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Abstract. Three types of reference simulations, as recom-

mended by the Chemistry–Climate Model Initiative (CCMI),

have been performed with version 2.51 of the European

Centre for Medium-Range Weather Forecasts – Hamburg

(ECHAM)/Modular Earth Submodel System (MESSy) At-

mospheric Chemistry (EMAC) model: hindcast simulations

(1950–2011), hindcast simulations with specified dynam-

ics (1979–2013), i.e. nudged towards ERA-Interim reanaly-

sis data, and combined hindcast and projection simulations

(1950–2100). The manuscript summarizes the updates of

the model system and details the different model set-ups

used, including the on-line calculated diagnostics. Simula-

tions have been performed with two different nudging set-

ups, with and without interactive tropospheric aerosol, and

with and without a coupled ocean model. Two different ver-

tical resolutions have been applied. The on-line calculated

sources and sinks of reactive species are quantified and a first

evaluation of the simulation results from a global perspective

is provided as a quality check of the data. The focus is on the

intercomparison of the different model set-ups. The simula-

tion data will become publicly available via CCMI and the

Climate and Environmental Retrieval and Archive (CERA)

database of the German Climate Computing Centre (DKRZ).

This manuscript is intended to serve as an extensive reference

for further analyses of the Earth System Chemistry integrated

Modelling (ESCiMo) simulations.

1 Introduction

The study of chemistry–climate interactions represents an

important and, at the same time, difficult task of global

change research. The emerging issues of climate change,

ozone depletion and air quality, which are challenging from

both, scientific and policy perspectives, are represented in

chemistry–climate models (CCMs). Understanding how the

chemistry and composition of the atmosphere may change

over the 21st century is essential for preparing adequate

adaptive responses or establishing mitigation strategies. The

distribution and development of aerosols and reactive green-
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house gases is controlled by primary emissions, atmospheric

chemistry, and physics including transport of air masses in-

tegrated over global scales. Projections of future climate

change are coupled with changes in atmospheric composi-

tion, whose impacts extend from air quality to stratospheric

ozone. Furthermore, chemically active species in the tropo-

sphere are more amenable to short-term manipulations by

changes in emissions and are therefore of major policy rel-

evance to both air quality and climate. Provision of high-

quality, policy-relevant information on the current state of

the climate and its possible future state, as well as options for

adaptation, are strongly dependent on progress in this area.

Increasingly, the chemistry and dynamics of the strato-

sphere and troposphere are being studied and modelled

as a single entity in global models. The European Cen-

tre for Medium-Range Weather Forecasts – Hamburg

(ECHAM)/Modular Earth Submodel System (MESSy) At-

mospheric Chemistry (EMAC) model was one of the first

community models with this capability (Jöckel et al., 2006).

For the first time, some of the Earth system models (ESMs)

with interactive oceans participating in the Coupled Model

Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2011)

had interactive chemistry (Eyring et al., 2013a; Flato et al.,

2013). The World Meteorological Organization – United

Nations Environment Programme (WMO/UNEP) “Scien-

tific Assessment of Ozone Depletion: 2010” (World Mete-

orological Organisation, 2011) also featured several strato-

spheric models that included tropospheric chemistry, and one

model with a coupled ocean. It was also a main recom-

mendation of the Stratosphere–troposphere Processes And

their Role in Climate (SPARC) Chemistry–Climate Model

Validation Activity (CCMVal) report (SPARC, 2010), that

stratosphere-resolving CCMs should continue to evolve to-

wards more comprehensive, self-consistent stratosphere–

troposphere CCMs. These developments provide a path-

way for including better representation of stratosphere–

troposphere, chemistry–climate, and atmosphere–ocean cou-

pling in CCMs and ESMs used for more robust predictions

of future stratospheric ozone, climate change, and mutual in-

fluences (Eyring et al., 2013b).

Within the Earth System Chemistry integrated Modelling

(ESCiMo) initiative chemistry–climate simulations have

been conducted by the MESSy (http://www.messy-interface.

org) Consortium with the EMAC model for special topics

related to the national project of the DFG-Forschergruppe

SHARP (Stratospheric Change and its Role for Climate Pre-

diction) and the International Global Atmospheric Chem-

istry (IGAC)/SPARC Chemistry–Climate Model Initiative

(CCMI; http://www.met.reading.ac.uk/ccmi/). These simu-

lations have been carried out in support of upcoming

WMO/UNEP ozone and IPCC climate assessments and will

help to answer emerging science questions as well as to im-

prove process understanding.

In this manuscript Sect. 2 documents briefly (mainly for

the users of it) the updates of the MESSy and the EMAC

model since Jöckel et al. (2010), Sect. 3 describes the model

set-ups, and Sect. 4 highlights some first analyses. Section 5

provides a summary and some first conclusions, followed

by a section providing information about the code and data

availability. Last but not least, Appendix A lists the applied

on-line diagnostics. Extensive supplementary information is

available in the Supplement.

2 New model developments

MESSy is a software package providing a framework for

a standardized, bottom-up implementation of Earth system

models with flexible complexity. “Bottom-up” means, the

MESSy software provides an infrastructure with general-

ized interfaces for the standardized control and interconnec-

tion (coupling) of low-level ESM components (i.e. dynamic

cores, physical parameterizations, chemistry packages, di-

agnostics), which are called submodels. MESSy comprises

currently about 60 submodels (i.e. coded according to the

MESSy standards) in different categories: infrastructure (i.e.

framework) submodels, atmospheric chemistry-related sub-

models, physics-related submodels, and diagnostic submod-

els. The EMAC model uses the MESSy to link multi-

institutional computer codes to the core atmospheric model,

i.e. the 5th generation European Centre Hamburg general cir-

culation model (ECHAM5; Roeckner et al., 2006). Since the

publication of Jöckel et al. (2010), MESSy – including the

EMAC model – has undergone several updates.

2.1 Updates to the model infrastructure

The ECHAM5 “nudging” routines for simulations with

specified dynamics have been updated to enable the usage

of nudging data in netCDF (http://www.unidata.ucar.edu/

software/netcdf/) input format. The corresponding prepro-

cessing is now performed with cdo (climate data operators;

https://code.zmaw.de/projects/cdo).

New infrastructure submodels for the unified import of ex-

ternal data (IMPORT), and grid definitions and transforma-

tions (GRID) have been implemented (Kerkweg and Jöckel,

2015). The rediscretization via NCREGRID, as described

by Jöckel (2006), is now part of those. Based on this ad-

vanced infrastructure, the submodels OFFLEM, ONLEM

(both Kerkweg et al., 2006b), and DRYDEP (Kerkweg et al.,

2006a) for off-line, on-line calculated emissions, and dry de-

position, respectively, have been revised (keeping their func-

tionality) and renamed OFFEMIS, ONEMIS, and DDEP, re-

spectively.

2.2 Updates of atmospheric chemistry-related

submodels

The submodel MECCA (Module Efficiently Calculating the

Chemistry of the Atmosphere), used to simulate the chem-

ical kinetics, has been updated (R. Sander et al., 2011) and
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further revised. The rate coefficients were updated to the lat-

est recommendations of the Jet Propulsion Laboratory (JPL;

S. P. Sander et al., 2011) and other recent publications (see

Sect. 3.5.1).

The submodel JVAL, used to calculate photolysis rate

coefficients, has been updated to the most recent version

(Sander et al., 2014, see Sect. 3.5.1).

2.3 Updates of physics-related submodels

The ocean subsystem as described by Pozzer et al. (2011),

consisting of the submodels MPIOM (based on the General

(ocean) Circulation Model MPIOM version 1.3.0; Mars-

land et al., 2003), HD (Hydrological Discharge; based on

the work of Hagemann and Gates, 1998; Hagemann et al.,

2006), and A2O (atmosphere to ocean coupling; Pozzer et al.,

2011) are now included in the new MESSy version 2.51 (see

Sect. 3.11). The submodel A2O is responsible for the ex-

change of information between ocean and atmosphere (and

vice versa), while HD simulates the riverine fresh water in-

put into the ocean for balancing the water mass.

The radiation submodel RAD4ALL of development cy-

cle 1 of MESSy (Jöckel et al., 2006), which was a first

modularized version of the ECHAM5 radiation scheme, has

been completely refined, further modularized, and split into

the MESSy submodels RAD (with sub-submodel FUBRAD;

see next item) for radiation calculations, AEROPT for the

calculation of aerosol optical properties (see Sect. 3.7.1),

CLOUDOPT for the calculation of cloud optical properties,

and ORBIT for Earth orbit calculations. The technical docu-

mentation with application examples will be published else-

where (Dietmüller et al., 2016).

To increase the spectral resolution of the ultraviolet–

visible (UV–Vis) region of the solar spectrum, the single

UV–Vis band of the submodel RAD can be substituted by

the sub-submodel RAD-FUBRAD at pressures lower than

70 hPa (Nissen et al., 2007; Kunze et al., 2014). The updates

of FUBRAD were motivated by the need for a consistent flux

profile over the complete vertical model domain, that is nec-

essary when an interactive ocean is coupled to EMAC. The

updates comprise

– an increase of the spectral resolution of the Chappuis

band from one in the original version to 6 or 57 in the

updated version, increasing the spectral resolution from

49 to 55 or 106 bands;

– a consistent flux profile by using non-scaled fluxes in

the Chappuis band and also the usage of integrated

fluxes in the non-absorbing band.

The surface processes of the ECHAM5 base model have

been restructured as MESSy submodel SURFACE. The re-

structuring comprises the calculation of heat and water bud-

gets of the surface (surf.f90)1, and lake temperatures and

ice thicknesses (lake.f90). The ground temperature evolu-

tion and the temperature profile within the soil are esti-

mated from the thermal diffusion equation (soiltemp.f90).

Lake-ice temperature (licetemp.f90) and sea-ice temperature

(sicetemp.f90) are calculated prognostically; prognostic cal-

culation of the ice temperature (icetemp.f90) is optional and

has been applied for all simulations presented here. The con-

cepts and physics of the submodel SURFACE are described

in detail by Roeckner et al. (2003).

In summary, the physics-related submodels (i.e. the “E”

in EMAC) have been mostly derived from the physics rou-

tines of the ECHAM5 base model (Roeckner et al., 2003,

2006), some have been further developed and include ad-

vanced or alternative parameterizations. Thus, ECHAM5

physics in EMAC is currently represented by the submod-

els AEROPT, CLOUDOPT, ORBIT, RAD, SURFACE (see

above), GWAVE (non-orographic gravity waves; Baumgaert-

ner et al., 2013), CONVECT (convection; Tost et al., 2006b),

and CLOUD. Convective tracer transport is simulated by the

submodel CVTRANS (Tost, 2006). Vertical diffusion, oro-

graphic gravity waves, and large-scale advection (flux-form

semi-Lagrangian; Lin and Rood, 1996) are treated in EMAC

by ECHAM5. The feedback of atmospheric chemistry to

the hydrological cycle is controlled by the submodel H2O

(Jöckel et al., 2006).

2.4 New diagnostic submodels

New diagnostic submodels have been added:

– SCALC (see also Appendix A1 for an example us-

age; Kern, 2013) is used for Simple CALCulations with

“channel objects” (Jöckel et al., 2010) via namelist. In

the current MESSy release 2.51 summation and scaling

of channel objects is implemented. The term channel

object was introduced as part of the MESSy terminol-

ogy by Jöckel et al. (2010). In brief, it describes a spe-

cific Fortran95 structure comprising the data and corre-

sponding meta-data of prognostic and diagnostic vari-

ables according to an object-oriented approach. The in-

dividual model components (i.e. what we call submod-

els) operate on these channel objects. SCALC, in partic-

ular, is used to provide, defined by namelist, new chan-

nel objects (e.g. the total loss rate of a reactive com-

pound), consisting of the sum of (optionally scaled) in-

dividual objects (e.g. the process specific loss rates of

that compound).

– The submodel TBUDGET (see Appendix A1) is used to

calculate budgets of reactive compounds.

1Names in parentheses refer to the original ECHAM5 subroutine

names.
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– The submodel CONTRAIL (see Appendix A3) is used

to calculate the potential contrail coverage and the po-

tential contrail cirrus coverage.

3 Simulation configurations and set-ups

3.1 General aspects of the model set-ups

Three different sets of reference simulations have been sug-

gested by CCMI (Eyring et al., 2013b), namely free-running

hindcast simulations from 1960 to 2010 (REF-C1), hind-

cast simulations with specified dynamics from 1980 to 2010

(REF-C1SD), and combined free-running hindcast and pro-

jection simulations from 1960 to 2100 (REF-C2). With

EMAC we conducted these simulations in a T42 (triangu-

lar) spectral resolution of the ECHAM5 base model (cor-

responding to a quadratic Gaussian grid of 2.8◦× 2.8◦ in

latitude and longitude) in different flavours as listed in Ta-

bles 1 and 2. We simulated with two different vertical resolu-

tions, once with 90 (L90MA) model levels and once with 47

(L47MA) model levels, both reaching up to 0.01 hPa (mid- of

uppermost layer) into the middle atmosphere (MA; approx-

imately 80 km). The vertical layer structures of the hybrid

pressure levels (p(i,j,k, t)= ha(k)+hb(k)·ps(i,j, t), where

p is pressure, i,j the horizonal and k the vertical grid indices,

t time, ps the surface pressure, and ha and hb the hybrid coef-

ficients) are visualized in Fig. S42. The time step length was

720 s in the T42L90MA and 600 s in the T42L47MA simu-

lations, respectively. For the T42L47MA resolution, we had

to optimize several model parameters as described in further

detail in Sect. 3.2.

