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Abstract 

Abstract 

In the late 1990s, metal-organic frameworks (MOFs) emerged as an interesting new class of 

materials. Due to their remarkable chemical and physical properties the research interest 

rapidly increased focusing on the development of new structures and improved synthetic 

methods as well as potential applications. Due to the highly versatile design, the defined metal 

sites and the high porosity, metal-organic frameworks are an interesting class of materials for 

a multitude of different uses, e.g. catalytic applications in fine chemistry. In addition, 

MOF-based catalysts should combine the beneficial characteristics of both homogeneous and 

heterogeneous catalysts. The frameworks contain a high concentration of well-defined 

single-sites, which should result in high catalytic activity, while at the same time easy 

separation and reuse should be feasible for the solid MOF materials. 

In the present thesis, novel  concepts for the synthesis and modification of metal-organic 

frameworks were developed to obtain innovative heterogeneous catalysts. To achieve this 

aim, two different approaches were realized utilizing free functional groups at the organic 

linker molecules as well as unsaturated framework metal centers. 

In the first approach, defined Pd2+ complexes were immobilized on free amine groups at the 

linker molecules of MIL-53-NH2(Al), which is constructed from Al3+ ions connected by 

2-aminobenzene-1,4-dicarboxylate linkers, via a two-step post-synthetic modification (PSM) 

reaction (Chapter 2). A novel synthetic strategy at ambient pressure was applied for the 

preparation of the framework resulting in a phase-pure material without any additional 

purification steps, which are typically required for the solvothermally synthesized material. 

This preparation route also facilitates an easy scale-up, which is relevant for potential 

applications where large amounts of the material are needed. The framework is chemically 

and thermally stable and, therefore, its structure was retained throughout the two-step 

modification process. The immobilization of defined Pd2+ complexes and the absence of 

additional undesired palladium nanoparticles and clusters were corroborated by X-ray 

absorption spectroscopy. The resulting material MIL-53-NH2(Al)-Mal-Pd was highly active 

in Heck-type C-C coupling reactions of bromo- or chlorobenzene with styrene (TON = 8240 

and 1740, respectively) and hot filtration tests confirmed contributions of a truly 

heterogeneous pathway. In contrast, a “quasi-homogeneous” reaction pathway of dissolved 

palladium species is widely accepted in literature for conventional heterogeneous catalysts. 

This led to the conclusion that via the immobilization of defined complexes in a MOF, 

alternative reaction pathways may be accessible and the leaching of active species might be 
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Abstract 

reduced. However, blocking of the pores was observed throughout the modification process, 

which indicated that the active complexes were mainly incorporated on the surface of the 

framework.  

To guarantee a homogeneous distribution of the complexes in the porous structure, 

mixed-linker metal-organic frameworks (MIXMOFs) MIL-53-NH2(x) (x = 40, 60, 80; 

percentage of amine linker) were synthesized and modified under comparable reaction 

conditions (Chapter 3). Although the modification degree of the amine groups (1H NMR) and 

the palladium content (AAS) were higher for the MIXMOFs, the immobilized complexes 

were well distributed in the material resulting in high specific surface areas even after 

modification. The modified frameworks were again tested in Heck-type C-C coupling 

reactions and the results were compared to the previous study. Since all catalysts achieved 

comparable conversion, the Pd2+ complexes inside the pores were obviously accessible and 

active. A higher selectivity could be achieved in the coupling of chlorobenzene and styrene 

with the modified mixed-linker frameworks compared to pure MIL-53-NH2(Al)-Mal-Pd. The 

catalytic results and the increased porosity of the mixed-linker frameworks prove the 

advantages of combining the MIXMOF and the PSM concepts. 

To broaden the scope of possible substrates for modification reactions and ultimately also 

catalysis, functionalized single- and mixed-linker frameworks based on  DUT-5 with larger  

pore dimensions were prepared at ambient pressure (Chapter 4). DUT-5 is isoreticular to 

MIL-53-NH2(Al) and is built from Al3+ ions interconnected by biphenyl-4,4’-dicarboxylate 

linkers. Linker molecules bearing an additional amine, alkyne, nitro or azide group were 

synthesized by the Bräse group (Institute of Organic Chemistry, KIT). The introduction of 

defined ratios of functionalized and unfunctionalized linker molecules could be proven by 

thermogravimetric analysis coupled with FT-IR or by 1H NMR spectroscopy. The thermal 

stability and specific surface area could be tuned depending on the number of functional 

groups in the resulting framework, again illustrating the benefits of the MIXMOF concept. 

MIXDUT-5-amine(50) was applied in a number of post-synthetic modification reactions and 

the resulting frameworks proved to be highly porous even after the modification, hence, 

confirming the advantages of applying metal-organic frameworks with larger pore dimensions 

for PSM. In future studies the functionalized metal-organic frameworks based on DUT-5 

could be utilized for the immobilization of larger and more sophisticated complexes and, 

additionally, they might also be interesting materials for size- and shape-selective catalysis. 

Due to the modular design of the framework-based catalysts obtained by post-synthetic 

modification, the catalysts can be tailored for a specific catalytic transformation. 
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Abstract 

In another approach, a synthetic protocol for the direct preparation of a bimetallic framework 

based on HKUST-1 was developed (Chapter 5). HKUST-1, also known as Cu-BTC, is 

constructed from dimeric Cu2+ units, which are connected by benzene-1,3,5-tricarboxylate 

linkers. Cu2+ was partially replaced by Ru3+ in the framework synthesis, which was again 

performed at ambient pressure via a non-solvothermal strategy. The resulting MOF with the 

chemical formula Cu2.75Ru0.25(BTC)2*xH2O was isoreticular to HKUST-1. X-ray absorption 

spectroscopy confirmed the successful incorporation of Ru3+ into the paddlewheel structure of 

HKUST-1 and, furthermore, could also be utilized to exclude the undesired formation of 

additional phases (e.g. clusters or nanoparticles). In future studies, Cu-Ru-BTC might be  

applied as bimetallic catalyst featuring accessible unsaturated Cu2+ and Ru3+ sites. 

The MOF-based systems presented in this thesis clearly illustrate the potential of 

metal-organic frameworks for the design of highly versatile heterogeneous single-site catalyst 

systems. The high activity, selectivity and the reduced leaching of the palladium-containing 

frameworks based on MIL-53 in Heck-type C-C coupling reactions nicely demonstrate the 

advantages of the novel catalyst systems compared to conventional materials. Therefore, 

attractive results can also be expected in future studies employing immobilized transition 

metal complexes in DUT-5 and the bimetallic framework Cu-Ru-BTC. 
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Kurzfassung 

Kurzfassung 

Metallorganische Gerüstverbindungen (metal-organic frameworks, MOFs) sind seit Ende der 

90er Jahre als interessante neue Materialklasse bekannt und zogen aufgrund ihrer 

bemerkenswerten chemischen und physikalischen Eigenschaften schnell das Forschungs-

interesse auf sich. Der Fokus lag dabei auf der Entwicklung neuer Strukturen und verbesserter 

Synthesestrategien sowie auf möglichen Anwendungsbereichen. Die hohe Variabilität im 

Aufbau, die definierte chemische Umgebung der Metallzentren und hohe spezifische 

Oberflächen machen metallorganische Gerüstverbindungen zu interessanten Materialien für 

diverse Einsatzgebiete, z.B. für katalytische Anwendungen, insbesondere in der Herstellung 

von Feinchemikalien. Zusätzlich vereinen MOF-basierte Katalysatoren vorteilhafte 

Eigenschaften heterogener (einfache Abtrennung und Wiederverwendbarkeit) und homogener 

(definierte Zentren und hohe Aktivität) Katalysatorsysteme. 

In der vorliegenden Arbeit wurden neuartige Konzepte für die Synthese und Modifizierung 

metallorganischer Gerüstverbindungen entwickelt, um innovative Heterogenkatalysatoren zu 

erhalten. Um dieses Ziel zu erreichen, wurden zwei unterschiedliche Herangehensweisen 

realisiert. Zum einen wurden freie funktionelle Gruppen der organischen Linkermoleküle 

genutzt und zum anderen Gerüstverbindungen mit ungesättigten Metallzentren eingesetzt. 

Im ersten Fall wurden definierte Pd2+-Komplexe an den freien Amingruppen der 

Linkermoleküle in MIL-53-NH2(Al) immobilisiert, wobei eine zweistufige postsynthetische 

Modifizierungsreaktion (PSM) angewandt wurde (Kapitel 2). MIL-53-NH2(Al) ist aus  

oktaedrisch koordinierten Al3+-Ionen aufgebaut, die über 2-Aminobenzol-1,4-dicarboxylate 

verbunden sind. Zur Herstellung der Gerüstverbindung wurde zunächst eine neue 

Synthesestrategie unter Normaldruck entwickelt. Dabei entstand eine phasenreine 

Verbindung, die im Gegensatz zu dem Material, das in der Literatur über die solvothermale 

Synthese hergestellt wurde, keiner weiteren Aufarbeitung bedurfte. Diese Syntheseroute 

ermöglicht außerdem die Vergrößerung des Ansatzes, was im Hinblick auf potentielle 

Anwendungen von Bedeutung ist, für die größere Mengen der Verbindung benötigt werden. 

MIL-53-NH2(Al) ist chemisch und thermisch sehr stabil, weshalb die Struktur im Verlauf der 

zweistufigen Modifizierungsreaktion erhalten blieb. Mittels Röntgenabsorptions-

spektroskopie konnte die Immobilisierung definierter Pd2+-Komplexe bewiesen und 

gleichzeitig die Bildung unerwünschter Palladium Nanopartikel ausgeschlossen werden. Der 

erhaltene Katalysator MIL-53-NH2(Al)-Mal-Pd war in der Heck-Reaktion von Brom- oder 

Chlorbenzol mit Styrol sehr aktiv (TON = 8240 bzw. 1740) und Filtrationstests bestätigten die 
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Kurzfassung 

tatsächliche Beteiligung eines heterogenen Reaktionspfades. Im Gegensatz dazu ist in der 

Literatur für konventionelle heterogene Katalysatoren ein „quasi-homogener“ Mechanismus 

belegt, nach dem die Reaktion ausschließlich von gelösten Palladiumkomplexen katalysiert 

wird. Folglich werden durch die Immobilisierung definierter Metallkomplexe im MOF 

alternative Reaktionsverläufe ermöglicht und zudem das Auswaschen aktiver Spezies deutlich 

reduziert. Allerdings wurde während der Modifizierung ein enormer Rückgang der 

spezifischen Oberfläche und des zugänglichen Porenvolumens beobachtet, was darauf 

hindeutet, dass die Modifizierung hauptsächlich an der Oberfläche der Gerüstverbindung 

stattfand, und dadurch die Poreneingänge blockiert wurden. 

Um die homogene Verteilung der Komplexe im gesamten Material zu garantieren, wurden 

metallorganische Gerüstverbindungen mit gemischten Linkermolekülen (mixed-linker 

metal-organic frameworks, MIXMOFs) MIL-53-NH2(x) (x = 40, 60, 80, prozentualer Anteil 

des Aminlinkers) unter vergleichbaren Bedingungen synthetisiert und modifiziert (Kapitel 3). 

Obwohl 1H-NMR- und Atomabsorptionsspektroskopie der MIXMOFs einen höheren 

Modifizierungsgrad der Amingruppen und einen höheren Palladiumgehalt ergaben, konnten 

eine homogene Verteilung der Komplexe im Material und eine hohe spezifische Oberfläche, 

auch nach der Modifizierung, bestätigt werden. Die modifizierten Gerüstverbindungen 

wurden erneut in Heck-Reaktionen auf ihre katalytische Aktivität untersucht, um die 

Ergebnisse mit denen der vorangegangenen Studie zu vergleichen. Da mit allen Katalysatoren 

vergleichbare Umsätze erreicht wurden, waren folglich auch die im Innern der Poren 

immobilisierten Komplexe erreichbar und aktiv. In der Kupplungsreaktion von Chlorbenzol 

und Styrol konnte mit den modifizierten MIXMOFs eine bessere Selektivität erzielt werden 

als mit MIL-53-NH2(Al)-Mal-Pd. Die Ergebnisse der katalytischen Untersuchungen und die 

deutlich höhere Porosität der Gerüstverbindungen mit gemischten Linkermolekülen belegen 

eindeutig die Vorteile, die aus der Kombination des MIXMOF- und des PSM-Konzepts  

resultieren. 

Um eine größere Vielfalt möglicher Substrate für Modifizierungsreaktionen und letztendlich 

auch katalytische Umsetzungen zu realisieren, wurden MOFs mit einem oder mehreren 

Linkermolekülen basierend auf DUT-5 mit größerem Porendurchmesser unter Normaldruck 

synthetisiert (Kapitel 4). DUT-5 ist isoretikulär zu MIL-53-NH2(Al) und aus Al3+-Ionen 

aufgebaut, die über Biphenyl-4,4‘-dicarboxylate verknüpft sind. Die Linkermoleküle mit einer 

zusätzlichen Amin-, Alkin-, Nitro- oder Azidgruppe wurden in der Gruppe von Prof. Bräse 

(Institut für Organische Chemie, KIT) hergestellt. Die Einbindung definierter 

Linkerverhältnisse in die MOFs wurde über Thermogravimetrie gekoppelt mit 
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Kurzfassung 

FT-IR-Spektroskopie oder mittels 1H-NMR-Spektroskopie nachgewiesen. Die thermische 

Stabilität der Materialien sowie ihre spezifische Oberfläche konnten über den Einbau 

verschiedener Linkerverhältnisse gezielt variiert werden, was erneut die Vorteile des 

MIXMOF-Konzepts aufzeigt. MIXDUT-5-amine(50) wurde für eine Reihe postsynthetischer 

Modifizierungen verwendet. Die Materialien waren auch nach der Modifizierung noch hoch 

porös, was deutlich den Vorteil von Gerüstverbindungen mit großen Poren in 

Modifizierungsreaktionen darlegt. In weiterführenden Studien könnten die neuartigen 

Materialien basierend auf DUT-5 für die Immobilisierung sterisch anspruchsvoller und 

komplexer Substrate herangezogen werden. Außerdem könnten diese Gerüstverbindungen für 

größen- und formselektive katalytische Anwendungen interessant sein. Aufgrund der 

modularen Bauweise der postsynthetisch modifizierten MOFs können die Katalysatoren 

gezielt an die speziellen Anforderungen der jeweiligen katalytischen Reaktion angepasst 

werden. 

Im zweiten Fall wurde eine Syntheseroute entwickelt, die den direkten Einbau zweier 

unterschiedlicher Metallzentren in eine metallorganische Gerüstverbindung basierend auf 

HKUST-1 ermöglicht (Kapitel 5). HKUST-1, auch bekannt als Cu-BTC, ist aus dimeren  

Cu2+-Einheiten aufgebaut, die über Benzol-1,3,5-tricarboxylate verknüpft sind. Das Cu2+-Salz 

wurde in der Synthese, die ebenfalls unter Normaldruck durchgeführt wurde, partiell durch 

ein Ru3+-Salz ersetzt. Die resultierende Gerüstverbindung Cu-Ru-BTC mit der  

Summenformel Cu2.75Ru0.25(BTC)2*xH2O ist isoretikulär zu HKUST-1. Mittels Röntgen-

absorptionsspektroskopie konnte der erfolgreiche Einbau der Ru3+-Zentren in die 

HKUST-1-Struktur bestätigt und außerdem auch die zusätzliche Bildung unerwünschter 

Phasen (z.B. Cluster oder Nanopartikel) ausgeschlossen werden. In weiterführenden Arbeiten 

könnte Cu-Ru-BTC aufgrund seiner ungesättigten Metallzentren als bimetallischer 

Katalysator verwendet werden. 

Die metallorganischen Gerüstverbindungen, die in dieser Arbeit vorgestellt werden, zeigen 

deutlich das Potential dieser Materialklasse für das Design äußerst vielseitiger 

Katalysatormaterialien. Die hohe Aktivität und Selektivität sowie die Reduzierung des Anteils 

gelöster Metallspezies in Heck-Kupplungen mit den palladiumhaltigen Gerüstverbindungen, 

die auf MIL-53 basieren, zeigen eindrucksvoll die Vorteile der neuartigen gegenüber 

herkömmlichen Katalysatormaterialien auf. Daher können in zukünftigen Studien auch 

vielversprechende Ergebnisse für das metallorganische Netzwerk DUT-5 mit immobilisierten 

Komplexen und die bimetallische Verbindung Cu-Ru-BTC erwartet werden. 
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1. Literature overview

1. Literature overview 

1.1. General introduction 

Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are a relatively 

new class of materials (first reported in the late 1990s), which was pioneered by the groups of 

Férey[1-4], Kitagawa[5-8] and Yaghi[9-12]. MOFs are built of metal ions or clusters connected by 

organic linker molecules with at least two functional groups that can bind to the metal units. 

This architecture results in one-, two- or three-dimensional porous structures, whose topology 

is determined by the coordination sphere at the metal ions or clusters (so-called secondary 

building units, SBUs) and the geometry of the linker molecules. Since a multitude of diverse 

linker molecules (e.g. di- or tricarboxylates, diphosphonates) and different metal ions can be 

employed, the synthesis of metal-organic frameworks resulted in a multitude of different 
6, 11-12] structures.[3, An important concept is the synthesis of isoreticular (also called 

isostructural) metal-organic frameworks, an approach which is highlighted in Chapter 1.2.1. 

The framework structures can be highly porous with specific surface areas that are usually in 

the range of SBET = 1000 m2/g - 2000 m2/g (BET: Brunauer-Emmett-Teller), but can also  

reach significantly higher values e.g.  SLangmuir = 5900 m2/g for MIL-101[13] (Matériaux de 

l‘Institut Lavoisier), SBET = 6240 m2/g for MOF-210[14] and SBET = 7140 m2/g for NU-100[15] 

(Northwestern University). In addition to the high porosity and the thermal and  chemical  

stability of the metal-organic frameworks, also the accessibility of the pores or the relevant 

sites is of great importance for potential applications. There are a number of promising reports 

for applications[16-18] of  MOFs  e.g. in gas adsorption and storage[19-26], gas separation[27-32], 

heterogeneous catalysis (Chapter 1.4 and Chapter 1.5.2), but also for the use as sensors[33-36], 

optical switches[37] or for drug release[38-40]. 

Another focus in the research area of metal-organic frameworks is on the development of 

improved synthetic routes to accomplish the preparation of new structures as well as 

phase-pure materials and to enable an easy scale-up, which is important for possible 

applications where large quantities of the framework are needed. Such novel methods include, 

e.g. high-throughput synthesis[41-43] for fast parameter screening, microwave assisted 

preparation routes[44-45] or the deposition of MOF thin films[46] on surfaces (e.g. SURMOFs[35, 

47]). 
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1. Literature overview

1.2. Structure, properties and applications of important 
metal-organic frameworks 

Although there have been earlier reports of one-dimensional coordination polymers[48-50], 

porous three-dimensional metal-organic framework structures were first reported in the late 

1990s. Figure 1 depicts the number of “MOF” structures (1D, 2D and 3D) reported in the 

Cambridge Structural Database (CSD) each year. The number of different MOF structures is 

extremely high and is doubled approximately every four years. Therefore, only those MOFs 

that are relevant for this thesis are introduced in detail. The structure, properties and possible 

applications of the metal-organic frameworks MIL-53(Al)[51], DUT-5[52] (Dresden University 

of Technology) and HKUST-1[53] (Hong Kong University of Science and Technology, also 

known as Cu-BTC) are highlighted in the following sections (Chapter 1.2.2 to Chapter 1.2.4). 

Figure 1: Number of MOF structures reported in the Cambridge Structural Database (CSD) until 2006; the 
inset shows the natural log of the number of structures as a function of time, indicating the 
doubling time of all structures in the database (red), of the MOF structures (green) and of the 
three-dimensional MOF structures (blue); reproduced from [54] with permission of The Royal 
Society of Chemistry. 

1.2.1. Isoreticular framework synthesis 

Isoreticular materials share the same framework topology, but either the linker molecules or 

the framework metal centers have been substituted. The concept of isoreticular synthesis was 

first developed by the Yaghi group based on MOF-5[10], which is, thus, also called IRMOF-1. 

MOF-5 is built of Zn4O tetrahedra (Scheme 1, blue polyhedra) and all six edges are bridged 
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1. Literature overview

by a benzene-1,4-dicarboxylate (terephthalate, BDC) linker. This coordination results in 

octahedral SBUs, which form a cubic framework with space group Fm3തm (Scheme 1,  

IRMOF-1). MOF-5 has a specific surface area of SLangmuir = 2900 m2/g and is thermally stable 

to at least 300 °C in dry air.[10] The series of isoreticular metal-organic frameworks based on 

MOF-5 is the so-called IRMOF[11, 19-20, 55] series (Scheme 1). The isoreticular materials share 

the same framework topology but are constructed from different linker molecules, therefore, 

leading to functionalized frameworks with additional free organic groups (Scheme 1, 

IRMOF-2 to -7) or structures with a larger pore diameter due to elongated linker molecules 

(Scheme 1, IRMOF-8 to -16).  

Scheme 1: Schematic representation of the IRMOF series based on MOF-5 (IRMOF-1); yellow spheres 
represent the internal void space; IRMOF-2 to -7: functionalized BDC linkers; IRMOF-8 to -16: 
elongated linkers; IRMOF-9, -11, -13, -15: interpenetrated structures; reprinted from [11] with 
permission from Elsevier. 

There are a multitude of other examples for isoreticular frameworks to date based on, e.g. 
56-57] STA-12[59-60]MIL-53[51, , MIL-140[58],  (University of  St Andrews), UMCM-1[61] 

(University of Michigan Crystalline Material), UHM-2[62] (University of Hamburg Material) 

or HKUST-1[53, 63-65], which nicely illustrates the importance of this synthetic concept. 

However, the synthesis of isoreticular frameworks is not always straightforward, since 
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1. Literature overview

additional organic functionalities at the linker molecules could prevent the framework 

formation. This might be due to steric hindrance or coordination of the functional groups to 

the framework metal centers resulting in entirely different structures. A problem that might 

occur when longer linker molecules are applied during synthesis is the interpenetration or 

catenation of the structure. Due to the increased pore entrances a second framework, whose 

metal nodes are positioned in the pores of the first structure, might be  formed (Scheme 1,  

structures 9, 11, 13 and 15). The interpenetration of a structure would reduce the accessible 

pore volume significantly contradicting the intended reason for applying elongated linkers. 

Not only the linker molecules but also the metal nodes can be exchanged to achieve 

isoreticular framework structures. Prominent examples are the structures of MIL-53 

(Chapter 1.2.2) and HKUST-1 (Chapter 1.2.4). 

1.2.2. MIL-53(Al) 

The metal-organic framework MIL-53 (Matériaux de l‘Institut Lavoisier) was first 

synthesized by Serre et al. in 2002 under solvothermal conditions with Cr3+ ions as  metal  

centers and benzene-1,4-dicarboxylate (terephthalate, BDC) as the linker molecules.[2, 66] In  

2004, the synthesis of the aluminium-based analog MIL-53(Al) was achieved by the same 

group.[51] In the structure of MIL-53, the Al3+ ions are octahedrally coordinated by six oxygen 

atoms, four belonging to carboxylate groups and two to OH groups. The octahedra are linked 

by corner sharing -OH groups resulting in infinite Al-OH- chains, which are connected by the 

organic linker molecules to form a three-dimensional framework structure with 

one-dimensional channels (Scheme 2). 

For MIL-53, a so-called “breathing effect” has been observed[2, 4, 51, 67-70], which describes the 

ability of the framework to adapt its pore geometry depending on the guest molecules 

incorporated in the channels. The three main geometries[51] are MIL-53(Al)_as 

(as-synthesized) with free residual acid molecules in the pores, MIL-53(Al)_ht (high 

temperature) without any guest molecules incorporated in the structure and MIL-53(Al)_lt 

(low temperature) with adsorbed water molecules in the channels (Scheme 2). Whereas the  

pores are wide open for MIL-53(Al)_as (7.3 Å x 7.7 Å, space group Pnma[51]) and 

MIL-53(Al)_ht (8.5 Å x 8.5 Å, space group Imma[51]), the strong interaction of the water 

molecules adsorbed in MIL-53(Al)_lt with the linker molecules results in a closed pore 

structure (2.6 Å x 13.6 Å, space group Cc[51]). 
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1. Literature overview

Scheme 2: Structures of the metal-organic framework MIL-53(Al); top left: MIL-53(Al)_as, space group 
Pnma; top right: MIL-53(Al)_ht, space group Imma; bottom right: MIL-53(Al)_lt, space group Cc; 
yellow: Al, grey: C, red: O, purple: free acid molecules, blue: H2O; bottom left: simulated X-ray 
diffraction patterns of MIL-53(Al)_as (black) and MIL-53(Al)_lt (green). 

The topological changes are clearly visible in the X-ray diffraction patterns of the samples 

(Scheme 2, bottom left). To remove the free acid molecules from the as-synthesized sample 

an activation step is necessary. For MIL-53(Al), empty pores were accomplished by heating 

to 275 °C[51], whereas for MIL-53-NH2(Al) (vide infra) an exchange of the acid molecules 

with N,N-dimethylformamide (DMF) and subsequent removal of the solvent at 150 °C[56] had 

to be employed. The structure of MIL-53(Al) is retained up to 500 °C in air, and the 

framework is highly porous with a specific surface area of SBET = 1140 m2/g.[51] 

There are a number of frameworks isoreticular to MIL-53(Al), which bear an additional 

functional group at the linker molecules that can influence the properties of the material or 

that can be used for further modification of the framework. The most prominent example is 

MIL-53-NH2(Al)[56], which is synthesized using 2-aminobenzene-1,4-dicarboxylate 

(aminoterephthalate, ABDC) as linker molecule, but there are also frameworks with 

additional –Cl[57], -Br[57], -CH3
[57], -NO2

[57], –OH[57] or –COOH[71] groups. MIL-53-NH2(Al) is 

thermally slightly less stable than MIL-53(Al), but the observed stability of approximately 
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1. Literature overview

400 °C in air[56] is still very high for a metal-organic framework compound. The specific  

surface area of MIL-53-NH2(Al) is approximately SBET = 1000 m2/g[72] and the micropore 

volume is around 0.45 cm3/g[57, 72]. Moreover, the synthesis of frameworks isoreticular to 

MIL-53 has also been achieved with a number of other metal ions besides Al,  e.g. Sc[73], 

Cr[66], Fe[74] and Ga[75]. 

The high thermal and chemical stability as well as the high porosity and flexibility of the 

frameworks based on MIL-53(Al) resulted in a number of applications in e.g. gas  
24, 76-77] 78-79]adsorption[21, , gas separation[25, , post-synthetic modification[80-81] and 

heterogeneous catalysis[80, 82]. 

1.2.3. DUT-5 and UiO-67 

The metal-organic framework DUT-5 (Dresden University of Technology) was first 

synthesized by Senkovska et al. in 2009 under solvothermal conditions using 

biphenyl-4,4’-dicarboxylate (BPDC) as the linker molecule and Al3+ as metal nodes.[52] The 

structure of DUT-5 (space group Imma) is isoreticular to MIL-53_ht and is built of infinite 

Al-OH- chains connected by the linker molecules to form a three-dimensional framework 

structure with one-dimensional channels (Scheme 3). The pore entrances of DUT-5 are 

considerably larger (19.2 Å x 22.6 Å) compared to MIL-53_ht (8.5 Å x 8.5 Å) due to the 

longer linker molecules applied during synthesis. The structure is highly porous with a 

specific surface area of SBET = 1610 m2/g and thermally stable up to 430 °C.[52] 

Scheme 3: Schematic representation of the structure of DUT-5; yellow: Al, grey: C, red: O.
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1. Literature overview

Recently, the synthesis of functionalized frameworks isoreticular to DUT-5 was accomplished 

groups[83-84]with linker molecules bearing additional sulfone , amine-[84] or nitro 

functionalities[84]. All materials were highly porous (SBET = 1530 m2/g – 1960 m2/g) and 

stable to temperatures > 360 °C.[84] The larger pore dimensions and windows of DUT-5 might 

be beneficial for applications in gas storage and separation or for the immobilization of 

sophisticated metal complexes and their subsequent utilization in catalysis. To date the 

materials based on DUT-5 have been probed for their H2 storage capacity[52], the adsorption of 

CH4)[84]small molecules (CO2, H2, and the separation of alkanes and alkenes from 

aromatics[83]. 

Another metal-organic framework that could be synthesized with biphenyl-4,4’-dicarboxylate 

(BPDC) as the linker molecule is the zirconium-based material UiO-67 (Universitetet i Oslo,

Scheme 4) from the Lillerud group.[85]

Scheme 4: Schematic representation of the structure of UiO-67 and the two types of pores present in the 
framework; adapted from [86] with permission of The Royal Society of Chemistry. 

Although the framework has a high specific surface area of SLangmuir = 3000 m2/g and two 

types of pores with a diameter of 12 Å and 16 Å, respectively, the pore windows only have a 

diameter of  8  Å. There are a multitude of  reports  on applications[86-92] of UiO-67 and its 

isoreticular analogs, however, the small windows might be a drawback regarding the 

accessibility of the pores for bigger substrates in post-synthetic modification reactions and 

catalysis. 

Therefore, DUT-5 is an interesting alternative material built with the same linker molecules, 

but due to the framework topology with significantly larger pore windows of 19.2 Å x 22.6 Å. 

