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ABSTRACT

The aggressive technology scaling over the last several decades revolutionized the semicon-

ductor industry and made the computing systems indispensable part of our daily life. The

rapid downscaling leads to increased performance, improved cost/energy efficiency, and more

integrated features in modern digital integrated circuits. However, due to the increasing un-

reliability of devices manufactured in advanced technology nodes, it becomes harder for the

designers to guarantee the correct functionality of the chip in the field. Therefore, in order to

achieve cost-efficient reliable computing, it is crucial to take the reliability into consideration

alongside with the conventional area, power, and performance metrics in the design flow.

Radiation-induced soft error is one of the major reliability concerns in nanoscale technology

nodes. The soft error is generated when a radiation-induced particle, such as alpha particle

in packaging material or neutron particle from cosmic rays, strike a transistor. The particle

strike changes the status of a transistor for a very short period of time which might upset the

value stored in a sequential element (i.e., flip-flop or memory cell) or temporally change the

output of a combinational gate.

Although soft error has been widely studied over the last forty years, the further technology

downscaling significantly changes error generation and propagation behavior. With smaller

device geometries in advanced technology nodes, particles with smaller energy could cause soft

error. In addition, one particle might affect several adjacent cells due to high transistor density

resulting in Multiple Bit Upset (MBU) in sequential elements and Multiple Event Transient

(MET) in combinational gates.

According to recent studies, due to the increasing transistor count per chip (i.e. Moore’s

law), aggressive transistor downscaling, reduced operating voltage as well as the increasing

MBU/MET rate, the soft error sensitivity of integrated circuits has been exponentially grown

over the past years. As a result, studying radiation-induced soft errors in modern electronic

components and systems and exploiting appropriate modeling and mitigation techniques to

address them in cost-effective manner is of decisive importance.

This thesis addresses the challenge of soft error modeling and mitigation in nansoscale

technology nodes and pushes the state-of-the-art forward by proposing novel modeling, analyze

and mitigation techniques. The proposed soft error sensitivity analysis platform accurately

models both error generation and propagation starting from a technology dependent device

level simulations all the way to workload dependent application level analysis. The platform

employs a combination of empirical models at the device level, analytical error propagation

at logic level and fault emulation at the architecture/application level to provide the detailed

contribution of each component (flip-flops, combinational gates, and memory arrays) to the

overall failure rate. At each stage in the modeling hierarchy, an appropriate level of abstraction

is used to propagate the effect of errors to the next higher level.



Using the soft error analysis platform, the soft error sensitivity of several circuits designed

in nanoscale technology nodes are investigated. The results of this analysis not only provide

useful insights to designers for cost-effective protection of modern integrated circuits, but also

invalidates several common assumptions on the relative failure rate of different components.

The proposed platform enables us to quickly evaluate the system-level impact of existing pro-

tection techniques. The results show that the conventional MBU/MET mitigation techniques

employed to address the soft error issue are quite ineffective in nanoscales. Therefore, several

low-cost solutions for mitigating MBU/MET in circuits fabricated using advanced technology

nodes are introduced. The proposed mitigation techniques are:

• MET-aware placement strategy for random logic which can mitigate METs by 30%

without imposing area and performance overheads.

• Low-cost MBU detection techniques for memory arrays considerably reduces the area

and power overheads compared to the stat-of-the-art.

• Robust MBU correction technique for configuration memories of Field Programmable

Gate Array (FPGA) devices which can detect and correct 100% of errors occurring in

configuration memories. Compared to the previous solutions, our scheme provides the

highest level of MBU protection at very low costs.

These low-cost solutions can significantly reduce the overall protection cost of systems designed

in advanced technology nodes.



ZUSAMMENFASSUNG

Die aggressive Verkleinerung der Transistorabmessungen in den vergangenen Jahrzehnten

hat die Halbleiterbranche revolutioniert, und Computersysteme zu einem essentiellen Be-

standteil unseres alltäglichen Lebens gemacht. Die immer weiter fortschreitende Skalierung

führt zu einer besseren Leistungsfähigkeit, verbesserten Kosten-/Energieeffizienz sowie einem

stetig wachsenden Funktionsumfang moderner integrierter Schaltungen. In fortgeschritte-

nen Herstellungstechnologien wird es für die Designer und Hersteller allerdings zunehmend

schwieriger die Zuverlässigkeit ihrer Chips im Betrieb zu gewährleisten. Deshalb muss die Zu-

verlässigkeit, ebenso wie die Leistungsfähigkeit, der Energiebedarf sowie die Größe einer Schal-

tung, ein wesentlicher Designaspekt werden, um kosten-effiziente und zugleich zuverlässige

Computersysteme zu verwirklichen.

Eine der größten Zuverlässigkeitsherausforderungen stellen dabei sogenannte Soft Errors

dar. Diese temporären Fehler werden durch das Auftreffen hoch-energetischer Teilchen, z.B

Alpha-Partikel im Chip-Package oder Neutronen in der kosmischen Strahlung, auf Transistoren

ausgelöst, was eine kurzzeitige Änderung des Transistorzustands auslösen kann. Somit kann

der Inhalt einer Speicherzelle oder der Ausgang eines Gatters verfälscht werden.

Obwohl Soft Errors schon seit gut 40 Jahren bekannt sind und erforscht werden, hat sich

mit den neusten Herstellungstechnologien das Verhalten der Fehlererzeugung und Fehler-

fortpflanzung signifikant verändert. So führen die kleinen Strukturbreiten in modernen Tech-

nologien dazu, dass auch Teilchen mit geringer Energie zu Fehlern führen können. Außerdem

kann ein Teilchen mehrere benachbarte Transistoren treffen, was Multi-Bit-Fehlern (MBF)

in Speichern oder Multi-Event-Transienten (MET) in Gattern nach sich ziehen kann. All

dies führt gemäßneusten Studien zusammen mit der immer weiter steigenden Transistorzahl

(Mooresches Gesetz) dazu, dass die Soft Error Rate in den letzten Jahren exponentiell gestiegen

ist. Deshalb ist das Studium von Soft Errors, sowie das Erforschen und Entwickeln von

geeigneten Modellen und Methoden zur Reduzierung der Fehlerrate, in modernen Herstel-

lungstechnologien von entscheidender Bedeutung.

Diese Dissertation adressiert die Herausforderung geeignete Modellierungsmethoden und

Verfahren zur Reduzierung von Soft Errors zu entwickeln. Der Stand der Technik wird

dabei sowohl in Bezug auf die Modellierungs- und Analysewerkzeuge als auch im Bereich

der Methoden zur Fehlerreduzierung deutlich verbessert. Die entwickelte Soft Error Analyse

Plattform modelliert die Fehlererzeugung und die Fehlerfortpflanzung sehr genau, durch die

Berücksichtigung von Technologieparametern bis hin zu Anwendungseinflüssen. Aufbauend auf

dieser Plattform kann die Sensitivität einer Schaltung gegenüber Soft Errors bestimmt werden.

Die gewonnenen Erkenntnisse sind dabei nicht nur für die Chip-Designer von großer Bedeu-

tung um kosten-effiziente Methoden zur Fehlervermeidung und Fehlerkorrektur zu entwickeln,

sondern zeigen auch, dass gängige Annahmen über die Fehlerverteilung in unterschiedlichen

Bauteilen (Flip-Flops, SRAM, Logik, etc.) nicht mehr gültig sind. Ein weiteres Ergebnis

unserer Analysen ist, dass aktuelle Verfahren zur Fehlervermeidung und Korrektur sehr inef-

fizient in modernen Technologien sind. Deshalb werden in dieser Arbeit neue kostengünstige



Lösungen vorgestellt, die effizient das Problem der MBF und MET adressieren. Gegenüber

dem aktuellen Stand der Technik können diese Methoden die Kosten für den Schutz von Com-

putersystemen in modernen Herstellungstechnologien signifikant verringern.
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1 Introduction

Computing systems are indispensable part of our daily life with various application domains

ranging from consumer electronics such as smartphones and laptops to safety- and mission-

critical components in aerospace and automotive systems. The ever increasing demand for

higher performance and lower energy consumption of computer systems pushes the semicon-

ductor industry towards further downscaling of integrated circuits. With a higher integration

density, designers were able to significantly improve system performance by implementing more

sophisticated architectures such as multi/many-core and heterogeneous systems.

Although the continuous technology downscaling is beneficial in terms of performance and

energy, it comes with several design challenges. Recent studies reveal that the aggressive

transistor downscaling coupled with the increasing transistor count per chip (i.e. Moore’s

law) and reduced operating voltage dramatically affect the reliability (i.e. ability to provide

intended service) of digital circuits, particularly in nanoscale technology nodes [3, 6]. This

means that the systems designed in smaller technology nodes are expected to experience more

in-field failures. As a result, the reliability has to be considered as a new design metric in the

design space exploration of digital circuits fabricated in advanced technology nodes.

The main sources of unreliability in nanoscale integrated circuits are the process and run-

time variations as well as the radiation-induced soft errors [6]. Process variation, which is the

manufacturing variation of transistors (length, width, and oxide thickness), results in variation

on the characteristics of the designed circuit. Runtime variations due to supply voltage fluctu-

ations, temperature variation, and transistor aging change (degrade) the device properties (e.g.

delay) during the chip operational lifetime. From circuit-level prospective, the process and run-

time variations mostly affect the circuit delay and could be effectively mitigated by exploiting

an additional timing margin as guardband. Radiation-induced soft errors are generated when

radiation-induced particles, such as alpha particles in packaging material or neutrons from

cosmic rays, strike a transistor. The accumulated charge due to the particle strike in the

transistor may temporally alter its state, thereby introducing a transient fault into the normal

system operation. The radiation-induced soft errors, which manifest in the form of transient

computational errors, have a random nature. As a result, the low-cost detection/correction of

soft errors is very challenging and require more sophisticated techniques.

The discovery of soft errors dates to 1970s and they been widely studied over the last 40

years. Soft errors were primarily a concern only in space applications. However, as technology

scales, transistors become more sensitive to these errors not only due to their smaller drive

strength but also due to sensitivity to more radiation sources (e.g. thermal neutrons and

protons). The growing sensitivity makes soft errors a key challenge in design of a wide range

of application domains at the ground level such as networking, servers, medical, and automotive

electronics [7].
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1.1 Problem Statement and Objective

Although the source of soft errors are device-level interactions, the generated errors could

propagate and cause system-level failures. As a result, it is very important to analyze the

impact of soft errors using a device to system-level approach. Therefore, an efficient soft error

vulnerability estimation technique has to be able to accurately model the error generation at

device-level as well as the masking behavior at higher abstraction levels. Masking happens

when the effect of error is completely eliminated from the system. For example, an error

in memory entry followed by a write access is overwritten and get masked. Indeed, due to

various masking effects at circuit, logic, architecture, and application levels, the majority of

the generated errors end up being vanished and only very few lead to visible failures [8, 9].

Non-uniform masking behavior results in vulnerability of different components being signifi-

cantly unbalanced. Therefore, a fast and accurate soft error sensitivity estimation technique

is required to identify the most vulnerable components (e.g. cache or floating point unit) and

apply selective protection schemes.

An effective soft error sensitivity evaluation technique has to identify the contribution of each

component to the overall Soft Error Rate (SER). The SER of each component (e.g. flip-flop

or memory array) could be computed by multiplying Failure in Time (FIT) and Architectural

Vulnerability Factor (AVF) [7]. FIT specifies the error generation rate and depends on the

device-level parameters and working environment. In contrast, AVF is a conditional probability

that a generated error propagates and causes system-level failure (e.g. wrong workload output

in a processor) [10]. AVF depends on the functionality of the RTL model as well as the running

workload characteristics.

Radiation testing is a fast approach for SER estimation, however, this approach cannot be

used as part of design flow and it is not possible to identify the contribution of each component

as it cannot differentiate the source of the error in complex circuits. In order to address this

issue, variety of analytical SER estimation techniques and fault injection experiments have been

proposed. However, such solutions only model a subset of error generation and propagation

behavior, failing to capture the full picture. The main objective of this thesis is to exploit

the combined knowledge of various layers for presenting a cross-layer framework to investigate

the contributions of combinational gates, flip-flops, and memory arrays to the overall SER in

typical embedded processors. This study provides useful insights to designers for cost-effective

protection of embedded processors.

With smaller device geometries in nanoscale technology nodes, one particle strike might af-

fect several adjacent cells resulting in Multiple Bit Upset (MBU) in sequential cell and Multiple

Event Transient in combinational gates. Multiple errors in older technology nodes could be

safely ignored and therefore the detection and correction schemes were mostly concentrating

on single errors. The experimental studies show that the share of multiple errors in the overall

SER grows with the technology downscaling [3, 11] and it is the dominant contributor to the

SER in the advanced technology nodes [1, 12]. In such scenarios, existing single error detection

and correction schemes are no longer effective and could lead to catastrophic consequences.

In this thesis, we also aim to provide cost-effective solutions for MBU mitigation in circuits

fabricated in advanced technology nodes.

2



1.2 Contributions

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Combinational 
Gates

Flip-flops 
and 

Latches

SRAMs 
and 

Register-
file

1) FIT Rate Analysis

RAW FIT RATE

Example: Neutron FIT rates
FIT(DFF_X1)=216×10-9

FIT(DFFR_X1)=199×10-9

FIT(DFFS_X1)=212×10-9

FIT(DFFRS_X1)=208×10-9

Example: Neutron FIT rates
 FIT(SEU)=150×10-9

FIT(MBU)=140×10-9

MBU patterns and their 
occurrence probability

Pulse Width
FI

T 
R

at
e

FIT Rate for each 
pulse width 

Interval

3) Single-cycle Analysis

Error Site

Temporal Masking 
Computation

Single-cycle Error 
Propagation for 
different pulse 
widths

4) Emulation-based 
Fault Injection

- Fault injection at 
erroneous flip-flops 
according to probabilities 
obtained from single-cycle 
analysis
- If error is propagated to 
SRAM pins, errors are 
injected at these pins

- Fault injection at target 
  flip-flop

-Store list of erroneous flip-
flops at the end of 1st cycle

- SEU and MBU Injection at 
memory units according to 
patterns occurrence 
probability

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

140 ps

120 ps

50 psMin(120,50)/Tclk

d

2) Layout-level 
Analysis

DFFX1

DFFX1

INV

NANDX2 NOR3X1

NOR2X2 NAND2X2

Multiple Error Site 
Identification in 
Random Logic

Two MBU patterns in SRAM 

XOR2X1 INV AND4X2 NAND2X3 INV NOR3X1

Equivalent MT error sites in 
circuit layout

Figure 1.1: Proposed cross-layer SER analysis flow

1.2 Contributions

During my Ph.D. studies, I developed a cross-layer SER analysis platform which can accurately

model all error generation, propagation and masking effects starting from a technology response

model derived at the device level all the way to the application-level. Using this platform, I

comprehensively studied SER of embedded processors and realized mitigation opportunities.

I exploit such opportunities by proposing several low-cost mitigation techniques to reduce the

protection cost compared to existing solutions.

1.2.1 Cross-layer SER Analysis Platform

The proposed cross-layer SER analysis platform employs a combination of empirical models

at the device level, error site analysis at chip layout, analytical error propagation at logic level

and fault simulation/emulation at the architecture/application level to provide the detailed

contribution of each component (flip-flops, combinational gates, and memory arrays) to the

overall SER. At each stage in the modeling hierarchy, an appropriate level of abstraction is

used to propagate the effect of errors to the next higher level. The overall flow of this platform

is shown in Figure 1.1.

The most important novel contributions in this platform are:

• Layout-based error site identification [13, 14] : With smaller device geometries in

nanoscale technologies, it is very likely that a high energy particle strike affects several

adjacent cells in a circuit. One major challenge of SER analysis in advanced technology

nodes is identfying error sites that could be affected by one strike. Unlike previous

techniques in which the adjacent error sites are obtained from logic-level netlist, I perform

a comprehensive layout analysis to extract adjacent cells. It is shown that layout-based

technique is the only effective solution for identification of adjacent cells as netlist-based
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techniques significantly underestimate the overall SER.

• Event-driven error propagation [15]: For propagating errors generated in flip-flops, I

integrated transient error propagation in an event-driven gate-level logic simulator which

captures the combined effect of various masking factors. By carefully combining various

generated errors at different cycles, in one pass all the error generation and propagation

effects across all bits and all cycles are analyzed. This enables us to drastically reduce

the runtime while maintaining the accuracy.

• Emulation-based fault injection platform [16]: I propose an easy-to-develop and

flexible FPGA-based fault injection technique. This technique utilizes debugging facili-

ties of FPGAs for fault injection in both flip-flops and memory units. As this technique

uses FPGA built-in facilities, it imposes negligible performance and area overheads on

the system. The experimental results show that this technique is on average four orders

of magnitude faster than a pure simulation-based fault injection. These features make

the technique applicable to industrial-scale circuits.

• Fault injection acceleration [17]: Due to the long residency of some errors in system

states, the error has to be traced for even millions of cycles. However, only a very

small portion of injected errors leads to the failure. This means that many emulation

cycles are wasted as they contribute to no failure due to various masking effects. In

order to address this issue, I present an importance sampling technique to identify the

non-vulnerable time intervals in memory arrays and avoid unnecessary fault injections to

speedup the soft error vulnerability evaluation process without sacrificing the accuracy.

This approach expedites fault injection process by one order of magnitude.

1.2.2 SER Analysis of an Embedded Processor

By exploiting the cross-layer platform, I comprehensively analyzed the SER of an embedded

processor with respect to several standard workloads. The results of this analysis [18, 19]

reveal contribution of each memory array, flip-flop, and combinational gate to the overall

SER. Those results also provide useful insights to designers for cost-effective protection of

embedded processors.

My results invalidate several common assumptions on the SER contribution of different

components of the processor. Our detailed analysis shows that despite the claim of [20] and [21]

in which flip-flop SER is independent of clock frequency, it has an inverse linear relation with

clock frequency. Furthermore, the contribution of the clock-tree network to the overall SER

is small in this processor whereas the reset-tree SER is not negligible. Previous studies in [22]

and [23] reported that the clock-tree contribution could be as large as 20% of overall flip-flops

SER. However, because of the large size of clock driver cells, the probability of having soft

errors in the clock-tree network is negligible.

1.2.3 Soft Error Mitigation Techniques

Considering the growing MBU issue alongside with the results of the comprehensive SER

analysis, we proposed several solutions to mitigate multiple errors:

• Reliability-aware placement algorithm [14]: By performing a detailed analysis of
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multiple errors in random logic, I identified several multiple error mitigation opportuni-

ties which can be applied during the placement of physical design. These opportunities

are exploited to locally adjust the position of cells in the layout based on the vulnerability

of multiple errors affecting adjacent cells. The experimental results show that this tech-

nique is able to considerably reduce the overall SER without any area and performance

penalty. This technique is built on top of an existing commercial place & rout tool and

has a modest runtime and is scalable for industrial size circuits.

• Low-cost error detection in embedded memories [24]: The detailed SER analysis

of the embedded processor reveals more potential for low-cost error detection in embed-

ded memories which is required for error correction in write-through caches. I address

this issue by proposing a low-cost error detection technique. In this technique, each

data bit is associated with several parity bits in a way that the most common multiple

error patterns could be detected by at least one of the parity bits. The experimental

results reveal that the proposed technique reduces the area and power overheads of the

stat-of-the-art solutions by about 30% for a given reliability constraint.

• Low-cost error correction in FPGA configuration bits [25]: Occurrence of soft er-

rors in the configuration frames of an FPGA device permanently affects the functionality

of the mapped design. Periodic configuration scrubbing combined with a low-cost error

correction scheme is an efficient approach to avoid such a permanent effect. Existing

techniques employ error correction codes with considerably high overhead to mitigate

multiple errors in configuration frames. In this regard, I present a low-cost error de-

tection code to detect multiple bit upsets in configuration frames as well as a generic

scrubbing scheme to reconstruct the erroneous configuration frame based on the concept

of erasure codes. The proposed scheme does not require any modification to the FPGA

architecture. This scheme can detect 100% of multiple errors in the configuration frames

with only 3.3% resource occupation while the recovery time is comparable with previous

schemes.

1.3 Outline

The reminder of this thesis is organized in five chapters. A short introduction of each chapter

is as follows:

• Chapter 2 summarizes the basic information on soft errors including their origins and

existing models. It also shows the impact of technology scaling on soft error rate and main

concerns in nanoscale technology nodes. Additionally, this chapter contains a survey of

existing soft error estimation and mitigation techniques and a summery of remaining

issues.

• Chapter 3 introduces our cross-layer soft error modeling approach. This chapter starts

by describing the rationality behind our cross-layer approach. Afterwards, the error

generation and propagation steps are explained in details and validation results for each

step of the flow are presented. At the end, the soft error rate computation methodology

based on our cross-layer approach is described.

• In Chapter 4, the results of SER analysis of an embedded processor with the proposed

cross-layer approach is demonstrated. This detailed analysis shows the contribution
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of each memory array, flip-flop, and combinational gate in overall SER. Moreover, the

impact of selective protection techniques on the overall SER is studied. This chapter

also presents effect of voltage and frequency scaling in overall SER.

• By identifying the shortcomings of existing techniques in protection of different parts of

the processor, several low-cost techniques for protecting different parts of the processor

in ASIC and FPGA implementations are proposed in Chapter 5.

• Finally, Chapter 6 concludes the thesis and points out potential direction of future re-

search.
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2 Preliminaries and State of the Art

Radiation-induced soft error was discovered four decades ago. From that time, it has been

considered as a main reliability threat in integrated circuit. Although there is a rich literature

of soft error analysis and mitigation techniques over the last 40 years (see Figure 2.1), due

to the physical nature of this error, this threat evolves by rapid technology scaling. In older

technology nodes, soft error was only a major concern in memory arrays of avionics systems,

however, in advanced technology nodes, it is even important on random logic of consumer

electronics. Moreover, in nanoscale technology nodes, it is highly probable that one particle

strike affects multiple adjacent cells. These changes in the soft error behavior and the growing

number of applications affected by this reliability issue increase the importance of this threat

and necessitates continuous research on this topic in the future.
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Figure 2.1: Number of research papers on soft error topic published annually

In this chapter, the basic knowledge on soft errors including origins, existing models, and

evaluation metrics are introduced. Furthermore, the impact of technology scaling on SER

is discussed. In addition, the existing soft error evaluation and mitigation techniques are

reviewed.

2.1 Fault, Error, and Failure

The system dependability is defined as its capability to deliver services according to their

specifications [26]. The acceptable quality of the service is completely dependent on the running

application and user demand. For example, in video processing, the loss of one pixel might be

acceptable as it is not recognizable by the end user while the loss of a complete frame could
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2 Preliminaries and State of the Art

disturb the user. On the other hand, each and every bit of data is important in controller

circuit of avionic systems.

Fault Error Failure

Physical Universe Information Universe User Universe

Figure 2.2: Fault, error, and failure chain

The reliability is a measure to show the continuous service accomplishment over the time.

The reliability of the system is typically estimated by analyzing the fault, error, and failure

chain (see Figure 2.2). The fault is a physical phenomenon which affects the system and causes

some latent errors in the information stored in the system. The latent error could activate and

propagate to other parts of the system and eventually lead to a failure in the delivered service.

For instance, an unwanted change in the supply voltage of a memory array is a fault. This

could disturb the stored content of that cell and cause a latent error. This particular memory

cell might contain a valid data which will be read in future and cause an active error. The

error also might degrade the quality of the delivered service and cause failure.

Faults are generally classified as transient and permanent [27]. A transient fault momentarily

shows an undesired behavior, though there is no permanent damage. The common approach for

dealing with a transient fault is to recover the system from erroneous state and continue using

the faulty module. Radiation-induced soft errors, retention failures, and random telegraph

noise are just few examples of transistor faults. Permanent faults are due to a permanent

physical defect in the fabricated circuit and could be detected by repeating the same operational

and environmental condition. Faults due to process variation as well as the manufacturing

defects (short and open) are classified as permanent faults. This thesis is focused on transient

faults and more specifically on radiation-induced soft error which is introduced in the next

section.

2.2 Basics of Soft Errors

Radiation-induced soft errors are transient malfunctions due to interaction between energetic

particles originating from packaging materials and cosmic rays. The impact of soft errors

on the circuit is completely dependent on the type of affected component (i.e., memory cell,

flip-flop, and combinational gate), and hence, different models are exploited to mimic the soft

error impact on each type of components.

2.2.1 Origins of Soft Errors

Once a radiation-induced particle strikes a transistor device, it generates a track of electron-

hole pairs on the device. These electron-hole pairs can be collected by the source and drain

of the transistor (see Figure 2.3) and form a short unwanted pulse in the logical state of

the transistor. This may eventually flip the logic value of a memory cell or the output of

a combinational gate. It is worth to mention that this type of errors does not permanently

damage the transistor and once the system is reset, the system will again function correctly.

8
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+
- ++ +-

- -

source drain

Particle Strike

Figure 2.3: Generation of electron-hole pairs on a transistor device due to a particle strike

In terrestrial applications, alpha particles from packaging material and neutron particles

from cosmic rays are two main sources of soft errors. Although the impact of these two types

of particles on the circuit is similar, their error generation mechanisms are slightly different.

Alpha Particles

In 1978, Intel identified alpha particles due to the contaminated packaging material as main

source of soft errors in their chips [28]. The main source of alpha particle-induced soft errors

are the radioactive impurities in the chip manufacturing and packaging process such as solder

bumps and semiconductor material. In particular, in the 3-dimensional integrated circuits

where the solder bumps are very close to the active silicon devices, even the low-energy alpha

particles could cause soft errors [29].