All simulations (except for those with specified dynamics,

SD) start in January 1950, to have a 10-year-long spin-up

period (1950–1959), initialized from already spun-up states

of previous simulations; see Sect. 3.5.5. The simulation with

coupled interactive ocean (RC2-oce-01) was spun-up in a

two-stage procedure over 500 years in total (see Sect. 3.11

for details).

The hindcast simulations with specified dynamics (SD)

have been branched off from restart files (1 January 1979)

of the corresponding free-running hindcast simulations and

“nudged” by Newtonian relaxation towards ERA-Interim re-

analysis data (Dee et al., 2011), which are available with

a 6-hourly time resolution from the year 1979 onwards. The

Newtonian relaxation (nudging) of the ECHAM5 base model

is applied in spectral space for the prognostic variables di-

vergence, vorticity, temperature, and the (logarithm of the)

surface pressure. The corresponding relaxation times applied

were 48, 6, 24, and 24 h, respectively. However, the nudg-

2Figures and tables named Sn (with n= 1, 2, 3, . . . ) re-

ferred to in the text are in the document ESCiMo_supplement.pdf.

Those named En (with n= 1, 2, 3, . . . ) are in the document ES-

CiMo_emissions.pdf. Both documents are part of the Supplement.

ing strengths are not applied homogeneously in the verti-

cal: the boundary layer and the stratosphere–middle atmo-

sphere above 10 hPa are not nudged with transition layers

of intermediate strengths in between. The vertical profiles of

the relative nudging strengths for both vertical resolutions

are displayed in Fig. S5. The nudging further implies that

the sea surface temperatures (SSTs) and the sea-ice concen-

trations (SICs) are used from ERA-Interim reanalysis data,

whereas the free-running simulations (RC1 and RC2) are

forced by other external SSTs and SICs (see Sect. 3.3). In

addition to the RC2-base simulations (free-running hindcast

and projection), which are forced by prescribed SSTs/SICs

(see Sect. 3.3), we conducted a simulation with an interac-

tively coupled ocean model (Pozzer et al., 2011). The details

are described in Sect. 3.11.

As listed in Table 1, the SD simulations have been per-

formed twice (in both vertical resolutions) with two differ-

ent settings: in two cases the “wave zero” (i.e. the global

mean) temperature (T ) was included for the Newtonian re-

laxation (RC1SD-base-07 in T42L90MA and RC1SD-base-

08 in T42L47MA), in two other cases (RC1SD-base-10

in T42L90MA and RC1SD-base-09 in T42L47MA) it was

omitted. The idea was to correct (or not) potential tempera-

ture biases and to investigate the response of the model, in

particular the chemical state of the model atmosphere.

For investigations about the role of tropospheric aerosol

for chemistry, we additionally performed free-running hind-

cast simulations with interactively calculated aerosol replac-

ing the prescribed aerosol of the RC1-base simulations, once

without (RC1-aero-06/07) and once with effect on the clouds

(RC1-aecl-01/02). Further details are given in Sect. 3.7 and

3.8. Last, but not least, we performed additional sensitivity

simulations (those appended by letter “a” in Table 1) for rea-

sons outlined in Sect. 3.12.

Data from the model were mostly output as 10-hourly

global snapshots or averages. All simulation set-ups were

equipped with extended on-line diagnostics as detailed in

Appendix A. The high complexity of the applied model set-

ups and the total number of simulation years required a con-

siderable amount of computational resources and led to al-

most 2 PetaByte of primary model output (Table 2).

3.2 Parameter optimization for T42L47MA

In preparation of the simulations with interactive chemistry

a number of 10- to 20-year test simulations have been per-

formed with EMAC at a resolution of T42L47MA to de-

termine optimal parameter settings. In these simulations the

interactive chemistry has been switched off, whereas the

same set-up as for the chemistry simulations has been used

for convection (submodel CONVECT; Tiedtke, 1989; Nor-

deng, 1994), cloud cover (submodel CLOUD; Sundqvist

et al., 1989), and non-orographic gravity waves (submodel

GWAVE; Hines, 1997). Optimization of parameters is nec-

essary for the convection parameterization to get a balanced

Geosci. Model Dev., 9, 1153–1200, 2016 www.geosci-model-dev.net/9/1153/2016/
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Table 1. Overview of ESCiMo reference simulations. The CCMI notation Ref-C1/2 is abbreviated with RC1/2, SD denotes specified dynam-

ics. Different model configurations are indicated by -base-, -aero-, -aecl- and -oce-. The two digit numbers indicate the specific simulations

(e.g. to distinguish the vertical resolution and specific SD set-up). An appended letter “a” indicates a sensitivity study (see remarks and

Sect. 3.12). For detailed explanations, see text. The line colours refer to the figures below.
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Table 1. Overview of ESCiMo Reference simulations. The CCMI notation Ref-C1/2 is abbreviated
with RC1/2, respectively, SD denotes specified dynamics. Different model configurations are indi-
cated by -base-, -aero-, -aecl- and -oce-. The two digit numbers indicate the specific simulations
(e.g., to distinguish the vertical resolution and specific SD setup). An appended letter “a” indicates
a sensitivity study (see remarks and Section 3.12). For detailed explanations, see text. The line
colours refer to the figures below.

Simulation Resolution Line colour Remarks

C1: hindcast 1950–1960–2011 with observed SSTs/SICs
RC1-base-07 T42L90MA firebrick
RC1-base-07a T42L90MA sienna with corrected stratospheric aerosol optical properties
RC1-base-08 T42L47MA firebrick dashed
RC1-base-08a T42L47MA sienna dashed with corrected stratospheric aerosol optical properties
RC1-aero-06 T42L90MA orange dashed with interactive tropospheric aerosol
RC1-aero-07 T42L90MA orange with corrected OC/BC emissions
RC1-aecl-01 T42L90MA burlywood dashed as -aero-, but with aerosol-cloud coupling
RC1-aecl-02 T42L90MA burlywood with corrected OC/BC emissions
C1SD: hindcast 1979–1980–2013 with specified dynamics, ERA-Interim SSTs/SICs
RC1SD-base-07 T42L90MA royal blue
RC1SD-base-08 T42L47MA royal blue dashed
RC1SD-base-09 T42L47MA cadet blue dashed mean temperature (wave 0) not nudged
RC1SD-base-10 T42L90MA cadet blue mean temperature (wave 0) not nudged
RC1SD-base-10a T42L90MA deepsky blue mean temperature (wave 0) not nudged;

with corrected road traffic emissions and
stratospheric aerosol optical properties

C2: hindcast & projection 1950–1960–2100 with simulated SSTs/SICs
RC2-base-04 T42L90MA medium orchid
RC2-base-05 T42L47MA medium orchid dashed
RC2-oce-01 T42L47MA/ medium purple dashed with interactively coupled ocean model

GR30L40

84

radiation budget at the top of the atmosphere (TOA), for the

quasi-biennial oscillation (QBO) nudging to get a realistic

QBO amplitude for the L47MA resolution, and for the grav-

ity wave parameterization, where the choice of the parameter

rmscon (the root mean square of the gravity-wave-induced

horizontal wind speed at the launch level in ms−1) has an

impact on the polar vortex strength.

The test simulations are performed to achieve a global, an-

nual average equality of the net incoming shortwave (SW)

radiation with the outgoing longwave (LW) radiation at the

uppermost model level (i.e. TOA). The test simulation was

performed under conditions for the year 2000 for green house

gases (GHGs), ozone depleting substances (ODSs), SSTs

and SICs (10-year average of the Hadley Centre Sea Ice and

Sea Surface Temperature data set (HADISST) monthly SSTs

and SICs between 1995 and 2004). Comparing the TOA bal-

ance of the L47 simulations with interactive chemistry re-

veals an annual, global average from 1995 to 2004 of −0.26

and 0.41 Wm−2 for RC1-base-08 and RC2-base-05, respec-

tively.

Comparison to the test simulation without interactive

chemistry (0.1 Wm−2) shows that these values are still in

the range of±0.5 Wm−2, only slightly larger than the uncer-

tainty range from observations. Stephens et al. (2012) give an

estimate for the TOA radiation balance of 0.6 (±0.4) Wm−2

for the decade 2000–2010 derived from satellite observa-

tions.

3.2.1 Balancing the radiation budget

To achieve a balanced radiation budget at the TOA, the tun-

ing of cloud parameters is commonly applied (e.g. Maurit-

sen et al., 2012). The default settings for the T42L47MA

set-up of EMAC result in a TOA radiation imbalance of

−3.3 Wm−2, i.e.the outgoing LW radiation (OLR) is larger

than the net SW radiation. The prescribed SSTs limit the abil-

ity of the model to adapt to a radiation imbalance with in-

creasing/decreasing SSTs, which would also influence con-

vection and clouds, and thereby possibly balance the radi-

ation budget by increasing/decreasing the outgoing LW ra-

diation. With this kind of model set-up the negative im-

balance can be reduced by increasing the net SW radiation

through changes of the parameters that affect cloud proper-

ties, thus reducing the planetary albedo. There are a num-

ber of parameters in the Tiedtke convection parameterization,

which have an influence on the net SW radiation, as sum-

marised by Mauritsen et al. (2012). In a series of test sim-

ulations optimized values of the following parameters have

been identified that lead to an almost balanced radiation bud-

get at the TOA: the relative convective cloud mass flux above

level of non-buoyancy (cmfctop= 0.35, default: 0.30, possi-

www.geosci-model-dev.net/9/1153/2016/ Geosci. Model Dev., 9, 1153–1200, 2016
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Table 2. Used computational resources and size of simulated data

Simulation Resolution Simulated years Wall clock Data sizea CPU hb Data sizea

[days year−1] [TByte year−1] [TByte]

RC1-base-07 T42L90MA 1950–2011 (62) 2.58 2.54 491 444 157.79

RC1-base-07a T42L90MA 1990–2010 (21) 2.58 2.55 166 597 53.52

RC1-base-08 T42L47MA 1950–2011 (62) 1.81 1.35 344 194 83.68

RC1-base-08a T42L47MA 1990–2010 (21) 1.82 1.35 117 448 28.37

RC1-aero-06c T42L90MA 1950–1998 (48) 3.84 3.74 573 680 182.62

RC1-aero-07c T42L90MA 1990–2011 (22) 3.84 3.74 259 666 82.56

RC1-aecl-01d T42L90MA 1958–1972 (14) 3.88 3.87 175 125 57.63

RC1-aecl-02d T42L90MA 1965–2011 (47) 3.88 3.87 561 085 182.62

RC1SD-base-07 T42L90MA 1979–2013 (35) 2.74 2.60 295 070 90.86

RC1SD-base-08 T42L47MA 1979–2013 (35) 1.96 1.34 210 639 48.24

RC1SD-base-09 T42L47MA 1979–2013 (35) 1.96 1.38 210 792 48.26

RC1SD-base-10 T42L90MA 1979–2013 (35) 2.70 2.60 290 347 90.97

RC1SD-base-10a T42L90MA 2000–2014 (15) 2.76 2.61 127 347 39.11

RC2-base-04 T42L90MA 1950–2099 (150) 2.57 2.55 1 183 680 382.23

RC2-base-05 T42L47MA 1950–2099 (150) 1.81 1.35 833 640 202.72

RC2-oce-01 T42L47MA/GR30L40 1950–2100 (151) 1.86 1.35 861 610 204.40

SUM 6 702 364 1935.58

a Including restart files (every 3 months and QTIMER triggered at the end of the scheduler wall-clock limit); b on 4 nodes of an IBM Power6 in SMTP mode (i.e. with

64 tasks/node); c temporal overlap of 06 with 07: January 1990–August 1998; d temporal overlap of 01 with 02: January 1965–October 1972.

ble range: 0.10–0.38) and the entrainment rate for deep con-

vection (entrpen= 0.5×10−4 m−1, default: 1.0×10−4 m−1,

possible range: 0.3–3.0×10−4 m−1). The values for the pos-

sible ranges of these two parameters have been tested by

Mauritsen et al. (2012). Both changes, increasing the param-

eter cmfctop and decreasing the parameter entrpen, increase

the net SW radiation at TOA, as the low-level clouds tend

to be less and thinner. Applying both altered parameters in

combination leads to an 4.3 Wm−2 increase of the net SW

radiation, and an 0.9 Wm−2 increase of the OLR at TOA,

which results in an almost balanced TOA radiation budget of

0.1 Wm−2. For the T42L90MA simulations, the default val-

ues have been used (see Table S2). For the simulation with

coupled ocean model, cloud parameters have also been mod-

ified (see Sect. 3.11 and Table S2).

3.2.2 QBO nudging

The vertical resolution of L47MA is not sufficient to generate

the quasi-biennial oscillation (QBO) of the zonal winds in the

lower equatorial stratosphere internally. Therefore, the zonal

winds near the Equator are relaxed (i.e. nudged with sub-

model QBO) towards a zonal mean field with a Gaussian pro-

file in the latitudinal direction, which has been derived from

the observed zonal mean zonal winds near the Equator, to get

the correct amplitude and phase of the observed QBO (see

Fig. S7). The nudging is applied in the altitude range between

10–90 hPa, with full nudging weights (i.e. 1.0) from 20 to

50 hPa, levelling off to 0.3 (0.2) at the upper (lower) edge of

the nudging region (Giorgetta and Bengtsson, 1999). The lat-

itudinal range is confined to 12.6◦ S–12.6◦ N, with full nudg-

ing at latitudes from 7◦ S–7◦ N. The relaxation timescale is

set to 10 days. Although the internal generation of a QBO is

a feature of the L90MA set-up of EMAC (Giorgetta et al.,

2002), the zonal winds near the Equator are slightly nudged

with a relaxation timescale of 58 days in all EMAC simula-

tions at T42L90MA resolution, to get the correct phasing of

the observed QBO.

