

Application of MELCOR 1.8.6 for fusion in comparison with the pedigreed MELCOR 1.8.2 for ITER to simulate DEMO HCPB in-box LOCA

EUROfusion WPSAE project

Institute for Neutron Physics and Reactor Technology (INR)

Xue Zhou Jin

The 8th Meeting of the "European MELCOR User Group"

London, UK

6th-7th April, 2016

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

KIT - The Research University in the Helmholtz Association

Outline

- MELCOR 1.8.6 for fusion
- DEMO HCPB blanket concept (2014)
- In-box LOCA
- MELCOR simulation for the selected accidental case
 - Modelling
 - Simulation results
 - □ Impact of time steps
 - Impact of code versions
- Conclusion

MELCOR 1.8.6 for fusion

- □ MELCOR for fusion has more than 25 users in US, JA, KO and EU*.
- □ V1.8.6 was released in Aug. 2015 by INL (Idaho National Laboratory).
 - ➢ to combine the capabilities of MELCOR 1.8.2 and MELCOR 1.8.5,
 - to allow for much large models and perform double precision accuracy,
 - Helium and LiPb as working fluids.
- Modifications for ITER purposes in the previous versions:
 - chemical oxidation reactions of steam or air with Be, C and W
 - > EOS (Equation of State) modifications for water freezing & ice layer formation
 - Aerosol transport module modifications for gas mixtures, turbulent & inertial deposition
 - > the cryogenic He or air as the primary fluid
 - Flow boiling heat transfer
 - Enclosure thermal radiation heat transport
 - HTO transport model

^{*} Merrill B.J.: "MELCOR for Fusion Development", MELCOR workshop at CCFE, 17.12.2015.

DEMO HCPB blanket concept (2014)

Parameter	Quantity	
Plasma power (MW)	1572	
Thermal power including n-	1072	
multiplication in blanket (MW)	1972	
Plant electricity output capability (MW)	500	
Lifetime neutron damage in steel in the	20+50	
FW (dpa)	20+30	
Major radius, R_0 (m)	9.0	
Minor radius, a (m)	2.25	
Plasma current (MA)	14	
Toroidal field, B_0 at R_0 (T)	6.8	
Elongation, κ ₉₅	1.56	
Triangularity, δ ₉₅	0.33	
Plasma volume (m ³)	1453	
Plasma surface area (m ²)	1084	
Auxiliary heating power, P _{inj} (MW)	50	
Auxiliary ramp-up power, P _{ramp-up} (MW)	>60	
Average neutron wall load (MW/m ²)	1.067	
Nuclear heating in blanket (MW)	1380	
Power to divertor (MW)	180	

* C. Bachmann: "Plant Description Document", Version 1.2, EFDA_D_2KVWQZ, 13/6/2014.

Main design data

Parameter			value	
	Fluid		He	
	Surface heat flux on the FW (MW/m ²)		front wall	0.5
			BU to front wall	0.06
			BU to side wall	0.035
	Neutron power (MW)		5.142	
	Mass flow rate m (kg/s)		6.323	
Affected module OB4	Pressure at inlet (MPa)		8.0	
	Tomporaturo (°C)	inlet		300
	l remperature (C)	outlet		500
	Material	W thickness (mm)		2.0
		EUROFER to W (mm)		3.0
		Cross section (mm x mm)		10 x 15
		No. of channels		95
PHTS1 for 60 modulos	Pressure (MPa)		8.0	
PHISTIC to modules	Temperature (°C)		300	
	Pressure (MPa)		5.0E-04	
	Temperature (°C)		300	
Expansion volume (E\/)	Pressure (MPa)		0.09	
	Temperature (°C)		20	

- Case II: failure of ~10% FW channels with double pipe break, connected to the VV and EV.
- Case III: failure of one CP in the BU with double pipe break, connected to the purge gas (PG) system and EV.

MELCOR simulation for the selected accidental case

Loop modelling for case I

Simulation results (V1.8.6, He as working fluid)

Steady state (1000s)

	Results			
He inventory of PHTS & 60 modules (kg)			1016.7	
	ṁ (kg/s)		3.1805	
	Pressure inlet (MPa)		7.84	
	dp (kPa)		149.0	
FW	Не	inlet (°C)	294.2	
		outlet (°C)	364.6	
	EUROFER (°C)		621.8	
	W (°C)		661.1	
	ṁ (kg/s)	HG	1.7143	
		VG	0.6642	
		Caps	0.8020	
HG, VG,	He outlet (°C)		388.1	
caps	EUROFER	HG (°C)	433.0	
		VG (°C)	413.1	
		Caps (°C)	738.3	
	dp (kPa)		68.6	

Temperature in He flow and HS

Transient results

Case I		Time (s)	
LOCA	0.0		
Pump sl	nutdown	3.0	
FPSS	4.0		
Plasma disruption		-	
Results	p_CV778 > 1.0MPa	1.0	
	p_CV401 > 90kPa	38.0	
Transient end		4000	
Time step dt		5.0e-4	

Mass flow rate in OB_4, at break to the BB, VV, & EV

He temperature in OB_4

1.5

1.0

0.5 0.0

Impact of time steps

Scenarios	dt (s)	
Case I	5.0e-4	
Case la	5.0e-5	
Case lb	5.0e-3	
Case Ic	5.0e-2	
Case Id	5.0e-1	

Mass flow rate to the EV (FL403), amplified

Pressure in the VV (CV401), amplified

Impact of code versions

Scenarios	Code	He	dt
Case I		Working fluid	
Case le	MELCOR 1.0.0	Noncondensable gas	5.0e-4
Case If	MELCOR 1.8.2	Noncondensable gas	

Steady state results

Parameter		MELCOR 1.8.6	MELCOR 1.8.6	MELCOR 1.8.2	
		(case I)	(case le)	(case lf)	
	Flow		Working fluid	Noncondensable gas	
пе	Inventory of PHTS & 60 modules (kg)		1016.7	1035.0	1035.1
	ṁ (kg/s)		3.1805	3.2084	3.2096
	Pressure inlet (MPa)		7.84	7.85	7.88
	dp (kPa)		149.0	149.0	149.0
FW	Не	inlet (°C)	294.2	294.5	296.8
		outlet (°C)	364.6	364.1	366.9
	EUROFER (°C)		621.8	621.1	3721.3
	W (°C)		661.1	660.4	3765.0
		HG	1.7143	1.7295	1.7301
HG, VG,	ṁ (kg/s)	VG	0.6642	0.6701	0.6706
caps		Caps	0.8020	0.8087	0.8089
	He outlet (°C)		388.1	387.4	389.2

Module mass flow rate (FL706), amplified

FW1 inlet pressure (CV706), amplified

Mass flow rate to the EV (FL403)

Pressure in the VV (CV401), amplified

He temperature at the OB_4 inlet

FW temperature

17

Conclusion

- Oscillation of the mass flow rate was observed after reaching the minimum He temperature below -170 °C. He properties are not the reason for the oscillation, since the results with He as noncondensable gas process in similar trend.
- Temperature recovered after reaching the minimum He temperature is not physically correct. Probably it is influenced by MELCOR model for gases in the code.
- Time step has no impact on the physically correct results, but on the results in the followed oscillation region. For large cross section small time step led to large oscillation of the mass flow rate. However, for small cross section large oscillation was caused by large time step.
- MELCOR 1.8.6 for fusion provides reliable results against MELCOR 1.8.2 due to the double precision.
- □ He properties produce precise results against He as noncondensable gas.

Thank you !