Nonetheless, the DUT-5 frameworks have only been utilized for a few studies so far.[52, 83-84] 
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1. Literature overview

1.2.4. HKUST-1 

The metal-organic framework HKUST-1[53] (Hong Kong University of Science and 

Technology) was first synthesized by Chui et al. in 1999. This structure, which is also known 

as MOF-199[93-95], Cu-BTC[30, 96-99] or  Cu2(BTC)3
[45, 100-103] (benzene-1,3,5-tricarboxylate), is 

one of the best investigated metal-organic frameworks to date. The typical structural element 

in HKUST-1 is a Cu-Cu paddlewheel SBU (Scheme 5, right), which is constructed from a 

copper dimer bridged by four benzene-1,3,5-tricarboxylate linker molecules. In the equatorial 

position each Cu2+ ion is coordinated to four oxygen atoms of four different carboxylate 

groups, and the axial position is saturated by a solvent molecule, e.g. H2O. Connecting those 

paddlewheel SBUs results in a three-dimensional cubic framework structure with channels of 

approximately 9.5 Å x 9.5 Å in diameter. Although a specific surface area of only 

SBET = 692 m2/g[53] was determined in the first report due to impurities (copper oxide species), 

the specific surface area could be increased since then up to SBET = 1600 m2/g by applying 

refined preparation methods[45, 98-100, 103-106], e.g. enhanced solvothermal or microwave assisted 

synthesis. 

Scheme 5: Left: structure of HKUST-1; right: Cu-Cu paddlewheel SBU; blue: Cu, grey: C, red: O, white: H. 

The solvent molecule at the Cu2+ centers can easily be removed upon heating (Scheme 6) 

without effecting the framework structure, thus, creating a free coordination site. Those Lewis 

acidic sites render Cu-BTC an interesting material for gas adsorption[26, 99, 107-108], gas 

separation[16, 28, 30, 96], catalysis[94-95, 97, 100-102, 109] and post-synthetic modification[110-111]. 
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1. Literature overview

Scheme 6: Removal of water and subsequent coordination of a substrate molecule at a Cu-Cu paddlewheel 
unit of HKUST-1; adapted from [97] with permission from Elsevier. 

Metal-organic frameworks isoreticular to HKUST-1 were also successfully synthesized with 

other metal ions[107] besides Cu,  e.g. Cr[112], Fe[113], Ni[114], Zn[115-116], Mo[117] and Ru[46]. 

Additionally, the incorporation of functionalized linker molecules with an additional group, 

namely 2-aminobenzene-1,3,5-tricarboxylic acid[63] or 2-fluorobenzene-1,3,5-tricarboxylic 

acid[65], into Cu-BTC was achieved.[63-65] 

1.2.5. Mixed-component metal-organic frameworks 

Recently, the interest in mixed-component metal-organic frameworks (MC-MOFs) has 

increased significantly.[118-119] There are four different types of mixed-component 

frameworks, which can be distinguished (Scheme 7). 

Scheme 7: Schematic representation of mixed-component MOFs (MC-MOFs); top left: mixed-linker MOF 
(MIXMOF); top right: mixed-metal or bimetallic MOF; bottom left: core-shell MOF with different 
linker molecules, bottom right: core-shell MOF with different metal centers. 
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1. Literature overview

One example are the so called mixed-linker metal-organic frameworks (MIXMOFs) 

containing more than one kind of linker molecules, which will be introduced in detail in 

Chapter 1.2.5.1 (Scheme 7, top left). Another possibility is the incorporation of different 

metal ions into the framework lattice resulting in mixed-metal or bimetallic metal-organic 

frameworks, which will be discussed in Chapter 1.2.5.2 (Scheme 7, top right). Both 

approaches aim at the homogeneous distribution of all components in the resulting framework 

structure. In contrast, the other two options are the formation of core-shell[120-125] structures 

(Scheme 7, bottom). In core-shell materials the composition on the inside and outside of the 

framework are different resulting in a phase change inside the particle. Since this approach is 

not relevant for this thesis, it is not discussed more detailed here. 

1.2.5.1. Mixed-linker frameworks 

The concept of mixed-linker metal organic-frameworks (MIXMOFs), which are sometimes 

also called multivariate metal-organic frameworks (MTV-MOFs[126]), was first established by 

Burrows et al.[127] and Kleist et al.[128] There are a number of different examples for 

MIXMOFs[118-119, 129] to date, but most reports focused on the substitution of a defined number 

of terephthalate linker molecules by functionalized terephthalate linkers (isostructural linker 

molecules), such as 2-aminobenzene-1,4-dicarboxylate. The best investigated MIXMOF 

series are based on MOF-5[126, 128, 130-131] and MIL-53(Al)[72, 132-133]. An important task in the 

synthesis of MIXMOFs is to quantify the ratio of the linker molecules incorporated in the 

framework and compare it to the initially applied ratio.[129] Moreover, confirming the 

homogeneous distribution of both linker molecules in the resulting materials instead of the 

formation of two separate phases or core-shell particles, is crucial.[129] The ratio of  the  

incorporated linker molecules could be determined by, for example, solid state[134] and liquid 

phase[43] NMR or thermogravimetric analysis[128]. The homogeneity of the materials can be 

investigated using analytical techniques such as high-resolution X-ray diffraction[128, 132], 

thermogravimetric analysis[128, 132] and, in case of flexible MOFs, also physisorption 

measurements[72, 135]. 

The synthesis of MIXMOFs based on MOF-5 with up to 40 % of the 

2-aminobenzene-1,4-dicarboxylate linkers was accomplished by Kleist et al.[128, 130] and 

thermogravimetric analysis revealed that the thermal stability steadily decreased with 

increasing amine ratio. The basicity and the catalytic activity of the materials could also be 

tuned depending on the number of incorporated amine functionalities.[128, 130] Mixed-linker 

frameworks based on MOF-5 could not only be synthesized with two linker molecules but 
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1. Literature overview

with up to eight different linkers.[126] In this study by the Yaghi group, the authors revealed 

that the properties of the MIXMOFs are not necessarily proportional to those of the 

single-linker composites, but that the combination of some linker molecules can have a 

beneficial influence on, e.g. the selectivity in the separation of CO2 from CO.[126] 

Mixed-linker metal-organic frameworks based on MIL-53 were successfully synthesized from 

defined mixtures of H2BDC and H2ABDC, and they have been extensively analyzed to 

establish trends in their thermal stability[132] and adsorption behavior[135] depending on the 

ratio of amine-functionalized linker molecules in the structure. Moreover, the effect of 

dehydration on the structure at the aluminium centers has been studied.[133] The quantification 

of the incorporated linker ratio was possible using solid state 1H and 27Al NMR[134], and the 

homogeneity could be proven by investigation of the breathing behavior[72, 135]. Kim et al.[136] 

prepared a mixed-linker MOF based on UiO-66 with a mixture of bromo- and 

amino-functionalized benzene-1,4-dicarboxylate linkers and applied it in an orthogonal 

post-synthetic modification reaction first modifying one functional group and then the other. 

In the examples presented so far, the linkers were partly substituted by other linker molecules, 

which had an additional functional group, but the same coordinating groups for the formation 

of the framework. However, there are also examples where the coordinating groups are 

partially replaced. In the synthesis of Cu-BTC-PyDC[97] up to 50 % of the 

benzene-1,3,5-tricarboxylate (BTC) linker molecules could be substituted by 

pyridine-3,5-dicarboxylate linkers (PyDC) resulting in a defect coordination site, where the 

nitrogen atom of the pyridine occupies the coordination place of a carboxylate group. It was 

revealed that the introduction of such defect sites strongly influenced the catalytic selectivity 

of the Cu-BTC-PyDC frameworks compared to that of pure Cu-BTC.[97] A comparable  

MIXMOF could also be synthesized based on the ruthenium equivalent of HKUST-1.[137] In 

this study the incorporation of the PyDC linkers led to a partial reduction of the ruthenium 

centers and at the same time to an increased CO sorption capacity of the framework.[137] 

Those examples clearly illustrate that the properties of MOFs can be tuned and, in some cases, 

even improved depending on the incorporated linker molecules. Therefore, the frameworks 

can be adjusted for targeted applications in gas adsorption or separation as well as in 

heterogeneous catalysis. 
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1. Literature overview

1.2.5.2. Bimetallic frameworks 

The incorporation of two different metal centers into one material[118-119] might be interesting 

for applications in gas storage and separation or for catalysis. In catalysis, those materials 

could e.g. be utilized as bifunctional catalysts or in tandem reactions. 

Botas et al.[138] achieved the substitution of up to 25 % of the Zn2+ centers in MOF-5 by Co2+ 

centers, which was confirmed by UV-vis spectroscopy, thermogravimetric analysis and the 

cell parameters derived from X-ray diffraction patterns. The incorporation of cobalt centers 

was limited to one fourth of all metal centers, i.e. one cobalt ion per SBU (see Chapter 1.2.1), 

even if a higher ratio was applied during synthesis. With increasing percentage of Co2+ 

incorporated in the frameworks, the adsorption capacity for H2, CH4 and CO2 at high pressure 

was slightly increased.[138] Serre et al.[139] synthesized a bimetallic framework named MIL-78, 

which is built of benzene-1,3,5-tricarboxylate linkers and a mixture of yttrium and lanthanide 

ions (e.g. Eu, Tb, Dy). A high thermal stability up to 450 °C (for MIL-78(Y, Eu)) was 

determined and a strong fluorescence was observed under UV irradiation depending on the 

lanthanide ions incorporated in the structure (Eu: red, Tb: green, Dy: blue).[139] 

A number of different bimetallic frameworks based on HKUST-1 have been reported. The 

first and also best investigated mixed-metal structure was Cu-Zn-BTC[140-143], in which up to 

21 % of the Cu2+ centers could be replaced by Zn2+ ions[140]. The zinc ratio found in the 

framework structure was always lower than the ratio applied during synthesis and the specific 

surface area decreased significantly with increasing amount of Zn2+, which was explained by 

coordination defects at the Zn2+ centers. The incorporation of the second metal into the 

framework structure was confirmed by a combination of 1H and 13C solid state NMR and EPR 

spectroscopy[140], and the resulting bimetallic framework was subject of further theoretical as 

well as spectroscopic studies[141-142]. Recently, the incorporation of manganese (6 %), iron 

(13.5 %) and cobalt (25.5 %) ions into Cu-BTC was accomplished via a post-synthetic metal 

exchange reaction.[143] In this approach, the MOF is first synthesized with Cu2+ ions and is 

then placed in a solution of the second metal to facilitate the ion exchange. The different 

substituted metal ions strongly influence the sorption properties of the framework towards 

nitrogen and oxygen, which was in good agreement with the binding energies to N2 and O2, 

respectively, calculated for the different metal ions.[143] 

Although the bimetallic frameworks were mainly applied in sorption studies, the presented 

results exemplify the benefits of those materials. For future research applying bimetallic 

metal-organic frameworks as bifunctional catalysts or in tandem reactions might be 

interesting. 
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1. Literature overview

1.3. Post-synthetic modification (PSM) 

For several potential applications (e.g. gas storage or separation, catalysis) additional free 

functionalities at the linker molecules, which are not coordinated to the framework metal 

centers, might be beneficial or even essential. However, not all groups can be introduced into 

the framework structure via direct synthesis, since the side group at the linker molecules 

might hinder the crystallization of the framework.[127, 144-147] This might be due to steric 

requirements of the additional groups or because the functionalities are also able to coordinate 

to the framework metal centers, therefore, preventing the formation of the targeted framework 

structure or resulting in a completely different topology. In those cases, post-synthetic 

modification[147-148] of the metal-organic frameworks – i.e. the formation of a bond between 

the linker molecules or unsaturated metal centers and a substrate after framework synthesis – 

is advantageous. This research area has been pioneered by the Cohen group[144, 147-151] but has 

since attracted a lot of interest from other groups[152-159]. Besides the presence of suitable free 

groups (e.g. amine or alkyne groups) or free coordination sites at the framework metal centers 

for the post-synthetic modification, there are also other important requirements for MOFs to 

be used in the PSM approach. First, the functional groups have to be accessible and, second, 

the framework structure has to be stable under the applied reaction conditions throughout the 

modification process. 

1.3.1. Post-synthetic modification of amine groups 

Metal-organic frameworks with additional free amine groups at the linker molecules have 

great potential for a number of simple post-synthetic modification reactions, e.g. with  

anhydrides[144-146, 157, 160-163], aldehydes[149, 152, 156, 158] or isocyanates[153-154, 164] (Scheme 8). In 

addition, the amine functionalities can be transformed into isocyanate[159, 165], 

isothiocyanate[165] or  azide[155, 159] groups, which can then be used for further modification 

reactions. IRMOF-3 is the amine-functionalized framework that was most thoroughly studied 

in PSM investigations. This framework was applied in various “proof-of-principle” studies to 

demonstrate that covalent post-synthetic modification can be accomplished and that the 

approach enables the introduction of side chains, which are not accessible via direct  

synthesis.[144-145] The framework could also be modified in a two-step tandem PSM reaction 

facilitating the introduction of groups that cannot be incorporated in a single step[158, 160] or the 

introduction of more than one functionality[160] into one framework. 
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1. Literature overview

Scheme 8: Post-synthetic modification of amine groups with anhydrides (top), aldehydes (middle) and 
isocyanates (bottom). 

Since IRMOF-3 is not stable in some protic solvents and acids[146], it might be beneficial to 

use a more robust framework for the modification reactions. MIL-53-NH2(Al) is thermally 

and chemically very stable and has, therefore, been utilized for post-synthetic modification 

reactions of amine groups.[163, 165] Garibay et al.[163] modified MIL-53-NH2(Al) with various 

anhydrides forming the corresponding amides. Whereas linear anhydrides, e.g. acetic 

anhydride, lead to the additional formation of the corresponding carboxylic acid in 

stoichiometric quantities, cyclic anhydrides, e.g. maleic anhydride, are incorporated altogether 

minimizing the purification process after PSM. It was shown that about 40 % of the amine 

functionalities were successfully modified when 60 eq of maleic anhydride were applied per 

amine group.[163] Utilizing maleic anhydride also results in the formation of a side chain, 

which can potentially be employed as chelating ligand for the immobilization of metal ions. 

Volkringer et al.[165] modified the amine groups to accomplish the formation of isocyanates 

and isothiocyanates, which can be transformed into urea, thiourea, carbamate and 

thiocarbamate derivatives in a second modification step. They observed that the breathing 

(pore opening) of the framework was only achieved with some solvents and revealed that the 

modification was only successful when those solvents were used during PSM.[165] Lescouet et 

al.[159] also successfully transformed the amine group into isocyanate functionalities, but these 

authors have chosen a reaction pathway via the azide. In the final step the isocyanates could 

again be converted into urea derivatives. Due to the highly reactive nitrene radicals formed 

during this reaction pathway, the formation of the urea derivatives was only possible with 

mixed-linker MIL-53-NH2(20), in which only 20 % of the linker molecules bear amine 
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1. Literature overview

groups. The dilution of the radicals prevented side reactions and resulted in the targeted 

modification of the framework.[159] 

1.3.2. Modification of alkyne groups 

A relatively new modification approach for metal-organic frameworks is the Cu+-catalyzed 

click reaction of an azide and an alkyne group (Scheme 9, top).[91, 166-167] 

Scheme 9: Post-synthetic modification of azide groups via Cu+-catalyzed click reaction with alkynes (top) and 
via copper-free click reaction with strained alkynes (bottom). 

To realize this approach, an azide or alkyne group has to be available at the linker molecules 

for post-synthetic modification. For the incorporation of an azide functionality in the 

framework structure, mild reaction conditions are essential to prevent the transformation of 

the azide group, e.g. to the corresponding carbazole.[91] In most of the reports[91, 166-167], copper 

catalysts were employed to facilitate the click reaction, which most probably leads to 

undesired traces of the metal in the resulting modified MOF. Even traces of copper could 

prevent the application of the resulting MOFs, e.g. in catalysis or in life science. A possibility 

to avoid the use of Cu+ catalysts in the click reaction is the application of strained alkynes, 

e.g. cyclooctyne (Scheme 9, bottom).[47, 168] 

1.3.3. Introduction of defined metal complexes 

Beside organic side chains, also defined metal centers can be introduced into the framework 

structure via the post-synthetic modification approach.[169] Various metal complexes were 

successfully incorporated in amine-functionalized UMCM-1-NH2 (University of Michigan 

Crystalline Material) utilizing different modification routes.[152, 162] Doonan et al.[152] 

accomplished the immobilization of 2-pyridinecarboxaldehyde, which was then utilized as a 
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1. Literature overview

chelating ligand for Pd2+ ions (Scheme 10, left). The successful coordination of Pd2+ to  the  

side chain of the linker molecules was confirmed by X-ray absorption spectroscopy 

(XAS).[152] Tanabe et al.[162] utilized the same framework for the immobilization of Fe3+ and 

Cu2+ complexes (Scheme 10, middle and right). The iron-containing framework could be 

applied as catalyst in a Mukaiyama-aldol reaction.[162] 

Scheme 10: Post-synthetic modification of UMCM-1-NH2 by Doonan et al. (left, adapted with permission 
from [152]. Copyright 2009 American Chemical Society) and Tanabe et al. (middle and right, 
adapted from [162]. Copyright © 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim). 

The metal-organic framework IRMOF-3 has also been utilized for the immobilization of 

metal complexes. Bhattacharjee et al.[156] accomplished the immobilization of a manganese 

complex by covalently binding it to the amine groups in IRMOF-3 and applied the 

Mn-containing framework as catalyst in the aerobic epoxidation of alkenes. Liu et al.[170] 

successfully incorporated a chromium complex in IRMOF-3 using a two-step modification 

process. First, a chelating side chain was created by modification of the amine groups with 

salicylaldehyde, which were then used to immobilize Cr3+ ions. Although the structure was 

retained throughout the modification process, the specific surface area decreased due to the 

additional side chains in the porous structure.[170] Leus  et al.[171] immobilized a titanium 

complex at the amine functionalities of MIL-47-NH2(V), thus, creating a bimetallic catalyst 

system for aerobic oxidation reactions. 

An interesting linker molecule that has been applied in the formation of a number of 

framework structures is 2,2’-bipyridine-5,5’-dicarboxylate (BPyDC). Due to the two nitrogen 

atoms of the pyridine rings and their respective positions, this linker is a perfect substrate for 

the direct immobilization of metal complexes into the framework structure. Bloch et al.[172] 

first applied the BPyDC linker in the synthesis of MOF-253 (Scheme 11), which is 

isoreticular to MIL-53 and DUT-5. They further accomplished the immobilization of Pd2+ and 
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1. Literature overview

Cu2+ complexes at the free bipyridine coordination sites of the linkers, which was proven for 

Pd2+ by X-ray absorption spectroscopy (XAS).[172] Carson et al.[173] loaded a Ru3+ complex 

into MOF-253 and applied the resulting framework as catalyst in the oxidation of alcohols. 

Scheme 11: Schematic representation of the structure of MOF-253 adapted with permission from [172], 
Copyright 2010 American Chemical Society; orange: AlO6-octahedra, red: O, grey: C, blue: N, 
yellow: Pd, green: ligands. 

Leus et al.[174] achieved the synthesis of the gallium-based framework COMOC-4 (Centre for 

Ordered Materials, Organometallics and Catalysis) and immobilized a Mo6+ complex on the 

bipyridine linkers. The resulting Mo-containing MOF was applied as catalyst in the 

epoxidation of alkenes.[174] 

Defined metal complexes can not only be immobilized on free functional groups of the 

organic linker molecules but also on free coordination sites of framework metal ions.  One  

example is the grafting of a Mo6+ complex on the free coordination sites of the Cu2+ centers in 

HKUST-1.[111] However, the porosity of the framework was lost completely throughout the 

modification process.[111] Kim  et al.[175] immobilized diethylenetriamine at the free 

coordination sites of the Cr3+ centers in MIL-101(Cr) and subsequently incorporated Pd2+ 

ions. The immobilization of palladium was confirmed by ICP-OES (inductively coupled 

plasma optical emission spectrometry). However, the additional formation of small Pd0 

nanoparticles or clusters could not be excluded completely, since very small particles cannot 

be detected by XRD measurements owing to their lacking long-range order. The catalytic 

activity of  the  material was subsequently probed  in a Heck reaction (see also 

Chapter 1.5.2).[175] 
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1. Literature overview

1.4. Metal-organic frameworks in catalysis 

There are various reviews on metal-organic frameworks in catalysis, which give a profound 

overview of the topic.[176-186] Metal-organic frameworks, which are applied in catalysis, have 

to fulfill certain criteria most of which concern their stability. The framework structures have 

to be stable under the applied reaction conditions and, thus, a high thermal and chemical 

stability are required. The stability of the utilized frameworks is also important regarding the 

leaching of active species and the reusability of the catalyst material. In addition, the 

accessibility of the active centers in the framework structure has to be guaranteed. Therefore, 

the evaluation of the required properties of the catalyst and a careful selection of suitable 

metal-organic frameworks are essential. 

1.4.1. Location of potentially active sites in metal-organic frameworks 

Active centers can be introduced into a metal-organic framework structure in various forms 

and at several locations, which are schematically depicted as blue spheres in Scheme 12. 

Scheme 12: Possible locations of potentially active sites (blue spheres) in MOFs;  MOF as support for active 
species;  unsaturated framework metal centers (top),  MOFs with  defect sites (middle) and 
bimetallic MOFs (bottom);  application of metalloligands in the synthesis of MOFs (top) or 
MIXMOFs (bottom);  functional groups at the linker molecules of MOFs (top) and MIXMOFs 
(bottom);  immobilized metal complexes in  MOFs (top) and  MIXMOFs (bottom)  via 
post-synthetic modification. 
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1. Literature overview

Due to their high specific surface areas, MOFs have been applied as porous host matrix for 

the encapsulation of metal nanoparticles, clusters or organometallic complexes (Scheme 12, 

). There are numerous studies on the deposition of metal nanoparticles on different 

framework structures and their consecutive application in catalysis.[187-197] The nanoparticles 

can be introduced into the framework structures via different preparation routes[188, 194, 197] 

including e.g. liquid phase infiltration, ion exchange and vapor phase deposition. Relevant 

metal@MOF materials, which have been applied in C-C coupling reactions, will be discussed 

in more detail in Chapter 1.5.2. Since this approach leads to the encapsulation of nanoparticles 

instead of defined single-sites, these systems are not discussed in detail in this thesis. 

Another possibility to apply MOFs in catalysis is the utilization of unsaturated framework 

metal centers as active sites (Scheme 12, , top). The unsaturated coordination sites, which 

are not needed for the formation of the framework, are usually saturated by solvent molecules, 

which can be removed upon heating. Another option to obtain free coordination sites at a 

metal center is the introduction of a linker molecule, which is lacking a coordinating group, 

hence, creating a defect site in the resulting structure (Scheme 12, , middle).[97, 198] This  

approach might also result in changed electronical properties, a higher flexibility of the 

framework and larger cavities, which might be beneficial for applications in catalysis.[97] 

Catalytic applications of MOFs with unsaturated framework metal centers will be outlined in 

Chapter 1.4.2. Although the amount of catalyst material can be drastically reduced due to the 

high density of active centers in these frameworks, the high metal content might be 

problematic for expensive noble metals. The metal centers in such frameworks resemble 

homogeneous complexes, however, they have a given coordination sphere, which does rarely 

allow for dynamic changes. 

An additional approach is the incorporation of the active centers into the organic linker 

molecules. There are three different methods to achieve such frameworks (Scheme 12, -): 

First, metalloligands can be used as linker molecules for framework synthesis facilitating the 

direct incorporation of a metal complex (Scheme 12, ). Such metalloligands are, for 

example, linker molecules based on salen complexes[199-203], bipyridine complexes[87] (also  

Chapter 1.3.3) or porphyrin complexes[204-207]. Metal-organic frameworks with salen 

complexes of manganese as linker molecules are of great interest for epoxidation reactions of 

alkenes, since they represent heterogeneous versions of the highly active Jacobsen catalyst[208-

209]. Via this approach also chiral linkers can be incorporated in the framework structures 

enabling enantioselective reactions.[199-202] Furthermore, the aerobic epoxidation of stilbene 
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1. Literature overview

was accomplished with a series of lanthanide frameworks constructed from Mn-salen linkers 

(Scheme 13).[203] 

Scheme 13: Aerobic epoxidation of stilbene applying a lanthanide framework with Mn-salen linkers; Ln: pink, 
Mn: purple, O: red, N: blue, C: grey, Cl: green. 

Second, organic groups at the linker molecules, which are not involved in the formation of the 

structure, might be catalytically active (Scheme 12, ). Due to their basicity, 

amine-functionalized metal-organic frameworks (e.g. IRMOF-3,  MIL-53-NH2 and 

MIL-101-NH2) were employed as catalysts primarily in base-catalyzed Knoevenagel 

condensation reactions[182, 210-215] (Scheme 14) but also for other transformations[128, 216]. 

Scheme 14: Knoevenagel condensation reaction. 

213, 215]It is important to note that in some reports[210, on Knoevenagel reactions 

N,N-dimethylformamide (DMF) was utilized as a solvent, which is a nitrogen base that might 

also be able to catalyze the reaction. Although a high concentration of catalytically active 

centers seems to be advantageous, the application of MIXMOFs might be promising for some 

applications. The MIXMOF concept enables the dilution of functional groups in a framework 

and the tuning of various properties (e.g. thermal stability, basicity, surface area) and the 

material can, thus, be adjusted as needed for individual applications.[128, 130] 

Another opportunity to accomplish the immobilization of defined metal complexes in the 

framework structure is the post-synthetic modification approach (Scheme 12, ), which has 

already been discussed in Chapter 1.3.3. This approach is by far the most adjustable of those 

mentioned. Beside the ligand sphere of the complex, also the metal center can be adjusted 

individually to fit the target reaction. However, due to the immobilization of additional 

complexes in the porous structure blocking of the pore entrances can be problematic.[111, 170] 
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1. Literature overview

Dilution of the binding sites by applying mixed-linker MOFs or facilitating frameworks with 

a larger pore diameter might be beneficial to overcome those restrictions. Catalytic 

applications of the frameworks with immobilized metal complexes introduced by PSM are 

reviewed in Chapter 1.4.3. 

1.4.2. Unsaturated framework metal centers 

Several metal-organic frameworks with unsaturated framework metal centers have been 

applied in catalysis.[177, 185] This chapter focuses on the catalytic applications of the 

frameworks based on HKUST-1 (Scheme 5), MIL-101 (Scheme 15, left) and STA-12 

(Scheme 15, right). 

Each metal center in HKUST-1 is coordinated by one solvent molecule, which can be 

removed upon heating or substituted by a substrate molecule during catalysis (Scheme 6, 

Chapter 1.2.4). Framework materials based on HKUST-1 were applied as catalysts in a series 

of different reactions. The first report dates back to 2004 when Schlichte et al.[100] 

accomplished the phase pure synthesis of Cu-BTC and subsequently applied the framework in 

the cyanosilylation of benzaldehyde. However, during parameter optimization a low stability 

of the framework in certain solvents was observed and, therefore, only a yield < 60 % was 

achieved after three days.[100] Alaerts et al.[101] probed Cu-BTC for its activity in the 

isomerization of terpene derivatives. Although the copper precursor Cu(NO3)2 showed a  

higher activity compared to the solid catalyst, the selectivity was significantly increased after 

incorporation of the Cu2+ centers into the framework structure.[101] The catalytic activity of 

Cu-BTC in the Friedländer reaction for the synthesis of quinolines was studied by 

Pérez-Mayoral et al.[102, 217]. They observed a superior activity of Cu-BTC compared to 

conventional zeolite-based materials and explained the high conversion with the high loading 

of Lewis acidic sites and, especially, the presence of adjacent Cu2+ sites. Moreover, Cu-BTC 

was also compared to several other Lewis acidic frameworks and zeolites in different 

reactions including, e.g. Michael additions[109], click reactions[218] (Scheme 9), Knoevenagel 

condensation reactions[214] (Scheme 14) and the oxidation of benzylic alcohols[219]. 

Besides Cu-BTC, also the iron-containing framework based on HKUST-1 was used  as a  

catalyst. Fe-BTC was studied in the Knoevenagel condensation reaction (Scheme 14).[214] 

Although the activity of Fe-BTC was slightly higher compared to zeolite-based catalysts, it 

was significantly lower than that of Cu-BTC, which might be due to the lower crystallinity of 

the iron-containing MOF.[214] Dhakshinamoorthy et al. tested Fe-BTC in the reduction of 

alkenes with hydrazine[220] and in the aerobic oxidation of benzyl amines[221] and alkanes[222]. 
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1. Literature overview

Although the authors claimed an aerobic oxidation, it has to be noted that 

N-hydroxyphthalimide (NHPI) was enclosed in the framework structure, which is known to 

be a strong promoting additive. 