3.2.3 Tuning of gravity waves

The strength of the momentum deposition in the stratosphere

and mesosphere by non-orographic gravity waves, thought

to be released at the launch level, which is chosen to be near

a pressure of 643 hPa, is controlled in submodel GWAVE by

the parameter rmscon. The parameter is used in the calcula-

tion of the cutoff wave number in each model level, control-

ling the wave number at which the wave breakdown begins

(Manzini et al., 1997). Decreasing rmscon leads to a larger

cutoff wave number and wave breaking occurs less often,

which has the effect of reducing the disturbance of the po-

lar vortex by deposited momentum flux in the stratosphere

and mesosphere. In earlier EMAC simulations at T42L90MA

resolution this parameter was chosen to be 0.96, which of-

ten has led to a relatively weak Antarctic polar vortex with

a warm bias in the stratosphere. The setting of rmscon to

0.92, for both T42L47MA and T42L90MA resolutions, was

found to be optimal for the strength of the Antarctic polar

vortex and was determined by a series of test simulations

with rmscon set to 0.90, 0.92, 0.96, and 0.98. As shown for
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Figure 1. Differences of the daily mean climatology (19 years) between a T42L47MA EMAC simulation with the gravity wave parameter

rmscon set to 0.92 and a simulation where it is set to 0.96; for the zonal mean zonal winds at 60◦ S in ms−1 (top); for the zonal mean

temperatures averaged from 71.2 to 87.9◦ S in K (bottom). The shading indicates the differences that are significant at the 95 % level,

estimated with a Student’s t test.

the daily mean climatology of the zonal wind at 60◦ S and

the temperatures for a polar cap average from 71.2–87.9◦ S

(Fig. 1), this choice of the parameter leads to a strengthened

Antarctic polar vortex and a colder stratosphere, especially

during August and September.

The effects on the polar vortex strength in the Northern

Hemisphere are more diverse, with alternating periods of an

intensified and attenuated polar vortex. This is also reflected

in the temperature changes of the polar cap average from 71.2

to 87.9◦ N. Most of these differences are, however, not statis-

tically significant and therefore not shown.

3.3 Sea surface temperatures and sea-ice

concentrations

SSTs and SICs for the RC1 simulations are prescribed fol-

lowing the global data set HadISST provided by the UK Met

Office Hadley Centre (available via http://www.metoffice.

gov.uk/hadobs/hadisst/; Rayner et al., 2003). The data set

is based on merged satellite and in situ observations. For

the RC1SD simulations, SSTs and SICs as given by ERA-

Interim were used for consistency with the nudging (see

Sect. 3.1). In the global mean, the HadISST and ERA-

Interim SSTs and SICs are almost identical (Fig. 11). The

distribution of SSTs is almost identical in ERA-Interim and

HadISST as well (Figs. S8 and S9), and SICs differ slightly

in the pattern by up to ±20 % (Fig. S12).

SSTs and SICs for simulations extending into the fu-

ture (i.e. RC2) are taken from simulations with the Hadley

Centre Global Environment Model version 2 - Earth Sys-

tem (HadGEM2-ES) Model (Collins et al., 2011; Martin

et al., 2011). These simulations were performed for the

CMIP5 multi-model data sets, and have been made avail-

able via the CMIP5 data archive at PCMDI (Program for

Climate Model Diagnosis and Intercomparison; available at

http://www-pcmdi.llnl.gov). For years up to 2005, the “his-

torical” simulation with HadGEM2-ES is used. Afterwards,

the “RCP6.0” simulation, which is initialized with the his-

torical simulation, is employed. Details of those simulations

are described by Jones et al. (2011). The simulation of SSTs

in HadGEM2 has been significantly improved over the pre-

decessor model HadGEM1, namely, the prominent cold bias

in HadGEM1 has been reduced in HadGEM2, and the repre-

sentation of ENSO has been improved (see also Figs. 11 and

S10; Martin et al., 2011). The sea-ice extent has been well

reproduced, remaining within 20 % of observed values dur-

ing most of the year (see also Figs. 11 and S13; Martin et al.,

2011), even though we find deviations of up to 80 % locally.

www.geosci-model-dev.net/9/1153/2016/ Geosci. Model Dev., 9, 1153–1200, 2016
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It would have been desirable to take future SSTs and SICs

from simulations with a climate model based on the same at-

mospheric base model as EMAC. However, the suitable sim-

ulations following RCP6.0 were not performed with the cor-

responding model (Max Planck Institute Earth system model,

MPI-ESM).

3.4 Transient spectrally resolved irradiances

To account for the solar variability, daily spectrally resolved

irradiances (SSI) from the Naval Research Laboratory Solar

Spectral Irradiance Model (NRLSSI) and the daily total solar

irradiance (TSI; Lean et al., 2005) have been used. Data have

been prepared as input for the radiation (RAD) sub-submodel

FUBRAD (Kunze et al., 2014), here applied with 55 spectral

bands, and for the photolysis calculations in the submodel

JVAL (see Sect. 3.5.1). Corresponding time series are shown

in Figs. S14 and S15. Note that the temporal evolution of the

photon fluxes derived for JVAL (not shown) directly follow

the shown spectral irradiances.

The future solar forcing, to be used for the projections,

has been prepared according to the solar forcing used for

CMIP5 simulation of HadGEM2-ES, where the SSTs and

SICs are taken from Jones et al. (2011; see also Sect. 3.3). It

consists of repetitions of an idealized solar cycle connected

to the observed time series in July 2008. This has been ap-

plied consistently for all projections with prescribed SSTs

(RC2-base) and for the simulations with interactively cou-

pled ocean model (RC2-oce-01). Here, we deviate from the

CCMI recommendations consisting of a sequence of the last

four solar cycles (20–23).

3.5 Atmospheric chemistry set-ups

3.5.1 Gas-phase chemistry and photolysis

For the chemical kinetics, we have used the submodel

MECCA (Module Efficiently Calculating the Chemistry of

the Atmosphere). Based on the code described by R. Sander

et al. (2011) and Jöckel et al. (2010), a revised version was

used for the simulations. All rate coefficients were updated to

the latest recommendations by JPL (S. P. Sander et al., 2011)

and other recent publications. Apart from these updated rate

coefficients, the product distributions were also updated for

a few reactions (e.g. C2H4 + O3). In addition, previously ne-

glected, chemically inert or ubiquitous products like CO2,

H2O and O2, have now been added in order to fix the mass

balance of some reactions. The most recent version of the

submodel JVAL was used to calculate photolysis rate coeffi-

cients (J values), as described by Sander et al. (2014). Spec-

trally resolved time series of photon fluxes have been used

consistently with the transient spectrally resolved irradiances

used for the radiation calculation (see Sect. 3.4).

For the base simulations (RC1-base, RC1SD-base, and

RC2-base; see Sect. 3 and Table 1), the chemical mecha-

nism was selected with the batch file CCMI-base-02.bat

(see Figs. S1 and S2). Briefly, the mechanism consid-

ers the basic gas-phase chemistry of ozone, methane, and

odd nitrogen. Alkanes and alkenes are included up to C4.

Alkynes and aromatics are not considered in our mech-

anism. Halogen chemistry includes bromine and chlorine

species. For the chemistry of isoprene plus a few selected

non-methane hydrocarbons (NMHCs), we used version 1 of

the Mainz Isoprene Mechanism (MIM1) based on Pöschl

et al. (2000). Heterogeneous reactions of dinitrogen pen-

toxide (N2O5), halogen nitrates (ClNO3, BrNO3), and hy-

pohalous acids (HOCl, HOBr) are also included. Since Hg

chemistry is not considered in this study, all Hg reactions

were switched off. In total, the mechanism is described by

310 reactions of 155 species. For the simulations with in-

teractive tropospheric aerosol (RC1-aero and RC1-aecl; see

Sect. 3.8 and Table 1) the mechanism selected with the

batch file CCMI-aero-02.bat (see Fig. S3) contains ad-

ditional sulfur reactions (5 additional species and 11 ad-

ditional reactions). A complete list of chemical reactions,

rate coefficients, and references can be found in the file ES-

CiMo_MECCA_mechanism.pdf in the Supplement.

3.5.2 Aqueous-phase chemistry and wet deposition

Aqueous-phase chemistry in clouds and wet deposition are

simulated with the help of the combined explicit scavenging

submodel SCAV (Tost et al., 2006a, 2007a, 2010), which cal-

culates the uptake/release to/from the gas and aqueous phase

and subsequent wet deposition. In contrast to more simplified

schemes, dissociation and aqueous-phase redox reactions are

also explicitly calculated, e.g. the sulfur(IV) to sulfur(VI) ox-

idation, such that the effective exchange between gas and liq-

uid phase is taken into account. The scheme also includes

nitric acid (HNO3) uptake on ice particles (except for polar

stratospheric cloud (PSC) particles) according to a Langmuir

uptake and subsequent denitrification by sedimenting ice par-

ticles. Wet deposition is calculated from the in-cloud (and

subsequent conversion of in-cloud to in-precipitation) and

in-precipitation chemical concentrations for both large-scale

and convective clouds. The chemical species and reactions,

which comprise the liquid-phase chemical mechanism, can

be found in the document ESCiMo_SCAV_mechanism.pdf,

which is part of the Supplement.

3.5.3 Stratospheric heterogeneous chemistry and PSCs

The submodel MSBM (Multi-phase Stratospheric Box

Model) simulates the number densities, mean radii, and

surface areas of the sulfuric acid aerosols and the differ-

ent polar stratospheric cloud (PSC) particles (supersaturated

ternary solution (STS), nitric acid trihydrate (NAT), and

ice). Further, the rate coefficients of all heterogeneous re-

actions (in the stratosphere) are calculated and used by the

submodel MECCA (merged with the corresponding tropo-
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spheric values by its sub-submodel MECCA_KHET; see also

Sect. 3.7.2).

For the formation of NAT, a kinetic growth NAT param-

eterization (Kirner et al., 2011; van den Broek et al., 2004)

is used with the assumption of a necessary supercooling of

3 K (Schlager and Arnold, 1990). Hence, homogeneous NAT

nucleation is also possible. The formation of STS is based on

Carslaw et al. (1995), the formation of ice particles is based

on the thermodynamic approach of Marti and Mauersberger

(1993). For the ice nucleation 20 % H2O supersaturation is

assumed to be necessary. A trapezoid scheme (Buchholz,

2005; Kerkweg et al., 2006a) is used for the sedimentation

of PSC particles.

Heterogeneous reaction rates and their temperature depen-

dencies on NAT are calculated according to the parameteri-

zation of Carslaw et al. (1997) based on the measurements

of Hanson and Ravishankara (1993). The heterogeneous re-

action rate coefficients on liquid particles are taken from

Hanson and Ravishankara (1994) and Hanson et al. (1994).

The uptake coefficients and reaction probabilities for ice par-

ticles are taken from S. P. Sander et al. (2011).

Here, stratospheric H2SO4 mixing ratios have been pre-

scribed with a time series provided by the CCMI database

(B. Luo, personal communication, 2013; ftp://iacftp.ethz.ch/

pub_read/luo/ccmi/) for the period 1960 to 2011, with some

artificial spikes removed in the years 1979–1982 (C. Brühl,

personal communication, 2014). The corresponding values

have been determined from data of several satellite instru-

ments (SAGE, SAGE II, CALIPSO, GOMOS). The resulting

time series is available as monthly zonal averages, 5◦ in lat-

itude and on 70 pressure levels between 530 and 3 hPa. For

the spin-up period (1950 to 1959), data from the year 1960

were used; for the years after 2011, data from the year 2011

were used.

3.5.4 Dry deposition and sedimentation

Dry deposition is an important sink for gas and aerosol-

phase species. Additionally, sedimentation leads to a signif-

icant loss of aerosol particles from the atmosphere. Within

the MESSy submodel DDEP (formerly named DRYDEP; see

Sect. 2; Kerkweg et al., 2006a), dry deposition velocities are

calculated following the big leaf approach as proposed by

Wesely (1989).

The sedimentation of aerosol particles depends among

others on the aerosol density and size. Aerosol particles are

sedimented using the simple upwind scheme of the MESSy

submodel SEDI (Kerkweg et al., 2006a).

In the simulations without prognostic aerosol chemical

and microphysical properties (i.e. all except for -aero- and

-aecl-), sedimentation fluxes are calculated by SEDI for the

residual aerosols originating from evaporation of clouds and

precipitation leading to particles. In these cases, particle size

distribution (mean radius= 5× 10−07 m, σ = 2.0) and parti-

cle density (ρ = 1841.0 kgm−3) are prescribed.

3.5.5 Initial conditions of trace gases

Initial conditions for January 1950 (start of the simula-

tion spin-up phase) have been generated by scaling sim-

ulated atmospheric mixing ratios from end of December

2000 of a previous EMAC simulation (Jöckel et al., 2010).

