A fixed point theorem for monotone operators in ordered Banach spaces

Gerd Herzog ${ }^{1}$, Peter Volkmann
Institut für Analysis, KIT, 76128 Karlsruhe, Germany
${ }^{1}$ e-mail: Gerd.Herzog2@kit.edu

Let $(E,\|\cdot\|)$ be a real Banach space ordered by a cone K. A cone K is a closed convex subset of E such that $\lambda K \subseteq K(\lambda \geq 0)$ and $K \cap(-K)=\{0\}$. As usual $x \leq y: \Longleftrightarrow y-x \in K$, and for $a, b \in E$ let $[a, b]$ denote the order interval of all $x \in E$ with $a \leq x \leq b$. A function $g: D \rightarrow E, D \subseteq E$ is called (monotone) increasing if $x, y \in D, x \leq y \Rightarrow g(x) \leq g(y)$.
We assume K to be a normal cone, i.e.,

$$
\exists \gamma \geq 1: 0 \leq x \leq y \Rightarrow\|x\| \leq \gamma\|y\| \text {, }
$$

and we assume that $\Psi: K \rightarrow[0, \infty)$ is a given functional having the following property:
(P) If $\left(x_{n}\right)$ is a decreasing sequence in K, then

$$
\Psi\left(x_{n}\right) \rightarrow 0(n \rightarrow \infty) \Rightarrow x_{n} \rightarrow 0(n \rightarrow \infty)
$$

Functionals with this property always exist, take $\Psi=\|\cdot\|$ for example, but there are more interesting examples:

Consider the Banach space $E=C B([0, \infty), \mathbb{R})$ of all bounded continuous functions on $[0, \infty)$ endowed with the supremum-norm $\|\cdot\|_{\infty}$ and ordered by the normal cone $K=\{x \in E: x(t) \geq 0(t \geq 0)\}$. Then

$$
\begin{equation*}
\Psi(x)=\max \left\{\max \left\{e^{-t} x(t): t \geq 0\right\}, \limsup _{t \rightarrow \infty} x(t)\right\} \quad(x \in K) \tag{1}
\end{equation*}
$$

is a functional with property (P).

Another example is $E=C([0,1], \mathbb{R})$ endowed with the maximum-norm $\|\cdot\|_{\infty}$ and ordered by the normal cone $K=\{x \in E: x(t) \geq 0(0 \leq t \leq 1)\}$. Let $h:[0,1] \rightarrow(0, \infty)$ be any bounded function and let $q:[0, \infty) \rightarrow[0, \infty)$ be a continuous function with $q(0)=0$ and $q(s)>0(s>0)$. Then

$$
\Psi(x)=\sup \{h(t) q(x(t)): 0 \leq t \leq 1\} \quad(x \in K)
$$

has property (P); this can be shown by using Dini's Theorem.
In the following theorem a combination of monotonicity and contraction requirements for a function g leads to the existence of a unique fixed point. Starting with a Theorem of Ran and Reurings [7] several fixed point theorems in ordered metric spaces under contraction conditions related to the ordering are known, see $[1,2,3,4,5,6]$ and the references given there. Here we use a rather mild contraction condition with respect to the given functional Ψ (having property (P)).

Theorem 1 Let $a, b \in E, a \leq b$ and let $g:[a, b] \rightarrow[a, b]$ have one of the following properties:

1. g is increasing and $\exists L \in[0,1) \forall x, y \in[a, b]: x \leq y \Rightarrow \Psi(g(y)-g(x)) \leq$ $L \Psi(y-x)$, or
2. g is decreasing and $\exists L \in[0,1) \forall x, y \in[a, b]: x \leq y \Rightarrow \Psi(g(x)-g(y)) \leq$ $L \Psi(y-x)$.

Then g has a unique fixed point $z \in[a, b]$ and $g^{(n)}(x) \rightarrow z(n \rightarrow \infty)$ for each $x \in[a, b]$.