HKUST-1 has also been synthesized with additional defect sites at the unsaturated metal 

centers by partially replacing the BTC linker molecules with pyridine-3,5-dicarboxylate 

(PyDC).[97, 137] Cu-BTC-PyDC[97] could be synthesized with up to 50 % of the defect linker 

PyDC while retaining the HKUST-1 structure, which was confirmed by X-ray diffraction and 

X-ray absorption data. Both Cu-BTC and Cu-BTC-PyDC were applied in the direct 

hydroxylation of aromatic compounds, such as toluene. However, due to the different 

electronic structure at the Cu2+ centers depending on the linker molecules the selectivity 

towards different products changed significantly.[97] For Ru-BTC-PyDC[137], beside a changed 

coordination sphere at the ruthenium centers due to incorporation of the defect linker, also a 

partial reduction of these centers was observed. The modified Ru-BTC-PyDC was more 

active in the hydrogenation of alkenes at ambient conditions than pure Ru-BTC and, 

therefore, the authors concluded that the defect sites beneficially influence the properties of 

the framework in this reaction.[137] 

Another framework structure with unsaturated framework metal centers is MIL-101(Cr or Fe, 

Scheme 15, left), which has, for example, been investigated in the catalytic cyanosilylation of 

benzaldehyde[223], the synthesis of cyclic carbonates from epoxides and CO2
[224-225] and for the 

oxidation of hydrocarbons[224, 226-227]. The Kholdeeva group[227-228] applied MIL-101(Cr) and 

MIL-101(Fe) in the allylic oxidation of alkenes, which results in the formation of 

α,β-unsaturated ketones or alcohols. They observed that the iron version of MIL-101 was less 

stable compared to the chromium framework. Moreover, the product selectivity strongly 

depended on the framework metal centers. Whereas the chromium framework resulted in the 

formation of ketones, the iron compound strongly favored the formation of alcohols.[227] 

Zalomaeva et al.[225] applied MIL-101(Cr) in the formation of styrene carbonate and propene 

carbonate. High conversion and yield could be achieved at mild reaction conditions (8 bar, 

25 °C), however, tetrabutylammonium bromide (TBAB) had to be added to the reaction as a 

promoting agent. Although a truly heterogeneous reaction pathway was established in hot 

filtration tests, the catalyst lost its porous structure and activity after several consecutive 

runs.[225] 
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1. Literature overview

Scheme 15: Structures of MIL-101 (left, adapted with permission from [43], Copyright 2013 American 
Chemical Society) and STA-12 (right). 

The framework STA-12(Co) with unsaturated Co2+ centers (Scheme 15, right) has been tested 

in the aerobic epoxidation of styrene and stilbene with low catalyst loadings of only 

0.3 mol%.[229] Whereas stilbene was fully converted with a selectivity of nearly 90 % towards 

the epoxide, the conversion of styrene resulted in a very low selectivity, which was ascribed 

to oligomerization of the target product styrene oxide. The catalyst was reusable and no 

significant changes of the framework structure or leaching were observed.[229] The catalytic 

activity of the nickel form of STA-12 was probed in the intermolecular carbonyl ene reaction 

between alkenes and aldehydes.[109] In the reaction of α-methyl styrene and trifluoropyruvate, 

STA-12(Ni) yielded over 60 % of the product without significant loss of activity for at least 

three runs. The structure of the catalyst was retained throughout the cycles, and filtration tests 

suggested a heterogeneous reaction pathway.[109] 

[230]The metal-organic framework [Pd(2-pymo)2]n , which is built from Pd2+ centers and 

2-hydroxypyrimidinolate (pymo) linkers, was investigated for its activity in alkene 

hydrogenation[231-233], alcohol oxidation[231] and Suzuki coupling reactions[231]. The 

application of [Pd(2-pymo)2]n in Suzuki coupling reactions will be highlighted in 

Chapter 1.5.2. Opelt et al.[233] observed that in the hydrogenation reaction of a mixture of 

1-octene and cyclododecene only 1-octene was hydrogenated in the first 4 h since the pores of 

the [Pd(2-pymo)2]n were too small for cyclododecene, which could consequently not reach the 

active sites. However, after 4 h the formation of palladium nanoparticles was detected, which 
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1. Literature overview

then also catalyzed the hydrogenation of cyclododecene.[233] A combined spectroscopic study 

of in situ infrared and X-ray absorption spectroscopy during hydrogenation of 1-octene 

revealed that the linker molecules were hydrogenated under the applied reaction 

conditions.[232] During this period the Pd2+ centers remained oxidized and the hydrogenation 

of 1-octene was nearly completed indicating that indeed the Pd2+ framework metal centers 

were the active species. However, Pd0 nanoparticles were formed after the hydrogenation of 

the linker molecules was completed, thus, irreversibly destroying the framework structure. 

Obviously, the MOF was not stable in liquid phase hydrogenation reactions under the applied 

conditions. 

1.4.3. Immobilized metal complexes 

As already demonstrated in Chapter 1.3.3, the variety of immobilized complexes in MOFs 

and the resulting possibilities for applications of these frameworks is enormous. Therefore, 

only some selected examples will be discussed in this chapter. 

Tanabe et al.[162] utilized UMCM-1-NH2 equipped with an immobilized Fe3+ complex as  

Lewis acid in a Mukaiyama aldol reaction. The conversion after 24 h was < 60 % but the 

catalyst retained its activity over at least three cycles. The catalyst was size-selective for small 

silyl enol ethers, no iron leaching was detected and X-ray diffraction still showed an identical 

pattern after three cycles.[162] Dau et al.[234] immobilized a COD (1,5-cyclooctadiene) complex 

of Ir+ on DMOF-1-dcppy (5,4’-phenylpyridine-dicarboxylate) and applied the framework as 

heterogeneous catalyst in the alkylation of amines. Under the applied reaction conditions, the 

catalyst achieved full conversion after approximately 30 h. X-ray diffraction patterns of the 

used catalyst showed that the framework was stable and hot filtration tests indicated no 

leaching of active species.[234] 

A multitude of reports concern the application of various MOF-based catalysts in oxidation 

reactions[184] of  e.g. alkenes[111, 171, 174] and alcohols[173]. Carson et al.[173] immobilized Ru3+ 

centers in the bipyridinedicarboxylate linkers of MOF-253 and applied the framework in the 

oxidation of primary and secondary alcohols. The oxidation was achieved with high yield and 

selectivity of approximately 90 % towards the corresponding aldehyde or ketone. The reaction 

was performed at low temperatures (< 40 °C) and the catalyst could be recycled six times 

without significant loss of activity. However, a strong oxidant (PhI(OAc)2) was necessary.[173] 

Bhattacharjee et al.[156] accomplished the immobilization of Mn2+ acetylacetonate complexes 

in IRMOF-3. The presence of the Mn2+ complex in the MOF structure was confirmed by IR 

and X-ray photoelectron spectroscopy (XPS). The resulting catalyst was tested in the 
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epoxidation of various alkenes with molecular oxygen, where it showed remarkable activity 

and selectivity towards the epoxide. However, two equivalents of trimethylacetaldehyde had 

to be applied as promoting agent to enable the use of O2 as oxidant. The catalyst could be 

reused for at least three times without loss of activity and no leaching of active species could 

be detected.[156] Leus  et al. also investigated the epoxidation of cyclohexene applying 

MIL-47-NH2(V) modified with titanylacetylacetonate[171] and COMOC-4 with chelated Mn6+ 

ions at the bipyridinedicarboxylate linkers[174]. Using molecular oxygen, the yield of the 

epoxide was significantly higher for titanium-functionalized framework compared to pure 

MIL-53-NH2(V).[171] Moreover, the leaching of vanadium, which was observed for the 

monometallic framework, could be prevented by addition of the Ti4+ complexes. The reason 

for this effect is, however, still unclear.[171] With Mo6+-containing COMOC-4, a high 

selectivity towards the epoxide close to 100 % could be accomplished. The catalyst could be 

reused for at least three times without major loss of activity and no molybdenum leaching was 

detected. In this study, tert-butyl hydroperoxide (TBHP) had to be used instead of molecular 

oxygen to achieve the formation of the epoxide.[174] HKUST-1 with immobilized Mo6+ 

complexes (Chapter 1.3.3) has also been tested in the epoxidation of various alkenes with 

TBHP by Abednatanzi et al.[111] The catalyst achieved high conversion and selectivity close to 

100 % and remained active in five consecutive runs. The turnover frequency (TOF) 

established for this catalyst is above the TOFs reported in literature for comparable 

Mo6+-containing heterogeneous catalysts.[111] 

1.5. C-C coupling reactions 

C-C coupling reactions are interesting transformations for the synthesis of fine chemicals. 

Many of those reactions such as the Heck reaction (Scheme 16, ), the Sonogashira reaction 

(Scheme 16, ) or the Suzuki reaction (Scheme 16, ) are readily catalyzed by palladium 

complexes. Immobilization of the active species in a solid material might enable easy 

separation and reuse of the catalyst and simplify the reaction process. Therefore, different 

methods were investigated to achieve truly heterogeneous catalysts for example by deposition 

of palladium nanoparticles (Chapter 1.5.1) or immobilization of palladium complexes on 

porous supports (e.g. C,  Al2O3, zeolites). Recently, also palladium-containing metal-organic 

frameworks were applied in C-C coupling reactions, which will be discussed in Chapter 1.5.2. 
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1. Literature overview

Scheme 16: C-C coupling reactions;  Heck reaction,  Sonogashira reaction,  Suzuki reaction. 

1.5.1. Supported Pd catalysts in Heck reactions – a “quasi-homogeneous” 
mechanism 

The Heck reaction (Scheme 16, ) is a palladium catalyzed C-C coupling reaction between 

aryl halides and alkenes. Applying solid catalysts instead of the mainly utilized homogeneous 

complexes might have the advantage of easy separation and reuse. Therefore, the mechanism 

of the Heck reaction catalyzed by supported palladium nanoparticles has been extensively 

studied in the last couple of years applying various experimental and analytical methods. 

Today it is widely accepted that not the palladium nanoparticles themselves but palladium 

complexes or clusters, which are in situ dissolved from the support, catalyze the reaction in a 

“quasi-homogenous” reaction pathway (Scheme 17).[235-239] Mononuclear palladium species 

are dissolved from the support by the oxidative addition of an aryl halide (Scheme 17, right 

bottom) and the reaction proceeds following the catalytic cycle known for homogeneous 

palladium catalysts. After the reaction is completed, the palladium species are reduced and 

redeposited on the support (Scheme 17, right top). The catalysts can be easily separated and 

most of them can be reused without significant loss of activity. However, sometimes growth 

of the Pd particles and, therefore, a change in the catalyst system is observed as a 

consequence of the dissolution-redeposition process. This undesired change can be prevented 

by a careful choice of the preparation method of the catalyst and the reaction conditions 

applied during catalysis.[237, 240] In literature, some supported systems were claimed to 

catalyze the Heck-type reaction of iodobenzene and alkenes in a truly heterogeneous manner. 

However, it is important to note that even negligible traces of palladium, which might be 
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1. Literature overview

below the detection limit of standard analysis methods, can be sufficient for the activation of 

reactive substrates such as aryl iodides and activated aryl bromides.[241] Similar 

“quasi-homogeneous” mechanisms were also reported for supported palladium catalysts in  

other C-C coupling reactions. 

Scheme 17: Extended catalytic cycle of Heck reactions catalyzed by solid Pd species; adapted with permission 
from [238], Copyright 2011 American Chemical Society. 

1.5.2. Metal-organic frameworks in C-C coupling reactions 

In most reports of metal-organic frameworks applied in C-C coupling reactions, encapsulated 

palladium nanoparticles were utilized as active species.[189, 191, 193] There are only few 

examples so far, where MOFs with Pd2+ framework centers or Pd2+ complexes introduced by 

post-synthetic modification were tested for their activity in C-C coupling reactions.[87, 175, 231] 

Palladium nanoparticles were encapsulated into MOF-5 and probed for their activity in  a  

Sonogashira reaction of iodobenzene with phenylacetylene derivatives by Gao et al.[189] The 

catalyst could not achieve the coupling of less reactive bromobenzene or chlorobenzene. 

Moreover, a drastic decrease in activity was observed after the second run, which was 

ascribed to oxidation and agglomeration of the palladium particles.[189] Another problem 

might be the low chemical stability of the MOF-5 framework. Huang et al.[191] encapsulated 

highly dispersed particles with a mean diameter of 3.1 nm in MIL-53-NH2 via an  ion  

exchange method with subsequent reduction of the palladium species. The loaded framework 
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1. Literature overview

was utilized as catalyst for the Suzuki coupling reaction of bromobenzene derivatives and 

arylboronic acid. Nearly full conversion was achieved in five consecutive runs after only 

30 min at 40 °C.[191] The same group also deposited well dispersed palladium nanoparticles of 

identical size on mixed-linker MIL-53-NH2.[193] The framework structure was retained  and  

only a negligible loss of porosity was observed. The amine groups obviously stabilized the 

particles since the palladium species agglomerated immediately in amine-free MIL-53. The 

framework was active in the Heck-type C-C coupling reaction of bromobenzene derivatives 

and alkenes. However, a minor loss of activity and an increase in particle size were observed 

after several runs.[191] The mechanism of the metal-organic frameworks with encapsulated Pd 

nanoparticles is expected to be identical to the “quasi-homogeneous” mechanism of 

conventional supported catalysts. 

There are a few examples, in which single-site palladium species incorporated in the MOF 

structure were utilized as the active species instead of nanoparticles supported on frameworks. 

This approach might facilitate alternative reaction pathways, since these palladium sites can 

be regarded as heterogeneous analogs of highly active homogeneous Pd complexes. 
[230]In the metal-organic framework [Pd(2-pymo)2]n , the Pd2+ centers are surrounded by the 

2-hydroxypyrimidinolate (pymo) linkers in a square planar coordination. The framework 

structure should not be affected by extension of the coordination sphere of the Pd2+ centers  

and was, hence, applied in the Suzuki coupling reaction between phenylboronic acid and 

4-bromoanisole.[231] Under mild reaction conditions (40 °C, two days) the catalyst could be 

reused without significant loss of activity. The same conversion of approximately 90 % could 

be accomplished in only 5 h when the reaction mixture was heated to 150 °C. A hot filtration 

test under those conditions revealed no palladium leaching and the X-ray diffraction patterns 

were basically identical before and after the catalytic test.[231] However, utilizing MOFs with 

Pd2+ as framework metal centers might be problematic owing to the high costs caused by the 

high concentration of the noble metal. 

Kim et al.[175] probed the catalytic activity of MIL-101(Cr) with a Pd2+ complex immobilized 

at the unsaturated metal centers for its catalytic activity in a Heck coupling reaction. 

Iodobenzene and acrylic acid were applied in this report and the authors claimed a 

heterogeneous reaction pathway.[175] It has to be noted that iodobenzene is activated quite 

easily due to the weak C-I bond and that even traces of leached palladium can catalyze  the  

reaction. Still, the catalyst could be reused three times without losing its activity and no 

leaching of palladium was detected.[175] 
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1. Literature overview

Very recently, palladium doped UiO-67 (Scheme 4) was successfully synthesized by Chen et 

al.[87] using a mixed-linker approach. 10 % of the biphenyl-4,4’-dicarboxylate (BPDC) linker 

molecules were substituted by a metalloligand, namely 2,2’-bipyridine-5,5’-dicarboxyate with 

an immobilized Pd2+ complex. Due to the high dilution of the metalloligands, the Pd2+ centers 

should be well dispersed and isolated in the resulting framework structure. The modified 

MOF was applied in Heck and Suzuki reactions with chlorobenzene derivatives, which are, in 

general, difficult to activate because of the strong C-Cl bond. The MOF-based catalyst 

accomplished high conversion of those substrates and was reusable in at least five consecutive 

runs without significant loss of activity making this system a promising material for future 

research in C-C coupling reactions.[87] 

1.6. Scope of the present thesis 

Metal-organic frameworks (MOFs) are interesting novel materials for applications in catalysis 

since they feature structural motifs, which can be seen as heterogeneous analogs of highly 

active single-site complexes. Thus, they combine beneficial characteristics of both 

homogeneous (defined metal centers, high activity) and heterogeneous (easy separation and 

reuse) catalysts. The high variety in MOF topologies, linker molecules, framework metal 

centers and post-synthetic modification reactions should allow for a highly versatile catalyst 

design, which can be individually adjusted for specific applications. The aim of the presented 

thesis was to develop different concepts for the synthesis of novel single-site catalysts based 

on metal-organic frameworks and to perform first catalytic studies with those new materials. 

All metal-organic frameworks should be synthesized via a novel synthetic strategy at ambient 

pressure to enable easy scale-up, which is important for potential applications requiring large 

amounts of a material. 

First, defined palladium complexes should be immobilized on MIL-53-NH2(Al) (Chapter 2) 

via a two-step post-synthetic modification (PSM) reaction, which should be confirmed 

applying a multitude of characterization techniques (XRD, ATR-IR, TG, N2 physisorption, 

AAS and XAS). The activity of the resulting catalyst materials should be probed in Heck-type 

C-C coupling reactions of bromo- or chlorobenzene with styrene. Since dissolved palladium 

complexes are known to be the catalytically active species in the presence of conventional 

heterogeneous catalysts (Chapter 1.5.1), the leaching of the novel MOF-based systems should 

be investigated. The palladium species immobilized in the frameworks can be regarded as 

heterogeneous counterparts of such dissolved complexes and, therefore, a reduction of 

leached species can be expected. 
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1. Literature overview

Since the high concentration of amine groups available for PSM might be problematic 

regarding the porosity of the modified materials, defined palladium complexes should also be 

immobilized in mixed-linker MIL-53-NH2(x) (x = 40, 60, 80, Chapter 3). Applying the 

MIXMOF approach, a homogeneous distribution of accessible palladium complexes was 

expected, which should be ascertained employing various characterization techniques (XRD, 

ATR-IR, TG, N2 physisorption, 1H NMR, AAS and XAS). The novel materials should again 

be tested in Heck-type C-C coupling reactions of bromo- or chlorobenzene with styrene to 

compare them to the previous study and to gain insight into the influence of the amine 

percentage in the frameworks on the modification process and the catalytic results. 

Applying metal-organic frameworks with larger pore dimensions is expected to broaden the 

scope of possible substrates applicable for post-synthetic modifications. Thus, more 

sophisticated metal complexes might be introduced into the framework structure or bulkier 

substrates might be utilized in the subsequent catalytic applications. Novel functionalized 

single- and mixed-linker frameworks based on DUT-5 should, consequently, be prepared to 

increase the pore dimensions of the resulting material (Chapter 4). After thorough 

characterization (XRD, ATR-IR, TG, TG-IR, N2 physisorption, 1H NMR) the functionalized 

mixed-linker frameworks should be applied in post-synthetic modification reactions for a 

“proof-of-principle” study using different substrates. 

In addition, HKUST-1 with potentially free coordination sites at the framework metal centers 

should be modified by partial substitution of the Cu2+ centers with Ru3+ ions (Chapter 5). Ru3+ 

might be beneficial due to its favored octahedral coordination geometry and its similar ionic 

diameter, which should facilitate the incorporation into the HKUST-1 structure. The resulting 

material should be thoroughly characterized (XRD, ATR-IR, TG, N2 physisorption, ICP-OES 

and XAS) to confirm the presence of Ru3+ in the framework structure and to exclude the 

formation of additional undesired phases. For future studies the resulting bimetallic 

framework might be promising for applications as bifunctional catalyst or in tandem reactions 

since both metal centers are versatile catalyst species. 
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2. Immobilization of Pd complexes on MIL-53-NH2(Al) 

2. Immobilization of Pd complexes on MIL-53-NH2(Al)[242] 

2.1. Motivation 

Due to its remarkable properties, the metal-organic framework MIL-53-NH2(Al)[56] is  an  

attractive material for post-synthetic modification[163, 165] and catalytic applications[159, 210]. 

MIL-53-NH2(Al) is thermally stable up to at least 350 °C and the structure is retained in 

organic solvents as well as diluted acids and bases. Owing to the high specific surface area 

(SBET ~ 1000 m2/g), the amine groups are accessible and can easily be utilized in a multitude 

of simple transformations with anhydrides[144, 146, 161-163], aldehydes[149, 152, 156, 158] as well as 

various other substrates[153-155, 164-165]. Therefore, in this study MIL-53-NH2(Al) was chosen as 

starting material for the immobilization of well-defined mononuclear palladium complexes 

via a two-step post-synthetic modification reaction utilizing first maleic anhydride and then 

palladium acetate. The activity of the immobilized complexes should be tested in Heck-type 

C-C coupling reactions and is expected to be similar to comparable homogeneous systems, 

while separation and reuse should be feasible more easily. Thus, the resulting material might 

combine the beneficial characteristics of both homogeneous (high activity) and heterogeneous 

(easy separation and reuse) catalysts. In addition, leaching of active species, which is 

well-known for conventional supported catalysts in Heck-type C-C coupling reactions, might 

be reduced, since the catalyst already contains highly defined mononuclear palladium 

complexes. 

In this Chapter the novel synthesis of MIL-53-NH2(Al) at ambient pressure and its subsequent 

two-step post-synthetic modification (PSM) are highlighted. In addition, the characterization 

results (XRD, nitrogen physisorption, ATR-IR, AAS, XAS) after each synthetic step and the 

catalytic application of the resulting MIL-53-NH2(Al)-Mal-Pd in Heck-type C-C coupling 

reactions are covered in detail. 

2.2. Synthesis and post-synthetic modification 

In contrast to the synthesis reported in literature[56], a non-solvothermal preparation route at 

ambient pressure was developed and applied in the synthesis of MIL-53-NH2(Al). Instead of 

autoclaves, round bottom flasks could be used and, hence, scale-up of the reaction should be 

achievable more easily. This is an important requirement for the industrial fabrication of large 

amounts of a material that are needed for certain applications. MIL-53-NH2(Al) was 
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2. Immobilization of Pd complexes on MIL-53-NH2(Al) 

synthesized using a solution of 2-aminobenzene-1,4-dicarboxylic acid (terephthalic acid, 

H2ABDC) and Al(NO3)3*9H2O (ratio 1:1) in DMF/H2O, which was heated to 90 °C for 24 h 

(Scheme 18). As a reference, MIL-53-NH2(Al) was also prepared via the solvothermal route 

known from literature.[56] 

Scheme 18: Synthesis of MIL-53-NH2(Al); grey: C, white: H, red: O, blue: N, yellow: Al. 

After thorough characterization of MIL-53-NH2(Al), the MOF was applied as starting 

material for a two-step post-synthetic modification (PSM) reaction, in which palladium 

complexes were immobilized on the amine groups of the framework structure (Scheme 19). In 

the first step the amine functionalities were modified with maleic anhydride, which resulted in 

the formation of an amide (MIL-53-NH2(Al)-Mal) and in the second step this new side chain 

was utilized as chelating ligand to immobilize Pd2+ ions (MIL-53-NH2(Al)-Mal-Pd). To 

optimize the PSM reaction, varying amounts of maleic anhydride (2 – 10 eq) and palladium 

acetate (0.25 – 1.5 eq) were applied. The amount of palladium acetate was calculated in 

regard to the literature value of 40 %[163] of the amine groups being successfully modified 

with maleic anhydride. The modified frameworks prepared with 0.25 eq 

(MIL-53-NH2(Al)-Mal-Pd) and 1.5 eq (Pd@MIL-53-NH2(Al)) of palladium acetate are 

discussed in detail in this Chapter. 

Scheme 19: Two-step post-synthetic modification of MIL-53-NH2(Al) with, first, maleic anhydride and, 
second, palladium acetate; for clarity only one pore is shown; grey: C, white: H, red: O, blue: N, 
yellow: Al, green: Pd, brown: ligands. 
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2. Immobilization of Pd complexes on MIL-53-NH2(Al) 

All materials were thoroughly characterized after each synthetic step using X-ray diffraction 

(XRD), FT-IR spectroscopy (ATR mode) and nitrogen physisorption measurements (BET). 

The Pd-containing frameworks were additionally investigated by atomic absorption 

spectroscopy (AAS) and X-ray absorption spectroscopy (XAS). 

2.3. Characterization 

To analyze the crystal structure and to confirm the successful synthesis of MIL-53-NH2(Al) 

under non-solvothermal reaction conditions, X-ray diffraction was applied. The diffractogram 

of MIL-53-NH2(Al) matched the pattern reported in literature for MIL-53-NH2(Al)_lt[56] 

perfectly. Obviously, a phase-pure framework without any residual acid molecules enclosed 

in the porous structure was obtained via the novel preparation route at ambient pressure. Thus, 

the additional activation steps described in literature[51, 56] for the materials synthesized under 

solvothermal conditions were not required, which clearly proves another advantage of the 

chosen synthetic approach. XRD further proved that the structure of MIL-53-NH2(Al) 

(monoclinic, space group Cc) was retained throughout the modification process. In the 

diffractograms of the modified samples (Figure 2) a shift could be seen for most reflections, 

whereas the signals corresponding to distances perpendicular to the pore  structure  

((hkl) = (200) and (400)) remained at the same values for 2  (9.28 ° and 18.62 °, 

respectively). 

Figure 2: X-ray diffraction patterns of MIL-53-NH2(Al) (black), MIL-53-NH2(Al)-Mal (blue) and 
MIL-53-NH2(Al)-Mal-Pd (green); dashed lines are added to illustrate whether or not the 
reflections were shifted after modification. 
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2. Immobilization of Pd complexes on MIL-53-NH2(Al) 

This observation was caused by the so called breathing effect of MIL-53-NH2(Al), which 

describes the ability of the framework to change its pore geometry depending on the 

interactions with the substrate or guest molecules inside the pores.[51, 56] The different  

geometries of MIL-53(Al) were described in Chapter 1.2.2. Therefore, the observed shift of 

the reflections is an indication that post-synthetic modification of the amine groups in 

MIL-53-NH2(Al) was achieved. 

To optimize the reaction conditions for the first modification step with maleic anhydride, the 

reaction temperature (80 °C - 100 °C) and the ratio of maleic anhydride per amine group 

(2 - 10 eq) were varied. In the XRD patterns of those samples, the shift of the reflections 

increased with increasing temperature and ratio of maleic anhydride (Figure 3). The 

increasing shift indicated more distinct changes in the pore geometry of the frameworks and, 

thus, might also suggest a larger amount of introduced modified side chains, which means a 

higher degree of modification. 

Figure 3: X-ray diffraction patterns of MIL-53-NH2(Al)-Mal synthesized under different reaction conditions 
compared to the pattern of MIL-53-NH2(Al). 

The ATR-IR spectrum of MIL-53-NH2(Al) synthesized at ambient pressure did not show a 

band around ν = 1680 cm-1 , which would correspond to protonated linker molecules. In 

contrast, a clear band could be found for the reference sample MIL-53-NH2(Al)_as, prepared 

via the conventional synthesis route[56] using an autoclave (Figure 4). As already indicated by 

XRD, MIL-53-NH2(Al) prepared via the novel synthesis route was free of unreacted precursor 

species, while the material prepared under solvothermal conditions required an additional 

activation step as described in literature[56] to remove residual acid molecules. Thus, besides 
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2. Immobilization of Pd complexes on MIL-53-NH2(Al) 

having the advantage of an easier scale-up, the synthesis at ambient pressure also resulted in 

materials of high purity so that the tedious purification was not necessary. 

Figure 4: IR spectra of MIL-53-NH2(Al) (black) synthesized at ambient pressure compared to the reference 
sample MIL-53-NH2(Al)_as (red) containing free acid molecules after preparation in an autoclave. 

Figure 5: ATR-IR spectra of MIL-53-NH2(Al) (black), MIL-53-NH2(Al)-Mal (blue) and 
MIL-53-NH2(Al)-Mal-Pd (green); left: N-H stretching vibrations of the amine groups 
(ν = 3498 cm-1 and ν  =  3387  cm-1); right: C=O stretching vibration of maleic anhydride (approx. 
ν = 1700 cm-1). 
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2. Immobilization of Pd complexes on MIL-53-NH2(Al) 

The IR spectra of the modified frameworks indicated the successful formation of the amide 

functionality. The intensity of the N-H stretching vibrations of the amine group 

(ν = 3498 cm-1 and ν = 3387 cm-1, Figure 5, left) decreased, while an additional weak band 

could be found around ν = 1700 cm-1 (Figure 5, right), which was ascribed to the C=O 

vibration of the carbonyl groups introduced at the side chains of the framework structure.  

Notably, vibrations of residual maleic anhydride could not be observed, which strongly 

indicated successful modification. 

Nitrogen physisorption measurements (Figure 6, Table 1), evaluated by the BET method, 

showed a high specific surface area of SBET = 980 m2/g for MIL-53-NH2(Al). The observed 

step in the adsorption branch of the isotherm at p/p0 ≈ 0.15 has also been reported in literature 

for frameworks based on MIL-53 in physisorption measurements with nitrogen[56, 70] as well 

as other small molecules (CO2
[21, 67, 69], Xe[68]) and has been attributed to the breathing effect 

and the resulting change in pore geometry. The strong hysteresis between the adsorption and 

desorption isotherm has also been reported in literature.[56, 70] 

Figure 6: Adsorption (filled symbols) and desorption (open symbols) isotherms obtained from nitrogen 
physisorption measurements of MIL-53-NH2(Al) (black), MIL-53-NH2(Al)-Mal (blue), 
MIL-53-NH2(Al)-Mal-Pd (green) and Pd@MIL-53-NH2(Al) (red). 

After the first modification step with maleic anhydride the specific surface area of 

MIL-53-NH2(Al)-Mal decreased to SBET = 155 m2/g, which again proved the successful 

modification of the amine groups and, therefore, the formation of the chelating side chain. 

Increasing the amount of the Pd precursor applied in the second modification step, resulted in 

a decreasing specific surface area (SBET = 90 - 65 m2/g). This fact indicated that with 
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2. Immobilization of Pd complexes on MIL-53-NH2(Al) 

increasing amount of the Pd precursor either the amount or the nature of the immobilized 

species in the porous structure were different, which will be discussed later on employing 

atomic absorption and X-ray absorption spectroscopy. Based on the results from those studies, 

the materials were named MIL-53-NH2(Al)-Mal-Pd, when 0.25 eq of the palladium precursor 

were applied, and Pd@MIL-53-NH2(Al), when 1.5 eq were used. 

Table 1: Specific surface areas and micropore volumes of MIL-53-NH2(Al) and the modified framework  
materials obtained by nitrogen physisorption measurements. 

sample 
SBET 

[m²/g] 
micropore volume 

[cm³/g] 

MIL-53-NH2(Al) 980 0.39 
MIL-53-NH2(Al)-Mal 155 0.03 
MIL-53-NH2(Al)-Mal-Pd 90 0.01 
Pd@ MIL-53-NH2(Al) 65 0.01 

Atomic absorption spectroscopy of digested samples (Chapter 7.2.7) was used to determine 

the metal content of the different Pd-containing framework materials. The results revealed a 

metal content of 2.1 wt% to 2.4 wt% independent of the amount of Pd precursor (0.25 –

 1.5 eq) that was applied during the modification reaction. However, N2 physisorption 

measurements revealed a decreasing specific surface area with increasing amount of the Pd 

precursor. This led to the hypothesis that high precursor amounts (1.0 – 1.5 eq, e.g. 