The kinetic energy of alpha particles is typically in the range of 4 MeV to 9 MeV. When

alpha particles pass through a semiconductor device, they lost some of their kinetic energy

due to the interaction with the transistor substrate, and hence, deposit a dense track of charge

which eventually generates electron-hole pairs.

There are several approaches to mitigate the alpha particle-induced soft error rate. The first

approach is to exploit materials with low radioactive compositions. The second approach is to

develop barriers on the chip which can prevent the alpha particles from affecting the internal

components. However, such approaches not only significantly increase the manufacturing costs

and processing complexity, but also cannot completely eliminate all errors [7]. As a result,

effective fault tolerant techniques are required to protect system against alpha-particle induced

soft errors.

Cosmic Rays

In 1979, a series of experiment by IBM showed that the cosmic rays could also cause soft

errors [30]. Although primary particles of the cosmic rays does not reach the surface of the

Earth, they create a shower of secondary particles. The large portion of secondary particles

capable of causing soft errors are energetic neutrons (approximately 95%) with the remainder

composed of pions and protons [31]. Neutrons are uncharged particles, and cannot disturb a

circuit on their own, but undergo neutron capture by the nucleus of an atom in a chip. This

process may result in the production of charged secondaries, such as alpha particles and oxygen

nuclei, which can then cause soft errors. This mechanism is called indirect ionization [7].

Cosmic ray flux is completely dependent on the altitude. For the common reference of

New York City in USA, the flux is about 14 neutrons/cm2/hour. In the lower levels of the
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atmosphere, the flux grows by 2.2× for every 1000 m. As a results, digital circuits working

on top of mountains experience an order of magnitude higher SER compared to those at sea

level. Furthermore, SER in aircraft may be more than 300× higher than the sea level. This is

in contrary to alpha particle induced soft errors which do not change with location.

The neutrons are the main source of radiation-induced soft errors in current technology

nodes. However, pions and protons can also cause soft errors. In particular, with smaller

device geometries in advance technologies, the direct ionization of protons will increase their

contribution and they will become a new concern in soft error analysis.

2.2.2 Soft Error Modeling

Transient errors caused by a single particle strike in sequential elements (i.e., memory cells,

latches, and flip-flops) and combinational gates are called Single Event Upset (SEU) and Single

Event Transient (SET), respectively. With miniaturization of device geometries in nanoscale

technologies, it is very likely that a high energy particle strike affects several adjacent cells

in a circuit resulting in Multiple Bit Upsets (MBU) in sequential elements [32, 33, 34, 35] or

Multiple Event Transients (MET)1 in combinational gates [2].

MBUs/METs in older technology nodes could be safely ignored and therefore the detection

and correction schemes were mostly concentrating on SEUs/SETs [3, 36]. The experimental

studies show that the share of MBUs/METs in the overall SER grows with the technology

downscaling [3, 11, 37] and it is the dominant contributor to the overall SER in the advanced

technology nodes [12, 1]. In such scenarios, existing single error detection, correction and miti-

gation schemes are no longer effective and could lead to severe consequences such as undetected

errors.

2.2.3 Masking Factors

It is known that the majority of the generated errors get masked due to circuit, architecture,

and application-level masking factors and only a vary small fraction (typically below 5% [8, 9])

leads to failures. There are different masking factors associated with errors generated in

combinational gates, flip-flops, and memory arrays which make the soft error analysis and

mitigation more challenging.

Raditation-induced soft error in combinational gates generates a transient pulse at the out-

put of the affected cell. This pulse might not be latched in the sequential elements (flip-flops

or memory arrays) due to three circuit-level masking factors, namely logical, electrical or

latching-window masking [38]. The logical masking happens when a transient pulse reaches to

an input of a gate, but has no impact on the gate output as another input of the gate is in the

controlling state (e.g. 0 for an AND gate). The electrical masking occurs when the transient

pulse is attenuated due to the electrical properties of logic gates to the point that it does not

reach to sequential element inputs. Furthermore, the latching-window masking happens when

a transient pulse reaches the input of sequential elements outside their latching windows. Once

the error is latched in sequential elements at the end of the error occurrence cycle, only logical

masking factor can mask the error in the subsequent cycles.

1a.k.a. Single Event Multiple Transient (SEMT)
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In a flip-flop, there are two factors which might prevent the error from propagating to

down-stream flip-flops, namely logical and temporal masking. Logical masking is similar to the

combinational gates. Temporal masking in flip-flops happens when the error occurs sufficiently

late in the clock cycle and is not able to propagate to the downstream flip-flops before the

latching window. Among these two masking factors, temporal masking is only important in the

first cycle after error occurrence while logical masking has to be considered in the subsequent

cycles as well.

In addition to the aforementioned circuit-level masking factors, an error might get masked

due to architecture and application-level masking. For example, an error in write-through

cache results in a cache miss and the data is reloaded from the lower memory hierarchy. As

another example, an error in the least significant bit of an integer number could be masked by

a division operation in the application-level.

2.2.4 Scaling Trend

As technology scales down, the size of transistors become smaller which in turn leads to less

critical charge of cell (i.e. memory cell or standard cell). The critical charge specifies the

minimum amount of energy required to upset the value stored in the cell. As a result, cell

with smaller critical charge has higher vulnerability to radiation induced soft errors as larger

spectrum of particles could affect that cell. On the other hand, smaller transistor size means

smaller cell footprint. The probability that a particle strikes a cell is linearly dependent on

its area. Therefore, the struck probability reduces as technology scales. Experimental results

reveal that the decreasing struck probability dominates the smaller critical charge and the cell

SER reduces by technology scaling [1]. This fact could clearly be seen for SRAM cell and

flip-flop FIT rate in Figure 2.4.a.

Although the cell SER slightly reduces by technology scaling, the increasing number of

devices integrated in a system (i.e. Moore’s law) results in an exponential increase in the

system SER [1, 3]. This fact is demonstrated in Figure 2.4.b. This exponential increase

motivates SER analysis and mitigation in advanced technology nodes.
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Figure 2.4: Impact of technology scaling on soft error rate

The increasing ratio of MBUs and METs in advanced technology nodes is another major
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concern which soft error analysis and mitigation techniques have to address in a cost-efficient

manner. As shown in Figure 2.5, not only the ratio of MBUs, but also their sizes grow due to

the smaller feature size. Furthermore, the experimental results show that the share of MBUs

in 45 nm and beyond exceeds 50% [3, 39]. This mandates costly SER mitigation techniques

such as multiple error correction coding schemes in memory arrays fabricated in nanoscales.

Figure 2.5: Impact of technology scaling on MBU ratio [1]

Experimental study of METs in real circuits is very challenging issue due to low observably

of this components. Therefore, most of the research in this context is concentrated on the

simulation results. There is only one radiation-testing experiment [2] on a simple inverter

chain circuitry fabricated in TSMC 65 nm technology. The results of this experiment show

that about 11% of errors affect more than one invertor. The most common MET patterns for

that study are shown in Figure 2.6. According to simulation results [14, 40], the MET ratio

will considerably grow by technology scaling.

Figure 2.6: Common MET patterns in inverter chains fabricated in 65 nm [2]
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2.3 Existing Soft Error Estimation Techniques

Existing soft error vulnerability estimation techniques could be broadly classified to radiation

testing experiments, emulation-based fault injection campaigns, and analytical techniques at

various abstraction layers. In this section, these approaches are reviewed by emphasizing on

advantages and shortcomings for each category.

2.3.1 Radiation Testing

Radiation testing is commonly employed to estimate the SER. In this approach, the device

under test is exposed to radiation source which reproduces the desired radiation environment

(e.g. terrestrial). However, the intensity of the artificial source is much higher than the real

environment that device has to work in. Therefore, radiation testing is able to provide useful

data in a considerably short time (i.e. only few hours or days) and the obtained results have

to be extrapolated to obtain the SER under real condition.

Although radiation testing is a common industrial approach, it requires a manufactured

device prototype as well as expensive testing facilities. Therefore, it is not suitable for SER

estimation during design stage. Furthermore, radiation testing techniques cannot accurately

determine the contribution of each components. Indeed, there are several studies investigating

the relative contributions of sequential and combinational SER based on the results of radiation

testing which use simple test structures such as inverter chains, comparators, and shift-registers

[20, 21, 22, 23, 41]. Such experiments reveal that the contribution of combinational logic is

increasing with every new technology node and also has a linear relation with the circuit

frequency. The major issue with these experiments is the simplicity of the test structures.

Although such experiments give insight into the relative SER of different components, they

are not representative for complex circuits. In fact, during radiation testing experiments on

complex circuits, it is difficult to differentiate between the sequential and the combinational

contribution.

2.3.2 Emulation-based Fault Injection

The de facto approach to estimate the soft error vulnerability of systems in early design stage

is statistical fault injection. In this approach, faults are injected in different bits of the target

component at random execution cycles and their effects are tracked for millions of cycles

of application execution. This approach could be done in both simulation and emulation

platforms, however, the emulation-based fault injection is 3-4 orders of magnitude faster than

simulation-based one. Therefore, we only concentrate on emulation-based techniques.

Emulation-based2 fault injection techniques are divided into reconfiguration-based [42, 43,

44, 45] and instrumentation-based [46, 47, 48] techniques. Reconfiguration is a built-in facility

of FPGAs and can be used during compile time or run-time to change the configuration bits

of the FPGA device in such a way that the preferred fault model is injected in the desired

location. A technique based on the Compile-Time Reconfiguration (CTR) for injecting stuck-

at fault model is presented in [42]. In this technique, for each stuck-at fault, circuit is re-

compiled and during the compile-time, configuration bits of FPGA is changed in a way that

2a.k.a. FPGA-based

13



2 Preliminaries and State of the Art

the desired node is connected to the ground or VDD. In order to decrease the intractable

runtime of the CTR technique, several FPGA-based fault injection techniques have employed

the Run-Time Reconfiguration (RTR) mechanism. The RTR-based technique presented in

[43] covers transient and permanent faults in combinational parts and SEU fault model in

flip-flops. Another RTR-based technique for injecting a wider set of fault models appearing in

deep sub-micron technology is presented in [44].

In instrumentation-based techniques, a fault injector circuit named saboteur is added to

each fault site to produce the preferred fault model. These techniques use a non-commercial

tool to add saboteurs to Design Under Evaluation (DUE) and to create a modified DUE with

built-in saboteurs for fault injection purpose. Then, the modified DUE is programmed to an

FPGA device and faults are injected in desired fault sites by activating their corresponding

saboteurs. Saboteur circuits for stuck-at [46, 49], SET [49], SEU [47], and bridging [48] fault

models are proposed in the literature.

Recent experiments shows that the contribution of combinational logic to overall SER is

remarkable and in high frequency systems, it might exceed that of flip-flops [20, 21, 19]. As a

result, it is essential to evaluate the vulnerability of the system against SETs. Although there

are several techniques for injecting SEUs and MBUs, SET injection is much more complicated

for two reasons. First, in FPGA platforms creating a transient pulse with a small width is

impossible; second, combinational logic structure changes when a design is programmed into

an FPGA device and as a result electrical masking and logic masking factors are completely

different from the ASIC implementation due to the delay-dependent nature of SET effects.

A hybrid simulation-emulation SET injection technique presented in [50]. In this technique,

simulation is employed for propagating the SET from the fault site to flip-flops/latches and

emulation is then performed to study the resulting single or multiple-bit upset. A voltage-time

quantization technique presented in [51] divides each clock cycle into very small time intervals

and values of each signal during different time intervals are stored in a shift register. This

technique rounds the delay of each gate to the nearest time interval length and uses the shift

registers for SET propagation. This technique is efficient for modeling SET with large pulse

width (larger than FPGA minimum clocking possibly) in very small combinational circuits. A

multi-level technique proposed in [52] uses the quantization technique for propagation of SET

from fault site to flip-flops and then an ordinary RTL emulation is performed to propagate

the fault in subsequent clock cycles. Since all operations are performed inside FPGA, this

technique is much faster than simulation-emulation technique while it provides less accurate

results.

2.3.3 Analytical Techniques

Circuit/Logic-level Analytical Error Propagation Techniques

In analytical SER estimation technique at circuit or gate level, the SER of a circuit is esti-

mated by employing analytical models such as binary decision diagrams and error probability

propagation. In such technique, instead of using time-consuming fault injection or fault simu-

lation, the masking factors are estimated by statistical analysis of a circuit using probabilistic

models.

a) BDD/ADD-based techniques: The technique presented in [53] employs Binary Decision
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Diagrams (BDDs) to compute the logical masking of combinational circuits. This technique

is based on static SER analysis as it relies on enumeration of input vectors. Since the worst

case complexity of BDD encoding algorithm is exponentially proportionate with the number

of primary inputs [54], a heuristic algorithm has been proposed to decrease the number of

inputs by partitioning the circuit [53]. The main source of inaccuracy in this technique is dis-

regarding mutual masking of reconvergent glitches. This problem has been addressed in [55].

Unlike BDD-based techniques that can only handle uniform input distributions, the technique

presented in [55] uses Algebraic Decision Diagrams (ADDs) to model arbitrary input distribu-

tions. A SER computation framework based on Probabilistic Transfer Matrices (PTMs) using

ADDs is presented in [56]. Despite its accuracy in SER estimation, this technique suffers from

large amount of computation and memory consumption as it is based on matrix multiplication.

An ADD-based technique, called Probabilistic Model Checking (PMC) is proposed in [57]. In

this technique, a circuit is specified as a Discrete-Time Markov Chain (DTMC) and the re-

liability of the circuit is evaluated by computing the probability of reaching specific DTMC

states. Similar to PTM, this technique has also excessive memory requirements. The exces-

sive memory requirement of PTM and PMC techniques has been addressed in [58]. Although

BDD/ADD-based techniques have acceptable accuracy level, the runtime of these techniques

is challenging for circuits with the overall number of primary inputs greater than 50 [59].

b) Error Probability Propagation (EPP)-based techniques: Techniques proposed in [60,

61, 62, 63] introduce propagation rules for propagating error from error site toward primary

outputs and sequential elements. 4-value logic (0, 1, a, and ā) presented in [60, 61] to propagate

the error through gates. This technique has addressed the reconvergent glitches in the forward

cone of an error site, while correlations between error-free and erroneous signals are ignored.

This technique is very fast and its runtime is from the order of O(n2), where n is the total

number of gates in the circuit. Recently proposed technique in [62] replaces each gate with

its equivalent super gate. In super gates, there is a virtual error signal for each signal that is

used during error propagation calculations. This technique considers the correlation between

error-free and erroneous signals, which has been ignored in [60] and, as a result, its inaccuracy

is less than 4-value EPP. However, since it considers the correlation between all signals, its

runtime is from the order of O(n3).

Architecture-level Soft Error Vulnerability Analysis

Architecturally Correct Execution (ACE) [64, 10] is a fast approach for investigating the sus-

ceptibility of the memory arrays to soft errors. In this approach, the lifetime of each bit in a

memory array is divided into ACE and un-ACE intervals. The time intervals that a transient

error does not affect the output of the running workload is un-ACE, otherwise it is ACE. In

the ACE analysis, all the intervals not proven to be un-ACE are assumed to be ACE [10],

therefore, the susceptibility of memory arrays could be significantly overestimated (by about

10X [65, 66]). Although this approach has a considerably shorter runtime which is almost equal

to that of just one fault injection in a simulation environment, the significant overestimation

limits its application on the SER estimation.

The generic ACE model, which only requires the information in the memory boundary (i.e.

read and write access), is applicable to any memory array. This ACE model is explained

with respect to the simple example illustrated in Figure 2.7. This figure shows an example
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of serial accesses to a particular memory entry during the execution of a workload. In this

model, all time intervals which lead to a write access are un-ACE as the write access overwrites

the possible error. In contrast, an error in a time interval leading to a read access is always

propagated to the memory output and has a chance to impair the final output of the workload.

Hence, such intervals are assumed to be ACE.
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Figure 2.7: ACE and un-ACE intervals in the employed ACE analysis

Beside the generic ACE model, there are also more advanced techniques which exploit the

architectural information to identify more non-vulnerable time intervals, and hence provide less

pessimistic results. Such techniques leverage the specific behavior of each memory component

such as data characteristics or access patterns to further reduce the ratio of ACE intervals to

the entire execution time. For instance, there are dedicated techniques for data cache [67, 68],

instruction cache [69], L2 cache [70], and register-file [71] which are less conservative than

the generic model. However, there is still a considerable gap between the failure probability

obtained from fault injection and ACE analysis results (7X [65]).

2.4 Existing Soft Error Mitigation Technique

This section reviews existing soft error mitigation techniques for random logic and memory

arrays. Actually these components have inherently different mitigation techniques due to their

different structures.

2.4.1 Soft Error Mitigation in Memory Arrays

In order to increase the density and performance, memory arrays (such as SRAM and DRAM)

are typically designed with minimum size transistors. Hence, the critical charge required to

upset the cells in these components are considerably smaller than that of the logic elements

(i.e. flip-flops and combinational gates) [36, 72]. Memory arrays are the major contributors to

the overall system SER [1, 37] as they typically constitute a large percentage of the chip area

(approximately 50%-80% [73, 74]) and are more vulnerable to the soft errors. Thus, applying

cost-efficient SER mitigation techniques on memory arrays is of decisive importance.

Error Correction Techniques

Applying Error Correction Codes (ECCs) uniformly on all memory entries is a common ap-

proach to mitigate soft errors in memory arrays. In this approach, an ECC is appended to each

memory entry and during each write and read operation, the parity computation and the error

correction are performed, respectively. The most common ECC technique is a Hamming code

which could perform single erroneous bit correction and double erroneous bit detection (SEC-

DED). This approach is commonly implemented in nowadays commercial processors [75, 76].
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By increasing the MBU rate and size in the advanced technology nodes, an effective technique

has to correct more number of bits in one entry. Although in theory the cost of error correction

grows linearly with respect to the number of erroneous bits [77], several techniques exploit the

locality of erroneous bits in MBUs for low-cost multiple error correction. Recently, error

correction techniques for correcting double [78, 79, 80] and triple [81] adjacent errors are

introduced.

Built-In Current (BIC) sensors could be also exploited to correct MBUs [82, 83]. Such

sensors can identify the erroneous column(s) and then the error could be corrected by detecting

the erroneous word(s) according to a word-wise error detection coding. Although such a

technique is quite efficient for correcting small MBUs, it cannot correct MBUs when multiple

bits in one column are affected [83].

Another approach to correct large MBU incidents is to isolates the error detection and

correction. This kind of cost-efficient techniques [84, 85, 86, 87] employ a low-cost error

detection technique to identify the location of the errors and then correct the errors by another

set of redundant data. Although these techniques provide considerably higher error correction

coverage than other techniques, their recovery time are typically high as all/several memory

entries have to be accessed to compute the correct contents of the erroneous entries.

Error Detection Techniques

Although the ultimate objective of MBU mitigation techniques is to correct the errors, in

some cases achieving the same objective requires a low-cost MBU detection technique. MBU

correction in write-through cache by detecting and invalidating the erroneous word [88], and the

error detection technique required as part of some correction techniques [82, 83, 84, 85, 86, 87]

are just few representative examples of such cases.

The most common technique to mitigate MBUs is to physically interleave several words in a

way that each MBU affects one bit of several words rather than several bits in the same word.

In case the physical interleaving is costly due to the aspect ratio issue or excessive overheads,

the virtually interleaved parity is a widely used technique to detect MBUs [84, 83, 85]. In

this technique, data bits are divided into several parity groups in a way that the data bits

belonging to different parity groups have constant distance from each other and are associated

to one parity bit.

An interesting approach to optimize the parity organization of the virtually interleaved parity

based on AVF of different memory columns is presented in [89, 90]. This technique results in

different parity organization for each memory array. However, obtaining accurate AVF value

for each memory column requires a detailed analysis for each column of every memory arrays

which could be very time consuming. Furthermore, AVF values and hence the obtained parity

organization, are highly dependent on the running workloads which not only change during

runtime, but also are not known during the design phase.

2.4.2 Soft Error Mitigation in Random Logic

Hardened latches [and flip-flops] preserve their value even if a particle strike affects some of their

internal nodes. Various hardened latch designs have been proposed in the literature [91, 92].

The main disadvantage of these cells are their excessive area and power overheads as they
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require particular transistor sizing. Due to the sizing issue, these cells do not scale in the

same pace as the device size and overheads grow by technology downscaling. In contrast

to these cells, Dual Interlocked storage CEll (DICE) [93] and its successors [94, 95] achieve

immunity against any error affecting only one of the internal nodes with any specific transistor

sizing. These cells could be implemented in any technology using minimum size transistors.

As detailed in [96, 97], due to shared diffusion and multiple node disruption in advanced

technology nodes, the residual SER in SEU tolerant latches is not zero as an error could

simultaneously affect several nodes. In recent years, several latche designs [98, 99] have been

proposed to address this issues. These cells could tolerate multiple upsets in their internal

nodes at the cost of more area and power overheads.

SET mitigation in combinational logic is a challenging issue mainly due to the analog nature

of SETs. One approach is to reduce the error generation chance by modifying the process [100],

layout hardening [101, 102], and gate-sizing [103]. Another approach it to reduce error prop-

agation probability by inserting transient filters [104] or by exploiting redundancy in data

path [105, 106].

2.5 Summary

Radiation-induced soft error originated from cosmic rays or packaging materials is a major

reliability concern. The experimental studies reveal that the system SER exponentially grows

by technology scaling. At the same time, due to smaller device geometries, the share of

MBUs/METs increases. Therefore, the effective SER analysis and mitigation techniques have

to take these kind of errors into account.

There have been various SER estimation techniques in the literature. Table 2.1 summarizes

the main features of the different SER estimation approaches. While the objective is to com-

pute the SER of each component, the majority of the techniques are able to either compute

FIT or AVF, failing to capture the entire picture. Hence, such techniques cannot quantita-

tively compare the SER of different components (e.g. floating point unit vs. register-file).

Radiation-testing is the only approach which could model both FIT and AVF in a combined

manner, however, due to sophisticated error propagation behavior of complex systems and low

observability, it cannot identify the origin of the error, and hence, the contribution of each

component to the overall SER. Such information could assist designers toward low-cost SER

mitigation.

Table 2.1: Comparison of main features of existing and proposed study

FIT AVF Overall SER
Determine Impact

of Each Cell

Device-level FIT Rate Analysis Accurate No No No

Emulation-based Fault Injection No Accurate No No

Analytical Single-cycle and

Multi-cycle Error Propagation
No

Either Inaccurate

or Slow
No No

Analytical ACE Analysis No Inaccurate No No

Radiation Testing Accurate Accurate Accurate No

While there have been various techniques for low-cost MBU correction techniques in mem-

ory arrays, the MBU detection is mainly limited to either physical or virtual interleaving.
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2.5 Summary

Furthermore, there have been various cell- and circuit-level techniques for protecting random

logic against soft errors, however, these are mostly concentrated in single error assumption

which is no longer valid in nanoscales.
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While soft errors are generated at device-level, they could propagate and impair the output of

the running workload. As a result, it is important to evaluate the impact of this kind of errors

using a combined knowledge of various layers in a cross-layer approach. Development of a fast

and accurate soft error analysis requires a detailed information about underlying technology,

functionality of the RTL code, and also the running workload characteristics. Among these,

the underlying technology is only important in error generation phase as well as the first cycle

of error propagation. In addition, the error generation phase is independent of the functionality

of the design. Considering such dependencies, as shown in Figure 3.1, the error generation and

propagation phases could be divided into three phases: error generation at device-level, error

propagation in first cycle, and error propagation after first cycle.

Error Generation Error Propagation
First Cycle                      Subsequent Cycles

Technology Dependant

Functionality (RTL) Dependant

Workload Dependant

1 Device-level analysis 2 Circuit-level Error 
Propagation

3 Emulation-based 
Error Propagation

Figure 3.1: Reasoning behind proposed cross-layer soft error analysis platform

The proposed cross-layer platform is shown in Figure 3.2. For error generation, all the

cells were analyzed using an accurate SER analysis tool to obtain the raw FIT rates. Also,

MET error sites are extracted according to the layout information. Then, by employing an

accurate analytical model considering electrical, logical, and latching-window masking, errors

are propagated from combinational logic towards flip-flops and memory units. In addition,

temporal masking of each flip-flop is determined using a novel event-driven error propagation

approach according to the post-layout timing information. Finally, an emulation-based tool is

employed to inject errors in flip-flops and SRAM arrays. This tool is able to propagate errors

and determine their effect (masked, latent, failure) with respect to an actual workload. Then,

the SERs of all components are computed based on the results obtained during these these

steps.

The rest of this chapter is organized as follows: Section 3.1 describes the device-level FIT

rate analysis tool. Section 3.2 introduces our proposed layout-level multiple transient error site

identification method for random logic. The single-cyle circuit-level analysis for flip-flops and

combinational gates are presented in Section 3.3 and Section 3.4, respectively. The proposed
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Figure 3.2: Rationality behind proposed cross-layer soft error analysis platform

emulation-based platform is explained in Section 3.5 followed by a novel importance sampling

technique for accelerating fault injection experiments in Section 3.6.

3.1 FIT Rate Analysis at Device-level

The first step of soft error rate estimation is to characterize the intrinsic FIT rate of each

library cell under multiple load conditions. This is done using an accurate FIT rate analysis

tool [107]. This tool uses a process response model which is generated based on a set of device-

level simulations. Using this response model, the tool is able to characterize the sensitivity of

standard cells by simulating a series of current pulses in a SPICE netlist of the cell, taking into

account the physical layout. The layout information is used by FIT rate analysis tool to identify

which transistors in the standard cell are physically adjacent. The adjacency information is

exploited to consider charge sharing effects which can result in multiple current sources to

be added to the SPICE netlist to model the fault. The tool also accesses a nuclear database

which enables it to compute the interactions between neutrons and the atoms in the device,

the secondary particles which are produced, and the distribution of generated current pulses.