Proof: First, let g be increasing. Then the sequences

$$
\left(x_{n}\right):=\left(g^{(n)}(a)\right)_{n=0}^{\infty} \text { and }\left(y_{n}\right):=\left(g^{(n)}(b)\right)_{n=0}^{\infty}
$$

are increasing and decreasing, respectively, and

$$
x_{n} \leq y_{n} \quad\left(n \in \mathbb{N}_{0}=\{0,1,2, \ldots\}\right)
$$

Therefore $\left(y_{n}-x_{n}\right)$ is a decreasing sequence in K, and 1 gives

$$
\Psi\left(y_{n}-x_{n}\right) \leq L^{n} \Psi(b-a) \rightarrow 0(n \rightarrow \infty) .
$$

Hence $y_{n}-x_{n} \rightarrow 0(n \rightarrow \infty)$. Next, for $n, m \in \mathbb{N}_{0}$

$$
0 \leq y_{n}-y_{n+m} \leq y_{n}-x_{n+m} \leq y_{n}-x_{n} \Rightarrow\left\|y_{n}-y_{n+m}\right\| \leq \gamma\left\|y_{n}-x_{n}\right\|
$$

Thus $\left(y_{n}\right)$ is a Cauchy sequence, and so $\left(y_{n}\right)$ and $\left(x_{n}\right)$ are convergent and have the same limit z, say. Since for all $x \in[a, b]$ and $n \in \mathbb{N}_{0}$

$$
0 \leq g^{(n)}(x)-x_{n} \leq y_{n}-x_{n} \Rightarrow\left\|g^{(n)}(x)-x_{n}\right\| \leq \gamma\left\|y_{n}-x_{n}\right\|
$$

we have $g^{(n)}(x) \rightarrow z(n \rightarrow \infty)$ as well. To see that z is a fixed point consider

$$
x_{n} \leq z \leq y_{n} \Rightarrow x_{n+1}=g\left(x_{n}\right) \leq g(z) \leq g\left(y_{n}\right)=y_{n+1} \quad\left(n \in \mathbb{N}_{0}\right)
$$

and as $n \rightarrow \infty$ we obtain $g(z)=z$.
Now, if g is decreasing, we can apply the increasing case to $G:=g \circ g$: $[a, b] \rightarrow[a, b]$, since by 2

$$
\forall x, y \in[a, b]: x \leq y \Rightarrow \Psi(G(y)-G(x)) \leq L^{2} \Psi(y-x)
$$

Thus G has a unique fixed point z, which is the unique fixed point of g since $G(g(z))=g(z)$. Moreover, for each $x \in[a, b]$ we have

$$
g^{(2 n)}(x)=G^{(n)}(x) \rightarrow z \quad(n \rightarrow \infty),
$$

thus $g^{(2 n+1)}(x)=g^{(2 n)}(g(x)) \rightarrow z(n \rightarrow \infty)$, so $g^{(n)}(x) \rightarrow z(n \rightarrow \infty)$ for each $x \in[a, b]$.

Example: Consider the functional equation

$$
\begin{equation*}
h(t) \arctan \left(x\left(t^{2} /(1+t)\right)\right)+u(t)=x(t) \quad(t \geq 0) \tag{2}
\end{equation*}
$$

with any $u, h \in C B([0, \infty), \mathbb{R}), h(t) \geq 0(t \in \mathbb{R})$ such that

$$
q_{1}:=\sup \left\{e^{-t /(1+t)} h(t): t \geq 0\right\}<1 \text { and } q_{2}:=\limsup _{t \rightarrow \infty} h(t)<1
$$

Consider the order interval

$$
I:=\left[u-\frac{\pi}{2} h, u+\frac{\pi}{2} h\right] \subseteq C B([0, \infty), \mathbb{R})
$$

Then $g: I \rightarrow I$, defined by

$$
g(x)(t)=h(t) \arctan \left(x\left(t^{2} /(1+t)\right)\right)+u(t)
$$

is increasing. We consider Ψ from (1) and set

$$
\Psi_{1}(x)=\max \left\{e^{-t} x(t): t \geq 0\right\}, \quad \Psi_{2}(x)=\limsup _{t \rightarrow \infty} x(t)
$$

Note that $t \mapsto \arctan (t)$ is Lipschitz continuous with Lipschitz constant 1, and

$$
\frac{t^{2}}{1+t}-t=-\frac{t}{1+t}(t \geq 0), \quad \frac{t^{2}}{1+t} \rightarrow \infty(t \rightarrow \infty)
$$

