KIT | KIT-Bibliothek | Impressum | Datenschutz

Decoherence spectroscopy with individual two-level tunneling defects

Lisenfeld, Jürgen 1; Bilmes, Alexander 1; Matityahu, Shlomi; Zanker, Sebastian 2; Marthaler, Michael 2; Schechter, Moshe; Schön, Gerd 2; Shnirman, Alexander 3; Weiss, Georg 1; Ustinov, Alexey V. 1
1 Physikalisches Institut (PHI), Karlsruher Institut für Technologie (KIT)
2 Institut für Theoretische Festkörperphysik (TFP), Karlsruher Institut für Technologie (KIT)
3 Institut für Theorie der Kondensierten Materie (TKM), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):
Recent progress with microfabricated quantum devices has revealed that an ubiquitous source of noise originates in tunneling material defects that give rise to a sparse bath of parasitic two-level systems (TLSs). For superconducting qubits, TLSs residing on electrode surfaces and in tunnel junctions account for a major part of decoherence and thus pose a serious roadblock to the realization of solid-state quantum processors. Here, we utilize a superconducting qubit to explore the quantum state evolution of coherently operated TLSs in order to shed new light on their individual properties and environmental interactions. We identify a frequency-dependence of TLS energy relaxation rates that can be explained by a coupling to phononic modes rather than by anticipated mutual TLS interactions. Most investigated TLSs are found to be free of pure dephasing at their energy degeneracy points, around which their Ramsey and spin-echo dephasing rates scale linearly and quadratically with asymmetry energy, respectively. We provide an explanation based on the standard tunneling model, and identify interaction with incoherent low-frequency (thermal) TLSs as the major mechanism of the pure dephasing in coherent high-frequency TLS.

Volltext §
DOI: 10.5445/IR/1000053951
DOI: 10.1038/srep23786
Zitationen: 39
Web of Science
Zitationen: 41
Zitationen: 41
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Festkörperphysik (TFP)
Physikalisches Institut (PHI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2016
Sprache Englisch
Identifikator ISSN: 2045-2322
KITopen-ID: 1000053951
Erschienen in Scientific Reports
Verlag Nature Research
Band 6
Seiten 23786
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Schlagwörter Quantum information; Qubits; Surfaces, interfaces; thin films
Nachgewiesen in Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page