The accuracy of this tool for raw FIT rate analysis has been validated on several commercial

processes.

For combinational gates, this tool provides the distribution of pulses with various widths.

This distribution is dependent on the output load seen by the cell, thus each cell is character-
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ized for multiple loads. During the full circuit analysis, for each gate, based on its load, an

interpolation is performed between the two closest load conditions that were simulated for the

given cell type. In order to accelerate the analysis flow in the next phases, the pulse width

distribution curve is discretized into a few pulse widths with distance of d. Smaller values of d

result in higher accuracy but larger runtime. Therefore, an appropriate value for this variable

must be selected considering the trade-off between runtime and accuracy.

Figure 3.3 shows the pulse width distribution of few gates in Nangate 45 nm standard cell

library for a typical output load of 3 fF and at a supply voltage of 1 V. From this figure, it

becomes clear that Alpha particles mostly generate very short pulse widths which are very

likely to be electrically masked. On the other hand, Neutron-induced transient pulses have

considerably longer widths which thus have a higher chance to be latched in the downstream

flip-flops.
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Figure 3.3: Pulse width distribution for few standard cells from Nangate 45 nm standard cell library for

output load of 3 fF and supply voltage of 1 V

In the case of flip-flops and latches, this tool reports the SEU rate. For single-port and

multi-port SRAMs, the tool provides SEU and MBU rates as well as MBU patterns and their

occurrence probability. The Neutron and Alpha-induced FIT rate of different components in

a 45 nm technology are reported in Table 3.1. As shown, for a single-port SRAM cell which

is employed for caches and their tags, almost half of the Neutron-induced soft errors are in

the form of MBU, while the ratio is considerably smaller for alpha particles. A similar trend

could be seen for dual-port SRAM cell which is used to implement the register-file. For the

case of flip-flops, we reported the range of FIT rate as there are different types of flip-flops in

Nangate 45 nm standard cell library. Moreover, both SRAMs and flip-flops are more sensitive

to Alpha particles in this technology node.

Table 3.1: Neutron and Alpha-induced FIT rate of different components in a 45 nm technology in terms

of FIT/Mbit per billion hours of operation

Neutron Alpha Overall

Single-port SRAM cell
SEU 150 351 501}

693
MBU 140 52 192

Dual-port SRAM cell
SEU 211 448 659}

867
MBU 160 48 208

Flip-flop 119-217 181-216 300-435
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3 Cross-layer Soft Error Modeling

The FIT rates of different MBU sizes for Alpha and Neutron-induced errors are demonstrated

in Figure 3.4. In addition, some of the most common MBU patterns and their contribution to

the overall FIT rate are reported in Figure 3.5.
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Figure 3.4: MBU size distribution for Alpha and Neutron particles in a typical 45 nm single-port memory

72.29% 8.53% 4.49% 3.38% 3.72% 0.88% 0.88%

0.72% 0.72% 0.55% 0.46% 0.46% 0.44% 0.44%

0.08% 0.08% 0.16%

0.14% 0.14%

0.11% 0.08% 0.08%

0.05% 0.05%

0.08% 0.08% 0.08%

Figure 3.5: Most common MBU patterns for Alpha and Neutron particles

3.2 Multiple Transient Error Site Identification using Layout

Information

As mentioned in Chapter 2, with miniaturization of device geometries in nanoscale technolo-

gies, it is very likely that a high energy particle strike affects several adjacent cells in a circuit

resulting in MBU in sequential elements or MET in combinational gates. Although the FIT

rate analysis tool is able to accurately model MBUs, due to the irregular structure of random

logic, it cannot analysis METs as it requires a detailed information about the location of cells

in the circuit layout. Given the fact that a considerable fraction of particle strikes in random

logic results in METs [2, 40], their impacts at the layout and logic levels must be accurately

modeled.

The analytical techniques presented in [108] and [109] address the MET fault model in logic

circuits. The EPP-based technique presented in [108] propagates the error probabilities from

the error sites towards both primary outputs and sequential elements. The technique presented
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3.2 Multiple Transient Error Site Identification using Layout Information

in [109] is based on BDDs and provides more accuracy at the expense of runtime, compared

to the earlier method. The major shortcoming of these techniques in estimating SER due to

METs is that they use logic-level netlist for identification of MET error sites, neglecting layout-

level adjacency of error sites. Such assumption can significantly underestimate the circuit SER

as we will experimentally demonstrate later in this section. Additionally, the distribution of

affected error sites and the number of affected cells completely depend on the layout-level

details and cannot be extracted from the logic-level netlist. For example, our experiments

show that a considerable fraction of particles simultaneously affects both combinational gates

and flip-flops, which is completely ignored in previous techniques. Ignoring such cases can

further increase the SER inaccuracy. In the rest of this thesis, the occurrence of multiple

transient errors at sequential elements, combinational gates, or combination of them is called

Multiple Transients (MT).

In this section, a fast and accurate technique MT error site extraction technique is pro-

posed. In the proposed technique, the surface affected by a particle in combinational and

sequential logic is estimated with oval shapes obtained from available MBU patterns in mem-

ory arrays. Considering MBU patterns occurrence probability, ovals are randomly placed at

different locations inside the circuit and the list of affected cells are extracted.

Analysis of ISCAS’89 and ITC’99 benchmark circuits reveal that less than 10% of the netlist

adjacent cells are physically adjacent in the layout. Also, more than 60% of physically adjacent

cells are not adjacent in the netlist. Experimental results show that neglecting layout adjacency

can cause inaccuracy up to 36.04% in the circuit overall SER.

3.2.1 Motivation for Layout-based MT Analysis and Mitigation

An important step in MT analysis is identifying physically adjacent cells as error sites. Al-

though the layout of the circuit is necessary for the accurate identification of adjacent cells, the

previous MT analysis techniques presented in [108] and [109] employ some heuristic approaches

to extract the list of adjacent cells from the netlist. In these techniques, four categories in-

cluding a gate and its fan-in (GFI), a gate and its fan-out (GFO), common fan-ins of a gate

(CFI), and common fan-out of a gate (CFO) are considered as adjacent nodes for MT error

sites. Fig. 3.6 shows several examples of netlist-based adjacencies. In these techniques, a gate

is first selected as primary error site and then its MT pair are randomly selected among its

netlist adjacent cells.

A

B

C

E

G

H

I

- Netlist adjacency examples
   GFI : (D,A), (E,B), (I, F)
   GFO : (A,D), (E,H), (C,E)
   CFI : (A,B,C), (E, F) 
   CFO : (G,H,I), (D,E)

D

F
- A, B, C, D, F, G, H, and I are 
adjacent with E

Figure 3.6: Examples of different adjacency scenarios considered in the netlist

In order to check the accuracy and layout-relevance of this model, i.e., extraction of adjacent

cells from the logic netlist, the layout of several circuits selected from ISCAS’89 and ITC’99

benchmarks synthesized with respect to Nangate 45 nm have been comprehensively analyzed
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3 Cross-layer Soft Error Modeling

(the details of this analysis framework is provided in Section 3.2.3). In this regard, all possible

adjacent pairs for different netlist adjacency categories are first extracted from the netlist and

then the physical adjacency of each pair in the circuit layout is investigated. Since the order of

adjacent pairs is not important in this investigation, both GFI and GFO categories are equal

and are assumed as a single category called GFI/GFO. In the example given in Figure 3.6, E

is the fanout of gate B and gate B is a fan-in of gate E. As a result, pair (B,E) belongs to both

GFI and GFO categories. Figure 3.7 shows the results of this experiment. As it can be seen,

on average, only less than 10% of netlist adjacent pairs are also adjacent in the circuit layout.

Also, the probability of physical adjacency of GFI/GFO category is much higher than that of

CFI and CFO categories.
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Figure 3.7: Relevance of different adjacency scenarios considered in the netlist to layout adjacency

There is another experiment conducted in which all layout adjacencies on the circuit layout

are first extracted and then for each physical adjacency, its netlist adjacency category is in-

vestigated (Figure 3.8). It can be inferred from Figure 3.8 that more than 60% of the physical

adjacencies do not belong to the previously defined netlist adjacency categories.
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Figure 3.8: Relevance of extracted adjacencies from layout to netlist-level MT error models

From these two experiments, it is clear that there is no statistically meaningful correlation

between netlist and layout adjacencies. This means that for an accurate MT analysis, netlist-

level analysis for MT error site abstraction is not sufficient and layout-level analysis must be

performed. To address this issue, we propose a fast and accurate layout-based MT modeling

technique.
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3.2 Multiple Transient Error Site Identification using Layout Information

3.2.2 Proposed Layout-based MT Error Site Extraction Technique

MT Error Site Extraction Using MBU Analysis

The first step for accurate MT modeling is extracting physically adjacent error sites from the

circuit layout. This requires to have MT patterns projected in the circuit layout and their

occurrence probabilities. To the best of our knowledge, no field results about MT patterns

on combinational and sequential logic have been reported in the literature. This could be

mainly due to the fact that the logic gates and sequential elements (such as flip-flops) have

significantly less observability as compared to regular structures such as SRAM-based memory

arrays. Since memory arrays are more regular and dense than logic structures and also have

a full observability, the affected area can be accurately estimated.

In the proposed technique, we try to use available MBU patterns in memory arrays for

identification of MT error sites in logic circuits. In this method, it is assumed that the surface

affected by a particle strike is almost the same for the memory arrays and logic cells in different

technology nodes. In order to support this assumption, the average affected area of SRAM for

Neutron-induced particle strikes across different technology nodes are reported in Figure 3.9.

These results are extracted according to the cell area and MBU size information reported

in [3]. Basically SRAM cells act as a guideline for determining the affected area and smaller

cell size could provide more accurate results due to high resolution in estimating the area.

As it can be seen from this figure, the estimated affected area reduces from 250 nm to 90 nm

which is mainly due to larger SRAM cell size, and hence, less resolution in the area estimation.

However, the estimated affected area is relatively constant from 90 nm to 22 nm, independent

of the cell size. This clearly shows that the affected area is independent of the underlaying

SRAM technology. Hence, it could be conclude that the affected area would be also the same

for the irregular logic circuits.
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Figure 3.9: Average affected area for Neutron particles across different technology nodes based on the

cell and MBU size information reported in [3]

The main idea behind our work is to extract the affected area in a memory array and

then consider all logic cells covered by a similar surface to be MT error sites. In this regard,

the affected area for each MBU pattern is first extracted. Predominant MBU patterns in

memory arrays have been comprehensively studied using neutron beam-based accelerated SER

estimation [32, 33, 110]. The number of affected bits by a single strike depends on several
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DFFX1

DFFX1

INVX1

NANDX2 NOR3X1

NOR2X2 NAND2X2

XOR2X1 INVX1 AND4X2 NAND2X3 INVX1 NOR3X1

a) Two MBU patterns in SRAM b) Equivalent MT error sites in circuit layout

Figure 3.10: Extraction of MT error sites from existing MBU patterns

parameters including particle type and its energy, strike angle, cell type, cell size, and output

load [34]. Given memory cell dimension as well as vertical and horizontal distance between

adjacent cells, for each MBU pattern the surface affected by the strike can be calculated. Most

of the MBU patterns, especially MBUs with more than eight bits, can be effectively covered

by an oval surface. As a result, in our approach as shown in Figure 3.10, all cells affected

by an MBU are first surrounded by an oval. Then, during SER estimation the same oval is

transferred to random locations inside the logic layout and all cells affected by the MT are

listed as error sites.

Library Characterization

In the circuit layout, only a subset of cells which have an overlap with the oval surface are

considered as error sites. A cell has overlap with an oval surface if at least one of the sensitive

zones to soft errors (N-diffusion and P-diffusion) falls within the surface. In fact, when a

particle strikes a cell, it causes an additional charge to be collected in the diffusion parts

of the transistor which in turn disturbs the normal operation of the transistor. The charge

collected to the diffusion parts which are connected to VDD and GND pins is evacuated and

does not affect the circuit behaviour. The other parts of the diffusion can be disturbed by

collection of additional charge. Figure 3.11 shows how sensitive zones for a NAND gate layout

are extracted based on this explanation. Using this approach, all cells inside the technology

library are characterized and sensitive zones coordinations are extracted.

METAL1POLYNDIFFPDIFFCONTACT

GND

VDD

OUT

A B

SZ2

GND

VDD

SZ1

SZ2 SZ3

a b c

A

OUT

SZ1

SZ3

B

Figure 3.11: Sensitive Zone (SZ) extraction for a NAND gate: a) cell layout b) identification of diffusion

parts which are not connected to supply voltage c) sensitive zones (adapted from [4])
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3.2 Multiple Transient Error Site Identification using Layout Information

Algorithmus 1 : Layout-based SER estimation

1 Extract a surrounding oval for each MBU pattern;

2 Extract sensitive zones of each cell by library characterization;

3 Divide layout into smaller grids and extract the list of cells in each grid;

4 while sampling error < predefined value AND number of cells covered by at least one MT < 99.9% do

5 Randomly select an oval based on their occurrence probability;

6 Place the oval in a random location on the layout;

7 Find the list of grids which have overlap with the oval;

8 Search overlapped grids cell lists and construct overlapped cells list;

9 Remove cells without overlapped sensitive zones from cell list;

10 Mark all cells in overlapped cell list as covered by an MT;

11 Propagate MT at logic-level and calculate failure probability;

12 end

13 Report average failure probability

Overall Flow

The main steps of the proposed layout-based SER estimation are summarized in Algorithm

1. Initially, the list of ovals and their occurrence probability are extracted from existing MBU

patterns (line 1) and then technology library is characterized for identification of sensitive

zones (line 2). These two steps are performed once in advance and their results are used for

all circuits to be analyzed in the same technology and library settings.

Due to the large number of cells and sensitive zones inside industrial-size circuits, a hier-

archical approach is employed to minimize the time needed for identification of error sites

affected by an MT (line 3). In this approach, the entire layout area is divided into smaller

grids and the list of cells inside each grid is extracted. During SER estimation, instead of

searching among large number of cells, in the first step, for each grid it is checked whether it

has an overlap with the oval surface and the list of layout grids overlapped by the oval surface

is extracted. Then, the list of overlapped cells is extracted by investigation of cells inside

overlapped layout grids. At the end, those cells which have no overlapping sensitive zone with

the oval surface are eliminated from the target cell list. The remaining cells will be used as

candidate MT fault sites (line 7-9).

3.2.3 Experimental Results of MT Modeling

Using the proposed layout-based MT error site extraction, we have performed an extensive

analysis on the impact of particle energy on the MT error sites. By performing experiments on

both Nangate 45 nm (Planner) and 15 nm (FinFET) technology nodes, we were able to show

the impact of technology scaling on MT size. Additionally, the impact of netlist adjacency

assumption on the overall SER of the circuit is investigated.

Experimental Setup

In order to show the scalability of the proposed approach, we have evaluated the largest

available benchmark circuits in ISCAS’89 and ITC’99 benchmarks suites. For each benchmark,

the HDL description of the circuit is first synthesized using a Synopsys Design Compiler for the
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maximum possible operational clock frequency1. Then, the layout of the netlist is extracted

using Cadence SoC Encounter by considering utilization ratio of 75% (typically about 65%-

85% [111]). The minimum clock period as well as the chip area for each circuit are reported

in Table 3.2. According to these results, the area and frequency are decreased by around 4X

for the circuit synthesized for 15 nm compared to 45 nm.

Table 3.2: Minimum clock period and area of benchmark circuits synthesized into 45 nm and 15 nm

Nangate standard cell libraries

Nangate 45 nm Nangate 15 nm

Benchmark
Clock

Period [ps]

Area

[µm2]

Clock

Period [ps]

Area

[µm2]

s15850 825 9,134 184 2,723

s35932 487 32,735 105 9,669

s38417 924 27,760 139 9,320

s38584 610 28,709 121 8,754

b17 1,357 32,175 331 8,451

b18 2,133 101,200 549 27,200

b19 2,046 194,360 530 52,232

b20 1,734 29,433 452 8,259

The MBU patterns for particles with 22, 37, 95, and 144 Mev provided by [32] are used during

the layout-based MT extraction. This information is given to our layout-based SER estimation

to calculate the overall SER of the circuit according to Algorithm 1. In our framework, SER

estimation analysis terminates when the maximum inaccuracy of the Monte-Carlo is less than

0.5%. In this experiment, the layout is divided into 30×30µm2 grids, where each grid includes

around 800 cells.

MBU Patterns and MT Error Sites

As mentioned earlier, in order to extract MT error sites, the area affected by MBU patterns

are first extracted and then a surrendering oval for each MBU pattern is constructed. These

ovals are used for identification of MT error sites. For this purpose, detailed information about

different MBU patterns in a memory array is necessary for identification of MT error sites.

Radaelli et. al. [32] have reported a detailed information about predominant MBU patterns

in a 150 nm technology SRAM device and their occurrence probability for particles with 22,

47, 95, and 144 Mev energies. Considering the SRAM cell dimensions, the area affected by

each MBU surrounding oval can be accurately estimated. For these cases, the oval shapes and

their occurrence probability (same as the occurrence probability of the corresponding MBU

pattern) are computed. Table 3.3 shows the average area affected by each particle energy

obtained by wighted averaging of oval surfaces based on their occurrence probability.

The area affected by a particle strike is mostly a function of particle energy, while the

strength of the transient pulse mostly depends on other parameters such as diffusion volume

(width, length, depth) and load capacitance [3]. As a result, the affected area information

1This requires two rounds of synthesis: First round is for obtaining the maximum operational frequency. In

this round, the clock period is set to zero to force the synthesis tool to implement all paths as short as

possible. The maximum negative slack obtained shows the maximum operational frequency. Then, another

synthesis operation is performed in the second round to minimize the area and power for the maximum

operation frequency.
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Figure 3.12: Distribution of # of cells (flip-flops or combinational gates) affected by particle strikes

with 22, 47, 95, and 144 Mev energies for benchmark circuits synthesized with respect to

a) 45 nm and b) 15 nm Nangate standard cell library as well as c) average affected cells

per technology node

Table 3.3: Average area affected with different particle energies

Particle Energy (Mev) Average Affected Area (µm2)

22 1.178

47 1.902

95 2.903

144 4.613

acquired for a 150 nm SRAM technology can also be used for the logic area affected by a

particle strike with the same energy in the 45 nm and 15 nm technology nodes. Please note

that although the affected area remains constant, however, due to the technology downscaling,

the number of affected cells increases in smaller technologies.

By randomly locating these ovals on the circuit layout according to their occurrence prob-

ability, different combinations of affected combinational gates and flip-flops are extracted and

identified as MT error sites. Figure 3.12 shows the occurrence probability of different number

of affected cells for particle strikes with 22, 47, 95, and 144 Mev energies. As it is expected, by

increasing the particle strike energy, the occurrence probabilities of SET and SEU decreases

significantly and MT becomes predominant. In addition, the MT ratio in 15 nm is significantly

larger than that in 45 nm.

In this experiment, the maximum number of affected cells at 45 nm and 15 nm are 8 and 13

cells, respectively. In order to clearly show the impact of technology scaling on MT rate, the

average number of affected cells for the aforementioned particle energies are reported in Figure

3.12.c. This figure reveals that the average number of affected cells is almost doubled for all
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particle energies from 45 nm to 15 nm. Hence, accurate modeling and mitigation of MTs are

more challenging in smaller technology nodes with larger number of affected cells.

In previous netlist-based techniques [108, 109], it is assumed that a particle strike leads to

either MET on combinational logic or MBU on sequential cells. Also, the number and type

of affected cells was a function of the particle energy rather than a function of the layout.

However, our results show that 1) adjacent combinational and sequential cells can be simulta-

neously affected by a single particle strike, and 2) the number, type, and the combination of

affected cells depend on the layout structure as well.

SER Estimation

Although the affected area information could be acquired from MBU patterns, the pulse width

of generated SETs is completely technology dependent [112, 113]. In order to obtain the

distribution of the generated pulse widths in each technology node for a certain particle energy,

we exploit the commercial tool introduced in Section 3.1. Using this tool, the distribution

of pulse widths for each standard cell was generated for a given particle energy. For error

generation, we exploited such distributions to generate random pulse widths in the affected

combinational gates.

For propagating the generated pulse width from MT error sites, we exploit an analytical

technique presented in Section FIXME. This technique model logical, electrical, and latching-

window masking in a unified framework and propagates the errors for several clock cycles (here,

10). In this section, the failure probability is defined according to [114, 61] as the probability of

propagation from error sites to primary outputs during first few cycles after error occurrence.

Impact of SET/SEU Versus MT Model on Overall SER

In order to explore the importance of MTs and technology scaling impact on the failure proba-

bilities, overall SERs extracted for particles with 22, 47, 95, and 144 Mev energies are compared

with the case that the simple SET/SEU model is considered for both 45 nm and 15 nm technol-

ogy nodes (Figure 3.13). In case of SET/SEU, a single error is injected in each gate/flip-flop

and the average of the failure probabilities of all cells are reported as the circuit failure prob-

ability.

The results shown in Figure 3.13 reveal that the average failure probability significantly

increases from 45 nm to 15 nm (by more than 2X in some cases). One reason for such an

increase is that the number of affected cells is almost twice in the smaller technology node

(as shown in Figure 3.12.c). Another interesting reason is higher operational frequency and

smaller latching window of the circuits designed with Nangate 15 nm (see Table 3.2) which

significantly affects the error latching probability. The average latching windows of flip-flops

in 45 nm and 15 nm are 42.4 and 12.7 ps, respectively. As shown in [21], the combinational

logic SER linearly grows by increasing the frequency due to increased ratio of latching window

to the entire clock period.

The results also reveal that the circuit failure probability does not linearly increase with

the particle energy. As an example, on average, the SER in the presence of 47 Mev particles

is only 1.15X greater than when considering 22 Mev particles. This can be explained by the

number of affected cells for different particle energies as reported in Figure 3.12.
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Figure 3.13: Average failure probabilities of different particle energies for circuits synthesized with re-

spect to Nangate a) 45 nm b) 15 nm standard cell

One reasonable solution to show the SER trend from 45 nm to 15 nm is to investigate the

trade-off between failure probability increase and the decrease in the particle strike rate across

different technology nodes. As shown in Table 3.2, the area and clock period of circuits in

15 nm are reduced by 3.5X and 4.6X compared to 45 nm. This means 15.8X less particles

strikes for a certain task running on a circuit fabricated in 15 nm due to the smaller area and

shorter runtime. On the other hand, the failure probability grows on average by 2.2X from

45 nm to 15 nm (see Figure 3.13). Hence, the overall trend would be 7.2X reduction in the

overall SER. These results are inline with that of the existing studies [113, 115, 116].

Impact of netlist adjacency assumption on SER

In order to investigate the effect of netlist adjacency on the overall SER, we have implemented a

netlist-based approach. The error propagation method of the netlist-based approach is similar

to the layout-based approach. Although different combinations of affected cells and their

occurrence probability are unknown at the netlist-level, in order to have a fair comparison, the

same occurrence probabilities is also used in the netlist-based approach. Figure 3.14 reports

the failure probability obtained by both netlist- and layout-based approaches. As it can be

seen, the netlist-based approach always underestimates the overall failure probability. Our

analysis reveals that there are two main reasons for this underestimation. First, when there

are simultaneous errors at the outputs of the CFI pairs, these transient pulses reach at the

same time to the inputs of the fanout gate. In this case, the propagated transients are either

completely masked, attenuated, or at least converged to one transient pulse. However, as

shown in Figure 3.6, most of CFI pairs are not physically adjacent in the layout. Second,

the forward cones of netlist adjacent pairs are highly overlapped and share similar paths from

33



3 Cross-layer Soft Error Modeling

error sites to the circuit outputs. This can increase the chance that several errors are masked

due to one kind of masking (e.g., logical masking in a common gate in the forward cone of

both error sites). When MT occurs in error sites which have non-overlapping forward cones,

they are independent and the probability of masking is much lower.
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Figure 3.14: Comparison of overall SER obtained by netlist-based and layout-based approaches for

circuits synthesized for Nangate 45 nm standard cell library and particle with 22 Mev

energy

On average, netlist-based MT analysis has an inaccuracy of 22.34% which is as high as

36.04% for b20 benchmark. Please note that since the information regarding the occurrence

probability of different affected gate/flip-flops does not exist at the netlist level, the inaccuracy

of those techniques could be even higher.

3.3 Propagating Flip-flop Errors at Circuit-level

Since the soft error vulnerability of flip-flops is quite non-uniform [18], a fast and accurate

Soft Error Rate (SER) estimation technique is required to identify the most vulnerable flip-

flops and replace them with robust alternatives. The combined effect of interdependent and

correlated logical and temporal masking factors determines the vulnerability of flip-flops to

soft errors and has to be considered in a unified manner to reach a reasonable accuracy. These

factors are interdependent and highly correlated as they are related to the logic state and delay

of the components (logic gates and flip-flops) on the error propagation paths. As a result, an

accurate soft error estimation technique should be able to capture combined effect of these

factors.

While both logical and temporal masking factors can prevent error propagation in the error

generation cycle, once the error is latched in the downstream flip-flops at the end of that cycle,

the errors can only be logically masked in the subsequent cycles. The logical and temporal

masking factors are dependent on the logical value and the delay of the error propagation paths.