Pd@MIL-53-NH2(Al)) resulted in the formation of undesired nanoparticles which blocked the 

pore system of the framework, whereas the requested immobilization of Pd complexes was 

achieved with small amounts of the precursor (0.25 – 0.5 eq, e.g. MIL-53-NH2(Al)-Mal-Pd). 

The hypothesis was tested using X-ray absorption spectroscopy (XAS) at the palladium 

K-edge (24350 eV). XANES (X-ray absorption near edge structure, Figure 7) spectroscopy 

supplies information about the oxidation state and geometry of the metal centers, whereas the 

local structure at the metal centers can be analyzed by EXAFS (extended X-ray absorption 

fine structure, Figure 8 and Figure 9). The analysis of the spectra revealed that, despite the  

similar Pd content, the Pd species incorporated in the frameworks were indeed different. 

Whereas the spectra for MIL-53-NH2(Al)-Mal-Pd showed oxidized Pd2+ species, Pd0 species 

were detected for Pd@MIL-53-NH2(Al). The fitting parameters and results of the EXAFS 

analysis for both MIL-53-NH2(Al)-Mal-Pd and Pd@MIL-53-NH2(Al) are listed in Table 2. 
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2. Immobilization of Pd complexes on MIL-53-NH2(Al) 

Figure 7: XAS spectra of MIL-53-NH2(Al)-Mal-Pd (left) and Pd@MIL-53-NH2(Al) (right) recorded at the 
palladium K-edge. 

Figure 8: Experimental (solid line) and theoretically fitted (dotted line) k3chi(k) of MIL-53-NH2(Al)-Mal-Pd 
(left) and Pd@MIL-53-NH2(Al) (right). 

Figure 9: Experimental (solid line) and theoretically fitted (dotted line) Fourier transformed EXAFS spectra 
of MIL-53-NH2(Al)-Mal-Pd (left) and Pd@MIL-53-NH2(Al) (right). 
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2. Immobilization of Pd complexes on MIL-53-NH2(Al) 

Table 2: Fitting parameters of the EXAFS analysis and results for the spectra of MIL-53-NH2(Al)-Mal-Pd 
and Pd@MIL-53-NH2(Al). 

sample 
Abs-
Bs[a] N(Bs)[b] R(Abs-Bs)[c] 

[Å] 
σ[d] [Å] 

R[e] [%] 
χ2

red
[f] 

Ef
[g] [eV] 

Afac[h] 

MIL-53-NH2(Al)-
Mal-Pd 

Pd-O 3.9±0.3 2.008±0.020 0.107±0.010 35.48 
18.9086*10-6 

7.108 
0.800 

Pd-C 2.6±0.2 2.842±0.028 0.112±0.011 

Pd-C 6.2±0.6 3.959±0.039 0.112±0.011 

Pd@MIL-53-NH2(Al) 

Pd-O 1.7±0.1 2.031±0.020 0.055±0.005 

25.27 
7.1680*10-6 

4.045 
0.547 

Pd-Pd 5.0±0.5 2.741±0.027 0.074±0.007 

Pd-C 8.4±0.8 2.898±0.028 0.112±0.011 

Pd-Pd 3.6±0.3 3.803±0.038 0.112±0.011 

Pd-Pd 5.3±0.8 4.745±0.047 0.084±0.008 

[a] Abs = X-ray absorbing atom, BS = backscattering atom; [b] number of backscattering atoms; [c] distance 
between absorbing and backscattering atom; [d] Debye–Waller-like factor; [e] fit index; [f] reduced χ2 error 
(considers the error to the experiment as well as the number of independent points and the number of varied 
parameters); [g] Fermi energy that accounts for the shift between theory and experiment; [h] amplitude reducing 
factor. 

In the first shell of MIL-53-NH2(Al)-Mal-Pd, 3.9 oxygen atoms were found at a distance of 

2.01 Å, which is consistent with a Pd2+ complex in a fourfold coordination. At a distance of 

2.84 Å and 3.96 Å, two carbon shells were found, which originated from the backbone of the 

ligands coordinated to the Pd2+ ions. No palladium shells could be fitted for this Pd-containing 

framework, which led to the conclusion that in case of low precursor amounts (0.25 - 0.5 eq) 

the immobilization of defined mononuclear Pd2+ complexes was indeed successful 

(MIL-53-NH2(Al)-Mal-Pd). 

For Pd@MIL-53-NH2(Al), only 1.7 oxygen atoms could be fitted in the first shell at a 

distance of 2.03 Å. Instead, three palladium shells were detected at 2.74 Å, 3.80 Å and 

4.75 Å, which corresponded well to distances found in metallic palladium[232, 243]. Therefore, 

high amounts of the palladium precursor (1.0 - 1.5 eq) obviously promoted the formation of 

Pd0 clusters, while only minor contributions of the targeted immobilized Pd2+ complexes were 

present (Pd@MIL-53-NH2(Al)). The size of the deposited clusters could also be estimated 

from the evaluated EXAFS data. Most particles were in the range of 10-15 atoms but minor 

contributions of bigger clusters with up to about 100 atoms were found as well. According to 

those results mostly small particles were formed, but there was a broad size distribution of the 

deposited Pd nanoparticles. 
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2. Immobilization of Pd complexes on MIL-53-NH2(Al) 

2.4. Catalytic tests: Heck-type C-C coupling reaction 

2.4.1. Parameter optimization 

Pd containing catalysts are well known to be highly active in liquid phase C-C coupling 
193, 235-236] reactions, such as the Heck reaction.[175, Thus, the modified metal-organic 

frameworks MIL-53-NH2(Al)-Mal-Pd and Pd@MIL-53-NH2(Al) were applied in the 

Heck-type coupling reaction of styrene with bromo- or chlorobenzene (Scheme 20).  

Scheme 20: Heck-type C-C coupling reaction of styrene and aryl halides. 

MIL-53-NH2(Al)-Mal-Pd with the targeted immobilized Pd2+ complexes was chosen for the 

optimization of the reaction parameters (temperature, reaction time, substrates, additives, 

bases). Under optimized conditions, MIL-53-NH2(Al)-Mal-Pd was then compared to both a 

conventional supported catalyst (Pd@Al2O3) and a homogeneously dissolved Pd2+ salt 

(Pd(II) acetate). 

First, MIL-53-NH2(Al)-Mal-Pd was employed as catalyst in the reaction of styrene with 

bromobenzene under standard conditions known from literature.[244] Thus, the substrates were 

dissolved in N-methyl-2-pyrrolidone (NMP) in the presence of a base (sodium acetate) and 

then heated to 140 °C for 3 h. The applied conditions resulted in a conversion of 96 % and a 

selectivity of more than 90 % towards trans-stilbene (TON = 8240, Table 3, entry 1). 

Next, the coupling of styrene with the less reactive substrate chlorobenzene was investigated. 

Due to the higher bond energy of C-Cl compared to the C-Br bond, the activation of 

chlorobenzene is more demanding. Since a longer reaction time might be necessary to achieve 

the conversion of chlorobenzene, the reaction time of the catalytic test was doubled to 6 h. 

However, no conversion of chlorobenzene and styrene could be observed at 140 °C without 

the addition of the promoting agent tetrabutylammonium bromide (TBAB). By adding an 

increasing amount of TBAB (2, 4 and 6 mmol) to the reaction mixture, a maximum 

conversion of 15 % and a yield of 11 % of trans-stilbene could be reached (Table 3, 

entries 3-6). As expected from literature reports[244], increasing the temperature from 140 °C 

to 160 °C and applying calcium hydroxide as a base instead of sodium acetate further 
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2. Immobilization of Pd complexes on MIL-53-NH2(Al) 

promoted the conversion of chlorobenzene. Applying the modified framework 

MIL-53-NH2(Al)-Mal-Pd as a catalyst under optimized conditions (160 °C, Ca(OH)2, 6 mmol 

TBAB, 6 h), a conversion of 22 % and a yield of 17 % of trans-stilbene were achieved 

(TON = 1740, Table 3, entry 8). 

Table 3: Results of the catalytic tests. 

catalyst substrate base 
temperature 

[°C] 
TBAB[d] 

[mmol] 
conversion 

[%] 
yield 
[%] 

TON 

1 MIL-Pd[a] PhBr[b] NaOAc 140 - 96 88 8240 
2 MIL-Pd[a] PhBr[b] NaOAc 160 - 98 88 8370 
3 MIL-Pd[a] PhCl[c] NaOAc 140 - 1 0 10 
4 MIL-Pd[a] PhCl[c] NaOAc 140 2 4 3 380 
5 MIL-Pd[a] PhCl[c] NaOAc 140 4 7 6 680 
6 MIL-Pd[a] PhCl[c] NaOAc 140 6 15 11 1120 
7 MIL-Pd[a] PhCl[c] NaOAc 160 6 7 6 610 
8 MIL-Pd[a] PhCl[c] Ca(OH)2 160 6 22 17 1740 
9 Pd@Al2O3 PhCl[c] Ca(OH)2 160 6 11 9 900 
10 Pd(II)acetate PhCl[c] Ca(OH)2 160 6 33 28 3100 

[a] MIL-53-NH2(Al)-Mal-Pd; [b] reaction conditions: bromobenzene (10 mmol), styrene (15 mmol), sodium 
acetate (12 mmol), Pd (0.01 mol%), N-methyl-2-pyrrolidone (NMP; 10 mL), 3 h; [c] reaction conditions: 
chlorobenzene (10 mmol), styrene (15 mmol), base (12 mmol), tetrabutylammonium bromide (TBAB), Pd 
(0.01 mol%), NMP (10 mL), 6 h; [d] tetrabutylammonium bromide. 

Under the same conditions only 11 % conversion and 9 % yield (TON = 900) were reached 

with a conventional supported catalyst Pd@Al2O3 (Table 3, entry 9). The reaction with the 

homogeneous Pd2+ salt (Pd(II) acetate) resulted in a slightly higher conversion and yield of  

33 % and 28 %, respectively (TON = 3100, Table 3, entry 10). 

2.4.2. Hot filtration test, palladium leaching and reusability 

In literature a “quasi-homogeneous” reaction mechanism is well-accepted for Heck-type C-C 

coupling reactions catalyzed by conventional heterogeneous catalysts, e.g. Pd@Al2O3 (see  

also Chapter 1.5.1).[235-239, 244] In this case, the reaction is exclusively catalyzed by 

homogeneous Pd complexes, which are dissolved from the supported bulk palladium. This 

reaction pathway should also be relevant for Pd@MIL-53-NH2(Al), which also contains 

palladium nanoparticles. Since XAS proved the immobilization of defined palladium 

complexes into MIL-53-NH2(Al)-Mal-Pd, the leaching of active species from the 

heterogeneous catalyst might not be necessary to achieve high conversion and, thus, might 
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2. Immobilization of Pd complexes on MIL-53-NH2(Al) 

result in a truly heterogeneous reaction pathway. To gather insight into the reaction 

mechanism and the leaching behavior of the catalyst materials, MIL-53-NH2(Al)-Mal-Pd, 

Pd@MIL-53-NH2(Al) and Pd@Al2O3 were applied in a hot filtration test. For the hot 

filtration test and the subsequent determination of the palladium leaching, the reaction of 

bromobenzene with styrene was chosen under optimized conditions (140 °C, NMP, sodium 

acetate, 3 h). To simplify catalyst separation, the catalysts were placed in a paper filter and 

removed from the reaction mixture after half an hour. The reaction was then resumed for 

another 2.5 h under the same reaction conditions and the results were compared to tests in 

which the catalyst was also put in a filter to exclude diffusion limitations but was not removed 

during the entire reaction time of 3 h. 

Figure 10: Results of the hot filtration test (light grey: after 0.5 h, dark grey: after 3 h) compared to a reaction 
with the catalyst (black); reaction conditions: NMP, 10 mmol bromobenzene, 15 mmol styrene, 
12 mmol sodium acetate, 0.01 mol% catalyst, 140 °C. 

Atomic absorption spectroscopy (AAS, Table 4) of the reaction mixture revealed that for 

MIL-53-NH2(Al)-Mal-Pd with the targeted immobilized Pd2+ complexes only 1.7 % of the 

palladium were leached. Hence, the leaching was significantly lower than for 

Pd@MIL-53-NH2(Al) and Pd@Al2O3 (2.8 % and 2.9 %, respectively), which both contained 

palladium nanoparticles. Nonetheless, applying MIL-53-NH2(Al)-Mal-Pd resulted in the 

highest conversion and selectivity of 87 % and 92 %, respectively, and, therefore, it was the 

most active catalyst of those investigated in the C-C coupling reaction of bromobenzene and 

styrene under optimized conditions (Table 4). The conversion reached with the catalysts 

Pd@MIL-53-NH2(Al) and Pd@Al2O3 after 3 h was only 59 % and 75 %, respectively, 

42 



 

     

      
 

 
 

 

  

 

 

   

  

 

 

    

  

 

   

  

   

2. Immobilization of Pd complexes on MIL-53-NH2(Al) 

although the amount of leached palladium was nearly twice the amount leached from 

MIL-53-NH2(Al)-Mal-Pd. 

Table 4: Results of the hot filtration test and for the leaching of palladium determined by atomic absorption 
spectroscopy. 

catalyst material 

conversion 
( hot filtration 

test, 0.5 h) 
[%] 

conversion 
(hot filtration 

test, 3 h) 
[%] 

conversion 
(3 h with 
catalyst) 

[%] 

Pd leaching 
[%] 

MIL-53-NH2(Al)-Mal-Pd 36 73 87 1.7 
Pd@ MIL-53-NH2(Al) 16 35 59 2.8 
Pd@Al2O3 41 72 75 2.9 

For all tested catalysts, the reaction still proceeded after filtration of the catalyst, indicating 

that leached palladium species take part in the catalytic reaction. However, while the 

conversions achieved by MIL-53-NH2(Al)-Mal-Pd and Pd@Al2O3 in the hot filtration test 

were identical, the results of the tests without catalyst removal revealed a significant 

difference between the two materials (Table 4 and Figure 10). For the conventional 

heterogeneous catalyst Pd@Al2O3, there was no obvious difference in conversion whether the 

catalyst was filtered off or remained in the mixture (72 % and 75 %, respectively), confirming 

the expected “quasi-homogeneous” pathway. In contrast, the conversion in the presence of 

MIL-53-NH2(Al)-Mal-Pd was considerably higher when the catalyst was retained in the 

mixture compared to the filtration experiment (87 % and 73 %, respectively). Those results 

strongly indicate additional contributions of a heterogeneous reaction pathway, thus, proving 

the hypothesis that immobilized complexes allow for an alternative reaction pathway. For 

Pd@MIL-53-NH2(Al) the conversion also increased when the catalyst remained in the 

reaction mixture for the entire time (59 % compared to 35 % in the hot filtration test). 

However, the overall activity of this catalyst was significantly lower than that of the catalyst 

with the targeted immobilized complexes as well as that of the conventional heterogeneous 

catalyst. 

The results of the hot filtration test clearly indicate contributions of a truly heterogeneous 

reaction pathway for MIL-53-NH2(Al)-Mal-Pd with defined immobilized Pd2+ complexes in 

addition to the “quasi-homogeneous” pathway established for conventional catalysts. 

Moreover, the analysis of the palladium leaching proved that leaching of palladium species 

could be minimized by immobilization of complexes in the metal-organic framework 

MIL-53-NH2(Al) (1.7 %) compared to conventional heterogeneous catalysts, which contain 
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2. Immobilization of Pd complexes on MIL-53-NH2(Al) 

supported palladium nanoparticles (2.9 %). To further diminish the leaching of active species, 

the synthesis of improved chelating ligands with stronger coordination to the palladium 

centers might be beneficial. 

MIL-53-NH2(Al)-Mal-Pd was applied in three consecutive coupling reactions of  

bromobenzene with styrene under standard conditions (140 °C, NMP, sodium acetate, 3 h). 

To ensure easy separation and reuse, the catalyst was again placed in a paper filter. Before the 

catalyst was applied in the successive reactions, it was thoroughly washed with NMP and 

dried over night at room temperature. Nonetheless the activity of MIL-53-NH2(Al)-Mal-Pd 

decreased significantly after the first run. While a conversion of more than 80 % was achieved 

in the first run, the conversion of the second and third run was only 22 %. This significant 

decrease might have been due to either deactivation of the catalyst or blocking of the filter by 

the base (sodium acetate), which did not dissolve completely in the reaction mixture, thus, 

hindering the conversion of bromobenzene. 

2.5. Conclusion 

Well defined mononuclear Pd2+ complexes were successfully immobilized at the amine 

functionalities of the metal-organic framework MIL-53-NH2(Al) via a two-step post-synthetic 

modification reaction using maleic anhydride and palladium acetate. X-ray diffraction 

patterns proved that under the applied synthetic conditions (ambient pressure, 90 °C) a 

crystalline material with MIL-53 structure could be prepared effectively and that the 

framework structure was retained throughout the modification process. ATR-IR verified that 

there were no residual precursor species in the pore system, thus, confirming that further 

purification steps, which have been reported in literature for solvothermal syntheses, were not 

necessary. An additional band in the ATR-IR spectra and the decreased specific surface area 

(from 980 m2/g to 90 m2/g) strongly indicated that the modification was successful. 

Evaluation of the XAS data confirmed that the targeted Pd2+ complexes were immobilized 

when low amounts (0.25 – 0.5 eq) of the palladium precursor were used in the second 

modification step. In contrast, too high amounts of the precursor (> 1 eq) mainly resulted in 

the additional formation of palladium nanoparticles in the pores of MIL-53-NH2(Al). 

The catalytic potential of the Pd-containing frameworks was demonstrated in a Heck-type 

C-C coupling reaction of styrene with bromo- or chlorobenzene, where they exhibited high 

activity. For the two tested aryl halides (bromo- and chlorobenzene, respectively) turnover 

numbers (TONs) of 8240 and 1740 could be achieved after 3 h and 6 h, respectively, under 

optimized reaction conditions. To get some insight into the reaction mechanism, a hot 
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2. Immobilization of Pd complexes on MIL-53-NH2(Al) 

filtration test was conducted and the leaching behavior of the catalysts was investigated. The 

results of the hot filtration tests strongly pointed towards contributions of a truly 

heterogeneous reaction pathway for the catalyst MIL-53-NH2(Al)-Mal-Pd with immobilized 

Pd2+ complexes, whereas in systems catalyzed by supported catalysts with nanoparticles 

exclusively homogeneously dissolved species were active. Additionally, the leaching of 

palladium species was significantly lower for the novel framework based catalyst (1.7 %) 

compared to that of a common heterogeneous reference catalyst (2.9 %).  

In summary, the new catalyst system MIL-53-NH2(Al)-Mal-Pd with immobilized 

mononuclear Pd2+ complexes was highly active via a partly heterogeneous reaction pathway, 

in which the leaching of palladium could be drastically minimized. 
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3. Immobilization of Pd complexes on mixed-linker MIL-53-NH2(x) 

3. Immobilization of Pd complexes on mixed-linker 
MIL-53-NH2(x)[245] 

3.1. Motivation 

The results presented in Chapter 2[242] demonstrate that MIL-53-NH2(Al)-Mal-Pd lost most of 

its high specific surface area throughout the modification process (decrease from 980 m²/g to 

90 m²/g). The drastic decrease was most probably caused by an exclusive modification of the 

amine groups on the outer surface resulting in blocking of the pore entrances.[242] 

Mixed-linker metal-organic frameworks based on MIL-53-NH2(Al) with a defined ratio of 

functionalized und unfunctionalized linker molecules are an interesting alternative starting 

material. Due to the lower amount of amine groups and, hence, possible sites for 

post-synthetic modification the immobilized complexes should be well distributed in the 

framework and pore blocking should be minimized. Due to the higher porosity expected for 

modified MIXMOFs, the active centers inside the framework should also be accessible. 

Moreover, the porous material with well distributed active centers might be more active in 

catalysis compared to the surface-functionalized material. 

In this Chapter the synthesis of mixed-linker frameworks MIXMIL-53-NH2(x) (where x is the 

percentage of amine groups), their post-synthetic modification and the characterization results 

(XRD, nitrogen physisorption, ATR-IR, 1H NMR, AAS, XAS) after each synthetic step are 

presented. In addition, the resulting MIL-53-NH2(x)-Mal-Pd were applied in Heck-type C-C 

coupling reactions of styrene and aryl halides and the results of those studies are highlighted. 

Furthermore, the characterization data and catalytic results are compared to the findings 

observed for MIL-53-NH2(100)-Mal-Pd[242] (Chapter 2). 

3.2. Synthesis and post-synthetic modification 

The mixed-linker frameworks MIL-53-NH2(x) (x = 40, 60, 80) were prepared at ambient 

pressure based on the synthetic protocoll developed for pure MIL-53-NH2(100)[242] 

(Chapter 2.2). “(x)” indicates the initial percentage of 2-aminobenzene-1,4-dicarboxylate 

(2-aminoterephthalate, ABDC) applied during the syntheses of the mixed-linker frameworks. 

The amount of DMF in the solvent mixture had to be increased for the syntheses of the 

mixed-linker MOFs in order to fully dissolve the linker molecules 

2-aminobenzene-1,4-dicarboxylic acid (2-aminoterephthalic acid, H2ABDC) and especially 
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3. Immobilization of Pd complexes on mixed-linker MIL-53-NH2(x) 

benzene-1,4-dicarboxylic acid (terephthalic acid, H2BDC). Heating the solution of the two 

linker molecules (defined ratio of 2:3, 3:2 or 4:1) and Al(NO3)3*9H2O in DMF/H2O to 90 °C 

for 24 h resulted in the formation of MIL-53-NH2(x). (Scheme 21).[245] 

Scheme 21: Synthesis of mixed-linker MIL-53-NH2(x)  (x =  40, 60,  80);  grey:  C, white:  H, red:  O, blue: N,  
yellow: Al. 

After thorough characterization of the starting materials defined Pd2+ complexes were 

immobilized at the amine groups of the mixed-linker metal-organic frameworks via  a 

two-step post-synthetic modification reaction (Scheme 22) previously optimized for pure 

MIL-53-NH2(100)[242]. In the first step maleic anhydride (4 eq) was applied to create a 

chelating side chain (MIL-53-NH2(x)-Mal), which could be employed to bind Pd2+ centers in 

a second step (0.25 eq, MIL-53-NH2(x)-Mal-Pd). 

Scheme 22: Two-step post-synthetic modification of MIL-53-NH2(x)  (x = 40,  60, 80) with,  first,  maleic  
anhydride and, second, palladium acetate; for clarity only one pore is shown; grey: C, white: H, 
red: O, blue: N, yellow: Al, green: Pd, brown: ligands. 

All novel materials were characterized in detail by X-ray diffraction (XRD), FT-IR 

spectroscopy (ATR mode), nitrogen physisorption measurements (BET) and nuclear magnetic 

resonance spectroscopy (1H NMR) after each synthetic step. In addition, X-ray absorption 

spectroscopy (XAS) and atomic absorption spectroscopy (AAS) were applied to analyze the 

Pd-containing frameworks. 
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3. Immobilization of Pd complexes on mixed-linker MIL-53-NH2(x) 

3.3. Characterization 

3.3.1. Mixed-linker MIL-53-NH2(x) 

The X-ray diffraction patterns of all materials were compared to prove that the structure of the 

mixed-linker frameworks is isoreticular to pure MIL-53-NH2(100). The diffractograms shown 

in Figure 11 confirmed the successful formation of crystalline MIXMILs with 

MIL-53-NH2(Al)_lt structure. Again, additional purification steps to remove residual acid 

molecules were not necessary. 

Figure 11: X-ray diffraction patterns of MIL-53-NH2(x) with x = 40 (purple), 60 (green), 80 (blue) compared 
to pure MIL-53-NH2(100) (black). 

To verify the linker ratio in the MIL-53-NH2(x) materials qualitatively, infrared spectra of all 

samples were recorded in the attenuated total reflectance mode (ATR-IR, Figure 12). 

Two prominent effects could be observed in those spectra. First, the intensity of the N-H 

stretching vibrations around ν = 3498 cm-1 and ν = 3387 cm-1 decreased when the amount of 

the amine-functionalized linker was reduced in the synthesis of the framework materials  

(Figure 12, left). Second, the wave numbers of the aromatic C-H bending vibrations of 

2-aminoterephthalate and terephthalate differed because of the changed substitution patterns 

at the aromatic rings, which resulted in two distinguishable signals for the two linker 

molecules (Figure 12, right). The band of 2-aminoterephtalate emerged at ν = 775 cm-1, while 

the signal at ν = 753 cm-1 originated from the terephthalate linker. 

49 



 

    
 

   

  

 

 

   

 

 

 

 

  

    

 

 

 

3. Immobilization of Pd complexes on mixed-linker MIL-53-NH2(x) 

Figure 12: ATR-IR spectra of  MIL-53-NH2(40) (purple), MIL-53-NH2(60) (green), MIL-53-NH2(80) (blue) 
and MIL-53-NH2(100) (black). 

Moreover, no band was detected around ν = 1680 cm-1, which would correspond to the C=O 

vibration of protonated H2BDC or H2ABDC, confirming again that no residual acid molecules 

were present in the pore system. The observed trends in the IR spectra strongly indicated the 

successful incorporation of both linker molecules into the mixed-linker metal-organic 

frameworks in defined ratio, while at the same time definitely excluding the presence of 

unreacted precursor species. 
1H NMR spectra of digested samples (Chapter 7.2.6) were recorded to quantify the linker 

ratio of 2-aminoterephthalate and terephthalate and to determine if the linker ratio applied 

during synthesis matched the ratio in the resulting materials. The mixed-linker 

MIL-53-NH2(x) materials are chemically very stable and, therefore, a concentrated solution of 

sodium hydroxide in D2O was required to dissolve the samples. Since ATR-IR spectra 

showed that there were no residual acid molecules present in the pores, the linker ratio 

determined by NMR could be directly correlated to the actual composition of the mixed-linker 

frameworks. The BDC linker molecules were visible as one singlet corresponding to four 

H-atoms and for ABDC two doublets and one singlet were observed, which each originated 

from one H-atom. The  1H NMR spectra of MIL-53-NH2(x) with x = 40, 60, 80 and the 

assignment of the signals are shown in Figure 13. The ratios found by integration of the NMR 

spectra matched the ratios applied during synthesis very well (Table 5), which confirmed that 

both linker molecules were incorporated into the MIL-53 structure with the same preference. 
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3. Immobilization of Pd complexes on mixed-linker MIL-53-NH2(x) 

Figure 13: NMR spectra of digested samples: MIL-53-NH2(40) (purple), MIL-53-NH2(60) (green) and 
MIL-53-NH2(80) (blue); the linker molecules BDC (top) and ABDC (bottom) and the assignment 
of the signals are shown on the right. 
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3. Immobilization of Pd complexes on mixed-linker MIL-53-NH2(x) 

Table 5: Theoretical and measured linker ratios.

material 
ABDC : BDC 

applied determined 

MIL-53-NH2(80) 4 : 1 3.7 : 1.0 
MIL-53-NH2(60) 3 : 2 2.8 : 2.0 
MIL-53-NH2(40) 2 : 3 2.0 : 3.0 

To prove a mainly homogeneous distribution of the two linker molecules in the framework 

structure and to exclude the formation of core-shell particles, three additional samples were 

prepared. For all three materials an initial linker ratio of 1:1 was applied during synthesis, but 

the reaction time was varied between 8 h, 24 h and 72 h. Whereas the crystallinity of the 

materials increased with longer reaction time (confirmed by XRD, Figure 14), evaluation of 

the 1H NMR spectra of the three samples confirmed a linker ratio of 1:1 independent of the 

reaction time. This observation supports the successful formation of mixed-linker 

metal-organic frameworks with homogeneously distributed amine-functionalized linker 

molecules rather than the formation of core-shell particles. Lescouet et al. previously 

published a more detailed study on the distribution of the different linker molecules in 

mixed-linker MIL-53(Al), where they also concluded a homogeneous incorporation of both 

linker molecules into the framework structure.[135] 

Figure 14: X-ray diffraction patterns of MIL-53-NH2(50) after a reaction time of 8 h (black), 24 h (blue) and 
72 h (green). 
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3. Immobilization of Pd complexes on mixed-linker MIL-53-NH2(x) 

Table 6: Micropore volumes of mixed-linker MIL-53-NH2(x) and pure MIL-53-NH2(Al) determined by 
nitrogen physisorption measurements. 

material 
MIL-53-NH2 

(100) 
MIL-53-NH2 

(80) 
MIL-53-NH2 

(60) 
MIL-53-NH2 

(40) 

micropore volume 
[cm3/g] 

0.39 0.17 0.22 0.30 

The micropore volumes of the mixed-linker MIL-53-NH2(x) derived from nitrogen 

physisorption measurements were lower than that obtained for pure MIL-53-NH2(Al) (Table 

6). The micropore volume of MIL-53-NH2(100) was 0.39 cm3/g whereas those of  the  

mixed-linker materials ranged from 0.17 cm3/g to 0.30 cm3/g (for MIL-53-NH2(80) and 

MIL-53-NH2(40), respectively). The decreased micropore volumes might be a consequence of 

a higher disorder or slightly reduced crystallinity in the frameworks caused by the 

introduction of the second linker. 

