

First Suggestions for a WLCG Fast Benchmark

Manfred Alef WLCG GDB Amsterdam 2016-03-07

Use Cases and Requirements

- Use cases:
 - Estimate the performance of the provided job slots in case of anonymous hardware (e.g. in commercial clouds)
 - Check the announced performance of the job slots (in batch farm) or a cloud VM

Use Cases and Requirements

- Requirements:
 - As fast as possible
 - ~1 min runtime?
 - As exact as possible
 - Low spread of results
 - Be aware: the shorter the runtime of a fast benchmark the higher the probable inaccuracies
 - What are the neighbors doing?
 - Regular reassessments to iterate
 - Freeware (e.g. GPL), no licensing costs

Benchmark Candidates

- 5 fast benchmarks related to WLCG use cases
- Analysis:
 - ~20.000 single-core batch jobs at GridKa measuring
 - The 1min system load at job start time
 - HS06 (from MJF)
 - Results of 4 fast benchmark candidates
 (+ ~2.500 jobs running candidate #5)
 - Time period: 2 weeks
 - GridKa farm utilization level varying between 50 and 100%

Benchmark Candidate "A"

- Dirac fast benchmark
 - Used by:
 - LHCb
 - Belle II, ...
 - Python script
 - Compiler flags are hidden to the user
 - → Fast
 - Runtime: 0:30 ... 2:30 minutes
 - Correlation with job performance and with HS06:
 - Well scaling with LHCb workload [1,2]
 - Mismatch with HS06 of up to ~40% [3,4]

Benchmark Candidate "A"

Dirac fast benchmark

Benchmark Candidate "B"

- Atlas KV (KitValidation) benchmark
 - Used by:
 - Atlas
 - > Framework for benchmarking, various benchmarks can plug-in
 - Wrapper script "kv-script.sh" downloaded from [5]
 - Somewhat modified to run in batch environment instead of VM
 - Tested with default workload (Geant4: 100 Single Muon Events)
 - Compiler flags are hidden to the user

Benchmark Candidate "B"

- Atlas KV (KitValidation) benchmark
 - Very slow
 - Runtime: 3:45 ... >10:00 minutes(average: 6 ... 7 minutes)
 - Includes at least 3 minutes for pre- and post processing and registering with external DB
 - Correlation with job performance and with HS06:
 - Scaling well with Atlas simulation jobs [6]
 - Probable mismatch with HS06 of up to 40%?

 KV score is in units of seconds/event, in this talk: converting to inverse results ("KV speed")

Benchmark Candidate "B"

Atlas KV (KitValidation) benchmark

Benchmark Candidate "C"

- ROOT stress test
 - Used by:
 - Alice
 - By default using pre-compiled binary
 - Very fast
 - Runtime: 0:30 minutes
 - Correlation with job performance and with HS06:
 - Scaling linearly with Alice simulation efficiency [7]
 - Better scaling with HS06 than Dirac and KV (AMD's about 30% faster than Intel's if WN busy)

Benchmark Candidate "C"

ROOT stress test

- Whetstone, Dhrystone
 - Used by:
 - Alice, Atlas, ...
 - HTCondor (condor_kflops, condor_mips), Boinc, ...
 - → I have used the unmodified makefile (from UnixBench package [8])
 - Very fast
 - Runtime: 2:00 ... 3.00 minutes per benchmark for 10 iterations (default in UnixBench package)
 - Can run less than 10 iterations
 - Very small memory footprint (less than L3 cache size)

- Whetstone
 - Correlation with job performance and with HS06:
 - Scaling very well with HS06 [3,4]
 - Probable mismatch with WLCG application performance
 - Not only the dispersion of the HS06-normalized results, but also their dependency on the system load, are very low
 - Most suitable candidate to estimate HS06 in cloud VM's?

Whetstone

- Dhrystone
 - Benchmark results very similar to ROOTMARKS

Dhrystone

Conclusions, Next Steps

- Suggesting 5 fast benchmark candidates (related to WLCG business)
 - Quite good correlation of Whetstone with HS06, suitable candidate for fast HS06 estimate?
 - → Dirac fast benchmark and KV Single Muon Simulation are scaling well with LHCb and with Atlas simulation jobs
 - Good correlation of both fast benchmarks

→ ROOT stress test doesn't correlate well with (most of) the other fast benchmarks, however it's linear scaling with Alice jobs

Conclusions, Next Steps

- Performance measurements shown in this talk are the results of more than ~20.000 single-core batch jobs at GridKa, at global farm utilization level of around 50 ... 100%
- Cross-checks with other sites, with multi-core jobs, and also in relevant cloud environments, still to be done
 - Will relaunch the HEPiX Benchmarking Working Group soon

References

- [1] https://indico.cern.ch/event/319751/session/0/contribution/6/attachments/1153280/ 1656518/150909-MJFandBenchmarking-LHCb.pdf
- [2] https://indico.cern.ch/event/319754/session/0/contribution/8/attachments/1202029/1749779/151209-MJFUpdate-LHCb.pdf
- [3] https://indico.cern.ch/event/319754/session/0/contribution/9/attachments/1202373/ 1750492/Results_of_HS06_Scaling_Studies_at_KIT_2015-12-09.pdf
- [4] https://indico.cern.ch/event/433164/session/2/contribution/9/attachments/1220374/ 1783838/Results_of_HS06_Scaling_Studies_at_GridKa_2016-02-01.pdf
- [5] https://sdccloud.web.cern.ch/sdccloud/KV/DO-29401/index.html
- [6] https://indico.cern.ch/event/319751/session/0/contribution/8/attachments/1151865/1653919/gdb-20150910.pdf
- [7] https://indico.cern.ch/event/319751/session/0/contribution/9/attachments/1151876/ 1654130/ALICE benchmarks.pdf
- [8] https://github.com/cloudharmony/unixbench