When there is no activity on a certain part of the circuit, error propagation behavior on that

part is the same as the previous cycle. Therefore, computing error propagation possibility for

all paths in every clock cycle is unnecessary and adjusting error propagation paths according to

the logic events serve the same purpose. In this regard, in order to compute the vulnerabilities

of flip-flops to soft errors, we propose to embed transient error propagation in an event-driven

logic simulator.

Our objective is not only to consider the logic masking in the propagation of the errors,

but also to accurately compute the vulnerable time interval within each cycle according to

the temporal masking factor. For this purpose, in the cycle of error occurrence, the delay

34



3.3 Propagating Flip-flop Errors at Circuit-level

required for an error to reach each downstream flip-flop has to be computed. We perform

such a timing analysis in the proposed event-driven error propagation approach. Thus, the

proposed approach not only identifies the vulnerable cycles, but also determines the vulnerable

time interval within the vulnerable cycles.

In the proposed approach, errors originating from different flip-flops are concurrently prop-

agated across multiple clock cycles, so there would be no need to repeat error propagation for

different flip-flops and for different cycles of the error occurrence. This results in multi-fold

speedup over statistical fault injection. While conventional concurrent fault simulation tech-

niques reduce the simulation time by only evaluating multiple flip-flops simultaneously, the

proposed approach reduces the number of error propagations by decreasing number of error

injection cycles as well. Even when there is a logic event, the error propagation behavior

changes for the subset of error propagation paths. These result in significant speedup (two

orders of magnitude as shown in experimental results section) over conventional concurrent

fault simulation techniques.

3.3.1 Event-driven Logic Simulation

We exploit a very accurate logic simulation method which implements the three-valued logic

system (’0’,’1’, and ’X’) and considers different rise and fall delay (i.e. (tr, tf )) for each input-

output pair of a component (flip-flop or a combinational gate). The detailed timing information

are obtained from a Standard Delay Format (SDF) file. Similar to other event-driven logic

simulators, we exploit the time wheel data structure to store the list of events to be simulated

and their corresponding simulation time. When an event is simulated which changes the logical

value of a component output, for each fan-out node of that output, an event is inserted in the

time wheel with respect to the delay of that component. This event-driven simulator accepts

a synthesized gate-level netlist and an SDF file as inputs and performs the timing-aware post-

synthesis logic simulation.

3.3.2 Error Propagation from Single Flip-flop

We first explain the proposed error propagation approach for a single flip-flop as the error

site and in the next subsection, we show how multiple error sites (flip-flops) are evaluated

concurrently in one pass without sacrificing the accuracy.

In the proposed approach, we do not explicitly inject errors during workload simulation.

Instead, we compute the list of time-intervals in which an SEU error on the target flip-flop is

propagated to each node in the circuit. Each node in the circuit has an associated error list,

and each element of this list is represented as a tuple of [FFi, c, (ts, te)] which means that if an

SEU occurs in flip-flop FFi during time interval of (ts, te) at c cycles ago, it will propagate to

the node which is assigned. (ts, te) is a subinterval of one clock period, i.e. (0, clock period),

and determines the temporal masking factor.

Figure 3.15.a demonstrates an example of error lists associated with internal nodes. Each

list has two elements, both originating from the same flip-flop FFS . In all examples used in

this section, the clock period is assumed to be 1000 ps. The tuple [FFS , 0, (0, 500)] at node a

shows that an SEU occurring in the first half of the current cycle propagates to this node. an

error occurred in the last 40 ps of (0, 500) interval is temporally masked due to the delay of
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Figure 3.15: A conceptual example of error propagation in proposed approach

the inverter and cannot reach to node b. Thus, errors occurred in (0, 460) can only reach to

this node. The effect of temporal masking factor during error propagation is shown in Figure

3.15.b. While SEU errors in 1-7 cycles ago are masked and cannot reach these nodes, error in

the time interval of (0, 800) of 8 cycle ago is also propagated to node a. As mentioned earlier,

the temporal masking factor is only important in the first cycle, hence, it has no effect on the

propagation of this error and it is propagated to nodes b and c without any change (see Figure

3.15.c).

The error lists of the nodes are updated according to data events during the event-driven

logic simulation. As we will show later, the data events and the update of error lists are highly

correlated. This means that error lists remain unchanged when there is no data event to be

simulated. On the other hand, only the error lists associated with the nodes with data event

will change.

During the workload simulation, the vulnerability of the target flip-flop is computed accord-

ing to the errors propagated to POs. For example, if [FFS , 5, (0, 500)] is added to a PO node

at cycle k and removed at cycle k+100, flip-flop FFS is vulnerable at time intervals of (0, 500)

of cycles k− 5 to k+ 95 as error requires 5 cycles to propagate to this node. By combining of

the errors propagated to the POs, the overall vulnerability of the target flip-flop is computed.

Error Generation at Target Flip-flop

In case the value stored in a flip-flop has the state of ’X’, its value is don’t care for the correct

execution of the workload. Therefore, errors are only generated when the flip-flop stores either

’0’ or ’1’. An error occurring inside a flip-flop requires some time to propagate to its output(s).

We assume this time is equal to Clk→Q and Clk→Q delays for Q and Q nodes, respectively.

As an example, consider the flip-flop shown in Figure 4.3. The rise and fall pair, i.e. (tr, tf),

for Clk→Q and Clk→Q are (117,97) and (96,89) ps, respectively. When the flip-flop output is

’X’, there is no error at the output nodes. When the flip-flop stores ’1’, an SEU would change

its Q (Q) output from ’1’(’0’) to ’0’ (’1’) which requires tClk→Qf =97 (tClk→Qr = 96) ps to reach
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Figure 3.16: Error propagation to target flip-flop output

to this node. This means that if an SEU occurs within 97 ps (96 ps) before the clock edge,

it does not have enough time to propagate to Q (Q) node. Therefore, for the clock period of

1000 ps, an SEU in the time interval of [0,903] ([0,904]) could propagate to Q (Q) node. The

case in which the flip-flop stores ’0’ can be analyzed similarly.

When the value stored in the target flip-flop changes at positive clock edge, an event is

inserted at Q and Q outputs in the time wheel with respect to Clk→Q and Clk→Q delays.

When such an event is simulated, the error list of the corresponding target flip-flop output

is updated. The update could be the elimination of an existing element (state: ’1’→’X’ or

’0’→’X’), update of an existing element (state: ’1’→’0’ or ’0’→’1’), or adding a new element

(state: ’X’→’0’ or ’X’→’1’). Please note that these error lists are only updated when there is

a data event at flip-flop output, otherwise, the error propagation behavior is the same as that

of the previous cycle and re-computation is unnecessary.

Error Propagation Through Combinational Gates in First Cycle

In case an error reaches an input of a combinational gate, depending on the logic value of other

inputs, it might propagate to its output. However, when there is no event, except a special

case which is detailed later, the error propagation behavior remains the same. As a result,

when simulating an event on a gate, we should also update the error list of the output node

with respect to those of the all inputs.

Let us assume that [FFi, 0, (ts, te)] is an element in the input error list of a gate and the

other inputs of the gate are not in the controlling state. This error propagates to the output

node of the gate with respect to rise or fall delay (d) of the gate dependent on the error polarity

and gate functionality. Although errors occurred at time interval of (ts, te) propagate to the

gate input, due to the gate delay, errors in (te−d, te) are temporally masked and cannot reach

to the gate output. Hence, [FFi, 0, (ts, te − d)] is added to the output error list.

An example of propagation behavior in combinational gates, when error occurs in flip-flop

FFs, is shown in Figure 3.17. In step (a), the target flip-flop has a value of ’X’ and, as discussed

earlier, there is no error at its output error list and hence there is nothing to be propagated in

combinational gates. In step (b), the state of this flip-flop is changed to ’1’ and the flip-flop

output error list contains [FFS , 0, (0, 903)]. The other inputs of the NAND and NOR gates

are not in the controlling state and the error is propagated through these gates when the

corresponding logic events are simulated from the time-wheel. In step (b), the output of the

NAND gate is ’0’. In case of an SEU error in FFS , the output of this gate would change to ’1’

which requires a delay equal to tr = 38ps. As a result, the output event for this gate would be

[FFS , 0, (0, 903 − 38 = 865)]. The Similar concept applies to the NOR gate output while for

the AND gate, since the other input is in controlling state, the error is masked and does not

propagate to its output. In step (c), the value of flip-flop changes to ’0’. In this case, all the

error lists are updated by replacing the new timing intervals with the old ones.
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Although in the example shown in Figure 3.17, the update of error lists is always done during

the simulation of an event in the corresponding node, there are some exceptional cases where

an error list has to be updated while there is no event at that node. Figure 3.18 demonstrates

an example of such cases. In step (a), there is an error in the first input of the NOR gate

which is logically masked as the second input is in the controlling state. In step (b), the second

input of the NOR gate changes to ’0’. This input is not in the controlling state any more and

the error could propagate through the gate. However, this change does not affect the gate

output and there is no event on this node. In order to propagate this kind of errors, a fake

event is inserted in the logic-simulator time wheel. The fake events assign the previous value

of a node to it and, hence, has no effect on the functionality of the event-driven simulator.

After simulating the fake event, the error list of the node is updated. In step (b), there are

three fake events demonstrated by either ’0’→’0’ or ’1’→’1’ to add an error to the error list.

In step (c), an event changes the first input of AND gate to ’0’. Consequently, the error in

the second input cannot propagate to the output of this gate. In this case, similar to step (b),

fake events are employed to update the error list when there is no event, however, it results in
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the elimination of some errors due to logical masking factor.

Error Propagation After First Cycle

Temporal masking only occurs at the cycle of error occurrence and once the error is latched in

the flip-flops, only logical masking can prevent the error propagation. All errors in a flip-flop

input error list are propagated to its output. While propagating the errors to flip-flop output,

the number of cycles (i.e. c) for that error is incremented to show that it belongs to previous

cycles while the time interval remains the same as that of the corresponding error in the input.

Indeed, in the cycle error occurs, the timing intervals are adjusted with respect to the gate

delays during error propagation to estimate the temporal masking factor. Once error reached

to an input of a downstream flip-flop, its time interval shows the amount of temporal masking

factor. For instance, the error [FFi, 0, (0, te)] in the input of a flip-flop shows that an SEU

occurring in the time interval of (te, clock period) is going to be temporally masked. Once an

error is latched in the flip-flops, the propagation in the combinational logic does not change its

vulnerable time interval and it could be only masked by means of the logical masking factor.
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Figure 3.19 shows error propagation through flip-flops. As shown, all errors in the input

error list propagate to the output list by incrementing the number of cycles. Beside the

errors propagated from the input, the target flip-flop has also new elements in its error list for

the errors generated in the current cycle. Figure 3.20 shows the error list of different nodes

of a combinational logic for errors occurred in the current cycle and those propagated from

previous cycles. As it can be seen, for the error occurred in this cycle (i.e. [FFi, 0, (0, 849)]),

the timing interval is adjusted during the propagation step to consider the effect of temporal

masking factor while for those propagated from one and seven cycles ago, the timing interval

is unchanged.
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Figure 3.20: Error propagation through combinational gates after first cycle
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Vulnerability Time Computation

The vulnerability of target flip-flop is estimated with respect to the error list of POs. Let

us assume that [FFS , c, (t1, t2)] is an error appeared at a PO at cycle k1 and removed from

this node at cycle k2. Considering the fact that the propagation of the error takes c cycle, it

would be clear that errors occurred at (t1, t2) time interval of (k1− c, k2− c) cycles of flip-flop

FFS are propagated to this PO. For each error in the PO, the vulnerable time intervals and

their corresponding clock cycles are computed. The union of all these time intervals is the

overall vulnerable intervals of flip-flop FFS . The vulnerability of this flip-flop is the sum of all

vulnerable intervals over the overall workload execution time.

3.3.3 Concurrent Transient Error Propagation from Multiple Flip-flops

In Section 3.3.2, only vulnerability of one flip-flop is computed during the workload execution.

Therefore, the event driven error propagation has to be repeated for each flip-flop in the design

as the error site. Considering the fact that an error only affects a small subset of the nodes,

error lists of most of the nodes are empty and major proportion of the runtime is spent for

logic simulation rather than error propagation. By concurrent transient error propagation

from multiple flip-flops, the time spent for re-computation of logic events for each flip-flop

could be significantly reduced. In this case, errors from different flip-flops are propagated

simultaneously, however, they do not affect each other. This means that in case one gate

has errors from multiple flip-flops in its inputs, their effects at the output are independently

computed.
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Figure 3.21: An example of concurrent error propagation

In order to expedite the operation of finding events that could affect each other (i.e. from

the same flip-flop and the same cycle), the error lists of the nodes are stored in a sorted order

with respect to the flip-flop index and cycles. During the error propagation, these lists are

processed in the sorted order and for each pair of flip-flop that have the same flip-flop and

cycle, the combined effect of these errors is computed. Figure 3.21 demonstrates an example

of concurrent error propagation on a combinational gate. As it can be seen, two errors are

propagated from FF1 in the current cycle and these create one output. All the remaining errors

have unique flip-flop index and propagation cycle, and hence, are processed independently.

3.3.4 Experimental Results

In order to show the effectiveness of the proposed approach, we conducted an experiment to

evaluate the vulnerability of all flip-flops of the OR1200 processor with respect to four MiBench

workloads.
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Experimental Setup

The OR1200 core is synthesized with Nangate 45 nm standard cell library using Synopsys

Design Compiler. The resulted netlist has 2693 flip-flops and 30,986 combinational gates.

The minimum clock period for the synthesized netlist is 1.39 ns. Four workloads from the

MiBench [117] benchmark suite namely Bitcount, CRC32, QSort, and Stringsearch are simu-

lated on the OR1200 processor during our experiments. All experiments are performed on a

workstation with Intel Xeon E5540 2.53 GHz processor and 16 GB RAM.

Validation of Error Propagation Results

The error propagation capability of the proposed approach is compared with fault injection

results using Modelsim to validate both masking factors for 2,000 randomly injected errors.

Each error is traced for 100 cycles and propagation behavior is compared with our simulator,

which showed 100% accuracy.

Runtime of Transient Error Simulator

Figure 3.22 shows runtime of event-driven error propagation for concurrently evaluating various

number of flip-flops and propagation cycles during the execution of Stringsearch workload. As

shown, the runtime of the our approach grows linearly with the number of evaluated flip-flop

until 2,000 and then becomes exponential. Also, it has linear relation with the limit for the

number of propagation cycles.
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Figure 3.22: Runtime vs. # of flip-flops concurrently evaluated

Since the runtime of the proposed approach is highly dependent on the number of evaluated

flip-flops, evaluating all flip-flops in one pass might not be the best option from the runtime

point of view. Indeed, simultaneous evaluation of large number of flip-flops increases the

computation complexity as error events in the input of a gate have to be sorted to identify

the re-convergent events. By having more events in the inputs of a gate, the sorting algorithm

requires more time as it has a complexity of O(n2) where n is the number of error events to be

sorted. In order to show this effect, we estimated the overall runtime required for evaluating all

OR1200 flip-flops with respect to Stringsearch workload by concurrently evaluating different

number of flip-flops. The results of this assessment are presented in Figure 3.23. As shown,

evaluation of flip-flops in 10 sets with 270 flip-flops gives the minimum runtime.
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Independent Analysis of Masking Factors

An important feature of the proposed approach is the combined analysis of the logical and

temporal masking factors. In order to show the benefits of this approach, we compared the soft

error vulnerability obtained by this approach by that of the independent analysis of these two

factors. For the independent analysis, the logical masking factor is computed by our tool as the

ratio of the number of vulnerable cycles over all cycles (i.e by ignoring computed vulnerable

time intervals inside vulnerable cycles which represents the temporal masking factor). The

temporal masking factor is extracted with respect to shortest path starting from the target

flip-flop according to the method detailed in [118]. As shown in Figure 3.24, the independent

analysis imposes inaccuracy by up to 67.8% in vulnerability estimation as error does not

necessarily propagate through short paths and and typically there is a considerable difference

in the delay of paths in a circuit.

Comparison with Other Techniques

In order to show the effectiveness of the proposed approach in terms of accuracy and runtime,

we experimentally compared two versions of our technique with two other techniques:

• Proposed-16 and Proposed-32 propagate the error for 16 and 32 cycles, respectively, and

in each iteration of the error propagation 270 flip-flops are evaluated concurrently.

• SFI is a statistical fault injection built on top of our logic simulator.
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• Concurrent Fault Simulation (CFS) [119] is employed to expedite the statistical fault

injection by concurrently propagating errors from different flip-flops. However, this tech-

nique needs to repeat the vulnerability assessment for each cycle and even for random

times within each cycle in order to compute the temporal masking factor.

Table 3.4: Average and maximum inaccuracy of different techniques

Workload
Bitcounts CRC32 QSort Stringsearch Average

Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max.

Proposed-16 0.2% 0.7% 0.6% 1.7% 1.7% 3.6% 0.5% 1.1% 0.7% 1.8%

Proposed-32 0.1% 0.5% 0.1% 0.4% 0.8% 2.1% 0.3% 0.9% 0.4% 0.9%

CFS-5% Maximum inaccuracy of 5.00% with confidence-level of 95%

SFI-5% which requires 1,034,112 fault injection according to [120]

Table 3.5: Comparison of runtime of different techniques [Minutes]. speedups are w.r.t SFI

Workload Bitcounts CRC32 QSort Stringsearch Average

Proposed-16 absolute 178 233 669 76

speedup 91,356 88,370 101,308 90,767 92,950

Proposed-32 absolute 560 698 2,164 239

speedup 29,037 29,599 31,346 29,091 29,768

CFS-5% absolute 141,628 144,389 517,976 48,114

speedup 115 143 131 144 133

SFI-5% absolute 16,287,264 20,647,769 67,854,982 6,928,550

The average and the maximum inaccuracies of different techniques for evaluation of OR1200

flip-flops are reported in Table 3.4. Additionally, the runtime of each technique for evaluation of

different workloads is reported in Table 3.5. As it can be seen, CFS provides 133X speedup over

SFI for simulating same number of errors. Among these, our proposed approach provides four

orders of magnitude speedup with respect to SFI while it is highly accurate. The only source

of inaccuracy in our proposed approach is the errors which require large number of simulated

cycles to cause a failure. This approach is much faster than CSF as it skips unnecessary

computations when there is no logic event. These features make our technique appropriate

solution for soft error vulnerability of flip-flops.

3.4 Propagating Combinational Gates Errors at Circuit-level

A transient pulse in combinational gates is only latched in flip-flops if it is not masked by any of

the logical (where another input of a gate is in controlling state), electrical (pulse electrically

attenuated during propagation), or latching-window masking (pulse is not captured in the

flip-flops as it is not arrived in the latching-window of receiving elements) factors [121].

Since the electrical and latching-window masking behavior of combinational logic is com-

pletely different in a conventional emulation environment [52], SPICE-based fault injection is

the most accurate approach for analyzing SER of these elements. However, as the number

of combinational gates is much more than flip-flops and also the error propagation should be

repeated for different pulse widths, reaching a reasonable level of accuracy with such fault

injections is intractable even for a small circuit with a few thousand gates.

In this regards, we employed a combination of previously proposed analytical techniques to

propagate the errors in the combinational logic in the first cycle. The techniques presented
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Figure 3.25: Error propagation using single-cycle analysis

in [62], [122], and [123] have been used for modelling logical, electrical, and latching-window

masking factors, respectively.

The single-cycle analysis was repeated for different pulse widths. At the end of single-cycle

analysis for pulse width w, we obtained SCPP g(w, s) which is the probability of propagation

of the transient pulse from gate g to all flip-flops in set s.

A running example of error propagation using the employed single-cycle analytical technique

is shown in Figure 3.25. In this example, an SET with pulse width of 50 ps is propagated from

gate A towards flip-flop inputs. For each gate in the forward cone of the error site, logical and

electrical masking as well as the vulnerability window are computed.

Logical masking: The probability of Error Propagation (EP) to the gate output is com-

puted with respect to the signal and error probabilities of its input nodes according to the rules

provided in [62]. For instance, in the running example, one input of the AND gate has EP=1

while the other input has signal probability of 0.5. Hence, only 50% of errors are propagated

to the output of this gate and EP of the output node is 0.5.

Electrical masking: The pulse width of the transient error at the output of a gate is com-

puted according to the equation-based model described in [122]. This technique approximates

a transient pulse with a trapezoidal waveform by computing width, amplitude, rise and fall

time of the transient pulse. Basically, for large pulse widths, as described in [122], the transient

pulse at the output of a combinational gate could be accurately modeled by pw+ tf − tr where

pw is the input pulse width, and tr and tf are the rise and fall delays of the combinational gate,
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3.4 Propagating Combinational Gates Errors at Circuit-level

respectively. The resulting transient pulse can be either attenuated or broadened depending

on the ratio of rise and fall delays of the gate.

Vulnerable window: An error might reach the inputs of several flip-flops at the same time

or at different time intervals. These cases result in significantly different failure probabilities

and hence, have to be accurately identified. Therefore, the vulnerable window for each node

has to be computed and based on the intersection of vulnerable windows of different flip-flop

inputs, various latching possibilities could be investigated. Since the error occurrence time is

random, the relative start and end of vulnerable window of nodes are described with respect

to the error occurrence time. The relative start time of the transient pulse is set to zero for

the error origin (gate A in Figure 3.25), and it is computed for other gates in the forward

cone with respect to the time required for error to propagate to those nodes. Considering

the pulse width (pw) computed by electrical masking model as well as the relative start time

(ts), a pair of relative start and end time of vulnerable window denoted by (ts, te = ts + pw)

could be specified. In the running example, for the error origin, this is (0, 50), as we want

to evaluate the error propagation for pulse width of 50 ps. The average propagation delay of

inverter gate is 10 ps and the width of transient pulse at the output node is 45 ps according

to the electrical masking model, hence, the vulnerable window for the output node would be

(10, 10 + 45) = (10, 55).

Once the error is propagated to the inputs of flip-flops, the latching probabilities for different

sets of flip-flops are computed. The latching probability could be computed as pulse width
clock period×EP

as detailed in [123]. In the running example, the error propagates to FF3 with probability of

0.5 during (40, 65) interval, hence, by assuming clock period of 1000 ps, SCPPA(50, FF1) =
65−40
1000 ×0.5. In the interval (65, 92), the error is propagated to both FF1 and FF3 flip-flops. In

such cases, we have to compute the probability of error logically propagating to each subset of

flip-flops. As shown in Figure 3.25, error could be propagated to either FF1 or FF3 or both of

them. The error computation for all three cases are shown in this figure. As shown, compared

to the case with only one vulnerable flip-flop, the only difference is in the computation of

logical masking (EP ). For example, the probability that error is logically propagated to both

flip-flops is EP = 0.5× 0.05 which is computed according to input EP of two flip-flops. Once

all single-cycle propagation probabilities (SCPP) are computed, all similar cases are merged

by summation of similar cases to obtain one unique number for each subset of flip-flops (see

Figure 3.25).

In order to show the efficiency of the employed single-cycle analysis, it is compared with

an SPICE-based fault injection technique [124]. In this technique, the SPICE netlist of the

forward-cone of the target error site is constructed by combining the existing SPICE description

of the standard cells. Then the fault injection is performed on the resulting SPICE netlist of

the forward-cone. Comparison of the employed analytical techniques with SPICE-based fault

injection for 100 randomly selected combinational gates from the OR1200 processor shows

average inaccuracy of 2.1% while offering five orders of magnitude speedup compared to SPICE

simulations.
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3 Cross-layer Soft Error Modeling

3.5 Emulation-based Fault Injection Platform

Once we have analyzed how the errors propagate to flip-flops and SRAM cells, we perform an

emulation-based fault injection using our novel platform on those cells to extract the effect of

architecture and application masking. Emulation-based fault injection techniques are either

reconfiguration-based [42, 43, 44, 45] or instrumentation-based [46, 47, 48]. Reconfiguration-

based techniques rely on an internal mechanism of Xilinx FPGAs. These techniques change the

configuration bits of the FPGA device using full or partial reconfiguration in such a way that a

target fault model is applied on the desired fault site. In these techniques, the reconfiguration

process is the speed bottleneck [125].

In instrumentation-based techniques, fault injector circuits called saboteurs are added to

each fault site. By activation of each saboteur, a fault is injected in its corresponding fault

site. One disadvantage of instrumentation-based techniques is that, unlike reconfiguration-

based techniques which are completely dependent on commercial tools, a special tool should

be developed for the placement of saboteurs in the design, because none of saboteurs presented

so far are supported by commercial tools. The development of a non-commercial tool is a very

time consuming task. Additionally, since non-commercial tools do not pass the exhaustive

software test process, the possibility of the existence of bugs in such tools is much more than

commercial tools. To address this issue, we present an instrumentation-based technique which

completely relies on commercial tools for placement of saboteurs.

In this section, we briefly introduce our instrumentation-based fault injection platform which

completely relies on commercial tools for the placement of saboteurs. This technique uses two

Altera debugging facilities including In-system Memory Content Editor (MCE) and In-system

Sources and Probes (SAP) for fault injection purpose. Since these debugging facilities have no

impact on the behaviour of the design, we call the proposed technique, Shadow Components-

based Fault Injection Technique (SCFIT). Unlike existing instrumentation-based techniques,

SCFIT completely relies on commercial tools to implement the saboteurs. Reliance on com-

mercial tools makes the development of the proposed technique much easier and faster than

that of other instrumentation-based techniques. SCFIT has the capability of fault injection in

both flip-flops and memory units. For fault injection in flip-flops, a scan chain is inserted in all

DUE flip-flops and fault is injected in the target flip-flop value during scan chain circulation.

