47

5 Analytical Concurrency Estimation Approach

1
2

Node

3
4

simulated time

tmin,0 tmax,0= tmin,0 + tmin,1 tmax,1 tmin,2 tmax,2 tmin,3

Figure 5.7: Processing of a reduced precedence graph using ACPA. Dashed lines
indicate the positions of the YAWNS lookahead windows. Boxes indicate events that
are processed by ACPA in a single execution. In this example, in all but the ûrst
execution, ACPA processes three events per execution.

1.5

2

2.5

3

3.5

0 2 4 6 8 10

U
p
p
e
r

B
o
u
n
d

Events per Unit of Simulated Time

(a) τ = 10, t = 1 000000.

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4

U
p
p
e
r

B
o
u
n
d

Lookahead

(b) t = 1 000000, eglobal = 1 000000.

Figure 5.8: Upper bound of XYAWNS/XACPA.

5.3 Network Model Analysis
In this section, we study the concurrency of three networkmodels. For eachmodel, we
ûrst analyze the event patterns resulting from the communication patterns in the simu-
lated network. hen, we determine the parameters required to analytically estimate the
model’s concurrency according to the estimation approach proposed in Section 5.2.3.

5.3.1 Peer-to-Peer Overlay Network

As our ûrst example, we study the KademliaA model (cf. Chapter 3). We analyze
KademliaA with reference to an implementation in the PeerSim network simulator1.
he model abstracts from all OSI layers but the application layer, i.e., the physical
topology is re�ected by link latencies drawn from a random distribution. he appli-
cation layer itself is modeled accurately in accordance with the BitTorrent DHT
speciûcation [LN08].

1http://peersim.sourceforge.net/

48

5 Analytical Concurrency Estimation Approach

Event Patterns

here are two sources of traõc in Kademlia-based networks: communication trig-
gered actively by users of the DHT, and routing table maintenance. he latter com-
prises both operations for refreshing routing table contents as well as operations for
checking the responsiveness of speciûc peers.
he event patterns representing the communication activities inKademlia are shown

in Figure 5.9. he building block fundamental to all communication in Kademlia is
the remote procedure call (RPC), a sequence of three events representing the following
interaction: [i]. Peer 1 sends a request; [ii]. Peer 2 receives the request and creates
a response; [iii]. Peer 1 receives the response.
So-called lookups are used to perform storage and retrieval operations. Each lookup

consists of a sequence of RPCswhere step [iii] generates a new request until the lookup
terminates. A parameter α speciûes the number of concurrent RPCs during a lookup.
Lookups with α > 1 can be regarded as a superposition of multiple sequences of RPCs.
We can now easily determine the number of events associated with a lookup: one

initial event triggers the lookup, and each subsequent RPC is re�ected by two events:
a request and its response. If the number ρ of RPCs per lookup is known, the total
number of events per lookup is eper lookup = 2ρ + 1, independently of α. Of these, ρ + 1
events pertain to the peer performing the lookup, and ρ events pertain to other peers.
he remaining traõc in KademliaA is created by pings triggered if the responsive-

ness of a peer is to be checked. If a peer’s routing table is fully populated and a peer
becomes aware of a new remote peer, peers of unknown responsiveness in the routing
table are checked using ping RPCs. he receiver of a ping request may then recursively
trigger new pings to further peers. When gathering the inputs to the analytical model,
we consider the events created by lookups in detail, while treating ping events as
uniformly distributed among the simulated nodes.
Concurrency in KademliaA results from two independent scenario parameters:

λ independent lookups running concurrently, and α concurrent RPCs performed
during each lookup.

Analytical Concurrency Estimation

In the following, we describe how, based on key metrics of KademliaA, we determine
the inputs required for the analytical concurrency estimation.
We diòerentiate between two categories of peers: active peers that are currently

executing a lookup, and passive peers that respond to incoming requests only. In
KademliaA, the number λuser of concurrent lookups is a scenario parameter. Further,
the generation of user-initiated lookups is distributed uniformly over the peers in
the simulated network. he average number λrt of additional concurrent lookups
created for routing table maintenance can be gathered from a sequential simulation
run of the given conûguration and subsequently be included in our consideration:
λ = λuser + λrt. hen, given n peers in the network, the proportion of active peers
is: nactive = 1 − (1 − 1

n)λ. he absolute numbers of active and passive peers are thus
nactive = n × nactive and npassive = n − nactive. Given the average number ρ of RPCs per
lookup, each lookup creates 2ρ + 1 events. Hence, a lookup of duration d creates

49

5 Analytical Concurrency Estimation Approach

Figure 5.9: Event patterns in KademliaA: lookups are composed of α overlapping
sequences of RPCs. Node 1 performs a lookup with α = 1 and α = 2.

an average of (2ρ + 1)/d events per unit of simulated time. Since each lookahead
window cover τ+1 timestamps, the total number of events generated by all concurrent
lookups within a single lookahead window is:

elookups = (τ + 1) × λ × 2ρ + 1
d

We additionally consider the number k of ping RPCs per unit of simulated time
generated for checking the online status of peers, each generating two events, to
obtain the total number of events per lookahead window:

etotal = (τ + 1) × (λ × 2ρ + 1
d

+ 2k)

Now, we analyze the event counts for active and passive peers separately. In each
lookup, active peers generate one initial event and one event for each RPC. he
number of these events for all active peers is:

eactive,lookup = (τ + 1) × λ × ρ + 1
d

Active peers also receive some of the requests generated in lookups of other peers.
he number of request events for all active peers is:

eactive,request = (τ + 1) × λ × nactive ×
ρ
d

Finally, a proportion of ping events targets active peers:

eactive,ping = (τ + 1) × k × nactive

Now, the total number of events expected to be generated per lookahead window
for all active peers is:

eactive = eactive,lookup + eactive,request + eactive,ping

he remaining events pertain to passive peers:
epassive = etotal − eactive

Using the estimated number of events for the two categories of active and passive
peers, we can now determine the expected largest number m of events per lookahead
window to be processed by a single peer in the simulation according to the analytical
model described in Section 5.2.3. he estimated concurrency is then etotal/m.

50

5 Analytical Concurrency Estimation Approach

Figure 5.10: A campus network in the NMS network model (Figure adapted from
[PR11]).

Discussion

In the simulated network, each lookup creates a sequence of RPCs targeting a sequence
of peers according to the dynamic contents of the routing tables of peers on the path
to the target of the lookup. Nevertheless, in the analysis, we consider the events
pertaining to each peer category as uniformly distributed among the peers in the
respective category, ignoring the network topology created by the Kademlia protocol
completely. In Section 5.4 we will see that nonetheless, our estimations are reasonably
accurate, showing that the impact of the exact topology of the considered Kademlia-
based network on the concurrency of the network model is relatively low. Instead,
the concurrency is dominated by the raw message counts per peer category as well
as by the overall network size.

5.3.2 TCP/IP in a Fixed Topology

Our second example is the NMS model (cf. Chapter 3). he model was selected for
its strong impact of the network topology on concurrency.
he basic building block of the topology is the campus network depicted in Fig-

ure 5.10. A conûgurable number ncns of campus networks is connected in a ring
using links. Ellipses represent local area networks (LANs) with a conûgurable num-
ber nlan of nodes each. To each of the LAN nodes, a TCP stream with a constant
data rate of 500 kbps is transmitted by one of the nodes 1:2, 1:3, 1:4 or 1:5 of the
neighboring campus network.
Since all messages pass through the nodes connecting individual campus networks,

we study the eòects of varying the bandwidth b between these nodes between 1 Mbps
and 1 000Mbps. In the following, we refer to the nodes connecting the individual cam-
pus networks as hubs. In addition, we diòerentiate between two types of bottlenecks:
network bottlenecks are nodes that due to their position in the network and their lim-
ited bandwidth restrict the overall throughput in the network. Simulation bottlenecks
are nodes for which disproportionally large numbers of events are processed per unit
of simulated time, so that these nodes limit the concurrency of the simulation model.

51

5 Analytical Concurrency Estimation Approach

Our experiments are based on a model implementation in the network simulator
ns-32 version 3.21 (nms-p2p-nix.cc), which uses an accurate representation of
the network and transport layer, whereas the lower layers aremodeled by the ûxed link
latencies speciûed above. We apply the common approach of using a ûxed lookahead
value of 1ms that is applicable to all nodes in the network. It may be possible to extract
larger concurrency with a dedicated lookahead value for each link at the cost of higher
complexity of the synchronization scheme (e.g., [MB99]).

Event Patterns

Since it is not always possible to transmit messages created by a simulated application
instantaneously, in ns-3, creation of messages and their transmission is modeled
separately. Hence, the transmission of a single message holding a payload via a linear
sequence of nodes is re�ected by the events and precedence relationships depicted
on the le� hand side of Figure 5.11: the sender generates one event for the message’s
creation (SendPacket), one for the message’s successful transmission on the link
layer (TransmitComplete), and one notifying the transport layer that a packet
was sent (NotifyDataSent). Each node on the path to the receiver generates
two events for reception (Receive) and successful forwarding (TransmitComp-
lete) of the message. Finally, the receiving node generates two events representing
reception: one for reception on the link layer (Receive), and one for forwarding
the message to the upper layers of the network stack (ForwardUp).
Additional messages are created by TCP on the receiver side. We use the New

Reno implementation of TCP, wherein by default, for every second message, an
acknowledgement is transmitted from the receiver to the sender. As depicted on
the right hand side of Figure 5.11, each acknowledgement generates one event for
the receiver of the payload (TransmitComplete), two events for each hop on
the path to the sender (Receive, TransmitComplete) and two events for the
original sender (Receive, ForwardUp).

Analytical Concurrency Estimation

We estimate the number of events created in the simulation using the following
parameters: rapp is the conûgured bitrate of each application that generates a TCP
�ow, and sm is the size of each message including headers. In our example, TCP and
IP each add 20 bytes of header data to a payload of 512 bytes. mapp is the message
rate per �ow. nfw is the average number of forwarding nodes between a sender and a
receiver. Using these values, the total event rate is given by the sum of the payload
and acknowledgement event rates. his calculation can be repeated for each TCP
�ow to determine the total event rate of the simulation.
Wemodel network bottlenecks by considering the number mtm of messages actually

transmitted per second according to the maximum message rate mhubs of the hubs
resulting from their conûgured bandwidth. Of course, in the general case, network
bottlenecks must be identiûed ûrst. For complex topologies, an approximation can
be calculated using common �ow algorithms. In the topology considered here, hubs

2http://www.nsnam.org/

52

5 Analytical Concurrency Estimation Approach

Figure 5.11: Event patterns in the NMS model: a single packet is transmitted from
node 1 to 3 via node 2. Node 3 replies with an acknowledgement.

with low bandwidth are obvious network bottlenecks. All other forwarding nodes
handle substantially smaller numbers of events. Now, the total number etotal of events
per TCP �ow and simulated second in the steady-state can be estimated as follows:

mapp = rapp/sm

mtm = min(mhubs,mapp)

epayload = mtm(2 + 2nfw + 2) +mapp

eack =
mtm

2
(1 + 2nfw + 2)

etotal = epayload + eack
he estimation is performed under the hypothesis that the combination of all TCP

�ows can be considered to fully saturate the capacity of network bottlenecks. Since
TCP only approximates the channel capacity, in an actual simulation run, the average
number of messages will be lower than our estimation. In Section 5.4, we evaluate
how the deviation in event counts aòects the accuracy of the concurrency estimation.
We now explicitly consider the event rates of two categories of nodes: hubs and

senders. Each of the ncns campus networks holds a single hub and four senders:
nhubs = ncns

nsenders = 4ncns
Since each campus network contains both senders and receivers, the number of TCP
�ows crossing each hub is 2 × nlan × ncns. he total event rate for the hubs is thus:

ehubs = 2nhubs × (mtm +
mtm

2
)

Again, each forwarded message generates one event for reception and one for trans-
mission and there is one acknowledgement for every other message. he event
rate for the senders is:

esenders = n�ows × (mapp + 2mtm + 2 × mtm

2
)

As before, we make the hypothesis that ehubs and esenders events are placed in the looka-
head window with approximately the same per-event probability for each hub and
sender, respectively. Using our analytical model, we can now estimate the largest ex-
pected number of events in each lookahead window for a single node in either the hub
or the sender group. he result m is the number of parallel event executions required
to process a single lookahead window. he estimated concurrency is then etotal/m.

53

5 Analytical Concurrency Estimation Approach

Discussion

From the analysis, we can gather relationships between properties of the consid-
ered network model and the model’s concurrency: ûrst, since parallel simulation
progress is determined by the simulation bottlenecks, a large number of events for
non-bottleneck nodes is beneûcial for high concurrency. Hence, given the fact that
each hop forwarding a message generates two events, longer path lengths increase
concurrency. Second, mtm decreases if there are network bottlenecks, whereas mapp is
independent of network bottlenecks. herefore, it is possible that the total event rate
is dominated by events generated at senders, even though all traõc passes through the
hubs. Because of this, there is an inverse relationship between network and simulation
bottlenecks: hubs that do not limit the message rate form simulation bottlenecks, but
do not form network bottlenecks, whereas hubs that do limit the message rate form
network bottlenecks, but do not form simulation bottlenecks.

5.3.3 Wireless Ad-Hoc Communication

As a third example, we study the concurrency of theWirelessA model (cf. Chapter 3).
Due to the broadcast nature of the wireless medium and the avoidance of message
collisions, we can express the concurrency directly based on an analysis of individual
transmissions, without reliance on the statistical approach presented in Section 5.2.3.
In the scenario considered here, a conûgurable number of nodes are positioned

randomly on a linear 100m road segment. henodes broadcast at a conûgurable packet
rate, each packet comprising 400 bytes of data including headers. Transmissions use
a data rate of 6 Mbps over a wireless channel using a CSMA-based MAC layer, i.e.,
nodes check for activity on the channel and delay their transmissions if necessary.

Event Patterns

We study the event patterns in the described model by reference to ns-3. A single
transmission comprises the following sequence of events (cf. Figure 5.12): given no
ongoing transmission on the channel, a SendPacket event of the transmitting
node represents the start of a transmission and creates a Receive event for each
remaining node as well as a single EndTxNoAck event re�ecting the completion
of the transmission. For each receiver that detects the packet, the Receive event
creates an EndReceive event. In total, a successful transmission is re�ected by a
minimum of 1+(n−1)+1 = n+1 and a maximum of 1+(n−1)+1+(n−1) = 2n events.
A CSMA-based MAC layer aims to reduce the probability of collisions. If the

channel is busy, the initial SendPacket event creates a single AccessTimeout
event that takes the role of a SendPacket at a later point in simulated time. In the
following, we refer to SendPacket events only, since AccessTimeout events
are handled identically. We refer to SendPacket events by which a busy channel
is detected as Probe events.
here are two situations in which interactions between multiple transmission at-

tempts aòect concurrency: ûrst, collisions occur in case two nodes start sending
at the same time. Second, a SendPacket event can detect a busy channel and

54

5 Analytical Concurrency Estimation Approach

Figure 5.12: Concurrency of a single transmission in WirelessA.

delay the new transmission, so that no Receive events are created until the next
attempt. he occurrence probabilities of both situations depend on the channel load.
Our concurrency estimation disregards overlapping transmissions, but does con-
sider Probe events.

Analytical Concurrency Estimation

To estimate the concurrency in the model analytically, we need to be aware of the
lookahead that will be available in a simulation run. Simulations of wireless networks
are well-known to exhibit only small amounts of ûxed lookahead. Due to the broadcast
nature of wireless networks, transmissions pertain to all nodes in proximity of the
sender, and due to the speed-of-light propagation of radio waves, the time delta
between transmission and reception is quite small. Hence, a ûxed lookahead value
considering the minimum latency between any two nodes of the network can be
insuõcient for high concurrency. he literature proposes the use of model knowledge
regarding OSI layers 2 and above to enable larger lookahead values [LN02, PVM09].
If it is known at simulation runtime that according to the current state of, e.g., the
MAC or application layer of the nodes, new events up to a certain point in time can
be ruled out, the lookahead can be extended up to this point.
For the analysis, we consider the case where model knowledge provides suõcient

lookahead to cover all events that have no pending precedence relationships. Fig-
ure 5.12 depicts the event patterns in themodel, grouping concurrent events. he initial
SendPacket event creates n− 1 Receive events as well as a single EndTxNoAck
event. Since execution of the SendPacket event triggers the creation of all other
events, it cannot be executed in parallel with any further events. Now, all Receive
events can be executed in parallel together with the EndTxNoAck, n events in
total. Next, all remaining SendPacket events are executed concurrently with
EndReceive events of nodes that execute no Probe events and receive the cur-
rent packet successfully.
We now consider the number of parallel event executions required to process the

Probe events. Since events for each node must be executed in timestamp order,
up to n events can be executed at the same time. For a given simulation run of T
transmissions with pt Probe events during transmission t, the average number of
event executions required to process all Probe events is rp = 1

T ∑
T
t=1⌈

pt
n ⌉, the value

55

5 Analytical Concurrency Estimation Approach

of which can be determined from a sequential simulation run. Let s be the average
ratio of nodes successfully receiving a frame, and let p be the average number of
probe events during each transmission. We estimate the model’s concurrency by
dividing the number of events per transmission by the number of executions required.
he estimated concurrency is:

Cest =
1 + (n− 1)+ 1+ s(n− 1)+ p

3 + rp
= n+ 1+ s(n− 1)+ p

3 + rp

Discussion

he simplicity of the analysis re�ects the simplicity of the event precedence relation:
the available concurrency results from the independent reception events evenly dis-
tributed among all receivers. Since, contrary to the previous two network models,
a statistical estimation of event counts is not necessary, we can estimate the ACPA
concurrency directly without estimating YAWNS concurrency ûrst.

5.4 Evaluation
In this section, we ûrst evaluate the sensitivity of the previously analyzed network
models’ concurrency to scenario parameters. his analysis is performed by analyzing
precedence graphs from sequential simulation runs using ACPA. he precedence
graphs were created by modifying ns-3 and PeerSim to output for each event an ID, a
timestamp, the node assignment and the creating event’s ID. he ACPA results serve
as reference values to validate our proposed estimation approach. Subsequently, we
compare the ACPA results with YAWNS and ûnally with the results obtained analyti-
cally using the proposed estimation approach, i.e., without reliance on precedence
graphs. he ACPA and YAWNS results were generated using a C++ implementation
of the algorithms described in Section 3. he calculations required by the analytical
estimation model were performed using an R script.

5.4.1 Sensitivity Analysis

We ûrst study the sensitivity of KademliaA to the number n of peers in the network,
the number λuser of concurrent user-initiated lookups, and the number α of concurrent
RPCs per lookup. To set a ûxed λuser accurately, we require an estimate of the average
lookup duration d, which can be gathered from a brief initial simulation run. hen,
the rate at which lookups must be generated to achieve the desired number λuser of
concurrent lookups follows Little’s law and is λuser/d.
For runs with λuser = 100 and λ = 1 000, we triggered the generation of precedence

graphs a�er 1 000s of simulated time to allow the network to reach a steady state. Using
ACPA according to Section 5.2, we analyzed events executed within 10s of simulated
time. However, since the results diòered only slightly with shorter runs, we conûgured
the computationally expensive runs for λuser = 10 000 with only 300s of warm-up
time. Since link latencies in milliseconds are drawn from a uniform distribution

56

5 Analytical Concurrency Estimation Approach

0
200
400
600
800

1,000
1,200
1,400
1,600

100 1,000 10,000C
:
A

C
P

A
 C

o
n
c
u
rr

e
n
c
y

λuser: Number of Concurrent Lookups

Network Size: 100,000 Peers
 10,000 Peers
 1,000 Peers

(a) α = 8, varying λuser.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

 1 2 4 8 16 32

C
:
A

C
P

A
 C

o
n
c
u
rr

e
n
c
y

α: Maximum Number of Concurrent RPCs

Network Size: 100,000 Peers
10,000 Peers
1,000 Peers

(b) λuser = 10 000, varying α.

Figure 5.13: Sensitivity analysis of KademliaA.

on {10, 11, . . . , 200}, a ûxed lookahead value of 10ms was used. In Figure 5.13, we
can see that, as expected, larger numbers of concurrent lookups result in larger
concurrency. Furthermore, larger α provides an increase in concurrency. In both
ûgures, we can see that concurrency is limited by the network size. Disregarding the
costs of inter-processor communication during simulation, many of the considered
parameterizations suggest a simulation on a hardware platform that enables the
parallel execution of hundreds of events.
For the sensitivity analysis of the NMS model, we used 60s of warm-up time. Since

the results were virtually independent of the considered amount of simulated time, it
was suõcient to analyze events executed within 1s of simulated time. he results in
Figure 5.14 show the sensitivity of the model’s concurrency to scenario parameters.
When varying the number ncns of campus network and the hub bandwidth for a ûxed
number nlan of 16 LAN nodes, we can see that since campus networks communicate
only with their direct neighbors, larger numbers of campus networks do not increase
the amount of traõc handled by individual hubs. Hence, irrespective of the hub
bandwidth, there is a linear relationship between the number of campus networks
and the ACPA concurrency. he concurrency does not simply increase with larger
hub bandwidth: even though a hub bandwidth of 1 000 Mbps allows for far fewer
messages transmitted per unit of simulated time than a bandwidth of 10 Mbps, the
larger number of messages crossing the hubs limits the concurrency of the simulation.
When varying the number of LAN nodes and the hub bandwidth for a ûxed number

of 16 campus networks, we can see that with 2 LAN nodes, only 2 000 kbps of traõc
cross each hub, i.e., there is a network bottleneck in the run with 1 Mbps only. Accord-
ingly, the results with hub bandwidths of 10 Mbps and above are nearly identical. For
4 and more LAN nodes, the magnitudes of the results do not simply follow the hub

57

5 Analytical Concurrency Estimation Approach

0

50

100

150

200

250

2 4 8 16 32

C
:
A

C
P

A
 C

o
n
c
u
rr

e
n
c
y

ncns: Number of Campus Networks

Hub Bandwidth: 1,000 Mbps
 100 Mbps
 10 Mbps
 1 Mbps

(a) Varying the number ncns of campus networks.

0

50

100

150

200

250

2 4 8 16 32

C
:
A

C
P

A
 C

o
n
c
u
rr

e
n
c
y

nlan: Number of Nodes per LAN

Hub Bandwidth: 1,000 Mbps
 100 Mbps
 10 Mbps
 1 Mbps

(b) Varying the number nlan of nodes per LAN.

Figure 5.14: Sensitivity analysis of the NMS model

10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

C
:
A

C
P

A
 C

o
n
c
u
rr

e
n
c
y

n: Number of Nodes

Beacon Rate: 5Hz
 10Hz
 20Hz
 40Hz
 80Hz

Figure 5.15: Sensitivity analysis of WirelessA, varying the number of nodes and the
beacon rate.

bandwidth. Instead, the resulting concurrency depends on three factors: the rate of
message generation by the senders, the rate at which the messages pass through the
network as dictated by the hub bandwidth, and the total number of message �ows.
With 1 000Mbps, the concurrency is nearly independent of the LAN node count. he
reason is that, since there are no network bottlenecks, each doubling of the LAN node
count doubles the total number of messages per unit of time, but at the same time
doubles the number of messages at each hub, i.e., twice the original number of events
is processed in twice the number of executions. Hence, the resulting concurrency
remains nearly unchanged. When disregarding the costs of communication during a
simulation run, the concurrency with 32 campus networks suggests simulation on a
hardware platform that allows parallel execution of up to about 200 events.
Finally, the sensitivity of the concurrency of WirelessA to the beacon rate and the

number of nodes was analyzed using precedence graphs covering 10s of simulated
time a�er a warm-up time of 30s. Figure 5.15 shows that the concurrency increases

58

5 Analytical Concurrency Estimation Approach

close to linearly with the number of nodes in the network. For extremely large channel
loads, collisions increase the concurrency substantially. Further, slight diòerences
in concurrency for lower beacon rates are caused by varying numbers of events
representing transmission attempts.
In the considered parameter combinations, we measured concurrency values below

100 even for large node densities. Due to the limited spatial extent of 100m of the net-
work, larger node counts lead to unrealistically large channel load. Parallel execution
onmany-core devices should hence be consideredwhen studying scenarios with larger
spatial extent that support larger numbers of nodes under realistic channel loads.

5.4.2 Validation of Estimations

In the following, we evaluate the accuracy of the proposed concurrency estimation
approach. To this end, two questions are addressed:

Question A: Are the concurrency values determined by an automated analysis of
precedence graphs using YAWNS and ACPA suõciently close to use these methods
interchangeably?

Our analytical model estimates the results of YAWNS. However, since ACPA deter-
mines the largest possible concurrency, we use ACPA as our reference method.

Question B: Does our analytical model estimate ACPA concurrency of the considered
network models with suõcient accuracy?

A correspondence between the estimation and the ACPA results indicates that
our network model analysis captured the key in�uencing factors for the models’
concurrency.

We ûrst consider question A and focus on the results for the KademliaA and
NMS models, since the concurrency of WirelessA was estimated directly with ref-
erence to ACPA. he parameters of the KademliaA model were varied as follows:
n ∈ {1 000; 10000; 100000}, λuser ∈ {100; 1 000; 10000}, α ∈ {1; 2; 4; 8; 16; 32}. In ad-
dition, we conûgured the probability of packet loss as 0%, 25%, 50% and 75%. he
NMS model was conûgured as follows: ncns ∈ {2; 4; 8; 16; 32}, nlan ∈ {2; 4; 8; 16; 32},
b ∈ {1; 10; 100; 1 000} Mbps.
Figure 5.16 compares the results of YAWNS and ACPA. We can see that YAWNS

determines lower concurrency values thanACPA.hedeviation increases slightlywith
larger concurrency. However, even for very large concurrency values, the YAWNS-
based results are never below a factor of 0.6 of ACPA.We consider the correspondence
suõciently close to evaluate the parallelization potential of network models.
Now, we address question B and compare the analytical estimate with the ACPA

results (cf. Figure 5.17). For KademliaA, an underestimation between the analytical
model and ACPA can be observed in many cases. However, the model captures ACPA
suõciently so that, apart from few outliers, the estimation lies within a factor of 0.5 and
1.5 of the reference value over a vast range ofmodel parameters and concurrency values.
Similarly, the results for the NMS model show a close correspondence between the

59

5 Analytical Concurrency Estimation Approach

0

0.5

1

1.5

2

1 10 100 1,000 10,000
Y

 /
 C

C: ACPA Concurrency

(a) KademliaA model

0

0.5

1

1.5

2

1 10 100 1,000

Y
 /
 C

C: ACPA Concurrency

(b) NMS model

Figure 5.16: Comparison of YAWNS (Y) with ACPA concurrency (C).

0

0.5

1

1.5

2

1 10 100 1,000 10,000

C
e

s
t
/
C

C: ACPA Concurrency

(a) KademliaA model.

0

0.5

1

1.5

2

1 10 100 1,000

C
e

s
t
/
C

C: ACPA Concurrency

(b) NMS model.

Figure 5.17: Comparison of analytical estimate (Cest) with ACPA concurrency (C).

analytical estimate and ACPA results. Here, a repeating pattern emerges in the plotted
results: our network model analysis assumed a full utilization of the channel capacity
in the simulated network. With decreasing hub bandwidth, the simulated network
deviates increasingly from full utilization, leading to an overestimation of concurrency.
he proposed analytical estimation approach is applied under the hypothesis that
events can be considered as being uniformly distributed among the nodes of each
of the identiûed categories. If the assumption of a uniform distribution of events to
nodes holds, we expect a binomial distribution of the number of events assigned to
each node in each lookahead window. Since this section already shows the validity
of the concurrency estimations of our analytical model, we limit our illustration of
the validity of our hypothesis of approximately uniform distribution to two example

60

5 Analytical Concurrency Estimation Approach

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6

R
a
ti
o
 o

f
N

o
d
e
s

Number of Events per Lookahead Window

(a) Binomial distribution B(296, 1/300)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6

R
a
ti
o
 o

f
N

o
d
e
s

Number of Events per Lookahead Window

(b) Results from simulation run.

