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Let (E, ‖ · ‖) be a real Banach space ordered by a cone K. A cone K is a
closed convex subset of E such that λK ⊆ K (λ ≥ 0) and K ∩ (−K) = {0}.
As usual x ≤ y :⇐⇒ y − x ∈ K, and for a, b ∈ E let [a, b] denote the order
interval of all x ∈ E with a ≤ x ≤ b. A function g : D → E, D ⊆ E is called
(monotone) increasing if x, y ∈ D, x ≤ y ⇒ g(x) ≤ g(y).

We assume K to be a normal cone, i.e.,

∃ γ ≥ 1 : 0 ≤ x ≤ y ⇒ ‖x‖ ≤ γ‖y‖,

and we assume that Ψ : K → [0,∞) is a given functional having the following
property:

(P) If (xn) is a decreasing sequence in K, then

Ψ(xn)→ 0 (n→∞) ⇒ xn → 0 (n→∞).

Functionals with this property always exist, take Ψ = ‖ · ‖ for example, but
there are more interesting examples:

Consider the Banach space E = CB([0,∞),R) of all bounded continuous
functions on [0,∞) endowed with the supremum-norm ‖ · ‖∞ and ordered by
the normal cone K = {x ∈ E : x(t) ≥ 0 (t ≥ 0)}. Then

(1) Ψ(x) = max{max{e−tx(t) : t ≥ 0}, lim sup
t→∞

x(t)} (x ∈ K)

is a functional with property (P).
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Another example is E = C([0, 1],R) endowed with the maximum-norm ‖·‖∞
and ordered by the normal cone K = {x ∈ E : x(t) ≥ 0 (0 ≤ t ≤ 1)}. Let
h : [0, 1]→ (0,∞) be any bounded function and let q : [0,∞)→ [0,∞) be a
continuous function with q(0) = 0 and q(s) > 0 (s > 0). Then

Ψ(x) = sup{h(t)q(x(t)) : 0 ≤ t ≤ 1} (x ∈ K)

has property (P); this can be shown by using Dini’s Theorem.

In the following theorem a combination of monotonicity and contraction re-
quirements for a function g leads to the existence of a unique fixed point.
Starting with a Theorem of Ran and Reurings [7] several fixed point theorems
in ordered metric spaces under contraction conditions related to the ordering
are known, see [1, 2, 3, 4, 5, 6] and the references given there. Here we use
a rather mild contraction condition with respect to the given functional Ψ
(having property (P)).

Theorem 1 Let a, b ∈ E, a ≤ b and let g : [a, b] → [a, b] have one of the
following properties:

1. g is increasing and ∃L ∈ [0, 1) ∀x, y ∈ [a, b] : x ≤ y ⇒ Ψ(g(y)−g(x)) ≤
LΨ(y − x), or

2. g is decreasing and ∃L ∈ [0, 1) ∀x, y ∈ [a, b] : x ≤ y ⇒ Ψ(g(x)−g(y)) ≤
LΨ(y − x).

Then g has a unique fixed point z ∈ [a, b] and g(n)(x)→ z (n→∞) for each
x ∈ [a, b].

Proof: First, let g be increasing. Then the sequences

(xn) := (g(n)(a))∞n=0 and (yn) := (g(n)(b))∞n=0

are increasing and decreasing, respectively, and

xn ≤ yn (n ∈ N0 = {0, 1, 2, . . . }).

Therefore (yn − xn) is a decreasing sequence in K, and 1 gives

Ψ(yn − xn) ≤ LnΨ(b− a)→ 0 (n→∞).

Hence yn − xn → 0 (n→∞). Next, for n,m ∈ N0

0 ≤ yn − yn+m ≤ yn − xn+m ≤ yn − xn ⇒ ‖yn − yn+m‖ ≤ γ‖yn − xn‖.
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Thus (yn) is a Cauchy sequence, and so (yn) and (xn) are convergent and
have the same limit z, say. Since for all x ∈ [a, b] and n ∈ N0

0 ≤ g(n)(x)− xn ≤ yn − xn ⇒ ‖g(n)(x)− xn‖ ≤ γ‖yn − xn‖,

we have g(n)(x)→ z (n→∞) as well. To see that z is a fixed point consider

xn ≤ z ≤ yn ⇒ xn+1 = g(xn) ≤ g(z) ≤ g(yn) = yn+1 (n ∈ N0),

and as n→∞ we obtain g(z) = z.