3.3.2. Modified MIL-53-NH2(x) 

Since the micropore volume of pure MIL-53-NH2(100) drastically decreased from 0.39 cm3/g 

to only 0.01 cm3/g throughout the modification process with maleic anhydride and 

palladium(II) acetate (Table 7, Figure 15 and Chapter 2.3)[242], the mixed linker metal-organic 

frameworks were applied in the two-step post-synthetic modification reaction under the same 

conditions[245]. 

Figure 15: Adsorption (filled symbols) and desorption (open symbols) isotherms of MIL-53-NH2(Al) 
throughout the modification process. 
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3. Immobilization of Pd complexes on mixed-linker MIL-53-NH2(x) 

1H NMR of the MIL-53-NH2(x) materials revealed that the targeted ratio of amine 

functionalities was indeed present in the MOFs (Table 5) and both linker molecules were 

uniformly distributed in the samples (Chapter 3.3.1). Hence, the immobilized Pd2+ complexes 

should also be well distributed in the porous structure and pore blocking should be minimized. 

Table 7: Micropore volumes of mixed-linker MIL-53-NH2(x) and pure MIL-53-NH2(100) before and after 
post-synthetic modification determined by nitrogen physisorption measurements. 

micropore volume [cm3/g] 

material 
unmodified 

maleic 
anhydride 

palladium 
acetate 

MIL-53-NH2(100) 0.39 0.03 0.01 
MIL-53-NH2(80) 0.17 0.08 0.08 
MIL-53-NH2(60) 0.22 0.20 0.10 
MIL-53-NH2(40) 0.30 0.12 0.11 

Nitrogen physisorption measurements of modified MIL-53-NH2(x) were performed to 

corroborate this hypothesis. The obtained data showed that in contrast to 

MIL-53-NH2(100)-Mal-Pd (0.01 cm3/g) the modified mixed-linker MOFs remained highly 

porous throughout the modification process (Table 7). The micropore volumes of 

MIL-53-NH2(x)-Mal-Pd increased from 0.08 cm3/g to 0.11 cm3/g with decreasing amount of 

amine functionalities (from x = 80 to x = 40). Thus, the micropore volumes of the modified 

MIXMILs are one order of magnitude larger than that of MIL-53-NH2(100)-Mal-Pd. 

Figure 16: Adsorption (filled symbols) and desorption (open symbols) isotherms of MIL-53-NH2(40) 
throughout the modification process. 
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3. Immobilization of Pd complexes on mixed-linker MIL-53-NH2(x) 

The adsorption and desorption isotherms for MIL-53-NH2(40) before and after each 

modification step are exemplarily depicted in Figure 16. The results explicitly illustrate that 

the blocking of the pore system was minimized, which was most probably due to the dilution 

and homogeneous distribution of the amine groups in the framework structure, thus, proving 

the advantages of applying the mixed-linker approach. 

The X-ray diffraction patterns of the modified mixed-linker materials revealed that the 

MIL-53 structure was retained throughout the modification process. A unique characteristic of 

frameworks based on MIL-53 is the so-called breathing effect[4, 51, 56], which describes the 

ability of the material to change its pore geometry depending on the interactions with guest 

molecules present inside the pore system. This behavior can be monitored by XRD and was 

also observed for the modified MIL-53-NH2(x)-Mal and MIL-53-NH2(x)-Mal-Pd materials 

(Figure 17). The reflections which describe distances perpendicular to the pores and are, thus, 

not affected by the breathing effect ((hkl) = (200) and (400)) remained at the same 2 

positions (2  = 9.28° and 18.62°, respectively), while a shift occurred for all other 

reflections. The same observation has been made for single-linker MIL-53-NH2(100)-Mal-Pd 

(Chapter 2.3). 

Figure 17: X-ray diffraction patterns of MIL-53-NH2(80) before (black) and after each modification step (1st 

step blue, 2nd step green). 

Hence, the observed shift provided qualitative proof of the successful modification of the 

mixed-linker frameworks based on MIL-53-NH2. Moreover, the position of the second 
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3. Immobilization of Pd complexes on mixed-linker MIL-53-NH2(x) 

reflection ((hkl) = (110), Table 8) might be a qualitative indication for the degree of 

modification. 

Table 8: Position of the reflection (hkl) = (110) in the diffractograms throughout the modification process 
of MIL-53-NH2(x) (x = 100, 80, 60, 40). 

x MIL-53-NH2(x) 

position of (hkl) = (110) [°] 

MIL-53-NH2(x)-Mal MIL-53-NH2(x)-Mal-Pd 

100 12.32 12.13 12.12 
80 12.33 12.22 12.10 
60 12.33 12.27 12.21 
40 12.31 12.28 12.23 

The ATR-IR spectra recorded for the modified mixed-linker metal-organic frameworks also 

clearly indicate the successful formation of the amide. First, the intensity of the N-H 

stretching vibrations (ν = 3498 cm-1 and ν = 3387 cm-1) decreased after modification of the 

amine group with maleic anhydride and, second, an additional band around ν ≈ 1700 cm-1 

(C=O vibration, Figure 18) confirmed the presence of the inserted carbonyl functionalities. 

NMR spectra of the digested materials were recorded for all samples after the reaction with 

maleic anhydride to quantify the modification degree of the amine groups. The spectra of 

MIL-53-NH2(x)-Mal (x = 40, 60, 80) are shown in Figure 19. The signals around 6.29 ppm 

and 5.78 ppm correspond to the two H atoms of the newly introduced side chain, and the 

integrated areas could be directly correlated to those of the three H atoms of the amine linker 

(around 7.47 ppm, 7.03 ppm and 6.96 ppm). 

Figure 18: ATR-IR spectra of MIL-53-NH2(40) (black) and MIL-53-NH2(40)-Mal (blue). 
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3. Immobilization of Pd complexes on mixed-linker MIL-53-NH2(x) 

Figure 19: NMR spectra of digested samples after modification with maleic anhydride: MIL-53-NH2(40)-Mal 
(purple), MIL-53-NH2(60)-Mal (green) and MIL-53-NH2(80)-Mal (blue). 
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3. Immobilization of Pd complexes on mixed-linker MIL-53-NH2(x) 

Table 9: Modification degree per amine group and overall modification degree of the frameworks after 
reaction with maleic anhydride as determined by NMR spectroscopy. 

degree of modification [%] 

per amine group of the framework 

MIL-53-NH2(100)-Mal 5 5 
MIL-53-NH2(80)-Mal 5 4 
MIL-53-NH2(60)-Mal 6 4 
MIL-53-NH2(40)-Mal 11 5 

The evaluation of all spectra revealed that the modification degree per amine group increased 

from 5 % to 11 % with decreasing degree of functionalization (from x = 100 to x = 40, 

respectively). However, the overall modification degree, which is the total number of 

modified linker molecules per framework, did not vary substantially and amounted to 

approximately 4 – 5 % (Table 9). Although the overall modification degree was comparable 

for all modified materials, the mixed-linker frameworks remained highly porous throughout 

the modification process, thus, proving that blocking of the pores could be minimized by 

applying the mixed-linker approach. Notably, a higher degree of modification of 

approximately 40 % has been reported in literature for MIL-53-NH2(Al)[163], which was 

probably achieved due to a 15 times higher amount of maleic anhydride used by these 

authors. Moreover, the authors did not report any specific surface areas or micropore volumes 

after the post-synthetic modification reaction. 

Although NMR studies revealed that the overall modification degree was independent of the 

amine content of the starting materials, smaller shifts of the reflection (hkl) = (110) (Table 8) 

were observed in the XRD patterns of the MIXMILs, which indicated a less extensive 

“breathing”. Additionally, the micropore volumes derived from N2 physisorption 

measurements were substantially higher for the mixed-linker MOFs indicating that pore 

blocking was prevented. Considering all the data suggested a homogeneous distribution of the 

introduced side chains in the mixed-linker metal-organic frameworks, whereas mostly the 

linker molecules at the pore entries were modified in pure MIL-53-NH2(100) resulting in a 

more pronounced change in the pore geometry. 

The palladium loading of the modified mixed-linker frameworks was determined by atomic 

absorption spectroscopy (AAS). Although the same amount of palladium acetate was applied 

for the modification (0.25 eq), the Pd content of the MIXMILs (x = 80 – x = 40) could be 

increased to 2.8 wt% - 3.1 wt% compared to a Pd loading of only 2.1 wt% for 

MIL-53-NH2(100)-Mal-Pd (Table 10). 
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3. Immobilization of Pd complexes on mixed-linker MIL-53-NH2(x) 

Table 10: Palladium loading of MIL-53-NH2(x)-Mal-Pd determined by AAS measurements. 

palladium loading 
[wt%] 

MIL-53-NH2(100)-Mal-Pd 2.1 
MIL-53-NH2(80)-Mal-Pd 2.8 
MIL-53-NH2(60)-Mal-Pd 2.9 
MIL-53-NH2(40)-Mal-Pd 3.1 

The increased palladium loading of MIL-53-NH2(x)-Mal-Pd compared to the pure material 

was in contrast to the similar overall modification degrees, found for all modified 

frameworks. This contradiction might be explained by the high porosity of the mixed-linker 

materials and, thus, the better accessibility of the chelating side chains inside the porous 

structure. Another possible explanation was the additional formation of undesired palladium 

nanoparticles, which would also have increased the palladium loading of the resulting 

materials. 

Since the nature of the palladium species immobilized in MIL-53-NH2(100) was strongly 

dependent on the synthetic conditions, the parameters optimized in this previous study[242] 

(Chapter 2.2 and 2.3) were applied for the synthesis of MIL-53-NH2(100)-Mal-Pd. Thus, low 

amounts of the palladium precursor (0.25 eq) were applied during the second modification 

step to prevent the formation of additional palladium nanoparticles and instead achieve 

immobilization of defined Pd2+ complexes. Because a modification degree of 40 % has been 

reported in literature for the modification of MIL-53-NH2(Al) with maleic anhydride[163], the 

amount of applied palladium precursor was calculated in regard to a theoretical value of 40 % 

of all linker molecules being modified. However, NMR spectra of the MIL-53-NH2(x)-Mal 

materials later revealed that the overall modification degree of the materials reported herein 

was only 5 %. Thus, the applied amount of the palladium precursor was equivalent to 2 eq 

instead of the assumed 0.25 eq. The excess of palladium precursor compared to chelating side 

chains might promote the additional deposition of undesired palladium nanoparticles on the 

porous frameworks. 

To exclude the possible formation of palladium nanoparticles and to affirm the successful 

immobilization of the targeted Pd2+ complexes, X-ray absorption spectra (XAS) were 

recorded at the Pd K-edge (24350 eV). Conclusions about the oxidation state and geometry of 

the metal centers can be gathered by XANES spectroscopy, and EXAFS analysis of the 

spectra provides information about their local environment. 
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3. Immobilization of Pd complexes on mixed-linker MIL-53-NH2(x) 

Figure 20: Normalized and self-absorption corrected X-ray absorption spectra of MIL-53-NH2(80)-Mal-Pd 
(blue), MIL-53-NH2(60)-Mal-Pd (green), and MIL-53-NH2(40)-Mal-Pd (purple). 

The XANES spectra of the three MIL-53-NH2(x)-Mal-Pd samples (Figure 20) all showed a 

double-peak structure characteristic for Pd2+[232], thus, indicating a successful immobilization 

of the targeted palladium complexes. 

Figure 21: Fourier-filtered EXAFS spectra (left) and corresponding Fourier-transformed functions (right) of 
the samples MIL-53-NH2(80)-Mal-Pd (blue), MIL-53-NH2(60)-Mal-Pd (green), and 
MIL-53-NH2(40)-Mal-Pd (purple); the theoretical fit is shown in grey. 
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3. Immobilization of Pd complexes on mixed-linker MIL-53-NH2(x) 

The EXAFS spectra of all modified mixed-linker MOFs also looked quite similar (Figure 21). 

Three different models were used for EXAFS analysis: the first model assumed the presence 

of mainly isolated Pd2+ centers, the second described large metallic palladium clusters and the 

third model was a mixture of the two. The results for the palladium-containing mixed-linker 

MOFs fitted with all three models are listed in Table 11. The R-factor, which represents the 

percental deviation between experiment and the theoretical fit, was used  to determine the  

quality of a fit as well as the corresponding model. 

The first model assuming isolated Pd2+ centers[242] with oxygen in the first shell at a distance 

of 2.01 Å and two carbon shells around 2.85 Å and 3.80 Å resulted in very high R-factors of 

27.49 % (MIL-53-NH2(40)-Mal-Pd), 35.86 % (MIL-53-NH2(60)-Mal-Pd) and 35.85 % 

(MIL-53-NH2(80)-Mal-Pd). The R-factors for the second model, which was used to describe 

metallic palladium clusters with oxygen in the first shell at 2.01 Å and two palladium shells at 

2.64 Å and 3.60 Å, were also high (21.06 % for MIL-53-NH2(40)-Mal-Pd, 21.93 % for 

MIL-53-NH2(60)-Mal-Pd and 22.57 % for MIL-53-NH2(80)-Mal-Pd). The third model, which 

combines the isolated Pd2+ centers and the palladium clusters, resulted in considerably smaller 

R-factors of 9.96 % (MIL-53-NH2(40)-Mal-Pd), 12.77 % (MIL-53-NH2(60)-Mal-Pd) and 

9.19 % (MIL-53-NH2(80)-Mal-Pd). Therefore, this mixed model was applied for the final 

EXAFS analysis of the Fourier transformed spectra. The structural parameters resulting from 

EXAFS analysis were identical within the experimental error for all three materials and the 

type and numbers of fitted shells as well as the distances obtained for the adjusted 

backscatterers were very similar. 

Four oxygen atoms, corresponding to the two carboxyl groups of the introduced chelating side 

group and two additional acetate or H2O ligands, could be fitted in the first shell between 

1.90 Å and 2.08 Å. Two shells corresponding to the carbon scaffold of the modified side 

chains were detected at distances around 2.89 Å and 3.95 Å. Those three shells in 

combination with the double-peak structure observed in the XANES spectra proved the 

successful immobilization of the targeted Pd2+ complexes into the mixed-linker frameworks. 

However, two additional palladium shells were found around 2.66 Å and 3.59 Å suggesting 

the presence of a few undesired palladium clusters. The low coordination numbers found in 

those two shells (Table 11) and a contraction in the Pd-Pd distances (2.66 Å and 3.59 Å) 

compared to metallic palladium (2.74 Å and 3.83 Å[232, 243]) strongly indicated that only very 

small particles were present in the modified frameworks. Furthermore, no reflections 

corresponding to metallic palladium particles could be detected by  XRD, which also  

supported this hypothesis. 
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3. Immobilization of Pd complexes on mixed-linker MIL-53-NH2(x) 

Table 11: Fitting parameters of the EXAFS analysis and results for the spectra of MIL-53-NH2(40)-Mal-Pd, 
MIL-53-NH2(60)-Mal-Pd and MIL-53-NH2(80)-Mal-Pd; parameters are shown for the three 
different models used for the fitting: isolated Pd2+ centers, small Pd clusters and a mixture of both. 

material 
fitting 
model 

Abs-
Bs[a] N(Bs)[b] R(Abs-Bs)[c] 

[Å] 
σ[d] [Å] 

R[e] [%] 
Ef

[f] [eV] 
Afac[g] 

MIL-53-
NH2(40)-
Mal-Pd 

isolated 
Pd2+ 

centers 

Pd-O 2.7±0.2 2.020±0.020 0.112±0.011 27.49 
-5.502 
0.6897 

Pd-C 1.0±0.1 2.861±0.028 0.032±0.003 
Pd-C 1.3±0.1 3.813±0.038 0.032±0.003 

Pd 
clusters 

Pd-O 3.0±0.3 2.027±0.020 0.112±0.011 21.06 
-6.405 
0.6145 

Pd-Pd 0.2±0.02 2.651±0.026 0.045±0.004 
Pd-Pd 0.2±0.02 3.612±0.036 0.039±0.003 

mixed 
model 

Pd-O 2.0±0.1 1.929±0.0192 0.067±0.006 

9.96 
-5.034 
0.4222 

Pd-O 1.8±0.1 2.077±0.0207 0.032±0.003 
Pd-Pd 0.2±0.02 2.670±0.0267 0.055±0.005 
Pd-C 2.0±0.2 2.894±0.0289 0.110±0.011 
Pd-Pd 0.5±0.05 3.592±0.0359 0.032±0.003 
Pd-C 2.0±0.2 3.941±0.0394 0.050±0.005 

MIL-53-
NH2(60)-
Mal-Pd 

isolated 
Pd2+ 

Pd-O 2.4±0.2 2.010±0.020 0.100±0.010 35.86 
-10.070 
0.7283 

Pd-C 1.2±0.1 2.849±0.028 0.032±0.003 
Pd-C 1.3±0.1 3.786±0.037 0.032±0.003 

Pd 
clusters 

Pd-O 2.7±0.2 2.007±0.020 0.100±0.010 21.93 
-9.617 
0.6641 

Pd-Pd 0.3±0.03 2.645±0.026 0.067±0.006 
Pd-Pd 0.3±0.03 3.580±0.035 0.032±0.003 

mixed 
model 

Pd-O 1.7±0.08 1.891±0.0189 0.032±0.003 

12.77 
-8.871 
0.3633 

Pd-O 2.7±0.2 2.048±0.0204 0.032±0.003 
Pd-Pd 0.7±0.07 2.658±0.0265 0.087±0.008 
Pd-C 1.5±0.1 2.852±0.0285 0.112±0.011 
Pd-Pd 1.0±0.1 3.587±0.0358 0.045±0.004 
Pd-C 3.1±0.3 3.956±0.0395 0.045±0.004 

MIL-53-
NH2(80)-
Mal-Pd 

isolated 
Pd2+ 

Pd-O 2.6±0.2 2.000±0.020 0.112±0.011 35.85 
-4.999 
0.6952 

Pd-C 1.4±0.1 2.839±0.028 0.032±0.003 
Pd-C 2.0±0.2 3.805±0.038 0.032±0.003 

Pd 
clusters 

Pd-O 3.7±0.3 2.006±0.020 0.112±0.011 22.57 
-5.686 
0.4860 

Pd-Pd 0.3±0.03 2.631±0.026 0.032±0.003 
Pd-Pd 0.5±0.05 3.612±0.036 0.050±0.005 

mixed 
model 

Pd-O 1.7±0.08 1.908±0.0190 0.050±0.005 

9.19 
-6.113 
0.4346 

Pd-O 2.0±0.2 2.072±0.0207 0.032±0.003 
Pd-Pd 0.3±0.03 2.640±0.0264 0.032±0.003 
Pd-C 2.0±0.2 2.914±0.0291 0.112±0.011 
Pd-Pd 0.7±0.07 3.605±0.0360 0.032±0.003 
Pd-C 2.0±0.2 3.963±0.0396 0.039±0.003 

[a] Abs = X-ray absorbing atom, BS = backscattering atom; [b] number of backscattering atoms; [c] distance 
between absorbing and backscattering atom; [d] Debye–Waller-like factor; [e] fit index; [f] Fermi energy that 
accounts for the shift between theory and experiment; [g] amplitude reducing factor. 
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3. Immobilization of Pd complexes on mixed-linker MIL-53-NH2(x) 

3.4. Catalytic tests: Heck-type C-C coupling reaction 

Since MIL-53-NH2(100)-Mal-Pd was a highly active catalyst for Heck-type C-C coupling 

reactions of aryl halides and alkenes (Chapter 2.4), the palladium containing MIXMOFs were 

applied in the same reactions (Scheme 23) under optimized conditions to evaluate their 

catalytic activity and compare them to MIL-53-NH2(100)-Mal-Pd. The higher specific surface 

area and the homogeneous distribution of the Pd2+ complexes in the MIXMOFs might have a 

beneficial influence on their catalytic behavior. 

Scheme 23: Heck-type C-C coupling reaction of aryl halides and styrene catalyzed by palladium-containing 
mixed-linker MOFs. 

3.4.1. Activity of MIL-53-NH2(x)-Mal-Pd 

Under the applied optimized conditions all catalyst materials exhibited comparable activity 

(conversion and TONs) in the C-C coupling reactions of bromo- or chlorobenzene with 

styrene independent of their amine content. 

Table 12: Results of the catalytic tests. 

catalyst substrate 
conversion 

[%] 
yield 
[%] 

selectivity 
[%] 

TON 

1 MIL-53-NH2(100)-Mal-Pd PhBr[a] 96 88 92 8240 
2 MIL-53-NH2(80)-Mal-Pd PhBr[a] 94 86 92 8710 
3 MIL-53-NH2(60)-Mal-Pd PhBr[a] 93 86 93 8370 
4 MIL-53-NH2(40)-Mal-Pd PhBr[a] 91 84 93 8630 
5 MIL-53-NH2(100)-Mal-Pd PhCl[b] 22 17 78 1740 
6 MIL-53-NH2(80)-Mal-Pd PhCl[b] 21 18 84 1980 
7 MIL-53-NH2(60)-Mal-Pd PhCl[b] 19 16 84 1730 
8 MIL-53-NH2(40)-Mal-Pd PhCl[b] 18 15 83 1690 

[a] reaction conditions: bromobenzene (10 mmol), styrene (15 mmol), sodium acetate (12 mmol), Pd 
(0.01 mol%), N-methyl-2-pyrrolidone (NMP; 10 mL), 140 °C, 3 h; [b] reaction conditions: chlorobenzene 
(10 mmol), styrene (15 mmol), calcium hydroxide (12 mmol), tetrabutylammonium bromide (TBAB; 6 mmol), Pd 
(0.01 mol%), NMP (10 mL), 160 °C, 6 h. 
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3. Immobilization of Pd complexes on mixed-linker MIL-53-NH2(x) 

In the reaction of bromobenzene with styrene not only the conversions (91 - 96 %, 

TONs = 8240 - 8710, Table 12, entries 1-4) but also the selectivity towards trans-stilbene 

(92 - 93 %) were quite similar for all applied catalysts. Although in the coupling of 

chlorobenzene with styrene the conversions (18 - 22 %, TONs = 1690 - 1980, Table 12, 

entries 5-8) were again comparable, the selectivity towards trans-stilbene was slightly higher 

for the mixed-linker catalysts (84 %, Table 12, entries 6-8) than the pure 

MIL-53-NH2(100)-Mal-Pd (78 %, Table 12, entry 5). 

The micropore volume determined for MIL-53-NH2(100)-Mal-Pd was very low (0.01 cm3/g), 

which strongly indicated that the active palladium complexes were mainly located at the outer 

surface of the MOF. In contrast, the micropore volumes of the mixed linker 

MIL-53-NH2(x)-Mal-Pd materials were significantly higher (0.08 - 0.11 cm3/g), thus, 

indicating a good distribution of the immobilized Pd2+ complexes in the porous structures. 

Since comparable TONs were observed for the palladium-containing mixed-linker MOFs and 

MIL-53-NH2(100)-Mal-Pd, the catalytic activity was not affected significantly by the higher 

micropore volumes and the homogeneous dispersion of the active centers in the mixed-linker 

frameworks. However, this observation also indicated that beside the Pd2+ complexes 

immobilized on the outer surface of MIL-53-NH2(x)-Mal-Pd (x = 80, 60, 40) also those inside 

the porous structure could be reached and were catalytically active in the C-C coupling 

reaction. In the future, additional catalytic studies with substrates of different sizes might 

provide valuable data to further validate this claim and to investigate a possible size- or 

shape-selectivity of the novel MOF-based catalysts. 

3.4.2. Hot filtration test 

As already discussed in Chapter 1.5.1 and Chapter 2.4.2 a “quasi-homogeneous” reaction 

mechanism is well-accepted for conventional heterogeneous catalysts in Heck-type C-C 

coupling reactions.[235-239, 244] In this case the reaction is catalyzed exclusively by Pd 

complexes dissolved from the supported bulk palladium. In the present study, the palladium 

species are already incorporated in the solid catalyst material as defined Pd2+ complexes. 

Consequently, the leaching of active species from the heterogeneous catalyst might not be 

required resulting in a truly heterogeneous reaction pathway. However, a minor amount of 

small palladium particles was also deposited in the porous structure (XAS), which might 

result in contributions of a “quasi-homogeneous” reaction pathway in the catalytic reaction. 

To test this hypothesis, hot filtration experiments were performed using the coupling reaction 

of bromobenzene and styrene under optimized conditions. In those tests, the catalyst was 
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3. Immobilization of Pd complexes on mixed-linker MIL-53-NH2(x) 

placed in a paper filter to enable easy separation of the powder. The catalyst was removed 

from the reaction after 30 min and the reaction was then resumed for another 2.5 h under the 

same conditions. Since the paper filter might cause external diffusion limitations, a control 

experiment was performed, in which the catalyst was also placed in a paper filter but was not 

removed from the reaction mixture for 3 h.  

Table 13: Results of the hot filtration test and the control experiment with catalyst. 

material 

conversion 
(hot filtration test 

after 0.5 h) 
[%] 

conversion 
(hot filtration test 

after 3 h) 
[%] 

conversion 
(3 h with catalyst) 

[%] 

MIL-53-NH2(40)-Mal-Pd 30 64 77 
MIL-53-NH2(60)-Mal-Pd 27 74 84 
MIL-53-NH2(80)-Mal-Pd 22 65 85 

In a previous study[242] (Chapter 2.4.2), a partly heterogeneous reaction pathway was observed 

for MIL-53-NH2(100)-Mal-Pd, which was in contrast to the widely accepted 

“quasi-homogeneous” reaction pathway known for conventional supported palladium 

catalysts. 

In the hot filtration tests performed with the palladium-containing mixed-linker MOFs 

conversion and yield still increased even after catalyst removal (Table 13 and Figure 22). 

Figure 22: Results of the hot filtration test (light grey: after 0.5 h, dark grey: after 3 h) compared to a reaction 
with the catalyst (black); reaction conditions: NMP, 10 mmol bromobenzene, 15 mmol styrene, 
12 mmol sodium acetate, 0.01 mol% catalyst, 140 °C. 
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3. Immobilization of Pd complexes on mixed-linker MIL-53-NH2(x) 

Nevertheless, the conversion reached in the hot filtration test (64 - 74 %) was considerably 

lower than the conversion achieved in the control experiment without catalyst removal 

(77 - 85 %, Table 13 and Figure 22). Those results verified the hypothesis that for the novel 

catalysts, based on MIXMILs, contributions of a truly heterogeneous reaction pathway are 

feasible. The remaining activity after the catalyst had been removed might be due to leached 

species originating from the minor amount of small palladium nanoparticles enclosed in 

MIL-53-NH2(x)-Mal-Pd or very small catalyst particles, which could not be held back by the 

paper filter. 

3.5. Conclusion 

Mixed-linker metal-organic frameworks based on MIL-53-NH2(Al) with defined ratios of 

terephthalate and 2-aminoterephthalate as linker molecules were successfully synthesized at 

ambient pressure. The X-ray diffraction patterns confirmed that the structure of the novel 

materials was isoreticular to that of pure MIL-53-NH2(Al). Moreover, 1H NMR spectra 

revealed that the linker ratio applied during synthesis and the ratio in the resulting MOFs 

matched very well, thus, confirming that both terephthalate and 2-aminoterephthalate linkers 

were built into the framework with the same preference. The formation of core-shell particles 

could be excluded by variation of the reaction time and analyses of the resulting materials. 

Although longer reaction times led to a higher crystallinity of the frameworks, the linker ratio 

was constant and in good agreement with the initially applied ratio. 1H NMR spectra of the 

frameworks modified with maleic anhydride uncovered that the modification degree per 

amine group steadily increased with declining percentage of 2-aminoterephthalate linkers in 

the MIL-53-NH2(x)-Mal samples (5 - 11 % for x = 100 and x = 40, respectively), but the 

overall modification degree was, indeed, the same for all frameworks (approx. 5 %). Nitrogen 

physisorption measurements confirmed that the mixed-linker frameworks modified via  a 

two-step PSM reaction with maleic anhydride and palladium acetate remained highly porous 

throughout the modification process. A micropore volume of up to 0.11 cm3/g could be 

retained for the modified MIXMILs, whereas MIL-53-NH2(100)-Mal-Pd almost entirely lost 

its porosity (0.01 cm3/g). Obviously, blocking of the porous structure, which was observed for 

the fully functionalized framework, could be effectively prevented by diluting the amine 

functionalities in the mixed-linker frameworks. Although the palladium content of the 

MIL-53-NH2(x)-Mal-Pd samples was considerably higher (around 3.0 wt%) compared to that 

of MIL-53-NH2(100)-Mal-Pd (2.1 wt%), EXAFS analysis confirmed the successful 
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3. Immobilization of Pd complexes on mixed-linker MIL-53-NH2(x) 

immobilization of defined Pd2+ complexes for all materials and only minor contributions of 

small palladium clusters were detected. 

All novel materials were applied as catalysts in Heck-type C-C coupling reactions of bromo-

or chlorobenzene and styrene, where they exhibited high activities (TON ≈ 8490 and 1790 for 

BrBz and ClBz, respectively). In the coupling of bromobenzene and styrene the selectivity 

towards trans-stilbene was similar for all catalysts (93 %), but the selectivity towards 

trans-stilbene in the coupling of chlorobenzene and styrene was slightly higher for the 

mixed-linker catalysts (84 %) compared to that established for MIL-53-NH2(100)-Mal-Pd 

(78 %). The similar activities found for all catalysts independent of their porosity indicated 

that the Pd2+ complexes in the pores of the mixed-linker catalysts could be reached due to the 

high micropore volumes, while for MIL-53-NH2(100)-Mal-Pd the complexes were 

immobilized exclusively on the outer surface. In addition, the results of the hot filtration test 

clearly showed contributions of a truly heterogeneous reaction pathway, comparable to that 

discovered for MIL-53-NH2(100)-Mal-Pd. 