Figure 5.18: Expected and observed distribution of the number of events per node in
the active category in each lookahead window for a run of KademliaA with n = 1 000,
λuser = 300, α = 8, and 0% packet loss.

scenarios. We determined the appropriate parameters for the binomial distribution
according to the observed number of events per lookahead window, and the number
of nodes in the considered node category. Figure 5.18 compares the expected binomial
distributionwith the number of events per node of the active category (cf. Section 5.3.1)
actually observed in an exemplary simulation run of KademliaA. We can see that in
the considered scenario, the simulation results are matched closely by the binomial
distribution. Figure 5.19 compares the expected binomial distributionwith the number
of events per node of the hub category (cf. Section 5.3.2) in a run of the NMS model.
Here, a deviation in the distributions is caused by the fact that in the network model,
groups of two events each are scheduled with only a small delta in simulated time.
Hence, in almost all cases, an even number of events is assigned to an individual node
in each lookahead window. Still, we can see that in these examples, the binomial
distribution approximates the measured results well.
For validation of the estimations for WirelessA, we varied the number of nodes in

the network between 2 and 100. Figure 5.20 relates the estimated concurrency Cest to
the results from ACPA of precedence graphs. For small networks, the estimation is
nearly identical to the ACPA results. he estimation becomes too pessimistic only
in cases of extreme channel load, where collisions, which are not considered by the
analytical estimate, are frequent. he largest deviation was measured in a scenario
with 100 nodes and a beacon rate of 80Hz. In this case, the estimation amounts to
73.5% of the concurrency determined using ACPA.

61

5 Analytical Concurrency Estimation Approach

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 5 10 15 20 25 30 35 40

R
a

ti
o

 o
f

N
o

d
e

s

Number of Events per Lookahead Window

(a) Binomial distribution B(281, 1/16)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 5 10 15 20 25 30 35 40

R
a

ti
o

 o
f

N
o

d
e

s

Number of Events per Lookahead Window

(b) Results from simulation run.

Figure 5.19: Expected and observed distribution of the number of events per node
of the hub category in each lookahead window for a run of the NMS model with 16
campus networks, 1 node per LAN, and 1Gbps of hub bandwidth.

0

0.5

1

1.5

2

1 10 100

C
e

s
t
/
C

C: ACPA Concurrency

Figure 5.20: Comparison of our analytical estimate (Cest) with ACPA concurrency
(C) of WirelessA.

5.5 Towards a Consideration of Variable Event

Processing Times
he analytical estimation model proposed in the previous section assumes identical
processing times for all events in the simulation. his assumption holds true for simu-
lators where a new event execution commences only a�er all processors have ûnished
the previous execution. In this section, we show how the analytical estimation model
can be reûned to consider variable event processing times. Subsequently, we present
measurements of event processing times of three concrete network models. Finally,
we discuss the eòects of variable event processing times on concurrency estimations.

5.5.1 Refined Concurrency Estimation Model

Previously, the estimation result was the ratio Cest ∶= etotal/m of the expected total
number of events in a lookahead window and the expected maximum events in
a window pertaining to a single simulated node. Now, our aim is to determine
Sest ∶= rsequential/rparallel, where rsequential and rparallel are the expected amounts of wall-
clock time required to process the events in a lookahead window sequentially and in

62

5 Analytical Concurrency Estimation Approach

parallel. We make the simplifying assumption that the processing times of individual
events are stochastically independent. Now, we follow the same reasoning as before: in
YAWNS, when simulating one node on each processor, the amount of wall-clock time
required to process a lookahead window is the largest processing time associated with
any single node. Let c1(t), t ∈ N0 be a discrete probability density function expressing
the probability that a single event requires t units of wall-clock time to be processed.
he distribution c1(t) can be gathered from measurements in a sequential simulation
run of the network model. hen, the expected sequential processing time is:

rsequential = etotal
∞

∑
t=1

tc1(t).

To determine the expected parallel processing time rparallel, we require the probabil-
ity density function fi(k) describing the probability that a single node of category
i executes k events in the lookahead window. As in the previous section, fi(k) can
be determined based on the binomial distribution. In addition, we require the dis-
tribution function ck(t) that describes the probability that a node requires t units
of wall-clock time to execute k events. While c0(t) = 0, for k ≥ 2, ck(t) is the k-th
convolution power of c1(t):

ck(t) = (c1 ∗ c1 ∗ ... ∗ c1 ∗ c1
´¹¹¹¸¹¹¹¶

k times

)(t),

where * is the convolution operator. Applying the law of total probability, the
probability that a single node of category i requires t units of wall-clock time is:

gi(t) ∶=
∞

∑
k=0
fi(k)ck(t).

hen, using the cumulative distribution function Gi of each probability density func-
tion gi , the probability that all nodes of category i have processing times ≤ t is
Hi(t) = Gi(t)n i . As in the previous section, we now consider all of the c node
categories: H(t) =

c

∏
i=1

Hi(t).

Finally, using the probability density function h of the cumulative distribution
function H, the expected largest processing time of any node and thus the parallel
processing time for the lookahead window is:

rparallel =
∞

∑
t=1

th(t).

Now, an estimate of the speedup through parallelization assuming no overheads
for communication between processors is given by

Sest ∶= rsequential/rparallel.

63

5 Analytical Concurrency Estimation Approach

5.5.2 Impact of Variable Event Processing Times

In this section, we study the eòects of considering measured event processing times of
the considered network models on the estimation results. To this end, we ûrst present
measurement results of the processing time distributions and compare estimation
results under the assumption of ûxed per-event processing times with estimation
results of the reûned estimation model.
Figure 5.21 shows the distribution of processing times of individual events in ex-

ample conûgurations of the KademliaA and NMS model. All measurements were
performed on a single core of an Intel Xeon E5-2670 processor. In ns-3, we measured
the event processing times by accessing the accurate cycle counter available in recent
Intel CPUs [Pao10]. In PeerSim, the Java method System.nanoTime() was used.
In both cases, we aimed to minimize the runtime overhead of the measurements by
storing the results in a pre-allocated array and performing the output of the mea-
surements only a�er the termination of the simulation run. We now compare the
estimation results of the basic analytical estimation model with the results of the
reûned estimation model that considers the per-event processing time distribution.
To gather the individual estimates, we measured the per-event processing time dis-
tribution in a sequential run of each of the conûgurations and subsequently applied
the reûned analytical model of Section 5.5.1. We study the ratio between the speedup
estimate of the reûned estimation model and the concurrency estimate of the basic
analytical model, i.e., Sest/Cest. We perform the comparison for the KademliaA and
NMS network models only, since the concurrency estimation of WirelessA does not
rely on the statistical approach of Section 5.2.3. Due to the consistent and recurring
sequences of event types in WirelessA, considering variable processing times would
require a consideration of individual events in order of occurrence.
Table 5.2 lists Sest/Cest for a set of conûgurations of KademliaA. Considering all

of our measurements, the largest deviation (Sest/Cest = 0.011) between the basic and
reûned analytical model was observed with 100 000 peers, λuser = 100, α = 4 and
50% timeouts. he lowest deviation (Sest/Cest = 0.466) was observed with 1 000 peers,
λuser = 1 000, α = 1 and 0% timeouts. Table 5.3 lists Sest/Cest for a set of conûgurations
of the NMS network model. he largest deviation (Sest/Cest = 0.086) was observed
with 16 campus networks, 32 nodes per LAN and a hub bandwidth of 1Mbps. he
lowest deviation (Sest/Cest = 0.963) was observed with 2 campus networks, 16 nodes
per LAN and a hub bandwidth of 1 000Mbps.
he results show that considering variable event processing times can signiûcantly

lower the estimation results, demonstrating that the real-world simulation perfor-
mance must in some cases be expected to be much lower than suggested by the plain
concurrency results. However, a full and realistic consideration of event process-
ing times requires a consideration of diòerent types of events and their individual
processing time distributions, as well as their order of occurrence in the simulation.
While a more detailed modeling enables the consideration of further factors such as
overheads for physical communication between processors, the eòorts required by
such an estimation must be weighed against the costs of enabling direct performance
measurements through an actual parallelization of the model.

64

5 Analytical Concurrency Estimation Approach

0

0.02

0.04

0.06

0.08

0.1

0 0.5 1 1.5 2 2.5 3 3.5 4

R
a
ti
o
 o

f
E

v
e
n
ts

Processing Time per Event [µs]

(a) KademliaA: 100000 peers; λuser = 100; α = 4; 50% timeouts.

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12 14

R
a
ti
o
 o

f
E

v
e
n
ts

Processing Time per Event [µs]

(b) NMS model: ncns = 2; nlan = 16; b = 1 000Mbps.

Figure 5.21: Distribution of per-event processing time.
λuser

#Peers 100 1 000 10 000
1 000 0.248 0.411 0.415

10 000 0.111 0.165 0.252
100 000 0.023 0.056 0.032

Table 5.2: Ratio between reûned and
basic estimations for KademliaA with
α = 8 and 0% timeouts.

Hub Bandwidth [Mbps]
#CNs #Nodes

LAN 1 10 100 1 000
2 2 0.533 0.891 0.924 0.923
8 8 0.470 0.788 0.897 0.887
16 4 0.152 0.290 0.404 0.403

Table 5.3: Ratio between reûned and ba-
sic estimation results for the NMS net-
work model.

5.6 Discussion
he proposed estimation approach requires the identiûcation of simulation bottle-
necks and a classiûcation of nodes according to the number of assigned events. How-
ever, it may not always be possible to determine these properties without executing
the simulation. Depending on the network model, a sequential run is required to
approximate the required statistics. For instance, a brief sequential simulation run
of KademliaA was performed to approximate the average lookup duration. In the
cases considered here, such an estimation was suõcient to achieve a reasonable level
of estimation accuracy. Since the statistics gathered from simulation runs represent
characteristics of the simulated network, the analytical approach still enables an under-
standing of the relationships between network properties and concurrency. In contrast,
critical path analysis determines the concurrency without exposing its causes.
he concurrency values determined by both ACPA and the proposed estimation

approach disregard the costs induced by communication between the processors
executing the simulation. Also, since an unlimited number of processors is assumed,
the results can be considered to be determined under a trivial partitioning strategy of
assigning a single simulated node to each processor. In general, even disregarding the
signiûcant hardware resources required by such a partitioning strategy, there will be

65

5 Analytical Concurrency Estimation Approach

unacceptably large communication overheads. An optimal number of processorsmust
be determined according to the network model, the synchronization algorithm and
the costs for communication between processors in the given hardware environment.
Still, the raw concurrency of the network model provides an upper bound on the
average number of events processed per execution using conservative synchronization
under the assumption of ûxed event processing times and ûxed lookahead. his upper
bound cannot be exceeded in conservative parallel simulations even through future
improvements in synchronization algorithms or using novel hardware platforms.

5.7 Conclusions
We presented an analytical model to estimate and understand the concurrency of
network simulation models based on a modest amount of knowledge of the network
model and information from sequential simulation runs. To show the soundness
of the estimation approach, we proved an upper bound on the deviation between
results obtained using the well-known synchronization algorithmYAWNS and critical
path analysis: when assuming ûxed event processing times and ûxed lookahead, the
concurrency determined using YAWNS is at least 1/3 of the concurrency determined
using critical path analysis. A sensitivity analysis and investigation of event patterns
showed the factors determining the concurrency of three network models and the
diòerences in their potential for parallelization. he analytical approach estimates
concurrency with high accuracy over a broad range of scenario parameter settings.
For the models KademliaA and NMS, we showed that the concurrency can be esti-
mated accurately even when abstracting from the network topology to a large degree.
he concurrency of WirelessA was shown to scale in proportion to the number of
nodes in the network. he model KademliaA exhibits particularly large concurrency,
potentially enabling parallel execution of up to thousands of events.
Finally, we reûned the analytical model to assess the impact on the estimations

when considering variable event processing times. Depending on the measured event
processing time distribution and the scenario conûguration, we observed up to about
one order of magnitude deviation from the results under the assumption of ûxed event
processing times. However, since a reûned model requires either the introduction of
additional assumptions or extensive measurements, the proposed basic estimation
model seems to provide a reasonable tradeoò between estimation eòort and accuracy.

66

6

Second-Order Network Simulation

In the previous section, we studied upper bounds on the parallelism of an idealized
parallel or distributed simulation run, assuming no costs for communication and
synchronization between logical processes and identical computation time for all
events. However, these aspects must be considered if the aim is to accurately predict
the performance to be expected in a real-world simulation run. In this chapter,
we describe an evaluation approach that enables realistic performance predictions
of parallel and distributed simulation runs based on information gathered from a
sequential execution of the network model under study.
he approach serves two purposes: ûrst, the performance predictions enable sim-

ulationists to decide whether the parallelization of an existing sequential network
model will yield a suõcient performance beneût to justify the required development
eòort. Second, the approach allows for variation of properties of the network model
and the envisioned execution network, so that the predictions can guide network
model optimization and hardware selection.
he core idea of the approach is to regard the envisioned parallel or distributed sim-

ulation as a generic application. From this perspective, it is clear that the well-known
set of performance prediction approaches of measurements, analytical modeling,
and simulation, can be applied. However, in general, the complexity in the runtime
interactions between a simulator, an execution platform and a network model move
accurate performance predictions out of the reach of analytical methods. In case mea-
surements are infeasible as well, e.g., since a parallel variant of the networkmodel does
not exist, simulation can be applied instead, similarly to performance prediction ap-
proach for general applications [BM02, ZKK04, BKR07, HMS+09, RHB+11, BRM12].
When considering performance predictions of parallel and distributed simulations,
the resulting evaluation approach is a simulation of a parallel or distributed simulation.

67

6 Second-Order Network Simulation

We refer to this kind of nested simulation in the context of network simulations
as second-order network simulation.
In the remainder of this section, we describe in detail the model components and

execution procedure of a second-order network simulator. Subsequently, we generate
predictions for two of the networkmodels introduced in Chapter 3 in order to evaluate
the accuracy of the performance predictions by comparison to parallel and distributed
simulation runs of the network models on physical hardware. he description of
the prediction approach is based on [AH13].

6.1 Methodology
In this section, we describe the methodology used by SONSim, our implementation
of the second-order simulation approach, to obtain performance predictions. Based
solely on information gathered from an existing sequential simulator and simple
network measurements, SONSim predicts the performance of a parallel or distributed
implementation of the simulator, enabling decisions on whether parallelization of
a simulation will provide a performance beneût.

6.1.1 Modeling Levels

Figure 6.1 illustrates the modeling levels involved in second-order simulation. he
original computer network to be evaluated using simulation is referred to as the
network under study (NuS). Creating a simulation model of the network under study
produces a ûrst-order model, which can be implemented in a sequential, parallel or
distributed ûrst-order simulator. Since we are interested in the performance of the
ûrst-order simulator, we repeat the modeling step to arrive at a second-order model,
which describes the behavior of the ûrst-order simulator. he second-order model
can be implemented in a second-order simulator that is used to conduct performance
evaluations of the ûrst-order simulator.
he network under study operates with respect to wall-clock time tNuS, for which a

prediction t′NuS is produced by the ûrst-order simulator. Performing the ûrst-order
simulation itself requires an amount of wall-clock time t1st, for which a prediction
t′1st is produced by the second-order simulator.
We contrast the network under study with the network a parallel or distributed

ûrst-order simulator is executed in, which in the following we refer to as the ex-
ecution network.

6.1.2 Prediction Workflow

he following sequence of activities is performed to obtain performance predic-
tions (cf. Figure 6.2).

1. he existing sequential ûrst-order simulator is executed multiple times for a
given scenario to determine the average sequential runtime as a reference value
for speedup calculation.

68

6 Second-Order Network Simulation

Figure 6.1: Levels of abstraction in modeling of simulations.

Figure 6.2: Data �ow during performance prediction.

2. he sequential ûrst-order simulator is instrumented to perform time measure-
ments of the execution of individual event types and to generate an execution
trace. he execution trace contains the sequence of event executions including
event timestamps and the mapping of individual events to nodes of the network
under study in the ûrst-order simulation, as well as the sequence of events being
created during simulation. he instrumented sequential simulator is executed
to obtain the execution trace. We note that to avoid overheads, the sequential
run in step 1. is performed without tracing.

3. As a basis for predicting the network overhead involved in the parallel or
distributed simulation, we measure the average time required for individual
message transfers in the execution network.

4. Finally, a�er supplying the execution network measurements, a partitioning
of the ûrst-order network model and the execution trace to the second-order
simulator, a performance prediction for the parallel or distributed ûrst-order
simulation is generated.

6.1.3 Model Components

In this section, we describe the entities constituting the ûrst-order and second-order
models used by SONSim. Consistent with the discrete-event modeling approach,
networks under study are commonly re�ected by ûrst-order models as follows:

69

6 Second-Order Network Simulation

– System objects represent the nodes in the network under study.

– Events model transmissions and receptions of packets by individual nodes.

– Logical processes run on nodes of the execution network, each storing a num-
ber of system objects and executing events pertaining to these system objects.

Applying the same modeling pattern again, we represent the state and the be-
havior of the parallel or distributed simulation in a sequential second-order sim-
ulation as follows:

– System objects represent the logical processes of the ûrst-order simulation.

– Events model activities performed by individual logical processes: execution
network operations and execution of ûrst-order events.

– Since the second-order simulator itself is executed sequentially, only a single
logical process is executed on the physical hardware.

To be able to predict the runtime of ûrst-order simulations, amodel of the operations
executed by each logical process of a ûrst-order simulator is required. A sequential
discrete-event simulator operates in a simple loop: all events to be executed are stored
in a priority queue. In each step, the event with the lowest timestamp is executed
and removed from the queue. If the execution of the event triggers the creation of
further events, the newly created events are added to the queue.
Parallel and distributed execution extends the basic sequential discrete-event logic

in the following ways according to the null message algorithm (cf. Section 2.1): as long
as safe events are available, these events are executed in non-decreasing timestamp
order. If the executed events create new events, these are enqueued in the local
future event list or sent to a remote logical process. If no safe events are available, a
null message is broadcasted to all remote logical processes and the logical process
blocks until a message is received from a remote logical process. If a null message
is received, the logical process returns to checking for safe events. If an event is
received, the event is enqueued before checking for safe events. Once all logical
processes’ future event lists are empty, the simulation terminates. he simulated
time with respect to t′1st until termination is the predicted runtime of the ûrst-order
parallel or distributed simulation.

6.1.4 Hardware Measurements

In the second-order simulation, the operations required by ûrst-order logical pro-
cesses to execute the parallel or distributed simulation are derived from a model of
each logical process’ behavior. However, to estimate the time required to perform
the simulation, the costs of the individual operations with respect to t1st must be
estimated. Measurements in the execution network can be performed to determine
values that approximate the individual costs. Two types of measurements are required:
ûrst, the costs for executing events of diòerent types and for event management tasks

70

6 Second-Order Network Simulation

are measured either by applying code proûling tools to the sequential simulator im-
plementation, or by instrumenting the code with timing calls. Second, the costs
of communication between LPs via shared memory or a network are measured by
micro-benchmarks that repeatedly perform the communication tasks in question
in the execution network to be used for the envisioned parallel or distributed sim-
ulation. For instance, the tool SKaMPI [RSPM98] measures the costs of individual
message passing operations.

6.1.5 Second-Order Simulator Operation

In this section, we describe the states and behavior of a second-order simulation.
SONSim operates by executing second-order events in timestamp order until no
events are le� in the queue. Each second-order event may extend an LP’s position in
t′1st according to the time measurements used as input to SONSim. On termination of
the second-order simulation, the ûnal position in t′1st represents SONSim’s prediction
of the ûrst-order simulation runtime.
When supplied with an execution trace of a ûrst-order simulation, measurements of

the execution network, and a partitioning of the model, the second-order simulator
loads the execution trace and translates all initial ûrst-order events to the second-order
events required to re�ect the ûrst-order events’ execution.
he event types in the second-order simulation follow the states depicted in Fig-

ure 6.3. Each state can be associated with a cost in the predicted runtime with respect
to t′1st. he cost is modeled by representing each state using two second-order events:
a start event re�ects the point in t′1st at which the state is entered. A ûnish event re�ects
the point in t′1st a transition into a subsequent state is performed. Hence, the delta in
t′1st between the start and ûnish event associated with a state models the time spent
by a logical process in that state. Each ûrst-order logical process holds four main
data structures that represent the logical process’ state:

– EventMap is a timestamp-ordered queue representing the logical process’ fu-
ture event list. Each entry in the EventMap corresponds to a node in the
precedence graph that is provided to SONSim in the form of an event trace.
he processing of events contained in the EventMap is modeled by a time delta
in t′1st according to the previously measured processing time for the event’s type.

– EnqueueFifo is a “ûrst in, ûrst out” queue that holds events to be inserted in a
ûrst-order logical process’ EventMap. Events are inserted into the EnqueueFifo
whenever a locally executed event creates further events, and whenever an
event is received from a remote logical process.

– SendFifo is a “ûrst in, ûrst out” queue that holds events to be transferred to
remote logical processes.

In the following, we describe the tasks performed by a ûrst-order logical process
in each of its states. We also describe the conditions under which the transitions

71

6 Second-Order Network Simulation

Figure 6.3: Finite state machine description of the LP behavior in SONSim.

between states are taken. he transitions that are not annotated in Figure 6.3 are taken
unconditionally once the time delta associated with the respective state has expired.

– CheckSafeEvent: if the EventMap is non-empty and the earliest event in the
EventMap is safe to execute, the event is removed from the EventMap and the LP
transitions to the state ExecuteNextEvent. If all logical processes’ EventMaps are
empty, the LP transitions to the state Finished. If the EventMap is non-empty but
does not hold any safe events, the LP transitions to the state SendNullMessage.

– ExecuteNextEvent: since the execution of ûrst-order events is modeled solely
by a delta in t′1st and does not require the actual execution of a ûrst-order event
handler, ExecuteNextEvent handles only the management of events that are
newly created by the currently executed event, according to the event trace.
he time delta is determined according to the measurements performed for
the ûrst-order event’s type. Each newly created event is handled as follows: if
the new event is to be executed by the local LP, it is inserted into EnqueueFifo.
If the event is to be executed by a remote LP, the event is inserted into SendFifo.
In both cases, the LP subsequently transitions to the state SendEvents.

– SendEvents: for each event in SendFifo, the LP schedules a second-order event
that inserts the event into the target LP’s ReceiveFifo. Each second-order event
is delayed by a time delta in t′1st that is determined according to the estimated
time required to send all previous ûrst-order events. Finally, the LP transitions
to the state EnqueueEvents.

72

6 Second-Order Network Simulation

– EnqueueEvents: each event in EnqueueFifo is inserted in the LP’s EventMap.
he total time spent in the state is determined according to the measured cost
of enqueuing a single event and the total number of events to be enqueued.
Subsequently, the LP transitions back to the state CheckSafeEvent.

– SendNullMessage: a new EOT is calculated according to the null messages
previously received from the remote LPs. If the EOT is increased in this process,
null messages holding the new EOT are inserted into the receiveFifos of all
remote LPs. he total time delta is determined by the costs of sending a single
null message and the number of remote LPs. Now, the LP transitions to the
state ReceiveMessage.

– ReceiveMessage: the LP removes the ûrst message from ReceiveFifo. If the
message is a null message, a new EIT is calculated taking into account the null
message’s timestamp, and the LP transitions to the state CheckSafeEvent. If
the message contains an event, the event is inserted into EnqueueFifo and the
LP transitions to the state EnqueueEvents. he time delta spent in the state is
determined according to the measured cost of receiving a message.

– Finished: each LP outputs performance statistics such as the number of exe-
cuted events and sent null messages.

A second-order simulation run provides two key pieces of information: ûrst, it esti-
mates the runtime of the envisioned parallel or distributed simulation when using the
conûgured execution network hardware, simulation model and partitioning. Compar-
ing this value to the measured sequential runtime, the beneût of parallelization can be
evaluated. Second, the run returns a parallel or distributed simulation schedule that al-
lows for examination of the ûrst-order logical processes’ interactions during execution.
Second-order simulation can be considered a generalization of critical path analysis:

if the costs of network operations are conûgured to be zero and only one simulated
node is assigned to each logical process, the results represent the raw concurrency
of the model given only by the dependencies between events.

6.2 Performance Predictions
In this section, we study the expected performance of parallel and distributed runs
of the models studied analytically in Chapter 5. Subsequently, we evaluate the accu-
racy that is achieved by the approach by comparison with parallel and distributed
simulation runs on physical hardware.
he predictions are generated using SONSim, our implementation of the second-

order simulation approach. SONSim is implemented in CPUDES, a lightweight
discrete-event framework we developed from scratch. CPUDES is a C++ application
that provides the basic components required to implement arbitrary discrete-event
models both for sequential and for parallel and distributed simulation. Communica-
tion between logical processes is performed using the Message Passing Interface
(MPI) [SOHL+98].

73

6 Second-Order Network Simulation

6.2.1 Experiments

In Chapter 5, we analyzed three network models to determine upper bounds on the
average number of events executed in parallel. Here, we apply SONSim, a concrete
implementaton of the second-order simulation approach, to study the expected perfor-
mance gains undermore realistic circumstances, i.e., using a limited number of logical
processes and given the overheads incurred by communication and synchronization.
Measurements of the individual steps performed during a sequential simulation as

well as estimations of the costs of transferring events between processors are required
to perform estimations. For the experiments targeting KademliaB and PHOLD, we
used the CPU proûling tool from gper�ools1, a set of development tools provided by
Google. We identiûed the operations with the largest contribution to total simulation
runtime through proûling of sequential simulation runs. In CPUDES, the relevant
costs are the time required for enqueuing an event in the local future event list and
the time required for executing the handler corresponding to an event’s type.
Communication costs between processors weremeasured using a simpleMPI bench-

mark tool created from scratch. he tool transfers a large number of messages of the
size of the data associated with events in the envisioned parallel or distributed simula-
tion are transferred between two processes using MPI. he average time required for
sending (using the MPI primitiveMPI Send) or receiving (MPI Recv) is measured
and used as a ûxed estimate of the cost of the respective operation.

6.2.2 Evaluation

We validate the estimations by comparing our performance predictions with the run-
timemeasured in actual distributed simulation runs of the considered networkmodels,
focusing on KademliaB and PHOLD. All measurements were performed in a cluster
of processing nodes with Intel Xeon E5-2670 processors running at 2.6 GHz, intercon-
nected using OpenMPI2 to communicate via an InûniBand 4XQDR interconnect. We
used up to 16 processing nodes, each processing node handling one logical process.
In the evaluation of KademliaB model, the parameters were varied as follows: the

number of logical processes was set to 2, 4, 8, and 16. he number of simulated
peers was set to 131 072, 262 144, and 524 288. he number of concurrent lookups
was set to 100 and 1 000. he simulation terminated a�er 60s of simulated time with
100 concurrent lookups, and 120s with 1 000 concurrent lookups. Simulated nodes
were assigned randomly to the logical processes. Figure 6.4 shows the evaluation
results for theKademliaB model. While the estimations follow the general trend of the
measurement results, there is some deviation: SONSim underestimates the simulation
runtime for the runs with 1 000 concurrent lookups and overestimates the runtime
with 100 concurrent lookups. We expect the reason for the deviation to be the limited
accuracy in modeling network overheads. he smallest and largest ratio between
SONSim’s estimation and the measured runtime was 0.55 and 1.68, respectively.

1https://code.google.com/p/gperftools
2http://www.openmpi.org

74

6 Second-Order Network Simulation

0

0.5

1

1.5

2

2 4 6 8 10 12 14 16 18 20

E
s
ti
m

a
ti
o
n
 /
 M

e
a
s
u
re

m
e
n
t

Measured Runtime [s]

Figure 6.4: Accuracy of runtime estimations of the KademliaB model.

0

0.5

1

1.5

2

20 40 60 80 100 120 140 160 180 200

E
s
ti
m

a
ti
o
n
 /
 M

e
a
s
u
re

m
e
n
t

Measured Runtime [s]

Figure 6.5: Accuracy of runtime estimations of the PHOLDmodel.

