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Abstract: Full-field transmission hard X-ray microscopy (TXM) has
been widely applied to study morphology and structures with high spatial
precision and to dynamic processes. Zernike phase contrast (ZPC) in hard
X-ray TXM is often utilized to get an in-line phase contrast enhancement for
weak-absorbing materials with little contrast differences. Here, following
forward image formation, we derive and simplify the contrast transfer
functions (CTFs) of the Zernike phase imaging system in TXM based on
a linear space-shift-invariant imaging mode under certain approximations.
The CTFs in ZPC in their simplified forms show a high similarity to the one
in free-space propagation X-ray imaging systems.

© 2016 Optical Society of America

OCIS codes: (340.7460) X-ray microscopy; (340.7440) X-ray imaging; (110.4850) Optical
transfer functions; (110.2990) Image formation theory.

References and links
1. W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “Soft X-ray microscopy at a spatial

resolution better than 15 nm,” Nature 435, 1210–1213 (2005).
2. S.-C. Chao, Y.-C. Yen, Y.-F. Song, Y.-M. Chen, H.-C. Wu, and N.-L. Wu, “A study on the interior microstructures

of working Sn particle electrode of Li-ion batteries by in situ X-ray transmission microscopy,” Electrochem.
Commun. 12, 234–237 (2010).

3. C. A. Larabell and M. A. Le Gros, “X-ray tomography generates 3-D reconstructions of the yeast, Saccharomyces
cerevisiae, at 60-nm resolution,” Mol. Biol. Cell 15, 957–962 (2004).

4. Y. Cheng, H. Suhonen, L. Helfen, J. Li, F. Xu, M. Grunze, P. A. Levkin, and T. Baumbach, “Direct three-
dimensional imaging of polymer-water interfaces by nanoscale hard X-ray phase tomography,” Soft Matter 10,
2982–2990 (2014).

5. F. Xu, L. Helfen, H. Suhonen, D. Elgrabli, S. Bayat, P. Reischig, T. Baumbach, and P. Cloetens, “Correlative
nanoscale 3D imaging of structure and composition in extended objects,” PloS One 7, e50124 (2012).

6. T. Bacquart, G. Devès, A. Carmona, R. Tucoulou, S. Bohic, and R. Ortega, “Subcellular speciation analysis of
trace element oxidation states using synchrotron radiation micro-X-ray absorption near-edge structure,” Anal.
Chem. 79, 7353–7359 (2007).

7. E. Nazaretski, K. Lauer, H. Yan, N. Bouet, J. Zhou, R. Conley, X. Huang, W. Xu, M. Lu, K. Gofron,
S. Kalbfleisch, U. Wagner, C. Rau, and Y. S. Chu, “Pushing the limits: an instrument for hard X-ray imaging
below 20 nm,” J. Synchrotron Radiat. 22, 336–341 (2015).

8. B. Bayerlein, P. Zaslansky, Y. Dauphin, A. Rack, P. Fratzl, and I. Zlotnikov, “Self-similar mesostructure evolution
of the growing mollusc shell reminiscent of thermodynamically driven grain growth,” Nat. Mater. 13, 1102–1107
(2014).

#257148 Received 11 Jan 2016; revised 22 Feb 2016; accepted 23 Feb 2016; published 9 Mar 2016 
© 2016 OSA 21 Mar 2016 | Vol. 24, No. 6 | DOI:10.1364/OE.24.006063 | OPTICS EXPRESS 6063 



9. H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Ya-
mamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm
barrier in hard-X-ray focusing,” Nat. Phys. 6, 122–125 (2009).

10. J. Nelson, S. Misra, Y. Yang, A. Jackson, Y. Liu, H. Wang, H. Dai, J. C. Andrews, Y. Cui, and M. F. Toney, “In
operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries,” J. Am. Chem. Soc.
134, 6337–6343 (2012).

11. T. dos Santos Rolo, A. Ershov, T. van de Kamp, and T. Baumbach, “In vivo X-ray cine-tomography for tracking
morphological dynamics,” Proc. Natl. Acad. Sci. USA 111, 3921–3926 (2014).