The results of this study led to the conclusion that mixed-linker metal-organic frameworks 

are, indeed, interesting materials for the post-synthetic immobilization of defined metal 

complexes and subsequent application as heterogeneous catalysts in liquid phase reactions. 

Owing to their defined porous structure, they might also be promising for shape- or 

size-selective catalysis. To further reduce the leaching of active species, it might be 

advantageous to develop better ligand systems and to apply lower amounts of the palladium 

precursor in the modification reaction, thus, preventing the formation of nanoparticles. 
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4. Single- and mixed-linker DUT-5 with additional functional groups 

4. Single- and mixed-linker DUT-5 with additional 
functional groups[246] 

4.1. Motivation 

Applying the mixed-linker frameworks MIXMIL-53-NH2(x) (Chapter 3)[245] instead of  fully  

functionalized MIL-53-NH2(Al) (Chapter 2)[242] as starting materials for the immobilization of 

defined palladium complexes increased the specific surface area of the resulting catalyst 

materials from approx. 90 m²/g up to ca. 500 m²/g. However, the terephthalate linkers are 

relatively short resulting in a comparatively small pore diameter of < 1 nm for the 

mixed-linker MIL-53-NH2 materials. In order to broaden the scope of potential guest 

molecules for applications such as post-synthetic modification, catalysis and separation, it 

might be beneficial to design metal-organic frameworks with a larger pore diameter. This 

approach might allow the immobilization of more sophisticated metal complexes during 

post-synthetic modification, which could reduce the leaching of active species during 

catalysis. In addition, larger pore dimensions might also be advantageous for the conversion 

of bulkier substrates or for the application of the framework in size- and shape-selective 

catalysis. DUT-5[52] (Chapter 1.2.3) features high chemical and thermal stability, which is an 

important requirement for the application in modification reactions and catalysis. Moreover, 

DUT-5 is isoreticular to MIL-53-NH2(Al)_ht, but due to elongated linker molecules the pore 

dimensions are increased from 8.5 Å x 8.5 Å (MIL-53_ht[51]) to 22.7 Å x 19.2 Å (DUT-5[52]). 

This Chapter covers the synthesis of fully functionalized and mixed-linker metal-organic 

frameworks based on DUT-5 with biphenyl-4,4’-dicarboxylate linkers bearing an additional 

amine, alkyne, nitro or azide group. Moreover, an unfunctionalized DUT-5 was prepared as 

reference and for comparison with previous reports[52]. Extensive characterization data (XRD, 

nitrogen physisorption, ATR-IR, 1H NMR, TG, TG-IR) are presented and a number of 

post-synthetic modification reactions of MIXDUT-5-amine(50) and MIXDUT-5-alkyne(50) 

are introduced as “proof-of-principle” studies. 

4.2. Synthesis of functionalized biphenyl-4,4’-dicarboxylic acids 

Additional side groups are requested at the linker molecules to tune the properties of 

metal-organic frameworks and to utilize them for post-synthetic modification reactions. To 

69 



 

  

  

 

 

 

 

 

 

    
  

 

 

 

 

  

 

4. Single- and mixed-linker DUT-5 with additional functional groups 

synthesize functionalized metal-organic frameworks based on DUT-5, the organic linker 

biphenyl-4,4’-dicarboxylic acid had to be equipped with an additional functional group. 

The syntheses of the functionalized linker molecules were performed by the Bräse group 

(Institute of Organic Chemistry, KIT). Biphenyl-4,4’-dicarboxylic acid molecules with one 

additional amine (H2amineBPDC), alkyne (H2alkyneBPDC), nitro (H2nitroBPDC) or azide 

group (H2azideBPDC) were successfully prepared following the synthetic protocol depicted 

in Scheme 24. The strategy was developed in order to minimize the reaction steps and, thus, 

the four linker molecules could be prepared in a total of only eight steps. 

Scheme 24: Synthetic protocol of the multi-step preparation of functionalized biphenyl-4,4’-dicarboxylic acid 
molecules; reaction conditions are listed underneath the Scheme. 

4.3. Synthesis of functionalized DUT-5 and mixed-linker 
MIXDUT-5-functionality(x) 

Fully functionalized metal-organic frameworks based on DUT-5 (DUT-5-functionality) were 

synthesized at ambient pressure using a solution of the functionalized biphenyl-

4,4’-dicarboxylic acid molecules and Al(NO3)3*9H2O (ratio 0.54 mmol : 0.7 mmol) in 

N,N-dimethylformamide (DMF), which was heated to 120 °C for 24 h. An unfunctionalized 

DUT-5 was synthesized under the same reaction conditions at ambient pressure to compare it 

to DUT-5 reported in literature[52], which was synthesized under solvothermal conditions. The 

novel synthetic strategy at ambient pressure should enable easy scale-up, which is an 

important task regarding industrial applications and the provision of larger amounts of a 

material. 
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4. Single- and mixed-linker DUT-5 with additional functional groups 

Scheme 25: Synthesis of MIXDUT-5-functionality(x); x = 25, 50, 75; x represents the percentage of 
functionalized linker initially applied during synthesis. 

The mixed-linker MOFs (MIXDUT-5-functionality(x), x = 25, 50, 75) were prepared 

accordingly but with a defined mixture (1:3, 1:1, 3:1) of functionalized and unfunctionalized 

biphenyl-4,4’-dicarboxylic acid linkers (Scheme 25). “x” represents the percentage of the 

functionalized linker initially applied during synthesis. Moreover, a framework containing 

three different linker molecules was prepared using H2BPDC, H2amineBPDC and 

H2alkyneBPDC in a ratio of 1:1:1 (MIXDUT-5-amine(33)-alkyne(33)). Since all reactions 

were – in contrast to the solvothermal route reported in literature[52] – carried out at ambient 

pressure, scale-up should be simplified. 

4.4. Characterization 

All materials were thoroughly characterized by X-ray diffraction (XRD), FT-IR spectroscopy 

(attenuated total reflection (ATR) mode), nitrogen physisorption measurements (BET), 

thermogravimetric analysis (TG), thermogravimetric analysis coupled with FT-IR  

spectroscopy (TG-IR) and nuclear magnetic resonance spectroscopy (1H NMR). 

4.4.1. Functionalized single-linker DUT-5 

The XRD pattern of DUT-5 prepared at ambient pressure was in very good agreement with 

the diffractogram reported in literature[52] for a DUT-5 material synthesized under 

solvothermal conditions. Obviously the novel preparation route at ambient pressure was  

successful and resulted in a crystalline metal-organic framework with an identical structure. 
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4. Single- and mixed-linker DUT-5 with additional functional groups 

Figure 23: X-ray diffraction patterns of DUT-5 and of the fully functionalized materials based on DUT-5. 

The XRD patterns (Figure 23) also confirmed that the structures of the functionalized 

frameworks were isoreticular to DUT-5, hence, proving that the additional functionalities did 

not prevent the formation of the framework structure. The diffractogram of the 

azide-functionalized material was, however, less intense and the reflections were considerably 

broader compared to the other novel materials indicating a decreased crystallinity or 

amorphous contributions. 

To rule out the presence of residual precursor species or solvent molecules (e.g. free acid 

molecules or N,N-dimethylformamide) in the porous framework structure, ATR-IR spectra 

were recorded. The additional groups of the novel functionalized linker molecules should also 

be visible in the spectra confirming the successful incorporation of the functionalized linker 

molecules into the framework structure and the stability of the groups under the applied 

reaction conditions. No bands corresponding to the C=O vibrations of either free acid 

molecules or DMF (around 1680 cm-1) were observed in the IR spectra, which indicated that 

the porous structure should not be blocked by any guest molecules and that the functional 

groups should be accessible for post-synthetic modification reactions. 

In the spectra of the amine-functionalized framework (Figure 24, left) the N-H stretching 

vibrations were visible around ν = 3485 cm-1 and ν = 3380 cm-1 . The CC-H stretching 

vibration of the alkyne-functionalized material (Figure 24, right) had a comparatively low 

intensity but could still be observed around ν = 3290 cm-1. The characteristic bands of the 
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4. Single- and mixed-linker DUT-5 with additional functional groups 

nitro functionality around ν = 1533 cm-1 and ν = 1355 cm-1 were also visible in the 

corresponding spectrum (Figure 27). Since no residual acid molecules were detected in any of 

the spectra, the additional bands of the functional groups indeed originate from linker 

molecules incorporated into the framework structure. Those observations proved that the 

amine-, alkyne- and nitro-functionalized linker molecules were successfully built into the 

framework structures and that the functional groups were stable under the applied reaction 

conditions. 

Figure 24: ATR-IR spectra of mixed-linker MIXDUT-5-amine(x) (left) and MIXDUT-5-alkyne(x) (right) 
compared to the fully functionalized materials (red) and DUT-5 (black). 

However, a band originating from the N3 group in the azide-functionalized framework, 

expected at approximately 2100 cm-1, was not visible in the corresponding spectrum (Figure 

25, right). Evidently, the azide group was not stable under the given reaction conditions. 

Instead, an additional band was detected around ν = 3436 cm-1 (Figure 25, left) suggesting the 

transformation of the biphenyl-4,4’-dicarboxylic acid to the corresponding carbazole 

compound (Figure 25). Recently, the conversion of H2azideBPDC to the corresponding 

carbazole has also been published for the azide-functionalized metal-organic framework 

UiO-67 at temperatures > 80 °C.[91] The transformation into the carbazole compound resulted 

in a slightly bent molecule and a different linker geometry. Due to this changed linker 

geometry, the formation of a DUT-5-like structure might have been hindered, which would 

also explain the low crystallinity observed in the diffraction pattern of DUT-5-azide. Owing 

to the observed decomposition of the azide group, the synthesis of  DUT-5-azide was also  

performed at lower temperatures (80 °C and 100 °C) and with a lower Al precursor to linker 
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4. Single- and mixed-linker DUT-5 with additional functional groups 

ratio (1:1 instead of 1.40:1.07). However, a crystalline material with an isoreticular and 

porous structure could not be obtained under any of the probed reaction conditions. 

Figure 25: ATR-IR spectra of mixed-linker MIXDUT-5-azide(50) (blue) compared to the fully functionalized 
DUT-5-azide (green) and DUT-5 (black); formation of the carbazole is schematically shown 
beside the spectra. 

Nitrogen physisorption measurements were carried out to determine the specific surface areas 

and the accessible pore volumes of the fully functionalized samples (Table 14). In literature, a 

specific surface area of SBET = 1613 m²/g and a pore volume of 0.81 cm³/g have been reported 

for DUT-5.[52] Those values matched the specific surface area of SBET = 1880 m²/g and the 

micropore volume of 0.61 cm³/g established for DUT-5 in the present study very well. The 

combined results from XRD, ATR-IR and N2 physisorption measurements proved that the 

synthesis of DUT-5 at ambient pressure was successful without the need of solvothermal 

conditions in an autoclave, hence, simplifying the scale-up of the reaction. 

Table 14: Specific surface areas and micropore volumes of DUT-5 and fully functionalized DUT-5. 

material 
SBET 

[m2/g] 
micropore volume 

[cm3/g] 

DUT-5 1880 0.61 
DUT-5-amine 1570 0.58 
DUT-5-alkyne 1270 0.40 
DUT-5-nitro 550 0.15 
DUT-5-azide 540 0.16 
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4. Single- and mixed-linker DUT-5 with additional functional groups 

The specific surface areas and the micropore volumes detected for DUT-5-amine 

(SBET = 1570 m²/g) and DUT-5-alkyne (SBET = 1270 m²/g) were slightly lower but again 

confirmed that the formation of a porous DUT-5 structure with the functionalized linker 

molecules H2amineBPDC and H2alkyneBPDC was accomplished. The specific surface areas 

and micropore volumes measured for the fully azide- and nitro-functionalized frameworks 

were, however, significantly lower (SBET = 540 m²/g and SBET = 550 m²/g, respectively). 

Those results in combination with the lower crystallinity observed in the XRD patterns 

indicated that the generation of an extended three-dimensional structure was not successful 

with those linker molecules. 

Table 15: Thermal stability of functionalized single-linker frameworks based on DUT-5 in air. 

material thermal stability [°C] 

DUT-5 450 
DUT-5-amine 370 
DUT-5-alkyne 390 
DUT-5-nitro 340 
DUT-5-azide 370 

The thermal stability of the novel materials in air (Table 15) was investigated by 

thermogravimetric analyses (TG) and determined by considering the TG, DTG (first  

derivative of the TG curve) and DTA (differential thermal analysis) curves. A thermal 

stability of up to 450 °C was established for DUT-5, which matched the value reported in 

literature[52] (430 °C) very well. The thermal stabilities of the functionalized DUT-5 samples 

in air were slightly lower but still comparatively high (> 340 °C) for metal-organic 

frameworks. The fully functionalized frameworks were stable up to 340 °C (DUT-5-nitro), 

370 °C (DUT-5-amine and DUT-5-azide) and 390 °C (DUT-5-alkyne), respectively. 

4.4.2. Mixed-linker frameworks based on DUT-5 

The XRD patterns confirmed that the structures of the mixed-linker frameworks (Figure 26) 

were also isoreticular to DUT-5 confirming that the additional functionalities or the presence 

of various linker molecules did not prevent the formation of the framework structure. As has 

been observed for the single-linker material, the diffractogram of the azide-functionalized 

material was again less intense with broadened reflections suggesting a decreased crystallinity 

or amorphous contributions. 
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4. Single- and mixed-linker DUT-5 with additional functional groups 

Figure 26: X-ray diffraction patterns of DUT-5 and of the mixed-linker metal-organic frameworks based on 
DUT-5. 

ATR-IR spectra were recorded to rule out the presence of residual precursor species or 

solvent molecules (e.g. free acid molecules or N,N-dimethylformamide) in the porous 

framework structure and to confirm the successful incorporation of the functionalized linker 

molecules into the framework. No bands originating from the C=O vibrations of  either free  

acid molecules or DMF were observed in the IR spectra again indicating that the functional 

groups should be accessible for post-synthetic modification reactions. Due to the absence of 

residual acid molecules, the observed bands correlate to linker molecules incorporated in the 

framework structure. 

The N-H stretching vibrations of the amine group (around ν = 3485 cm-1 and ν = 3380 cm-1 , 

Figure 24, left), the CC-H stretching vibration of the alkyne-functionalized materials (around 

ν = 3290 cm-1, Figure 24, right) and the characteristic bands of the nitro functionality (around 

ν = 1533 cm-1 and ν = 1355 cm-1, Figure 27) were visible in the corresponding spectra. The 

observed bands confirmed that the amine-, alkyne- and nitro-functionalized linker molecules 

were successfully incorporated into the mixed-linker frameworks and that the functional 

groups were stable under the applied reaction conditions as expected from the results for the 

single-linker materials. 
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4. Single- and mixed-linker DUT-5 with additional functional groups 

Figure 27: ATR-IR spectra of mixed-linker MIXDUT-5-nitro(50) (green) compared to DUT-5 (black). 

No band originating from the N3 group in the azide-functionalized framework was visible in 

the corresponding spectrum (Figure 25) confirming again that the azide group was not stable 

under the given reaction conditions. The additional band corresponding to the carbazole 

around ν = 3436 cm-1 was also detected explaining the low crystallinity seen in the diffraction 

pattern of MIXDUT-5-azide(50). 

Nitrogen physisorption measurements were carried out to determine the specific surface areas 

and the accessible pore volumes of the mixed-linker samples (Table 16). The specific surface 

areas of the MIXDUT-5-amine(x) materials (x = 25, 50, 75) were in the range of  

SBET = 1600 m²/g to SBET = 1630 m²/g and, therefore, in between the values established for 

DUT-5 (SBET = 1880 m²/g) and the fully functionalized DUT-5-amine (SBET = 1570 m²/g). 

Obviously, the specific surface area could be tuned depending on the number of 

amine-functionalized linker molecules incorporated in the mixed-linker frameworks. 

Although a similar tendency was observed for MIXDUT-5-azide(50), MIXDUT-5-nitro(50) 

and MIXDUT-5-amine(33)-alkyne(33), the specific surface areas determined for 

MIXDUT-5-alkyne(25) and MIXDUT-5-alkyne(75) were considerably lower 

(SBET = 650 m2/g and SBET = 970 m2/g, respectively) than the values established for both 

single-linker MOFs. There is not yet an explanation for this inconsistent trend in the series of 

the alkyne-functionalized frameworks. The syntheses of MIXDUT-5-alkyne(x) (x = 25, 50, 

75) were repeated several times but nitrogen physisorption measurements of the different 

samples always resulted in comparable inconsistent values for the specific surface areas. 
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4. Single- and mixed-linker DUT-5 with additional functional groups 

Table 16: Specific surface areas and micropore volumes of MIXDUT-5-functionality(x) materials; x: amount 
of functionalized linker molecules applied in the synthesis in mol%. 

material 
SBET 

[m2/g] 
micropore volume 

[cm3/g] 

MIXDUT-5-amine(25) 1600 0.54 
MIXDUT-5-amine(50) 1630 0.58 
MIXDUT-5-amine(75) 1630 0.59 
MIXDUT-5-alkyne(25) 650 0.17 
MIXDUT-5-alkyne(50) 1350 0.42 
MIXDUT-5-alkyne(75) 970 0.29 
MIXDUT-5-nitro(50) 700 0.22 
MIXDUT-5-azide(50) 820 0.25 
MIXDUT-5-amine(33)- alkyne(33) 1630 0.56 

Table 17: Thermal stability of fully functionalized and mixed-linker frameworks based on DUT-5 in air. 

material thermal stability [°C] 

DUT-5 450 
MIXDUT-5-amine(25) 420 
MIXDUT-5-amine(50) 400 
MIXDUT-5-amine(75) 390 
DUT-5-amine 370 
MIXDUT-5-alkyne(25) 440 
MIXDUT-5-alkyne(50) 420 
MIXDUT-5-alkyne(75) 400 
DUT-5-alkyne 390 
MIXDUT-5-amine(33)-alkyne(33) 410 
MIXDUT-5-nitro(50) 380 
DUT-5-nitro 340 
MIXDUT-5-azide(50) 400 
DUT-5-azide 370 

The thermal stability of the materials could be tuned by introducing varying amounts of the 

functionalized linker molecules (Table 17). For the MIXDUT-5-amine(x) series (Figure 28), 

the thermal stability was steadily reduced from 420 °C to 390 °C (x = 25 and x = 75, 

respectively) with increasing amount of amine groups incorporated in the structure. A 

comparable trend has previously also been reported in literature for mixed-linker MOFs based 

on MIL-53(Al).[132] A similar behavior was observed for the alkyne-, nitro- and 

azide-functionalized DUT-5 samples as well as the MIXDUT-5-amine(33)-alkyne(33) 

framework containing three different linkers. The steady trend of the thermal stability 

78 



 

  

    

 

 

      
 

 

 

 

4. Single- and mixed-linker DUT-5 with additional functional groups 

depending on the theoretical number of functional groups in the frameworks is a qualitative 

proof for the actual incorporation of both linker molecules in the ratio that was initially 

applied during synthesis. 

Figure 28: Thermogravimetric analysis (top) and differential thermal analysis (bottom) of DUT-5 (black), 
DUT-5-amine (red) and MIXDUT-5-amine(x) carried out in air. 

Fourier-transformed infrared spectroscopy (FT-IR) was coupled with TG analysis to quantify 

the actual ratio of H2amineBPDC and H2BPDC linker molecules in the mixed-linker 

MIXDUT-5-amine(x) (x = 25, 50, 75) frameworks. The combustion of the linker molecules 

during TG analysis in air resulted in the formation of CO2, H2O and in case of the 

amine-functionalized linker molecules also NO2. 
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4. Single- and mixed-linker DUT-5 with additional functional groups 

Figure 29: Integrated area of the NO2 signal detected by TG-IR (left) and correlation of those areas to  the  
theoretical amine content in MIXDUT-5-amine(x) (x = 25, 50, 75), DUT-5-amine (red) and 
DUT-5 (black); dotted line added to guide the eye. 

Figure 30: Integrated area of the CO2 signal detected by TG-IR for MIXDUT-5-amine(x) (x = 25, 50, 75), 
DUT-5-amine (red) and DUT-5 (black). 

The NO2 signal detected by FT-IR (Figure 29, left) was integrated over the whole temperature 

range and could be directly related to the ratios of the amine-functionalized linker in the 

frameworks because no residual free acid molecules were present in the porous structure 

(ATR-IR). It was found that the areas steadily increased with increasing ratio of amineBPDC 

in the frameworks (Figure 29, right). Evidently, the linker ratio applied during synthesis and 
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4. Single- and mixed-linker DUT-5 with additional functional groups 

the ratio actually incorporated in the mixed-linker frameworks matched very well. In addition, 

the CO2 band in the spectra of the mixed-linker MIXDUT-5-amine(x) frameworks was also 

integrated and a shift to lower temperatures was observed for the maximum of the integrated 

peak area when the functionalization degree increased (Figure 30). This fact also corroborated 

the steady decrease of the thermal stability of the partially functionalized MOFs with 

increasing amine content. 

To further quantify the linker ratio in the different mixed-linker frameworks based on DUT-5, 
1H NMR spectra of digested samples were recorded. This method has previously been used to 

determine the linker ratio of terephthalate and 2-aminoterephthalate in mixed-linker 

MIL-53-NH2(x) and in that case the initially applied ratio and the actual ratio in the 

frameworks were in very good agreement.[245] Since no residual free acid molecules were 

present in the porous structure of the materials based on DUT-5 (ATR-IR), the linker ratio 

established by NMR was directly related to the linker ratio effectively incorporated in the 

framework. 

For MIXDUT-5-nitro(50) the 1H NMR spectrum (Figure 31) confirmed that both employed 

linker molecules (H2BPDC and H2nitroBPDC) were built into the framework structure with 

the same preference. For BPDC two doublets, which each corresponded to four H-atoms, 

were detected. One singlet and two doublets, each originating from one H-atom, and two 

doublets, each corresponding to two H-atoms, were found for nitroBPDC. Integration of the 

peaks revealed that the initial linker ratio and the ratio detected by NMR of the dissolved 

sample matched perfectly. 

Figure 31: NMR spectrum of dissolved MIXDUT-5-nitro(50), the linker molecules nitroBPDC (left) and 
BPDC (right) and the assignment of the signals. 
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4. Single- and mixed-linker DUT-5 with additional functional groups 

For the amine-, alkyne- and azide-functionalized MIXDUTs the quantification with NMR, 

however, proved difficult due to the strong overlap of the signals  of the different linker  

molecules in the aromatic region. Another issue might be the reaction of a small fraction of 

the amine groups with the solvent N,N-dimethylformamide, which has previously been 

observed in the synthesis of amine-functionalized UiO-67.[92] However, for 

MIXDUT-5-amine(x) the determination of the linker ratio was accomplished by TG-IR 

measurements. The signals in the spectra of the alkyne- and azide-functionalized materials 

could qualitatively be correlated to the different linker molecules and confirmed again that 

both linker molecules were present in the MIXDUT materials. 

4.5. Post-synthetic modification of functionalized DUT-5 

After thorough characterization MIXDUT-5-amine(50) and MIXDUT-5-alkyne(50) were 

applied in a number of post-synthetic modification reactions. In a previous study, the 

post-synthetic modification of MIL-53-NH2(Al) with maleic anhydride resulted in a drastic 

decrease of the specific surface area from 980 m2/g to 150 m2/g.[242] This drop could be 

minimized by applying mixed-linker MIL-53-NH2(x) frameworks as the starting materials in 

the modification process. In this case, the specific surface area after the reaction with maleic 

anhydride was still approximately 500 m2/g.[245] Post-synthetic modification of 

MIXDUT-5-amine(50) and MIXDUT-5-alkyne(50) should result in an even higher porosity 

after PSM owing to the longer linker molecules and the resulting increased pore diameter of 

the frameworks. Due to the larger pore diameter of the DUT-5 materials compared to the 

samples based on MIL-53, post-synthetic modification should also be feasible with more 

complex and bulkier substrates, thus, broadening the scope of PSM. Employing mixed-linker 

metal-organic frameworks based on DUT-5 instead of the fully functionalized framework 

further has the advantage of reducing the production cost since the synthesis of the 

functionalized linker molecules is expensive and time consuming. 

4.5.1. Post-synthetic modification of MIXDUT-5-amine(50) 

Maleic anhydride (MIXDUT-5-amine(50)-Mal), salicylaldehyde (MIXDUT-5-amine(50)-Sal) 

and 2-pyridinecarboxaldehyde (MIXDUT-5-amine(50)-Pyal) were chosen for the 

modification (Scheme 26) because they result in the formation of three different chelating 

ligands. In future studies, these introduced side chains might be utilized for the 

immobilization of defined metal centers to obtain novel single-site catalysts. 
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4. Single- and mixed-linker DUT-5 with additional functional groups 

Scheme 26: Post-synthetic modification of MIXDUT-5-amine(50) with maleic anhydride (top), 
salicylaldehyde (middle) and 2-pyridinecarboxaldehyde (bottom). 

Whereas MIXDUT-5-amine(50)-Mal has chelating side chains, which can bind metal ions via 

two oxygen atoms, MIXDUT-5-amine(50)-Sal bears one oxygen and one nitrogen atom and 

MIXDUT-5-amine(50)-Pyal can complex metal ions via two nitrogen atoms. The different 

coordinating sites of the introduced ligands most probably influence the strength of the bonds 

between the modified frameworks and the immobilized metal ions. Since leaching of active 

species is a problem that needs to be addressed for all heterogeneous catalysts, optimizing the 

chelating ligand, which connects the active centers to the porous framework, might be 

beneficial to minimize leaching. Moreover, the chelating ligands have varying geometries, 

which also might influence their ability to bind different metal ions. 

X-ray diffraction patterns of the three modified frameworks (Figure 32) confirmed that the 

structures were stable throughout the modification process under the given reaction conditions 

and that the materials remained highly crystalline. 
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4. Single- and mixed-linker DUT-5 with additional functional groups 

Figure 32: X-ray diffraction patterns of modified MIXDUT-5-amine(50)-mod and of MIXDUT-5-amine(50). 

The hypothesis that for MIXDUT-5-amine(50) the high specific surface area would be 

retained throughout the modification process was probed by nitrogen physisorption 

measurements (Table 18). For MIXDUT-5-amine(50)-Sal and MIXDUT-5-amine(50)-Pyal 

the specific surface area was barely affected (SBET = 1610 m2/g and SBET = 1600 m2/g, 

respectively), whereas a decrease from SBET = 1630 m2/g to SBET = 1200 m2/g was observed 

for the framework modified with maleic anhydride. 

Table 18: Specific surface areas and micropore volumes of modified MIXDUT-5-amine(50) compared to the 
starting material MIXDUT-5-amine(50). 

material 
SBET 

[m2/g] 
micropore volume 

[cm3/g] 

MIXDUT-5-amine(50) 1630 0.58 
MIXDUT-5-amine(50)-Mal 1200 0.43 
MIXDUT-5-amine(50)-Sal 1610 0.64 
MIXDUT-5-amine(50)-Pyal 1600 0.59 

However, the specific surface area of MIXDUT-5-amine(50) was only reduced by 

approximately 25 % after the modification with maleic anhydride, while MIL-53-NH2(40)[245] 

with smaller pores lost about 50 % of its porosity in the same reaction under equal 

modification conditions. Due to the preserved high specific surface areas, the formed 

chelating side chains should be accessible for the future immobilization of metal ions. 

Owing to the carbonyl group introduced into MIXDUT-5-amine(50)-Mal by the PSM 

reaction, an additional band around ν = 1690 cm-1 was visible in  the  ATR-IR spectrum. In  
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4. Single- and mixed-linker DUT-5 with additional functional groups 

contrast, no changes were observed in the spectra of MIXDUT-5-amine(50)-Sal and 

MIXDUT-5-amine(50)-Pyal. The intensity of the N-H stretching vibrations has already been 

very low in the starting material MIXDUT-5-amine(50) and, therefore, the accomplished 

modification could not be proven based on a reduction of the intensity of those bands. 

4.5.2. Post-synthetic modification of MIXDUT-5-alkyne(50) 

There are a few examples for the modification of alkyne groups in MOFs  applying a click  

reaction with an azide to form 1,2,3-triazole derivates.[166, 247] For a first test,  

MIXDUT-5-alkyne(50) was utilized as starting material in a post-synthetic copper catalyzed 

click reaction with 2-pyridine azide (MIXDUT-5-alkyne(50)-Pyaz, Scheme 27). 

Scheme 27: Post-synthetic modification of MIXDUT-5-alkyne(50) with 2-pyridine azide. 

However, the X-ray diffraction pattern revealed that the crystallinity of 

MIXDUT-5-alkyne(50)-Pyaz was considerably reduced indicating that the framework  

structure was not stable under the applied reaction conditions. This observation was further 

corroborated by the significant drop of the specific surface area to SBET = 250 m2/g after the 

modification. A possible reason for the insufficient stability of the framework under the given 

reaction conditions might be the basicity of 2-pyridine azide. Obviously, the reaction pathway 

for the post-synthetic modification of alkyne-functionalized metal-organic frameworks via 

click reactions has to be optimized to accomplish the stability of the framework during PSM. 