0

0.5

1

1.5

2

5 10 15 20 25 30

E
s
ti
m

a
ti
o
n
 /
 M

e
a
s
u
re

m
e
n
t

Measured Runtime [s]

Figure 6.6: Accuracy of runtime estimations of the PHOLDmodel with an artiûcial
processing time of 100µs per event.

To explore the limits of SONSim’s estimation accuracy, we additionally estimate
the performance of simulations of the PHOLD benchmark model. PHOLD can be
considered a “worst-case” network model with respect to estimation accuracy: if no
artiûcial computational overhead is added, the execution of each event in a PHOLD
simulation comprises only the generation of a single pseudo-random number and
the creation and possible transfer of a single new event. Low computation times per
event strengthen the impact of network overheads on the simulation runtime. Since
SONSim includes only a basic model of the costs of network transfers, large deviations
between the estimated and measured simulation performance must therefore be ex-
pected. he parameters were varied as follows: the rate parameter λ of the exponential
distribution of inter-event time was set to 0.001, 0.01, 0.1, and 1.0. he number of
logical processes was set to 2, 4, 8, and 16. To vary the total runtime of the simulation,
the total number of executed events was set to 102 400 000. To show the eòect of
large network overheads, the ratio of events targeting remote logical processes was set
to 0.5 and 1.0. A ûxed lookahead of 10 ms was used. he simulation was initialized

75

6 Second-Order Network Simulation

with a population of 1 024, 5 120 and 10 240 events. Figure 6.5 shows the evaluation
results for the PHOLD model. As expected, the results deviate strongly from the
measurements: in many cases, SONSim signiûcantly underestimates the distributed
simulation runtime. he smallest and largest ratio between SONSim’s estimation and
the measured runtime was 0.29 and 1.10, respectively. he deviation increases with
larger runtime of the simulation runs on physical hardware. he reason is that in
lower-performance runs, network overheads, which in SONSim are estimated using a
constant cost per message, have particularly large impact. We repeated the experiment
with an artiûcial processing time of 100µs per event. he artiûcial processing time is
introduced based on the accurate cycle counters available in recent Intel CPUs [Pao10].
he total number of events was set to 614 400. Figure 6.6 shows that with the larger
processing time per event, the performance prediction is highly accurate. he largest
and lowest ratio between the estimation and the measured runtime was 1.01 and 0.94.
We conclude that in cases of extremely ûne-grained computations and extremely

frequent inter-processor communication, SONSim’s estimations must be viewed
as only rough indications of the distributed simulation performance that can be
expected on physical hardware.

6.3 Discussion
he validation results for theKademliaB model showed that SONSim produced a rea-
sonably accurate performance prediction. Strong deviations can be observed for the
PHOLDmodel, whose execution requires only extremely ûne-grained computations.
Hence, the costs of communication between processors dominate the simulation
runtime. Since we apply a comparatively simple model of the execution network that
estimates the costs of MPI operations using constant values, eòects such as network
congestion are not considered. A closer modeling of the communication between log-
ical processes may enable more accurate performance predictions, while increasing
the complexity in interpreting the results.
he second-order simulation considers the precedence relationships between events

and estimates the costs of event executions, inter-processor communication and
synchronization based on measurements. Hence, on the one hand, the performance
of the targeted execution network can be modeled in high detail. On the other hand,
the results apply speciûcally to the modeled execution network, whereas more generic
approaches such as concurrency estimations provide results that apply independently
of a speciûc execution network.

76

7

Identifying Concurrency – Conclusions

In this part of the thesis, we presented two approaches for evaluating the potential of
discrete-event network models for parallelization. An analytical evaluation approach
was shown to accurately estimate the concurrency of network simulations. he esti-
mation determines the number of cores than can be utilized assuming no overheads
for inter-processor communication. Contrary to established automated “black-box”
methods, the proposed approach enables insights into the causes of the determined
concurrency. he estimation results can be used to guide model optimizations with
respect to concurrency and to select a suitable execution platform for the simulation.
To show the soundness of the estimation approach, we proved an upper bound on the
deviation between results obtained using the well-known synchronization algorithm
YAWNS and critical path analysis: when assuming ûxed event processing times and
ûxed lookahead, the concurrency determined using YAWNS is at least 1/3 of the con-
currency determined using critical path analysis. Further, by applying the analytical
approach to three network models implemented in well-known existing network sim-
ulators, we showed that a high accuracy in concurrency estimation can be achieved.
Since the complex interactions between a parallel or distributed simulator realization

and the network model defy a full performance prediction using purely analytical
means, we additionally presented a simulation-based tool to estimate the parallel and
distributed simulation performance under more realistic conditions. A second-order
network simulator performs a simulation of an envisioned parallel or distributed
simulation and allows researchers to vary properties of the execution hardware and
the envisioned simulator realization to determine the eòects on performance. We
described the components of the second-order simulation model and its execution
procedure and provided performance prediction results for two network models. An
evaluation of the results showed a strong dependence of the prediction accuracy on
the amount of computation per simulation event.

77

Part III

Harnessing Concurrency

79

8

Harnessing Concurrency – Introduction

his second part of the dissertation is concerned with the eõcient execution of net-
work simulations on modern hardware platforms. We consider two types of hardware
platforms: clusters of interconnected symmetric multiprocessor (SMP) systems and
graphics processing units (GPUs). Clusters of SMP systems are typically available to
researchers through a shared batch system. We show that the large combined memory
capacity of a cluster of SMP systems can be utilized to enable simulations of peer-
to-peer networks at the scale of 10 million nodes, more than an order of magnitude
beyond commonly used sequential simulators for peer-to-peer networkmodels. Some
previous works have considered discrete-event simulations of peer-to-peer networks
a problem that beneûts at most marginally from parallelization due to ûne-grained
computational tasks and frequent ûne-grained communication between nodes in
the network [DLTM08, QRT12]. We show that in the case of networks based on the
Kademlia protocol, which forms the basis of one of the largest public peer-to-peer
networks, a distributed simulation achieves a reduction of simulation runtime by a
factor of 6.0 and reductions in memory usage per logical process that increase close
to linearly with the number of logical processes. A key requirement for substantial
runtime reduction is a suitable partitioning strategy. We analyze and compare the
eòects of two partitioning schemes and show that a partitioning strategy based on the
simulated nodes’ routing table structure reduces the simulation runtime considerably,
whereas a partitioning strategy based on the simulated nodes’ locations can increase
the eõciency of the synchronization between logical processes. Distributing the
simulation enables the execution of large-scale scenarios, but occupies substantial
amounts of hardware resources relative to the achieved runtime reductions.
In order to enable runtime reductions without allocating large amounts of compu-

tational resources, we consider the use of commodity GPUs for parallel simulation.
Modern GPU architectures employ hundreds or thousands of cores to eõciently

81

8 Harnessing Concurrency – Introduction

execute highly data-parallel computational tasks. Originally, the GPU hardware
architecture evolved to handle the demanding graphics processing tasks required
for realistic rendering of three-dimensional scenes in the context of video games,
computer-assisted design and simulation. Today, GPUs are established as coprocess-
ing devices that are used by a host computer’s CPU to oøoad computational tasks
with large amounts of data parallelism. Even though modern GPUs and the appli-
cation programming interfaces provided by manufacturers enable general-purpose
programmability, the GPU hardware architecture is subject to design decisions that
make GPUs suitable for an eõcient execution of diòerent classes of computations
compared to CPUs. We study how GPUs can be used to accelerate computationally ex-
pensive network simulations on the example of two network models: we ûrst consider
a low-level network model of wireless communications. Executing the model requires
expensive signal processing steps that are inherently data-parallel. Accordingly, it is
clear that GPUs can be employed to accelerate these signal processing steps. However,
the performance of the resulting hybrid CPU-GPU-based simulator depends on the
amount of overhead incurred by the communication between graphics memory and
hostmemory. Wemeasure the impact of optimizations to the hybrid CPU-GPU-based
architecture that aim to reduce the overhead for CPU-GPU interaction and show
that mechanisms from traditional CPU-based parallel and distributed simulation
are required to achieve signiûcant runtime reductions.
To further reduce the need for interaction between CPU and GPU, we propose a

fully GPU-based simulator that performs all steps of a discrete-event network sim-
ulation on a commodity GPU. In contrast to hybrid CPU-GPU-based approaches,
the fully GPU-based simulation enables high-performance simulations of models
with particularly ûne-grained computations. We propose a novel event management
scheme that eõciently utilizes the GPU’s resources by aggregating the simulated
nodes into logical processes. Dynamically varying the number of simulated nodes
in the logical processes enables the simulator to weigh the utilization of the GPU’s
computational resources against event management overheads. Hence, the best con-
ûguration depending on the hardware, the network model and the scenario can be
selected dynamically at simulation runtime.
Applying the simulator engine to execute a model of a Kademlia-based peer-to-peer

network, we show that themodel contains suõcient implicit data parallelism to enable
a simulation speedup of up to 19.5 compared to a sequential CPU-based execution
and event rates of up 6.8 × 106 events per second of wall-clock time, while relying on
a single commodity GPU. For the PHOLD benchmark model, we achieve a speedup
of 27.5 and event rates up to 39.3 × 106 events per second of wall-clock time.

82

9

CPU-Based Distributed Simulation of
Kademlia-Based Networks

In this section, we focus on the simulation of large-scale peer-to-peer networks. Some
previous works suggested that simulations of peer-to-peer networks exhibit only
limited speedup by parallel and distributed execution [DLTM08, QRT12]. On the
example of networks based on the Kademlia protocol, we have seen in Chapter 5 that
a network model of a Kademlia-based network contains substantial concurrency. In
this section, we study the degree to which the concurrency can be exploited using
CPU-based distributed simulation. In such an environment, the costs of communica-
tion between logical processes are a core concern. In Chapter 10, we will consider
parallel simulations on a many-core device using shared memory for communication
between logical processes.
In parallel and distributed simulations, an event is transferred from one logical

process LPa to a remote logical process LPb whenever the simulated node that cre-
ated the event resides in LPa, while the simulated node handling the newly created
event resides in LPb. he probability of this situation can be reduced by choosing
a partitioning strategy that aims to minimize the probability of interacting simu-
lated nodes to reside in separate logical processes. In this section, we analyze two
partitioning strategies on the example of distributed simulations of Kademlia-based
networks: communication overhead can be reduced substantially by a partitioning
strategy that follows the simulated nodes’ routing table structure. A partitioning
strategy based on the simulated nodes’ geographical locations can instead improve
the potential for eõcient synchronization between logical processes. We propose
metrics that allow us to expose remaining potentials for increases in the eõciency
of the synchronization mechanism.

83

9 CPU-Based Distributed Simulation of Kademlia-Based Networks

Our performancemeasurements demonstrate that distributed simulations ofKadem-
lia-based networks can beneût suõciently from distributed simulation both with
respect to runtime as well as to memory utilization to enable simulations at the
network’s real-world scale of 10 million nodes. We investigate the network model
KademliaA (cf. Section 5.3.1) implemented in the network simulator PeerSim that
we extended with support for parallel and distributed simulation based on the mes-
sage passing interface (MPI [SOHL+98]). We apply conservative synchronization
according to the null message protocol (cf. Section 2.1.1).
he remainder of this chapter is based on [AJH14].

9.1 Related Work
A previous eòort of extending PeerSim for distributed simulation was presented by
Dinh et al. [DLTM08] in 2008 for networks based on the Chord protocol. As in our
work, synchronization is achieved using the Null Mesage Algorithm. While memory
usage per LP is reduced substantially, the authors report simulation slowdown factors
of 83 andmore compared to a sequential implementation. In the same year, the authors
presented performance measurements of the same simulator for the Chord and Pastry
networks [DTM08], reporting a super-linear speedup factor of more than 100 using
64 LPs. A partial explanation for the large speedup can be gathered from the enormous
computational load incurred by their network model: a runtime of over two weeks is
reported for a sequential simulation of a static network of 524 288 peers generating a
ûxed amount of traõc. While the performance of simulations of Chord and Kademlia
cannot be compared directly, an indication of the computational intensity of their
model is given by the runtime of 399s for identical parameters in our own sequential
implementation. If the computational load of a simulation is very large, overheads for
communication and synchronization incurred by distributing the simulation have
only marginal impact, even though the absolute runtime remains large.
Lin et al. presented a simulator engine for peer-to-peer networks that uses a syn-

chronous master-worker synchronization scheme [LPGZ05]. As limited scaling was
observed using strict synchronization, the authors relax the synchronization require-
ments and ensure that simulated results are not aòected substantially by determining
bounds within which event timestamps may be altered during simulation. Simu-
lations of networks based on the XRing protocol achieved speedup factors of up
to 5.4 using 32 workers. A similar architecture was proposed by Quinson et al. for
simulations of the Chord protocol, achieving a speedup factor of up to about 1.45
using 24 threads [QRT12]. he authors identify the low computational granularity
and the diõculty of partitioning networks exhibiting the small-world property, i.e.,
low hop counts separating peers, as particular challenges in distributed simulation of
peer-to-peer networks. Arguing that the resulting overheads cannot be amortized
using traditional synchronization approaches, the authors propose a synchronous
master-worker architecture for multicore systems. In contrast to this argument, for
Kademlia-based peer-to-peer networks, our results show that distributing the simula-
tion using the classical null message algorithm (cf. Section 2.1) can substantially reduce

84

9 CPU-Based Distributed Simulation of Kademlia-Based Networks

the simulation runtime. Furthermore, we measure remaining eõciency potentials
that can possibly be exploited with future optimizations.

9.2 Partitioning Schemes
Kademlia is a peer-to-peer protocol that generates a logical topology aiming to main-
tain low hop counts between arbitrary peers in the network. Hence, distributed
simulations using a random partitioning strategy result in large numbers of simulated
messages that cross logical process boundaries an require physical communication
between logical processes. For this reason, we propose a partitioning scheme that
aims to reduce the number of logical process interactions. However, in addition
to the physical exchange of messages between logical processes, the partitioning
strategy can also aòect the waiting times and number of physical messages required
for synchronizing the simulation: if each logical process is aware of large periods of
simulated time that can be covered before a simulated message originating from a
remote logical process will be received, large amounts of time can be spent executing
events instead of handling synchronization. herefore, we additionally propose and
numerically analyze the eòect of a partitioning strategy that aims to increase the
utilization of lookahead (cf. Section 2.1).
In the following, from the perspective of a given peer, we refer to peers simulated

on diòerent LPs as remote peers and events targeting remote peers as remote events.
Accordingly, peers simulated on the same LP are referred to as local peers and events
targeting local peers are referred to as local events.
When simulating physical networks, a suitable partitioning can usually be found

on the basis of the physical proximity of the simulated peers by assigning spatially
close peers to the same LP. If closely located simulated peers are connected through
high-throughput links and interact frequently (e.g., in a LAN), while distant peers
interact less frequently over a low-throughput connection (e.g., through a WAN),
remote events are infrequent and the overhead for exchanging messages between LPs
is low. In addition, as link latency tends to increase with spatial distance [AKK10], in
a simulation using a location-based partitioning scheme, the minimum link latency of
simulated messages sent across LP boundaries tends to be larger than the minimum
latency of messages simulated within an LP, allowing for a large ûxed lookahead
value. herefore, for simulations of physical networks, location-based partitioning
can jointly reduce remote events and synchronization overheads.
In contrast, peer-to-peer overlay networks superimpose an application-level logical

topology onto the underlying physical network. Finding a suitable partitioning for
simulations of overlay networks is complicated by the fact that the logical topology of
the overlay network does not necessarily re�ect the physical proximity relationships
between peers. Hence, contrary to simulations of physical networks, there is a tradeoò
between minimization of the number of remote events through a partitioning based
on the logical topology of the network, and maximization of latencies, and hence
lookahead, associated with remote events through location-based partitioning.

85

9 CPU-Based Distributed Simulation of Kademlia-Based Networks

Figure 9.1: Example of ID-based partitioning of a simulated network into 4 logical
processes. Each logical process contains peers with IDs sharing a common preûx.

9.2.1 ID-Based Partitioning

First, we focus on reducing the physical exchange of messages between LPs. To this
end, we need to be aware of the communication patterns arising from the topology
of the simulated network. he traõc induced by two of the sources of traõc in the
Kademlia network, bootstrapping and routing table maintenance, is concentrated
around the initiating peer’s ID (cf. Section 5.3.1). We can exploit the resulting locality
by partitioning the ID-space into segments of equal size and assigning one partition
to each LP (cf. Figure 9.1).
We show that ID-based partitioning results in low amounts of overhead for com-

munication between LPs: For each doubling of the number of LPs, only a maximum of
k additional peers in a peer’s routing table come to reside on a remote LP, where k is the
maximum number of peer IDs each bucket in a peer’s routing table can hold, usually 8.
Each peer’s routing table can be viewed as a binary tree [MM02] where leaf nodes

are k-buckets and edges are annotated with the ID preûx handled by the leaves of
the corresponding subtree (cf. Figure 9.2). he splitting mechanism described in
Section 5.3.1 is the only way the depth of the tree is ever increased. We use α to denote
the ID of the peer owning the routing table. Consider the leaf node pertaining to
α at depth i of the binary tree. he leaf node corresponds to a k-bucket holding
peers with a common preûx of length i. he splitting mechanism replaces a leaf node
containing α with a new subtree consisting of two edges: an edge es with a leaf node
corresponding to IDs with a common preûx of length i + 1 shared by α, and an edge
en with a leaf node for a preûx of the same length not shared by α. In consequence,
when following the edges pertaining to α’s preûx, on level i of the tree, there is either
a leaf node containing α, or there are two edges: one edge leading to an arbitrary
number of nodes pertaining to IDs with preûx length i shared by α, and one edge
leading to only a single node pertaining to IDs with preûx length i not shared by α.
Doubling the number of LPs from 2i to 2i+1 mirrors the splitting mechanism and

can be regarded as dividing two halves of the subtree at depth i between two LPs.
With 20 = 1 LP, the k-buckets pertaining to all nodes of the tree are handled by the
local LP. When doubling the number of LPs, there are two cases: if the subtree at
depth i is a leaf node, peers in one half of the corresponding k-bucket’s ID range are
assigned to a remote LP, while peers in the other half remain local. If the subtree
at depth i has two edges, the peers of the single leaf node below en are assigned to
a remote LP, while all other nodes in the subtree remain local. All nodes below es
remain on the local LP. Hence, as each k-bucket holds a maximum of k peers, only
a maximum of k peers become remote in each doubling of the LP count.

86

9 CPU-Based Distributed Simulation of Kademlia-Based Networks

Figure 9.2: Binary tree structure of the Kademlia routing table of a peer with ID preûx
101. Dashed lines denote edges leading to leaf nodes not sharing the peer’s preûx.
Each doubling of LPs leads to a cut that displaces the peers in a single leaf node of the
routing table to a remote LP.

In Section 9.3.1, we show through measurements that the inter-LP communication
indeed increases only by a roughly constant amount when doubling the number of LPs.

9.2.2 Location-Based Partitioning

We will now focus on increasing the maximum lookahead value available in the
simulation. A location-based partitioning can increase the average spatial distance
between remote peers compared to local peers. As there is a strong relationship
between physical distance and link latency [AKK10], an increase in distance between
communicating remote peers will be re�ected by an increase in link latencies. Hence,
with dynamic lookahead calculation, more local events will be safe to execute on
average, potentially reducing idle times.
In our location-based partitioning scheme, peers are assigned to LPs according to

the peers’ spatial position. We compare three strategies: assignment based on ranges
of latitudes or longitudes, and an assignment to regions with small diameter and equal
area (cf. Figure 9.3). To ûnd appropriate regions on the earth’s surface, we used the
MATLAB implementation of the algorithm proposed by Leopardi [Leo06].
For a network model that follows the real-world distribution of peers across the

earth’s surface [JAH11], the partitioning scheme would need to consider the given
distribution both to achieve load balance between LPs and to maximize distances
between remote peers. Here, we follow simplifying assumptions to be able to demon-
strate the fundamental eòects of the partitioning scheme. Based on the assumptions
of a perfectly spherical earth and peers being distributed uniformly on the earth’s
surface we numerically examine the average spatial distance between peers exchang-
ing messages across LPs. For each chosen number of partitions, we calculate the
average distance between points residing in diòerent partitions, picked at random
on the surface of a sphere.
For picking points on the surface of a sphere, we use amethod byMarsaglia [Mar72]:

we generate V1 and V2, both uniformly distributed on (−1, 1), and reject all pairs
where S = V 2

1 +V 2
2 ≥ 1. Using the remaining pairs, the cartesian coordinates of points

distributed uniformly on the unit sphere are given by (2V1
√

1 − S , 2V2
√

1 − S , 1 −

87

9 CPU-Based Distributed Simulation of Kademlia-Based Networks

Figure 9.3: In the location-based partitioning scheme, peers are assigned to ranges of
latitudes (“discs”, le�) or longitudes (“slices”, middle), or to regions of small diameter
and equal size (right) on the earth’s surface.

2S). Given two such points, and a�er conversion to spherical coordinates ϕ1, λ1
and ϕ2, λ2, the distance on a sphere of radius r is given by d = rψ, with ψ =
cos−1(cosϕ1cosϕ2cos(λ1 − λ2) + sinϕ1sinϕ2) (e.g., [BB93]).
he numerical results with 95% conûdence intervals are listed in Table 9.1. he

average distance between two points for a single partition is 10 000 km, corresponding
to the expected distance between points on the surface of a sphere with 40 000 km
circumference. he same mean distance is achieved by partitioning schemes not con-
sidering peer locations, regardless of the number of partitions. he largest beneût is
achieved for two LPs: remote link latencies are increased by about 19%. When increas-
ing the number of partitions, each partition becomes smaller and the results asymp-
totically approach those for a single partition. For large numbers of LPs, partitioning
the earth into regions of small diameter gives the largest beneût of the three schemes.
In all cases, for 2 and more LPs, the minimum latency is given for communication

between peers at the shared border of two partitions and is hence constant for all three
location-based partitioning schemes. herefore, the lookahead must be calculated
dynamically to beneût from the location-based optimization scheme. he overall
eòect on simulation runtime depends on the communication costs between LPs: since
peer IDs are chosen independently from locations, location-based partitioning does
not follow the simulated network’s logical topology. Consequently, the number of
messages exchanged between LPs is as large as with a random partitioning.Since
further, our implementation of the null message algorithm in the distributed PeerSim
variant supports only ûxed lookahead values, we focus on the ID-based partitioning
scheme in comparison with a random partitioning.

9.3 Simulator Evaluation
In this section, we evaluate the eòects of the partitioning schemes introduced in
Section 9.2 through performance measurements of our distributed simulator imple-
mentation. he simulator performance is studied for simulations of networks of 1 and
10 million peers. Simulation runs were performed on up to 16 machines equipped
with 16 Intel Xeon E5-2670 cores each and connected using InûniBand 4x QDR. To be
able to fully exploit each machine’s memory resources, each LP uses all 16 cores of one
machine. Each LP uses one core each for simulation and communication. he remain-

88

9 CPU-Based Distributed Simulation of Kademlia-Based Networks

Average Distance [km]
#Part. By Latitude By Longitude By Regions

2 11895.2 ± 2.4 11895.7 ± 2.4 11895.4 ± 2.4
4 10685.5 ± 2.5 11263.4 ± 2.4 10954.7 ± 2.5
8 10341.4 ± 2.6 10653.3 ± 2.5 10808.4 ± 2.5
16 10166.9 ± 2.6 10325.1 ± 2.6 10465.0 ± 2.5
32 10084.2 ± 2.7 10158.8 ± 2.7 10254.6 ± 2.6
64 10040.3 ± 2.7 10078.1 ± 2.7 10132.5 ± 2.6

Table 9.1: Average distance between remote peers using location-based partitioning.

ing cores are available to the Java runtime environment to perform garbage collection.
he sequential simulator used as a reference for speedup calculation utilizes 16 cores
in the same fashion. he sequential implementation is highly optimized and simulates
a network of one million peers for one simulated hour in about 1.5h of wall-clock
time. Results are stated as averages of three runs with 95% conûdence intervals.

9.3.1 Performance

We study the performance of the simulator for two diòerent partitioning schemes.
Our focus is on the ID-based partitioning scheme that promises high performance
by considering the simulated network’s topology. We contrast the results with a
random partitioning scheme that does not consider peer IDs and therefore incurs
the same amount of overheads as the proposed location-based partitioning schemes
assuming ûxed lookahead.
Figure 9.4 shows the memory usage per LP for simulation runs using ID-based and

random partitioning, for networks of 1 million peers over the course of one simulated
hour. Memory usage was reduced close to linearly with the number of LPs, from
12713 MB to 883 MB when moving from 1 to 16 LPs, a factor of 14.4. he choice of
partitioning scheme had no marked impact on memory usage.
Simulation runtime (cf. Figure 9.5) was reduced substantially as well. For two

LPs, the overheads for synchronization and physical message exchanges were not
amortized by the distributed computation. his is an eòect of null messages being sent
by each LP only a�er executing all available safe events. Each LP frequently waits for
the next null message from the remote LP before computation may proceed. Starting
with 4 LPs, simulations using ID-based partitioning proceeded faster than wall-clock
time. Highest performance was achieved using 16 LPs with ID-based partitioning,
reducing simulation runtime by a factor of 6.01 compared to sequential runs. he
simulation runtime was 843s, compared to 2301s for random partitioning.
In order to demonstrate the simulator’s scalability, we performed an additional

simulation run for a network with the size of the BitTorrent Mainline DHT [JAH11]
of 10 million peers over the course of one simulated hour using ID-based partitioning

89

9 CPU-Based Distributed Simulation of Kademlia-Based Networks

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 2 4 8 16

M
e

m
o

ry
 U

s
a

g
e

 [
M

B
]

Number of Logical Processes

Random Partitioning
ID-Based Partitioning

Figure 9.4: Memory usage per LP for a network size of 1 million peers, varying the
number of logical processes and the partitioning scheme.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1 2 4 8 16

S
im

u
la

ti
o

n
 R

u
n

ti
m

e
 [

s
]

Number of Logical Processes

Random Partitioning
ID-Based Partitioning

Realtime

Figure 9.5: Simulation runtime for a network size of 1 million peers, varying the
number of logical processes and the partitioning scheme.

LPs Random ID-Based
1 100 100
2 45.67 ± 0.04 91.11 ± 0.01
4 22.24 ± 0.14 83.00 ± 0.03
8 11.11 ± 0.09 75.27 ± 0.03
16 5.82 ± 0.06 67.69 ± 0.06

Table 9.2: Percentage of messages to local peers [%] depending on the partitioning
scheme.

on 16 LPs. he simulator required 14966s (about 4.2h) of wall-clock time to simulate a
total of about 8.24 × 109 requests. Each of the 16 LPs used about 9450 MB of memory.
To explore the basis of the beneût of ID-based partitioning in the simulations for 1

million peers, Table 9.2 lists the percentage of simulatedmessages that were exchanged
between local peers and thus did not require physical communication between LPs.
With the random partitioning, the percentage of local messages was roughly halved
when doubling the number of LPs. With the ID-based partitioning, the percentage
of local messages was reduced by a roughly constant amount of about 8% for each
doubling of LPs, supporting our analysis in Section 9.2.1. Location-based partitioning

90

9 CPU-Based Distributed Simulation of Kademlia-Based Networks

1 LP 2 LPs 4 LPs 8 LPs 16 LPs
Execute Event 98.19 ± 0.47 56.32 ± 4.65 55.82 ± 2.53 50.68 ± 2.58 47.38 ± 1.85
Forward Event N/A 3.00 ± 0.66 6.13 ± 1.70 7.24 ± 1.64 8.32 ± 1.55

Handle Message N/A 15.31 ± 1.17 22.28 ± 1.86 19.56 ± 2.72 17.53 ± 2.73
Send Null Message N/A 0.01 ± 0.00 0.06 ± 0.01 0.22 ± 0.02 0.80 ± 0.08

Idle (incl. Overhead) 1.81 ± 0.47 25.37 ± 3.83 15.72 ± 6.03 22.30 ± 4.41 25.97 ± 5.14

Table 9.3: Percentage of time spent in the diòerent execution states during simulation
runtime.