12. A. Momose, “Recent advances in X-ray phase imaging,” Jpn. J. Appl. Phys. 44, 6355 (2005).
13. G. Schneider, “Cryo X-ray microscopy with high spatial resolution in amplitude and phase contrast,” Ultrami-

croscopy 75, 85–104 (1998).
14. D. B. Murphy and M. W. Davidson, Fundamentals of Light Microscopy and Electronic Imaging (Wiley-

Blackwell, 2012).
15. Y. Liu, J. C. Andrews, J. Wang, F. Meirer, P. Zhu, Z. Wu, and P. Pianetta, “Phase retrieval using polychromatic

illumination for transmission X-ray microscopy,” Opt. Express 19(2), 540 (2011).
16. Y. Yang, R. Heine, Y. Cheng, C.-C. Wang, Y.-F. Song, and T. Baumbach, “Approaching quantitative Zernike

phase contrast in full-field transmission hard X-ray microscopy: Origin and reduction of artifacts,” Appl. Phys.
Lett. 105, 094101 (2014).

17. H. Chen, Z. Wang, K. Gao, Q. Hou, D. Wang, and Z. Wu, “Quantitative phase retrieval in X-ray Zernike phase
contrast microscopy,” J. Synchrotron Radiat. 22, 1056–1061 (2015).

18. I. Vartiainen, C. Holzner, I. Mohacsi, P. Karvinen, A. Diaz, G. Pigino, and C. David, “Artifact characterization
and reduction in scanning X-ray Zernike phase contrast microscopy,” Opt. Express 23(10), 13278–13293 (2015).

19. S. Sugitani and K. Nagayama, “Complex observation in electron microscopy: III. inverse theory of observation-
scheme dependent information transfer,” J. Phys. Soc. Jpn. 71, 744 (2002).

20. P. Cloetens, W. Ludwig, J. Baruchel, J.-P. Guigay, P. Pernot-Rejmánková, M. Salomé-Pateyron, M. Schlenker, J.-
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1. Introduction

X-ray microscopy (XRM) in both soft and hard X-ray regimes has been utilized to probe with
higher precision into small spatial and even temporal scales [1, 2] to access the morphology of
macro- and micro- 3D structures [3, 4], as well as chemical information regarding elemental
distribution and concentration [5], chemical states [6], etc.

Hard X-ray microscopy offers a non-invasive and versatile probe with varying spatial reso-
lutions covering a wide range from a few hundred nm down to tens of nm [7, 8]. Bridging the
gap between light microscopy and electron microscopy, it is becoming more and more crucial
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in the mesoscopic regime in three dimensions [9]. Compared to soft XRM, hard XRM is more
suited for investigations under more complex and flexible sample environments such as in-situ
and in-vivo observation [10,11], probing non-invasively into three dimensions when combining
with computed-tomography.

One of the major challenges for hard X-ray microscopy is related to the low sensitivity for
distinguishing various structural components of light materials in biological specimens or com-
posites of similar densities. Especially in life science, soft tissues or cells usually produce poor
absorption contrast, i.e. small differences in image intensities that are merely observable. This
is due to the fact that elemental compositions of low atomic numbers and low densities in soft
tissues or cells are very similar to that of water [12]. Therefore in hard X-ray (>10 keV) regime,
especially for light materials (low-Z elements) it becomes more interesting for imaging tech-
niques to explore the phase shifts induced from the wave-matter interaction rather than modu-
lations in amplitude. The sensitivity gain can reach up to an order of three magnitudes [12].

Fig. 1. Schematic layout of image formation in a TXM setup. The phase ring is placed in
the back focal plane of the objective lens (Fresnel zone plate). Ui is the wavefield behind
the sample. Ub is the wavefield behind the phase ring (in the back focal plane of FZP). Uo
is the wavefield arriving at the detector plane. The P wave (red) represents the zeroth-order
diffraction; the S wave (green) is the higher-order diffraction that passes the phase ring
untouched. The interference between the phase altered P wave and the S wave will lead to
contrast enhancement in the intensity recorded at the imaging plane.