Short-lived reactive species, e.g. nitrogen oxides, nitric acid

(HNO3), and ozone, were initialized directly with the mixing

ratios from the year 2000. During the spin-up phase (1950–

1959) these species undergo processing and the mixing ra-

tios adjust on timescales of the order of several months.

Species with longer atmospheric lifetime were initialized

with scaled mixing ratios, as the adjustment during the sim-

ulation would require several years. Specifically, not only

the greenhouse gases carbon dioxide (CO2), nitrous oxide

(N2O), and methane (CH4), but also more reactive species,

such as carbon monoxide (CO) and the chlorofluorocar-

bons (CFCs), were initialized with mixing ratio distributions

equivalent to reduced mixing ratios scaled from year 2000

conditions. Initial tracer fields have been generated through

scaling with constant factors (see Table S1), which have been

derived from the temporal evolution of the corresponding pri-

mary emissions in the period 1950 to 2000.

3.6 Prescribed boundary conditions: gas-phase species

For long-lived species, which are relevant to atmospheric

chemistry and climate, pseudo-emissions are calculated by

the submodel TNUDGE (Kerkweg et al., 2006b). This ap-

proach is chosen, due to most models’ inability to correctly

simulate the corresponding trends, if direct emissions are

prescribed. This issue is in part related not only to uncer-

tainties in emission estimates themselves, but also in the dif-

ficulties to accurately simulate the species’ lifetimes. There-

fore, with TNUDGE the simulated mixing ratios in the low-

est model layer are relaxed by Newtonian relaxation to ob-

served or projected surface mixing ratios. Species that are

prescribed with TNUDGE are the greenhouse gases (CO2,

N2O and CH4), ozone depleting substances (CFCs: CFCl3,

CF2Cl2, CH3CCl3, CCl4; HCFCs: CH3Cl, CH3Br; Halons:

CF2ClBr, CF3Br), H2, and SF6 (Figs. E1–E6). In the RC1-

aero and RC1-aecl simulations COS has been prescribed as

well (Brühl et al., 2012, see Fig. E7).

For all species except COS, surface mixing ratios from

several globally distributed observation sites were taken

from the Advanced Global Atmospheric Gases Experi-

ment (AGAGE; http://agage.eas.gatech.edu) and the Na-

tional Oceanic and Atmospheric Administration/Earth Sys-

tem Research Laboratory (NOAA/ESRL, http://www.esrl.

noaa.gov). Where no observations were available, histori-

cal and projected mixing ratios of the greenhouse gases and

SF6 were taken from Meinshausen et al. (2011) and ex-

tended with the RCP6.0 scenario as proposed by Eyring et al.

(2013b). Mixing ratios of ozone depleting substances were
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based on the halogen scenario A1 from Table 5-A3 of the

World Meteorological Organisation (2011).

As the mixing ratios recommended by CCMI are only

available as global and annual averages, we conducted the

following approach: a climatological annual cycle and the

latitudinal distribution of each species are calculated from

the observed mixing ratios (see above) and applied to the pre-

scribed globally and annually averaged mixing ratios. Thus,

we compiled for each species a monthly and latitudinally

varying time series from 1950 to 2100. For H2 we extrapo-

lated observed mixing ratios linearly with a typical seasonal

cycle to get a time series from 1950 to 2100.

Initially, we planned to prescribe the recommended time

series only during the periods when no observed mixing ra-

tios were available. However, the comparison of observed

and recommended values (from CCMI) show partly signif-

icant differences (compare Figs. E1–E6), so we decided to

use for the RC2 simulations only the recommended mixing

ratios in order to apply consistent time series.

In the RC1 simulations, prescribed boundary conditions

of the last available year (typically 2010 or 2011) have been

used for later years as well, with one exception: in RC1SD-

base-10a (see Table 1 and Sect. 3.12.2) we used the RC2 set-

up for the years 2012 and later.

3.7 Prescribed aerosol

In the standard simulations (-base-), the properties of the

atmospheric aerosol (including volcanic aerosol) have been

prescribed to take the interactions with radiation and het-

erogeneous chemistry into account. Only in the simulations

RC1-aero and RC1-aecl (see Sect. 3.8) prognostic aerosol is

calculated with a modal scheme with four log-normal modes

separated into hydrophilic internally mixed and hydrophobic

externally mixed particles. Furthermore, in RC1-aecl the di-

rect feedback of the aerosol on both chemistry and the circu-

lation is explicitly taken into account. The prescribed aerosol

effects are separated into the aerosol surface area, represent-

ing chemical effects via heterogeneous chemistry, and the ra-

diative properties influencing the radiation budget.

3.7.1 Radiative properties

In the -base- simulations as well as in RC1-aero the radiative

properties of the aerosol, which are used in the radiation cal-

culation scheme of the model to estimate scattering and ab-

sorption by aerosol particles, have been calculated based on

climatologies, i.e. on off-line prescribed data. The AEROPT

submodel (for the calculation of aerosol optical properties)

has been extended to allow for, in addition to the individual

calculations, also the merging of two data sets for the optical

aerosol properties. In the model set-ups applied here, the val-

ues for the tropospheric aerosol were calculated on-line and

the values for the stratosphere have been determined from

satellite data (see below). These two data sets are merged us-

ing tropospheric values below 500 hPa, stratospheric values

above 300 hPa, and linearly interpolated values between 500

and 300 hPa.

For the troposphere the Tanre climatology (Tanre et al.,

1984), as used in the standard calculations for EMAC (and

one option of the extended AEROPT submodel), is applied to

determine the radiative effects of aerosol particles. This low-

resolution spectral aerosol climatology data use the actual

relative humidity to determine the total aerosol extinction,

single scattering albedo, and asymmetry factor, which are fed

into the radiation calculation.

For the stratosphere, the aerosol radiative properties, i.e.

the extinction, the single scattering albedo, and the asym-

metry factor, were provided by the CCMI database, consis-

tently derived from satellite observations as the stratospheric

H2SO4 mixing ratio (monthly zonal averages, 5◦ latitude

resolution; see Sect. 3.5.3). The corresponding values were

inter-/extrapolated to the radiation bands of the EMAC model

and provided with a 500 m grid spacing in the vertical. As for

H2SO4, data from the year 1960 have been used for the spin-

up period 1950 to 1959, and data from the year 2011 have

been used for years 2011–2100.

3.7.2 Surface area for heterogeneous chemistry

The aerosol surface area is required for the calculation of het-

erogeneous chemical reactions on atmospheric particles. The

most important reactions are the conversions of N2O5 into

HNO3 or aerosol nitrate. The required field for the aerosol

surface area is a merged data set of values for the troposphere

and the stratosphere.

The tropospheric aerosol surface-area concentration cli-

matology (monthly averages repeated every year) for the

base simulations has been derived from the LOW_AIR simu-

lation by Righi et al. (2013). This simulation was performed

with EMAC (MESSy version 1.4) coupled to the aerosol sub-

model MADE. It covers a period of 10 years (1996–2005) in

nudged mode, using the T42L19 resolution and a simplified

chemical mechanism, including basic tropospheric reactions

and the sulfur cycle. Emissions were based on the CMIP5

inventory for the year 2000 (Lamarque et al., 2010).

Based on these prescribed aerosol surface concentra-

tions, the sub-submodel MECCA_KHET calculates the re-

action coefficients for heterogeneous reactions in the tropo-

sphere and merges the latter with the corresponding strato-

spheric values as calculated by the submodel MSBM (see

Sect. 3.5.3).

3.8 Simulations with tropospheric aerosol and

implications for the radiation budget

In contrast to the base scenarios interactive prognostic

aerosol calculations are performed in the RC1-aero and RC1-

aecl simulations. To determine the physical and chemical

properties of the atmospheric aerosol, the EMAC aerosol
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submodel GMXE (Pringle et al., 2010; Tost and Pringle,

2012) has been applied. GMXE calculates the microphys-

ical properties of aerosols based on nucleation of sulfuric

acid, condensation, and phase partitioning of semi-volatile

inorganic components according to ISORROPIA-2 (Foun-

toukis and Nenes, 2007), coagulation, and a dynamical shift

between the size categories on 4 log-normal modes. Ad-

ditionally, aerosol particles are distinguished by their sol-

ubility, resulting in seven size categories (three externally

mixed hydrophobic, and four internally mixed hydrophilic

modes). The condensation routines and primary particle

emissions also determine the overall chemical composition

of the aerosol particles. Aerosol emissions as provided by

the CCMI database are mapped on-line to the model grid us-

ing the algorithm of Jöckel (2006) in the new submodel IM-

PORT (Kerkweg and Jöckel, 2015), vertically redistributed

via OFFEMIS (Kerkweg et al., 2006b), and assigned to the

corresponding aerosol species within GMXE. The physical

loss processes sedimentation, dry deposition, wet scaveng-

ing, and aerosol activation are considered in the correspond-

ing EMAC submodels (Tost et al., 2006a; Kerkweg et al.,

2006a).

The RC1-aero and RC1-aecl simulations consider the ef-

fect of phase partitioning of H2SO4, HNO3, HCl, and NH3,

as well as the interaction of these compounds with primary

aerosol species such as Na+, organic carbon (OC), black

carbon (BC), and dust, resulting in overall feedbacks on

the chemical composition of the atmosphere. Additionally,

the interactively simulated aerosol also provides a consis-

tent aerosol surface for the troposphere, which is used for the

above-mentioned heterogeneous chemistry on aerosol parti-

cles.

Note, that there is no feedback between the aerosol prop-

erties and the radiation in the RC1-aero scenario, such that

a configuration identical to the base scenarios is applied.

Nevertheless, the optical properties of the interactive aerosol

are determined diagnostically, i.e. not used in the radiation

calculation. Instead, this simulation focuses on the interac-

tions of the atmospheric aerosol and the gas-phase chemistry.

The RC1-aecl simulation, on the other hand, uses the in-

teractively calculated aerosol also to determine the optical

properties with the help of the AEROPT submodel (Pozzer

et al., 2012; Klingmüller et al., 2014), replacing the clima-

tology in the troposphere. Note that the extensions of Kling-

müller et al. (2014) have not been applied here and that for

the stratosphere, the CCMI data set is still used. Furthermore,

also interactive aerosol activation into cloud droplets is cal-

culated following the procedure described by Chang et al.

(2014). The activated aerosol number is subsequently used to

determine prognostic cloud droplet number concentrations in

the two moment cloud microphysics scheme of Lohmann and

Ferrachat (2010). Consequently, the whole large-scale cloud

and condensation scheme of EMAC has been replaced by this

alternative calculation. This has implications for cloud op-

tical properties (first indirect aerosol effect), cloud lifetime

(second indirect aerosol effect), rain and snow production

(other indirect aerosol effects), and scavenging, and hence

feedback on the chemical composition of the atmosphere.

Overall, this simulation provides a more physical representa-

tion of the processes in the lower atmosphere at the expense

of increased computational costs (see Table 2).

3.9 Prescribed emissions

Anthropogenic emissions are incorporated as prescribed

emission fluxes following the CCMI recommendations

(Eyring et al., 2013b). Two data sets are considered: one

data set is the MACCity3 (Granier et al., 2011; Diehl et al.,

2012; Lamarque et al., 2010) emission inventory, which is

applied for the RC1 simulations covering the period from

1950 to 2010. The second data set consists of a combination

of ACCMIP (Lamarque et al., 2010) and RCP 6.0 data (Fu-

jino et al., 2006). This data set is utilized for the long-term

(hindcast and projection) simulations (RC2). In the RC1 sim-

ulations, emission data of the year 1960 have been repeatedly

applied for the spin-up period (i.e. the simulated years 1950

to 1959); in RC2 the ACCMIP data have been applied from

1950 on.

Apart from the temporal coverage, the characteristic dif-

ference between both data sets is that MACCity considers

a seasonal (monthly resolved) cycle, whereas ACCMIP and

RCP 6.0 prescribe monthly values, which have been linearly

interpolated from annual emission fluxes. Seasonality is only

provided for biomass burning and ship emissions.

Emission data sets prepared for the simulations carried

out here combine the broad range of sectors provided by the

original underlying emission inventories into six categories,

namely land, road, agricultural waste burning, shipping, avi-

ation, and biomass burning. Moreover, the ground-based

emission fluxes are distributed vertically to characteristic

heights as described by Pozzer et al. (2009). For MACCity

the values of total NMVOCs (non-methane volatile organic

compounds) for the anthropogenic sector were re-calculated

from the corresponding species, since total NMVOCs were

not provided by the original data set.

In addition to the anthropogenic emissions, some non-

anthropogenic emissions such as NMHCs of biogenic ori-

gin, terrestrial dimethyl sulfide (DMS), volcanic SO2, NH3,

halocarbons, CH3I, and OC from secondary organic aerosol

(SOA, the latter only for the -aero- and -aecl-simulations)

have been prescribed, mostly based on climatologies. Further

details on the preprocessing steps for the emission data sets

(e.g. speciation of total NMVOCs into individual species, de-

scription of the composition of the individual sectors, and the

non-anthropogenic emissions) can be found in the document

ESCiMo_emissions.pdf, which is part of the Supplement.

3MACCity=Monitoring atmospheric composition & climate

(MACC)/City Zero (carbon) Energy (CityZEN)
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Figure 2. Annual total emissions of on-line calculated biogenic/soil

NOx emissions in Tg (N)a−1.