(cf. Section 9.2.2) does not consider peer IDs and must hence be expected to create
as many remote events as the random partitioning.
We studied the distributed simulation performance more closely by instrumenting

the simulator to measure the proportion of runtime spent in the following simu-
lation states:

– Execute Event: a safe event is being executed.

– Forward Event: an event is sent to a remote LP.

– Handle Message: an incoming message is parsed, and if the message contains a
remote event, it is added to the local queue.

– Send Null Message: a null message is sent to a remote LP.

– Idle: the LP waits for local events to become safe to execute. he Idle state
includes the overheads incurred by the time measurements.

Table 9.3 lists the proportion of time a�er initialization that was spent in the diòerent
states for simulations with ID-based partitioning. We can see that with increasing
numbers of LPs, the time spent executing events decreased. As expected, the time
spent on exchanging events between LPs increased only moderately with larger LP
count. Null message sending overhead increased super-linearly, yet only accounted
for a small proportion of the simulation runtime. In all distributed runs, a large
amount of time was spent in the idle state. For 1 LP, the idle state was comprised
completely of time measurement overheads, which accounted for less than 2% of the
simulation runtime, indicating that in the distributed runs, the time spent in the idle
state was indeed dominated by waiting for local events to become safe.

9.3.2 Synchronization Efficiency

In the previous section, we have seen that in large distributed simulations, the logical
processes spent a signiûcant proportion of time waiting for events to become safe to
execute. In this section, we analyze the eõciency of our implementation of the null
message algorithm. To this end, we propose two novel variants of existing metrics
that determine the eõciency of conservative synchronization.

91

9 CPU-Based Distributed Simulation of Kademlia-Based Networks

A logical process in a parallel or distributed simulation using Null Message Algo-
rithm alternates between two states: waiting for local events to become safe, and
the execution of safe events. he identiûcation of safe events is performed based on
information received from remote logical processes, either via shared memory or a
network. In the commonly used null message algorithm, each logical process sends
messages containing its earliest output time (EOT), which is the earliest possible
timestamp of an event created by the EOT’s sender for the LP that receives the EOT.
Safe events are determined according to the metrics used by Bagrodia et al. [BT00]:

– Lookahead (τ): the lowest possible delta between the timestamp of the event to
be executed next by an LP and the timestamp of any locally created event to be
executed on a remote LP (cf. Section 2.1).

– Earliest Input Time (EIT): for each LP, the EIT is the earliest possible timestamp
of an event that can be received from any remote LP.

– Earliest Output Time (EOT): for each LP, the EOT is the earliest possible times-
tamp of the next locally created event to be executed on a remote LP. In the Null
Message Algorithm, null messages containing the EOT are exchanged between
LPs. If ti+1 is the timestamp of the next locally scheduled event, the EOT can
be calculated as EOT = min(EIT, ti+1) + τ (cf. Figure 9.6). he EIT can be
determined from the minimum of all other LPs’ EOT.

In the distributed PeerSim implementation, each LP progresses through simulated
time as follows: local events are executed in non-decreasing timestamp order until
the earliest local event has a timestamp larger than the EIT. hen, the LP determines
the local EOT and, in case the EOT has changed compared to the most recently
broadcasted value, sends a new null message to all remote LPs. he LP blocks until a
message is received from a remote LP. hen, the above process is repeated.
High simulation performance is achieved when logical processes spend a large

proportion of wall-clock time executing events instead of waiting. Since only events
covered by the current EIT are safe to be executed, the EIT should therefore be as
large as possible. here are two aspects aòecting the EIT of a logical process: the ûrst
aspect is the calculation of the remote logical processes’ EOTs. In network simulations,
frequently the lookahead value used for EOT calculation is the minimum link latency
in the network. However, by exploiting knowledge of the network model it can be
possible to determine larger lookahead values (cf. Section 2.3.1). he second aspect is
the time at which EOTs are sent and received by the logical processes. Consequently,
a number of strategies have been proposed in the literature to decide when null
messages are sent during simulation [BS88].
Considering the timeline of a logical process LPA depicted in Figure 9.7 in a dis-

tributed simulation using two LPs. he EIT distance is the delta between the current
EIT and the LP’s current point in simulated time. LPA is currently idle, waiting for
its EIT of t0 + 100ms to advance beyond any of the locally scheduled events so they
become safe to execute (1.). Now, LPB updates its EOT to t0 + 200ms and LPA can

92

9 CPU-Based Distributed Simulation of Kademlia-Based Networks

Figure 9.6: An LP determines its EOT by considering the timestamps of the earliest
possible incoming remote event and of the next locally scheduled event. If the earliest
of these events will trigger the creation of a remote event, given the lookahead τ, the
lowest possible timestamp of the new event is EOT ∶= min(EIT, ti+1) + τ.

Figure 9.7: Chronological sequence of activities performed by LPA as an example for
waiting times due to synchronization. LPA waits for its EIT to advance (1.) before
executing further events (2.). At ti + 250ms, a remote event arrives from LPB (3.).

start executing local events (2.). Finally, LPA receives a remote event from LPB with a
timestamp of t0 + 250ms (3.). As we can see, at 1. it would have been possible for LPA
to start executing local events right away without violating timestamp order. Recall
that the EOT is a lower bound on the timestamp of any event which may be created
for a remote LP. An obvious question is then: how tight is this lower bound? We can
consider the unnecessarily large waiting time of LPA as an eòect of the insuõcient
quality of the EOT calculated by B. We introduce the term EOT quality and deûne it
intuitively as follows: the EOT quality is the average proportion of simulated time
until an actual remote event is received that is covered by a previously received
EOT. An EOT quality of 100% corresponds to perfect synchronization between LPs,
i.e., LPs are able to exactly predict the timestamp of the next incoming remote event
and can execute all prior safe events immediately. his situation is established artiû-
cially in performance evaluations using the Ideal Simulation Protocol [JB96, BT00]
(cf. Section 2.2). In contrast, an EOT quality of 0% will not allow the simulation to
progress at all. As we are interested in the average quality of the EOT over the course
of a simulation run, we sample the EOT distance periodically during simulation
runtime by storing remote EOT distances received in the most recent null messages.
When the next remote event by each remote LP is received, the stored EOT distance
is divided by the distance of the remote event’s timestamp from the reference point in

93

9 CPU-Based Distributed Simulation of Kademlia-Based Networks

simulated time. In our example, the quality of EOTB at 1. is 100ms/250ms = 40%. he
EOT quality indicates how eõciently the lookahead available in the simulation model
using a given partitioning scheme is determined and communicated to other LPs. A
related metric is the lookahead ratio introduced by Fujimoto [Fuj88] and a similar
metric proposed by Preiss et al. [PL90], the null message inverse lookahead ratio (NI-
LAR). he lookahead ratio relates the average time increment between an LP’s events
to the lookahead, without considering null messages. he NILAR applies the same
idea to the lookahead used in null messages. Both metrics are determined from the
perspective of the LP sending events and null messages. However, our aim is to study
the reasons for idle times in the distributed simulation. Since an LP is idle whenever
there are no safe events according to the EOTs received from other LPs, the EOT
quality is calculated from the perspective of an LP receiving an EOT and sampled over
wall-clock time. his way, in addition to considering the lookahead calculation itself,
the EOT quality takes into account the eõciency of the null message sending strategy.
We will now give a more formal deûnition of the EOT and EIT quality metrics.

Given the current wall-clock time τ and the current position ti in simulated time,
we deûne the EOT distance as the delta between the last EOT received from the
remote logical process LPr and the current position in simulated time: dEOT(τ, LPr) =
EOT(τ, LPr) − ti(τ). Sampling the EOT quality at τ in wall-clock time in a logical
process LPl is comprised of the following steps.

1. LPl ’s current position in simulated time ti(τ) is stored together with all current
EOT distances dEOT(τ, LPr).

2. For each remote logical process LPr, when the next remote eventwith timestamp
tr,LPr is received, the corresponding EOT quality is calculated as

QEOT =
dEOT(τ, LPr)
tr,LPr − ti(τ)

In simulations with more than two LPs, another metric becomes useful: EIT quality
is the proportion of simulated time until a remote event is received that is covered
by a previous EIT. he EIT quality shows the eòect of aggregating the remote LPs’
EOTs. Sampling is performed as follows.

1. LPl ’s current position in simulated time ti(τ) is stored together with the current
EIT distance dEIT(τ) = EIT(τ) − ti .

2. When the next remote event with timestamp tr is received from any of the
remote LPs, the EIT quality is calculated as

QEIT =
dEIT(τ)
tr − ti(τ)

he proposed metrics are based on two previous works: the lookahead ratio was
introduced by Fujimoto [Fuj88], while a similar metrics, the null message inverse

94

9 CPU-Based Distributed Simulation of Kademlia-Based Networks

LPs QEOT [%] QEIT [%]
2 32.30 ± 2.20 32.30 ± 2.20
4 39.43 ± 0.45 26.94 ± 4.61
8 31.33 ± 3.38 17.89 ± 1.79
16 23.96 ± 5.26 9.92 ± 0.56

Table 9.4: EOT and EIT quality when varying the number of LPs.

lookahead ratio was proposed by Preiss et al. [PL90]. he metrics are calculated from
the perspective of the LP sending future events and are averaged over a number of
samples taken at the point when a null message is sent.
In contrast, our proposed metrics take the perspective of the receiver of future

messages. he receiver perspective allows us to determine how eõciently the looka-
head is communicated among the LPs, i.e., to what extent the parallelism extracted
from a simulation model by a given LP can actually be utilized by the other LPs.
In addition, we sample at a ûxed rate in wall-clock time to capture whether syn-
chronization messages arrive frequently enough to maintain a suõciently accurate
knowledge of the remote LPs’ progress.
To investigate the previously identiûed idle times in the distributed simulations of

the Kademlia-based network, we sampled the EOT and EIT quality once every second
of wall-clock time. he measurement results are listed in Table 9.4. On average, a
maximum of 39.43% of the simulated time up to the next remote event was covered
by a received EOT. As the EIT is calculated as the minimum of all received EOTs,
even less time was covered by the EIT, with a decrease in quality for larger numbers
of LPs. For 16 LPs, the measured EIT covered only 9.92% of the simulated time
until the next remote event was received. here are two possible causes for low EOT
and EIT quality: either the LPs do not communicate their EOT frequently enough,
or the lookahead calculation does not exploit the concurrency in the simulation
model suõciently. To determine which of the explanations applies, we maximized
the null message sending frequency by sending null messages on each change of
the EOT, instead of only when there were no local safe events. With more frequent
null messages, we achieved an EOT and EIT quality of 46.88% for simulations using
two LPs. Simulation runtime decreased from 6315s to 5340s. Idle time decreased
from 25.37% to 18.48%. However, for all simulations using more than two LPs, the
overheads of a more frequent broadcasting of null messages increased the simulation
runtime compared to the less eager strategy.
In addition to varying the null message sending frequency, the EOT and EIT quality

can also be increased by improving the lookahead calculation. In our simulation
model implementation, link latencies in milliseconds are drawn from a uniform
distribution on the interval {10, 11, . . . , 200}. We therefore use 10 ms as the ûxed
lookahead, which covers only a small proportion of the available maximum lookahead
in the model. We expect that applying methods for dynamic lookahead calculation
could further improve simulation performance.

95

9 CPU-Based Distributed Simulation of Kademlia-Based Networks

9.4 Conclusions
In this section, we showed, contrary to some previous results from the literature, that
simulations of peer-to-peer networks can beneût substantially from distributed simu-
lation. On the example of a large-scale peer-to-peer network based on the Kademlia
protocol, we observed substantial runtime reductions and near-linear reductions
in memory usage per execution node. A simple partitioning strategy based on the
Kademlia routing table structure was shown to strongly reduce the communication
overhead between execution nodes, while a partitioning strategy based on the geo-
graphical position of simulated nodes increases the available lookahead. Considering
the low increase in lookahead with larger numbers of logical processes and the need
for dynamic lookahead calculation with the geographical approach, a partitioning
based on the routing table seems clearly preferable. In the context of future work,
studies of further peer-to-peer network protocols could clarify whether the achieved
performance gains are speciûc to the Kademlia protocol, or whether similarly eõcient
partitioning strategies can be found for other peer-to-peer networks as well.
When considering the achieved speedup of 6.0 when using 16 logical processes, it

must be noted that each logical process occupies a full execution node with 16 proces-
sor cores each. Hence, the eõciency of the distributed simulation, i.e., the speedup
achieved in relation to the number of allocated cores, is relatively low. herefore,
while the distributed simulation enables simulation of large-scale networks beyond
the limitations in the typical memory capacity of individual execution nodes, the
reduction in runtime through distributing the simulation must be weighed against
the substantial increase in the required hardware resources.

96

10

GPU-Based Parallel Simulation

Traditional CPU-based conservatively synchronized parallel and distributed simula-
tions can be subject to limitations in the number of logical processes: in parallel sim-
ulations using shared memory, only the typically small number of available processor
cores in a single execution node can be used. In distributed simulations, the large costs
associated with physical communication between execution nodes can cause highest
eõciency to be achieved with modest numbers of logical processes. In addition,
considering the frequently comparatively low runtime reductions of discrete-event
simulations in comparison with highly parallelizable scientiûc codes, it can be diõcult
to justify the use of large numbers of execution nodes for a network simulation study.
Modern many-core devices are comprised of hundreds or thousands of cores with

access to shared memory. Hence, many-core devices promise to enable parallel
simulations that exploit a much larger portion of the concurrency of a given model,
while allowing for comparatively low-latency interaction between cores. he most
prominent example ofmany-core devices are graphics processing units (GPUs), which
compared to CPUs achieve enormous performance improvements with respect to
highly data-parallel computations. However, for computational tasks that display
limited parallelism or contain highly divergent code paths, CPUs tend to outperform
GPUs. Hence, it is important to select a suitable hardware platform for simulation
depending on the properties of the simulation model.
here are two fundamental approaches to GPU-based acceleration of discrete-

event simulations: hybrid CPU-GPU-based approaches executing some or all of the
simulated events on a GPU, but rely on a CPU to handle the event management
logic. In contrast, fully GPU-based approaches perform both the event execution
as well as the event management on the GPU.
Hybrid CPU-GPU-based simulation has multiple advantages compared to fully

GPU-based approaches:

97

10 GPU-Based Parallel Simulation

– Only parts of the simulation model must be developed on the GPU. Although
the facilities for programming on GPUs have improved in the past years, the
eòorts required to achieve an eõcient and correct model implementation may
still exceed the eòorts required for implementation in a familiar CPU-based
environment. In case a CPU-based implementation of a model already exists,
it is possible to create a GPU formulation of only the most computationally
expensive parts of the model.

– Since hybrid approaches can make use of the computational and memory re-
sources of the host system as well as of additional nodes in a cluster, thememory
limitations of a GPU can easily be overcome to achieve larger simulation scale.

However, by design, hybrid approaches require data transfers between CPU and
GPU memory. If only a small amount of computation is performed in between data
transfers, the signiûcant costs of data transfers limit the performance gains through
parallel processing. For instance, the PCI Express 3.0 x16 bus that is commonly used
for the data transfer between CPU and GPU has a maximum theoretical throughput
of about 15.75 GB/s. If this throughput is achieved, even if latency is not considered, a
simulation model that requires a transfer of 100 MB of data a�er each GPU-based
computation can perform at most about 160 such computations per second. For com-
parison, the maximum memory throughput between the onboard graphics memory
of an NVIDIA GTX 660 Ti and the GPU itself is about 144 GB/s. Hence, ûne-grained
computational tasks may beneût strongly from reductions in the frequency of CPU-
GPU interactions. In fully GPU-based simulations, the CPU-GPU-interaction can be
restricted to the initialization and termination phases of a simulation run.
In this chapter, we study the use of GPUs for the acceleration of simulations on

the example of the network models WirelessB, KademliaC and PHOLD. Since the
modeled networks diòer substantially in their structure and behavior, we present
fundamentally diòerent simulator architectures suitable for models comprised of
coarse-grained and ûne-grained computational tasks.
he remainder of the chapter is structured as follows: ûrst, we give an introduction

into the use of GPUs for general-purpose computations. Subsequently, we propose
and evaluate hybrid CPU-GPU-based architectures that exploit the data parallelism in
detailedwireless network simulations. Finally, we present a fully GPU-based simulator
that reduces overhead by executing all parts of the simulation on a commodity GPU
and that dynamically balances the degree of parallelism and associated overheads at
runtime. he descriptions of the hybrid and fully GPU-based simulators are based
on [AMH11] and [AH14].

10.1 General-Purpose Computation on Graphics

Processing Units
In the past two decades GPUs have found widespread use in order to handle the
enormous computational demands of rendering three-dimensional graphics, most

98

10 GPU-Based Parallel Simulation

prominently in the context of video games. Graphics processing tasks frequently
involve performing the same operation on enormous numbers of pixels or vertices
and are hence massively parallel tasks. heGPU hardware is optimized to handle data-
parallel tasks, i.e., independent but identical operations performed on large numbers
of data elements. Today, GPUs are increasingly capable of general-purpose computa-
tions and are used to accelerate computational tasks in audio processing [SVS11], biol-
ogy [DYB10], medicine [JLL+10], cryptography [SG08], and astronomy [HHSS08].
In this section, we brie�y illustrate the heritage of general-purpose computation

on GPUs by giving an overview of the steps performed by a GPU when rendering a
three-dimensional scene. Subsequently, we introduce the programming model used
when developing GPU code and the limitations incurred by the GPU’s architecture.

10.1.1 The Graphics Pipeline

Traditional GPUs employed a ûxed-function graphics pipeline to handle the computa-
tional stages required for rendering a three-dimensional scene on a two-dimensional
display. Luebke et al. [LH07] give an overview of the computational stages required
for rendering:

1. Transformation: To support hierarchical scenes, each object can be described
with respect to a local coordinate system. In the ûrst computational stage, the
GPU transforms the each objects’ coordinates to place all objects in a global
coordinate system.

2. Lighting: Lighting is applied to each triangle, commonly requiring operations
on vectors that represent the triangle’s position and alignment in relation to
the light sources and the viewer of the scene.

3. Camera Simulation: he triangles are projected onto the two-dimensional
display using matrix-vector multiplication.

4. Rasterization: In this stage, the visible triangles overlapping each pixel are
determined for each pixel independently.

5. Texturing: Images are placed on objects to increase the realism of the scene.
To determine the color of a pixel to be drawn on screen requires, at minimum,
one access to the image in graphics memory.

6. Hidden Surfaces:When drawing each pixel to the display, a depth buòer allows
the GPU to determine which of the triangles overlapping a given pixel is the
closest to the viewer and should hence determine the color of the pixel.

A deûning characteristic of each of the stages is their large degree of data parallelism,
i.e., the large number of identical operations performed on diòerent elements of data
independently. Initially, the rendering stages were implemented in GPUs in a pipeline
of ûxed-function components. Since the computational demands on the various
parts of the pipeline can vary immensely, GPUs have since evolved to employ general-
purpose processors, so-called uniûed shaders. Uniûed shaders are able to be assigned
any of the steps required for rendering depending on the current computational
demands, enabling a higher utilization of the GPU.

99

10 GPU-Based Parallel Simulation

Initially, researchers leveraged the processing capabilities of GPUs by transforming
non-graphical problem into graphical problems. Once the required computations
had been performed, the results were transformed back into the problem domain.
However, today’s GPUs support general-purpose computations directly and can be
programmed in high-level programming languages. Some early limitations, such
as substantial performance degradations on random accesses to graphics memory
and huge costs of independent branching between cores, have since been li�ed. Still,
GPU acceleration provides the largest beneûts when applied to problems that are
highly data-parallel.

10.1.2 NVIDIA CUDA

In this section, we give a brief overview of the technical details relevant for devel-
opment targeting GPUs. In the remainder of the chapter, we will repeatedly refer
to technical details of NVIDIA CUDA devices. Hence, we base our overview on
NVIDIA CUDA terminology and hardware. he terminology used in the OpenCL
and AMD APP contexts is largely analogous and is subject to similar hardware con-
straints. he description of the hardware and programming model is based on the
CUDA programming guide1.
A CUDA hardware device contains a number of streaming multiprocessors (SMs),

each comprising a number of CUDA cores. Computational tasks are organized in
thread blocks that are assigned to SMs by a hardware scheduler. hreads are executed
in groups of 32 called warps that operate in lockstep, i.e., all threads of a warp execute
the same instruction in parallel. If there is branching in the code executed by threads
within a single warp, the individual branches are processed sequentially.

hreads have access to various types of memory. Here, we brie�y describe the types
of memory used in our work. A set of low-latency registers is available to each thread.
hread interactions within a warp can be performed in a low-latency shared memory
region. Larger amounts of data can be held in global memory, which has the largest
access latency: on recent NVIDIA graphics card models, an access to global memory
requires 200-400 clock cycles, whereas executing a single instruction requires about
11 cycles. Accesses to global memory are performed in 256 bit transactions and are
cached in a low-latency memory region. Hence, consecutive access to neighboring
elements of data results in frequent cache hits. Further, if neighboring threads access
neighboring data elements in parallel, the number of transactions can be reduced
signiûcantly. he large eòects of memory access patterns makes the arrangement of
data in graphics memory a common focus of performance optimizations.
Further, the hardware scheduler aims to hidememory access latencies by exchanging

active warps in case of memory accesses. Of course, eõcient latency hiding requires
suõciently large numbers of threads. Typically, GPU programs schedule many more
threads than the number of hardware threads of the GPU.
GPUprograms, so-called kernels, are executed usingAPI calls from theCPUcontext.

Kernel input and output data is transferred over the PCI-E bus. As the data transfer
1https://docs.nvidia.com/cuda/cuda-c-programming-guide/

100

10 GPU-Based Parallel Simulation

bandwidth of the PCI-E bus is signiûcantly lower than the bandwidth between the
GPU and graphics memory, frequent data transfers can limit the performance of
CUDA programs. Additional overhead is incurred by the exchange of the execution
control between the GPU and the CPU. An overlapping of computations withmemory
transfers and subsequent kernel launches can be applied to ameliorate this issue.
CUDA hardware is classiûed by its compute capability (CC), a version number

indicating a device’s feature set. To allow for interaction between computations of
diòerent threads, barrier primitives synchronize memory accesses between threads
of the same block. Devices starting with CC 3.5 additionally support memory access
synchronization between threads ofmultiple blocks through so-called dynamic paral-
lelism. Devices prior to CC 3.5 support only API-based inter-block synchronization:
when returning the control �ow from the GPU to the CPU, all previous writes to
graphics memory are guaranteed to be visible to all threads during future kernel
executions. Hence, a need for frequent synchronization of memory accesses is re-
�ected by repeated control �ow exchanges between the GPU and the CPU. Xiao et
al. presented a method enabling so�ware-based inter-block synchronization from
GPU code independently of dynamic parallelism [XF10]. When calling a new barrier
function, a global variable is incremented atomically by each block until all blocks
wait at the barrier. hen, the barrier function terminates and the threads of all blocks
can access any data written to memory prior to the barrier call. To avoid deadlocks,
only as many thread blocks as there are SMs can be scheduled with this method,
allowing for up to #SMs × 1024 threads with CC 2.0 and above. Without so�ware-
based synchronization, it is possible to schedule up to 655353 blocks for CC 2.0, and
up to (231 − 1)3 blocks for devices with CC 3.0.

10.2 Related Work
A number of previous works considered the use of GPUs for the acceleration of
discrete-event simulations. In the following, we distinguish between two categories
of approaches: hybrid CPU-GPU simulators use the CPU for event management, but
transfer some or all events to the GPU for execution. In contrast, fully GPU-based
simulators perform both event management and event execution on the GPU. In the
following, we also brie�y discuss works applying GPU-based simulations outside the
discrete-event modeling paradigm. Approaches applicable to discrete-event simula-
tions are analyzed in more detail to enable a comparison with our proposed approach.

10.2.1 Hybrid CPU-GPU-Based Simulation

In 2007, Xu et al. [XB07] presented a hybrid CPU-GPU platform for high ûdelity
network modeling. Events are aggregated by a CPU-based scheduler for parallel
execution on a GPU. Substantial speedup is achieved for a �uid-based model of TCP
that requires the solving of diòerential equations and a model of adaptive antenna
arrays for wireless communication. However, contrary to our experiments, no clear
beneût was observed for an implementation of the Viterbi algorithm for error cor-

101

10 GPU-Based Parallel Simulation

rection, possibly due to limitations in the computational capabilities of GPUs at the
time the study was conducted.
Park et al. proposed a hybrid CPU-GPU-based simulation approach that relaxes

the synchronization with respect to simulated time by allowing events within a range
of timestamps to be executed in parallel [PF08]. he authors note the signiûcant
adverse impact of data transfers between graphics and host memory on the simulation
performance. he approach was later reûned for fully GPU-based simulation. We
discuss the fully GPU-based variant of the simulator in detail in the next section.
Bai et al. studied the use of GPUs for raytracing in the context of wireless net-

work simulation [BN08]. he authors combine multiple CPUs and GPUs to further
increase performance.
In the context of his diploma thesis, Andelûnger ported three computationally

expensive signal processing algorithms to a GPU in order to accelerate a sequential
CPU-based wireless network simulator [And11]. In Section 10.3, we build on this
previous work by proposing and comparing architectures for an eõcient coupling
between a CPU-based sequential simulator and a GPU.
In 2012, Kunz et al. [KSGW12] proposed a hybrid CPU-GPU simulator focusing on

parameter studies. heir approach exploits concurrency on the level of independent
events within each individual parametrization of a simulation, as well as on the level
of independent events across multiple parametrizations. he events to be executed on
the GPU are selected by a CPU-based scheduler. Events are sorted according to their
event types to reduce divergent code paths within each warp. heir use of parallelism
across multiple simulation runs can be considered to increase the “throughput” in
receiving simulation results, i.e., the number of simulation results obtained per unit
of wall-clock time. In contrast, our work aims to reduce the “latency” in receiving
simulation results, i.e., the time until a particular simulation result is obtained. he
latter may be of particular interest in early exploratory phases of a simulation study,
where iterative changes are made to the network model and scenario.
In 2013, Zou et al. [ZLC+13] proposed techniques for time-stepped epidemic sim-

ulations on GPU clusters, while still executing some parts of the model on CPUs.
Low-latency shared memory on the GPU is utilized to implement a so�ware-based
caching mechanism.
Romdhanne et al. [BR13] proposed master-worker schemes for large-scale network

simulations using heterogeneous platforms comprised of CPUs and GPUs. A CPU-
basedmaster process dispatches events to the available processing elements depending
on the current computational load.
Raghav et al. [RRM+15] presented mechanisms to execute simulations of hetero-

geneous hardware using a hybrid CPU-GPU approach. While a model of a general-
purpose CPU is executed using a CPU-based emulator, a many-core coprocessor is
simulated using a GPU. A proposed synchronization scheme reduces the frequency
of the costly interactions between the CPU and the GPU.

102

10 GPU-Based Parallel Simulation

10.2.2 Fully GPU-Based Simulation

In addition to executing events in parallel on a GPU, fully GPU-based simulators
perform all event management tasks on the GPU. Hence, no signiûcant CPU-GPU
interaction is required during a simulation run, enabling GPUs to eõciently execute
simulations models with particularly ûne-grained computations.
In the following, we cover existing works targeting the GPU-based execution of

three classes of simulation models: models that can eõciently be executed using ûxed
increments in simulated time, discrete-event models in the context of simulation-
based veriûcation of electronic design, and discrete-event models of networks. While
the approaches targeting the ûrst two model categories cannot be easily applied to
general discrete-event simulations, we analyze the approaches from the third category
with respect to the time complexity of the proposed mechanisms in comparison
with our proposed approach.