Zernike phase contrast (ZPC) in full-field hard X-ray microscopy [13] integrates a phase
ring in the back focal plane of the objective as shown in Fig. 1. By phase shifting the zeroth-
order diffraction beam, namely, the primary beam, the recorded intensity of the interference
between the primary wave and the diffracted wave can attain increased sensitivity particularly
when applied to weak-absorbing objects. This enhanced contrast can be observed in-line and
is approximately linearly proportional to the optical path difference (OPD), therefore implying
the object-induced phase variation [14], which is the prominent advantage of ZPC.

However, due to its intrinsic low frequency artifacts from interference, to approach quantita-
tive analysis remains difficult. Discussion began to emerge recently on how to tackle this prob-
lem. In general, one way to approach the quantification is off-line phase map retrieval using
multiple radiographs under various conditions [15–17]. The other way is to modify the optics,
such as the condensor and the coupled phase ring in order to suppress the ZPC artifacts [18].

Here, we would like to introduce and center on the contrast transfer functions (CTFs) of ZPC
in full-field transmission hard X-ray microscopy in a simplified way under coherence assump-
tions. They have been derived as an extension of the formulation in electron microscopy [19],
however they can be further simplified due to the properties of X-ray optics. Similarity can
be found in CTFs of free-space propagation X-ray imaging system, which have been devel-
oped more than one decade ago [20] and have been extensively applied to make considerable
achievements in varying research fields [21, 22]. Our derivation of simplified CTFs will be
useful in deepening the understanding of this imaging system, with potential to improve the
quantification of the image information.
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2. Derivation of contrast transfer under Zernike phase contrast mode for full-field trans-
mission X-ray microscopy

The TXM system can be modeled as a linear shift-invariant system composed of four parts, the
input Ui, the lens, the Zernike phase ring Ub and the output Uo, as specified in Fig. 1.

A coherent illumination is assumed here while in practice it is generally taken as a mutually
incoherent emission. Readers are referred to [23, 24] for the detailed discussion of coherence
conditions. The complex transmission function of the sample can be linearized as follows

Ui(r) = T (r)Usource = exp[−B(r)+ iφ(r)]
≈ 1−B(r)+ iφ(r). (1)

Here r is the spatial coordinates in the transverse plane of the object, φ(r) is the relative phase
variation in contrast to the amount of absolute phase shift Φ(r)= exp[(2π/λ )

∫
(1−δn(r,z))dz].

δn is the real part of the complex refractive index of the medium. This linearization between
the phase variation φ(r) and the transmission function of the object T (r) is achieved by taking
the assumptions of a weak-absorbing object with slowly varying phase shifts

B(r)� 1, |φ(r)−φ(r+∆r)| � 1. (2)

The incident wavefield Ui(r) is then forward propagated to the exit plane of the phase ring,
which is also the back focal plane of the objective lens, where it equals [25]

Ub(f) = F{Ui(r)}Ap(f)H(f). (3)

f is the spatial frequency in Fourier domain corresponding to r.

Ap(f) =

{
exp(iθp)P(m,λ ) = exp(i 3π

2 )P(m,λ ) or exp(i π

2 )P(m,λ ) if f≤ fp

1 if f > fp

is the pupil function of the phase ring. The cut-off spatial frequency fp is defined as fp =
rp

d f λ
,

where d f is the focal length of the objective lens, and rp corresponds to the radius of the hole
in the phase ring. The frequency fp should be infinitely close to zero, since phase modification
should only be applied to the zeroth-order diffraction beam. P(m,λ ) is the attenuation factor of
the phase ring, depending on the materials (m) and the X-ray wavelength (λ ).