Now, if g is decreasing, we can apply the increasing case to G := g ◦ g :
[a, b]→ [a, b], since by 2

∀x, y ∈ [a, b] : x ≤ y ⇒ Ψ(G(y)−G(x)) ≤ L2Ψ(y − x).

Thus G has a unique fixed point z, which is the unique fixed point of g since
G(g(z)) = g(z). Moreover, for each x ∈ [a, b] we have

g(2n)(x) = G(n)(x)→ z (n→∞),

thus g(2n+1)(x) = g(2n)(g(x)) → z (n → ∞), so g(n)(x) → z (n → ∞) for
each x ∈ [a, b].

Example: Consider the functional equation

(2) h(t) arctan(x(t2/(1 + t))) + u(t) = x(t) (t ≥ 0),

with any u, h ∈ CB([0,∞),R), h(t) ≥ 0 (t ∈ R) such that

q1 := sup{e−t/(1+t)h(t) : t ≥ 0} < 1 and q2 := lim sup
t→∞

h(t) < 1.

Consider the order interval

I := [u− π

2
h, u+

π

2
h] ⊆ CB([0,∞),R).

Then g : I → I, defined by

g(x)(t) = h(t) arctan(x(t2/(1 + t))) + u(t)

is increasing. We consider Ψ from (1) and set

Ψ1(x) = max{e−tx(t) : t ≥ 0}, Ψ2(x) = lim sup
t→∞

x(t).
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Note that t 7→ arctan(t) is Lipschitz continuous with Lipschitz constant 1,
and

t2

1 + t
− t = − t

1 + t
(t ≥ 0),

t2

1 + t
→∞ (t→∞).

Let x, y ∈ I, x ≤ y. We have

e−t(g(y)− g(x))(t) ≤ e−th(t)(y − x)(t2/(1 + t))

≤ e−tet
2/(1+t)h(t)Ψ1(y − x)

= e−t/(1+t)h(t)Ψ1(y − x) ≤ q1Ψ1(y − x) (t ≥ 0)

and therefore
Ψ1(g(y)− g(x)) ≤ q1Ψ1(y − x).

Moreover

(g(y)− g(x))(t) ≤ h(t)(y − x)(t2/(1 + t)) (t ≥ 0).

Thus
Ψ2(g(y)− g(x)) ≤ lim sup

t→∞
h(t) lim sup

t→∞
(y − x)(t2/(1 + t))

= q2 lim sup
t→∞

(y − x)(t2/(1 + t))

= q2 lim sup
t→∞

(y − x)(t) = q2Ψ2(y − x).

Summing up,

Ψ(g(y)− g(x)) ≤ max{q1, q2}Ψ(y − x) (x, y ∈ I, x ≤ y).

Now Theorem 1 applies and equation (2) has a unique solution in I; hence
also exactly one solution in CB([0,∞),R).

Theorem 1 is applicable to functions f with the property that f + λidE is
increasing for some λ ≥ 0. We now assume that Ψ : E → R is a sublinear
functional, i.e.,

Ψ(x+ y) ≤ Ψ(x) + Ψ(y), Ψ(αx) = αΨ(x) (x, y ∈ E,α ≥ 0),

and that Ψ|K has property (P).

Theorem 2 Suppose Ψ : E → R to be sublinear, Ψ|K : K → [0,∞) having
property (P). Let a, b ∈ E, a ≤ b and let f : [a, b] → E have the following
properties:
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1. ∃λ ≥ 0 : f + λidE is increasing,

2. ∃L ∈ [0, 1) ∀x, y ∈ [a, b] : x ≤ y ⇒ Ψ(f(y)− f(x)) ≤ LΨ(y − x),

3. f(a) ≥ a and f(b) ≤ b.

Then f has a unique fixed point z ∈ [a, b].

Proof: We choose µ ∈ [0, 1) such that µ/(1 − µ) ≥ λ. Then g : [a, b] → E
defined as

g(x) = (1− µ)f(x) + µx

is increasing, g(a) ≥ (1− µ)a+ µa = a, g(b) ≤ b and hence g([a, b]) ⊆ [a, b].
Moreover

Ψ(g(y)− g(x)) ≤ (1− µ)Ψ(f(y)− f(x)) + µΨ(y − x)

≤ ((1− µ)L+ µ)Ψ(y − x) (x, y ∈ [a, b], x ≤ y),

with (1−µ)L+µ < 1. According to Theorem 1 there is a unique fixed point
z ∈ [a, b] of g which is the unique fixed point of f .
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