Let $x, y \in I, x \leq y$. We have

$$
\begin{aligned}
& e^{-t}(g(y)-g(x))(t) \leq e^{-t} h(t)(y-x)\left(t^{2} /(1+t)\right) \\
& \leq e^{-t} e^{t^{2} /(1+t)} h(t) \Psi_{1}(y-x) \\
& =e^{-t /(1+t)} h(t) \Psi_{1}(y-x) \leq q_{1} \Psi_{1}(y-x) \quad(t \geq 0)
\end{aligned}
$$

and therefore

$$
\Psi_{1}(g(y)-g(x)) \leq q_{1} \Psi_{1}(y-x)
$$

Moreover

$$
(g(y)-g(x))(t) \leq h(t)(y-x)\left(t^{2} /(1+t)\right) \quad(t \geq 0)
$$

Thus

$$
\begin{gathered}
\Psi_{2}(g(y)-g(x)) \leq \limsup _{t \rightarrow \infty} h(t) \limsup _{t \rightarrow \infty}(y-x)\left(t^{2} /(1+t)\right) \\
=q_{2} \limsup _{t \rightarrow \infty}(y-x)\left(t^{2} /(1+t)\right) \\
=q_{2} \limsup _{t \rightarrow \infty}(y-x)(t)=q_{2} \Psi_{2}(y-x)
\end{gathered}
$$

Summing up,

$$
\Psi(g(y)-g(x)) \leq \max \left\{q_{1}, q_{2}\right\} \Psi(y-x) \quad(x, y \in I, x \leq y)
$$

Now Theorem 1 applies and equation (2) has a unique solution in I; hence also exactly one solution in $C B([0, \infty), \mathbb{R})$.

Theorem 1 is applicable to functions f with the property that $f+\lambda i d_{E}$ is increasing for some $\lambda \geq 0$. We now assume that $\Psi: E \rightarrow \mathbb{R}$ is a sublinear functional, i.e.,

$$
\Psi(x+y) \leq \Psi(x)+\Psi(y), \quad \Psi(\alpha x)=\alpha \Psi(x) \quad(x, y \in E, \alpha \geq 0)
$$

and that $\Psi_{\mid K}$ has property (P).
Theorem 2 Suppose $\Psi: E \rightarrow \mathbb{R}$ to be sublinear, $\Psi_{\mid K}: K \rightarrow[0, \infty)$ having property (P). Let $a, b \in E, a \leq b$ and let $f:[a, b] \rightarrow E$ have the following properties:

1. $\exists \lambda \geq 0: f+\lambda i d_{E}$ is increasing,
2. $\exists L \in[0,1) \forall x, y \in[a, b]: x \leq y \Rightarrow \Psi(f(y)-f(x)) \leq L \Psi(y-x)$,
3. $f(a) \geq a$ and $f(b) \leq b$.

Then f has a unique fixed point $z \in[a, b]$.
Proof: We choose $\mu \in[0,1)$ such that $\mu /(1-\mu) \geq \lambda$. Then $g:[a, b] \rightarrow E$ defined as

$$
g(x)=(1-\mu) f(x)+\mu x
$$

is increasing, $g(a) \geq(1-\mu) a+\mu a=a, g(b) \leq b$ and hence $g([a, b]) \subseteq[a, b]$. Moreover

$$
\begin{aligned}
& \Psi(g(y)-g(x)) \leq(1-\mu) \Psi(f(y)-f(x))+\mu \Psi(y-x) \\
& \quad \leq((1-\mu) L+\mu) \Psi(y-x) \quad(x, y \in[a, b], x \leq y),
\end{aligned}
$$

with $(1-\mu) L+\mu<1$. According to Theorem 1 there is a unique fixed point $z \in[a, b]$ of g which is the unique fixed point of f.

References

[1] Agarwal, Ravi P.; El-Gebeily, M.A.; O'Regan, Donal: Generalized contractions in partially ordered metric spaces. Applicable Analysis 87 (2008), 109-116.
[2] Gnana Bhaskar, T.; Lakshmikantham, V.: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Analysis 65 (2006), 1379-1393.
[3] Feng, Yuqiang; Wang, Haonan: Characterizations of reproducing cones and uniqueness of fixed points. Nonlinear Analysis 74 (2011), 5759-5765.
[4] Herzog, Gerd; Kunstmann, Peer Chr.: A fixed point theorem for decreasing functions. Numer. Funct. Analysis Optim. 34 (2013), 530-538.
[5] Jachymski, Jacek: Equivalent conditions for generalized contractions on (ordered) metric spaces. Nonlinear Analysis 74 (2011), 768-774.
[6] Nieto, Joan J.; Rodríguez-López, Rosana: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22 (2005), 223-239.
[7] Ran, André C.M.; Reurings, Martine C.B.: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc. 132 (2004), 1435-1443.