Simulations Using Fixed Time Increment

Some GPU-based simulators focus on models that can eõciently be executed using
state changes at ûxed increments in simulated time. While ûxed-increment simula-
tions can be considered a special case of discrete-event simulation [Law14], events
may be highly dispersed in simulated time, so that ûxed-increment approaches con-
sider many time steps that do not aòect the modeled system’s state. In such cases,
parallelized ûxed-increment approaches must be expected to only expose a small
proportion of the concurrency that is present in the model.
In 2008, Perumalla et al. studied the challenges and opportunities of agent-based

simulations on GPUs, noting the substantial impact of the locality of agent interac-
tions on the simulation performance [PA08]. he authors proposed mechanisms to
eõciently perform operations commonly used in agent-based simulation models
on GPUs. Depending on the considered models, the authors achieved a simulation
speedup of up to multiple orders of magnitude in comparison with a CPU-based
sequential implementation.
In 2008 and 2009, Perumalla et al. presented GPU-based approaches to simu-

late vehicular mobility models, enabling large-scale simulations comprised of mil-
lions of vehicles and achieving simulation progress substantially faster than real-
time [Per08, PAYS09].
In 2010, Aaby et al. presented a latency-hiding scheme that replicates parts of a

grid of interacting simulated entities to multiple processing elements of a multi-
GPU cluster or CPU-based multi-core cluster [APS10]. heir latency-hiding scheme
performs some computations redundantly across processing elements to reduce the
frequency of synchronization between processing elements.
In 2012, Seok et al. [SK12] proposed a GPU-based execution scheme for cellularmod-

els formulated in the discrete-event systems speciûcation (DEVS) formalism [ZKP00].
he insertion of new events in each cell’s buòer is performed as follows: each thread
is mapped to one cell and iterates over all other cells that can aòect the current cell. If
an event targeting the current cell is found, the event is delivered to the current cell.
his event insertion mechanism requires no explicit mutual exclusion operations.

103

10 GPU-Based Parallel Simulation

However, the approach applies to models where each event creates at most a single
new event, which is not generally the case in discrete-event models. Further, since
the approach does not utilize model lookahead, only events that share the earliest
timestamp in the simulation are executed in parallel in each iteration.
In 2013, Jin et al. studied the use of multi-GPU systems for time-stepped simulations

of information propagation over complex networks [JTL+13]. Due to the large costs
of synchronization between multiple GPUs, the beneût of utilizing more than one
GPU depends strongly on the simulated network.

Simulations in Electronic Design

Simulation is an important building block in the veriûcation of electronic designs,
e.g., in the context of developing embedded systems. Models of electronic designs can
beneût substantially from CPU-based parallel discrete-event simulation approaches
(e.g., [ADM94]). We discuss some of the works from this ûeld that considered the
use of GPUs for simulation.
Althoughmanymodels of electronic designs can be considered to follow the discrete-

event modeling approach, GPU-based parallel simulation approaches perform opti-
mizations that rely strongly on the properties speciûc to the structure and behavior
of models of electronic designs. Hence, only some of the ideas from these approaches
can be applied directly to general discrete-event simulations.
A number of previous works have considered the use of GPUs for accelerating

discrete-event simulations in the context of electronic design automation. Anoverview
of existing approaches is given by Nanjundappa in [NKPS12]. Some authors have
focused on partitioning strategies in order to maximize the opportunities for parallel
processing on GPUs [VCBF12, BCB+13]. Vinco et al. make use of the fact that in some
simulations using the system description language SystemC it is possible to determine
a static parallel scheduling strategy prior to a simulation run, rendering the use of
a synchronization algorithm at simulation runtime unnecessary.
A GPU-based simulation approach using variable lookahead was presented in the

context of hardware veriûcation [ZWD11, QD11]. In this approach, LPs represent
logic gates. Similarly to the null message algorithm (cf. Section 2.1), each LP can have
a diòerent lookahead window. he properties of the considered simulation model
of logic gates enables simpliûed LP interactions: each logic gate has a number of
input pins. Since due to the model’s properties, events arrive at each input pin in
non-decreasing timestamp order, each LP simply selects the earliest event at any of the
input pins to determine the lower bound on the local lookahead window. Contrary
to this case, general discrete-event models provide no guarantees of a particular
ordering of events arriving at an LP.
In general, the discussed works exploit the speciûc properties of models of hardware

designs to maximize performance. Hence, the approaches are not directly applicable
to the general case of discrete-event simulation.

Discrete-Event Network Simulations

Some authors previously considered the use ofGPUs to execute discrete-event network
simulations. A number of the approaches from this category can be compared directly

104

10 GPU-Based Parallel Simulation

with our proposed approach. Still, in some cases, assumptions are made about the
simulation model that limit the eõciency or applicability in the general case.
he need for explicit synchronization of accesses to graphics memory by separate

GPU threads makes synchronous algorithms a natural approach when implementing
parallel discrete-event simulation on GPUs. In line with this observation and our
proposed approach, most previous works propose event management and synchro-
nization mechanisms closely related to the YAWNS algorithm (cf. Section 2.1).
Ideally, large numbers of events are executed in parallel in each iteration of the

algorithm, one event per GPU thread. he key distinction between the diòerent
approaches lies in the way the next per-node event is identiûed, which is re�ected
by fundamentally diòerent layouts of the event data in graphics memory.
In most cases, the performance beneûts of GPU-based simulation approaches have

been evaluated on the example of the PHOLD benchmark model (cf. Section 3.4)
and closed queuing network simulations. In both model types, the total number of
events in existence remains constant over the course of the simulation. Since each
event e1 creates exactly one new event, the new event can simply be stored in the
previous memory location of e1. However, when considering arbitrary models, events
can create zero or arbitrarily many new events. hen, the placement of a new event in
graphics memory cannot be determined in this simple fashion. Instead, an unused
memory location to store the new event must be determined dynamically. In case
multiple GPU threads can create events at the same time, event placement poses a
particular challenge, since a unique location must be found for each event.
In 2006, Perumalla [Per06] discussed possible realizations of a fully GPU-based

discrete-event simulator. he proposed execution method skips unnecessary time
steps of a time-stepped execution by advancing the current simulation time to the
lowest timestamp among all queued events. More generic approaches to DES onGPUs
are discussed, yet could not be implemented due to limitations in the opportunities
for addressing input and output memory elements using the GPU hardware of the
time. he proposed approach exhibits high speedup for a diòusion model compared
to a CPU-based implementation, although only the concurrency given by events
with identical timestamps is exploited.
In 2010, Park et al. presented a fully GPU-based simulation framework that reduces

the frequency of synchronization by considering all events within a conûgurable
tolerance interval in simulated time as occurring simultaneously and by processing
these events in parallel [PF10, PF11]. Based on queuing theory, the authors provide
upper bounds for the introduced statistical error when simulating queuing networks.
If the approach is applied to a model that provides a non-zero lookahead τ, the
tolerance interval can be set to τ to accomplish a synchronization scheme similar to
YAWNS and without statistical error. Park et al. propose the use of a single unsorted
future event list (FEL) that holds all events.
In the previously discussed works, FELs are represented by linear arrays in graphics

memory. In contrast, He et al. proposed a generic parallel priority queue formany-core
architectures, enabling ûne-grained parallel insertion and deletion by the threads of a
GPU [HAP12], citing discrete-event simulations as a potential use case. he proposed

105

10 GPU-Based Parallel Simulation

queue enables combined insertion and deletion of multiple values. Since the authors
achieve large speedup compared to a sequential priority queue implementation on a
CPU, their approach might be an interesting subject for future research in discrete-
event network simulations on GPUs. Since events cannot be executed based on their
timestamp alone but must also be executed in per-node timestamp order, the question
whether the parallel priority queue should be partitioned according to the events’
node assignment might be of particular interest.
In 2013, Tang et al. proposed a synchronous conservative synchonization algorithm

for fully GPU-based simulation [WYF13, TY13] similar to the YAWNS algorithm
(cf. Section 2.1). he frequency of parallel reductions to determine a new looka-
head window is reduced by evaluating the system state a�er each event execution. If
some events from a set of candidate events become safe through the previous event
execution, these events can be executed without calculating a new lookahead win-
dow. he authors compare their approach with two basic variants: calculating a new
lookahead window a�er each execution, and calculating a new lookahead window
only once there are no events le� in the lookahead window. he latter approach
corresponds with the YAWNS algorithm. Events are stored in a global unordered
FEL that is segmented into columns. For each execution, each thread is assigned
to a unique column according to a stochastic function. he assignment avoids the
need for explicit mutual exclusion when inserting new events. Further, the stochastic
nature of the column assignment avoids uneven utilization of columns if there are
imbalances in the event counts of diòerent simulated entities. Finally, the assignment
function aims to increase the eõciency of memory accesses by assigning threads
of the same block to neighboring columns.
Also in 2013, Sang et al. proposed a simulator based on procedures provided by

NVIDIA’s hrust library of parallel algorithms [SLRK13]. he authors focus on closed
queuing networks, i.e., event locations in memory can be reused without further
considerations. heir approach uses a global FEL on which parallel reductions are
performed to determine the current lookahead window. Now, a stream compaction
operation (e.g., [HLJ+13]) is performed to collect the safe events in a target array.
Stream compaction is performed in two steps: ûrst, the new index of each element
in the target array is determined using a parallel preûx sum operation. hen, the
events are transferred to their target index. If more than one event arrives at a
simulated service facility, a pre-deûned order is used to determine which event is
executed. If the service facility is busy, newly arrived events are inserted into a local
waiting queue in non-decreasing timestamp order. he approach does not consider
simulations comprised of varying numbers of events and hence does not address
general discrete-event simulations.
Li et al. proposed an optimistic fully GPU-based simulator using an “event-parallel”

approach [LCT13]: all events of the simulation are executed at the same time, irrespec-
tive of their timestamps and causal relationships. In subsequent steps, the simulator
checks for violations of the correctness of the simulation and iteratively cancels and
re-executes events to achieve a complete and correct simulation. Since all events must

106

10 GPU-Based Parallel Simulation

be created prior to executing the simulation, the approach seems not to be easily
applicable to general discrete-event simulations.
In 2014, Zhen et al. proposed a simulation kernel for joint CPU-GPU-based simula-

tion of large-scale agent-based simulations using a GPU-based event management
mechanism [ZGGB14]. In their execution scheme, each agent in the simulation
holds a local FEL. Hence, during the parallel reduction to determine the minimum
timestamp of the simulation, only the earliest timestamp of each agent must be
considered. Atomic operations are used to synchronize accesses when scheduling
events for the agents. Subsequently, each thread inserts the events of a single agent
into the agent’s sorted FEL.
In 2015, Swenson presented an event management scheme for fully GPU-based

simulation that uses a global sorted FEL [Swe15]. heir approach is evaluated with
respect to the PHOLDmodel, allowing each new event to occupy thememory location
of the event it is created by. Hence, the issue of eõciently identifyingmemory locations
for new events, a solution for which is required to support general discrete-event
simulations, is not addressed by their approach.

10.3 Hybrid CPU-GPU-Based Simulation of Wireless

Networks
he most common approach to apply GPUs to general computations is to utilize
the GPU as a coprocessor of the host CPU. he sequential portion of an application
is executed on a CPU, while highly data parallel computations are executed on a
GPU. An advantage of the coprocessing approach is given by the possibility to apply
both the CPU and the GPU to computations that can be executed most eõciently
by the respective component. A disadvantage is given by the costs of the frequent
switches of control between the CPU and the GPU, and of the required data transfers
between host memory and graphics memory, both of which can limit the performance
increases compared to a solely CPU-based execution.

10.3.1 Proposed Simulator Architectures

In this section, we consider the GPU-as-coprocessor approach for detailed simula-
tions of wireless networks as a base case for parallel simulation using GPUs. his type
of simulations requires computationally expensive signal processing steps that exhibit
large degrees of data parallelism and are therefore well-suited for GPU-based accelera-
tion. We consider the network model WirelessB introduced in Section 3.3. Our focus
is on a suitable coupling of the CPU-based portion and the GPU-based portion of the
simulation, so that large performance gains compared to a sequential execution are
achieved without requiring deep modiûcations of an existing CPU-based simulator
architecture. We show that if a basic coprocessing approach is extended by classical
parallel simulation mechanisms, substantial performance gains are achieved.

107

10 GPU-Based Parallel Simulation

(a) Base architecture.

(b) Event aggregation.

(c) Event aggregation and memory reuse.

Figure 10.1: Hybrid CPU-GPU-based simulation architectures

A basic approach for a hybrid CPU-GPU-based discrete-event simulation of such
models is depicted in Figure 10.1a. Events are processed sequentially on the CPU. For
time-consuming data-parallel tasks, input data is transferred to the graphics card’s
memory. Once the GPU ûnishes parallel processing of the task, the output data is
transferred back to the host computer’s main memory. his process is repeated for all
data-parallel tasks associated with the event. A second and more eõcient approach
is based on the aggregation and parallel execution of identical tasks that belong to
diòerent but independent events (cf. Figure 10.1b). With this approach, multiple
data transfers and context switches are reduced to only one transfer and one context
switch. his approach can be optimized even further if the output of one event serves
as the input of the next event, or if subsequent events operate on the same input
data. Additional data transfers can then be avoiding by reusing data that has been
transferred to the graphics card at an earlier stage (cf. Figure 10.1c).

10.3.2 Evaluation

As a basis for a performance evaluation, we used three computationally expensive
signal processing algorithms that were ported for GPU-based execution in a work
outside the scope of this dissertation [And11]. Here, we present the results of a
subsequent study [AMH11] that compares the performance of diòerent architectures
for GPU-based coprocessing.
he considered algorithms are a simulation of channel eòects using a Rayleigh

fading model [Pro01], frame synchronization using autocorrelation of the wireless
signal, and error correction using the Viterbi algorithm [Vit67]. For each considered
algorithm, we measured the achieved speedup by execution on a ATI Radeon HD
5870 graphics card with 1600 cores compared to a sequential execution on a single
core of an AMD Phenom II X6 1035T CPU. he algorithms are part of theWirelessB
model and operate on simulated packets with a payload of 500 bytes each. To analyze
the conditions under which signiûcant speedups can be observed, we vary the number
of packets processed in parallel between 1 to 100, corresponding to 1 to 100 receivers.

108

10 GPU-Based Parallel Simulation

 0
 20
 40
 60
 80

 100
 120

 0 10 20 30 40 50 60 70 80 90 100

S
p

e
e

d
u

p
 F

a
c
to

r

Number of Packets Processed in Parallel

Rayleigh Fading

Frame Synchronization

Viterbi Decoding

Figure 10.2: Speedup achieved by GPU-based parallelization of individual signal
processing algorithms compared to sequential execution on a CPU.

 0
 20
 40
 60
 80

 100
 120

 0 10 20 30 40 50 60 70 80 90 100

S
p

e
e

d
u

p
 F

a
c
to

r

Number of Packets Processed in Parallel

Hybrid/Aggregation/Memory Reuse

Hybrid/Aggregation

Hybrid

Figure 10.3: Speedup of the proposed hybrid CPU-GPU-based architectures when
compared to sequential execution on a CPU.

Figure 10.2 illustrates the speedup factors achieved by the parallelization. Across all
three algorithms it is evident that speedups are marginal when only a small number
of packets is processed in parallel. he beneût of GPU-based signal processing is
increases substantially in case larger numbers of packets are processed in parallel. For
instance, when processing 100 packets in parallel, we observed speedup factors of 59.1
for the computation of Rayleigh fading channel eòects, 44.3 for frame synchronization
and 27.0 for Viterbi decoding.
From the results, we conclude that a substantial speedup can be achieved using

GPU-based signal processing. However, we identify a maximization of the amount of
input data processed per GPU work cycle as a prerequisite for optimal performance.
To evaluate and compare the performance of the three simulator architectures of

Section 10.3.1, we developed a simple hybrid CPU-GPU-based simulator that executes
a synthetic benchmark model approximating the behavior of theWirelessB model
(cf. Section 3.3) by a chain of three simulation events associated with a single frame
transmission and the corresponding receptions in a wireless network. Each event
triggers one of the three signal processing algorithms, during which each algorithm
uses the output of the previous algorithm as its input.
Figure 10.3 depicts the speedup achieved when implementing the GPU-based simu-

lation architectures compared to a sequential execution on a CPU. he basic hybrid
simulation yields a speedup factor of 1.5 independent of the number of receivers. his
demonstrates the impact of overheads involved in frequent crossing of the CPU-GPU
boundary. he event aggregation yields an overall speedup factor of 30.9 for 100
receivers. Elimination of redundant data transfers by memory reuse further increases
the total speedup factor to 69.6 for 100 receivers.

109

10 GPU-Based Parallel Simulation

10.3.3 Discussion

he results exposed substantial diòerences in the performance of the diòerent archi-
tectures. Due to the overhead of the interaction between the host system and the
GPU, a näıve coprocessing approach is insuõcient to achieve a signiûcant reduction
in runtimes compared to a sequential CPU-based execution. Instead, it is necessary
to consider multiple events in parallel to leverage inter-event parallelism as well as
intra-event parallelism. Now, in order to maintain the correctness of the simulation,
it is necessary to apply mechanisms of parallel simulation: for instance, a conservative
synchronization approach can be used wherein a ûxed lookahead value is determined
according to the speed-of-light propagation of the wireless signal. Previous works
have suggested the use of dynamic lookahead to unlock larger amounts of parallelism
in wireless network simulations [PVM09].
All of the proposed architectures proposed in this section rely on the CPU for event

management and to execute inherently sequential events. Hence, repeated switches
of control and data transfers between CPU and GPU are necessary during simulation.
Since the incurred overheads must be amortized by the acceleration in the execution
of events, the proposed architectures are suited for simulations of network models
with high data parallelism and large computational costs within individual events.

10.4 Fully GPU-Based Parallel Simulation

of Kademlia-Based Networks
In the previous section, we studied the GPU-based acceleration of simulation of
network models with high per-event computation times and large data parallelism.
Now, we investigate a suitable GPU-based simulator architecture for the peer-to-peer
network KademliaC described in Section 3.1, where each event is associated with
only up to a few microseconds of computation time and where individual events
contain no data parallelism. While we showed in Chapter 5 that the network model
contains enormous amounts of concurrency, the small computational granularity
and the high degree of communication between arbitrary simulated nodes creates a
need for particularly low simulation overheads. In the following, we propose a fully
GPU-based simulator architecture that avoids most of the control switch and data
transfer overheads of a GPU-as-coprocessor approach. he fundamental architecture
is depicted in Figure 10.4: signiûcant CPU-GPU interaction is required only during
initialization of the simulation and for retrieving the simulation results. he simu-
lator design requires two main considerations: ûrst, an eõcient event management
mechanism is required. Since the sequential performance of individual GPU cores
is substantially lower than the performance of individual CPU cores, and access to
graphics memory is optimized for high bandwidth instead of low latency, data struc-
tures used for CPU-based simulationmay be ineõcient on a GPU. Second, contrary to
existing fully GPU-based simulation approaches, the proposed simulator architecture
aggregates sets of simulated nodes into logical processes instead of considering each
simulated node individually. We show that the aggregation substantially increases

110

10 GPU-Based Parallel Simulation

Figure 10.4: Fully GPU-based simulation.

the simulation performance. However, the question of a suitable number of simu-
lated nodes per logical process arises. On the one hand, smaller logical processes
expose larger amounts of the network model’s concurrency, but may leave many
GPU threads idle if large workload imbalances exist between threads. Further, the
costs of event management increase with larger numbers of logical processes. Hence,
a balance must be found between the exploitation of concurrency of the network
model and the resulting overheads.

10.4.1 Proposed Simulation Approach

hemain challenge in parallel simulation is the synchronization between LPs. As in
the YAWNS algorithm (cf. Section 2.1), the proposed simulator enforces timestamp
order by alternating between two tasks:
1. Selection: from all events remaining to be executed, the simulator selects the

set of safe events that can be executed without the possibility of causing a future
violation of timestamp order.
2. Execution: the selected events are executed, potentially creating new events.
he steps are repeated until a termination criterion, e.g., the execution of a con-

ûgured number of events, is satisûed. Executing these steps on a many-core GPU
is associated with a number of challenges (C1-C4):
C1. Inter-block synchronization of memory accesses is required frequently during

simulation runtime. However, on the GPU, synchronization of memory accesses
between thread blocks is a costly operation.
C2. Dynamic allocation of memory from the GPU context is expensive, suggesting

the use of statically allocated memory regions. However, if transfers between graphics
and main memory are to be avoided, the limited amount of memory available must
be managed so that it can hold the shi�ing simulation state.
C3.Graphicsmemory is optimized for high throughput instead of low access latency.
C4. he number of active threads required for eõcient utilization of the GPU

depends both on the GPU device itself and on the program to be executed and cannot
be easily determined prior to the program’s runtime.
We address C1 by comparing the performance of two diòerent approaches to mem-

ory access synchronization in our simulator implementation. In the fully GPU-based
variant, this is re�ected by a call to the so�ware-based synchronization method. In
the API-based variant, a return of the control �ow to the CPU and a separate kernel
launch are required for synchronization. Challenge C2 is addressed by using a stati-
cally allocated memory region to hold FELs, and by adapting FEL sizes at runtime

111

10 GPU-Based Parallel Simulation

if size limits are exceeded. Challenge C3 is addressed by representing FELs using a
simple data structure that does not require scattered memory accesses. To address
C4, we employ performance measurements that allow the simulator to balance the
number of active threads with simulation overheads at runtime.

Execution Procedure

Initially, a ûxed number of simulated nodes is assigned to each LP. Initial events
pertaining to the simulated nodes are created and inserted into their respective LP’s
FEL. Now, the simulation proceeds in a round-based fashion as shown in Algorithm 4.
Simulation steps that require subsequent inter-block synchronization in every loop
iteration are marked with [S].

Algorithm 4 Execution procedure of the GPU-based simulator engine.
repeat
determineLookaheadWindow() [S]
repeat

numEventsCurrentIteration← selectSafeEvents()
handleSafeEvents() [S]
checkQueueOver�ow()
numEventsTotal← numEventsTotal + numEventsCurrentIteration [S]

until numEventsCurrentIteration <minEventsPerIteration
insertNewEvents() [S]

until numEventsTotal ≥ ûnalNumEvents

In the following, we describe each of the steps of the execution procedure in detail.
determineLookaheadWindow():We determine the events that are safe to be exe-

cuted according to YAWNS (cf. Section 2.1): ûrst, we determine the minimum times-
tamp tmin in any of the LPs’ FELs. All events in the lookahead window {tmin, tmin +
1, . . . , tmin + τ} are safe, since any new event created by a safe event will have a times-
tamp larger than or equal to tmin + τ.
For each LP, the event at the LP’s FEL head is selected and a parallel reduction is

performed to ûnd the lowest timestamp of all selected events: in each iteration, a
number of concurrent threads calculate the minimum of two remaining elements
of input data each. Hence, given nLPs and a suõciently large number of threads,
determining the global minimum requires on the order ofO(log(nLPs)) iterations. If
the number nthreads of threads is smaller than the number of LPs, the parallel reduction
is repeated ⌈nLPs/nthreads⌉ times to cover all LPs’ earliest events.
he following three steps address the execution of safe events and are repeated

until fewer than a conûgured number of safe events remain. Each step is repeated
⌈nLPs/nthreads⌉ times, handling t LPs during each repetition.
selectSafeEvents(): Each thread selects an LP’s earliest safe event, if any. If there is

no event in an LP’s FEL or the earliest event is not safe, the thread remains idle during
the current repetition. Assuming a suõciently large number of threads, this step is
performed in constant time, i.e., requiring on the order of O(1) operations.
handleSafeEvents(): All threads that have selected a safe event call the event handler

deûned by the network model, passing the selected event as an argument. Each event

112

10 GPU-Based Parallel Simulation

Figure 10.5: During event execution, newly created events are appended to the target
LP’s FEL in an unsorted fashion. In a subsequent step, the new events are inserted
into the FEL in non-decreasing timestamp order.

has a type ûeld and a memory region for event data. he model behavior is speciûed
in the event handler function, which can in turn delegate event handling of diòerent
event types to speciûed functions.
If new events are to be created, the event handler calls the simulator function en-

queueEvent(). Any new event is appended to the target LP’s FEL. In graphics card
memory, FELs are represented as ring buòers located in memory regions of equal size.
Figure 10.5 shows the insertion of new events into a single LP’s FEL.he FEL head is de-
noted by a circle, while the tail is denoted by a square. In enqueueEvent(), new events
are appended in an unsorted fashion. As multiple threads may create new events for
the same LP concurrently, the target LP’s FEL tail is advanced atomically before storing
the new event at the new tail position, eliminating the possibility of race conditions.
In case no parallel accesses are performed, appending a new event requires constant
time, i.e., on the order of O(1) operations. Otherwise, the accesses are serialized.
checkQueueOver�ow():When simulating only small numbers of peers in each LP,

the limited amount of memory available on the graphics card restricts the number of
events that can be contained in a single LP’s FEL. If load imbalances in the simulated
network lead to an over�ow of any LP’s FEL, excess events are stored in a temporary
buòer of ûxed size shared by all LPs. he FEL over�ow is resolved by doubling
the number of simulated network nodes, e.g., peers, per LP and thus combining
the capacities of neighboring FELs until all events ût into their respective LP’s FEL
(cf. Section 10.4.1). he check for a queue over�ow is performed by a constant-time
access to an over�ow �ag.
insertNewEvents(): As a last step before a new lookahead window is determined,

the events enqueued during the handleSafeEvents() step of the current round are
inserted into FELs in timestamp order (cf. Figure 10.5). In each iteration, each thread
handles the insertion of all new events assigned to a single LP. First, a binary search
is performed to locate the target position of the new event in the sorted FEL. hen,
to store the new event, all events with larger timestamps are moved by one position.
Given an FEL that can hold at most emax,LP, insertion of an event requires on the order
ofO(emax,LP) operations. Since each access to the memory region that holds the FEL
is translated to a 256 bit read whose result is stored in a low-latency cache, the access
to multiple consecutive events leads to frequent cache hits.

Adaptation of Logical Process Size

In the simulator conûguration, there is a tradeoò regarding the number of simulated
network nodes assigned to each LP. Low numbers allow the simulator to expose a
large proportion of the concurrency of the network model, but may lead to i) many

113

10 GPU-Based Parallel Simulation

idle threads if LPs’ FELs do not contain safe events in most rounds, ii) large costs for
aggregation of all FELs’ minimum timestamps for advancing the lookahead window.
On the other hand, large numbers of nodes per LP limit the exploitable concurrency
and increase the overhead for insertion of events into FELs, as the number of events
in each FEL increases with larger LPs.
An optimal LP size depends on a number of factors: the dependencies between

events as given by the network model, the event density in simulated time, as well
as hardware characteristics such as the number of hardware threads available, the
number of active threads required to exhaust the graphics card’s memory bandwidth,
and the costs for FEL management. Network model properties can vary during
runtime and typically cannot be easily predicted prior to a simulation run, since
determining the network model’s runtime behavior is usually the main goal of the
simulation study itself. Hence, for high performance, the simulator should be able
to adapt to the conditions of the network scenario at runtime.
LPs are resized as illustrated in Figure 10.6. First, each GPU thread aligns the FEL

of one LP to the ûrst element of the reserved memory area. hen, if the number of
nodes per LP is to be increased, events of all LPs with index 2k + 1 are appended at the
tail of LPs with index 2k. Now, the LP count is halved and insertNewEvents() is called
to insert the new events into the sorted FELs. his way, both the number of nodes
assigned to each LP and the maximum number of events in each LP’s FEL is doubled.
If the number of nodes per LP is to be halved instead, each thread iterates over the
events of one FEL, separating events into two FELs, one for a new LP with index
2k, and one for a new LP with index 2k + 1. As timestamp order has already been
established by previous simulation rounds, events can be copied to their new position
in the existing order. Halving the number of nodes per LP halves the maximum size
emax,LP of each FEL as well. If an existing FEL holds more than emax,LP/2 events for
one of the new lists it is to be split to, an over�ow would occur. Hence, prior to a
decrease in the number of nodes per LP, a check is performed to guarantee that the
new FELs will not exceed the memory bounds reserved for each ring buòer.
At runtime, each time the adaptation process is triggered, LPs are resized to han-

dle one peer each. hen, the simulator iterates over LP sizes up to a conûgured
limit, for each LP size resuming simulation and measuring the number of events
executed per second of wall-clock time. Once measurements for all conûgured LP
sizes have been performed, LP size is adapted according to the largest measured
number of events per second until the next adaptation is triggered, e.g., a�er a ûxed
number of executed events.