4.6. Conclusion 

Four biphenyl-4,4’-dicarboxylic acid molecules functionalized with an additional amine, 

alkyne, nitro or azide group, which have been prepared by the Bräse group (Institute of 

Organic Chemistry, KIT), were successfully applied as linker molecules in the synthesis of 

novel metal-organic frameworks based on DUT-5 under ambient pressure. The X-ray 

85 



    

  

 

 

 

  

 

   

   

  

 

   

  

 

     

    

 

 

4. Single- and mixed-linker DUT-5 with additional functional groups 

diffraction patterns confirmed that the functionalized MOFs were isoreticular to the targeted 

DUT-5 structure although the crystallinity of the azide-functionalized framework was very  

low. ATR-IR spectra verified that the amine, alkyne and nitro group were incorporated in the 

resulting materials and, therefore, stable under the applied reaction conditions. The band of 

the azide group was not visible, but an additional band was observed instead indicating the 

decomposition of the azide-functionalized biphenyl-4,4’-dicarboxylate to the corresponding 

carbazole. Due to this transformation, the linker molecule has a bent geometry, which was 

probably the reason for the low crystallinity of the resulting material. Nitrogen physisorption 

measurements revealed that DUT-5-amine and DUT-5-alkyne were highly porous (1570 m2/g 

and 1270 m2/g, respectively), while the specific surface area of the nitro-functionalized 

framework (550 m2/g) was lower. Thermogravimetric analyses proved that all four 

functionalized MOFs were stable in air up to at least 370 °C. 

Based on the synthetic route successfully employed for the fully functionalized materials, 

mixed-linker metal-organic frameworks were synthesized with a defined ratio of 

biphenyl-4,4’-dicarboxylate and the functionalized linker molecules. The benefit of this 

approach was the possibility to tune the properties of the frameworks depending on the 

number of functionalized linker molecules incorporated into the materials. For the 

amine-functionalized series, nitrogen physisorption measurements revealed a steady decrease 

of the specific surface area from 1880 m2/g to 1570 m2/g with increasing amine content. 

Moreover, the thermal stability of all novel materials could be increased by decreasing the 

percentage of the additional functionalities in the framework structure, which was detected by 

thermogravimetric analysis. The incorporation of the amine, alkyne and nitro groups into the 

MIXDUTs was qualitatively confirmed by ATR-IR spectroscopy, which also proved the 

absence of any residual precursor species in the pores (e.g. free  acids, DMF). For  

MIXDUT-5-nitro(50) the quantification of the linker ratio was achieved by 1H NMR 

spectroscopy. Integration of the corresponding signals verified that the linker ratio applied 

during synthesis and the actual ratio in MIXDUT-5-nitro(50) matched perfectly. The linker 

ratio in the amine-functionalized materials could be confirmed by thermogravimetric analysis 

coupled with FT-IR spectroscopy (TG-IR). The measurements proved that for the 

MIXDUT-5-amine(x) series the linker ratios in the framework materials were in very good 

agreement with the ratios initially employed during synthesis. The observations made for 

MIXDUT-5-nitro(50) and MIXDUT-5-amine(x) (x = 25, 50, 75) strongly indicated that 

H2BPDC as well as the functionalized linker molecules were incorporated into the framework 

structure with the same preference. 
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4. Single- and mixed-linker DUT-5 with additional functional groups 

MIXDUT-5-amine(50) was then applied in post-synthetic modification reactions with maleic 

anhydride, salicylaldehyde and 2-pyridinecarboxaldehyde. The diffraction patterns of the 

modified samples showed that the structure and crystallinity of the frameworks were retained 

throughout the modification process. Most importantly, the modified frameworks remained 

highly porous with specific surface areas ranging between 1200 m2/g for 

MIXDUT-5-amine(50)-Mal and 1600 m2/g for MIXDUT-5-amine(50)-Sal and 

MIXDUT-5-amine(50)-Pyal. Obviously, the pore blocking previously observed for 

MIL-53-NH2-Mal (150 m2/g) and mixed-linker MIL-53-NH2(50)-Mal (approximately 

500 m2/g) could be minimized by using mixed-linker frameworks based on DUT-5 with 

bigger pore dimensions. 

In summary, the straightforward synthesis of highly porous metal-organic frameworks based 

on DUT-5 with an additional functional group or chelating side chain was accomplished. Due 

to their defined structure and  properties, the novel materials are interesting materials for 

future applications, e.g. the immobilization of defined metal complexes, heterogeneous 

catalysis and gas separation/adsorption. 
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5. Bimetallic Cu-Ru-BTC 

5. Bimetallic Cu-Ru-BTC[248] 

5.1. Motivation 

Bifunctional materials are advantageous for applications in catalytic transformations, in which 

two different active centers are required. Additionally, also tandem reactions might be 

accessible by the introduction of a second functionality into a catalyst material, thus, 

simplifying the workup procedure. Cu-BTC[53] (also known as HKUST-1 or Cu3(BTC)2) is 

one of the best investigated metal-organic frameworks, which has been synthesized with a 

number of different framework metal centers (Chapter 1.2.4). Since the potentially 

unsaturated metal centers in the framework structure are accessible after removal of the 

solvent molecules coordinated to the Cu2+ centers, it is an interesting material for catalytic 

applications.[97, 102, 214, 217, 249] To introduce a second functionality into the framework 

structure, a second type of metal ion[140, 143] can be introduced. In this chapter the synthesis 

and thorough characterization (XRD, ATR-IR, ICP-OES, XAS, nitrogen physisorption, TG) 

of the novel bimetallic framework Cu-Ru-BTC, which is based on HKUST-1, are 

presented.[248] Ruthenium was chosen as second metal since it is a versatile metal for various 

catalytic applications[173, 250-252]. As a reference a pure Cu-BTC framework was synthesized 

under comparable reaction conditions. 

5.2. Synthesis and Composition 

Cu-Ru-BTC (Scheme 28) was prepared using Cu(NO3)2*3H2O and RuCl3*xH2O in a molar 

ratio of 4:1 and the organic linker molecule benzene-1,3,5-tricarboxylic acid (H3BTC) 

applying a direct preparation route at ambient pressure[248] similar to a synthesis which has 

previously been reported for pure Cu-BTC[97]. The reference Cu-BTC was prepared after the 

synthetic protocol described in literature.[97] 

89 



 

   

 

 

 

 

 

 

 

 

   

  

   

5. Bimetallic Cu-Ru-BTC 

Scheme 28: Schematic synthesis of Cu-Ru-BTC and targeted structure including Cu-Ru paddlewheels (left) 
and Cu-Cu paddlewheels (right); blue: Cu, green: Ru, grey: C, red: O, white: H. 

Optical emission spectrometry (ICP-OES, Table 19) revealed that only 3.2 wt% of ruthenium 

were incorporated compared to 23 wt% of copper. Those results correlated to a molar ratio for 

Cu:Ru of 11:1 instead of the targeted ratio of 4:1 and, therefore, the stoichiometric formula 

added up to Cu2.75Ru0.25(BTC)2*xH2O presuming that exclusively a structure based on 

HKUST-1 was formed. That means that around 8 % of the Cu2+ centers in the framework 

structure would have been substituted by Ru3+ centers. 

Table 19: Cu:Ru ratio in Cu-Ru-BTC according to ICP-OES measurements. 

wt% 

ruthenium 3.2 
copper 23.0 

5.3. Characterization 

In order to confirm the isoreticular structure and to exclude the formation of additional 

Ru-containing phases (e.g. clusters or nanoparticles), Cu-Ru-BTC was thoroughly 

characterized by X-ray diffraction (XRD), infrared (ATR-IR) and X-ray absorption 

spectroscopy (XAS). To further analyze the novel bimetallic framework, nitrogen 

physisorption measurements (BET) and thermogravimetric analysis (TG/DTA) were applied.  

90 



 

 

   

   

 

 

 

 

 

 

 

  

 

 

 

5. Bimetallic Cu-Ru-BTC 

5.3.1. Structure 

X-ray diffraction measurements were carried out to prove that the novel framework 

Cu-Ru-BTC was crystalline and isoreticular to pure Cu-BTC. The diffractograms (Figure 33) 

confirmed that the synthesis resulted in a metal-organic framework with the targeted 

HKUST-1 structure although the crystallinity of the bimetallic framework was slightly lower 

compared to that of the reference Cu-BTC. It is important to note that no additional phases 

were detected by XRD. This could either mean that a phase pure material was obtained, that 

the additional phases were amorphous or that the crystallites of other phases were too small to 

be detected by this method. 

Figure 33: X-ray diffraction patterns of Cu-Ru-BTC (green) and Cu-BTC (black). 

Infrared spectra (ATR-IR) were recorded to exclude the presence of residual precursor species 

(e.g.  H3BTC) in the pore system. The spectra of Cu-Ru-BTC and Cu-BTC (Figure 34) were 

almost identical and in both cases no additional band originating from free acid molecules 

(Figure 34, grey), which would be expected around ν = 1690 cm-1, could be detected. This 

observation indicated that the pore system solely contained solvent molecules, which can be 

removed by thermal activation and, hence, that the metal centers in the framework structure 

should be accessible. 
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5. Bimetallic Cu-Ru-BTC 

Figure 34: Infrared spectra of Cu-Ru-BTC (green), Cu-BTC (black) and H3BTC (light grey). 

X-ray absorption spectroscopy (XAS) was applied to determine the oxidation state of the 

metal centers as well as the geometry and composition of their coordination sphere. The 

spectra for Cu-Ru-BTC were recorded at the Cu and Ru K-edges (8979 eV and 22117 eV, 

respectively) and, as a reference, a spectrum of Cu-BTC was collected at the Cu K-edge. The 

evaluation of the spectra should reveal valuable information to confirm the incorporation of 

ruthenium ions into the HKUST-1 framework structure and to exclude the formation of 

additional phases such as Ru clusters or nanoparticles. 

XANES spectroscopy provides information about the oxidation state and coordination 

geometry of metal centers. The two spectra of Cu-Ru-BTC and Cu-BTC at the Cu K-edge 

(Figure 35, left) did not show a significant difference, which proved that the local chemical 

environment at the Cu2+ centers was almost identical. The small pre-edge peak at 8977 eV is 

characteristic for a quadrupole transition which indicated a Cu2+ oxidation state with a d9 

configuration.[26, 253-255] This interpretation is also supported by the 1s→4p+ ligand-to-metal 

charge transfer shake-down transition, which is visible as a weak shoulder at 8985 eV.[26, 253, 

256] 
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5. Bimetallic Cu-Ru-BTC 

Figure 35: Normalized X-ray absorption spectra of Cu–Ru-BTC (green) and Cu-BTC (black) at the Cu 
K-edge (left) and spectrum of Cu–Ru-BTC at the Ru K-edge (right). 

Figure 36: EXAFS spectra k3χ(k) (left) and the corresponding Fourier transformed functions (right) of 
Cu-BTC  (top) and Cu-Ru-BTC at  the  Cu  K-edge  (middle) and at  the  Ru K-edge (bottom); the 
theoretical fit is shown in grey. 

EXAFS analysis of the spectra provides information about the local structure at the metal 

centers. The coordination parameters obtained by fitting of the EXAFS data (Table 20) also 

confirmed the resemblance of the bimetallic framework and pure Cu-BTC (Figure 36, middle 

and top). At a distance of 1.95 Å the Cu2+ centers in both materials were coordinated by five 

oxygen atoms, which could be attributed to four coordinated carboxylate groups of four 
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5. Bimetallic Cu-Ru-BTC 

different BTC linker molecules and one solvent molecule, e.g. water. At a distance of 

approximately 2.64 Å the second copper ion of the paddlewheel structure was found for both 

Cu-Ru-BTC and Cu-BTC, which agreed very well with crystal structure analysis[53] reported 

in literature and data from previous EXAFS analysis of Cu-BTC[256]. 

For Cu-Ru-BTC an additional shell was found at 2.72 Å, which could be ascribed to a Cu-Ru 

shell containing approximately 0.1 ruthenium neighbors. Since ICP-OES revealed a Cu:Ru 

ratio of 11:1 (Table 19), that value matched the one derived from EXAFS analysis very well. 

Although the number of backscattering atoms was quite low, the shell is significant because 

the mismatch between experiment and theory (both the fit index R and the reduced error χ2
red) 

increased significantly without the Ru shell. The four carbon atoms of the carboxylate groups 

of the linker molecules were detected at a distance of approximately 2.85 Å, which again was 

in good agreement with crystal structure analysis[53]. Further carbon shells could not be 

distinguished, which was probably due to the higher noise level and the intrinsic 

backscattering properties of carbon as a light element. 

Table 20: Fitting parameters of the EXAFS analysis and results for the spectra of Cu-Ru-BTC at the Cu and 
Ru K-edges and Cu-BTC at the Cu K-edge. 

sample Abs-Bs[a] N(Bs)[b] R(Abs-Bs)[c] 

[Å] 
σ[d] [Å] 

R[e] [%] 
χ2

red
[f] 

Ef
[g] [eV] 

Afac[h] 

Cu-BTC 
Cu-Edge 

Cu-O 4.7 ± 0.2 1.946 ± 0.019 0.077 ± 0.007 28.48 
4.5141*10−6 

7.189 
0.7946 

Cu-Cu 1.1 ± 0.1 2.624 ± 0.026 0.102 ± 0.010 

Cu-C 3.3 ± 0.3 2.835 ± 0.028 0.074 ± 0.007 

Cu-Ru-BTC 
Cu-Edge 

Cu-O 4.9 ± 0.2 1.950 ± 0.019 0.077 ± 0.007 
31.27 

6.0317*10−6 

8.350 
0.7878 

Cu-Cu 1.3 ± 0.1 2.649 ± 0.026 0.112 ± 0.011 

Cu-Ru 0.1 ± 0.01 2.720 ± 0.027 0.081 ± 0.008 

Cu-C 5.6 ± 0.5 2.860 ± 0.028 0.112 ± 0.011 

Cu-Ru-BTC 
Ru-Edge 

Ru–O 3.9 ± 0.3 2.071 ± 0.020 0.032 ± 0.003 9.564 
1.4013*10−6 

−2.062 
0.4294 

Ru–Cu 1.1 ± 0.1 2.672 ± 0.026 0.089 ± 0.008 

Ru–C 4.1 ± 0.4 2.738 ± 0.027 0.112 ± 0.011 

[a] Abs = X-ray absorbing atom, BS = backscattering atom; [b] number of backscattering atoms; [c] distance 
between absorbing and backscattering atom; [d] Debye–Waller-like factor; [e] fit index; [f] reduced χ2 error 
(considers the error to the experiment as well as the number of independent points and the number of varied 
parameters); [g] Fermi energy that accounts for the shift between theory and experiment; [h] amplitude reducing 
factor. 
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5. Bimetallic Cu-Ru-BTC 

The edge energy of 22126 eV and the whiteline structure seen in the XANES spectrum  of  

Cu-Ru-BTC at the Ru K-edge (Figure 35, right) are characteristic for an oxidation state of 

Ru3+. The low ruthenium concentration and the resulting weak signal made Fourier filtering 

necessary for the spectrum taken at the Ru K-edge. The filtering was applied for distances 

between 1 Å and 3 Å. The untreated spectrum is shown in Figure 37, and the treated one is 

depicted in Figure 36, bottom left. Even after Fourier filtering, an EXAFS analysis (Figure 36, 

bottom) was only possible up to k = 10 Å−1 in χ(k). 

A shell with four oxygen atoms could be fitted at a distance of 2.07 Å, which was a slightly 

larger bond length than expected from the previous analysis for Cu at the Cu K-edge. The 

ionic radius of Ru3+ is  smaller  than that  of Cu2+ (0.82 Å compared to 0.87 Å)[257], which 

should have resulted in a shorter Ru-O bond length. In addition, the Cu-Ru distance derived 

from the Ru K-edge spectrum was slightly shorter (2.67 Å) than the one resulting from the Cu 

K-edge spectrum (2.72 Å). Both effects can most probably be attributed to the loss of 

resolution due to the smaller k-range that could be used for the fit because of the low signal to 

noise ratio. When the copper neighbors were replaced by a ruthenium shell in the fit, the error 

values (both the fit index R and the reduced error χ2
red) increased strongly. Thus, the 

additional formation of Ru-Ru paddlewheel structures or other Ru-containing phases, e.g. 

clusters or nanoparticles, could be excluded within the detection limit of the method. At a 

distance of 2.74 Å the four carbon atoms of the carboxylate groups of the linker molecules 

could be discerned, which matched the results at the Cu K-edge. Generally, the results of the 

EXAFS analyses of both the Cu and Ru K-edge matched very well. 

Figure 37: EXAFS spectrum of Cu-Ru-BTC before Fourier filtering recorded at the Ru-edge. 
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5. Bimetallic Cu-Ru-BTC 

The results presented in this chapter all confirmed that Cu-Ru-BTC crystallized in a structure 

isoreticular to HKUST-1, in which the Cu2+ centers in the paddlewheel units were partially 

substituted by Ru3+ ions (Scheme 28). 

5.3.2. Physical properties 

Nitrogen physisorption measurements were applied to determine the specific surface area, the 

micropore volume and, thus, the accessibility of the metal centers in the porous framework 

structure. The specific surface area determined for Cu-BTC (SBET: 1560 m²/g; Figure 38 and 

Table 21) matched the literature reports[53, 97, 100-101, 103] for HKUST-1 very well. However, the 

value established for Cu-Ru-BTC (570 m²/g; Figure 38 and Table 21) was significantly lower. 

Figure 38: Adsorption (filled symbols) and desorption (open symbols) isotherms of Cu-Ru-BTC (green) and 
Cu-BTC (black) obtained by nitrogen physisorption measurements. 

Table 21: SBET, SLangmuir and micropore volume of Cu-Ru-BTC and Cu-BTC calculated from nitrogen 
physisorption measurements. 

sample 
SBET 

[m²/g] 
SLangmuir 

[m²/g] 
micropore volume 

[cm³/g] 

Cu-Ru-BTC 570 710 0.18 
Cu-BTC 1560 1850 0.60 

A similar trend has been observed for the bimetallic framework Cu-Zn-BTC[140], where the 

specific surface area dropped to SBET = 830 m²/g, when a comparable amount of the second 

metal (Zn2+) was incorporated. This was explained by coordination defects at the Zn2+ centers 
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5. Bimetallic Cu-Ru-BTC 

and the resulting incomplete formation of 3D porosity. For Cu-Ru-BTC the larger size 

difference of the ionic radii between Cu2+ (0.87  Å[257]) and Ru3+ (0.82 Å[257]) compared to 

Zn2+ (0.88 Å[257]) and the counter ion, which is necessary to compensate the additional charge 

of Ru3+, might have increased the disorder in the framework structure and caused the reduced 

porosity. The XRD pattern of Cu-Ru-BTC already indicated a lower crystallinity of the 

bimetallic framework and, therefore, confirmed the presence of an increased number of defect 

sites in the structure. Nevertheless, the framework metal centers should be accessible and 

employable for catalytic applications. 

Thermogravimetric analysis (Figure 39) of Cu-Ru-BTC performed in air revealed a mass loss 

of approximately 15 wt% in the temperature range < 150 °C, which originated from water. In 

the same temperature range a mass loss of about 35 wt% of incorporated water was found for 

Cu-BTC. This observation also supported a reduced porosity of the bimetallic framework 

compared to pure Cu-BTC. Evaluation of the TG curves (Figure 39, solid line) revealed a 

slightly reduced thermal stability for Cu-Ru-BTC (265 °C compared to 290 °C for Cu-BTC). 

The shift of the minimum in the DTA curve (Figure 39, dotted line), which indicates the 

maximum rate of decomposition, from 310 °C for Cu-BTC to 290 °C for Cu-Ru-BTC also  

confirmed that the decomposition of the bimetallic framework started at slightly lower 

temperatures. 

Figure 39: Thermogravimetric analysis (solid line) and differential thermal analysis (dotted line) of 
Cu-Ru-BTC (green) and Cu-BTC (black). 
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5. Bimetallic Cu-Ru-BTC 

5.4. Conclusion 

In summary, a novel bimetallic metal-organic framework Cu-Ru-BTC was successfully 

synthesized applying mild reaction conditions (ambient pressure, 60 °C). X-ray diffraction 

measurements revealed that the framework structure was isoreticular to HKUST-1 and X-ray 

absorption spectroscopy confirmed that the Ru3+ centers were exclusively incorporated in the 

framework lattice, partially replacing the Cu2+ centers in the paddlewheel structure. ATR-IR 

spectroscopy further proved that no residual precursor species (e.g. free carboxylic acid 

molecules) were present in the pore structure. X-ray absorption spectroscopy excluded the 

undesired formation of additional Ru-containing phases (neither Ru-Ru paddlewheels nor Ru 

nanoparticles or clusters). Thermogravimetric analysis and nitrogen physisorption 

measurements revealed that the bimetallic framework Cu-Ru-BTC was stable up to 265 °C in 

air and featured a high specific surface area of 570 m²/g. The Cu:Ru ratio determined by 

ICP-OES and corroborated by XAS was approximately 11:1, which corresponded to the 

stoichiometric formula Cu2.75Ru0.25(BTC)2*xH2O. 

Due to its structure and physical properties Cu-Ru-BTC is considered an interesting 

metal-organic framework for future applications as bifunctional catalyst or for adsorption 

studies. 
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6. Final conclusion and outlook 

6. Final conclusion and outlook 

In the present thesis, the design of novel catalyst systems based on metal-organic frameworks 

was accomplished applying different synthetic concepts. 

The immobilization of defined Pd2+ complexes on amine groups in the metal-organic 

framework MIL-53-NH2(Al) (Chapter 2) as well as in mixed-linker MIL-53-NH2(x) 

(MIXMOF, Chapter 3) was achieved and the resulting materials were successfully probed for 

their activity in Heck-type C-C coupling reactions. A novel synthetic route at ambient 

pressure was developed and applied for the MOF preparation as an advancement of the 

established solvothermal synthesis. The new method has the benefit of enabling an easy 

scale-up, which is important for possible applications that require large amounts of the 

material. Moreover, X-ray diffraction patterns and IR spectra revealed that MIL-53-NH2(x)_lt 

materials without residual acid molecules in the pores were obtained directly via this new 

route. Therefore, elaborate purification of the materials, which has been reported in literature 

for materials prepared under solvothermal conditions, could be avoided. 1H NMR spectra of 

dissolved samples confirmed that the linker ratio employed in the synthesis of mixed-linker 

MIL-53-NH2(Al) and the actual ratio in the resulting materials were identical confirming that 

both linker molecules were incorporated in the structure with the same preference. Although 

longer reaction times increased the crystallinity of the materials (XRD), the composition 

remained unchanged (1H NMR), which proved the homogeneous distribution of the different 

linkers in the framework, while excluding the formation of core-shell particles. 

A two-step post-synthetic modification (PSM) reaction using first maleic anhydride and then 

palladium acetate was designed to immobilize defined mononuclear Pd2+ complexes on the 

amine groups in the framework structure. While the specific surface area of MIL-53-NH2(Al) 

drastically decreased throughout the modification process from SBET = 980 m2/g to 

SBET = 90 m2/g, this effect could be minimized for the mixed-linker frameworks 

(SBET = 500 m2/g for MIL-53-NH2(40)-Mal-Pd). At the same time, a higher palladium loading 

was achieved for the mixed-linker frameworks (approximately 3.0 wt% compared to 2.1 wt% 

for MIL-53-NH2(Al)-Mal-Pd). Obviously, the mixed-linker MOFs remained highly porous 

after the immobilization of the Pd2+ complexes due to the dilution of the amine groups in the 

material, thus, proving the benefits of combining the MIXMOF and PSM concepts. The 

incorporation of palladium was confirmed by atomic absorption spectroscopy (AAS) and the 

presence of defined complexes was proven by X-ray absorption spectroscopy (XAS). 

However, when high amounts of the palladium precursor were applied to test the maximally 
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6. Final conclusion and outlook 

achievable loading of defined Pd2+ complexes, the additional formation of undesired 

palladium nanoparticles was observed. This fact clearly illustrates the importance of 

parameter optimization during preparation and thorough characterization of the resulting 

materials. 

The Pd-containing MOFs were applied in Heck-type C-C coupling reactions of bromo- or 

chlorobenzene and styrene. Due to the strong C-Br and especially C-Cl bonds, it is demanding 

to activate those substrates. However, at 140 °C, full conversion (TON ≈ 8490) and a high 

selectivity towards stilbene (> 92 %) were achieved after 3 h with the MOF-based catalysts in 

the coupling of bromobenzene and styrene with only 0.01 mol% palladium. The catalysts 

were also remarkably active in the coupling of chlorobenzene and styrene. After 6 h at 160 °C 

a turnover number of TON ≈ 1790 was accomplished. Although the increased specific surface 

area of the modified mixed-linker MOFs did not have a beneficial influence on the coupling 

reaction of bromobenzene and styrene, in the coupling reaction of chlorobenzene the 

selectivity towards stilbene did increase significantly in the presence of the MIXMOFs (84 % 

compared to 78 % for MIL-53-NH2(Al)-Mal-Pd). 

To further improve those MOF-based catalysts, functionalized single- and mixed-linker 

frameworks based on DUT-5 were synthesized (Chapter 4). DUT-5 is isoreticular to 

MIL-53(Al)_ht but is constructed from elongated linker molecules 

(biphenyl-4,4’-dicarboxylate) leading to larger pore dimensions. Employing MOFs with 

larger cavities most probably broadens the scope and complexity of  substrates available  for  

post-synthetic modification and, ultimately, also for catalysis. To enable the modification of 

DUT-5, functionalized linker molecules bearing an additional amine, alkyne, nitro or azide 

group were synthesized by the Bräse group (Institute of Organic Chemistry, KIT). Those 

linkers were then employed in the preparation of single- and mixed-linker frameworks at 

ambient pressure which again facilitates an easy scale-up. XRD patterns and IR spectra of the 

amine-, alkyne- and nitro-functionalized materials confirmed the successful incorporation of 

those groups into single- and mixed-linker DUT-5 frameworks. Although a DUT-5-like 

structure with low crystallinity was formed in presence of the azide-functionalized linker, the 

azide group was not stable under the applied reaction conditions and the transformation into 

the corresponding carbazole was observed instead. A crystalline material isoreticular to 

DUT-5 could not be obtained with the azide-functionalized linker, even at milder reaction 

conditions. The porosity of the MIXDUT-5-amine(x) frameworks could be tuned by variation 

of the amine content, and the specific surface area steadily increased with decreasing number 

of amine groups. Although the thermal stability of all materials decreased after the 
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6. Final conclusion and outlook 

incorporation of additional groups, all functionalized metal-organic frameworks were stable to 

at least 340 °C in air. For MIXDUT-5-amine(x) (x = 25, 50, 75) and MIXDUT-5-nitro(50) the 

perfect match between the initially applied linker ratio and the linker ratio in the resulting 

MOFs could be confirmed by thermogravimetric analysis coupled with IR spectroscopy and 

by 1H NMR of dissolved samples, respectively. 

The post-synthetic modification of MIXDUT-5-amine(50) was accomplished with maleic 

anhydride, 2-pyridinecarboxaldehyde and salicylaldehyde in a “proof-of-principle” study. 

Although the specific surface area of MIXDUT-5-amine(50)-Mal slightly decreased, 

MIXDUT-5-amine(50)-Sal and MIXDUT-5-amine(50)-Pyal retained all of their porosity. 

Therefore, the benefits of applying functionalized metal-organic frameworks with extended 

pore dimensions in post-synthetic modification reactions could be confirmed. 

For future studies, the immobilization of a variety of different metal complexes in 

mixed-linker metal-organic frameworks based on MIL-53(Al) as well as on DUT-5 might be 

of interest. To give an example, manganese complexes could be utilized for a variety of  

aerobic oxidation reactions. In order to prevent the leaching of active species the chelating 

ligand needs to be tailored for each metal center individually. In addition, due to their defined 

pore structure the introduced MOFs might be attractive materials for size-selective catalysis, 

e.g. converting exclusively the smaller or linear substrates in a mixture of reagents. 

In another approach, the unsaturated Cu2+ framework metal centers in HKUST-1 were 

partially substituted by Ru3+ ions in a direct synthesis at ambient pressure, thus, creating a  

bimetallic metal-organic framework (Chapter 5). The novel material Cu-Ru-BTC has the 

stoichiometric formula Cu2.75Ru0.25(BTC)2*xH2O, which was determined by ICP-OES, and a 

crystalline structure that is isoreticular to HKUST-1 (XRD). The successful incorporation of 

the Ru3+ centers into the paddlewheel SBUs was proven by X-ray absorption spectroscopy, 

which also excluded the formation of additional undesired ruthenium phases, e.g. clusters or 

nanoparticles. Obviously, the synthesis of a new bimetallic framework Cu-Ru-BTC that is 

porous (SBET = 570 m2/g) and thermally stable in air up to 265 °C was successfully 

accomplished under mild reaction conditions. Those characteristics in combination with the 

unsaturated metal centers render Cu-Ru-BTC an interesting material for future studies on gas 

adsorption applications and catalysis (e.g. selective oxidation reactions). 
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7. Experimental details 

7. Experimental Details 

7.1. Materials 

7.1.1. Synthesis of MIL-53-NH2(Al) 

0.9660 g (5.33 mmol, 1 eq) 2-aminobenzene-1,4-dicarboxylic acid (aminoterephthalic acid, 

H2ABDC) were dissolved in 25 mL H2O and 20 mL N,N-dimethylformamide (DMF) at 90 °C 

under reflux. A solution of 2.0000 g (5.33 mmol, 1 eq) Al(NO3)3*9H2O in 5 mL H2O was 

added and the reaction mixture was stirred at 90 °C under reflux for 24 h. After filtration the 

material was washed with 3 x 10 mL DMF and 1 x 30 mL H2O. The sample was dried 

overnight at room temperature and then for 3 days at 130 °C in air atmosphere.  

7.1.2. Post-synthetic modification of MIL-53-NH2(Al) 

The framework was modified in a two-step post-synthetic modification reaction. 

1st step: modification with maleic anhydride: 4 mmol (4 eq) maleic anhydride were 

dissolved in 25 mL acetonitrile. 1 mmol (1 eq) MIL-53-NH2(Al) was suspended in the 

solution and the reaction mixture was heated under reflux to 80 °C for 24 h. After filtration 

the resulting material was washed with 5 x 20 mL acetonitrile, 1 x 20 mL 

N,N-dimethylformamide (DMF) and 1 x 20 mL H2O. The sample was dried overnight at room 

temperature and then for 3 days at 130 °C in air atmosphere.  