H(f) is the function characterizing optical deformation induced by the objective lens, includ-
ing the pupil function, optical aberrations, and defocusing by shifting the lens, expressed in the
form of [26]

H(f) = exp[−iπ∆zλ f2 +g(f)]. (4)

Here ∆z denotes the defocusing distance, and g(f) is the lens aberration factor, attributed to
the optical aberrations inherent in the objective lens. In XRM systems with ZPC, the objective
lens is mostly realized by a Fresnel zone plate (FZP). The FZPs in hard X-ray systems tend to
have lower aberrations compared to lenses in electron microscopy or for soft X-rays because
of their lower numerical apertures. Hence under the current diffraction resolution limit for hard
X-rays [27], the spherical aberration as well as other aberrations can be safely neglected. In
general, the pupil function of the FZP acts as a low-pass filter, limiting the achievable spatial
resolution. As we focus our discussion on the transfer of the low frequencies, which carry the
overall image contrast, this effect is not taken into account. Hence this pupil function is also
neglected for simplicity.

#257148 Received 11 Jan 2016; revised 22 Feb 2016; accepted 23 Feb 2016; published 9 Mar 2016 
© 2016 OSA 21 Mar 2016 | Vol. 24, No. 6 | DOI:10.1364/OE.24.006063 | OPTICS EXPRESS 6066 



By substituting Eq. (1) into Eq. (3), we get

Ub(f) = F{[1−B(r)]+ iφ(r)}Ap(f)H(f)
= {exp(iθp)P(m,λ )δ (f)− B̃(f)+ iφ̃(f)}H(f)
= F{U ′i (r)}H(f), (5)

from which we can observe that the ring functions as a high-pass phase shifter here since it
in principle only modulates the phase of the Dirac delta function δ (f). In the end U ′i (r) is the
wavefield modified by the phase plate. Here B̃(f) and φ̃(f) means B(r) and φ(r) in Fourier
space.

The image intensity in Fourier space at the imaging plane after far-field propagation can be
written as an autocorrelation of the real space wavefield U ′i (r) in the exit-plane of the objective
lens [28]

F{Io(f)}= |F{Uo(r)}|2

=
∫

U ′i (r−
λ∆zf

2
)U ′∗i (r+

λ∆zf
2

)exp(−i2πfr)dr (6)

in which ()∗ means conjugation.
If we consider the wavefield U ′i (r) in Fourier domain F{U ′i (r)}= δ (f)− B̃(f)+ iφ̃(f) with-

out the phase ring, i.e. in bright-field mode, and substitute Eq. (1) to Eq. (6) we get [29]

Ĩo(f) = δ (f)+2sin(πλ∆zf2)φ̃(f)−2cos(πλ∆zf2)B̃(f). (7)

Here, the factor sin(πλ∆zf2) in front of the relative phase shifts φ̃(f) is defined as the phase
contrast transfer function (phase CTF). And the factor cos(πλ∆zf2) in front of the absorption
modulation B̃(f) is the amplitude contrast transfer function (amplitude CTF).

Eq. (7) indicates a linear relation between the Fourier transform of the image intensity Ĩ′o(f)
and the Fourier transform of the phase-amplitude modulation φ̃(f) and B̃(f), with a small defo-
cus distance ∆z. This turns out to be one of the most important formulas in electron microscopy
optics, and has been adopted to X-ray fields in the last decade [20,30]. The phase and amplitude
CTFs in the equation each describe a spectral filter of the object information to pass through,
and the resolution limit lies in the first zero crossings for a single record.

In Zernike phase contrast mode, for U ′i (r) being phase modulated by θp and hence
F{U ′i (r)} = exp(iθp)δ (f) + B̃(f)− iφ̃(f), the same amount of phase shift is induced in the
transfer function and it becomes

Ĩ′o(f) = δ (f)P2 +2sin(πλ∆zf2 +θp)φ̃(f)P−2cos(πλ∆zf2 +θp)B̃(f)P. (8)

When applying a θp = 3π/2 phase ring, Eq. (8) can be reduced to

Ĩ′o(f) = δ (f)P2−2cos(πλ∆zf2)φ̃(f)P−2sin(πλ∆zf2)B̃(f)P (9)

which has the simplest form in the extreme case when ∆z = 0, then Ĩ′o(f) = δ (f)P2 −
2φ̃(f)P [25], where the linearity between the phase modulation and the intensity can be
achieved. Despite that this linearity can be inevitably corrupted by the inherent ZPC artifacts,
the absorption contrast image can compliment to retrieve the phase map [16]. For concision,
P(m,λ ) is noted as P in the equations.