For fault injection in memory units, single-port memories are converted to dual-port memories

using MCE facility. The additional port is used to write the faulty data at the fault injection

time and to read memory contents whenever is needed. In SCFIT, the SAP facility has the

responsibility of establishing communication between Quartus II software in host computer

and fault injection board inside FPGA board.

Experimental results of OpenRISC 1200 processor evaluation show that the SCIT technique

is four orders of magnitude faster than a simulation-based technique. This enables the designers

to inject more faults and get more accurate results in a limited time period.

3.5.1 Shadow Components

Altera Corporation provides a complete set of design debugging facilities that can be easily

adapted to any design. All these debugging facilities are integrated in the Quartus software to

ease the design verification process. These facilities utilize combination of available memory,
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3.5 Emulation-based Fault Injection Platform

logic, and routing resources to help the designers in the verification process by increasing

the controllability and observability of the design. We have exploited two of these debugging

facilities namely In-System Sources and Probes (SAP) and In-System Memory Content Editor

(MCE) to propose a fast, flexible and easy-to-develop FPGA-based fault injection technique.

These facilities are used to control and observe the value of the control registers and single-port

memories in the proposed technique.

A simplified block diagram of a design connected to these facilities is shown in Figure 3.26. As

shown, both SAP and MCE are instrumented by a JTAG controller. The JTAG controller acts

as an interface between debugging facilities inside FPGA board and the Quartus II software

on the host computer.
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Figure 3.26: MCE and SAP Facilities Connected to a Design in FPGA (Adapted from [5])

The MCE facility allows the designer to easily observe and modify memory contents. This

tool converts a single-port memory to a dual-port memory. The Block diagram of an ordinary

single-port memory and an MCE dual-port memory are depicted in Figure 3.27. The additional

port is connected to the JTAG controller in order to observe and modify the memory contents.
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Figure 3.28: An SAP Unit Connected to DUE

The SAP facility is a perfect choice for toggling control signals. Each SAP unit contains

several source ports for driving values into and several probe ports for sampling values from
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the signals that are connected to the ports. Figure 3.28 shows a simplified SAP unit connected

to an internal node in the design. As it can be seen, SAP provides single-cycle sample and

single-cycle write to selected logic nodes. The SAP allows designers to easily implement control

signals in the design as virtual stimuli. By means of this facility, we can observe and change

the value of control registers employed in our fault injection board.

3.5.2 Shadow Components-based Fault Injection Technique (SCFIT)

SCFIT uses different approaches for fault injection in memory units and flip-flops. Fault

injection in memory units can be easily done using the MCE feature of the Altera FPGAs

while a scan chain is employed for fault injection in flip-flops. A simple and general purpose

fault injection board is designed to ease the communication between the host computer and

the FPGA board.

Fault Injection in Memory Units

As mentioned in the previous section, using MCE the contents of the memory units can be

observed or modified at any time. We have used this feature for fault injection in memory

units. In this regard, in the fault injection time, the value of target address(es) is read using

the MCE feature and after fault injection in the target bit(s), the faulty value is written back

to its prior place by the same facility.

Fault Injection in Flip-flops

For fault injection in DUE flip-flops, a scan chain is inserted in DUE. Scan chain is one of the

well-known and widely used techniques in design for testability. In this technique, in test mode,

all flip-flops in the circuit form a long shift-register, while in the normal mode functionality

of the circuit is preserved. By scan chain insertion in DUE, faults can be injected during

complete circulation of the scan chain by inversion of the target flip-flop value.

Figure 3.29 shows a fault injection controller designed for SEU injection in DUE flip-flops.

A register called Target FF is used to store the target flip-flip number for injecting SEU fault.

While shifting the flip-flops values in the scan chain, a counter is used to enumerate the number

of clock cycles. This counter is first loaded by total number of flip-flops. Afterwards, during

the shift process, the counter is decremented by one at each clock cycle. Whenever the value

of Counter and Target FF are matched, the fault-free value of the fault site can be accessed at

the scan chain output port. By inversion of this value for one clock cycle the value of target

flip-flop is inverted. After fault injection, circulation continues until the circulation process

is completed. Once the Counter reaches zero, the fault injection process is completed and all

flip-flops except the target flip-flop have their previous values.

             DUEScan Chain Input

Scan Chain Enable

Scan Chain Output

Target_FF

Counter

=

Figure 3.29: Fault Injection Controller for Fault Injection in Flip-flops
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3.5 Emulation-based Fault Injection Platform

For injecting an MBU fault in several flip-flops, one approach is to repeat the operation of

SEU injection for each target flip-flop. Another approach is to use multiple Target FF registers

and whenever one of the these matches with counter value, a bit-flip is injected at scan chain

input. We prefer the first approach as time needed for multiple circulation is negligible in

emulation environment and it has simpler circuitry than the second one.

3.5.3 Experimental Results

As a case study, we have evaluated the soft error vulnerability of the OR1200 processor using

SCFIT. Five workloads from MiBench embedded benchmark suite [117] including Bitcount,

CRC32, FFT, QSort, and Stringsearch run on OR1200 during the fault injection campaigns.

An Altera Cyclone IV FPGA board is employed as our platform in SCFIT. Table 5.3 shows

FPGA resources used by OR1200 in two cases: first, it is normally programmed on the FPGA

without any debugging facility; second, it is modified according to SCFIT and then pro-

grammed on the FPGA. As it can be seen in this table, applying SCFIT to OR1200 does not

significantly affect the allocated resources.

Table 3.6: FPGA resources used by OR1200 with and without SCFIT

Resource Without SCFIT With SCFIT Overhead

Memory bits 712,384 716,274 0.5%

Logic elements 26357 28,002 6.2%

The FPGA board is connected to a host computer with Intel Xeon E5540 2.53 GHz pro-

cessor and 16 GB RAM. In order to verify the functionality of SCFIT, it is compared with

a simulation-based fault injection technique. The simulation-based fault injections are done

using the ModelSim simulator on the same computer. Comparison of 1,000 randomly injected

faults using both simulation-based technique and SCFIT reveals that the effects of faults in two

cases are exactly the same while fault injection in simulation-based platform is much slower

than the proposed technique. Table 3.7 shows the average time required for each fault injection

for different benchmarks. As it can be seen from this table, each FPGA-based fault injection

takes about 1.79-3.73 seconds to be done which is on average four orders of magnitude faster

than the simulation-based fault injection. Our experiments in [126, 127] on the non-protected

and protected implementations of Leon2 processor showed the same amount of speed-up.

Table 3.7: Runtime of SCFIT vs. simulation-based fault injection [Seconds]

Workload Cycles Simulation-based SCFIT Speed-up

Stringsearch 209,935 1,476.4 1.79 825X

Bitcount 532,327 5,481.5 1.80 3,045X

QSort 2,065,603 16,836.8 1.99 8,461X

CRC32 11,391,957 66,627.0 2.64 25,237X

FFT 26,137,266 176,883.3 3.73 47,421X

Average 15,998X
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3.6 Fault Injection Acceleration

Fault injection experiments is conventionally based on Monte Carlo simulation. Typically fault

injection results show a very small vulnerability to soft errors [8, 9, 17]. This means that most

of the fault injection experiments have no system-level impact. For a desired level of accuracy,

the Monte Carlo simulations could be accelerated to a large extent by exploiting an importance

sampling technique which skips most of unnecessary fault injections.

The ACE analysis is able to classify the time intervals to those that might result in failure

(i.e. ACE) and those that definitely have no chance to cause a failure (i.e. un-ACE). In our

proposed approach, the ACE analysis is leveraged as an importance sampling technique to

identify the majority of non-vulnerable intervals. Afterwards, fault injection experiment is

only conducted on the ACE intervals to obtain the failure probability. The fault injection

sampling space for both conventional fault injection and proposed approach are presented in

Figure 3.30. As shown, the proposed approach skips unnecessary fault injection iterations in

un-ACE intervals. This technique significantly reduces the number of fault injection iterations

for providing the same level of accuracy.

Entry[0]

Entry[1]

Entry[K]

a) Typical fault injection approach injects faults in random locations and time

Entry[0]

Entry[1]

Entry[K]

b) Our proposed approach injects faults only in ACE locations and time

Time

Fault injection 

samples
un-ACE interval ACE interval

Figure 3.30: Conventional fault injection vs. proposed approach

3.6.1 Work Flow

The work flow of the proposed approach is illustrated in Figure 3.31. In this approach, a list of

fault injection samples is randomly selected first. Afterwards, by performing an ACE analysis,

the ratio of ACE intervals to the entire workload execution time (denoted as α) is determined.

In addition, the list of fault injection samples is pruned by eliminating samples belonging to

un-ACE intervals. Then, fault injection is performed on the pruned fault injection list.
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Figure 3.31: Proposed flow for fast soft error sensitivity evaluation

3.6.2 Analytical Modeling

In order to obtain the speedup of our proposed technique, we present an analytical model

which accepts the ratio of ACE intervals (i.e. α) as input and provides the number of required

error injection to reach a desired level of accuracy. The number of samples to reach the

maximum sampling inaccuracy of e for failure probability of p and cut-off point of t (depends

on the confidence level) in the conventional fault injection approach (i.e. without importance

sampling) could be computed as [120]:

n =
t2 × p× (1− p)

e2
. (3.1)

Lets assume that the ACE analysis results show that the memory array is in ACE state with

probability of α. In this case, the fault injection has to be performed to evaluate what ratio

of the ACE time intervals leads to a failure. However, the failure probability (p′) and desired

sample inaccuracy (e′) are different from that of a typical fault injection. In this case, p′ is the

failure probability when faults are only injected in ACE time intervals (i.e. p′ = P (fail|ACE)).

According to Bayes’law [128]:

p′ = P (fail|ACE) =
P (ACE|fail)× P (fail)

P (ACE)
(3.2)

where P (fail) = p and P (ACE) = α. In addition, P (ACE|fail) is theoretically equal to one

as all failures are related to ACE intervals. Therefore, p′ = p/α.

In addition, the desired sampling inaccuracy for the fault injection after ACE analysis is not

the same. Fault injection on ACE intervals provides the sampling inaccuracy for the results

in the range of [0,1], while the share of this results in the final results in the range of [0,α].

Due to the fact that the results of non-ACE intervals have theoretically no inaccuracy, that of

ACE intervals could have inaccuracy of e in the range of [0,α], hence e′ = e/α in the range of
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[0,1]. Since α ≤ 1, e ≤ e′. This means that the fault injection only on ACE intervals (proposed

approach) requires less accurate results to provide the same level of accuracy on the overall

results.

Considering the aforementioned points, the number of fault injection iterations required by

our proposed approach is:

np =
t2 × p′ × (1− p′)

e′2
=
t2 × p

α × (1− p
α)

( eα)2
=
t2 × p× (α− p)

e2
(3.3)

The speedup of our approach over conventional fault injection approach could be estimated

with respect to the reduction in the number of fault injection iterations according to Equa-

tion 3.1 and 3.3. Beside the iterations required for the fault injection, the proposed approach

also needs one additional iteration to compute the ratio of ACE intervals. However, fault in-

jection campaigns typically have to provide the results with small inaccuracy which mandates

larger number of fault injection iterations. Hence, this additional iteration could be safely

ignored in computing speedup (i.e. 1 � nproposed). The speedup of our proposed approach

over conventional fault injection approach is computed according to:

speedup =
n

np + 1
≈ n

np
=

1− p
α− p

(3.4)
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Figure 3.32: Speedup of proposed approach for different value of p and α

Figure 3.32 depicts the speedup obtained for the typical value of α (i.e. 0.2−0.6). As

shown, the speedup for small values of p is very close to 1/α and as p → α, speedup → ∞.

However, As shown in the previous studies [65, 66] and also confirmed with our experimental

results (demonstrated later in Section 3.6.3), the ACE analysis significantly overestimates the

failure probability. This means that the value of p is typically much smaller than α and

speedup ≈ 1/α.

3.6.3 Case Study: Fault Injection on Memory Arrays of Leon3

In order to show the effectiveness of the proposed approach, we evaluated the speedup of this

technique for assessing the soft error sensitivity of cache arrays and register-file of the Leon3
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Figure 3.33: Failure probability obtained by ACE and fault injection as well as the speedup of ACE

before FI technique for a) instruction cache b) data cache and c) register-file of Leon3

processor

processor. Leon3 is an open-source embedded processor with an in-order 7-stage pipeline unit.

This 32-bit processor implements Harward architecture, i.e. it has a separate instruction and

data caches. Both data and instruction caches are write-through with direct-mapped policy

and have size of 1024×32 bits and their tags are stored in a 128×28 bits memory array. The

register-file of this processor has 128 words.

In order to compute ACE intervals, the RTL implementation of the processor is modified

to include an ACE model for each on-chip memory array. For register-file, we implemented

the generic ACE model while for instruction and data cache, the cache hit/miss status is also

taken into account according to the description in [64]. After executing each workload, the

value of total ACE intervals for each memory entry is read and the value of α is computed.

Speedup analysis

In order to obtain the speedup of our proposed approach for assessing soft error vulnerability

of on-chip memory arrays of Leon3 processor, the runtime of a pure fault injection (i.e. conven-

tional) is compared with that of our approach for the maximum tolerable sampling inaccuracy

of 1% (e = 0.01) and confidence interval of 95%.

The speedups obtained for evaluating different workloads are illustrated in Figure 3.33.

The results reveal that there is a significant variation among different workloads and also

between different components. By employing the proposed approach, the soft error sensitivity

assessment is expedited for instruction cache, data cache and register-file by 6.7X, 5.5X, 28.2X,

respectively (13.5X, on average).

The speedup obtained for register-file is significantly higher than the two other components
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as generic ACE model is very accurate (i.e. less pessimistic) for this component. This is mainly

because all data read from register-file are operands required by the execution unit and have

a very high chance to affect the workload output. In contrast, an error in data/instruction

cache has to be propagated through several units to reach the execution unit of the processor.

Each of these intermediate units masks a subset of the errors which cannot be captured by our

employed ACE model and result in a larger gap between α and p in these two components.

Our experimental results are in line with the analytical study provided in Section 3.6.2. For

the cases which there is considerable gap between α and p, the speedup is mostly dependent

on α, i.e. a smaller value of α results in a higher speedup and vice versa. For instance, in

data cache, all workloads excluding susan smooth have speedup close to 1/α. In contrast,

the speedup for the cases with small gap between α and p is strongly dependent on both

parameters and is considerably higher than the other cases. This significant difference in

speedup could be clearly seen for susan smooth and stringsearch workloads in data caches

which have almost same value of α, but considerable difference in the value of p. As shown,

the speedup for susan smooth workload is considerably higher than stringsearch. These results

could be interpreted similar to Figure 3.32.

3.7 Conclusions

In this chapter, I presented a comprehensive SER analysis platform which models both error

generation and propagation behaviors. This platform consists of a combination of empirical

models at the device level, error site analysis at chip layout, analytical error propagation at

logic level and fault simulation/emulation at the architecture/application level. By having an

appropriate model of abstraction at each step, we are able to accurately propagate the errors

and observe their application-level effects.

The proposed platform could evaluate a relatively complex design using its hierarchical

modeling methodology. This platform enabled us to accurately model the intrinsic SER as

well as all the masking factors for all memory arrays, flip-flops, and combinational gates. The

results of SER analysis of an embedded processor using this approach will be presented in the

next chapter.
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Processor

In this section, the in-depth SER analysis of an embedded processor synthesized to a 45 nm

technology is presented. This analysis is based on the proposed cross-layer soft error modeling

platform introduced in Chapter 3. The results presented in this chapter are for a single

processor unit implemented using Nangate 45 nm library, running a set of selected workloads.

Under different conditions, the results may vary, however, we believe that most of the major

trends and the conclusions hold across different designs and processes, and thus provide useful

insights to designers for cost-effective protection of embedded processors.

4.1 Experimental Setup

In this section, the experimental setup for analyzing SER of the OpenRISC 1200 (OR1200)

processor using the framework explained in Chapter 3 with respect to a 45 nm technology

node is presented. All the experiments are done with respect to the synthesized netlist of the

processor, i.e. not the actual chip.

4.1.1 FIT Rate Analysis

The FIT rate analysis tool considers the effect of neutrons and alpha particles. The neutron

energy distribution is defined by JEDEC89a standard [129]. The tool uses a nuclear database

to determine the secondary reactions that occur when neutrons interact with the atoms in

the CMOS structure. Separate simulations for alpha particles were performed, based on the

assumption of Ultra Low Alpha (ULA) (0.001 alpha/cm2/hour) packaging materials.

All the cells in the Nangate 45 nm standard cell library were characterized using the FIT

rate analysis tool. A generic process response model for a 45 nm CMOS process was used

to model the underlying process sensitivity. For the combinational cells, separate simulations

were performed with different output loads (0, 1, 3, 6, 10, 20, 40, and 100 fF) and pulse widths

in steps of d=20ps. The Nangate library does not contain SRAM cells, therefore, representative

FIT rates and MBU patterns for 45 nm SRAMs presented in [39] were used in this study.

4.1.2 OR1200 Processor

The OR1200 processor is an open source 32-bit processor which implements a 5-stage pipeline

with Harvard architecture, hardware divider and multiplier, and a floating point unit. Both

data and instruction caches are write-through with direct-mapped policy and have size of

1024×32 bit and their tags are stored in 256×21 bit array. It also has a 32×32 bit register-file
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4 Soft Error Analysis of an Embedded Processor

with one write and two read ports.

The processor was synthesized into the Nangate 45nm library using Synospys Design Com-

piler. Placement, routing, clock-tree synthesis and post-route optimization were performed

using Cadence SoC Encounter. All the experiments in this thesis are done with respect to

the typical process corner of the employed library. The final netlist consists of 2,694 flip-flops

and 30,986 combinational gates. The maximum operating frequency, after all optimizations

was 894 MHz. The clock tree that was built by Cadence SoC Encounter had three levels

of inverter/buffer gates. There was one INVX321, one INVX32, and 50 BUFX8 in the first,

second, and third level, respectively. The average fanout of the leaf-level of the tree is 52. The

clock skew and sink transition time2 for this tree are 13 ps and 181 ps, respectively.

Eight workloads from MiBench benchmark suite [117] were executed on the OR1200 during

SER analysis experiments including stringsearch, bitcounts, sha, susan smooth, qsort, crc32,

basicmath, and fft. The runtime of these workloads varies from 3 to 611 million cycles. The

size of the code and input data required for these workloads varies between 48−425 KByte

which is reasonable for the employed 8 KByte L1 cache.

4.2 Experimental Results

The results of an in-depth analysis of contributions of different components to the overall SER

of the OR1200 processor using our hierarchical SER analysis platform are presented in this

section. In addition, we analyze the impact of clock frequency and voltage on the SER of

different components. Furthermore, we show the effect of selective protection to mitigate the

SER of flip-flops and combinational gates.

4.2.1 Overall SER

Figure 4.1 shows the alpha and neutron SER contribution from all three components for eight

workloads. As it can be seen, the alpha and neutron SER are comparable in magnitude. At

this point, where no ECC is applied to memory units, the SER is dominated by the memory

(>95%) while the combinational contribution is well below 1%. Also, the figure clearly shows

the dependence of the SER on the workload with Susan being nearly 3X as sensitive as some

other workloads (e.g. CRC32). The reason for higher SER of this workload is the significantly

higher vulnerability of the cache units. This workload has a very high miss rate in data and

instruction caches. The average time data remains in the cache after its last read access

represents the non-vulnerable time. By having higher miss rate data which are not accessed

would be replaced with new data very soon and hence the vulnerable time of the cache would

be higher.

4.2.2 Memory Protection

It is well known that SRAMs are the largest contributor to the overall SER and in most

designs with reliability targets, they are ECC protected. In order to protect the write-through

1Xn suffix on the gate name is the drive strength
2maximum delay from clock pin to flip-flops
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Figure 4.1: Contribution of different types of components on the overall SER

instruction and data cache memory units, a parity bit scheme is implemented. Whenever an

error is detected in these memory units, a cache miss is issued and error-free data is recovered

from the main memory. For protecting the register-file, a Hamming code with distance three

is employed.

Memory interleaving is primarily used to manage the aspect ratio and to improve the timing

of memories. However, it can also significantly mitigate the effect of MBUs [130]. Figure 4.2

shows the SER estimation results for different interleaving schemes combined with Single Error

Correction (SEC). This experiment shows that for an interleaving distance of four (ID=4) the

overall memory units SER is virtually zero. This reveals that the effectiveness of SEC codes

can be maximized for mitigating MBU errors when used together with an appropriate memory

interleaving scheme.
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Figure 4.2: Contribution of different types of components on the overall SER where caches and register-

file SRAMs have different Interleaving Distances (IDs)

4.2.3 Flip-flop SER

After the memory is efficiently protected, flip-flops become the dominant contributor to the

overall SER. Our analysis shows that the SER of flip-flops is non-uniform and over 40% of the

flip-flops have a negligible contribution to the overall SER. Although these flip-flops have a

considerable raw FIT rate, logical masking prevents errors in these flip-flops from propagating

to the workload output. Figure 4.3 shows the effective flip-flop SER assuming the most critical

flip-flops are selectively replaced with hardened flip-flops (e.g. DICE, TMR). As it can be seen,

protecting 200 flip-flops (less than 10%) reduces the overall flip-flop SER by 72%. This clearly

shows the importance of selective protection for flip-flops. Our analysis shows that these top

200 flip-flops are mostly located in pipeline stages.
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Figure 4.3: Effect of selective protection of the flip-flops on the overall flip-flops SER

In another experiment, we investigated the top 200 vulnerable flip-flops for eight MiBench

workloads to see whether the vulnerability of the flip-flops is uniform across different workloads.
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Table 4.1: Investigation of top 200 vulnerable flip-flops of eight MiBench workloads

Common in # of workloads 8 7 6 5 4 3 2 1

# of flip-flops 85 42 33 16 14 26 54 106

The results of this analysis are shown in Table 4.1. We observed that 85 of these flip-flops

are common to all workloads whereas 42 are common to seven workloads. There are 106 flip-

flops which appear in the top 200 list of only one workload. This indicates that on average

only 106
8 = 13.25 flip-flops (less than 7% of 200) in each list differ from the others. This data

suggests that the fault-grading performed on a few test workloads will generate a list of critical

flip-flops that provides reasonably protection for a broad set of workloads, assuming the test

workloads exercise all functional units.

The analysis of contribution of individual flip-flops reveals that protecting only the 85 com-

mon vulnerable flip-flops mitigates the overall flip-flop SER by 38.3%. This significant reduc-

tion is achieved at a very low cost by protecting only 3.2% of all flip-flops.

4.2.4 Combinational Logic SER

Since the SER contribution of combinational logic in high performance systems with multi-

GHz frequencies is considerable, it is important to identify the most vulnerable parts of the

logic circuit. Typically, errors generated at logic gates which are closer to the flip-flop inputs

are more likely to propagate as they are subject to less logical and electrical masking. In order

to show this fact, we analyzed the SER of combinational gates with respect to inverse level.

The inverse level of a gate is defined as the length of the shortest path (in term of gates) from

that gate to flip-flop inputs.

The distribution of gates with respect to inverse level is depicted in Figure 4.4.a. The

number of gates with inverse level of one is roughly equal to the number of flip-flops as most

flip-flops are driven by a logic gate. The number of gates becomes more for inverse level of

two as each gate connected to flip-flop inputs may have more than one input. Afterwards, for

higher inverse levels, the number of gates gradually reduces due to re-convergence fanout and

short paths.

The average SER of gates belonging to different inverse levels are shown in Figure 4.4.b. This

clearly shows that the first few inverse levels have much higher SER and are responsible for the

majority of combinational logic SER. On the other hand, the gates with higher inverse levels

have negligible SER and could reasonably be ignored in order to reduce the computational load.

For example, evaluating only first five inverse levels covers more than 97% of the combinational

logic SER (see Figure 4.4.c) while less than 60% of the combinational gate belong to these levels

(see Figure 4.4.d). Furthermore, our detailed analysis shows that the most vulnerable gates

belong to the clock and reset tree with 9.5% contribution to the overall SER. In addition,

similar to the flip-flop analysis, most of the remaining vulnerable gates are in the pipeline

stages and belong to the paths which lead to at least one vulnerable flip-flop.
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Figure 4.4: Relation between SER and inverse level of combinational gates

4.2.5 Selective Protection of Combinational Logic

Transient pulses in combinational logic can be mitigated by inserting transient filters on the

most common error propagation paths. Such filters are designed to mask transient pulses

shorter than a given pulse width. We have designed a transient filter according to the tech-

nique presented in [104]. The maximum SET pulse width which can be suppressed using the

employed transient filter depends on the number of transmission gates. For this work, filters

implemented with different numbers of transmission gates are considered and the SER reduc-
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tion rate is estimated. The results show that a filter with three transmission gate provides

the best trade-off between SER mitigation and area overhead. The schematic of this filter is

shown in Figure 4.5. It can mask transient pulses shorter than 96 ps and has the propagation

delay of 114 ps. It has 10 minimum size transistors and its area is estimated to be twice that

of the smallest inverter in the Nangate 45 nm library. Since the filter itself is susceptible to

transients, its sensitivity was simulated using the FIT rate analysis tool.

Figure 4.5: Schematic of the employed transient filter

We investigated the SER mitigation due to the insertion of transient filters in flip-flop inputs,

memory array inputs and processor output pins. For transient filter insertion, we implemented

an iterative procedure. In each step, this procedure finds the candidate site which result in

more SER reduction and insert filter on that site and it is removed from candidate list.