Model Implementation

For the performance evaluation of the GPU-based simulator, we implemented CUDA
versions of the PHOLD and KademliaC models. In both cases, only minor changes
were required in comparison with the CPU-based code used as a basis for perfor-
mance comparison. Both models were developed in a reference CPU implementation
ûrst, and subsequently ported to the GPU. No eòorts were made to maximize GPU
utilization by explicitly exposing data parallelism or to increase memory access ef-

114

10 GPU-Based Parallel Simulation

Figure 10.6: To resize LPs, FELs are aligned to the start of their respective memory
area boundaries and subsequently relocated according to the new boundaries.

ûciency through reordering of data structures. Executing the model on the GPU
required two minor modiûcations: ûrst, in the sequential simulator, global variables
used to gather statistics about the simulated network can be accessed directly from
the event handling code. In the parallel case, multiple threads may attempt to modify
global variables concurrently. We achieve consistency by replacing write accesses to
global statistics variables with calls to corresponding atomic operations provided by
CUDA. Second, random numbers are required to generate lookups and to determine
link latencies in the simulated network. In the sequential case, random numbers are
drawn from a single random number stream, leading to a deterministic simulation
and identical simulation results between runs when using the same random number
seed. In the parallel case, it is not suõcient to employ a single random number stream,
since diòerent random numbers will be assigned to diòerent threads depending on
timing. Even though a maximum of only a single event is executed for each LP con-
currently at any time during simulation, it is also insuõcient to assign one random
number stream to each LP, as the size of LPs is adapted during runtime and may
diòer between runs. Since the memory footprint of each random number stream is
low, we can create one random number stream for each simulated node. he same
approach is used in case of the PHOLD model.
Apart from the changes for accessing global variables atomically and the separation

of random number streams, the network model code is identical between the CPU
and the parallel GPU-based variants.

10.4.2 Evaluation

In this section, we ûrst compare the time complexity of the simulation tasks using the
GPU-based simulation approaches from the literature and our proposed approach.
Subsequently, we present performance measurement results in comparison with
CPU-based sequential and parallel simulation runs.

Time Complexity

In the following, we study the time complexity of the steps that are repeatedly executed
in fully GPU-based simulations according to the approaches proposed in the literature
and discussed in Section 10.2. We then compare the results with our own approach.

115

10 GPU-Based Parallel Simulation

In [PF10], Park et al. describe their approach on the example of a queuing network
simulation where tokens are processed and passed between stations. he following
steps are repeated until a termination criterion is satisûed:

1. A parallel reduction is performed to ûnd tmin. his step considers all potential
emax,global event positions in the global FEL and can hence be performed in
O(log(emax,global)) operations.

2. Each thread iterates over one FEL segment to mark all events in the current
lookahead window.

3. Each thread iterates over the global FEL to select marked events for one station
each. On departure, the station status is set to “idle”. On an “arrival” event, a
token is added to the per-station queue. Since the previous step considers fewer
events, the two steps require on the order ofO(emax,global) operations.

4. Each thread sorts one station’s new events. If the station is idle, the earliest of
the new events represents the token currently occupying the station. Remaining
events are inserted into the node’s queue. We assume an eõcient sorting algo-
rithm such as quick sort is used and thus given enew,node new events, each thread
requiresO(enew,node × log(enew,node)) operations for sorting. Subsequently, each
event can be appended to the station’s queue in constant time.

5. Each thread checks one event in the global FEL: if the event is currently marked,
the thread unmarks the event and updates the event depending on whether the
corresponding station is busy.

In simulations where each event creates exactly one new event, the new event is
stored in place of the currently executed event. In case the number of events varies
during the simulation, storage for each new event is selected by a linear search in the
global FEL, i.e., using on the order of O(emax,global) operations.
he approach proposed by Tang et al. [WYF13, TY13] segments an unordered global

FEL into a number of columns. Since each thread inserts new events into a unique col-
umn of the FEL, explicit mutual exclusion operations are not required. At maximum,
each insertion of a new event must consider all of the nrows rows of the FEL according
to the conûgured segmentation of the FEL. Hence, inserting an event requires on the
order of O(nrows) operations. he simulation proceeds as follows:

1. A parallel reduction of all emax,global positions in the global FEL is performed to
ûnd tmin. he reduction requires on the order ofO(log(emax,global)) operations.

2. Each thread determines whether one event resides in the lookahead window. If
this is the case, the event is inserted into a linked list that holds the events of one
simulated entity in timestamp order. he handling of parallel accesses to the
linked list of a single entity bymultiple threads is not speciûed. For instance, it is
possible to enable parallel access to linked lists using atomic operations [Har01].
Assuming no parallel accesses to a linked list containing a maximum of emax,node
events, inserting a new event requires on the order ofO(emax,node) operations.

3. Each thread executes the earliest event pertaining to a single simulated entity.

116

10 GPU-Based Parallel Simulation

In the approach proposed by Zhen et al. [ZGGB14], events assigned to an agent are
stored in a local FEL that is ordered by timestamp. Hence, performing a parallel reduc-
tion to determine the minimum timestamp requires on the order ofO(log(nnodes))
operations. Disregarding the potential serialization of accesses, creating an event and
appending it to an agent’s list of incoming events requires constant time, i.e., on the
order of O(1) operations. However, the authors do not describe in detail the data
structure used to represent FELs or the mechanism used to maintain non-decreasing
timestamp order in each agent’s FEL. Hence, we assume that in the situation where
only a single thread appends to an agent’s FEL that can contain up to emax,node events,
a new event can be inserted using on the order of O(emax,node) operations.
Table 10.1 summarizes the previous analysis of the existing approaches applicable to

general discrete-event simulations, and compares the time complexity of the simu-
lation steps with our proposed approach. he symbols used are listed in Table 10.2.
Note that the listed time complexities for the individual steps are given on a purely
algorithmic level. he runtime performance of GPU programs depends strongly
on memory access patterns and on an eõcient utilization of the memory hierarchy.
Further, optimal values for parameters such as the number of blocks and the number
of threads per block are hardware-dependent. Hence, our complexity comparison
should be viewed as a rough indication of algorithmic eõciency and cannot directly
estimate the relative runtime performance of the approaches.
Our proposed event management approach diòers from most existing GPU-based

simulators by not inserting new events into a global FEL in an unsorted fashion.
Instead, events are immediately appended to small FELs that subsequently establish
a per-node non-decreasing timestamp ordering. To the best of our knowledge, the
only other approach that supports general discrete-event models and also applies this

Parallel Create Select per-node Sort new events Insert
min-reduction new event safe event (en ∶= enew,node) event

Park O(log(emax,global)) O(emax,global) O(enew,node) O(en × log(en)) O(1)
Tang O(log(emax,global)) O(emax,row) O(1) N/A O(emax,node)
Zhen O(log(nnodes)) O(1) O(1) N/A O(emax,node)

Andelûnger O(log(nLPs)) O(1) O(1) N/A O(emax,LP)

Table 10.1: Time complexity of the simulation tasks in the GPU-based simulation
approaches, disregarding potential serialization of operations due to parallel access to
data structures by multiple threads.

Symbol Description
emax,global Maximum size of global FEL
emax,row Maximum size of each FEL row in [WYF13, TY13]
emax,node Maximum size of per-node FEL
emax,LP Maximum size of per-LP FEL
enew,node Number of newly created events for given node

nnodes Number of nodes
nLPs Current number of LPs

Table 10.2: Symbols used in the time complexity analysis.

117

10 GPU-Based Parallel Simulation

mechanism is the work by Zhen et al. [ZGGB14]. Where their description of the event
management mechanisms lacks details required in the complexity comparison, we
assume the lowest-complexity mechanisms that we are aware of. he comparison in
Table 10.1 shows that if themaximumnumber of events in the simulation is larger than
the number of simulated nodes, the time complexity of Zhen et al.’s approach compares
favorably to the other previous approaches. However, in the time complexity analysis,
some key performance-critical aspects of the diòerent approaches are not visible:

– heO(1) time complexity of event creation listed for Zhen et al.’s and our own
approach does not consider the costs of mutual exclusion between GPU threads:
if many events are atomically appended to a node’s FEL at the same time, parallel
accesses by multiple threads are serialized. Tang et al.’s approach avoids the use
of atomic operations for event creation. If many events are created targeting
the same node at the exact same time, Tang et al.’s approach may potentially
be more eõcient. However, in their approach, a mutual exclusion mechanism
seems to be required when inserting events into the sorted per-node FELs.

– he time complexity analysis focuses on the event management steps and does
not consider the eõciency of the parallel execution of events itself. Obviously, if
a large proportion of GPU threads is idle during execution, the computational
resources of the GPU are not utilized eõciently. As discussed above, Tang et
al. propose a mechanism that considers more events for execution than a strict
YAWNS-based synchronization, achieving performance increases of up to 30%.
In our proposed approach, nodes are aggregated into dynamically LPs in order
to reduce the number of idle threads. On the one hand, our approach increases
the time complexity of event insertion as well as the probability of parallel, and
hence serialized, access to an individual FEL. On the other hand, aggregating
nodes increases the probability for each FEL to contain safe events within the
current lookahead window, which has a dominant eòect on performance: our
measurements in Section 10.4.2 show the substantial dependence of the optimal
LP size on the scenario conûguration.

Performance Measurements

We evaluate the performance of the implementation of the proposed simulator engine
with respect to simulations of Kademlia-based networks by ûrst comparing two
variants of the fully GPU-based simulator: a GPU-based approach using the CUDA
API for memory access synchronization and a fully GPU-based approach using
so�ware-based synchronization. Subsequently, we compare the performance of the
GPU-based simulator with an optimized CPU implementation that supports both
sequential simulations as well as conservatively synchronized parallel simulation.
As processing time per event in the evaluation network model is quite low at about
1µs or less depending on the scenario, a large portion of simulation time is spent
handling the FEL in the sequential variant. Hence, a meaningful comparison requires
an eõcient FEL implementation. In the CPU-based simulations, we used themap

118

10 GPU-Based Parallel Simulation

container class from the C++ standard library to implement the FEL, which is also
the default in the well-known network simulator ns-3.
he CPU-based parallel simulations were executed on a 16-core Intel Intel Xeon

E5-2670, using conservative synchronization according to the null message algo-
rithm (cf. Section 2.1). Communication was performed via shared memory using
the MPI [SOHL+98] implementation OpenMPI2. he GPU-based simulator was exe-
cuted on a NVIDIA GTX 660Ti graphics card with 1344 cores in 7 SMs, allowing us
to assign 7168 threads to the fully GPU-based simulator variant (cf. Section 10.1.2).
he test system uses an AMD Phenom II X4 965 CPU. We used the same system to
execute the sequential CPU-based simulation runs. In the API-based GPU-based
simulator variant, we measured highest performance with 256 threads per block for
any suõciently large number of blocks. In our experiments, we used ⌈nLPs,initial/256⌉
blocks, nLPs,initial being the initial number of LPs.
We demonstrate the eõciency of the LP size adaptation mechanism by comparing

the runtimes of simulations using ûxed LP sizes with simulations using the adaptation
scheme. he performance plots show averages over three runs per conûguration
and include 95% conûdence intervals.
Figure 10.7 shows the event rate, i.e., average number of events executed per second

of wall-clock time for the two variants of the fully GPU-based simulator, varying the
number of peers in the simulated network. We vary the computational load in the
simulation by conûguring diòerent amounts of traõc: each peer executes lookupswith
a delay inmilliseconds drawn from a uniform distribution on {0, 1, . . . , dmax} between
lookups. With smaller dmax, the computational load of the simulation increases as
more messages are generated per unit of simulated time.
We can see that both of the GPU-based simulator variants beneût from the higher

event density of larger network sizes. he maximum and minimum event rates of the
API-based simulator were 6.76 × 106 events/s and 0.316 × 106 events/s, respectively.
In almost all cases, the API-based memory synchronization achieved a signiûcantly
higher event rate than the simulator variant using the so�ware-based barrier.
For networks of 1 048 576 peers, there is a decrease in the event rate incurred by

the time required for initially populating the simulated peers’ routing tables. Of
course, the relative impact of the initialization phase diminishes for runs covering
larger periods of simulated time.
To determine whether the so�ware-based synchronization itself is more ineõcient

than API-based synchronization, or whether the limited number of blocks allowed in
the fully GPU-based variant is insuõcient to eòectively hide memory access latencies,
we conûgured the same number of threads for both GPU-based simulator variants
and studied the resulting event rate for all network sizes with dmax = 10s. Even though
the event rate of the API-based variant dropped by up to 12.7%, the API-based variant
still achieved higher event rate than the pure variant in almost all cases. Hence, we
conclude that in our setup, so�ware-based memory access synchronization on the
GPU is less eõcient than API-based synchronization.

2http://www.open-mpi.org/

119

10 GPU-Based Parallel Simulation

0

500.000

1e+06

1,5e+06

2e+06

16.384 32.768 65.536 131.072 262.144 524.288 1.048.576

E
v
e
n
t
R

a
te

 [
e
v
e
n
ts

/s
]

Network Size [peers]

API-Based GPU
Pure GPU

(a) Low amount of traõc (dmax = 10min).

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

16.384 32.768 65.536 131.072 262.144 524.288 1.048.576

E
v
e
n
t
R

a
te

 [
e
v
e
n
ts

/s
]

Network Size [peers]

API-Based GPU
Pure GPU

(b) Moderate amount of traõc (dmax = 1min).

0

2e+06

4e+06

6e+06

8e+06

1e+07

16.384 32.768 65.536 131.072 262.144 524.288 1.048.576

E
v
e
n
t
R

a
te

 [
e
v
e
n
ts

/s
]

Network Size [peers]

API-Based GPU
Pure GPU

(c) Large amount of traõc (dmax = 10s).

Figure 10.7: Event rate for KademliaC varying the memory access synchronization
method of the GPU-based simulator variant, the amount of traõc in the simulated
network, and the number of peers.

Since in almost all cases, the API-based GPU variant was more eõcient than the
fully GPU-based variant, in the remainder of the performance evaluation we focus
on the API-based approach.
Figure 10.8 compares the performance of three simulator variants: a sequential CPU-

based simulation, a conservatively synchronized parallel simulation using 16 CPU
cores, and the fully GPU-based simulator using API-based memory synchronization.
he sequential simulation achieved a maximum event rate of 1.36 × 106 events/s
with dmax = 10min and a network size of 16 384 peers. Due to the larger costs of
event management when increasing the number of events in the simulation, the
event rate depends strongly on network size. he lowest event rate was 0.318 × 106

events/s with dmax = 10s and a network size of 1 048 576. In the CPU-based parallel
simulations, the maximum and minimum event rates were 3.86 × 106 events/s and
1.82 × 106 events/s, respectively. he largest measured speedup of a parallel CPU-
based simulation compared to a sequential simulation was 6.00. Contrary to the

120

10 GPU-Based Parallel Simulation

0

1e+06

2e+06

3e+06

4e+06

5e+06

16,384 32,768 65,536 131,072 262,144 524,288 1,048,576

E
v
e
n
t
R

a
te

 [
e
v
e
n
ts

/s
]

Network Size [peers]

GPU
16 Cores CPU

1 Core CPU

(a) Low amount of traõc (dmax = 10min).

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

16,384 32,768 65,536 131,072 262,144 524,288 1,048,576

E
v
e
n
t
R

a
te

 [
e
v
e
n
ts

/s
]

Network Size [peers]

GPU
16 Cores CPU

1 Core CPU

(b) Moderate amount of traõc (dmax = 1min).

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

16,384 32,768 65,536 131,072 262,144 524,288 1,048,576

E
v
e
n
t
R

a
te

 [
e
v
e
n
ts

/s
]

Network Size [peers]

GPU
16 Cores CPU

1 Core CPU

(c) Large amount of traõc (dmax = 10s).

Figure 10.8: Event rate for KademliaC varying the simulator variant, the amount of
traõc in the simulated network, and the number of peers.

CPU-based simulations, the GPU-based simulator achieves higher performance with
larger network size, whereas the lower event density of smaller networks does not
fully utilize the GPU’s hardware resources. With dmax = 10min, the GPU-based
simulation achieves lower event rates than the sequential simulation for network sizes
below 131 072. With dmax at 1min and 10s, the GPU variant performed better than
the sequential CPU variant in all scenarios. With dmax = 1min, the largest speedup
was 13.47 with 1 048 576 peers. With dmax = 10s, the largest speedup was 19.50 with
524 288 peers, with a event rate of 6.71 × 106 events per second. he GPU-based
simulation achieved higher event rates than the parallel CPU-based simulation in
case of large event densities, with a maximum speedup of 3.25 with dmax = 10s and
a network size of 524 288.
To study the performance with respect to the PHOLDmodel, we varied the number

λ of events per unit of simulated time and the proportion of remote traõc, i.e., the
probability that an event e2 created by an event e1 is assigned to the same simulated
node as e1. he lookahead was set to 10 units of simulated time. We conûgured a net-

121

10 GPU-Based Parallel Simulation

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

1.024 4.096 16.384 65.536 262.144 1.048.576

E
v
e
n
t
R

a
te

 [
e
v
e
n
ts

/s
]

PHOLD Population [events]

GPU
16 Cores CPU

1 Core CPU

(a) 0% remote traõc.

0

5e+06

1e+07

1,5e+07

2e+07

2,5e+07

3e+07

3,5e+07

4e+07

4,5e+07

1.024 4.096 16.384 65.536 262.144 1.048.576

E
v
e
n
t
R

a
te

 [
e
v
e
n
ts

/s
]

PHOLD Population [events]

GPU
16 Cores CPU

1 Core CPU

(b) 100% remote traõc.

Figure 10.9: Event rate of GPU-based simulation of the PHOLDmodel with λ = 100.

Network Size CPU API-Based GPU Pure GPU
Handle Other MinTs Handle Insert Other MinTs Handle Insert Other

16 384 Peers 29.4% 70.6% 7.4% 52.7% 39.7% 4.7% 2.9% 46.5% 48.1% 0.0%
131 072 Peers 27.5% 72.5% 2.3% 60.1% 36.9% 0.7% 1.4% 45.1% 53.5% 0.0%

1 048 576 Peers 40.0% 60.0% 1.5% 71.4% 26.8% 0.3% 0.3% 36.3% 61.1% 0.2%

Table 10.3: Percentage of runtime spent on simulation steps for KademliaC with
dmax = 10s.

work size of 131 072 nodes. he GPU-based simulation runs were performed 10 times
for each parameter combination. Figures 10.9, 10.10 and 10.11 depict the performance
measurements of the PHOLDmodel. he sequential CPU-based simulator achieved
a maximum event rate of 4.08 × 106 events/s with 0% remote traõc, a population
of 16 384 events and λ = 100. Due to the larger event management overhead with
larger numbers of events, the performance decreases with larger PHOLD population
settings. he lowest value of 0.69 × 106 events/s was measured with 100% remote
traõc, a population of 1 048 576 events and λ = 0.01.
he parallel CPU-based simulator achieved event rates between 2.57 × 106 and

43.87 × 106. Accordingly, the maximum and minimum speedup of the parallel CPU-
based simulator compared to the sequential CPU-based simulator was 18.35 and
1.73. he performance of the CPU-based parallel simulation depends strongly on
the number of events in the simulation: up to a certain size of the PHOLD popula-
tion, the event rate increases since more events can be executed by each LP before
synchronization is required. However, at larger PHOLD populations, the event rate
decreases signiûcantly. A potential reason is the single-threaded nature of each LP
in our implementation of the CPU-based parallel simulator: since the execution of

122

10 GPU-Based Parallel Simulation

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

1.024 4.096 16.384 65.536 262.144 1.048.576

E
v
e
n
t
R

a
te

 [
e
v
e
n
ts

/s
]

PHOLD Population [events]

GPU
16 Cores CPU

1 Core CPU

(a) 0% remote traõc.

0

5e+06

1e+07

1,5e+07

2e+07

2,5e+07

3e+07

3,5e+07

1.024 4.096 16.384 65.536 262.144 1.048.576

E
v
e
n
t
R

a
te

 [
e
v
e
n
ts

/s
]

PHOLD Population [events]

GPU
16 Cores CPU

1 Core CPU

(b) 100% remote traõc.

Figure 10.10: Event rate of GPU-based simulation of the PHOLDmodel with λ = 1.

events and the retrieval of messages cannot be performed at the same time, executing
a large number of events before retrieving incomingmessages can lead to a substantial
waiting time for an LP that is sending a message. Still, considering the measured
event rates and the large speedup compared to the sequential CPU-based simulator,
the CPU-based parallel simulator seems to provide a reasonable point of comparison.
he largest speedup of the GPU-based simulator compared to the CPU-based

parallel simulator was 11.77 with a population of 1 048 576, 100% remote traõc and
λ = 1. he largest speedup of the GPU-based simulator compared to the CPU-based
sequential simulator was 23.55 with a population of 1 048 576, 100% remote traõc
and λ = 0.01. he maximum event rate of the GPU-based simulator was 34.11 × 106

with a population of 262 144, 0% remote traõc and λ = 1.
In general, theGPU-based simulator achieves higher event rates with largerPHOLD

populations. However, an exception can be observed in the results of Figures 10.9
and 10.10 with 0% remote traõc: the event rate declines sharply with a population of
524 288 and 1 048 576, although one would expect particularly large performance with
these conûgurations. he reason lies in the conûgured number of 256 threads per
GPU block. he choice of a suitable number of threads per block depends strongly
on properties of the hardware as well as the performed computations and memory
access patterns and is hence non-trivial [TGEL13]. Figure 10.12 shows a comparison
of the event rate with 32 and 256 threads per block for two diòerent conûgurations.
We can see that with 0% remote traõc and λ = 100, using 32 threads per block results
in higher event rates than using 256 threads per block for populations of 131 072 and
above. Additionally, the constant event rate at larger populations seems to suggest
that the GPU resources are utilized fully with these model parameter combinations.
he largest event rate of 39.34 × 106 event/s is achieved with a population of 131 072.

123

10 GPU-Based Parallel Simulation

0

5e+06

1e+07

1,5e+07

2e+07

2,5e+07

3e+07

1.024 4.096 16.384 65.536 262.144 1.048.576

E
v
e
n
t
R

a
te

 [
e
v
e
n
ts

/s
]

PHOLD Population [events]

GPU
16 Cores CPU

1 Core CPU

(a) 0% remote traõc.

0

5e+06

1e+07

1,5e+07

2e+07

1.024 4.096 16.384 65.536 262.144 1.048.576

E
v
e
n
t
R

a
te

 [
e
v
e
n
ts

/s
]

PHOLD Population [events]

GPU
16 Cores CPU

1 Core CPU

(b) 100% remote traõc.

Figure 10.11: Event rate of GPU-based simulation of the PHOLDmodel with λ = 0.01.

he largest speedup factor compared to the sequential CPU-based simulator was
27.52 with a population of 1 048 576.
We provide an example of the results for the remaining PHOLD parameter com-

binations by a plot for 100% remote traõc and λ = 0.01: here, as in almost all other
studied parameter combinations, 256 threads per block achieved larger event rates
than 32 threads per block.
We now consider the percentage of simulation runtime spent on the individual

steps of a simulation, focusing on theKademliaC model. Table 10.3 lists measurement
results for 16 384, 131 072 and 1 048 576 peers and dmax = 10s. For the CPU-based
simulator, we distinguish two steps: event handling (Handle) and overheads (Other),
including, and dominated by, FEL management. For the GPU-based simulator vari-
ants, there are four steps corresponding to the execution procedure described in
Section 10.4.1: calculation of the smallest global timestamp (MinTs), event handling
(Handle), insertion of events into FELs (Insert), and overheads (Other). While the
CPU-based simulator spent 29.4% of its runtime executing events with 16 384 peers,
with 1 048 576 peers, this value increased to 40%. As total runtime increased from
1 134s to 3 141s while the number of executed events remained constant, we can see
that both the processing time per event as well as the FEL management overhead
increased for larger networks. In the GPU-based simulator, in addition to the beneûts
of the large number of cores of the GPU, a larger portion of runtime was spent execut-
ing events than was the case for the CPU-based simulator. On the GPU, the results
clearly show the superiority of the API-based variant: while in the fully GPU-based
variant, the relative overhead for inserting events into FELs increases with larger
network size, in the API-based variant, a larger portion of runtime was spent on

124

10 GPU-Based Parallel Simulation

0

1e+07

2e+07

3e+07

4e+07

5e+07

1.024 4.096 16.384 65.536 262.144 1.048.576

E
v
e
n
t
R

a
te

 [
e
v
e
n
ts

/s
]

PHOLD Population [events]

256 Threads per Block GPU
32 Threads per Block GPU

(a) 0% remote traõc, λ = 100.

0

5e+06

1e+07

1,5e+07

2e+07

1.024 4.096 16.384 65.536 262.144 1.048.576

E
v
e
n
t
R

a
te

 [
e
v
e
n
ts

/s
]

PHOLD Population [events]

256 Threads per Block GPU
32 Threads per Block GPU

(b) 100% remote traõc, λ = 0.01.

Figure 10.12: Event rate of GPU-based simulation of the PHOLDmodel when varying
the number of GPU threads per block.

event execution with larger network sizes. In all cases, ûnding the global minimum
timestamp comprised only a small portion of the total runtime.

Optimal Logical Process Size

When assigning only a single peer to each LP, a suõcient portion of the concurrency
of the Kademlia model is exploited to execute hundreds or thousands of events in each
round. However, overheads due to idle GPU cores and for event selection increase
with larger LP counts. To show that the proposed simulator successfully balances
parallelism and overhead at runtime, Table 10.4 compares the event rate of simulation
runs with ûxed LP size to runs using adaptive LP size. In each run, the LP size was
adapted a single time a�er initialization of the simulated network. he optimal ûxed
number of peers per LP varied between 2 and 16. In general, the lower the traõc in the
simulated network and the fewer events there are per unit of simulated time, the more
peers need to be aggregated in each LP to achieve best performance. In almost all
cases, the adaptive simulator implementation was able to select an eõcient LP size and
hence closely approximated the largest event rate among the runs with ûxed LP size.
With 16 384 peers and dmax = 1min, the adaptive simulator even slightly outperformed
the best ûxed-LP run. With 1 048 576 peers and dmax = 10min, however, due to high
variance of runtime performance, the chosen LP size achieved only 84.3% of the
run with the largest event rate. When increasing the duration of each performance
measurement from 105 to 106 events, 97.2% of the highest event rate was achieved.
We can observe that in nearly all of the parameter combinations considered in

Table 10.4, the aggregation of simulated nodes increased the event rate of the simula-
tion. he largest increase in event rates by a factor of 4.52 through the aggregation

125

10 GPU-Based Parallel Simulation

was achieved with 1 048 576 peers and dmax = 10min. In the simulation run with the
largest speedup of 19.5 compared to a CPU-based sequential execution, about 15 600
events were processed per parallel execution.
Considering the PHOLDmodel, the largest beneût of the aggregation of simulated

nodes is observed in case of low event density in simulated time. Table 10.5 lists the
event rates achieved when considering a single simulated node per logical process,
compared to the result achievedwith the aggregation. Depending on the conûguration,
the optimal degree of aggregation lies between between 1 and 16 nodes per logical
process. he results show that in cases of low event density, the performance of the
fully GPU-based simulator can be substantially improved by aggregating the simulated
nodes. With larger event densities, the beneût of the aggregation diminishes, since in
these cases, the GPU is utilized suõciently when assigning a single simulated node to
each logical process. With the listed parameter combinations, a speedup of up to 1.97
to can be achieved by the aggregation compared to a consideration of individual nodes.