In the RC1 simulations, prescribed emissions of the last

available year (typically 2010 or 2011) have been used for

later years as well, with one exception: in RC1SD-base-10a

(see Table 1 and Sect. 3.12.2) we used the RC2 set-up for the

years 2012 and later.

3.10 On-line calculated emissions

3.10.1 Biogenic emissions

The emissions of NOx from soil and isoprene (C5H8) from

biogenic sources are calculated on-line using the submodel

ONEMIS. Besides prescribed fields, like the distribution of

cultivation and agriculture, the calculated NOx emissions de-

pend mainly on the soil temperature and the soil wetness.

The algorithm used is based on Yienger and Levy (1995)

as described by Ganzeveld et al. (2002). Estimates for the

soil biogenic emissions of NO are highly uncertain. Vinken

et al. (2014) compared results of different models and satel-

lite observation-based estimates. Most of the annual totals

are in the range of 4 to 15 Tg (N)a−1, not taking into account

the uncertainties reported in the individual studies.

An overview of the annual totals for the different sim-

ulations is shown in Fig. 2. In all simulations the emis-

sion totals are between 5.4 and 6.3 Tga−1 until the year

2010 and thus at the lower end of the estimated range from

Vinken et al. (2014). While the simulations of the RC2 series

are at the lower limit of this range, the simulations RC1SD-

base-07 and RC1SD-base-08 (i.e. with specified dynamics

including global mean temperature nudging) are at the top of

this range, as they show a slightly higher soil temperature

compared to the RC1SD-base-09/10. Until 2100 the RC2

–1

Figure 3. Annual total emissions of on-line calculated biogenic iso-

prene emissions in Tg (C)a−1.

simulations show an increase of the emissions up to about

6.8 Tg (N)a−1. This trend is due to the increasing soil tem-

perature, as the soil wetness does not show a trend and is es-

sentially in dynamic equilibrium 2 years after initialization.

The simulated isoprene emissions depend on prescribed

fields like the leaf area index and on-line calculated quantities

from the base model (surface temperature and the net solar

radiation). The algorithm is based on Guenther et al. (1995)

and implemented according to Ganzeveld et al. (2002). For

the biogenic isoprene emissions (see Fig. 3) we simulate

a range between 430 and 550 Tg (C)a−1. Similar as for the

biogenic NOx emissions the RC2 series is at the lower end

and the RC1SD simulations at the upper end of this range. As

the isoprene emissions are also dependent on the surface tem-

perature, we see a similar increase of the emissions for the

RC2 series up to about 650 Tg (C)a−1 until 2100. However,

Guenther et al. (1995) do not consider the CO2 inhibition ef-

fect on isoprene emissions, implying that the future isoprene

emissions (as projected in the RC2 simulations) may be too

strong.

Guenther et al. (2006) estimated the annual total emissions

of isoprene from biogenic origin to be 440 to 660 Tg (C)a−1

(see also Arneth et al., 2008, and references therein). All our

simulations are within this range, however, these total emis-

sions are further scaled with a factor of 0.6 to yield realistic

mixing ratios of isoprene in the boundary layer (see Jöckel

et al., 2006). A more detailed discussion on the isoprene scal-

ing factor is provided by Pozzer et al. (2007).
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Figure 4. Annual total emissions of lightning NOx in Tg (N)a−1.

3.10.2 Lightning NOx

The NOx emissions from lightning activity are calculated on-

line using the MESSy submodel LNOX (Tost et al., 2007b).

Here, we apply the parameterization by Grewe et al. (2001),

which links the flash frequency to the updraft velocity. The

flash frequency obtained by this parameterization is scaled

with 3.81459 for all simulations at L90MA and with 6.548

for all simulations at L47MA vertical resolution. As these

scaling factors are applied identically for all simulation sets

using the same vertical resolution, the total NOx emissions

by lightning differ between the simulations.

Estimates for the annual total emissions of NOx from

lightning are in the range of 2–8 Tg (N)a−1 (see Schumann

and Huntrieser, 2007). In Fig. 4 we see that most of the

simulations are within this range. The results cluster around

values between 4 and 5 Tg (N)a−1. In the simulations with

nudged global mean temperature (RC1SD-base-07/08), how-

ever, the total emissions are very low. The reason for this is

a significantly reduced number of convective events due to

a more stable temperature profile between the surface and

the tropopause (see Sect. 4.1). Despite the large difference

of the annual total lightning NOx emissions between the

RC1SD-base-10 and the RC1SD-base-07 simulations, the

corresponding geographical distributions remain similar (see

Figs. S25 and S26).

3.10.3 Ocean-to-atmosphere fluxes

Ocean-to-atmosphere fluxes of DMS, C5H8, and methanol

(CH3OH) are calculated by the AIRSEA submodel (Pozzer

et al., 2006). The ocean-to-atmosphere flux of a chemical

species is calculated from its concentrations in the upper-

–1

Figure 5. Simulated annual total emissions of DMS (in Tg (S)a−1)

from the ocean.

most ocean layer and the lowermost atmosphere layer fol-

lowing the two-layer model by Liss and Slater (1974). We

use the parameterization of Wanninkhof (1992) for the water

side exchange velocity in this study. The parameters needed

for the simulated species in AIRSEA correspond to the val-

ues suggested by Pozzer et al. (2006). Ocean salinity is taken

from the monthly climatology of the World Ocean Atlas

2001 (Boyer et al., 2002). Oceanic concentrations of DMS

are a monthly climatology from Lana et al. (2011). Isoprene

concentrations in the ocean are calculated using the param-

eterization of Broadgate et al. (1997), relating isoprene and

chlorophyll concentrations, here with chlorophyll prescribed

as a monthly climatology from the World Ocean Atlas 2001

(Conkright et al., 2002). For methanol, the atmosphere-to-

ocean flux is calculated assuming a constant undersaturation

of surface water methanol with respect to lowermost atmo-

spheric concentrations (Singh et al., 2003). The constant sat-

uration coefficient for methanol in surface water is 0.94.

The annual global ocean-to-atmosphere fluxes of DMS are

shown in Fig. 5; total oceanic emissions range between 25.5

and 31.5 Tg (S)a−1 until 2010, and up to 32.5 Tg (S)a−1 in

the projection simulations. These values are within the range

reported in the literature of 15 to 54 Tg (S)a−1 (Kettle and

Andreae, 2000, and references therein). The trend in DMS

emissions from the ocean follows the trend of SSTs (Fig. 11).

Therefore, compared to the -base- simulations, the increase

in emissions is lower in the coupled ocean simulation RC2-

oce-01, as the latter shows a lower increase of SSTs.

Oceanic emissions of isoprene are considered low com-

pared to biogenic emissions over land, mainly from tropi-

cal rainforests. Recent estimates for oceanic isoprene emis-

sions range from 0.089 (Erickson and Hernandez, 2013) to
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Figure 6. Simulated annual total emissions of isoprene (in

Tg (C)a−1) from the ocean.

0.11 Tg (C)a−1 (Palmer and Shaw, 2005), much lower than

previous estimates (Bonsang et al., 1992). Besides their low

contribution to global totals, oceanic isoprene emissions are

the main local isoprene source, in particular in the remote

ocean marine boundary layer. Calculated oceanic isoprene

emissions range from 0.063 to 0.074 Tg (C)a−1 (Fig. 6),

which is below the estimates found in literature, although

still within the range of uncertainties. This underestima-

tion is mostly due to the different chlorophyll distributions

(Conkright et al., 2002) used to estimate the isoprene concen-

tration in the surface water. The trend of isoprene emissions

follows the trend of SSTs (Fig. 11).

For methanol, the net oceanic sink is uncertain, ranging

from 0.1 to 21 Tg (C)a−1 (Heikes et al., 2002; Galbally and

Kirstine, 2002; Jacob et al., 2005), with a recent study by

Millet et al. (2008) resulting in an net oceanic methanol sink

of 6 Tg (C)a−1. The simulated oceanic uptake of methanol

ranges from 1.2 to 1.85 Tg (C)a−1 (Fig. 7). These values are

at the lower end of the range reported in earlier studies, which

mostly assumed a fixed undersaturation of oceanic seawa-

ter of 90 % (Jacob et al., 2005), whereas we assumed 94 %.

Furthermore, the net oceanic sink for methanol is still un-

certain and only one publication reporting measurements of

methanol concentrations in seawater exists (Williams et al.,

2004).

Differences in the ocean-to-atmosphere fluxes between

the free-running experiments and the experiments conducted

with specified dynamics are mainly caused by differences

in wind. The parameterization by Wanninkhof (1992) re-

lates the water side exchange velocity to the squared 10 m

wind speed. Further differences occur because of different

atmospheric composition and different atmospheric states

between the experiments. The differences in the ocean-to-

–1

Figure 7. Simulated annual total flux of CH3OH (in Tg (C)a−1)

between atmosphere and ocean. The negative sign indicates a net

uptake by the ocean.
–1

Figure 8. Simulated annual total emissions of Br from sea salt (in

Tg (Br)a−1).

atmosphere methanol flux between the -aero-/-aecl- experi-

ments and the -base- simulations are mainly caused by differ-

ent atmospheric methanol concentrations, due to the applied

constant undersaturation of surface water methanol.

We also simulate the release of Br from sea salt with sub-

model ONEMIS by scaling the mass flux of sea salt (accumu-

lation and coarse mode) with the fraction of bromide in sea

salt. Following Yang et al. (2005), we assume that 50 % of the

bromide is released to the gas phase (leading to an additional
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Figure 9. Simulated annual total emissions of POC (in Tg (C)a−1)

from the ocean.

factor of 0.5). The resulting time series of oceanic Br emis-

sions is shown in Fig. 8. The absence of a trend in sea-salt

emissions indicates that the 10 m wind speed over the ocean

does not change significantly on global and annual average.

This is consistent with the study by Pryor et al. (2006), re-

vealing that changes in wind speeds from general circulation

model (GCM) projections are small (≤ 15 %).

Based on ocean organic carbon content (derived from

SeaWiFS satellite data; see Fig. E57) an emission flux of

oceanic particulate organic carbon (POC) associated with

sea salt emissions in the accumulation mode is calcu-

lated in the -aero- and -aecl- simulations. This calculation

(in submodel ONEMIS) follows the parameterization de-

scribed by Burrows et al. (2013). The result is shown in

Fig. 9. The oceanic organic carbon source is highly uncer-

tain, with recent estimates of 8 Tg (C)a−1 (Spracklen et al.,

2008) and 75 Tg (C)a−1 (Roelofs, 2008). Our simulated an-

nual total oceanic emissions of POC range between 17.9

and 19.5 Tg (C)a−1, which is close to the first estimate of

14 Tg (C)a−1 for oceanic POC emissions by Duce (1978).

3.10.4 Dust emissions

Dust emissions are calculated on-line in the RC1-aero and

RC1-aecl simulations. We use the dust emission scheme of

Tegen et al. (see Figs. E58 and E59 for input parameters;

2002), which was implemented in the submodel ONEMIS

by Gläser et al. (2012). The wind stress threshold for dust

emissions is corrected by a factor of 0.86 in accordance with

Tegen et al. (2004). The on-line calculated total global dust

emissions are in the range between 600 and 1400 Tga−1

(Fig. 10), of which 1.5 to 2 % of the mass is emitted into the

Aitken mode and the rest into the coarse mode. Whereas the

–1

Figure 10. Annual total emissions of dust (in Tga−1) as calculated

in the RC1-aero and RC1-aecl simulations.

dust emissions in the RC1-aero simulations are at the lower

limit of the suggested range of 800 to 1700 Tga−1 (Tegen

et al., 2004), dust emissions of the RC1-aecl simulations are

within the suggested range.

As shown in Fig. 10, RC1-aero and RC1-aecl result in

different dust emissions, which are sensible to wind speed,

but also to surface dryness as a consequence of precipitation.

The aerosol–cloud interactions modify the wind speed via

boundary layer processes, which are induced by the differen-

tial heating caused by aerosol impacts on clouds. Addition-

ally, the circulation is slightly altered, such that higher mean

wind speed close to the surface is obtained. Additionally, pre-

cipitation (see Fig. 14) is slightly different in the RC1-aecl

simulation compared to the -base- case. For instance in Cen-

tral Africa RC1-aecl is too wet compared to data from the

Global Precipitation Climatology Project (GPCP), whereas

the -base- case is underestimating precipitation slightly.

The simulations with prescribed aerosol use the Tanre cli-

matology (Sect. 3.7.1), which explicitly accounts for min-

eral dust as one of the main components. Therefore, only the

spectral climatological distribution of dust particles is used

instead of emission fluxes.

3.11 Simulation with coupled ocean model

Simulation RC2-oce-01 with atmospheric chemistry and an

interactively coupled ocean model covers the period 1950–

2100. Based on the model set-up of the RC2-base-08 simu-

lation, the submodel MPIOM was additionally switched on,

together with the submodels A2O and HD. The dynamical

coupling between ocean and atmosphere via the A2O sub-

model was computed every 2 h.
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The simulation RC2-oce-01 with the coupled atmosphere–

ocean EMAC set-up was performed at T42L47MA resolu-

tion for the atmosphere and at GR30L40 resolution for the

ocean. This ocean model resolution corresponds to an av-

erage horizontal grid spacing of 3◦× 3◦, with 40 unevenly

spaced vertical levels. The rotated ocean model grid is shown

in Fig. S6.