Figure 4.6 shows the overall combinational SER for different numbers of inserted transient

filters. As it can be seen, by inserting about 600 filters, combinational SER can be reduced by

about 80%. This reduces the operating frequency from 894 MHz to 811 MHz (9.3% performance

overhead) and imposes less than 4% area overhead for the logic part of the processor.
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Figure 4.6: Impact of transient filters on SER and area

4.2.6 Clock and Reset Tree Contribution

A combinational gate in the data-path is only sensitive to soft-errors during a short time

interval when the transient error could propagate to a flip-flop, whereas the gates on a reset

or clock-tree are potentially always sensitive. The radiation testing results [22, 23] reveal that

the clock tree is a significant contributor to the overall SER.

In order to investigate the validity of such observations for a complex design, we performed

an analysis to compute the contribution of the clock and asynchronous reset trees to the

combinational logic SER. Before discussing the results of this analysis, it is important to

understand the effects of gate sizing and output load on the gate SER. Figure 4.7.a shows
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Figure 4.7: FIT rate vs. load capacitance (Extracted by FIT rate analysis tool)

the total FIT-rate of different inverter/buffer cells for typical load capacitances. As shown,

larger gate size and load capacitance result in lower FIT rates for both types of cells. However,

unlike inverters, buffers with higher sizing ratio have considerable FIT rate in the presence of

load capacitance larger than 40 fF. This can be interpreted with respect to the layout of such

buffers. Figure 4.7.b shows the layout of the BUFX8 cell from the Nangate library. Buffer

cells consist of two inverters and as it can be seen, sizing is only applied to the second inverter.

Consequently, the first inverter has a small load capacitance and the output load capacitance

has no effect on the FIT rate of the first cell. However, by increasing the load capacitance of

the cell, delay of the second inverter increases and it would be able to electrically mask more

pulses from the first inverter. This explains why the FIT rate diagrams for buffers do not

become constant after a while and have a slow decreasing rate.

This analysis showed a 2.3% and 7.4% contribution to the overall combinational SER for

the clock and asynchronous reset tree, respectively. The small contribution of the clock tree

in this design, is due to the fact that the buffers and inverters in the clock-tree were large and

had relatively large output loads, thus making them relatively immune to SETs. Furthermore,

SETs on the clock tree, only cause an error if they provoke a timing violation or an incorrect

sampling of the data. In this design, Cadence SOC encounter chose large inverter/buffers to

achieve the required slew rate targets and minimize the clock tree depth. Obtaining a small

slew rate is critical to reduce the power consumption due to short-circuit current. Also, clock

tree depth determines the sink transition time which is an important factor in the design of

clock trees.

Unlike the clock tree, the asynchronous reset tree does not have very tight constraints. It

only needs to obey the input to register timing constraints and has to have an acceptable

slew rate as specified in the library. The asynchronous reset pin of OR1200 is connected to
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1322 flip-flops and we specified an input delay of 400 ps. The synthesis tools generated a

reset tree that met the requirements, however, it selected many small gates thus explaining

the significant SER contribution.

4.2.7 SER Heat-map

The most sensitive parts of the processor core (combinational and flip-flops) could be studied

with respect to the layout of the processor. The SER heat-map of the processor is shown in

Figure 4.8. As shown, the cells with relatively high SER clustered in special parts of the layout

as they belong to vulnerable units. As we discussed in the previous subsections, for the case

of OR1200, these are mostly the cells of the pipeline stages.
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Figure 4.8: Illustration of SER [Failures in 10−15 hours] of processor core cells with respect to the layout

4.2.8 SER Dependency on Clock Frequency

Figure 4.9 shows the SER of combinational logic and flip-flops in OR1200 for neutron and

alpha particles. As expected, both neutron- and alpha-induced combinational logic SER show

a linear relation with clock frequency which is mainly due to decreasing of latching-window

masking. In contrast, there is an inverse linear relationship between flip-flop SER and clock

frequency because of the increase in the temporal masking factor of flip-flops. This observation

is in contradiction to the common assumption that flip-flop SER is largely independent of clock

frequency. The major shortcoming of the radiation-based experiments in [20, 21] is that the

test circuits are very simple (e.g. flip-flop chain, inverter chain, comparator) and have just

one level of flip-flops. Such circuits cannot capture the effect of temporal masking of flip-flops.

Our experiments show that such dependency is not only significant, but also dominates the
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relationship between chip-level SER and frequency.
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Figure 4.9: Frequency vs. SER

For estimating the threshold frequency at which the logic SER would exceeds that of flip-

flops, data extracted from the experiments must be extrapolated. Although this is not an

accurate method as the circuit structure would be different for a high-speed design, we believe

this gives an indication of the frequency range where such an issue occurs. Using this method,

it is seen that the threshold frequency is about 2.2 GHz.

For the results presented in Figure 4.9, the processor is synthesized for the maximum clock

frequency of 894 MHz and then the soft error vulnerabilities evaluated when the processor

is working at lower frequencies. Another case is to synthesize the processor for the desired

operational frequency. In this case, the circuit structure would be different for each frequency.

In order to evaluate the SER for this case, we synthesized the OR1200 processor for different

clock frequencies and for each of them, the SER was evaluated with respect to that clock

frequency. The results of the experiments for these two cases are summarized in Figure 4.10.

The changes in combinational logic SER of the designed for specific frequency case (Figure

4.10.a) could be explained with respect to the distribution of drive strength of gates (Figure

4.10.b) for each synthesized core. Since small gates are more sensitive to SETs, it is expected

that if the target design has more X1 gates, it has an increased combinational SER contribution.

This explains the high soft error rate of combinational logic for frequency range of 100-400

MHz. On the other hand, another factor which has a direct impact on the combinational logic

SER is the number of combinational logic gates. According to our analysis, in the frequency

range between 400 and 800 MHz, the increase in the number of gates is primarily in the pipeline

stages which we have observed to be the most sensitive region. While in the range between

800 to 900 MHz the additional gates are in less critical sections of the design. This explains

the higher slope in the range between 400 and 800 MHz compared to 800-900 MHz. Below the

frequency of 400 MHz, the changes are quite linear as the synthesis tool cannot find a lower

area implementation.

When the circuit is synthesized for looser timing constraints, the length of paths would be
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Figure 4.10: Comparison of Frequency vs. SER for two cases: Designed for maximum frequency: the

processor is synthesized for maximum frequency, but operates at lower clock frequency;

Designed for specific frequency: the processor is synthesized for the operational frequency

longer. Longer paths result in more temporal masking and hence, the soft error vulnerability

of the flip-flops becomes smaller compared to the case where the frequency is scaled without

changing the circuit structure. This is clearly demonstrated in Figure 4.10.c.

The combined effect of combinational and sequential SER is shown in Figure 4.10.d. As it

can be seen, typically the overall SER is smaller when the circuit is optimized for the target

frequency.
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4.2.9 SER Dependency on Dynamic Voltage and Frequency Scaling

The Dependency of soft error rate on the supply voltage has been widely studied at the circuit-

level [1, 131]. However, there has been limited studies done on the effect of voltage scaling on

the SER of complex circuits. To address this, we conducted an experiment to compute SER

of the processor core for ±10% and ±20% of the nominal voltage. The original design has the

nominal voltage and the frequency of 1.0 V and 894 MHz, respectively. For each voltage, the

operational frequency and delay of the gates are adjusted accordingly.
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Figure 4.11: Impact of DVFS on SER

The results of SER analysis for different voltage and frequency points during Dynamic

Voltage and Frequency Scaling (DVFS) are summarized in Figure 4.11. For each point, the

intrinsic cell FIT rate was taken from the library characterization for that supply voltage and

the propagation is performed according to the propagation delays of the gates at that voltage.

As shown, increasing the supply voltage significantly reduces the soft error vulnerability of

both flip-flops and combinational gates, however, the ratio of combinational logic SER to

that of flip-flops remains nearly constant. Our detailed analysis shows that reducing voltage

increases the propagation delay, but since the clock period is also increased with the same pace

to meet the timing constraints, the overall ratio of combinational and sequential SER remains

the same. Also, it is observed that the Alpha-particle induced SER is affected more during

DVFS.

4.3 Conclusions

In this chapter, I presented a comprehensive SER analysis for an embedded processor running

realistic workloads using an efficient hierarchical modeling technique that enabled us to accu-

rately model the intrinsic SER as well as all the masking factors up to the application level.

The key results obtained by analyzing this processor are:

• The effectiveness of selective protection: After ECC is employed, the flip-flops dominated
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the SER and we showed that selective mitigation of less than 10% of the flip-flops reduced

their SER by 70%. It is also observed by employing an appropriate selective transient

filter insertion technique, the combinational SER can be reduced by 80% with only 4%

increase in the logic area.

• SER dependency on voltage and frequency: Interestingly, we found that the overall SER

decreases with the clock frequency due to the reduced SEU temporal masking. Also,

it is observed that the DVFS has considerable impact on SER, however, the ratio of

sequential and combinational SER remains essentially constant.

• Clock and reset tree SER: Our results showed that the clock tree was not a significant

contributor to the overall SER due to the large size of the clock buffers.

These results can assist circuit designers to employ effective hardening techniques to reduce

the SER with minimum impact on other design constraints.
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5 Soft Error Mitigation Techniques

As mentioned in Chapter 2, the contribution of MET and MBU to the overall SER is growing

in advanced technology nodes. In order to address this issue, in this chapter, we provide

three techniques to mitigate these kind of errors in VLSI circuits. The first technique is a

layout-based placement technique to mitigate MTs in logic circuits. The second technique is

a low-cost error detection technique for detecting MBUs in embedded memories. The third

technique aims to correct MBUs in configuration bits of FPGA devices where a transient error

has a permanent impact.

5.1 Layout-based Multiple Transient Mitigation

As shown in Fig. 3.12 and confirmed by previous studies [2, 40, 35], it is highly probable

that one strike affects multiple adjacent cells in the layout. The experimental results in [132]

show that the placement strategy could significantly affect the SER of a circuit. Thus, one

can employ various optimizations of cell placement to significantly alleviate the effect of MTs.

To this end, we propose a generic approach to identify the most vulnerable pairs of cells and

subsequently increase their physical distance in the layout.

5.1.1 Opportunities for MT-aware Placement Optimization

The proposed MT-aware placement is based on the following optimization opportunities:

1) Non-uniform cell density: Since the routing is the limiting factor in irregular structures

(i.e., random logic) fabricated with nanoscale technology nodes [133], there are always some

whitespace (i.e. unused space) among cells in the layout. Hence, the layout utilization ratio1

is typically between 65%-85% [111]. Existing commercial place & route tools (e.g. Cadence

SoC Encounter) uniformly place the cells across the die, however, the sensitivities of the cells

to soft errors are quite non-uniform. The non-uniformity of MT failure probability on the

physical layout of b18 and b19 benchmark circuits are depicted in Figure 5.1. This is obtained

by injecting one million errors at random locations of the layout (similar to our experiments

in Section 3.2.3). Since nodes with very small failure probabilities have much less contribution

to the overall SER, it makes sense to reduce the spacing between less vulnerable cells and

exploit this space to increase the spacing among highly vulnerable cells. In other words, the

cell spacing should be non-uniform and proportional to the MT soft error vulnerability.

2) Error masking potential of MTs: Our experimental results in Section 3.2.3 showed that

failure probability obtained based on the netlist-based adjacency assumption is on average

22.34% less than that estimated by the layout-based approach. The main reason for the

smaller failure probability of the netlist-based approach is that the errors propagated from

1The ratio of overall area occupied by cells to the entire chip area
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Figure 5.1: Heatmap of MT failure probability for the layout of two benchmark circuits for (a) b18

benchmark circuit and 22 MeV (b) b19 benchmark circuit and 144 MeV

adjacent cells have chance to interact and cancel out each other (i.e. getting masked). For

example, in the gate-level netlist shown in Fig. 5.2.a, cells A and D have no common gates in

their forward cones. Hence, the failure probability of MT affecting these two cells is fAD =

1 − ((1 − fA)(1 − fD)). However, when there is an overlapped region in the forward cones of

MT error sites, errors might interact with each other. In this case, it is possible that the effect

of errors become less or more depending on the circuit structure and the running workload.

For example, errors propagating from cells A and B may interact in cell C and the propagated

errors to the output of this cell has significantly shorter pulse width than the errors generated

at error sites. This phenomenon is known as pulse quenching and previous experiments showed

that it is more probable specially for cells with GFI or GFO adjacency [134, 135]. Therefore,

it is beneficial to identify netlist adjacent cells that could result in such error propagation

behaviors and make them physically closer.
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Figure 5.2: Examples of errors with and without common gates in their forward cones

Based on the aforementioned optimization opportunities, we identify the pair of cells which
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5.1 Layout-based Multiple Transient Mitigation

could result in the MT masking and reduce their distance to mitigate MTs.

5.1.2 MT-aware Placement Flow

In a typical place and route scenario, first an initial placement is obtained based on the netlist

structure by exploiting a trial routing [133]. Although it is possible that the locations of some

cells slightly change during the next phases (e.g., clock tree synthesis, timing optimization, and

scan chain insertion) to resolve the congestion or timing violations, most of the cells remain

in the same location. Thus, if MTs are mitigated in the initial placement, a similar effect is

expected on the final layout as well.

Legend 

Routing optimization, 
clock tree synthesis, and 
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Figure 5.3: Flow of the proposed MT-aware placement approach

The flow of our proposed MT-aware placement technique is depicted in Figure 5.3. In

this technique, the initial placement is first generated using a commercial place & route tool

(e.g., Cadence SoC Encounter) by performing the trial routing. Then, local adjustments

in the locations of the cells are performed to mitigate MTs, using the proposed algorithm.

Afterwards, the modified placement is given back to the commercial tool to repeat the trail

routing according to the modified cell locations. Then, the remaining layout generation steps

are performed in the conventional way using a commercial tool. Using this approach, the final

layout satisfies all the constraints and have smaller SER.

MT-aware Placement Algorithm

In the conventional design flow, the standard cells have a constant size in at least one dimension

that allows them to be lined up in rows on the layout. The layout consists of a large number of

rows, each of which has a power and a ground line next to it and contains various cells as well

as some whitespace. The proposed MT-aware placement technique accepts an existing placed

design as an input and optimizes the location of cells within the row to reduce the average

MT failure probability.

The proposed MT-aware placement technique neither moves the cells among different rows

nor changes the order of cells in a row, rather it redistributes the existing whitespace in

each row according to the vulnerability of the cells. The steps taken in the proposed MT-

aware placement optimization technique are In this regard, we compute the disjoint failure
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Algorithmus 2 : MT-aware placement optimization

1 Read a layout from input;

2 for each row in layout do

3 for each adjacent cell pair i and j in row do

4 fi, fj , and fij ← Compute joint and disjoint failure probabilities;

5 eij ← extract whitespace between cell i and j;

6 if fij < 1− (1− fi)(1− fj) then

7 white+ = eij ;

8 eij ← 0;

9 else

10 eij marked as ↑;
11 end

12 Redistribute white among all eijs marked as ↑;
13 Change locations of cells in row

14 end

15 end

16 Write a modified layout to a file;

probability fi, i.e. when only one cell is erroneous, for each cell i and joint failure probability

fij considering when both adjacent cells i and j are erroneous. For computing both joint

and disjoint failure probabilities, the errors are propagated in the netlist according to the

methodology described in Section 3.4 and Section 3.3. In other words, the selection of the

error sites for joint failure probability is based on the layout adjacency while error propagation

is performed on the netlist-level.

According to Section 5.1.1, if fij < 1− (1−fi)(1−fj), there is a possibility of error masking

when both cells are affected, hence, it is beneficial to remove the whitespace between the cells

which satisfy this condition to increase the probability of such MT (line 6−9). The eliminated

whitespace have to be redistributed among the cell pairs which does not satisfy this condition

as they introduce no masking. An example of whitespace redistribution is shown in Figure 5.4.

This whitespace redistribution reduces the probability of such MTs in the optimized layout.

After analyzing all the rows in the layout and redistributing the whitespaces in the favor of

MT mitigation, the modified layout structure is generated.

DFFX1

a) Comparison of joint and disjoint vulnerabilities to decide 
on shrinkage/extension of empty space between cells

b) Spacing after redistributing the spacing

INV_X1 NAND_X1 INV_X2INV_X2 DFF_X1

fjoint = 0.12 fjoint = 0.10
Shrink

fjoint = 0.01
Shrink

fjoint = 0.07

f=0.01 f=0.11 f=0.02 f=0.04 f=0.03

INV_X1 NAND_X1 INV_X2INV_X2 DFF_X1

Figure 5.4: Example of spacing before and after applying our MT mitigation technique

In this work, we only adjust the locations of the cells within each row and we do not

perform cell swapping across multiple rows. The main reason is to be compatible with the
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5.1 Layout-based Multiple Transient Mitigation

commercial tools. In this regard, the changes with respect to the original layout generated by

the traditional placement flow must be both small and local, otherwise, the routing phase will

have a considerable runtime and might not be able to find a solution for given area and timing

constraints in a reasonable runtime.

5.1.3 Experimental Results of MT-Aware Placement

In order to show the effectiveness of the proposed MT-aware placement technique, the layouts

of several large circuits are optimized using this technique. In this section, the SER reduction,

overheads, and runtime of this technique are presented. The process of preparations of the

benchmark circuits and employed tools are similar to Section 3.2.3.

MT Mitigation

It is very important to notice that the ultimate objective of the MT-aware placement is

to reduce the failure probability to be equal to the susceptibility to single transient errors

(i.e., fSET/SEU ). In other words, the target is to reduce the gap between failure probability of

MT with that of SET/SEU which is broadening with technology scaling. Hence, we introduce

a metric called MT ratio reduction as follows:

MT ratio reduction =
fMT -unaware − fMT -aware

fMT -unaware − fSET/SEU
(5.1)

where fMT -unaware−fSET/SEU is the failure probability reduction potential (maximum achiev-

able) and fMT -unaware−fMT -aware is the actual reduction achieved by our technique. Based on

this metric, 100% MT ratio reduction means that the SER of the system is equal to SET/SEU

rate.

The failure probability of the optimized layout is computed using MC simulation similar to

the original one, i.e., by placing the ovals in random locations, extracting the list of affected

cells, and propagating errors. It worth to mention that the list of error sites is generated again

for the optimized layout as the physical locations of the cells change during the optimization.

Figure 5.5 shows the MT ratio reduction for the employed benchmark circuits synthesized

for both Nangate 45 nm and 15 nm standard cell libraries. In this figure, the results for four

particle energies (i.e., 22, 37, 95, and 144 Mev) are presented. As expected, by increasing

the particle energy, the benefits of our proposed technique becomes less. However, since

the particles with smaller energy are much more plentiful, the overall mitigation is mostly

determined with respect to the reduction in particles with smaller energies. Also, it could be

observed that the reduction ratio in 15 nm is slightly less than that of 45 nm. This could be

explained by the average number of affected cells at these two technology nodes. As shown in

Figure 3.17.c, the average number of affected cells almost is doubled for all particle energies

from 45 nm to 15 nm. Since the failure probability is computed with respect to all cells and

our technique mitigates the errors for a subset of the cells, the failure probability reduction

decreases by increasing the number of cells.
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Figure 5.5: MT failure probability reduction for benchmark circuits synthesized with respect to a) 45 nm

and b) 15 nm Nangate standard cell library

Overheads

The proposed technique only redistributes the existing whitespace in each row, hence, does not

impose any area overhead. Additionally, it satisfies the given timing constraints similar to the

MET-unaware placement. This is mainly because the locations of the cells are not fixed in MT-

aware placement and could be changed when some of the constraints are not satisfied. During

the experiments, the maximum operational frequency is obtained in MT-unaware approach

for all benchmark circuits. Then, by putting the same timing constraints,

Runtime

The proposed technique not only increases the runtime of the placement phase due to re-

distribution of the whitespaces, but also affect the runtime of the routing phase as trial routing

has to be repeated after adjusting locations of the cells. The runtime of the place & route

process for MT-unaware (conventional) and the proposed MT-aware placement are reported in

Table 5.1. The MT-aware placement has 27.8% longer runtime compared to the conventional

approach, however, as it can be seen, this overhead is relatively constant for small and large

circuits, hence, it is scalable to industrial-size circuits.

5.2 Low-Cost MBU Detection in Embedded Memories

The most common technique to mitigate MBUs is to physically interleave several words in

a way that each MBU affects one bit of several words rather than several bits in the same
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Table 5.1: Comparison of runtime MT-unaware (conventional) and MT-aware Place & Route (P&R)

[Seconds]

MT-unaware P&R MT-aware P&R

Benchmark
(SoC Encounter)

Complete Execution

Initial

P&R

Our

Optimization

Final

P&R

Runtime

Overhead

s15850 189 102 3 134 26.5%

s35932 610 329 17 469 33.6%

s38417 614 297 23 362 11.1%

s38584 657 333 31 532 33.3%

b17 858 492 29 601 20.7%

b18 2,243 1,215 173 1,516 29.5%

b19 4,783 2,529 309 3,602 34.6%

b20 3,545 2,199 110 2,410 33.1%

Average 27.8%

word. The combination of physical interleaving and single error correction could significantly

reduce the SER [18, 130], however, such a technique is not applicable to all memories due to

the aspect ratio (i.e. floor-planning), the access latency, and power consumption issues [130].

Therefore, sophisticated error detection and correction techniques are required to harden such

memory arrays against MBUs.

The MBU correction in memory arrays has been extensively studied over the past few years.

However, there exists some cases where error detection is sufficient to guarantee the correct

functionality of the system, i.e. costly and sophisticated error correction is not needed. For

example, upon a detection of an error in a cache with the write-through policy, the erroneous

block could be invalidated to recover the correct contents from the lower level cache by issuing

a cache miss [88]. Another example of such cases are erasure code-based error correction

techniques [84, 85] where error detection and recovery are completely isolated for achieving

lower costs. In such scenarios, a low-cost MBU detection technique becomes an indisputable

part of the reliable system design.

The virtually interleaved parity technique has been employed in several studies [84, 83, 85]

to detect MBUs where physical interleaving is not possible. In this technique, each word has

several parity bits and the bits with a constant distance form a parity group. If the number

of parity bits would be large enough, this technique is able to detect all MBUs. However, the

area and power overheads of this technique increases in direct proportion to the largest MBU

size [84] which is growing by the technology downscaling [3].

In this section, we introduce an error detection technique called stepped parity. Unlike the

interleaved parity, in the proposed technique each data bit is involved in the computation of

several parity bits. The parity bits are organized in a way that each MBU incident could be

detected by at least one parity bit which results in a higher error detection capability. The

experimental results with respect to MBU patterns obtained for a 45 nm SRAM array show

that the stepped parity technique provides higher error detection capability compared to the

virtually interleaved parity technique while it imposes considerably smaller area and power

overheads.
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5.2.1 Stepped Parity

Main Idea

An MBU incident affects the memory cells in a localized manner, hence, the maximum distance

of the affected bits is bounded by a certain number which is technology dependent [3, 32]. In

addition, the probability of having MBUs with smaller number of cells is typically higher

as the particles with smaller energies are typically much more plentiful [136]. Thus, a cost-

efficient error detection technique has to put more effort for detecting most common small

MBU patterns.

In parity-based error detection techniques, if an even number of bits in one parity group is

affected by an MBU incident, that MBU cannot be detected by that parity group. Therefore,

an MBU incident is detected if and only if it affects an odd number of bits in at least one

parity group. In virtually interleaved parity, each bit of the data is covered by one and only

one parity group. The virtually interleaved parity with n parity bits cannot detect some of the

MBU patterns spreading over more than n bits. Some examples of such patterns for virtually

interleaved parity with two parity bits are shown in Figure 5.6.a. As it can be seen, these parity

bits have two affected bits in one word and have considerably high occurrence probabilities.

Therefore, the virtually interleaved parity fails to detect such MBU patterns (see Figure 5.6)

as it is not designed to detect patterns with higher occurrence probability.

b) Stepped parity

a) Interleaved parity
3.72% 0.07% 0.07%

0.17%0.18%0.29%

Figure 5.6: The parity organization and most frequent undetectable MBU patterns for a) interleaved

parity and b) stepped parity with two parity bits

The main idea behind the proposed stepped parity technique is to associate several parity

bits to each bit in a way that each MBU incident could be detected by at least one of these

parity bits. Figure 5.6 illustrates the organization of parity bits for virtually interleaved parity

and stepped parity with two parity bits. As it can be seen, in the stepped parity, there are data

bits which are associated to both parity bits. Although in the stepped parity adjacent cells

are associated to the same parity bit, all double adjacent errors could be detected according

to the non-common parity bit. This technique is also able to detect double erroneous cells

with one unaffected cell in between, whereas interleaved parity fails to do so. In contrast, the

interleaved parity could detect three adjacent errors while such an error affects even number

of bits in both parity bits in the proposed stepped parity and hence is undetectable. The

most common undetectable MBU patterns and their corresponding occurrence probabilities

for both error detection techniques are shown in Figure 5.6. As it can be seen, the patterns

that cannot be detected by the interleaved parity has considerably higher overall occurrence

probability (i.e. ~6X) compared to that of our proposed stepped parity technique.
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Formal Presentation

The stepped parity could be uniquely represented as S(P, T ) where P is the number of parity

bits and T is the parity thickness of the code. In this technique, the number of parity bits

associated to each bit is defined as parity thickness of that bit. The parity thickness of the

code is defined as the maximum parity thickness of all data bits and represents the maximum

number of parity bits associated to each bit and could be in the range of 1 ≤ T ≤ P .