One can also extend Eq. (8) to the dark field mode. Consider a beam stop with very high
attenuation instead of the phase ring which blocks the direct beam, then we get

Ĩ′′o (f)≈ 2sin(πλ∆zf2 +θp)φ̃(f)P−2cos(πλ∆zf2 +θp)B̃(f)P (10)
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This imaging mode can be applied to observe e.g. scattering signals from ultra-structures [31].
It is obvious that the distinct difference of Eq. (9) from Eq. (7) is that the phase CTF is

shifted from a sine function to a negative cosine function, while for the amplitude CTF an
inverse change from a cosine to a sine function occurs.

This difference is a significant improvement in the final image intensity contrast in Zernike
phase contrast mode, for the change of a sine function to a cosine function in phase contrast
produces a much higher contrast factor for the low spatial frequencies, thus leading to much
better preservation of the large features in the object. At the same time, a more smooth spectral
distribution is obtained compared to the summed up defocusing CTFs [32], where multiple
distances are often required in the regularization of the zero crossings in the summed CTFs.

Discussion on coherence condition and its influence in CTF

In experimental conditions, the illumination in TXM is usually assumed to be a quasimonochro-
matic Gaussian source distribution with a finite beam divergence and a finite energy spread.
Regarding the aspect of temporal coherence corresponding to the energy spread, the transfer
function will be the product of the coherent CTF with an envelope function characterizing the
energy spread [30]. This damping effect in the CTFs will mainly contribute to the degrading of
amplitude of CTFs and also to an elimination in the oscillations, leading to contrast depression
and loss of fine details.

Concerning the spatial coherence, which can be characterized by the van Cittert-Zernike
theorem with a complex coherence factor, its influence has been analyzed by K. A. Nugent
in [23,24]. In this study the impact of partial coherence on the contrast in microscopic systems
is quantitatively analyzed. From the simulation, it is shown that under the same defocus distance
the oscillations of both the amplitude and phase optical transfer functions (OTF) are rapidly
suppressed as the coherence is reduced. It is more complicated than a simple envelope damping
factor as in the temporal coherence case, but works in a similar manner in influencing the CTFs.

While the damping effect on CTFs may pose a trouble for defocusing algorithms which rely
on a high degree of coherence, it will have less influence on Zernike phase contrast mode when
phase retrieval is not required. Hence in this case the linearity of the exit wavefield does not
need to be preserved, but it will become a linearity of the recorded image intensity instead [27].

3. Simulation of contrast transfer functions in TXM

To analyze the degree of contrast enhancement according to the CTF, the image of Lena is
taken as the object for simulation. Image pixel size is set to be 30 nm, with image dimensions
20µm by 20µm. As a weak phase object with phase-attenuation duality, the phase shift ranges
from 0.0029 to 0.039, and the amplitude attenuation is set to be even weaker by two orders
of magnitude, what corresponds to typical values in biological applications. A small defocus-
ing distance ∆z of 150µm is introduced here to both absorption and Zernike phase contrast
modes. The amplitude and phase CTFs are first simulated independently of specific objects,
and are only scaled by the defocusing distance ∆z. So the further it is defocused, the narrower
oscillations and zero crossings we get from the CTFs.