For the RC2-oce-01 simulation and the prior spin-up pro-

cedure (see below), we applied the parameter set as opti-

mized by Kern (2013). In addition to the parameters de-

scribed in Sect. 3.2, cloud optical property-related parame-

ters have been modified (see also Table S2): the asymmetry

factor of ice clouds zasic = 0.91, the inhomogeneity factor

of ice clouds zinhomi = 0.80, and the inhomogeneity factor

of liquid clouds zinhoml = 0.70.

First, a sequence of two spin-up simulations has been con-

ducted to provide internally consistent initial conditions of

both, the ocean and the atmosphere component of the cou-

pled system, representative for the year 1950. In these sim-

ulations only the dynamical components of EMAC-MPIOM

were used, i.e. GHG mixing ratios (CO2, CH4, N2O, CFCs)

were prescribed according to the CCMI recommendation,

and no interactive atmospheric chemistry was calculated.

The first spin-up simulation (SP-oce-01) has been integrated

over 300 years to reach a thermal and radiative equilibrated

state between ocean and atmosphere for pre-industrial condi-

tions with a reasonable radiation budget at the TOA. For sim-

ulation SP-oce-01, required to equilibrate the system for pre-

industrial conditions, GHGs were prescribed representative

for the year 1750, i.e. without any trend. The applied values

are 0.28×10−3, 0.72×10−6, and 0.27×10−6 molmol−1 for

CO2, CH4, and N2O, respectively. The mixing ratios of the

CFCs were set to zero. The remaining radiation imbalance

in SP-oce-01 averaged over the last 30 years is 1.375 Wm−2

with a globally averaged surface temperature of 288.4 K.

This imbalance seems to be quite high; however, the corre-

sponding optimized parameter set is the result of a multitude

of sensitivity studies (Kern, 2013), yielding the optimum re-

sults in terms of climate and hydrological cycle for both, pre-

industrial and industrial conditions. At the end of the spin-up

period of SP-oce-01, no statistically significant trends (90 %

confidence level) of the surface temperature over the last

60 years were detectable.

From this equilibrated simulation SP-oce-01, a second

simulation SP-oce-02 was integrated from the year 1750 to

the year 1950 (i.e. 200 years), with increasing (annually re-

solved prescribed) GHGs as suggested by CCMI, which pass

over seamlessly into those used from 1950 onwards (see

Figs. E8–E10). For both spin-up simulations, SP-oce-01 and

SP-oce-02, O3 has been prescribed from a monthly climatol-

ogy, which has been derived from the years 1962–1972 of

a previous test simulation. Austin et al. (2012) showed with

a middle atmosphere chemistry climate model that “there are

only minor changes in simulated stratospheric temperature

and ozone prior to the year 1960”. Therefore, prescribing

Global average ice–free sea surface temperature (K)

Global sea–ice coverage (10    m  )12      2

Figure 11. Global annual average (ice-free) SSTs (in K, upper

panel) and SIC (in 1012m2, lower panel) of simulation RC2-oce-01

(1950–2099, black) compared to prescribed SSTs/SICs of simula-

tions RC1-base (HadISST, blue), RC2-base (HadGEM2-ES, red) as

described in Sect. 3.3, and of ERA-Interim (green) as applied in the

nudged simulations RC1SD-base.

an ozone climatology for the simulated spin-up period might

only introduce a small systematic error, as recently reported

by Nowack et al. (2015).

Finally, simulation RC2-oce-01 was started from the end

of SP-oce-02 (i.e. January 1950) with all additional submod-

els for atmospheric chemistry and diagnostics as in RC2-

base-08.

Figure 11 shows the simulated global average SSTs and

SICs of RC2-oce-01 compared to the corresponding time

series prescribed in the other simulations. The results from

RC2-oce-01 show an increase in temperature towards the

end of the 21st century (see also Fig. S16) with respect

to the 1980s, as is comparably projected by other numeri-

cal models (IPCC, 2013, Fig. AI.4), which show an ensem-

ble median (average) increase of 1.7 (2.1) K for the same

scenario (RCP6.0). Nevertheless, this increase (about 1.5 K,

Fig. 11, upper panel) is below what has been projected by

the HadGEM-ES model (about 2.5 K), which also implies

a slower decrease of the global sea-ice coverage (Fig. 11,

lower panel). Despite this smaller increase in temperature,

the results are still in line with the CMIP5 simulations

(Collins et al., 2013; IPCC, 2013), where the projected in-

crease is between 1.3 and 2.7 K. Moreover, the HadGEM

model is at the high end of the CMIP5 models in terms of

climate sensitivity (Andrews et al., 2012).

3.12 Glitches and unintended sensitivity studies

Due to the complexity of the model and the various model

set-ups, gremlins have had a large zone of attack to creep
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in (Pipitone and Easterbrook, 2012). Four issues have been

detected during the course of the simulations or right after

they had been finished. Given the large demand of resources

(see Table 2) and the advanced stage of the project, we were

not able to repeat all simulations. Moreover, we had to pon-

der between achieving time series, which are as consistent

as possible between the different simulations (despite their

shortcomings), or to end up with “broken” time series. Ex-

cept for the OC/BC emission issue detected in the RC1-aero

and RC1-aecl simulations (Sect. 3.12.3), we decided for con-

sistent time series, but performed additional sensitivity sim-

ulations (indicated by suffix a; see Table 1) to estimate the

effects. These issues, described in more detail below, need to

be taken into account in future analyses of the data.

3.12.1 Stratospheric aerosol optical properties

Due to a unit conversion error at data import, the extinction

of stratospheric aerosols (Sect. 3.7.1) was too low, by a factor

of approximately 500. Since the contribution of stratospheric

background aerosol to the radiative heating rate is minor, this

is not a big issue. It has been tested by calculating the multi-

annual monthly average radiative heating rates (1990–2010)

from simulations RC1-base-08, RC1-base-08a, RC1-base-

07, and RC1-base-07a. Above 100 hPa the range of differ-

ences between corresponding pairs is smaller than the inter-

annual standard deviation. But very important: the dynamical

effects of large volcanic eruptions (e.g. Mt. Pinatubo 1991;

El Chichón 1982) are essentially not represented in the sim-

ulations, except for the contribution to the tropospheric tem-

perature signal induced by the prescribed SSTs. The effect

of stratospheric volcanic aerosol on infrared radiative heat-

ing is weak, as shown by mostly insignificant differences be-

tween RC-base-07a and RC-base-07, and RC-base-08a and

RC-base-08, respectively (not shown).

The chemical effects (through heterogeneous chemistry,

Sect. 3.5.3), however, are included, since the prescribed

aerosol surface areas were treated correctly. This gives rise

to a very specific sensitivity study, which will be analysed

elsewhere.

3.12.2 Road traffic emissions

Due to a wrong namelist entry, the timing of the road traffic

emissions was unfortunately wrong: instead of updating the

monthly input fields every month, they have been updated

only every year, thus in 1950 emissions of January 1950

have been used, in 1951 the emissions of February 1950, etc.

The resulting wrong emission time series are displayed in

Figs. E19–E25 and E48–E54. All simulations are affected,

except for RC1SD-base-10a, which constitutes a sensitivity

simulation with both this and the stratospheric aerosol opti-

cal properties issue (Sect. 3.12.1) corrected. The corrections

cause an increase of the total ozone column of up to 2 DU,

mostly in the troposphere (see Fig. S17). It is expected that

the effect on ozone is largest close to the road traffic emission

regions. This has to be taken into account in future analyses.

3.12.3 Emissions of black carbon and organic carbon

Due to an incorrect unit conversion, the aerosol emissions

for BC and OC in RC1-aero-06 and RC1-aecl-01 are sub-

stantially underestimated in terms of mass. However, parti-

cle numbers are correctly emitted in the corresponding num-

ber tracers. This results in a substantial underestimation of

the aerosol radius, especially in the Aitken mode, and hence

aerosol extinction, absorption, and activation are also too

small in these simulations. As the feedbacks on chemically

reactive compounds (both gas phase and secondary inorganic

aerosol species) are only via the diffusion limitation, the con-

sequences for other chemical species are minor. The fine

mode aerosol distributions are, however, quite substantially

impacted by the errors in OC/BC. Since the total budgets of

many compounds are dominated by the larger size categories,

they, except for OC/BC, are hardly affected. Furthermore, the

impact on the aerosol optical properties of the small particles

is also lower than for larger particles, such that the impact

on radiation is also minor. For aerosol–cloud interactions (-

aecl-) the error is only in the very first phase of the simula-

tion leading to an underestimation of cloud droplets. As the

problem has been fixed before the dominant change in espe-

cially organic aerosol emissions, the effect of increased cloud

droplets from the year 1970 onwards is included in the result-

ing time series of RC1-aecl-02. As a consequence, detailed

analyses of OC/BC can safely be based on results from RC1-

aero-07 (from 1991 onwards) and RC1-aecl-02 (from 1966

onwards), respectively.

3.12.4 Heterogeneous ice nucleation

RC1-aecl-01 and RC1-aecl-02 overestimate the heteroge-

neous ice nucleation, due to an error in the calculation of ice

nucleus numbers. Even though this has implications for the

radiation budget influenced by cirrus clouds, the effect is mi-

nor (as shown by sensitivity tests after correcting the error).

4 Selected results

This section presents some first analyses, intended only to

serve as a first overall evaluation and consistency check of

the simulation results. Note that we apply in our analyses

observational data without considering uncertainties in mea-

surements, retrievals or uncertainties arising from representa-

tivity (e.g. Grewe et al., 2012) and without a detailed analysis

of statistical implications on the evaluation of the simulation

data (e.g. Grewe and Sausen, 2009). As often as possible,

we added information on inter-annual variability or sampled

data exactly as it is done for the observational data in order

to reduce some of the uncertainties in the evaluation. More

www.geosci-model-dev.net/9/1153/2016/ Geosci. Model Dev., 9, 1153–1200, 2016
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in-depth analyses of specific topics will follow and will be

published elsewhere.

4.1 Temperature profiles

For the assessment of the simulated air temperatures, we

compare the simulation results with ERA-Interim data (Dee

et al., 2011). We choose the period 2000–2010 for the eval-

uation, as it is covered by most of the simulations. Multi-

annual climatologies of zonally averaged temperature pro-

files for the period 2000–2010 are shown in Fig. 12. Fig-

ures 12 and S18 were produced with the ESMValTool (Righi

et al., 2015; Eyring et al., 2015). The data were first monthly

then annually averaged and the values of ERA-Interim were

subtracted from the simulation results. For the discussion, the

simulations with basically identical characteristics concern-

ing the temperature, can be put into three categories: First,

the nudged simulations including nudged global mean tem-

perature: RC1SD-base-07 and RC1SD-base-08. Second, the

nudged simulations (without global mean temperature nudg-

ing): RC1SD-base-09 and RC1SD-base-10. Third, the free-

running simulations: RC1-base-07, RC1-aecl-02, RC2-oce-

01, and RC2-base-04. Here, we only discuss the tempera-

ture biases, the effect on stratospheric water vapour is inves-

tigated elsewhere (Brinkop et al., 2015).

The simulations in the first category perform best, as ex-

pected, compared to ERA-Interim with minor differences of

mostly less than ±1 K. Furthermore, there are only minor

differences visible comparing the two different vertical res-

olutions of the simulations. For this category we only found

a small seasonal variation (Fig. S18). Solely, in the Northern

Hemisphere (NH) winter the simulations show a particular

warm bias in the north polar region.

The simulations in the second category show a cold bias,

which moreover has an obvious vertical structure. However,

the vertical patterns of the simulations in this category differ

significantly. The maximum of the cold bias in the RC1SD-

base-09 simulation is at around 70 hPa with more than±4 K.

Between 100 and 150 hPa this simulation shows a small bias

of ±1 to ±1.5 K. In the RC1SD-base-10 simulation, with a

higher vertical resolution, the maximum of the cold bias is lo-

cated lower, at about 200 hPa. The differences in the patterns

are an effect of the vertical resolution, but – although signifi-

cant – the nudging of the model has a much larger impact on

the temperature distribution (cf. RC1SD-base-10 with RC1-

base-07 in Fig. 12). Concerning the seasonal variations, all

simulations in this category show a similar behaviour, as the

temperature bias in December, January, and February is the

smallest in the Arctic, while it is overall mostly negative.

The simulations in the third category have a cold bias (of

up to 4.5 K) around the tropopause and show a warm bias (of

up to 4 K) in the Southern Hemisphere (SH) above 100 hPa,

as also analysed from previous EMAC simulations by Righi

et al. (2015).

In this region the bias is smallest in the RC2-oce-01 sim-

ulation, but the data show a larger cold bias below the trop-

ical (30◦ S–30◦ N) tropopause at around 250 hPa. The free-

running simulations show a more pronounced seasonal cycle

of the bias than the nudged simulations. The warm bias above

the tropopause around 60–30◦ S, which is also seen in the an-

nual climatology, is strongest in SH winter (more than 4 K).

Around this time there is also a strong cold bias (of up to 4 K)

in the tropics above the tropopause.