2nd step: modification with palladium acetate: The amount of Pd precursor was calculated 

in regard to the literature value of 40 % of the amino functions being successfully modified 

with maleic anhydride.[163] 0.1 - 0.6 mmol (0.25 – 1.5 eq) Pd(II) acetate were dissolved in 

12 mL N,N-dimethylformamide (DMF). 1.0 mmol (1.0 eq) MIL-53-NH2(Al)-Mal was 

suspended in the solution and the reaction mixture was heated to 60 °C for 4 h. After filtration 

the resulting material was washed with 3 x 12 mL DMF and 1 x 12 mL H2O. The sample was 

dried overnight at room temperature and then for 2 days at 130 °C in air atmosphere. 

7.1.3. Synthesis of MIXMIL-53-NH2(x) (x=40, 50, 60, 80) 

Mixed-linker metal-organic frameworks based on MIL-53-NH2(Al) containing 40 %, 50 %, 

60 % and 80 % aminoterephthalate were synthesized. 5.33 mmol of the linker molecules 

2-aminobenzene-1,4-dicarboxylic acid and benzene-1,4-dicarboxylic acid (terephthalic acid, 
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7. Experimental details 

H2BDC, ratios are listed in Table 22) were dissolved in 25 mL H2O and 50 mL DMF at 90 °C 

under reflux. A solution of 2.0 g (5.33 mmol) Al(NO3)3*9H2O in 5 mL H2O was added and 

the reaction mixtures were stirred under reflux for 24 h at 90 °C. After filtration the materials 

were washed with 3 x 25 mL DMF and 1 x 25 mL H2O. The samples were dried overnight at 

room temperature and then for 3 days at 130 °C in air atmosphere. 

Table 22: Ratios of aminoterephthalic acid and terephthalic acid applied in the synthesis of MIXMIL-53-

NH2(x). 

H2ABDC 
[%] 

H2ABDC 
[g] 

H2BDC 
[%] 

H2BDC 
[g] 

MIL-53-NH2(40) 40 0.3860 60 0.5310 
MIL-53-NH2(50) 50 0.4830 50 0.4430 
MIL-53-NH2(60) 60 0.5790 40 0.3540 
MIL-53-NH2(80) 80 0.7720 20 0.1770 

7.1.4. Post-synthetic modification of MIXMIL-53-NH2(x) (x=40, 50, 60, 80) 

The MIXMIL-53-NH2(x) were modified in a two-step post-synthetic modification reaction.  

1st step: modification with maleic anhydride: 4 eq maleic anhydride (based on the number 

of amine groups) were dissolved in 50 mL acetonitrile. 2 mmol of the MIXMIL-53-NH2(x) 

were suspended in the solution and the reaction mixtures were heated to 80 °C under reflux 

for 24 h. After filtration the resulting materials were washed with 5 x 20 mL acetonitrile, 

1 x 20 mL N,N-dimethylformamide (DMF) and 1 x 20 mL H2O. The samples were dried 

overnight at room temperature and then for 3 days at 130 °C in air atmosphere. 

2nd step: modification with palladium acetate: The amount of Pd precursor was calculated 

in regard to the literature value of 40 %[163] of all linkers being successfully modified with 

maleic anhydride. 0.15 mmol (0.25 eq per modified linker) palladium(II) acetate were 

dissolved in 20 mL DMF. 1.5 mmol (1 eq) of the modified MIXMIL-53-NH2(x) was 

suspended in the solution and the reaction mixtures were heated to 60 °C for 4 h. After 

filtration the resulting materials were washed with 3 x 20 mL N,N-dimethylformamide (DMF) 

and 1 x 20 mL H2O. The samples were dried overnight at room temperature and then for 3 

days at 130 °C in air atmosphere. 
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7. Experimental details 

7.1.5. Synthesis of functionalized DUT-5 

0.54 mmol of the functionalized biphenyl-4,4’-dicarboxylic acid molecules (see Table 23) 

were dissolved in 20 mL N,N-dimethylformamide (DMF) at 120 °C. A solution of 0.2600 g 

(0.70 mmol) aluminum nitrate nonahydrate (Al(NO3)3*9H2O) in 5 mL DMF was added. The 

reaction mixture was stirred for 24 h under reflux at 120 °C. After filtration the metal-organic 

frameworks were washed with 3 x 25 mL of DMF and 1 x 25 mL of H2O. The solid was dried 

overnight at room temperature and then for 3 days at 130 °C. 

Table 23: Mass of linker molecules applied in the synthesis of functionalized DUT-5. 

linker molecule 
acronym 

mass 
[g] 

2-amino-[1,1'-biphenyl]-4,4'-dicarboxylic acid H2amineBPDC 0.1377 
2-ethynyl-[1,1'-biphenyl]-4,4'-dicarboxylic acid H2alkyneBPDC 0.1425 
2-azido-[1,1'-biphenyl]-4,4'-dicarboxylic acid H2azideBPDC 0.1516 
2-nitro-[1,1'-biphenyl]-4,4'-dicarboxylic acid H2nitroBPDC 0.1537 

7.1.6. Synthesis of mixed-linker MIXDUT-5-functionality(x) (x=25, 50, 75) 

0.54 mmol of the linker molecules (defined ratios of biphenyl-4,4’-dicarboxylic acid and 

functionalized biphenyl-4,4’-dicarboxylic acid, Table 24) were dissolved in 20 mL 

N,N-dimethylformamide (DMF) at 120 °C. 

Table 24: Ratios and masses of linker molecules applied in the synthesis of MIXDUT-5 frameworks. 

linker molecules 
ratio acronym mass 

[g] 

H2BPDC : H2amineBPDC 3 : 1 MIXDUT-5-amine(25) 0.0972 : 0.0344 
H2BPDC : H2amineBPDC 1 : 1 MIXDUT-5-amine(50) 0.0648 : 0.0688 
H2BPDC : H2amineBPDC 1 : 3 MIXDUT-5-amine(75) 0.0324 : 0.1032 
H2BPDC : H2alkyneBPDC 3 : 1 MIXDUT-5-alkyne(25) 0.0972 : 0.0356 
H2BPDC : H2alkyneBPDC 1 : 1 MIXDUT-5-alkyne(50) 0.0648 : 0.0712 
H2BPDC : H2alkyneBPDC 1 : 3 MIXDUT-5-alkyne(75) 0.0324 : 0.1069 
H2BPDC : H2nitroBPDC 1 : 1 MIXDUT-5-nitro(50) 0.0654 : 0.0776 
H2BPDC : H2azideBPDC 1 : 1 MIXDUT-5-azide(50) 0.0648 : 0.0758 
H2BPDC : H2amineBPDC : 
H2alkyneBPDC 

1 : 1 : 1 MIXDUT-5- amine(33)- 
alkyne(33) 

0.0432 : 0.0459 : 
0.0475 
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7. Experimental details 

A solution of 0.2600 g (0.70 mmol) Al(NO3)3*9H2O in 5 mL DMF was added. The reaction 

mixture was stirred for 24 h under reflux at 120 °C. After filtration the metal-organic 

frameworks were washed with 3 x 25 mL of DMF and 1 x 25 mL of H2O. The solid was dried 

overnight at room temperature and then for 3 days at 130 °C. 

7.1.7. Post-synthetic modification of mixed-linker MIXDUT-5(50) 

7.1.7.1. Synthesis of MIXDUT-5-amine(50)-Mal 

0.3922 g maleic anhydride (4 mmol, 8 eq) were dissolved in 25 mL acetonitrile and 0.2917 g 

(1 mmol, 1 eq) of freshly dried MIXDUT-5-amine(50) were suspended in the solution. The 

reaction mixture was then heated under reflux to 80 °C for 24 h. After filtration the modified 

framework was washed with 4 x 20 mL acetonitrile, 1 x 20 mL DMF and 1 x 20 mL H2O. 

The solid was dried overnight at room temperature and then for 3 days at 130 °C in air. 

7.1.7.2. Synthesis of MIXDUT-5-amine(50)-Sal 

1.2213 g salicylaldehyde (10 mmol, 20 eq) were dissolved in 25 mL toluene and 0.2917 g 

(1 mmol, 1 eq) of freshly dried MIXDUT-5-amine(50) were suspended in the solution. The 

reaction mixture was then heated under reflux to 100 °C for 72 h. After filtration the modified 

framework was washed with 5 x 25 mL toluene. The solid was dried overnight at room 

temperature and then for 3 days at 130 °C in air. 

7.1.7.3. Synthesis of MIXDUT-5-amine(50)-Pyal 

1.0711 g 2-pyridinecarboxaldehyde (10 mmol, 20 eq) were dissolved in 25 mL toluene and 

0.2917 g (1 mmol, 1 eq) of freshly dried MIXDUT-5-amine(50) were suspended in the 

solution. The reaction mixture was then heated under reflux to 100 °C for 72 h. After filtration 

the modified framework was washed with 5 x 25 mL toluene. The solid was dried overnight at 

room temperature and then for 3 days at 130 °C in air. 

7.1.7.4. Synthesis of MIXDUT-5-alkyne(50)-Pyaz 

0.0505 g 2-pyridine azide (0.42 mmol), 0.0208 g CuSO4*5H2O (0.08 mmol) and 0.0165 g 

sodium ascorbate (0.08 mmol) were dissolved in 20 mL DMF and 0.2962 g (1 mmol) of 

freshly dried MIXDUT-5-alkyne(50) were suspended in the solution. The reaction mixture 

was then kept at room temperature for 24 h. After filtration the modified framework was 
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7. Experimental details 

washed with 1 x 10 mL DMF, 5 x 10 mL H2O and 10 mL DCM. The solid was dried 

overnight at room temperature and then for 3 days at 130 °C in air. 

7.1.8. Synthesis of CuBTC 

1.1690 g Cu(NO3)2*3H2O (4.84 mmol) were dissolved in 25 mL H2O at 100 °C. A solution of 

0.4910 g benzene-1,3,5-tricarboxylic acid (H3BTC, 2.34 mmol) in 25 mL 

N,N-dimethylformamide (DMF) was added and the reaction mixture was stirred under reflux 

for 24 h at 100 °C. After filtration the resulting material was washed with 5 x 25 mL DMF 

and 5 x 25 mL H2O. The samples were dried overnight at room temperature and then for three 

days at 130 °C in air atmosphere. 

7.1.9. Synthesis of CuRuBTC 

0.9352 g Cu(NO3)2*3H2O (3.87 mmol) and 0.2580 g RuCl3*xH2O (38 w% Ru, 0.97 mmol) 

were dissolved at 60 °C in 25 mL ethanol. A solution of 0.4910 g benzene-1,3,5-tricarboxylic 

acid (H3BTC, 2.34 mmol) in 25 mL N,N-dimethylformamide (DMF) was added and the 

reaction mixture was stirred under reflux for 24 h at 60 °C. After filtration the resulting 

material was washed with 5 x 25 mL DMF and 5 x 25 mL ethanol. The samples were dried 

overnight at room temperature and then for three days at 130 °C in air atmosphere. 

7.2. Methods 

7.2.1. Powder X-ray diffraction (XRD) 

Powder X-ray diffraction measurements were performed using a Bruker D8 Advance. The 

samples were analyzed in the range 2  = 4 - 50° using Cu Kα radiation (1.54 Å). The step 

width was 2  = 0.0164° with a dwell time of 2 s. 

7.2.2. Nitrogen physisorption measurements 

Prior to the nitrogen physisorption the samples were activated for 20 h at 130 °C in vacuum. 

Measurements were carried out using a Belsorp mini II from BEL Japan and a multi point 

method. The specific surface area was determined using the BET method (Brunauer, Emmett, 

Teller) and the BEL Master software. The micropore volume was determined using the t-plot 

method. 
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7. Experimental details 

7.2.3. Attenuated total reflection infrared spectroscopy (ATR-IR) 

IR data were acquired using a FT-IR spectrometer Vertex 70 from Bruker Optics equipped 

with a Golden Gate Single Reflection ATR sample cell from Specac and a liquid nitrogen 

cooled MCT detector. The data were collected from 4500 cm-1 to 600 cm-1 and the arithmetic 

average of 400 measurements was taken for each spectrum. 

7.2.4. Thermogravimetric analysis (TG) 

Differential thermal analysis/thermogravimetry (DTA/TG) was performed with a NETZSCH 

STA 409C applying α-Al2O3 as crucible material and reference sample. The samples were 

heated under air flow from room temperature to 1000 °C with a heating rate of 5 K/min. 

7.2.5. Thermogravimetric analysis coupled with infrared spectroscopy 
(TG-IR) 

Thermogravimetric analysis (TGA) coupled with FT-IR online gas analysis was performed 

using a NETZSCH STA 449 F3 connected to a BRUKER TensorII. The samples were heated 

in 10 % O2/He (total gas flow: 50 mL/min) with 5 K/min from 50 °C to 1000 °C. FT-IR 

spectra were recorded during the temperature treatment using a BRUKER gas cell (TGA-IR) 

and a liquid nitrogen cooled MCT detector. Transfer line and gas cell were heated to 230 °C. 

7.2.6. Nuclear magnetic resonance spectroscopy (NMR) 

10 mg of the samples were digested in 0.5 mL NaOH/D2O. Spectra were recorded on a 

Bruker Ascend 400 MHz NMR spectrometer. Chemical shifts were referenced to internal 

solvent resonances and are reported relative to tetramethylsilane. 

7.2.7. Atomic absorption spectroscopy (AAS) 

For AAS measurements a Z-6100 Polarized Zeeman atomic absorption spectrometer from 

Hitachi was used. The Pd-containing solid frameworks were digested in 7 mL aqua regia and 

diluted with 93 mL distilled water. The catalyst materials as well as the solutions of the hot 

filtration test were analyzed. 
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7. Experimental details 

7.2.8. Inductively coupled plasma optical emission spectrometry (ICP-OES) 

ICP-OES was carried out using an Agilent 725 and argon was used as carrier gas and to create 

the plasma. The sample was dissolved in 5 mL nitric acid, 3 mL hydrochloric acid and 0.5 mL 

hydrogen peroxide using a 600 W microwave oven from Anton Parr. 

7.2.9. X-ray absorption spectroscopy (XAS) 

7.2.9.1.  MIL-53-NH2(Al)-Mal-Pd 

The XAS experiments were performed at HASYLAB (Hamburger Synchrotronstrahlungs-

labor) using beamline X1 (energy range: 7 – 100 keV) at DORIS III (4.45 GeV, 120 mA 

current) at DESY (Deutsches Elektronen-Synchrotron) in Hamburg (Germany). For the 

measurement at the Pd K-edge (24350 eV) a Si(311) double-crystal monochromator was used. 

All spectra were recorded in transmission mode using boron nitride pellets at ambient 

temperature. 

7.2.9.2. MIL-53-NH2(x)-Mal-Pd (x=40, 60, 80) 

XAS experiments were performed at the “Spline” beamline BM25A at ESRF (European 

Synchrotron Radiation Facility) in Grenoble (France). The measurements at the palladium 

K-edge (24350 eV) were carried out with a Si(311) double-crystal monochromator and a 

maximum synchrotron beam current of 200 mA and a ring energy of 6.0 GeV. Spectra of the 

undiluted powders placed between two Kapton® windows were recorded in fluorescence 

mode at ambient temperature. 

7.2.9.3. Cu-Ru-BTC and Cu-BTC 

XAS experiments were performed at the “Spline” beamline BM25A at the ESRF (European 

Synchrotron Radiation Facility) in Grenoble (France) and at the XAS beamline at ANKA 

(Angströmquelle Karlsruhe) in Karlsruhe (Germany). Two different double-crystal 

monochromators were used for the measurements at the copper K-edge (8979 eV) and at the 

Ru K-edge (22117 eV) (Si(111) and Si(311), respectively). The maximum beam current at 

both synchrotrons was 200 mA with a ring energy of 6.0 GeV at ESRF and 2.5 GeV at 

ANKA. The spectra at the copper K-edge were measured in fluorescence mode at ambient 

temperature using pellets with cellulose as a binder to avoid self-absorption effects. Due to the 

109 



  

 

   

  

 

 

  

 

 

 

 

   

 

     

 

 

   

  

  

 

  

 

7. Experimental details 

low ruthenium concentration the spectrum at the Ru K-edge was recorded using an undiluted 

sample. 

7.2.10. Gas chromatography (GC) 

For GC measurements a GC-2010 Plus from Shimadzu with a non-polar column 

(Rxi®-5Sil MS, length: 30 m, diameter: 0.25 mm, film thickness: 0.25 µm) and a FID 

detector was used. 1 μL of the sample was injected and vaporized at 250 °C. The column was 

heated from 50 °C to 280 °C at a rate of 10 K/min. 

7.3. Catalytic tests 

7.3.1. Heck reaction of bromobenzene and styrene 

In a typical experiment 10 mmol bromobenzene, 15 mmol styrene, 12 mmol sodium acetate 

and 2.3 mmol diethylen-glycol-dibutyl-ether as internal GC standard were dissolved in 10 mL 

N-methyl-2-pyrrolidone (NMP) in a sealed glass tube. 0.01 mol% of the catalyst (based on Pd 

in regard to bromobenzene) were suspended in the reaction mixture and the mixture was then 

heated to 140 °C for 3 h. 

For the hot filtration test the catalyst was filled into a paper filter, which was removed from 

the reaction mixture after 0.5 h. The reaction was then resumed for another 2.5 h. Samples for 

GC analysis were taken after 0.5 h and (0.5 + 2.5) h. 

7.3.2. Heck reaction of chlorobenzene and styrene 

In a typical experiment 10 mmol chlorobenzene, 15 mmol styrene, 12 mmol potassium 

hydroxide, 6 mmol tetrabutylammonium bromide (TBAB) and 2.3 mmol diethylen-glycol-

dibutyl-ether as internal GC standard were dissolved in 10 mL N-methyl-2-pyrrolidone 

(NMP) in a sealed glass tube. 0.01 mol% of the catalyst (based on Pd in regard to 

chlorobenzene) were suspended in the reaction mixture and the mixture was then  heated to  

160 °C for 6 h. 
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Abbreviations and symbols 

AAS atomic absorption spectroscopy 

ABDC 2-aminobenzene-1,4-dicarboxylate 

ATR-IR attenuated total reflection infrared 

BDC benzene-1,4-dicarboxylate 

BET Brunauer-Emmett-Teller method 

BPDC biphenyl-4,4’-dicarboxylate 

BPyDC 2,2’-bipyridine-5,5’-dicarboxylate 

BrBz bromobenzene 

BTC benzene-1,3,5-tricarboxylate 

ClBz chlorobenzene 

COMOC Centre for Ordered Materials, Organometallics and 

Catalysis 

DMF N,N-dimethylformamide 

DTA differential thermal analysis 

DUT Dresden University of Technology 

e.g. exempli gratia (for example) 

eq equivalent(s) 

EXAFS extended X-ray absorption fine structure 

FID flame ionization detector 

g gram 

GC gas chromatography 

h hour 

HKUST Hong Kong University of Science and Technology 

ICP-OES inductively coupled plasma optical emission 

spectrometry 

i.e. id est (that is) 

IRMOF isoreticular metal-organic framework 

KIT Karlsruhe Institute of Technology 

Mal maleic anhydride 

MIL Matériaux de l‘Institut Lavoisier 
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min minute 

MIXMOF mixed-linker metal-organic framework 

mL milliliter 

mmol millimole 

MOF metal-organic framework 

mol% mole percent 

NMP N-methyl-2-pyrrolidone 

NMR nuclear magnetic resonance 

NU Northwestern University 

PSM post-synthetic modification 

Pyal 2-pyridinecarboxaldehyde 

Pyaz 2-pyridine azide 

PyDC pyridin-3,5-dicarboxylat 

Sal salicylaldehyde 

SBET specific surface area determined by the BET method 

SLangmuir specific surface area determined by the Langmuir 

method 

SBU secondary building unit 

STA University of St. Andrews 

TBAB tetrabutylammonium bromide 

TBHP tert-butyl hydroperoxide 

TG thermogravimetric analysis 

TG-IR thermogravimetric analysis coupled with infrared  

TOF turnover frequency 

TON turnover number 

UHM University of Hamburg Material 

UMCM University of Michigan Crystalline Material 

XANES X-ray absorption near edge structure 

XAS X-ray absorption spectroscopy 

XPS X-ray photoelectron spectroscopy 

XRD X-ray diffraction 

B 



 

    

  

 

  

 

 

 

 

 

  

  

  

9. Appendix 

Acknowledgements 

I am very grateful to many people who supported me during my PhD work – not only 

scientifically but also personally. 

Foremost, I am much obliged to Priv.-Doz. Dr. Wolfgang Kleist, who took me on as his first 

PhD student in Karlsruhe and provided a very interesting and versatile topic for this thesis. I 

am extremely grateful for the fruitful discussions and the scientific support he offered. 

Furthermore, I would also like to thank Prof. Dr. Jan-Dierk Grunwaldt for giving me the 

possibility to complete this thesis at the Institute for Chemical Technology and Polymer 

Chemistry, “Chemical Technology and Catalysis”. I am also very grateful for the 

infrastructure (e.g. labs, instruments) he provided. 

Prof. Dr. Matthias Bauer and Roland Schoch are gratefully acknowledged for analyzing the 

XAS data and performing some of the experiments during their beamtimes. DESY and ESRF 

are acknowledged for providing beamtime and infrastructure. 

I would like to thank Prof. Dr. Stefan Bräse and Dr. Sylvain Grosjean for providing the 

functionalized biphenyl-4,4’-dicarboxylic acid molecules and for scientific discussions. 

Prof. Dr. Peter W. Roesky is gratefully acknowledged for providing the NMR spectrometer. I 

would also like to thank Tobias S. Brunner for performing the measurements and for scientific 

support. 

Prof. Dr. Claus Feldmann is acknowledged for supplying the instrument for TG analysis. 

Thanks to Dr. Silke Wolf for performing the measurements. 

I am very grateful to Angela Beilmann, who performed AAS and TG-IR measurements and 

Andreas M. Gänzler, who evaluated the TG-IR data. I would also like to thank Benjamin 

Mutz, Karin Walter, Konstantin Hengst and Hermann Köhler for performing XRD and 

ICP-OES measurements at Campus North. Thanks to Hans Weickenmeier, who always lent a 

helping hand in case of technical problems. 

There have been a number of diploma and bachelor students who contributed to the work 

presented in this thesis. Thanks to Julia Engelke, Yesim Murat and Voicu Muntean (diploma 

students) as well as Johannes Kotzel, Manuel Heinzelmann, Tobias Hofmann and Lukas 

Warmuth (bachelor students). 

C 



   

   

 

  

 

    

   

 

   

9. Appendix 

Additionally, I am grateful to the colleagues of the Grunwaldt group and the Deutschmann 

group for the good working atmosphere and the great times I had with them. Thanks for 

helping me out scientifically and for the fun we had during barbecues, group events or the 

Skiseminar. I would like to thank especially all those people I shared an office with – you 

know who you are. 

I am very grateful to Benjamin Mutz and Susanne Gotthardt, who sacrificed their spare time 

to revise this thesis scientifically and linguistically. 

Thanks to my family, who always supported me throughout my studies. I am especially 

obliged to my parents for their financial support, which made life so much easier. 

Finally, I would like to thank my friends, who never doubted me and supported my decisions. 

Thanks for making life fun and always making me laugh. 

D 



 
 

 

   

  

 

  

 

9. Appendix 

Teaching 

Laboratory course 

03/2013 – present Management of the laboratory course “Chemical Technology” 
for Bachelor students (Applied Chemistry) and Master students 
(Specialization subject) and supervision of experiments 

Supervised diploma theses 

[1] 03/2012 – 05/2012 

„Synthese und postsynthetische Modifizierung von Metal-Organic Frameworks auf 

Basis von MIL-53-NH2(Al) für Anwendungen in der Katalyse“, Julia Engelke 

[2] 05/2012 – 10/2012 

„Anwendung der Metal-Organic Frameworks STA-12 und STA-16 als Katalysatoren 

in der Oxidation von Alkoholen“, Yesim Murat 

[3] 10/2012 – 04/2013 

„Synthese und Charakterisierung der Metal-Organic Frameworks Cu-BTC und 

Cu-BTC-PyDC sowie deren Anwendung als Katalysatoren in der Synthese von 

N-Benzylidenbenzylamin“, Voicu Muntean 

Supervised bachelor theses 

[1] 04/2014 – 07/2014 

„Synthese, Charakterisierung und postsynthetische Modifizierung von 

funktionalisierten Metal-Organic Frameworks auf Basis von DUT-5“, Johannes Kotzel 

[2] 07/2014 – 10/2014 

„Metallorganische Netzwerke mit immobilisierten Mangankomplexen als  

Katalysatoren für die aerobe Epoxidierung von trans-Stilben“, Manuel Heinzelmann 

[3] 02/2015 – 05/2015 

„Bimetallische MOF mit CuBTC-Struktur für Anwendungen in der Katalyse“, 

Lukas Warmuth 

[4] 02/2015 – 05/2015 

„Synthese und Charakterisierung metallorganischer Gerüstverbindungen auf Basis von 

MIL-101“, Tobias Hofmann 

E 



 

  

  

  

 

 

 

 

 

 

  

    

 

 

 

 

 

 

    

 

 

 

9. Appendix 

Publications 

Parts of the results presented in this thesis have previously been published in the following 

journal articles and were adapted or reproduced by permission of The Royal Society of 

Chemistry and Wiley-VCH, respectively. 

[1] Synthesis and post-synthetic modification of amine-, alkyne-, azide- and nitro-

functionalized metal-organic frameworks based on DUT-5 

M. A. Gotthardt, S. Grosjean, T. S. Brunner, J. Kotzel, A. M. Gänzler, S. Wolf, S. Bräse 

and W. Kleist, Dalton Trans. 2015, 44, 16802-16809. 

[2] Synthesis and characterization of bimetallic metal–organic framework Cu–Ru-

BTC with HKUST-1 structure 

M. A. Gotthardt, R. Schoch, S. Wolf, M. Bauer and W. Kleist, Dalton Trans. 2015, 44, 

2052-2056. 

[3] Design of Highly Porous Single-Site Catalysts through Two-Step Postsynthetic 

Modification of Mixed-Linker MIL-53(Al) 

M. A. Gotthardt, R. Schoch, T. S. Brunner, M. Bauer and W. Kleist, ChemPlusChem 

2015, 80, 188-195. 

[4] Immobilization of Pd complexes onto metal-organic frameworks via post-synthetic 

modification – A new concept for the design of heterogeneous catalysts for Heck-

type coupling reactions 

M. A. Gotthardt, A. Beilmann, R. Schoch, J. Engelke and W. Kleist, RSC Adv. 2013, 3, 

10676-10679. 

[5] Salen-Based Coordination Polymers of Manganese and the Rare-Earth Elements: 

Synthesis and Catalytic Aerobic Epoxidation of Olefins 

A. Bhunia, M. A. Gotthardt, M. Yadav, M. T. Gamer, A. Eichhöfer, W. Kleist and 

P. W. Roesky, Chem. Eur. J. 2013, 19, 1986-1995. 

Oral presentations 

[1] “Design of Heterogeneous Catalysts via Post-Synthetic Modification of Mixed-

Linker Metal-Organic Frameworks” 

M. A. Gotthardt, W. Kleist 

25. Deutsche Zeolith-Tagung, March 6th to March 8th, 2013, Hamburg, Germany 

F 



 

 

 

 

 

 

 

 

  

  

 

 

  

  

 

    

 

  

 

   

 

 

  

 

 

 

 

 

 

9. Appendix 

Poster presentations 

[1] “Design of Metal-Organic Framework Catalysts Using Mixed Linkers and Post-

Synthetic Modification” 

W. Kleist, M. A. Gotthardt 

ICC 2012, July 1st to July 6th, 2012, Munich, Germany 

[2] “Post-Synthetic Modification of Mixed-Linker Metal-Organic Frameworks for 

Applications in Heterogeneous Catalysis” 

M. A. Gotthardt, J. Engelke, W. Kleist 

MOF 2012, September 16th to September 19th, 2012, Edinburgh, Scotland 

[3] “Post-synthetic immobilization of metal complexes on metal-organic frameworks 

– A new concept for the design of Pd catalysts for Heck reactions” 

M. A. Gotthardt, W. Kleist

Europacat XI, September 1st to September 6th, 2013, Lyon, France 

[4] “Aerobic Oxidation of Alcohols using the Metal-Organic Frameworks STA-12 

and STA-16 as Catalysts” 

M. A. Gotthardt, Y. Murat, W. Kleist 

26. Deutsche Zeolith-Tagung, February 26th to February 28th , 2014, Paderborn, 

Germany 

[5] “Single-Site Catalysts via Two-Step Post-Synthetic Modification of Mixed-Linker 

MIL-53(Al)” 

M. A. Gotthardt, W. Kleist 

6th International FEZA Conference, September 8th to September 11th, 2014, Leipzig, 

Germany 

[6] “Synthesis and characterization of a bimetallic metal-organic framework 

Cu-Ru-BTC with HKUST-1 structure” 

M. A. Gotthardt, R. Schoch, S. Wolf, M. Bauer, W. Kleist 

27. Deutsche Zeolith-Tagung, February 25th to February 27th , 2015, Oldenburg, 

Germany 

[7] “Aerobic epoxidation of olefins by salen-based coordination polymers of Mn and 

rare-earth elements” 

M. A. Gotthardt, A. Bhunia, M. Yadav, P. W. Roesky, W. Kleist 

48. Jahrestreffen Deutscher Katalytiker, March 11th to March 13th, 2015, Weimar 

G 