As shown in Fig. 2(a), in the bright-field (absorption) mode, the sine function of the phase
CTF (green) stays below 0.5 for frequencies below below 2.7µm−1 (corresponding to 0.37µm
in real space). Hence it acts as a high-pass filter for the phase modulation factor φ̃(f), which
is the dominating contrast in our object. This suppression of the low frequencies results in the
poor visibility of the features larger than 0.37µm. On the other hand, high frequencies are more
prominent and manifested as sharply defined edges, corresponding to the edge-enhancement
effect we obtained from defocusing propagation. This is the reason why weak absorbing objects
usually can not be imaged truly but just the small variations and edges appear enhanced.
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Fig. 2. Contrast transfer function (CTF) simulation and comparison between absorption
mode and Zernike phase contrast mode in a TXM system. (a) Simulation of the ampli-
tude and phase CTFs under absorption mode with a defocusing distance of 150µm; (b)
amplitude and phase CTFs under Zernike phase contrast mode with the same defocusing
distance; (c) absorption image of the object, showing merely the edges of the object; (d)
phase contrast image of the same object with the large scale features preserved; (e) com-
parison of line profiles of both (c) and (d).

In contrast, in Zernike phase contrast mode the phase CTF (green in Fig. 2(b)) is shifted
by 3π/2 to a cosine function, which is analogous to change a high-pass filter to a low-pass
one. This change gives a boost to the final image contrast of the whole objects as the low
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frequency information is much better preserved. The modulus of the phase CTF drops below
0.5 at the spatial frequency of 3.8µm−1 (which equals the fine features of 0.26µm in real space),
indicating that fine features down to this threshold can be imaged. Compared to the absorption
contrast Fig. 2(c), a clear improvement of visibility is obtained in the phase contrast image (d),
which is also confirmed in the line profile comparison (e).

So for direct observation of weak absorbing objects, ZPC gains more sensitivity over absorp-
tion contrast. Furthermore, when the detection plane is close enough to the focus (πλ∆zf2� 1),
the phase CTF in Fig. 2(b) is stretched along the frequency axis, producing a more uniform
spectral transfer of the phase information.

4. Summary

Based on a linear space-shift-invariant imaging model of a full-field transmission X-ray mi-
croscopy (TXM) system, the image formation and the contrast transfer functions (CTFs) of
two contrast modes, absorption mode and Zernike phase contrast (ZPC) mode are presented.
Under the assumptions of full coherence and weak-absorbing objects, we find a high simi-
larity between the two CTFs. The main difference is the modulation factor multiplied to the
object-induced phase shifts. Whereas it is a sine function for absorption contrast mode, it be-
comes a cosine function for ZPC mode because of the phase ring in the back focal plane of
the zone plate. For objects with low-Z materials imaged with hard X-ray, considerable phase
enhancement can be achieved since the cosine function, like a low-pass filter, will lead to better
preservation of low frequencies and the overall image contrast improvement.

Benefiting from less optical aberrations in comparison to soft X-ray and electron microscopy,
the CTF in TXM systems in the hard X-ray regime resembles the one in free-space propagation,
which has been widely applied to quantitative phase retrieval. Hence this derivation of CTFs for
a full-field microscopic system may be helpful for improvement on quantification of Zernike
phase contrast imaging which is strongly desired in life science.

Appendix: derivation of contrast transfer function for Zernike phase contrast

From Eq. (6), by substituting Eq. (1) with a 3π/2 phase modulation one can get

F{Io(f)}=
∫

U ′i (r−
λ∆zf

2
)U ′∗i (r+

λ∆zf
2

)exp(−i2πfr)dr

=
∫

[−i−B(r− λ∆zf
2

)+ iφ(r− λ∆zf
2

)][−i−B(r+
λ∆zf

2
)+ iφ(r+

λ∆zf
2

)]
∗

exp(−i2πfr)dr

=
∫
{1+ i[B(r+

λ∆zf
2

)−B(r− λ∆zf
2

)]− [φ(r+
λ∆zf

2
)+φ(r− λ∆zf

2
)]}exp(−i2πfr)dr

= δ (f)+ iB̃(r)[exp(iπλ∆zf2)− exp(−iπλ∆zf2)]− φ̃(r)[exp(iπλ∆zf2)+ exp(−iπλ∆zf2)]

= δ (f)−2sin(πλ∆zf2)B̃(f)−2cos(πλ∆zf2)φ̃(f) (11)
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