Table 10.4: Event rates [106 events/s] using ûxed-sized and adaptive LPs to execute
KademliaC.

Network Size 16 384 Peers 131 072 Peers 1 048 576 Peers
dmax 10s 1min 10min 10s 1min 10min 10s 1min 10min

1 Peer per LP 3.87 1.44 0.26 5.77 2.47 0.46 5.01 2.41 0.46
2 Peers per LP 3.82 1.58 0.30 6.78 3.31 0.74 5.90 3.27 0.77
4 Peers per LP 3.51 1.61 0.32 6.49 3.98 1.02 5.79 4.18 1.25
8 Peers per LP 2.22 1.29 0.32 4.39 3.87 1.18 4.49 4.50 1.78
16 Peers per LP 1.09 0.81 0.26 2.34 2.59 1.18 2.86 3.50 2.08

Adaptive LP Size 3.51 1.62 0.32 6.48 3.86 1.17 5.77 4.49 1.75
Percentage of Best 90.6% 100.3% 99.4% 95.5% 96.9% 99.0% 97.7% 99.7% 84.3%

Table 10.5: Event rates [106 events/s] when varying the LP size and the maximum
speedup achieved through the aggregation of nodes in simulations of the PHOLD
with 0% remote traõc.

Population 1024 Events 4096 Events 16384 Events 65536 Events
λ 0.01 1 100 0.01 1 100 0.01 1 100 0.01 1 100

1 Node per LP 0.83 3.93 7.44 2.53 13.80 14.31 5.81 25.00 24.57 9.85 31.70 31.54
2 Nodes per LP 1.11 5.14 5.13 3.16 11.66 12.95 6.47 23.49 22.39 10.32 27.90 25.80
4 Nodes per LP 1.38 6.39 6.65 3.45 10.89 11.55 6.90 21.58 19.67 11.67 24.53 21.26
8 Nodes per LP 1.56 5.33 7.45 3.47 14.78 15.28 7.17 15.99 15.01 13.46 20.21 15.53
16 Nodes per LP 1.64 6.03 6.08 3.64 11.16 11.20 7.63 17.08 15.28 12.59 21.35 12.77
32 Nodes per LP 1.46 5.93 5.93 3.48 11.37 11.53 8.63 15.90 13.84 8.78 18.23 9.35
Max. Speedup 1.97 1.62 – 1.43 1.07 1.06 1.48 – – 1.36 – –

126

10 GPU-Based Parallel Simulation

10.4.3 Discussion

he proposed simulator achieves a substantial simulation speedup compared to a
sequential CPU-based implementation and in many conûgurations rivaled or signiû-
cantly exceeded the performance of a parallel simulation on a 16-core CPU. Still, a
number of aspects warrant further research in future work:
Per-LP FELs are represented as ring buòers, incurring linear time complexity when

inserting an event into an FEL.he runtime adaptation of LP size implicitly determines
the average number of events in each FEL so that insertion overhead remains accept-
able. However, more sophisticated data structures may enable higher eõciency when
inserting events into FELs. A systematic comparison of the eõciency of diòerent data
structures to represent priority queues on GPUs is a potential focus of future work.
We have shown that the use of a so�ware-based barrier for memory access syn-

chronization results in lower performance than using API-based memory access
synchronization. A possibility for further performance increases is given by the “dy-
namic parallelism” feature of recent CUDAdevices of compute capability 3.5 and larger,
which allows for synchronization of memory accesses between all threads on the GPU.
Currently, all LPs are formed by aggregation of an identical number of nodes.

Further, in our current implementation, nodes are selected for aggregation based on
the positions of their FELs in GPU memory. Additional performance increases may
be achievable when selectively aggregating particular nodes to LPs of varying sizes
depending on the current distribution of events to the simulated nodes.
Furthermore, we have seen that the conûgured number of threads per block can

have a substantial impact on the simulation performance. A consideration of ad-
ditional parameters such as the overall number of threads may enable additional
speedup. Since it is not clear whether there are signiûcant interactions among these
parameters, as well as between the parameters and the considered network model, it
may be beneûcial to consider applying generic autotuning approaches for GPU-based
applications [TKDT13] in order to identify suitable parameter combinations.
he simulation performance depends on properties of the network model. Graphics

memory is optimized for high bandwidth instead of low latency. Hence, if there are
sequences of scattered memory accesses during event handling, large numbers of
parallel events are required to allow for eõcient hiding of memory access latencies,
limiting the beneût of GPU-based simulation when considering small-scale networks.
Additionally, since all threads of each warp operate in lockstep, heavy branching in the
model code depending on the nodes’ states must be expected to impede performance.
Hence, GPU-based simulations of models with large variation in node behavior, such
as state machine models of TCP connections, should be studied in future work.

10.5 Conclusions
In this chapter, we proposed and evaluated GPU-accelerated parallel simulation
architectures. he proposed approaches utilize only a single GPU and are hence
suitable for deployment on commodity hardware.

127

10 GPU-Based Parallel Simulation

We ûrst considered hybrid simulation where events are executed on a GPU, while
the event management is performed on a CPU. he approach has the beneût of
requiring only limited development eòorts: it is possible to implement only com-
putationally expensive event handlers on the GPU, whereas the remainder of the
model is implemented targeting the familiar CPU environment. Similarly, an existing
CPU-based simulator and model implementation can be extended for GPU-based
execution of individual event types with relative ease. However, hybrid CPU-GPU-
based simulation requires frequent and time consuming interaction and data transfer
between the CPU and GPU context of the simulation. Starting from a data-parallel
execution of individual events of a detailed model of wireless communications, we
studied the impact of optimizations to the simulator architecture that aim to reduce
the frequency of the CPU-GPU interactions.
he performance of the architectures was evaluated using a synthetic benchmark

model that executes three computationally expensive algorithms required in detailed
wireless network simulation. Whereas the GPU-based execution of individual events
achieved only minor performance improvements compared to a purely CPU-based
sequential simulation, signiûcant speedup was achieved when aggregating multiple
events to exploit the data parallelism in individual events as well as the parallelism
across multiple events. Similarly to CPU-based parallel and distributed simulation,
aggregated execution of events requires a consideration of the simulation correctness.
For instance, conservative synchronization can exploit the speed-of-light propagation
delay of radio waves to determine events that can safely be executed in parallel on
the GPU. Further performance increases are achieved when avoiding data transfers
between graphics and host memory in case the output data of event handlers will be
used as input for future event handlers. Still, due to the remaining costs of CPU-GPU
interactions, hybrid CPU-GPU-based simulation seems particularly suitable in case
of models with computationally expensive and highly data-parallel events.
Subsequently, we studied the fully GPU-based network simulation. In fully GPU-

based simulation, both the simulation events as well as the event management tasks
are executed on a GPU. Since signiûcant CPU-GPU interaction is required only
during initialization and termination of a simulation run, the fully-GPU based ap-
proach can be applied to models where individual events require only small amounts
of computation and are inherently sequential. We studied the performance achiev-
able using fully GPU-based network simulation on the example of a model of an
application-layer peer-to-peer network and the popular PHOLD benchmark model.
Further, we compare two approaches for synchronizing the access of the GPU threads
to graphics memory: an approach where the consecutive GPU-based simulation
tasks are triggered from a CPU process, and an approach where a so�ware-based
barrier operation is used to completely avoid the use of the CPU. Since in case of the
so�ware-based barrier, the exploitation of the GPU resources must be restricted to
eliminate the possibility for deadlocks, triggering the simulation tasks from a CPU
process showed higher simulation performance in our experiments.
In the GPU-based network simulation approaches from the literature, each GPU

thread considers the events of a single simulated node for processing in each execution

128

10 GPU-Based Parallel Simulation

step. Hence, if in each iteration of the simulation, only few nodes hold events that
can be safely processed, many of the GPU threads will remain idle. To increase the
utilization of the GPU’s resources, similarly to CPU-based parallel and distributed
simulations, our proposed event management scheme aggregates sets of multiple
nodes of the simulated network into LPs. Since each thread considers the events
assigned to an LP, the probability of idle threads is reduced. However, increasing the
number of nodes per LP increases the costs of event management. Hence, the size
of the LPs is adapted at simulation runtime based on performance measurements to
select an LP size that achieves a large event execution rate with respect to wall-clock
time. he dynamic selection of the LP size balances the utilization of the GPU’s
hardware resources during event execution with the costs of event management.
On a commodity GPU, the proposed simulation approach achieved event rates of

up to 6.8 × 106 events per second for simulations of the peer-to-peer network model,
and up to 39.3 × 106 events per second in case of the PHOLD model. We compared
the results with a sequential CPU-based simulation and observed a speedup of up
to 27.5. In comparison with a conservatively synchronized parallel simulation using
16 CPU cores, we achieved a speedup of up to 11.8.
In future work, it may be beneûcial to focus on producing generalized insights

into the performance of diòerent GPU-based simulation approaches. In particular, a
systematic performance evaluation of the various possible implementations of future
event lists on a GPU based on a direct comparison using a ûxed hardware platform
and model implementation could clarify the advantages of the diòerent approaches.
Further, due to the execution of groups of GPU threads in a lockstep fashion and
the large impact of memory access patterns on performance, interactions between
multiple events that are executed in parallel may signiûcantly aòect the event rate.
Identifying the impact of the characteristics of the event handlers on GPU-based
simulation performance may enable simulationists to decide whether a model will
beneût from GPU-based execution and may guide model optimizations.

129

10 GPU-Based Parallel Simulation

130

11

Harnessing Concurrency – Conclusions

In this part of the thesis, we proposed CPU-based and GPU-based methods for ac-
celerating models of peer-to-peer networks and wireless networks. We analyzed two
partitioning strategies for a model of a large-scale peer-to-peer network, showing
that a simple partitioning strategy that exploits the structure of the nodes’ routing
tables in a network based on the Kademlia protocol reduces the amount of inter-LP
communication and the simulation runtime substantially, whereas a location-based
partitioning strategy moderately increases the exploitable lookahead. We demon-
strated that although the network model requires only ûne-grained computations,
a traditional CPU-based distributed simulation enables a speedups of up to 6.0
compared to a sequential execution, and near-linear reductions in the memory re-
quirements per execution node. However, the increase in hardware requirements
by distributing the simulation outpaces the runtime reduction by a wide margin.
Hence, for distributed simulation of the considered network model to be useful, the
beneût of an increased simulation scale or of the runtime reduction must outweigh
the additional costs in hardware resources.
In order to accelerate the execution of a detailed wireless networks model that

requires data-parallel and coarse-grained computations, we compared diòerent archi-
tectures for a hybrid CPU-GPU coprocessing. To expose a suõcient amount of data
parallelism and to achieve substantial performance gains, it is necessary to consider
multiple events in a single processing step. Aggregating events introduces the need
to apply mechanisms of parallel and distributed simulation in order to maintain
simulation correctness. Although large speedup could be achieved for the considered
computationally intensive network model, the coprocessing approach incurs substan-
tial overhead through the interaction between the host system and the GPU and is
hence suitable for models with large per-event computation times. In order to reduce
the overhead of the CPU-GPU interaction, we proposed a fully GPU-based network

131

11 Harnessing Concurrency – Conclusions

simulator. he simulator enables high-performance simulations even for network
models that require ûne-grained computations and frequent interaction between
simulated nodes. We applied an established synchronization algorithm used in CPU-
based parallel simulation to themany-core realm and presented an event management
mechanism suitable for GPUs. Contrary to existing approaches, sets of simulated
nodes are aggregated to form logical processes, enabling a dynamic balancing of
GPU utilization and event management overhead at runtime. While the supported
simulation scale is limited by the available graphics memory, the reliance on a single
GPU enables researchers to achieve high simulation performance using a single local
workstation. Our approach achieved event rates of up to 39.3 × 106 events per second
and a speedup of up to 27.5 compared to a sequential CPU-based execution.
In contrast to approaches that employ GPU clusters to increase the feasible simula-

tion scale or approaches considering multiple replications of a simulation in parallel
to increase the rate at which simulation results are obtained, our approaches can
be considered to focus on reducing the latency between starting a simulation and
obtaining the results. Hence, our approaches are particularly beneûcial in exploratory
phases of a simulation study, where short feedback loops are desirable.

132

12

Conclusions and Outlook

his dissertation considered methods for identifying and harnessing concurrency
in discrete-event simulations of computer networks. Although computer networks
are inherently parallel systems, network simulation models vary immensely in their
potential for parallel execution. he performance gains should therefore be estimated
prior to expending the development eòort of a model implementation suitable for
parallel and distributed simulation.

Identifying Concurrency – Conclusions

he concurrency of network models is frequently evaluated on an abstract level
through the automated analysis of simulation event traces created in sequential model
executions, e.g., using critical path analysis. However, such automated analysis meth-
ods provide only limited insights into the relationships between the properties of
the original system, the simulation model and the observed degree of concurrency.
his observation motivated our ûrst research question: How can the parallelization
potential of discrete-event models of computer networks be estimated and explained?
We proposed a concurrency estimation approach that reveals the relationships

between model properties and the concurrency of a simulation based on a manual
analysis of simulation models and basic network statistics gathered from sequential
simulation runs. he approach estimates the number of cores that can be occupied by
a parallel execution of a network model under common simplifying assumptions. he
concurrency estimations can support decisions on parallelization of a network model
and on suitable simulator architectures. Similarly to some of the works from the litera-
ture, the estimation approach is based on approximating the simulation progress of the
well-known synchronization algorithm YAWNS.A rigorous proof shows that under
the given assumptions, the concurrency determined using YAWNS can deviate
only to a limited degree from the results of critical path analysis. Hence, these

133

12 Conclusions and Outlook

two methods can be used interchangeably in case a rough estimation of concurrency
is suõcient. An empirical validation of the estimation approach was performed on
the example of three network models implemented in popular network simulators.
Our results support the following statement:

he concurrency of network simulations can be estimated at reasonable
accuracy without relying on an automated analysis of event traces.

While the fundamental impact of the communication patterns in the modeled
networks can be easily captured by a manual analysis, sequential simulation runs
are still used to acquire network statistics such as the frequency of unsuccessful
transmission attempts in a wireless network. he need for executing the model arises
in case an accurate analytical estimation of the required statistic is elusive. As noted by
Ewald [Ewa06], this observation points to a fundamental challenge in performance
modeling of simulations: simulation is applied when a property of a system cannot
be captured easily in an analytical form. If such a property signiûcantly aòects the
performance of the simulation, a purely analytical performance estimation poses a
similar challenge as the original modeling task.
he proposed analytical estimation approach determines the number of cores that

can be occupied by a simulation under simplifying assumptions. We presented a
reûnement of our estimation approach that enables a consideration of the variable
costs of the computational tasks deûned by the network model. Still, if an accurate
prediction of the runtime of a parallel model execution is desired, the estimation
must consider the previously disregarded costs of synchronization and communica-
tion between processors and the impact of the partitioning strategy applied to the
simulation model. We proposed an estimation tool that considers all steps of a
model execution by performing a second-order simulation, i.e., a sequential sim-
ulation of an envisioned parallel or distributed simulation. Our results showed
that when estimating the performance with respect to network models that require
ûne-grained computations and frequent inter-processor communication, variations
in the communication costs must be considered to achieve reasonable estimation accu-
racy. Generally, by reûning the estimation model with representations of components
of the simulation platform such as processors and network interconnects at increasing
levels of detail, the prediction accuracy can be expected to improve. However, the
costs of development, parametrization and execution of highly detailed performance
models must be weighed against the costs of the parallelization of the model itself.

Identifying Concurrency – Future Work

Future research could aim at a generalization of our performance modeling results: a
categorization of classes of networkmodels according to their parallelization potential
would enable simulationists to avoid repeating performance estimations of network
models that fall in a previously identiûed category. For instance, when considering
a simulation’s concurrency, a network model category might be characterized by
the network topology and a simpliûed representation of communication patterns.
A ûrst step towards a categorization could be taken by repeating the performance
analysis experiments presented in this dissertation on the example of network models

134

12 Conclusions and Outlook

with similar characteristics to the previously considered models. A strong match
in the performance evaluation results with respect to network models of similar
characteristics would justify assigning these models to a shared category.
Further, our proposed concurrency estimation approach approximates the assign-

ment of events to the simulated nodes according to the network model analytically.
he required analysis of the way the network model translates the simulated com-
munication patterns to sequences of events is performed manually. Static code anal-
ysis tools might be able to partially perform this step in an automated fashion by
tracing the discrete-event logic formulated in the network model code. Some on-
going work already applies static code analysis to identify sets of events that can be
executed in parallel [SSGW15]. Similarly, static code analysis could also generate
insights into the in�uencing factors to the model’s concurrency as functions of the
conûgured scenario parameters.
An additional goal that might be achievable by static code analysis is to reveal

invariants or asymptotical results on network statistics such as packet rates or queue
lengths. Such results may render some simple network simulations unnecessary by
generating a direct analytical solution. Further, by translating parts of a simulation
model of the original system into an analytical form, such an approach could provide
insights into the original system, the simulationmodel and the causes for the observed
results. Partial solutions to the described problem may be achievable using methods
from the ûelds of model checking and automated theorem proving. Of course, the
enormous state space of typical discrete-event models must be expected to severely
limit the comprehensiveness of results achievable in reasonable time frames.

Harnessing Concurrency – Conclusions

In the subsequent part of the dissertation, we proposed methods to utilize the concur-
rency of network models in order to achieve reductions in simulation runtime. We
considered two opposite cases: peer-to-peer overlay networks based on the Kademlia
protocol comprised of millions of nodes represented by a model that abstracts from
low-level network properties, and wireless networks of up to 100 nodes represented
by a model that considers even low-level network properties in detail.
A distinctive property of many peer-to-peer overlay networks is the separation

between the spatial and logical distance of nodes, which impacts the parallelization
of models of such networks: a spatial partitioning of the simulated nodes to the
processors used for simulation increases the average latency of simulated messages
between nodes simulated on separate processors, potentially reducing the frequency
of inter-processor synchronization. In contrast, a partitioning based on the logical
topology of the network reduces the number of simulatedmessages that cross processor
boundaries. Our results showed that the beneût of a spatial partitioning of the con-
sidered peer-to-peer network is low, whereas a partitioning based on the logical
network topology strongly improves the performance of distributed runs of the
networkmodel. hedistributed simulation achieved a speedup of up to 6.0 compared
to sequential runs and reductions in memory requirements per execution node that
scaled close to linearly with the number of execution nodes. Still, whether the runtime

135

12 Conclusions and Outlook

reductions through distributed simulation can be considered to justify the substantial
amount of required hardware resources must be decided in light of the given time
constraints. Our second research question was therefore: How can computationally
intensive network simulations be executed eõciently on commodity graphics cards?
To enable high-performance network simulations without the need for traditional

CPU-based high-performance computing resources, we studied parallel network
simulations on many-core hardware in the form of graphics processing units (GPUs)
readily available in recent commodity computers. GPU-based simulations can be
performed directly on a simulationist’s workstation, enabling a short feedback loop
between modiûcations to the simulation model or scenario parameters, and the
retrieval of simulation results. A short feedback loop is particularly desirable during
model development and to identify suitable value ranges for scenario parameters,
i.e., in exploratory phases of simulation studies.
We ûrst considered architectures for GPU-based coprocessing in the context of

traditional sequential CPU-based simulation. Due to their heritage in graphics ren-
dering, GPUs are particularly suited for eõcient executions of tasks characterized
by enormous numbers of data elements to each of which an identical sequence of
operations is applied. In the case of a detailed model of a wireless network, highly
data-parallel signal processing tasks can be executed eõciently on a GPU. However,
our performance measurements showed that signiûcant runtime reductions require
an aggregated consideration of the processing tasks associated withmultiple simulated
messages, while maintaining the correctness of the simulation results. hus, even
in the base case of GPU-based coprocessing, synchronization methods from par-
allel and distributed simulation are required to achieve signiûcant performance
gains. he coprocessing approach is beneûcial in cases where parts of the simulator
cannot be eõciently executed on a GPU or where the costs of fully porting a model to
the GPU are to be avoided, but where highly data-parallel tasks dominate the simula-
tion runtime. Since a frequent crossing of the CPU-GPU boundary is associated with
substantial overhead, a GPU-based coprocessing is ineõcient in the case of network
models comprised of events that require only ûne-grained computations. Hence,
we proposed a fully GPU-based simulation approach that executes all tasks of a
network simulation on a commodity GPU. he fully GPU-based simulation does
not require the considered network model to contain any explicit data parallelism.
By exploiting the concurrency given by independent events in network models, our
implementation of the approach achieved a speedup of up to 27.5 compared to a
sequential CPU-based execution, and a speedup of up to 11.8 compared to a parallel
CPU-based execution on 16 processor cores, using a single inexpensive commodity
graphics card. We observed event execution rates of up to 39.3× 106 events per second.
Contrary to existing works, our approach aggregates the simulated nodes to form log-
ical processes, in analogy to CPU-based parallel and distributed simulation. hrough
the aggregation, the simulation performance can be increased by considering a trade-
oò arising in the assignment of simulation tasks to the GPU’s processing elements:
aggregating smaller sets of simulated nodes increases the frequency of periods of
inactivity of the nodes assigned to a GPU core, resulting in low utilization of the

136

12 Conclusions and Outlook

GPU’s computational resources; however, aggregating larger sets of simulated nodes
increases the overheads of event management. Further, since the events assigned to
a single logical process’ nodes are executed sequentially, aggregating larger sets of
simulated nodes can conceal some of the concurrency of the network model. he
optimal logical process size depends on the GPU hardware and on the runtime behav-
ior of the network model, which in general cannot assumed to be easily predictable
prior to a simulation run. Hence, in order to balance the utilization of GPU cores
and the eventmanagement overhead, the proposed approach dynamically adapts
the logical process size based on performance measurements conducted during
simulation runtime. Our results support the following statement:

A dynamically adaptable aggregation of simulated nodes
substantially reduces the runtime of fully GPU-based network simulations.

he presented performance measurements showed the strong dependence of the
optimal logical process size on the simulation scenario.

Harnessing Concurrency – Future Work

he issue of choosing a suitable partitioning strategy tominimize the need for physical
communication between logical processes is central in the case of distributed simu-
lations. his consideration seems less crucial in the case of GPU-based simulations
since a communication across logical process boundaries is not inherently associ-
ated with additional costs, although low-latency regions of graphics memory could
potentially be utilized to optimize simulated communications within each logical
process. Still, depending on the considered network model, workload imbalances
between logical processes may signiûcantly limit the simulation performance. A
possible focus of future work could be a selection of variable sizes for separate logical
processes. As in CPU-based parallel and distributed simulation, static or dynamic
partitioning strategies could be applied. Hence, the introduction of logical processes
augments the dimensions that can be considered in the performance optimization
of fully GPU-based simulations.

Outlook

In general, the proposed performance evaluation approaches and our measurement
results show that fundamentally diòerent simulator architectures and hardware plat-
forms are required for eõcient execution of diòerent model types. Some works from
the literature have already considered a dynamic assignment of simulation tasks to
diòerent components of heterogeneous hardware platforms [BR13] and an automated
selection of simulation algorithms [Ewa11].
Finding an eõcient assignment requires knowledge about the characteristics of the

tasks and the properties of the execution environment, i.e., a performance model of
the given network simulation model and the available hardware. Already, a partial
performance model of network models is created and utilized in many parallel and
distributed simulation approaches: for instance, the lookahead of a model or runtime
statistics such as the frequency of communication between simulated nodes can be
considered as parts of a performance model that is used to guide the assignment

137

12 Conclusions and Outlook

of the simulation to the hardware as well as the selection and parametrization of
synchronization algorithms.
We consider a more systematic and comprehensive formulation of the optimization

problem underlying the hardware assignment of network simulations a key direction
for future research in parallel and distributed simulation. Although the degrees of
freedom in the formulation of discrete-event models and in the hardware assignment
of simulations are immense and make a fully comprehensive performance model
seem unlikely, even a partial formulation of the optimization problem may suggest
appropriate simulator realizations and decrease the need for the development of
specialized simulators. he methods for evaluation of network models and their
eõcient execution presented in this dissertation are contributions towards this goal
of a more comprehensive performance modeling of network simulation models and
suitable execution environments.

138

Bibliography

[ABN92] B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja. A First Course in
Order Statistics, volume 54. Siam, 1992.

[ADM94] P. J. Ashenden, H. Detmold, and W. S. McKeen. Execution of VHDL
Models Using Parallel Discrete Event Simulation Algorithms. VLSI
Design, 2(1):1–16, 1994.

[AH13] P. Andelûnger and H. Hartenstein. Towards Performance Evaluation of
Conservative Distributed Discrete-Event Network Simulations Using
Second-Order Simulation. In Proceedings of the Conference on Principles
of Advanced Discrete Simulation, pages 221–230. ACM, 2013.

[AH14] P. Andelûnger and H. Hartenstein. Exploiting the Parallelism of Large-
Scale Application-Layer Networks by Adaptive GPU-Based Simulation.
In Proceedings of the Winter Simulation Conference, pages 3471–3482.
IEEE, 2014.

[AH15] P. Andelûnger and H. Hartenstein. Model-Based Concurrency Analysis
of Network Simulations. In Proceedings of the Conference on Principles
of Advanced Discrete Simulation, pages 223–234. ACM, 2015.

[AH16] P. Andelûnger and H. Hartenstein. Validity and Application of Model-
Based Concurrency Estimation for Network Simulations. Submitted to
ACM Transactions on Modeling and Computer Simulation, 2016.

[AJH14] P. Andelûnger, K. Jünemann, and H. Hartenstein. Parallelism Potentials
in Distributed Simulations of Kademlia-based Peer-to-Peer Networks.
In Proceedings of the Conference on Simulation Tools and Techniques,
pages 41–50. ICST, 2014.

[AKK10] M. J. Arif, S. Karunasekera, and S. Kulkarni. GeoWeight: Internet Host
Geolocation Based on a Probability Model for Latency Measurements.
In Proceedings of the Australasian Conference on Computer Science, pages
89–98. Australian Computer Society, Inc., 2010.

[Amd67] G. M. Amdahl. Validity of the Single Processor Approach to Achieving
Large Scale Computing Capabilities. In Proceedings of the Spring Joint
Computer Conference, pages 483–485. ACM, 1967.

139

BIBLIOGRAPHY

[AMH11] P. Andelûnger, J. Mittag, and H. Hartenstein. GPU-Based Architec-
tures and heir Beneût for Accurate and Eõcient Wireless Network
Simulations. In Proceedings of the International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems,
pages 421–424. IEEE, 2011.

[And11] P. Andelûnger. Analysis and Evaluation of the Potential of GPGPUs on
Network Simulator Runtime Optimization. Diplomahesis, Karlsruhe
Institute of Technology, 2011.

[APS10] B. G. Aaby, K. S. Perumalla, and S. K. Seal. Eõcient Simulation of Agent-
Based Models on Multi-GPU andMulti-Core Clusters. In Proceedings of
the International Conference on Simulation Tools and Techniques, pages
29:1–29:10. ICST, 2010.

[BB93] G. Bottoni and R. Barzaghi. Fast Collocation. Bulletin Géodésique,
67(2):119–126, 1993.

[BCB+13] V. Bertacco, D. Chatterjee, N. Bombieri, F. Fummi, S. Vinco, A. M.
Kaushik, and H. D. Patel. On he Use of GP-GPUs for Accelerating
Compute-Intensive EDA Applications. In Proceedings of the Confer-
ence on Design, Automation and Test in Europe, pages 1357–1366. EDA
Consortium, 2013.

[BF00] A. Boukerche and A. Fabbri. Partitioning Parallel Simulation ofWireless
Networks. In Proceedings of the Winter Simulation Conference, pages
1449–1457. IEEE Computer Society, 2000.

[BGL98] J.-P. Briot, R. Guerraoui, and K.-P. Lohr. Concurrency and Distribution
in Object-Oriented Programming. ACM Computing Surveys, 30(3):291–
329, 1998.