In this technique, the ith parity bit for a word with n data bits could be computed as:

pi =
T−1
⊕
t=0

b n−t−i
P+T−1

c
⊕
k=0

di+k·(P+T−1)+t , n ≥ P (5.2)

Three examples of stepped parity with four parity bits (P = 4) and parity thickness of 1, 2,

and 4 (T = 1, 2, 4) are depicted in Figure 5.7. As it can be seen, by increasing the parity thick-

ness, the number of required XOR operation grows which means larger encoding/decoding

circuitry is needed. On the other hand, such an increase improves the error detection capa-

bility. For example, there are P + T − 2 unaffected cells between two erroneous cells in the

smallest double error MBU pattern which cannot be detected using stepped parity S(P, T ).

Considering the fact that the probability of having double error significantly reduces by hav-

ing more unaffected cells in between, a significant improvement is obtained by increasing the

parity thickness.

a) S(4,1): Equivalent to interleaved parity with four parity bits

b) S(4,2)

c) S(4,4)

Parity bits Data bits

Figure 5.7: Examples of stepped parity with four parity bits and parity thickness a) one b) two, and c)

four

It is worth to mention that S(P, 1) is equivalent to the virtually interleaved parity with

P parity bits. This could be clearly seen in Figure 5.7.a and also by assuming T = 1 in

Equation 5.2:

pi =
bn−i

P
c

⊕
k=0

di+kP , n ≥ P (5.3)
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5.2.2 Experimental Results

In order to show the effectiveness of the proposed technique, its MBU detection capability

as well as the area and the power overheads are compared with the virtually interleaved

parity. The area, latency, and power consumption for a memory array and its corresponding

encoding/decoding circuitry are obtained with respect to Nangate 45 nm standard cell library

and UMC memory maker in a similar technology node.

Error Correction Capability

Table 5.2 demonstrates the MBU detection coverage for different number of parity bits and

thickness. The results are obtained by injecting one million MBU patterns with respect to

their occurrence provabilities in a memory array with size of 1024×32 bits. According to this

table, the virtually interleaved parity (S(P, 1), see the first column of the results) requires 6

bits (S(6, 1)) to reach the detection coverage of 100% while the stepped parity could obtain

the same coverage with only four parity bits with parity thickness of 3 (i.e. S(4, 3)).

Table 5.2: Error detection coverage of stepped parity

Parity thickness (T)

1 2 3 4 5

#
o
f

p
a
ri

ty

b
it

s
(P

)

1 69.234%

2 91.430% 97.238%

3 99.687% 99.694% 99.914%

4 99.981% 99.995% 100.000% 100.000%

5 99.996% 100.000% 100.000% 100.000% 100.000%

6 100.000% 100.000% 100.000% 100.000% 100.000%

As it can be seen in Table 5.2, the error detection coverage typically grows by increasing

the parity thickness. Basically such increase improves the error detection for small size MBUs

at the expense of reduced detection coverages for larger MBU patterns. As mentioned earlier,

larger patterns are less likely to occur and hence the detection coverage grows. However, there

might be some cases in which slight reduction in detection coverage is observed.

Area Overhead

For obtaining the area overhead of the proposed stepped parity technique, the area of memory

arrays with various number of parity bits is extracted from UMC memory maker [137]. The

area for a memory array with size of 1024×32 is 26,811µm2. The area for memory with

different number of parity bits is shown in Table 5.3. As seen, the area overhead for each

parity bit is about 2.5% which is smaller than the overhead in the number of bits ( 1
32 = 3.1).

This is mainly due to the fact that the address decoder of the memory is not affected by such

an increase.

The number of XOR gates in the encoding/decoding circuitry for stepped parity with differ-

ent number of parity bits and parity thickness is presented in Table 5.4. As it can be observed,

the number of required XOR bits sub-linearly grows by increasing the parity thickness. Al-

though there is significant increase in the number of XOR gates and hence the size of the

encoding/decoding circuitry, this circuitry is just a small part of the memory and its impact
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Table 5.3: Memory area for different

number of parities
Memory area

Absolute[µm2] Overhead

#
o
f

p
a
ri

ty

b
it

s
(P

)

1 27,486 2.5%

2 28,161 5.0%

3 28,835 7.5%

4 29,510 10.0%

5 30,185 12.6%

6 30,859 15.1%

Table 5.4: Number of XOR gates required by S(P,T)

encoder/decoder circuitry
Parity thickness (T)

1 2 3 4 5

#
o
f

p
a
ri

ty

b
it

s
(P

)

1 31

2 30 41

3 29 45 54

4 28 47 59 70

5 27 48 64 75 85

6 26 49 66 80 87

Table 5.5: Overall area overhead of S(P,T) compared to non-protected memory
Parity thickness (T)

1 2 3 4 5

#
o
f

p
a
ri

ty

b
it

s
(P

)

1 2.79%

2 5.30% 5.4%

3 7.81% 7.9% 8.0%

4 10.32% 10.5% 10.6% 10.7%

5 12.82% 13.0% 13.2% 13.2% 13.3%

6 15.3% 15.5% 15.7% 15.8% 15.8%

on the overall area overhead is minimal. In order to investigate this fact, we estimated the

absolute area of the encoding/decoding circuitry according to the area of an XOR gate by

considering a reasonable whitespace.

The area overhead of the memory with error detection capability (including both memory

array and encoding/decoding circuitry area) with respect to the non-protected memory for

different cases are reported in Table 5.5. As it can be seen, by increasing the parity thickness,

the area overhead does not significantly increases, however, it grows linearly by increasing the

number of parity bits. Hence, from the area perspective, it is worth to reduce the number of

parity bits at the expense of more complicated encoding/decoding circuitry.

In order to reach the detection coverage of 100%, the virtually interleaved parity requires

six parity bits and imposes 15.33% area overhead (S(6, 1) in Table 5.5), however, the stepped

parity with four parity bits and parity thickness of three could reach the same goal with only

10.59% area overhead. This indicates that the proposed technique reduces the amount of area

overhead by 30.9% compared to the virtually interleaved parity.

The overall area overheads of the memory array and the encoding/decoding circuitry for both

stepped parity and virtually interleaved parity applied on different memory configurations are

illustrated in Figure 5.8. For both error detection techniques, the minimum number of parity

bits required to provide the full detection coverage is considered, i.e. four bits for the stepped

parity and six bits for the virtually interleaved parity. The results show that the area overhead

reduction compared to the virtually interleaved parity for a memory with 512 words is 24%-

28%. The ratio of reduction slightly increases for larger memory sizes and saturates for memory

arrays with more than 4096 word on about 32%-33%.

Power Overhead

The power overhead of the stepped parity is computed with respect to the static and dynamic

power consumption of the memory array and the encoding/decoding circuitry. The switching

activity information (i.e. the read/write access rate and average number of flips in the address
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Figure 5.8: Comparison of area overhead of stepped parity and virtually interleaved parity for providing

100% error detection coverage (i.e. S(4,3) vs. S(6,1))

and data bits) is obtained by monitoring the data cache of the OR1200 processor where

stringsearch, bitcounts, basicmath, and qsort workloads from MiBench benchmark suite [117]

are executed. The size of the data cache is 1024×32 bits and its power consumption is 95.6µW

where no protection technique is applied.

Table 5.6: Overall power overhead of S(P,T) compared to non-protected memory

Parity thickness (T)

1 2 3 4 5

#
o
f

p
a
ri

ty

b
it

s
(P

)

1 5.12%

2 7.70% 8.13%

3 11.57% 12.20% 12.55%

4 15.45% 16.20% 16.65% 17.08%

5 19.33% 20.14% 20.77% 21.20% 21.59%

6 23.20% 24.09% 24.76% 25.30% 25.58%

The power overhead of the memory array for different configuration of the stepped parity

is reported in Table 5.6. As it can be seen, similar to the area overhead, the power overhead

strongly depends on the number of parity bits, however, it also considerably grows by increasing

the parity thickness. The proposed stepped parity technique reduces the power overhead by

28.2% compared to virtually interleaved parity (from 23.20% to 16.65%).

The power overhead imposed by the stepped parity (S(4, 3)) and the virtually interleaved

parity (S(6, 1)) for different memory configurations are reported in Figure 5.9. We assumed

that the switching activity information is similar to 1024×32 memory array. As shown, the

proposed technique can considerably reduce the power overhead for all cases. The amount of

reduction is higher for the memories with more number of words as the area overhead imposed

by additional XOR gates would be smaller compared to the gain achieved by eliminating the

additional two parity columns in virtually interleaved parity.
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Figure 5.9: Comparison of power overhead of stepped parity and virtually interleaved parity for pro-

viding 100% error detection coverage (i.e. S(4,3) vs. S(6,1))

Table 5.7: Memory access latency for

different number of parities

Latency [ns]

#
o
f

p
a
ri

ty
b

it
s

(P
) 1 1.620

2 1.623

3 1.627

4 1.630

5 1.633

6 1.637

Table 5.8: Depth of XOR tree in S(P,T) en-

coder/decoder circuitry
Parity thickness (T)

1 2 3 4 5

#
o
f

p
a
ri

ty
b

it
s

(P
) 1 5

2 4 5

3 4 4 5

4 3 4 5 5

5 3 4 4 4 5

6 3 4 4 4 5

Table 5.9: Overall latency overhead of S(P,T) compared to non-protected memory
Parity thickness (T)

1 2 3 4 5

#
o
f

p
a
ri

ty
b

it
s

(P
) 1 12.24%

2 10.02% 12.43%

3 10.26% 10.26% 12.67%

4 8.04% 10.45% 12.86% 12.86%

5 8.23% 10.63% 10.63% 10.63% 13.05%

6 8.47% 10.88% 10.88% 10.88% 13.29%

Latency Overhead

Increasing the number of parity bits has a negligible impact on the access latency of the memory

array (see Table 5.7), however, the delay of the encoding and decoding circuity considerably

affects the overall latency. In order to estimate the latency of the encoding/decoding circuity

for each configuration of the stepped parity, the corresponding circuity is synthesized with

Synopsys Design Compiler with respect to 45 nm Nangate standard cell library. In all cases,

the objective was to minimize the latency, hence, all the synthesized netlists were XOR trees

with minimum depth (i.e. balanced).

The overall delay overheads of the different configurations of the stepped parity are reported

in Table 5.9 for a memory array of 1024×32 bits. The delay of the encoding/decoding circuitry,

and hence the overall delay overhead are linearly dependent on the depth of the XOR tree.
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As reported in this table, unlike area and power overheads, the latency overhead reduces by

increasing the number of parity bits as fewer data bits are used for computing each parity

bit. The results show that the virtually interleaved parity and stepped parity impose 8.47%

and 12.86% latency overhead compared to the non-protected memory array, respectively. The

additional latency overhead of the stepped parity is mainly due to the larger depth of the XOR

tree in the encoding circuitry.
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Figure 5.10: Comparison of latency overhead of stepped parity and virtually interleaved parity for

providing 100% error detection coverage

In case the additional latency of the memory array increases the number of cycles required

for each read/write access, it leads to a performance penalty at system level. Otherwise, such

an increase has no impact at the higher levels. For example, the maximum frequency of the

OR1200 processor after synthesizing it with 45 nm Nangate and performing place & route

optimization is 894 MHz. This indicates that the minimum clock period for this processor

is 1.118 ns. The delay of the data cache of this processor (1024×32 bits) is 1.617 ns, hence,

each access to this cache unit requires two cycles. For this particular memory array, the access

latency after applying the stepped parity or the virtually interleaved parity is still less than two

cycles. Therefore, for this case, an appropriate error detection technique could be selected with

respect to the area and power overheads of the memory array. In contrast, if the additional

latency leads to an excessive memory access cycle in first level caches, techniques with higher

area and power overhead but smaller latency are more beneficial to avoid the performance

penalty at system-level.

Figure 5.10 shows the latency overhead of the proposed technique for different memory sizes.

As shown, the latency overheads of both techniques are reduced by increasing the number of

words. Also, the latency overhead of the stepped parity for all cases is higher than the virtually

stepped parity, however, the absolute difference between these two techniques is at most 78 ps.

Hence, it is very likely that the number of clock cycles per access would be the same for these

techniques.
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5.3 Low-cost MBU Correction in Configuration Frames

In order to meet the ever increasing performance and power demands, FPGAs are typically

fabricated using the most advanced technology nodes. Recently, FPGAs based on 14 nm

technology with more dense integration schemes such as 3D die stacking have been announced

[138, 139]. In such small device geometries, a single radiation-induced particle strike is likely to

affect several adjacent cells in a memory array leading to a MBU [116, 13]. Considering the fact

that the MBU rate in nanoscales is comparable with that of the SEU [3, 32], an appropriate

scheme is required to detect and correct multiple errors in memory arrays. More specifically,

SRAM-based FPGAs are more prone to soft errors as a particle strike in a configuration

frame2 has a permanent impact on the functionality of the mapped design [140]. Since the

configuration frames constitute the majority of SRAMs in an FPGA device (e.g. more than

80% for Xilinx Virtex-6 VLX240T), mitigation of MBUs in configuration frames is of decisive

importance.

Several schemes have been presented to address the increasing soft error concern in FPGA

configuration frames. The main objective of these schemes is to reduce error latency, and hence,

to avoid error accumulation within configuration frames. Costly modular redundancy [141,

142, 143] is a conventional technique to tolerate soft errors in both configuration frames and

functional logic. However, accumulated errors in both data and configuration bits dramatically

limit the mean time to failure of such schemes [127]. Another technique is to optimize the

configuration frame circuitry for soft errors as detailed in [144, 145]. However, such hardening

techniques are not implemented in existing FPGA devices because of their excessive area

overheads. Therefore, a low-cost solution is required to correct erroneous configuration frames

during operation. The combination of configuration scrubbing and ECCs is an effective solution

to detect and correct radiation-induced transient errors in configuration bits. In this regard,

SEU tolerant scrubbing scheme [146, 147, 148, 149] is very well studied in the literature, and

it is already included in Xilinx and Altera design flows [150, 151].

There are also few schemes to specifically address MBUs in FPGA devices. The scheme

proposed in [152] employs the two dimensional hamming code in each configuration frame to

correct MBUs. In [153], another scheme based on interleaved single error correction hamming

code has been presented which could correct up to four adjacent error bits. In addition, Xilinx

offers a soft error mitigation controller (IP block) based on Cyclic Redundancy Code (CRC) and

ECC which can correct up to two adjacent erroneous cells in each configuration frame [154].

Recent experiments reveal that the number of affected bits by an MBU incident grows as

technology scales [3]. Therefore, a more complicated ECC with very high area overhead is

required to efficiently address the increase in MBU incidence rate.

Based on the fact that error detection can be done at much lower cost than error correction

[77], we propose an MBU detection technique to detect the erroneous configuration frame

during configuration scrubbing. Once an error is detected, by taking advantage of erasure

codes and using the data stored in a redundant frame, the correct contents of the affected

configuration frame is reconstructed. For detecting MBUs in the configuration frames of the

FPGA, we propose a low-cost technique namely Interleaved n Dimensional (InD) parity. The

interleaving distance of this technique is optimized based on the actual MBU patterns and their

respective probabilities obtained from a detailed technology dependent analysis. Furthermore,

2A configuration frame is the smallest addressable chunk of a configuration memory
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by carefully dividing the frames into several clusters, the proposed technique can detect and

correct an MBU affecting several adjacent configuration frames.

For the case study on a Xilinx FPGA device, the proposed InD parity technique is able to

detect 100.00% of the soft errors, and all detected errors are successfully recovered by means

of erasure codes. Our proposed scheme only occupies 3.3% of logic blocks and 0.9% of Block

RAMs (BRAMs3) out of the available resources in the employed FPGA device. The results

also reveal that our proposed scheme provides the highest recovery coverage4 with considerably

less area overhead compared to the existing solutions at the expense of a negligible increase in

the Mean Time To Repair (MTTR)5 (3.75%).

5.3.1 Erasure Codes

Our proposed error correction scheme is based on the concept of erasure codes [155, 156]. An

optimal erasure code is a data recovery technique which transforms m blocks into m+n blocks

such that the original m blocks can be reconstructed from any arbitrary set of m blocks among

m + n coded blocks (demonstrated in Figure 5.11). This data recovery technique is widely

implemented in reliable storage devices (hard disks and CDs) [157], error correction in cache

arrays [86], multimedia multi-casting, and signal transfer protocols [158].

Encoding Decoding

m data blocks n redundant 
blocks

m+n blocks

Figure 5.11: Encoding and decoding of erasure codes

A variety of erasure codes with different recovery coverage, area overhead, and encod-

ing/decoding complexity are proposed in the literature [155, 156]. The area overhead of an

erasure code is expressed as the ratio of redundant blocks to the data blocks (i.e. n/m). The

recovery coverage of an erasure code is defined as the maximum number of erasures that could

be tolerated. For the optimal erasure codes, the recovery coverage is equal to the number of

redundant blocks (i.e. n).

Erasure codes are not proposed to detect or correct errors rather to retrieve the original

blocks when a subset of blocks is not available (i.e. erased). However, once an error is detected

in some blocks, by assuming that those blocks are not available, the original blocks could be

recovered by means of an erasure code.

5.3.2 MBU Detection

Considering the fact that the entire configuration frame could be recovered using an erasure

code, the identification of the exact location of erroneous bits is not of our interest, rather

3BRAMs are pre-wired ASIC-like RAMs available to logic fabric through read/write ports
4Recovery coverage is the percentage of the errors that can be successfully detected and recovered to the

original state
5Mean Time to Repair is the average time required to detect and correct an error
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a low-cost error detection technique with a very high detection coverage is required. In this

regard, we present a very efficient error detection coding technique called InD parity for MBU

detection in the configuration frames. The error detection capability of this technique in the

configuration frame for two particular cases where N=2 and N=3 are investigated in details.

InD Parity

In memory arrays of typical microprocessors such as cache units, the parity bits employed for

error detection in each memory entry (i.e. word) are computed during each memory access.

Hence, from the performance perspective, it is crucial that each memory entry has its own

error detection coding. Otherwise, during each memory access, all other entries that are

involved in the computation of the corresponding common parity bit(s) must be accessed as

well. However, the errors in FPGAs are detected during the periodic scrubbing where the

error checking unit can access the entire contents of a configuration frame. Therefore, a parity

bit could be computed based on multiple entries.

In the proposed error detection technique, we exploit the fact that the sizes of large MBU

patterns are typically much smaller than the size of a configuration frame. Since an MBU

incident affects several bits in a localized manner, the bits which are located far enough cannot

be simultaneously affected with one MBU incident. Therefore, having separate parities for such

bits in configuration frames neither increases the error detection capability nor improves the

performance, rather only imposes unnecessary area overhead.

In order to increase the cost-efficiency of error detection for the configuration frames, we

introduce the idea of InD parity. The main idea is to use the same parity bit for the bits

that are separated by a constant distance to minimize the area overhead (i.e. interleaved

parity). In addition, the parity bits are distributed at several dimensions to increase the

detection coverage with respect to probable MBU patterns as there are some MBU patterns

that cannot be detected using one or two dimensions, no matter how many parity bits are

employed. The number of parity bits in each dimension theoretically has to be at most equal

to the largest MBU spread on that dimension. However, in practice, large MBU patterns are

typically detected using the parity bits on the other dimensions. Consequently, the number of

parity bits required by this technique is always smaller than this theoretical limit.

It should be mentioned that the proposed InD parity technique is conceptually different

from the existing error detection techniques used for an interleaved memory such as cache

units [130, 18]. In the latter case, each word has its own error detection code and also, the

memory words are physically interleaved to reduce the probability of having more than one

erroneous bit in each word for an MBU incidence. However, this does not reduce the area

overhead of the error detection technique. In contrast, the proposed InD parity coding is a

virtual interleaving technique which does not require any changes to the configuration frame

structure. In addition, in the case of a large configuration frame, the number of redundant

bits could be drastically reduced in comparison to the complete interleaved parity coding.

In order to clearly show the detection capability of the proposed technique, the organization

of parity bits as well as the error detection capability of the proposed interleaved two and

three dimensional (I2D and I3D) parity schemes are detailed first and then the generalization

of this technique in higher dimensions is discussed.
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Figure 5.12: An example of I2D with vertical and horizontal distance of 4 and 3, respectively

I2D Parity

In the complete (traditional) 2D parity, a parity bit is associated for each row (column) which

is constructed by XORing all the bits in that particular row (column). In the I2D parity tech-

nique, each horizontal (vertical) parity bit is the XOR of the bits in multiple rows (columns).

More specifically, all rows (columns) that are separated by a constant distance of h (v) form

an interleaving group and all the bits within that interleaving group are covered by only one

horizontal (vertical) parity bit. For a f × g memory array, the complete 2D parity have f + g

parity bits while I2D parity requires only h+ v parity bits. Additionally, the number of XOR

operations in both schemes are of the same order. These are formulated in Table 5.10.

Table 5.10: Parity computation for complete 2D and I2D
2D parity I2D parity

Horizontal

Parity
prowi = ⊕

j=1..f
ai,j prowi [1..h]= ⊕

j=1..f
x=0..bg/hc

ai+xh,j

Vertical Parity pcolj = ⊕
i=1..g

ai,j pcolj [1..v]= ⊕
i=1..g

y=0..bf/vc

ai,j+yv

No. of Parity Bits f + g v + h

Figure 5.12 depicts an example of I2D coding with the horizontal and the vertical interleaving

distance of 3 and 4, respectively. In this example, first, second and third horizontal parity bits

are the parity of all bits belonging to {1,4,7}, {2,5,8}, and {3,6} rows, respectively.

Both the horizontal and the vertical interleaving distance directly affect the detection cov-

erage of the I2D parity technique. The only cases that I2D cannot detect an MBU incident is

when the MBU affects an even number of bits involved in the computation of a certain parity

bit while it is not detected by other parity bits. However, most of such cases are detectable

by the complete 2D parity technique. Figure 5.13 illustrates three examples of such MBU

patterns which cannot be detected by I2D with horizontal and vertical distance of 3 and 4,

respectively.

Since the size of MBU patterns (in worst case, 24 bits are affected in our experiments) is

considerably smaller than the size of a configuration frame (e.g. each configuration frame of a

Virtex-6 device comprises of 81×32 bits), in case the horizontal and the vertical interleaving

distance would be large enough, I2D can provide exactly the same MBU detection coverage
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b) Not Detected by I2D; Detectable by 2D

d) Not Detected by Bothc) Detected by Both

a) I2D: Vertical 4 and 
Horizontal 3

Figure 5.13: Examples of MBU patterns for comparison of detection capability of 2D and I2D (vertical

and horizontal distance of 4 and 3, respectively)

as a complete 2D parity technique. This is because the erroneous bits would be covered by at

least one interleaving group. Therefore, the horizontal and the vertical interleaving distance

have to be determined according to the possible MBU patterns.

The impact of the horizontal and the vertical interleaving distance on the error detection

coverage are described in Table 5.11. The results presented in this table are extracted by

analyzing each 45 nm MBU pattern (Figure 3.4 and Figure 3.5) and investigating the detection

capability of I2D with a given interleaving distance for that pattern. As shown in Table 5.11,

the error detection coverage grows by increasing the interleaving distances and saturates for

the vertical and horizontal distance of 5. This detection coverage is exactly the same number

that the complete 2D parity can detect for these MBU patterns, however, our I2D technique

needs only 10 parity bits for error detection whereas the complete 2D parity requires 113 parity

bits for each Xilinx Virtex-6 configuration frame.

Table 5.11: Error detection coverage vs. interleaving distance for I2D parity
v=0 v=1 v=2 v=3 v=4 v=5

h=0 0.000% 68.960% 85.513% 89.990% 90.223% 90.278%

h=1 68.960% 68.960% 85.513% 89.990% 90.223% 90.278%

h=2 81.797% 81.797% 91.827% 95.590% 95.827% 95.862%

h=3 85.216% 85.216% 94.937% 98.688% 98.937% 98.960%

h=4 85.625% 85.625% 95.004% 98.752% 99.208% 99.286%

h=5 85.659% 85.659% 95.287% 99.038% 99.287% 99.301%

I3D Parity

In general, there might be some MBU patterns which affect an even number of cells in each

row and column. This kind of patterns cannot be detected by the I2D parity technique since

parity bit can only detect an odd number of erroneous bits. Examples of MBU patterns, in

this technology, with significant occurrence probabilities that cannot be detected either by I2D

or traditional 2D parity technique are shown in Figure 5.14. In order to detect such MBUs,

a more powerful MBU detection technique is required. In this regard, we propose I3D parity

technique which has an additional set of parity bits for diagonals.

Computation of the horizontal and the vertical parity bits in I3D parity follows the same rules

explained for I2D parity. Similar to the interleaving technique employed in I2D parity to reduce
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Figure 5.14: Three major MBU patterns that cannot be detected by either I2D or traditional 2D parity

and their occurrence probability
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Figure 5.15: An example of I3D with vertical, horizontal, and diagonal distance of 4, 3, and 5, respec-

tively

the number of horizontal and vertical parity bits, in I3D parity, several interleaving groups

are formed for the diagonals as well. Then for each group only one parity bit is computed. In

order to uniformly distribute d diagonal parity bits for a configuration frame of size g× f , the

interleaving group for the bit position of (i, j) could be computed by (i + f · (j − 1)) mod d.

An example of the I3D parity technique with the vertical, the horizontal, and the diagonal

interleaving distance of 4, 3, and 5, respectively, is depicted in Figure 5.15.

The error detection coverage of I3D parity for different horizontal, vertical, and diagonal

interleaving distances are reported in Table 5.12. As it can be seen, the maximum error

detection coverage of this coding technique is 100% and could be achieved with at least 10

parity bits (h=5, v=2, d=3). Although the number of parity bits is much less than the

complete 2D parity (i.e. 113), this detection technique is able to detect all MBUs.