4.2 Hydrological cycle

To evaluate the results of the simulations with respect to the

representation of the hydrological cycle, we compare them

with global precipitation data from the GPCP. Additionally,

we include total precipitation from ERA-Interim reanalysis

(http://apps.ecmwf.int/datasets/data/interim-full-mnth/; Dee

et al., 2011) to bridge the gap between models and obser-

vations and to have a reference for the specified dynam-

ics simulations. GPCP version 2.2 (http://www.esrl.noaa.

gov/psd/data/gridded/data.gpcp.html; Adler et al., 2003) data

are available as monthly means for each month since Jan-

uary 1979 at 2.5◦× 2.5◦ horizontal resolution. This precipi-

tation data set combines satellite data with rain gauge mea-

surements, resulting in a data set with global coverage. As

Dee et al. (2011), we have used cumulated precipitation at

step 0 and step 12 of the reanalysis’ total precipitation. For

the simulations we used the “snapshots” of the precipitation

fluxes (large-scale and convective rain and snow fall) to cal-

culate the flux of total precipitation. The period 1990–2009

was chosen in order to be able to analyse as many of the

simulations as possible. First, we look at zonally averaged

precipitation in the years 1990–2009 as shown in Fig. 13.

All simulations, as well as ERA-Interim, overestimate pre-

cipitation in the tropics by 0.14 up to 0.84 mmday−1, de-

pending on the simulation (see Fig. 13). However, simu-

lations and reanalysis show a double-peak structure (with

varying intensity) near the Equator with a stronger peak (6

to 7.5 compared to 4 to 5 mmday−1) in the NH and min-

ima (about 2 mmday−1) of precipitation at approximately

25◦ N and 25◦ S as is also apparent in the GPCP data.

The maxima in the SH and NH storm tracks as shown by

GPCP (about 3 and 2.75 mmday−1) are reproduced by ERA-

Interim and all EMAC simulations (about 3 to 3.75 and 2.25

to 2.75 mmday−1). Apart from the tropics, the largest de-

viations can be found in the SH subtropics. Horizontal dis-

tributions of average precipitation deviations (in mmday−1)

throughout the years 1990–2009 are shown in Fig. 14.

We show deviations as model results minus GPCP exem-

plarily for six simulations (SD with global mean temperature

nudging, SD without mean temperature nudging, free run-

ning, free running with coupled aerosol, transient, and tran-

sient with coupled ocean). Simulation pairs which differ only

in vertical resolution show very similar precipitation pat-

terns. Moreover, precipitation patterns and zonal distribution

Geosci. Model Dev., 9, 1153–1200, 2016 www.geosci-model-dev.net/9/1153/2016/
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Air temperature [K] Annualclim Air temperature [K] – 95% c.l. Annualclim Air temperature [K] – 95% c.l. Annualclim

Air temperature [K] – 95% c.l. Annualclim

Air temperature [K] – 95% c.l. Annualclim

Air temperature [K] – 95% c.l. Annualclim

Air temperature [K] – 95% c.l. Annualclim Air temperature [K] – 95% c.l. Annualclim

Air temperature [K] – 95% c.l. Annualclim

Figure 12. Upper left panel: climatology of annual average total dry air temperature of ERA-Interim in K. The data were monthly and zonally

averaged for the period 2000–2010. Other panels: dry air temperature differences (in K) of the simulations compared to ERA-Interim data.

The differences, unless grey shaded, are significant on a 95 % confidence level according to a two-sided Welch’s test.
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Figure 13. (a) Zonal distribution of mean precipitation (mmday−1) for the time period 1990–2009 for all simulations covering this period

plus GPCP and ERA-Interim. (b) Deviation of the simulated zonal distribution of precipitation (mmday−1) shown as simulation results

minus GPCP and ERA-Interim minus GPCP. Colour-coding as in panel (a). Shading in both panels (a) and (b) is ± 1 σ of the annual

variation in GPCP data (1990–2009). The numbers in panel (b) list the corresponding global and tropical (30◦ S–30◦ N) average precipitation

(in mmday−1), respectively.

of precipitation from the simulations with corrected strato-

spheric aerosol (RC1-base-07a/08a; brown lines in Fig. 13)

and the simulation with tropospheric aerosol (RC-aero-07,

orange line) are very similar to the respective base cases

(RC1-base-07/08 and RC1-base-07, respectively; red lines).

Corresponding results of all other simulations and the

GPCP data are shown in Figs. S19 and S20. Nudged simu-

lations (RC1SD-base; see also cadet blue and blue lines in

Fig. 13) show slightly lower deviations from observations

than free-running simulations. In general, the free running

and the nudged simulations show the same large-scale de-

viation patterns from the observations. However, they differ

in strength and also regional differences can be found. The

largest absolute deviations (of more than ±3 mmday−1) are

found in the tropics, where rainfall is the strongest.

Overall the magnitude of deviations is comparable to un-

certainties that arise when changing convection parameteri-

zations within ECHAM5 (Tost et al., 2006b) and have also

been found in the analysis of the ECHAM5 model (Hage-

mann et al., 2006). The simulation which differs the most

is RC2-oce-01 (dashed purple line), i.e. the simulation with

coupled ocean. In particular in the tropics the simulation pro-

duces a double Inter Tropical Convergence Zone (ITCZ), a

typical feature of coupled models (Dai, 2006).

4.3 Deposition fluxes

In EMAC three processes establish the sink of trace gases

and aerosols to the surface: dry and wet deposition and (for

aerosols only) sedimentation. As an example for gas-phase

species, Fig. 15 displays the dry deposition flux of ozone.

Generally, all simulations show the same temporal evolution.

Starting in 1950 with deposition fluxes between approxi-

mately 700 to 730 Tga−1, the deposition fluxes increase up to

a maximum of 850 to 880 Tga−1 around the year 2000. This

is well within the range of other chemistry climate model re-

sults. For instance, Young et al. (2013) reported ozone de-

position fluxes in the range between 687 and 1360 Tga−1

for six models taking part in the Atmospheric Chemistry and

Climate Model Intercomparison Project (ACCMIP). The dry

deposition fluxes of the RC1-base and RC1SD-base simula-

tions stay in this range until the end of the simulations. In

the projection simulations (RC2) the ozone dry deposition

fluxes decrease from the year 2060 onward. The temporal

evolution of the deposition fluxes mirrors the temporal evo-

lution of the tropospheric ozone mixing ratio (not shown).

The ozone dry deposition fluxes are higher in the simula-

tions with lower vertical resolution (L47MA) compared to

L90MA. Striking are the two RC1SD simulations with “wave

zero” temperature nudging. They produce much lower ozone

dry deposition fluxes, which is a direct effect of the largely

reduced ozone mixing ratio (about 28 to 32 nmolmol−1 on

average) in the RC1SD-base-07/08 simulations compared to

other simulations. The lower ozone mixing ratio, in turn, is

caused mainly by the reduced lightning NOx and correspond-

ing ozone production (see Fig. 4 and Sect. 4.7). The wet de-

position fluxes of ozone exhibit the same features, but are 6

to 7 orders of magnitude smaller (see Fig. S21).

For the NOx wet deposition fluxes the difference between

L47MA and L90MA amounts to 20 % (see Fig. S22). In con-

trast to ozone, the NOx dry deposition fluxes peak earlier

(around 1990) and decrease slowly afterwards (see Fig. S22).

The deposition fluxes for nitrate (HNO3+N2O5+NO−3 )

and sulfate (H2SO4+HSO−4 +SO2−
4 ) are shown in Figs. 16

Geosci. Model Dev., 9, 1153–1200, 2016 www.geosci-model-dev.net/9/1153/2016/
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Figure 14. (a–f) Mean precipitation differences (mmday−1) for the 20-year period 1990–2009. The differences show the simulation results

minus GPCP data.

and 17, respectively. Fluxes of ammonium and sulfite

(species with sulfur in oxidation state +4, S(IV)) are shown

in Figs. S23 and S24, respectively. All RC1-base and

RC1SD-base simulations behave similarly. For nitrate all de-

position fluxes increase between 1950 and 2010, while the

sulfate deposition fluxes peak somewhere between 1970 and

2000. The deposition fluxes of the projection simulations are

lower in the 50s. For the dry deposition and the sedimenta-

tion fluxes the vertical resolution seems to make a noticeable

difference, while for the wet deposition the presence of an

interactive ocean has a larger impact on this sink. However,

the dominant sink for nitrate and non-sea salt (nss) sulfate is

wet deposition.

The largest differences can be found for the simulations in-

cluding aerosol chemistry. The nitrate dry deposition fluxes

and the sedimentation fluxes are larger, if aerosol chemistry

is included. This results from the size of the aerosol parti-

cles. While the radii are prognostically calculated in the sim-

ulations with aerosol chemistry, they are simply prescribed in

the other simulations. As the simulated coarse-mode radii are

greater than the prescribed ones (globally averaged coarse-

mode aerosol radii: 0.5 µm (prescribed); simulated: 0.759 µm

(RC1-aero-06), 0.751 µm (RC1-aero-07), 0.793 µm (RC1-

aecl-01), 0.782 µm (RC1-aecl-02)), the dry deposition and

sedimentation velocities are larger. Nevertheless, the wet de-

position fluxes are smaller if aerosol chemistry is taken into

account, yielding – summed over all deposition processes –

the same amount of deposited nitrate.

Although the radii in the simulations with additional

consideration of aerosol cloud interactions (-aecl-) are the

largest, the deposition fluxes for all three deposition pro-

cesses are slightly smaller. The largest effect is found on

aerosol sedimentation as the sedimentation velocity depends

the strongest on the particle radius (Kerkweg et al., 2006a).

For the sulfate deposition fluxes, the differences between

the -base- and the -aero-/-aecl- simulations are much larger

www.geosci-model-dev.net/9/1153/2016/ Geosci. Model Dev., 9, 1153–1200, 2016
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Figure 15. Globally integrated, annual dry deposition flux of ozone

in Tga−1.

than for nitrate. This originates in a different treatment of sul-

fate emissions in the simulations with aerosol chemistry. In

these simulations sea salt sulfate is taken into account as ad-

ditional sulfate source. To keep the sulfate depositions com-

parable, only nss-sulfate is depicted in Fig. 17 and discussed

below. The additional emissions, of course, influence the

properties of the aerosol particles and thus differences had

to be expected. Again, the nss-sulfate sedimentation fluxes

(Fig. 17, lower panel) noticeably depend on the vertical res-

olution. The dry deposition of all -base- simulations are very

similar except for the first 10 years, when the projection sim-

ulations are distinctively lower than the other simulations.

The largest differences occur for the simulations regarding

aerosol chemistry. The dry deposition fluxes are up to 50 %

smaller, the wet deposition fluxes up to 15 % smaller in -

aero- and -aecl- simulations, while the sedimentation flux is

up to 2 times larger. The overall sink of nss-sulfate due to the

three deposition processes is approximately 10 % smaller in

the simulations with aerosol chemistry.

The deposition fluxes for sulfur and oxidized and re-

duced nitrogen approximately balance the emissions for

present-day values. Compared to the ACCMIP evaluation

(Lamarque et al., 2013) for the year 2000 sulfur emissions

(especially DMS) are slightly enhanced, whereas NOx and

NH3 emissions are a bit lower. The ratio of dry deposition

to wet deposition is slightly lower in the present simulations

compared to the model mean determined by Lamarque et al.

(2013), with, e.g., 0.64 for oxidized sulfur compared to 0.72.

Similar differences are found for NHx and NOx,y , with ratios

of 0.5 compared to 0.66 and 0.63 to 0.72, respectively. This

is most likely due to the more explicit treatment of wet depo-

sition and cloud and precipitation chemistry in the EMAC

–1
–1

–1

Figure 16. Globally integrated annual nitrate dry deposition (up-

per), wet deposition (middle), and sedimentation (lower) fluxes in

Tg (N)a−1.
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–1
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Figure 17. Globally integrated annual non-sea salt sulfate dry depo-

sition (upper), wet deposition (middle), and sedimentation (lower)

fluxes in Tg (S)a−1.

model. Previous model versions have shown a reasonable

agreement with surface deposition in North America, Eu-

rope, East Asia, and Africa (Tost et al., 2007a).

4.4 Tropospheric oxidation capacity

The hydroxyl radical (OH) is the most important cleansing

oxidant in the atmosphere. However, variations in OH con-

centration are still difficult to quantify (Manning et al., 2005;

Patra et al., 2014; Ghosh et al., 2015). Among others, it re-

acts with CH4 largely determining its atmospheric lifetime.

Here, we present the simulated OH lifetime of atmospheric

CH4 at time t as a measure for the oxidising power of the

atmosphere, calculated according to Jöckel et al. (2006) as

τCH4+OH(t)= ∑
b∈B

Mb
CH4

(t)∑
b∈B

kbCH4+OH(t) · c
b
air(t) ·OHb(t) ·Mb

CH4
(t)
, (1)

where Mb
CH4

being the mass of methane, kbCH4+OH the reac-

tion rate of the reaction CH4+OH, cbair(t) the concentration

of air, and OHb(t) the mole fraction of OH in the grid box

b ∈ B, with B being the set of all grid boxes, which are be-

low the on-line calculated tropopause. The lifetime of atmo-

spheric methane is determined on the one hand by the abun-

dance of OH and on the other hand by temperature, since

the reaction rate of CH4+OH depends on temperature. Fig-

ure 18 shows the simulated tropospheric methane lifetimes

(towards OH). It is first calculated for every output time step

(i.e. 10-hourly), then averaged monthly, and then annually.

Overall the simulated lifetime increases between 1950 and

1975 and decreases until 2013. The RC2-base-04 and RC2-

base-05 simulations (orchid, solid, and dashed lines, respec-

tively) predict a similar decreasing behaviour for the future.