[BJ85] O. Berry and D. Jeòerson. Critical Path Analysis of Distributed Simula-
tion. In Proceedings of the SCSMulticonference on Distributed Simulation,
1985.

[BKR07] S. Becker, H. Koziolek, and R. Reussner. Model-Based Performance
Prediction with the Palladio Component Model. In Proceedings of the
InternationalWorkshop on So�ware and Performance, pages 54–65. ACM,
2007.

[BM02] R. Buyya andM.Murshed. Gridsim: A Toolkit for theModeling and Sim-
ulation of Distributed Resource Management and Scheduling for Grid
Computing. Concurrency and Computation: Practice and Experience,
14(13-15):1175–1220, 2002.

140

BIBLIOGRAPHY

[BN08] S. Bai and D. M. Nicol. GPU Coprocessing for Wireless Network Sim-
ulation. Technical report, University of Illinois at Urbana-Champaign,
2008.

[Bou01] A. Boukerche. An Adaptive Partitioning Algorithm for Conservative Par-
allel Simulation. In Proceedings of the International Parallel & Distributed
Processing Symposium, page 133, 2001.

[BR13] B. Ben Romdhanne. Large-Scale Network Simulation over Heterogeneous
Computing Architecture. Dissertation, EURECOM, 2013.

[BRA95] L. Barriga, R. Ronngren, and R. Ayani. Benchmarking Parallel Simula-
tion Algorithms. In Proceedings of the IEEE International Conference on
Algorithms and Architectures for Parallel Processing, pages 611–620, 1995.

[BRM12] R. Birke, G. Rodriguez, and C. Minkenberg. Towards Massively Parallel
Simulations of Massively Parallel High-Performance Computing Sys-
tems. In Proceedings of the International ICST Conference on Simulation
Tools and Techniques, pages 291–298, 2012.

[Bry77] R. E. Bryant. Simulation of Packet Communication Architecture Com-
puter Systems. Technical report, Massachusetts Institute of Technology,
1977.

[BS88] W. L. Bain and D. S. Scott. An Algorithm for Time Synchronization
in Distributed Discrete Event Simulation. In Proceedings of the SCS
Multiconference on Distributed Simulation, pages 30–33, 1988.

[BT00] R. Bagrodia and M. Takai. Performance Evaluation of Conservative
Algorithms in Parallel Simulation Languages. IEEE Transactions on
Parallel and Distributed Systems, pages 395–411, 2000.

[CK06] M.-K. Chung and C.-M. Kyung. Improving Lookahead in Parallel Mul-
tiprocessor Simulation Using Dynamic Execution Path Prediction. In
Proceedings of the Workshop on Principles of Advanced and Distributed
Simulation, pages 11–18. IEEE Computer Society, 2006.

[CM79] K. Chandy and J. Misra. Distributed Simulation: A Case Study in Design
and Veriûcation of Distributed Programs. IEEE Transactions on So�ware
Engineering, SE-5(5):440–452, 1979.

[CPF99] C. Carothers, K. Perumalla, andR. Fujimoto. EõcientOptimistic Parallel
SimulationsUsingReverseComputation.ACMTransactions onModeling
and Computer Simulation, pages 224–253, 1999.

[CS89] B. Cota and R. Sargent. Automatic Lookahead Computation for Conser-
vative Distributed Simulation. Technical Report, 1989.

141

BIBLIOGRAPHY

[DLTM08] T. T. A. Dinh, M. Lees, G. heodoropoulos, and R. Minson. Large Scale
Distributed Simulation of P2P Networks. In Euromicro Conference on
Parallel, Distributed and Network-Based Processing, pages 499–507, 2008.

[DMVB13] S. De Munck, K. Vanmechelen, and J. Broeckhove. Revisiting Con-
servative Time Synchronization Protocols in Parallel and Distributed
Simulation. Concurrency and Computation: Practice and Experience,
26(2):468–490, 2013.

[DTM08] T. T. A. Dinh, G. heodoropoulos, and R. Minson. Evaluating Large
Scale Distributed Simulation of P2P Networks. In International Sympo-
sium on Distributed Simulation and Real-Time Applications, pages 51–58.
IEEE/ACM, 2008.

[DYB10] Z. Du, Z. Yin, and D. Bader. A Tile-Based Parallel Viterbi Algorithm for
Biological Sequence Alignment on GPU with CUDA. In International
Symposium on Parallel Distributed Processing, Workshops and Phd Forum,
pages 1–8, 2010.

[EHU+06] R. Ewald, J. Himmelspach, A. Uhrmacher, D. Chen, and G. heodor-
opoulos. A Simulation Approach to Facilitate Parallel and Distributed
Discrete-Event Simulator Development. In International Symposium on
Distributed Simulation and Real-Time Applications, pages 209–218. IEEE,
2006.

[EMP97] G. Ewing, D. McNickle, and K. Pawlikowski. Multiple Replications in
Parallel: Distributed Generation of Data for Speeding Up Quantitative
Stochastic Simulation. In Proceedings of the Congress of International
Association forMathematics and Computers in Simulation, pages 397–402,
1997.

[Ewa06] R. Ewald. Simulation of Load Balancing Algorithms for Discrete Event
Simulations. Diplomahesis, University of Rostock, 2006.

[Ewa11] R. Ewald. Automatic Algorithm Selection for Complex Simulation Prob-
lems. Dissertation, University of Rostock, 2011.

[FGF00] N. Fröhlich, V. Glöckel, and J. Fleischmann. A New Partitioning Method
for Parallel Simulation of VLSI Circuits on Transistor Level. In Proceed-
ings of the Conference on Design, Automation and Test in Europe, pages
679–685. ACM, 2000.

[Fuj87] R. M. Fujimoto. Performance Measurements of Distributed Simulation
Strategies. Technical report, DTIC Document, 1987.

[Fuj88] R. M. Fujimoto. Lookahead in Parallel Discrete Event Simulation. Pro-
ceedings of the 1988 International Conference on Parallel Processing, Vol.
3, pages 34–41, 1988.

142

BIBLIOGRAPHY

[Fuj00] R. M. Fujimoto. Parallel and Distributed Simulation Systems. Wiley New
York, 2000.

[Fuj01] R. M. Fujimoto. Parallel Simulation: Parallel and Distributed Simulation
Systems. In Proceedings of the 33nd Winter Simulation Conference, pages
147–157. IEEE Computer Society, 2001.

[GID10] D. Gianni, G. Iazeolla, andA. D’Ambrogio. AMethodology to Predict the
Performance of Distributed Simulations. In Proceedings of the Workshop
on Principles of Advanced and Distributed Simulation, pages 31–39. IEEE,
2010.

[HAP12] X. He, D. Agarwal, and S. K. Prasad. Design and Implementation of a
Parallel Priority Queue on Many-Core Architectures. In International
Conference on High Performance Computing, pages 1–10. IEEE, 2012.

[Har01] T. L. Harris. A Pragmatic Implementation of Non-Blocking Linked-Lists.
In Proceedings of the International Conference on Distributed Computing,
pages 300–314. Springer, 2001.

[HHSS08] C. Harris, K. Haines, and L. Staveley-Smith. GPU Accelerated Radio
Astronomy Signal Convolution. Experimental Astronomy, 22(1-2):129–
141, 2008.

[HLJ+13] D. M. Hughes, I. S. Lim, M. W. Jones, A. Knoll, and B. Spencer. InK-
Compact: In-Kernel Stream Compaction and Its Application to Multi-
Kernel Data Visualization on General-Purpose GPUs. Computer Graph-
ics Forum, 32(6):178–188, 2013.

[HMS+09] S. D. Hammond, G. R. Mudalige, J. A. Smith, S. A. Jarvis, J. A. Herdman,
and A. Vadgama. WARPP: a Toolkit for Simulating High-Performance
Parallel Scientiûc Codes. In Proceedings of the International Conference
on Simulation Tools and Techniques, pages 19:1–19:10, 2009.

[JAH11] K. Jünemann, P. Andelûnger, and H. Hartenstein. Towards a Basic DHT
Service: Analyzing Network Characteristics of a Widely Deployed DHT.
In Proceedings of the International Conference on Computer Communica-
tions and Networks, pages 1–7, 2011.

[JB96] V. Jha and R. Bagrodia. A Performance Evaluation Methodology for
Parallel Simulation Protocols. ACMSIGSIM Simulation Digest, 26(1):180–
185, 1996.

[Jef85] D. R. Jeòerson. Virtual Time. ACM Transactions on Programming
Languages and Systems, 7(3):404–425, 1985.

[JLL+10] X. Jia, Y. Lou, R. Li, W. Y. Song, and S. B. Jiang. GPU-Based Fast Cone
Beam CT Reconstruction from Undersampled and Noisy Projection
Data via Total Variation. Medical Physics, 37(4):1757–1760, 2010.

143

BIBLIOGRAPHY

[JTKG01] Z. Juhasz, S. Turner, K. Kuntner, and M. Gerzson. A Performance
Analyser and Prediction Tool for Parallel Discrete Event Simulation. In
UKSIM: Conference on Computer Simulation, pages 148–155, 2001.

[JTL+13] J. Jin, S. J. Turner, B.-S. Lee, J. Zhong, and B. He. Simulation of Infor-
mation Propagation Over Complex Networks: Performance Studies on
Multi-GPU. In International Symposium on Distributed Simulation and
Real Time Applications, pages 179–188. IEEE, 2013.

[Jün15] K. Jünemann. Conûdential Data-Outsourcing and Self-Optimizing P2P-
Networks: Coping with the Challenges of Multi-Party Systems. Disserta-
tion, Karlsruhe Institute of Technology, 2015.

[KHW95] K. L. Kapp, T. C. Hartrum, and T. S. Wailes. An Improved Cost Func-
tion for Static Partitioning of Parallel Circuit Simulations Using a Con-
servative Synchronization Protocol. ACM SIGSIM Simulation Digest,
25(1):78–85, 1995.

[KSGW12] G. Kunz, D. Schemmel, J. Gross, and K. Wehrle. Multi-Level Parallelism
for Time- and Cost-Eõcient Parallel Discrete Event Simulation onGPUs.
In Proceedings of theWorkshop on Principles of Advanced and Distributed
Simulation, pages 23–32. IEEE Computer Society, 2012.

[KY91] P. Konas and P.-C. Yew. Parallel Discrete Event Simulation on Shared-
Memory Multiprocessors. In Proceedings of the Simulation Symposium,
pages 134–148, 1991.

[KY95] P. Konas and P.-C. Yew. Partitioning for Synchronous Parallel Simulation.
ACM SIGSIM Simulation Digest, 25(1):181–184, 1995.

[Law14] A.M. Law. SimulationModeling and Analysis. McGraw-Hill, û�h edition,
2014.

[LB10] J.-Y. Le Boudec. Performance Evaluation of Computer and Communica-
tion Systems. EPFL Press, 2010.

[LCSH07] R. LaFortune, C. D. Carothers, W. D. Smith, and M. Hartman. An
Abstract Internet Topology Model for Simulating Peer-to-Peer Content
Distribution. In Proceedings of the International Workshop on Principles
of Advanced and Distributed Simulation, pages 152–162. IEEE Computer
Society, 2007.

[LCT13] X. Li, W. Cai, and S. J. Turner. GPU Acceleratedhree-Stage Execution
Model for Event-Parallel Simulation. In Proceedings of the Conference
on Principles of Advanced Discrete Simulation, pages 57–66. ACM, 2013.

[Leo06] P. Leopardi. A Partition of the Unit Sphere into Regions of Equal Area
and Small Diameter. Electronic Transactions on Numerical Analysis,
25(12):309–327, 2006.

144

BIBLIOGRAPHY

[LF00] M. L. Loper and R. M. Fujimoto. Pre-Sampling as an Approach for
Exploiting Temporal Uncertainty. In Proceedings of the Workshop on Par-
allel and Distributed Simulation, pages 157–164. IEEE Computer Society,
2000.

[LH07] D. Luebke and G. Humphreys. How GPUs Work. IEEE Computer,
40(2):96–100, 2007.

[Liv85] M. Livny. A Study of Parallelism in Distributed Simulation. In Proceed-
ings of the SCS Multiconference on Distributed Simulation, pages 94–98,
1985.

[LL90] Y.-B. Lin and E. Lazowska. Exploiting Lookahead in Parallel Simulation.
IEEE Transactions on Parallel and Distributed Systems, 1(4):457–469,
1990.

[LLH09] J. Liu, Y. Li, and Y. He. A Large-Scale Real-Time Network Simulation
Study Using PRIME. In Proceedings of the Winter Simulation Conference,
pages 797–806. IEEE Press, 2009.

[LN02] J. Liu and D. M. Nicol. Lookahead Revisited in Wireless Network Sim-
ulations. In Proceedings of the Workshop on Parallel and Distributed
Simulation, pages 79–88. IEEE Computer Society, 2002.

[LN08] A. Loewenstern and A. Norberg. BitTorrent Enhancement Proposal
5: DHT Protocol. http://www.bittorrent.org/beps/bep_
0005.html, 2008.

[LNPP99] J. Liu, D. Nicol, B. Premore, and A. Poplawski. Performance Prediction
of a Parallel Simulator. In Proceedings of the Workshop on Parallel and
Distributed Simulation, pages 156–164. IEEE, 1999.

[LPGZ05] S. Lin, A. Pan, R. Guo, and Z. Zhang. Simulating Large-Scale P2P
Systems with theWiDS Toolkit. In International Symposium onModeling,
Analysis, and Simulation of Computer and Telecommunication Systems,
2005., pages 415–424. IEEE, 2005.

[Mar72] G. Marsaglia. Choosing a Point from the Surface of a Sphere. heAnnals
of Mathematical Statistics, 43(2):645–646, 1972.

[MB98] R. Meyer and R. Bagrodia. Improving Lookahead in Parallel Wireless
Network Simulation. In Proceedings of the International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication
Systems, pages 262–267, 1998.

[MB99] R. A. Meyer and R. L. Bagrodia. Path Lookahead: a Data Flow View of
PDESModels. In Proceedings of theWorkshop on Parallel and Distributed
Simulation, pages 12–19. IEEE, 1999.

145

BIBLIOGRAPHY

[Mit12] J. Mittag. Characterization, Avoidance and Repair of Packet Collisions in
Inter-Vehicle Communication Networks. Dissertation, Karlsruhe Institute
of Technology, 2012.

[MM02] P.Maymounkov andD.Mazieres. Kademlia: A Peer-to-Peer Information
System Based on the XOR Metric. Peer-to-Peer Systems, pages 53–65,
2002.

[MPHS11] J. Mittag, S. Papanastasiou, H. Hartenstein, and E. G. Strom. Enabling
Accurate Cross-Layer PHY/MAC/NET Simulation Studies of Vehicular
Communication Networks. Proceedings of the IEEE, 99(7):1311–1326,
2011.

[MS81] W. M. McCormack and R. G. Sargent. Analysis of Future Event Set
Algorithms for Discrete Event Simulation. Communications of the ACM,
24(12):801–812, 1981.

[Nic93] D. M. Nicol. he Cost of Conservative Synchronization in Parallel
Discrete Event Simulations. Journal of the ACM, 40(2):304–333, 1993.

[Nic96] D. M. Nicol. Principles of Conservative Parallel Simulation. In Proceed-
ings of the Winter Simulation Conference, pages 128–135. IEEE Computer
Society, 1996.

[NKPS12] M. Nanjundappa, A. Kaushik, H. D. Patel, and S. K. Shukla. Accelerating
SystemC Simulations Using GPUs. In International High Level Design
Validation and Test Workshop, pages 132–139. IEEE, 2012.

[NL93] B. Nandy andW.M. Loucks. On a Parallel Partitioning Technique forUse
with Conservative Parallel Simulation. In Proceedings of the Workshop
on Parallel and Distributed Simulation, pages 43–51. ACM, 1993.

[NMI89] D. Nicol, C. Micheal, and P. Inouye. Eõcient Aggregation Of Multiple
LPs In Distributed Memory Parallel Simulations. In Proceedings of the
Winter Simulation Conference, pages 680–685. IEEE Computer Society,
1989.

[NS88] D. Nicol and J. Saltz. Dynamic Remapping of Parallel Computations
with Varying Resource Demands. IEEE Transactions on Computers,
37(9):1073–1087, 1988.

[PA08] K. S. Perumalla and B. G. Aaby. Data Parallel Execution Challenges
and Runtime Performance of Agent Simulations on GPUs. In Proceed-
ings of the Spring Simulation Multiconference, pages 116–123. Society for
Computer Simulation International, 2008.

[Pao10] G. Paoloni. How to Benchmark Code Execution Times on Intel® IA-32
and IA-64 Instruction Set Architectures. Technical report, Intel Corpo-
ration, 2010.

146

BIBLIOGRAPHY

[PAYS09] K. S. Perumalla, B. G. Aaby, S. B. Yoginath, and S. K. Seal. GPU-Based
Real-Time Execution of Vehicular Mobility Models in Large-Scale Road
Network Scenarios. In Proceedings of the Workshop on Principles of
Advanced and Distributed Simulation, pages 95–103. IEEE Computer
Society, 2009.

[Per06] K. S. Perumalla. Discrete-Event Execution Alternatives on General
Purpose Graphical Processing Units (GPGPUs). In Proceedings of the
Workshop on Principles of Advanced and Distributed Simulation, pages
74–81. IEEE Computer Society, 2006.

[Per08] K. S. Perumalla. Eõcient Execution on GPUs of Field-Based Vehicu-
lar Mobility Models. In Proceedings of the Workshop on Principles of
Advanced and Distributed Simulation, pages 154–154. IEEE, 2008.

[Per13] K. S. Perumalla. Introduction to Reversible Computing. CRC Press, 2013.

[PF08] H. Park and P. A. Fishwick. A Fast Hybrid Time-Synchronous/Event
Approach to Parallel Discrete Event Simulation of Queuing Networks.
In Proceedings of the Winter Simulation Conference, pages 795–803. IEEE
Computer Society, 2008.

[PF10] H. Park and P. A. Fishwick. A GPU-Based Application Framework
Supporting Fast Discrete-Event Simulation. Simulation, 86(10):613–628,
2010.

[PF11] H. Park and P. A. Fishwick. An Analysis of Queuing Network Simula-
tion Using GPU-Based Hardware Acceleration. ACM Transactions on
Modeling and Computer Simulation, 21(3):18, 2011.

[PF13] R. S. Pienta and R. M. Fujimoto. On the Parallel Simulation of Scale-Free
Networks. In Proceedings of the Conference on Principles of Advanced
Discrete Simulation, pages 179–188. ACM, 2013.

[PFP04] A. Park, R. M. Fujimoto, and K. S. Perumalla. Conservative Synchroniza-
tion of Large-Scale Network Simulations. In Proceedings of theWorkshop
on Parallel and Distributed Simulation, pages 153–161. IEEE, 2004.

[PFT+05] K. Perumalla, R. Fujimoto, P. hakare, S. Pande, H. Karimabadi,
Y. Omelchenko, and J. Driscoll. Performance Prediction of Large-Scale
Parallel Discrete Event Models of Physical Systems. In Proceedings of the
Winter Simulation Conference, pages 356–364. IEEE, 2005.

[PL90] B. R. Preiss and W. M. Loucks. he Impact of Lookahead on the Per-
formance of Conservative Distributed Simulation. In Proceedings of
the European Multiconference–Simulation Methodologies, Languages and
Architectures, pages 204–209. Citeseer, 1990.

147

BIBLIOGRAPHY

[PR11] J. Pelkey and G. Riley. Distributed Simulation with MPI in ns-3. In
Proceedings of the Conference on Simulation Tools and Techniques, pages
410–414. ICST, 2011.

[Pro01] J. G. Proakis. Digital Communications. McGraw Hill, New York, 2001.

[PVM09] P. Peschlow, A. Voss, and P. Martini. Good News for Parallel Wireless
Network Simulations. In Proceedings of the International Conference on
Modeling, Analysis and Simulation of Wireless and Mobile Systems, pages
134–142. ACM, 2009.

[QD11] H. Qian and Y. Deng. Accelerating RTL Simulation with GPUs. In
Proceedings of the International Conference on Computer-Aided Design,
pages 687–693. IEEE Press, 2011.

[QRT12] M. Quinson, C. Rosa, and C. hiery. Parallel Simulation of Peer-to-Peer
Systems. In CCGrid 2012 – he IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, pages 668–675, 2012.

[RA97] R. Rönngren and R. Ayani. A Comparative Study of Parallel and Sequen-
tial Priority Queue Algorithms. ACM Transactions on Modeling and
Computer Simulation, 7(2):157–209, 1997.

[RHB+11] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldûeld,
M. Weston, R. Risen, J. Cook, P. Rosenfeld, E. Cooper-Balls, and B. Ja-
cob. he Structural Simulation Toolkit. SIGMETRICS Performance
Evaluation Review, 38(4):37–42, 2011.

[RJD89] P. F. Reynolds, Jr., and P. M. Dickens. SPECTRUM: A Parallel Simulation
Testbed. In Proceedings of the Hypercube Conference, 1989.

[RRM+15] S. Raghav, M. Ruggiero, A. Marongiu, C. Pinto, D. Atienza, and L. Benini.
GPU Acceleration for Simulating Massively Parallel Many-Core Plat-
forms. IEEE Transactions on Parallel and Distributed Systems, 26(5):1336–
1349, 2015.

[RSPM98] R. Reussner, P. Sanders, L. Prechelt, and M. Müller. SKaMPI: A Detailed,
Accurate MPI Benchmark. In Proceedings of the European PVM/MPI
Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and
Message Passing Interface, pages 52–59, 1998.

[SF87] S. M. Swope and R. M. Fujimoto. Optimal Performance of Distributed
Simulation Programs. In Proceedings of theWinter Simulation Conference.
IEEE Press, 1987.

[SG08] R. Szerwinski and T. Güneysu. Exploiting the Power of GPUs for Asym-
metric Cryptography. InCryptographic Hardware and Embedded Systems,
pages 79–99. Springer, 2008.

148

BIBLIOGRAPHY

[SIR14] B. P. Swenson, J. S. Ivey, and G. F. Riley. Performance of Conservative
Synchronization Methods for Complex Interconnected Campus Net-
works in ns-3. In Proceedings of the Winter Simulation Conference, pages
3096–3106. IEEE Press, 2014.

[SK12] M. G. Seok and T. G. Kim. Parallel Discrete Event Simulation for DEVS
Cellular Models Using a GPU. In Proceedings of the Symposium on High
Performance Computing, pages 11:1–11:7. Society for Computer Simulation
International, 2012.

[SLRK13] J. Sang, C.-R. Lee, V. Rego, and C.-T. King. A Fast Implementation
of Parallel Discrete-Event Simulation on GPGPU. In Proceedings of
the International Conference on Parallel and Distributed Processing Tech-
niques and Applications, page 501. he Steering Committee ofheWorld
Congress in Computer Science, Computer Engineering and Applied
Computing, 2013.

[SOHL+98] M. Snir, S. Otto, S. Huss-Lederman, D.Walker, and J. Dongarra. MPI-he
Complete Reference, Volume 1: he MPI Core. MIT Press, Cambridge,
MA, USA, 2nd. (revised) edition, 1998.

[SSGW15] M. Stoòers, T. Sehy, J. Gross, and K. Wehrle. Analyzing Data Depen-
dencies for Increased Parallelism in Discrete Event Simulation. In Pro-
ceedings of the Conference on Principles of Advanced Discrete Simulation,
pages 73–74. ACM, 2015.

[SVS11] L. Savioja, V. Välimäki, and J. O. Smith. Audio Signal Processing Using
Graphics Processing Units. Journal of the Audio Engineering Society,
59(1/2):3–19, 2011.

[Swe15] B. P. Swenson. Techniques to Improve the Performance of Large-Scale
Discrete-Event Simulation. Dissertation, Georgia Institute of Technology,
2015.

[TGEL13] Y. Torres, A. Gonzalez-Escribano, and D. R. Llanos. uBench: Exposing
the Impact of CUDA Block Geometry in Terms of Performance. Journal
of Supercomputing, 65(3):1150–1163, 2013.

[TKDT13] M. Tillmann, T. Karcher, C. Dachsbacher, and W. F. Tichy. Application-
Independent Autotuning for GPUs. In International Conference on
Parallel Computing, pages 626–635, 2013.

[TY13] W. Tang and Y. Yao. A GPU-Based Discrete Event Simulation Kernel.
Simulation, 89(11):1335–1354, 2013.

[VCBF12] S. Vinco, D. Chatterjee, V. Bertacco, and F. Fummi. SAGA: SystemC
Acceleration on GPU Architectures. In Proceedings of the Design Au-
tomation Conference, pages 115–120. ACM, 2012.

149

BIBLIOGRAPHY

[VD75] J. G. Vaucher and P. Duval. A Comparison of Simulation Event List
Algorithms. Communications of the ACM, 18(4):223–230, 1975.

[Vit67] A. Viterbi. Error Bounds for Convolutional Codes and an Asymptoti-
cally Optimum Decoding Algorithm. IEEE Transactions on Information
heory, 13(2):260–269, 1967.

[WDYR13] J. Wang, Z. Dong, S. Yalamanchili, and G. Riley. Optimizing Parallel
Simulation of Multicore Systems Using Domain-Speciûc Knowledge. In
Proceedings of the Conference on Principles of Advanced Discrete Simula-
tion, pages 127–136. ACM, 2013.

[WHL95] Y.-C. Wong, S.-Y. Hwang, and J. Y.-B. Lin. A Parallelism Analyzer
for Conservative Parallel Simulation. Transactions on Parallel and Dis-
tributed Systems, 6(6):628–638, 1995.

[WYF13] T. Wenjie, Y. Yiping, and Z. Feng. An Expansion-Aided Synchronous
Conservative Time Management Algorithm on GPU. In Proceedings
of the Conference on Principles of Advanced Discrete Simulation, pages
367–372. ACM, 2013.

[XB07] Z. Xu and R. Bagrodia. GPU-Accelerated Evaluation Platform for High
Fidelity NetworkModeling. In Proceedings of the InternationalWorkshop
on Principles of Advanced and Distributed Simulation, pages 131–140.
IEEE Computer Society, 2007.

[XF10] S. Xiao and W.-c. Feng. Inter-Block GPU Communication via Fast
Barrier Synchronization. In International Symposium on Parallel and
Distributed Processing, pages 1–12. IEEE, 2010.

[YM89] C.-Q. Yang and B. P. Miller. Performance Measurement for Parallel and
Distributed Programs: a Structured and Automatic Approach. IEEE
Transactions on So�ware Engineering, 15(12):1615–1629, 1989.

[ZGGB14] L. Zhen, Q. Gang, G. Gang, and C. Bin. A GPU-Based Simulation
Kernel withinHeterogeneousCollaborativeComputation on Large-Scale
Artiûcial Society. International Journal of Modeling and Optimization,
4(3):205, 2014.

[ZKK04] G. Zheng, G. Kakulapati, and L. Kale. BigSim: a Parallel Simulator
for Performance Prediction of Extremely Large Parallel Machines. In
Proceedings of the International Parallel and Distributed Processing Sym-
posium, pages 78–87, 2004.

[ZKP00] B. P. Zeigler, T. G. Kim, and H. Praehofer. heory of Modeling and
Simulation. Academic Press, Inc., 2nd edition, 2000.

150

BIBLIOGRAPHY

[ZLC+13] P. Zou, Y.-s. Lü, L.-l. Chen, Y.-p. Yao, et al. Epidemic Simulation of
Large-Scale Social Contact Network on GPU Clusters. Simulation, 2013.

[ZP01] B. Zarei and M. Pidd. Performance Analysis of Automatic Lookahead
Generation by Control Flow Graph: Some Experiments. Simulation
Practice andheory, 8(8):511–527, 2001.

[ZWD11] Y. Zhu, B. Wang, and Y. Deng. Massively Parallel Logic Simulation with
GPUs. ACM Transactions on Design Automation of Electronic Systems,
16(3):29, 2011.

151