Comparison of I2D and I3D

The number of parity bits required by I2D to reach its maximum detection coverage is equal

to that of I3D (both require 10 parity bits). However, the error detection coverage of I2D is

less than that of I3D. The maximum error detection coverages for various number of parity

bits employed in I2D and I3D parity techniques are demonstrated in Figure 5.16. This is

obtained by comparing the detection coverage of all possible cases that result in the desired

number of parity bits. For instance, for 4 parity bits in I2D parity, we need to compare the

detection coverage for five cases which are (v=4,h=0), (v=3,h=1), (v=2,h=2), (v=1,h=3), and

(v=0,h=4). As it can be seen in this figure, the I3D parity always provides higher detection

coverage than I2D parity when the number of parity bits is more than 2. Although the I3D
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Table 5.12: Interleaving distance vs. error detection coverage for I3D parity
v=0 v=1 v=2 v=3 v=4 v=5

d
=

0

h=0 0.000% 68.960% 85.513% 89.990% 90.223% 90.278%

h=1 68.960% 68.960% 85.513% 89.990% 90.223% 90.278%

h=2 81.797% 81.797% 91.827% 95.590% 95.827% 95.862%

h=3 85.216% 85.216% 94.937% 98.688% 98.937% 98.960%

h=4 85.625% 85.625% 95.004% 98.752% 99.208% 99.286%

h=5 85.659% 85.659% 95.287% 99.038% 99.287% 99.301%
d

=
1

h=0 68.960% 68.960% 85.513% 89.990% 90.223% 90.278%

h=1 68.960% 68.960% 85.513% 89.990% 90.223% 90.278%

h=2 81.797% 81.797% 91.827% 95.590% 95.827% 95.862%

h=3 85.216% 85.216% 94.937% 98.688% 98.937% 98.960%

h=4 85.625% 85.625% 95.004% 98.752% 99.208% 99.286%

h=5 85.659% 85.659% 95.287% 99.038% 99.287% 99.301%

d
=

2

h=0 84.988% 84.998% 89.735% 95.496% 95.477% 95.510%

h=1 84.988% 84.998% 89.735% 95.496% 95.477% 95.510%

h=2 89.715% 89.715% 89.736% 95.513% 95.478% 95.513%

h=3 93.452% 93.452% 93.545% 99.301% 99.283% 99.301%

h=4 93.547% 93.547% 93.545% 99.301% 99.287% 99.301%

h=5 93.549% 93.549% 93.545% 99.301% 99.287% 99.301%

d
=

3

h=0 92.604% 92.604% 98.145% 98.037% 98.289% 98.309%

h=1 92.604% 92.604% 98.145% 98.037% 98.289% 98.309%

h=2 98.128% 98.128% 99.659% 99.387% 99.659% 99.870%

h=3 98.801% 98.801% 99.650% 99.379% 99.652% 99.652%

h=4 98.838% 98.728% 99.981% 99.743% 100.000% 100.000%

h=5 99.015% 99.015% 100.000% 99.798% 100.000% 100.000%

parity technique provides more detection coverage with the same number of bits, it occupies

more logical resources on the FPGA. This is because more parity bits are required to be stored

for the third dimension (diagonal parity) and the complexity of the controller unit increases

for the generation of such additional parity bits.
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Figure 5.16: Maximum detection coverage obtained by I2D and I3D parity for different number of parity

bits

5.3.3 Recovery Based on Erasure Codes

For error detection, we propose to implement a scrubber unit which periodically checks the

parity bits of the configuration frames for possible errors. Upon a detection of an error, by

assuming that the erroneous frame is erased, its contents are recovered using an erasure code.

The proposed scheme does not require any modification to the architecture of existing FP-
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GAs. It can be mapped as a soft module alongside with the user design into the FPGA. This

way, the scrubber can work in parallel with the user application.

Effective Erasure Code for Error Recovery in Configuration Frames

There are plenty of erasure codes with different characteristics in the literature. An effective

erasure code should be selected in the context of the error recovery for the configuration frames.

Since soft error occurrence rate is relatively small and scrubbing is continuously performed to

detect and recover possible errors6, it is unlikely to have multiple erroneous configuration

frames in each scrubbing iteration. In addition, the encoding time of the erasure code is not

a major issue in this context as it is done only once in advance during the design mapping

to the FPGA device. In contrast, a high decoding time prolongs the error recovery process.

Therefore, an erasure code with one redundant block and short decoding time satisfies our

requirements.
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1 1 0 1 0

0 0 0 1 1
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Figure 5.17: Encoding and decoding of parity-based erasure codes

The parity based erasure code [155] is an optimal erasure code with one redundant block

(n = 1; a m + 1 erasure code), hence, it can recover from all cases with one erased block. In

this technique, the redundant block stores the parity of data in all other blocks (Figure 5.17.a).

In case of an erasure, the contents of the erased block could be simply computed by the parity

of the other m blocks (Figure 5.17.b).

The factor m determines the trade-off between the area overhead and the encoding/decoding

time. If all configuration frames in a large device are protected with only one erasure block, the

error recovery time would be considerably high as all frames have to be read to compute the

contents of the erased configuration frame. In order to reduce the error recovery time, FPGA

frames could be divided into several clusters, each of which has its own redundant block (see

Figure 5.18). In summary, a smaller m shortens the encoding/decoding time at the expense

of higher area overhead.

It is worth to mention that, during the recovery process, the entire affected configuration

frame is reconstructed which leads to MBU correction of that particular configuration frame.

While erasure codes can completely reconstruct an erroneous configuration frame which has

multiple errors, it fails when MBUs span across several configuration frames. In order to avoid

such cases, frames for different clusters are appointed in a way that the frames from one cluster

are not physically adjacent in the FPGA device. Therefore, in case an MBU affects adjacent

6The overall SER of all configuration frames of the Xilinx Virtex-6 VLX240T device is estimated with [39] to

be 5.11 errors per 105 hours while the scrubbing iteration for the same device is about 18.7 ms
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Figure 5.18: Configuration frame protection using proposed erasure code-based approach

frames, it affects only one frame from each cluster which could be recovered based on the

redundant block in the same cluster.

The proposed technique is also applicable to FPGAs with partial reconfiguration capability.

The partial reconfiguration is the ability to dynamically modify a subset of configuration

frames by downloading their contents while the remaining logic continues to operate without

interruption. In such designs, in each reconfiguration phase, in addition to the configuration

frames, the corresponding erasure frames have to be updated as well.

Storing Redundant Data

The proposed scheme generates error detection codes (InD parity bits) for each configuration

frame and also a redundant erasure block for each cluster. This additional data has to be

stored in BRAMs of the FPGA device or in the spare bits of the configuration frames. In

case the parity bits are stored in BRAMs, one important concern is not to store parity bits of

different frames from one cluster very close together because an MBU might affect parity bits

of several frames in that cluster. In such a scenario, affected bits cannot be recovered as the

number of erroneous frames is more than the available erasure blocks (only one erasure block

for each cluster). A similar issue also exists for storing error detection data and the erasure

block of the same cluster, i.e. if an MBU affects both the erasure block of a cluster as well as

the parity bits of one frame in the same cluster, the recovery is not possible.

Considering these important issues, it is essential to interleave the redundant data in a way
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that for each cluster at most either error detection parity bits of one frame or the redundant

erasure block could be affected. Hence, the size of the clusters have to be larger than one, to

facilitate an interleaving distance of at least one among data from each cluster.

Error Detection and Recovery Unit

The Error Detection and Recovery (EDR) unit periodically performs configuration scrubbing

to detect possible erroneous frames. This unit reads a configuration frame word by word and

performs the InD error detection for that frame. Upon a detection of an error, this unit restores

the contents of the erroneous frame according to the contents of the remaining frames in the

same cluster. It is worth to mention that the EDR unit not only scrubs the configuration

frames but also scrubs the redundant erasure blocks stored in BRAMs for detecting possible

errors. Otherwise, an accumulated error in a redundant block prevents from reconstructing

the correct data when a configuration frame from the same cluster becomes erroneous in the

future.

The scrubbing rate is determined by the desired level of reliability as well as the radiation-

induced SER. For example, SER at altitude of 40,000 feet is about 500X more than that of the

terrestrial environment [159], hence, a higher scrubbing rate is required for avionic systems to

provide the same level of reliability.

Soft errors in the configuration frames or the functional logic of the EDR unit might affect

its functionality. Therefore, it is essential to protect this unit against this kind of errors. In

order to address this, we protect this unit using a TMR implementation. Since the size of the

EDR unit is relatively small (it occupies less than 1% of the all resources in a Xilinx Virtex-6

FPGA device), the area overhead imposed by triplication (2%) is not significant. An important

point to note is that since the EDR periodically scrubs the entire configuration frames of the

device, it can also self-heal the soft errors occurring in the configuration frames pertaining to

its own circuitry.

Once an error is detected in a configuration frame, the following steps required to be per-

formed by the EDR unit for recovering the correct contents of that frame:

1. The EDR unit creates a temporary block and initializes all its bits with zero.

2. The EDR unit determines the erroneous configuration frame cluster and reads all the

configuration frames of the erroneous cluster one by one by excluding the erroneous

configuration frame. The recovery unit computes the XOR of all bits with their corre-

sponding bits in the temporary block and replaces the new value in the temporary block.

Once all frames in the cluster are processed, the temporary block contains the parity of

all error-free frames in the same cluster.

3. The temporary block is written into the erroneous frame in the FPGA device.

Since the likelihood of having two erroneous frames from the same cluster in one scrubbing

iteration is negligible7, such cases could be safely ignored.

The objective of this scheme is to address the permanent effect of radiation-induced soft

7The SER of an SRAM cell is 6.93×10−13 per hour in 45 nm technology [39]. For a configuration size of

81×32, cluster size of 50, and scrubbing rate of 18.7 ms, the probability of having one error in one cluster

is 2.33 × 10−11, while the probability of having more than one error in the same cluster in one scrubbing

period is 2.66 × 10−22.
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errors only in the configuration frames. However, errors might still affect the functionality of

the mapped design from the error occurrence time until the recovery operation is performed.

Therefore, a roll-back (e.g. checkpointing) [160, 161] or roll-forward (e.g. TMR) [161, 162]

error correction technique is also required to mask errors propagated to the mapped design

during this time interval.

5.3.4 Case Study: Implementation on a Xilinx FPGA Device

As a proof of concept, we implemented the proposed technique on a Xilinx Virtex-6 VLX240T

device. In this section, we explain the implementation flow validated by a fault injection

experiment. Then, we discuss the recovery time and area overhead trade-off in details and

quantitatively compare the proposed scheme with existing solutions.

Implementation Flow

Xilinx FPGAs offer several interfaces to read and modify the configuration frames [163]. In-

ternal Configuration Access Port (ICAP) is one of the fastest interfaces which operates at

frequency of 100 MHz. In this work, this interface has been used as it is within the FPGA

fabric and could be controlled by a custom hardware block.

We wrote a reconfigurable implementation of the EDR unit in Verilog which accepts the

overall number of frames and the number of clusters as input. This implementation is com-

pletely independent of the user design and needs to be merged with the latter before mapping

into the FPGA device.

User Design EDR Unit

Generate Initial Bitstream

Compute InD Parity and Erasure 
Redundant Blocks (Offline)

Update Bitstream with Computed Codes

Program to the FPGA Device

Done with Xilinx ISE

Done with Our Tool

Figure 5.19: Implementation flow of the proposed scheme to a Xilinx FPGA device

The implementation flow of our proposed MBU mitigation scheme is described in Figure 5.19.

In the first step, the EDR unit as well as the user design are given to Xilinx ISE to build the

initial bitstream. Once the initial bitstream is ready, the InD parity codes for the configuration

frames are obtained by extracting the configuration frame data from the bitstream. At the

same time, considering contents of all frames in each cluster, the redundant erasure block for

that cluster is computed. Afterwards, the bitstream is updated by mapping the redundant

erasure blocks into the idle BRAM units and parity bits into the spare bits of the configuration

frame. Then, the updated bitstream is programmed into the FPGA.
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Validation with Fault Injection

In order to validate the error detection and recovery capabilities of the proposed technique,

we performed a fault injection experiment on the configuration bits of the Xilinx Virtex-6

VLX240T device. The fault injection is done by reading a randomly selected configuration

frame using the ICAP interface. Afterwards, a random MBU pattern is applied to a random

location of the frame and eventually the modified contents is written back to the configuration

frame using the same interface. We have injected 1,000 errors on the configuration frames and

initiated one iteration of scrubbing. At the end of the scrubbing period, we read the contents

of the erroneous frame and compared its contents with the golden state before fault injection.

The experimental result shows that the proposed technique is able to detect and correct all

injected errors.

Area and Power Overhead

In the employed Xilinx Virtex-6 XLV240T device, there are 28,464 configuration frames each

of which comprising of 81 32-bit words. In addition, each configuration frame has 16 spare

bits for the Xilinx SEU correction mechanism [164]. As mentioned in Section 5.3.2, I3D parity

requires 10 bits to reach its maximum detection coverage (i.e. 100%) and these bits could be

stored in these 16 spare bits of the corresponding frame without any other storage mechanism

such as BRAMs. Please note that the complete 3D parity scheme requires 2×(81+32)=226

bits for each configuration frame which has to be stored in a BRAM unit.

While the I3D parity bits can be stored in the spare bits of the same configuration frame,

the redundant erasure blocks have to be stored in FPGA BRAMs. This is because a redundant

erasure block occupies the same size of a configuration frame (81×32+16), and the number of

erasure blocks is linear to the number of employed clusters. Therefore, our scheme requires

a separate storage medium such as BRAMs for storing erasure blocks. There are 416 BRAM

units with a size of 36 Kb available in the employed Virtex-6 VLX240T device. In our proposed

scheme, some of these BRAM units can be exploited for storing the erasure blocks. Figure

5.20 demonstrates the number of BRAM units required for storing erasure blocks for different

number of clusters. According to the figure, it is evident that even for 50 clusters, which can

significantly reduce the recovery time, the number of BRAMs required to store the redundant

erasure blocks is only 4. This is less than 1% of the total BRAMs in the employed device. The

entire EDR unit with built-in TMR and I3D detection technique occupies 1,219 (3.3%) CLBs

in the employed Xilinx Virtex-6 VLX240T device.

We also obtained the power consumption overhead due to usage of the EDR unit alongside

the user application. It is worth to mention that the EDR unit scrubs all configuration frames

(whether used or not) for errors because an error in an unused configuration frame may cause

a short circuit and damages the device. As a result, the power consumption of this unit is

independent of the mapped design size. However, the power overhead of the EDR unit increases

by the size of the mapped design as dynamic power consumption grows. Considering almost

constant power consumption for the EDR unit, the maximum overhead could be obtained with

respect to the case that no design is loaded to the FPGA device. The experiment carried out

using the Xilinx XPWR tool shows that the power of the employed FPGA device without any

design loaded is 2.87 watts, while mapping only the EDR unit to this FPGA increase the power

consumption to 3.02 watts which shows power overhead of 5.2%. This small power overhead
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for the case where no design is loaded is due to high static power consumption of FPGA device.

Furthermore, an experiment has been carried out for a subset of ITC’99 benchmark circuits

mapped to this FPGA device, together with the EDR unit. The results show that the power

consumption of the FPGA device increases on average only by 4.9% for applying proposed

erasure code based protection scheme.

Detection and Recovery Time

The EDR unit periodically scrubs the entire configuration frames of the FPGA device through

the ICAP interface. The FPGA device employed in this work has 28,464 configuration frames

which have to be scrubbed by the EDR unit. Our experiments reveal that in case there is just

one cluster employed for the entire device, the error recovery time from an erroneous frame is

about 18.7 ms. However, as shown in Figure 5.20, by increasing the number of clusters, the

recovery time drastically reduces at the expense of a linear increase in the BRAM area.
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Figure 5.20: Error detection and correction time vs. number of required BRAMs for different cluster

sizes

The error detection time in the proposed scheme is a function of the scrubbing time (the

read-back time of entire configuration frames). The worst case scenario occurs when an MBU

occurs in a frame right after it is scrubbed. In this case, the error remains in that frame for

one complete scrubbing period (18.7 ms). However, the average MBU detection time is half of

this period. Both the worst case and the average error detection time are strongly dependent

on the number of clusters, however, since the number of clusters is negligible compared to the

number of configuration frames, the slight increase in these factors is not distinguishable in

Figure 5.20.

5.3.5 Comparison with the Previous Work

In order to clearly demonstrate the benefits and drawbacks of the proposed scheme, it is ex-

tensively compared with state-of-the-art solutions. The error recovery coverage of each scheme

is obtained with respect to the MBU patterns obtained for a 45 nm technology considering the

error correction capability of that particular scheme.

The detectability of each MBU pattern can be deterministically obtained for the 2D Ham-

ming code [152] and Xilinx SEU correction [150]. However, Xilinx CRC+ECC [154] can prob-
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Table 5.13: Comparison of different configuration frame soft error mitigation schemes

Scheme

Require

External

Storage

# of

BRAMS

Average Error

Detection

Time [ms]

Average Error

Recovery

Time[ms]

Recovery

Coverage

Xilinx SEU Correction [150] No 0 9.342 0 51.718%

Xilinx CRC+ECC [154] No 0 9.342 0 61.101%

Xilinx CRC+Reload [154] Yes 0 9.342 18,7 100.000%

2D Hamming Code [152] No 519 9.342 0 91.652%

I2D Parity + Erasure Code (50 Clusters) No 4 9.343 0.351 99.301%

I3D Parity + Erasure Code (50 Clusters) No 4 9.343 0.351 100.000%

abilistically detect specific patterns, hence, we performed a simulation-based MBU injection

experiment to extract error detection probabilities for these schemes.

Xilinx has implemented three different schemes for soft error detection and correction in the

configuration frames. The first scheme is based on a hamming code of distance 3 and is able

to correct SEUs [150]. The second one utilizes a combination of CRC and ECC and is able to

correct two adjacent cells in one word as well [154]. These two schemes are able to only correct

51.72% and 61.10% of the soft errors, respectively. The third scheme exploits CRC for error

detection, however, it cannot identify the erroneous configuration frames. In this approach,

after error detection, the contents of all configuration frames are reloaded from an external

non-volatile storage. Although this technique can successfully detect and correct all MBUs,

it has a long recovery time as it reloads the contents of all frames. In addition, the external

storage imposes some additional costs to the system.

The MBU mitigation scheme presented in [152] exploits a 2D hamming code to correct

MBUs. In the employed FPGA device which has a frame size of 81×32, horizontal and vertical

hamming codes need 81×6 and 32×7 bits, respectively, which means a total of 710 hamming

bits for each frame. In this scheme, for protecting all configuration frames more than 19.27 Mb

memory is required which could be translated into 519 BRAM units. Although this scheme

provides a very high error coverage, the employed FPGA device has only 416 BRAMs and

there are not enough BRAM units to store all of the required hamming bits. Furthermore,

this scheme cannot correct some of MBUs in the hamming data which significantly reduces its

correction coverage compared to our proposed scheme.

Our proposed scheme with I2D parity detection and 50 clusters needs only four BRAM

units and is able to correct 99.30% of the soft errors. By employing the proposed I3D parity

technique, the error correction probability increases to 100.00%. As explained earlier, for both

detection techniques, the parity bits could be stored in the redundant bits of the corresponding

frame, and hence, do not impose any additional resource overhead. The proposed scheme only

occupies 1% of the available BRAMs for storing erasure frames and is a good candidate to

be used alongside with very large designs. Besides the area overhead for storing the error

detection and correction data, all schemes have a common requirement for performing the

scrubbing. Since it is a common requirement among all schemes, it is not reported in Table

5.13.

As reported in Table 5.13, the error detection time of all the schemes are almost the same.

Indeed, all the schemes read the entire configuration frames using the ICAP interface and

perform the error checking in parallel with reading frames, hence, the type of coding scheme

does not affect the timing. The slight increase in the error detection time of our proposed

scheme is due to the time required for scrubbing 50 additional erasure blocks employed for
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clusters. The error recovery time of the previous schemes is negligible as the error correction

data is already loaded to the scrubber unit. Thus, the only added time would be due to the

writing of corrected contents to the erroneous frame. In contrast, our proposed scheme requires

some additional time to read all frames in the affected cluster and compute the erased frame

contents. However, the sum of the error detection and the error recovery time determines the

Mean Time To Repair (MTTR) which is the average time required by the system to return

to its normal operation. The MTTR of previous schemes is 9.343 ms while our scheme has an

MTTR of 9.694 ms. The 3.75% overhead in MTTR is reasonable considering the high error

recovery coverage and the low area overhead of the proposed scheme.

Although the Xilinx CRC+Reload scheme can provide 100% recovery coverage, it requires

an additional external non-volatile memory for storing contents of configuration memory. Our

proposed technique eliminates the need for such an external memory. On the other hand, it

significantly reduces MTTR compared to that scheme.

An important point is that although these schemes remove the permanent effect of soft errors

from configuration frames, the errors could affect the mapped design functionality until the end

of recovery operation. Since all these schemes have the same behavior from this perspective,

this is not included in the comparison.

5.4 Conclusions

Three complementary MET/MBU mitigation techniques were presented in this chapter. The

experimental results show that the proposed techniques could mitigate errors to a large extent.

In more details:

• The proposed MT-aware placement algorithm could optimizes the locations of the cells

in the layout with respect to the MT vulnerability. Experimental results show that the

proposed layout-based modeling and mitigation approaches have modest runtime and

are scalable for industrial-size circuits.

• The proposed MBU detection technique exploits two facts: 1) The cells affected by an

MBU indecent are always very close to each other 2) likelihood of MBU patterns with

smaller number of affected cells is typically higher. This technique considerably reduces

the area and power overheads compared to the existing solutions.

• The proposed erasure code-based scheme is implemented as a generic soft core alongside

with the user design and does not require any changes to the existing FPGA architecture.

Compared to the previous solutions, our scheme provides the highest level of MBU

protection at very low costs with a negligible recovery time. The implementation results

reveal that the proposed scheme occupies only 1% of memory and 3% of logic resource

on Xilinx Virtex-6 device.
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6.1 Summary and Conclusions

This thesis tackles the challenge of radiation-induced soft error in nanoscale technology nodes.

Soft error is a physical phenomenon, however, it could be propagated and affect the output

of running workloads at application-level. As a result, accurate soft error modeling requires a

very fast and accurate cross-layer approach.

In this thesis, a comprehensive soft error analysis for an embedded processor using an ef-

ficient cross-layer modeling approach was presented. The proposed cross-layer modeling can

accurately model the intrinsic SER as well as all the masking factors up to the application

level. By having an appropriate model of abstraction at each step, errors were accurately prop-

agated and their application-level effects were investigated. The results showed that selective

protection is crucial for low-cost SER mitigation of memory arrays, flip-flops, and combina-

tional gates. Furthermore, the impact of frequency and voltage scaling on the overall SER as

well as the SER contributions of clock and reset tree were studied using this platform. These

results can assist circuit designers to employ effective hardening techniques to reduce the SER

with minimum impact on other design constraints.

By careful analysis of the results of SER of analysis, several SER mitigation potential were

identified and addressed by proposing novel low-cost solutions:

• For SER mitigation in random logic, an effective multiple transient mitigation technique

at the physical design step was presented which optimizes the locations of the cells in

the layout with respect to the soft error vulnerability. Experimental results showed that

the proposed layout-based mitigation technique has no area and performance overhead

and is scalable for industrial-size circuits.

• In order to address the growing concern of radiation-induced MBUs in memory arrays,

a cost-efficient error detection technique called stepped parity was presented. This tech-

nique exploits the fact that the cells affected by an MBU indecent are always very close

to each other. The comparison of error detection capability as well as the area and

power overheads of the stepped parity with the the state of the art demonstrates the

cost-efficiency of the proposed technique.

• The configuration frames are the most vulnerable resources on the FPGA fabric to soft

errors as they constitute the majority of the FPGA memory bits and once affected by

soft errors, the functionality of the mapped design is permanently changed. In order

to address this issue, a cost-efficient scheme based on erasure codes for MBU detection

and correction in the configuration frames of SRAM-based FPGAs was presented. This

scheme was implemented as a generic soft core alongside with the user design and does

not require any changes to the existing FPGA architecture. Compared to the previous

solutions, our scheme provides the highest level of MBU protection at very low costs

99



6 Concluding Remarks

with a negligible recovery time.

6.2 Outlook

It is predicted that by further technology scaling to sub 10 nm region, the transistors become

vulnerable to new types of particles such as proton- and muon-induced radiation strikes. The

proposed cross-layer soft error analysis platform could be easily tuned to model new sources

by incorporating the corresponding device-level models. Furthermore, the ratio and size of

MBUs/METs will grow by further technology scaling, making our proposed MET/MBU mit-

igation techniques for logic, memory arrays, and FPGA more attractive.

Although this thesis concentrates on soft error modeling and mitigation, the proposed so-

lutions are not restricted to this specific fault models and could be used for other kinds of

transient faults. For instance, retention failures, read disturb, and write failures are common

transient errors in spintronic-based memory array. These errors could be analyzed using our

proposed fault injection platform and fault injection acceleration technique. In addition, the

proposed stepped parity technique could be used to detect such errors. Another example is

Random Telegraph Noise (RTN) of CMOS circuits in near-threshold computing which changes

the gate delay for a very short period of time. The impact of RTN could be analyzed using

our cross-layer approach by exploiting an appropriate fault model in device- and circuit-level

analysis. In this context, we already exploited the platform and techniques presented in this

thesis to evaluate some other reliability issues. Few examples of such evaluations are presented

in [165, 166, 167, 168, 169].
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