The simulation with the interactively coupled ocean model

RC2-oce-01 (purple) behaves similarly, but predicts at first

a small increase until 2070 before it decreases. The tropo-

spheric methane lifetime of all simulations varies around an

average value of 8.0± 0.6 years in the period of 2000–2004

(mean and standard deviation for all simulations covering

this period). In comparison to other methane lifetime (versus

OH) estimates, as by Voulgarakis et al. (2013), Jöckel et al.

(2006), von Kuhlmann (2001), Hein et al. (1997), and Righi

et al. (2015) (9.8± 1.6, 8.02, 8.7, 8.3, 7.9–9.1 years, respec-

tively), the results of the current study tend to be lower, but

mostly stay within the uncertainty range. Observation-based

estimates derived from methyl chloroform abundance are

generally longer than the model-based estimates (e.g. Prather

et al., 2012; Prinn et al., 2005, with 11.2± 1.3 and 10.2

(+0.9/−0.7) years, respectively). The wide range of lifetime

estimates is mainly caused by different methods of calcula-

tion and applied weighting (Lawrence et al., 2001), whereas

varying included vertical layers due to different tropopause

heights have a minor impact (see also O’Connor et al., 2014).

www.geosci-model-dev.net/9/1153/2016/ Geosci. Model Dev., 9, 1153–1200, 2016
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Figure 18. Annually averaged methane lifetime with respect to OH

of the different simulations calculated with Eq. (1).

The global mean temperature nudged RC1SD-base-08 sim-

ulation (royalblue dashed) predicts the shortest lifetime. The

nudging leads to a higher temperature in basically all verti-

cal layers compared to the simulations without global mean

temperature nudging (see Fig. S18), which accelerates the

oxidation of CH4 by OH and also has a positive impact on

the OH production by tropospheric ozone. This, however,

does not hold for RC1SD-base-07 (royalblue solid) com-

pared to RC1SD-base-09 (cadet blue dashed). The lifetime in

RC1SD-base-07 is longer than in RC1SD-base-09, although

average temperatures are higher. This results from a lower

OH mixing ratio in RC1SD-base-07, mainly in the tropical

upper tropopause, caused by a likewise smaller NOx produc-

tion from lightning activity (see Fig. 4). The longest lifetime

is simulated in RC1-aecl-02 (burlywood), which shows the

largest cold biases of all simulations.

Moreover, the variations in production of OH by tropo-

spheric ozone depend on various factors (Hofzumahaus et al.,

1992). However, a detailed discussion of these variations and

the impact on the methane lifetime is beyond the scope of

this study.

4.5 Chemistry in the upper troposphere and lower

stratosphere (UTLS): comparison with

CARIBIC data

In this section, we present results comparing model output

of the five nudged simulations (RC1SD-base) with measure-

ments of the project IAGOS-CARIBIC (In-service Aircraft

for a Global Observing System – Civil Aircraft for Regu-

lar Investigation of the Atmosphere Based on an Instrument

Container). As described by Brenninkmeijer et al. (2007), an

air freight container equipped with a number of instruments

is deployed on a civil aircraft on three to four intercontinen-

tal flights per month. The project has been ongoing in its sec-

ond phase since the year 2005 and the nudged simulations

cover the period until the end of 2013, so measurement data

of 348 flights are available for comparison with the model re-

sults. The 10-hourly model output was interpolated linearly

in latitude, longitude, logarithm of pressure and time to the

location of the aircraft by post-processing in order to work

with comparable data sets of measurement and model data.

We have chosen to compare the model results and mea-

surements in the form of seasonal climatologies, using

data of ozone, methane, carbon monoxide, and acetone

((CH3)2CO). CARIBIC flies to destinations worldwide; thus

in order to obtain meaningful climatologies with good data

coverage, latitude was limited to 35◦ N< latitude< 60◦ N.

Data were also limited by including only values where pres-

sure p < 280 hPa to exclude ascents and descents of the air-

craft.

Climatologies are presented with a vertical scale rela-

tive to the tropopause in kilometres. This information is

provided with the measurement data, and derived by lin-

ear interpolation to the aircraft position from ECMWF op-

erational analysis data (with a 1◦ grid resolution) as dis-

tance to the 3.5 PVU potential vorticity iso-surface (descrip-

tion available under http://www.knmi.nl/samenw/campaign_

support/CARIBIC/). For comparability, i.e. to have the same

tropopause definition, a similar calculation was applied to the

model data. It is essential to reference data to this height rel-

ative to the tropopause (HrelTP), as stratospheric and tropo-

spheric values then become separable when using the data

from an aircraft that flies at constant pressure.

Results of the data prepared in this way are presented

in Fig. 19 for O3, Fig. 20 for CO, Fig. 21 for CH4, and

Fig. 22 for acetone. The figures show the climatologies of

measurements of RC1SD-base-10a and their relative differ-

ences. In order to judge upon the magnitude of the rel-

ative differences, a plot of the absolute values of model

results minus measurements over the sum of the standard

deviation of measurements and model results is also dis-

played. To investigate the different model simulations, two

more climatologies are presented for each species: RC1SD-

base-07 minus RC1SD-base-08, differing in vertical reso-

lution, and RC1SD-base-07 minus RC1SD-base-10, differ-

ing in nudging of the global mean temperature. The results

of RC1SD-base-10 minus RC1SD-base-10a, using different

road emissions, are discussed, but shown only in the Sup-

plement (Figs. S27–S34). In addition, the Supplement in-

cludes the climatologies and relevant relative differences of

all nudged simulations (RC1SD-base). The subsequent para-

graphs present the results separately for each species.

In the case of O3 (Fig. 19), the model results compare well

with measurements (see Zahn et al., 2012, for instrument

specifics). The seasonal cycle is reproduced, but the lower

values in the troposphere are generally overestimated by up

to 40 % by the model. In the stratosphere, differences are

Geosci. Model Dev., 9, 1153–1200, 2016 www.geosci-model-dev.net/9/1153/2016/
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Figure 19. Comparison of O3 climatologies (35–60◦ N) based on data from the years 2005–2013. The first row shows climatologies of

CARIBIC measurements (left) and RC1SD-base-10a model data (right). The second row shows the relative differences of model data and

measurements (left), and the absolute values of model minus measurements over the sum of the standard deviation of measurements and

model (right). The bottom row shows the relative differences of RC1SD-base-07 and RC1SD-base-10, differing in nudging of global mean

temperatures (left), and the relative differences of RC1SD-base-07 and RC1SD-base-08, with different vertical resolutions (right). The

vertical axis shows the distance (in km) relative to the tropopause.

smaller, as the model underestimates measurements by 5 %,

reaching 30 % only in summer (June through September),

where the elevated ozone levels drop faster in the model than

indicated by measurements. This earlier drop is especially

noteworthy since it is larger in magnitude than the sum of

the standard deviation of model and measurements. Correct-

ing the road traffic emissions has only a minor influence on

the distribution of O3 (shown in Supplement). When nudging

global mean temperature, upper tropospheric O3 levels in-

crease by about 5 %, while stratospheric levels stay constant.

Increasing the vertical resolution on the other hand seems to

decrease the differences between the seasons, reducing O3

levels in spring and summer by about 10 % in the simula-

tions with 90 levels and increasing them by up to 5 % in the

www.geosci-model-dev.net/9/1153/2016/ Geosci. Model Dev., 9, 1153–1200, 2016
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Figure 20. As Fig. 19, but for CO.

second half of the year. When comparing results of this sec-

tion with those of Sect. 4.7, it is important to keep in mind

that the vertical scale is different and the selection of years is

also not the same.

For CO (Fig. 20; see Scharffe et al., 2012, for instrument

specifics), results mostly mirror those of O3. The seasonal

cycle is again reproduced by the model, showing a faster

drop in the troposphere in spring, which leads to an under-

estimation of about 35 %, i.e. the model values deviate more

than 1 standard deviation from the measurements. Strato-

spheric values are overestimated by about 10 % throughout

the year. Correcting the road traffic emissions has little influ-

ence on the results, values increase only by about 5 % in the

winter stratosphere (shown in Supplement). Nudging global

mean temperature has a small effect on CO: for the simula-

tions with 90 levels (RC1SD-base-07 and 10), stratospheric

springtime values (March to June) increase by about 8 %.

Contrary to O3, it is the increasing vertical resolution that

produces differences between stratosphere and troposphere

for CO, tropospheric values increasing by 5 % for the simu-

lations with 90 levels, and being reduced by up to 10 % in the

stratosphere.

Results for CH4 (Fig. 21; see Dyroff et al., 2014, for instru-

ment specifics) are similar. Relative differences in general
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Figure 21. As Fig. 19, but for CH4.

are very small for CH4, reaching only 5 %, if model results

are compared to measurements, and less than 1 % among the

different model simulations. The model results are in gen-

eral too low compared to measurements, with a relative dif-

ference of −0.5 % in the troposphere. The seasonal cycle is

correctly reproduced, with slightly overestimated early sum-

mer stratospheric values (May to July) by about 2 % and an

underestimation of about 4 % during the rest of the year; i.e.

these differences are almost all larger than the sum of model

and measurement standard deviation. As CH4 is prescribed

by Newtonian relaxation at the surface (see Sect. 3.6), the

values at the surface always correspond to measurements.

This explains why the differences to measurements, even in

the UTLS, are so small. Differences between the model sim-

ulations indicate how they differ in vertical transport or in

methane lifetime (see Sect. 4.4). CH4 is noticeably affected

by the road traffic emissions, decreasing the mean values by

about 1 % randomly, not showing any seasonality or stratifi-

cation (shown in Supplement). This is consistent with a de-

creased CH4 OH lifetime (Fig. 18). In contrast, a vertical de-

pendence becomes visible when taking the relative difference

of simulations with different vertical resolution, where val-

ues are up to 0.2 % in the troposphere and down to −0.5 %

in the stratosphere for model simulations with an increased
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Figure 22. As Fig. 19, but for acetone. The maximum of measured acetone values in summer is 1.5 nmolmol−1.

vertical resolution (see Sect. 4.4). Nudging of global mean

temperature has an interesting effect on the results. Values

are practically identical for all seasons, except for late win-

ter (January to March) tropospheric and summer (March to

October) stratospheric values, where nudging global mean

temperature leads to a relative decrease of up to 0.8 %.

Acetone (Fig. 22) shows the largest deviations, when

comparing model results with measurements (for instrument

specifics, see Neumaier et al., 2014). Tropospheric values are

underestimated by about 60 to 100 % and the seasonal cycle

of the measurement data is not visible. The seasonal cycle is,

however, reproduced when taking more model data from the

UTLS into account, including data from longitudes different

to those where CARIBIC flies (not shown). Again, the dif-

ference to measurements in the troposphere is larger than 1

standard deviation of model and measurements. The effect of

different model simulations is small compared to this differ-

ence. Correcting the road traffic emissions has no influence

on the results. Nudging global mean temperature increases

mean values by about 15 % in the stratosphere during late

winter and spring (January to May). Increasing the vertical

resolution also increases mean acetone values by 5 % in all

seasons and at all heights, except for summer and autumn

(May to November) stratospheric values, which are reduced
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by up to 10 %. These results are in line with the previous

evaluation of Pozzer et al. (2007, Table 8), who observed an

underestimation of ∼ 50–35 % for the same biogenic emis-

sions as used here (55 Tga−1), which account for ∼ 85 % of

the total emissions. These results indicate the need for con-

sidering oceanic emissions and photochemical production of

CH3COCH3 from monoterpenes, methylbutenol, and higher

iso-alkanes (Jacob et al., 2002; Khan et al., 2015), which

were not included. For example Pozzer et al. (2010) showed

that i-butane and i-pentane are responsible for the photo-

chemical production of 4.3 and 5.8 Tga−1 of CH3COCH3,

respectively.

By looking at the climatologies and their respective rel-

ative differences, it has become clear that there exist small

but systematic differences between the results of the different

model set-ups. The corrected road emissions have only a mi-

nor influence. Increasing the vertical resolution has effects

that change mean values by up to 10 %. Different strengths

of this influence can be noted for most species between the

stratosphere and the troposphere, for O3 also between differ-

ent seasons. The effect of nudging global mean temperature

is weaker, but it also shifts the seasonal cycle for all species

except O3, leading to relative differences of up to 10 % for

selected months. Overall, the model produces realistic values

for O3, but underestimates CH4, CO, and acetone, especially

in the troposphere.

4.6 Stratospheric dynamics

This section deals with the stratospheric dynamics, i.e. how

well the Brewer–Dobson circulation (BDC) is represented in

the simulations. The BDC is the large-scale stratospheric and

mesospheric transport circulation and determines amongst

others the distribution of chemical trace gases. It refers to

the large-scale residual circulation (RC) with upwelling in

the tropics and sinking motion at mid- and high latitudes

in the stratosphere and winter mesosphere. Moreover, quasi-

horizontal mixing processes contribute to the stratospheric

transport (Plumb, 2002). The RC is often expressed in terms

of the tropical upward mass flux (Ftrop), which corresponds

to the upward-directed mass transport in the tropics and is

balanced by the downward mass fluxes in the extratropics

of both hemispheres (Holton, 1990). The travel time of an

air parcel from the entry region at the tropical tropopause to

any region in the stratosphere is referred to as age of strato-

spheric air (AoA; Hall and Plumb, 1994). It is obtained from

linearly increasing surface emissions of an inert tracer, e.g.

sulfur hexafluoride (SF6), which are mostly used from obser-

vations. The AoA contains both components of the BDC, RC

and mixing processes.

Results on Ftrop and mean AoA are shown in the

Sect. 4.6.1 and 4.6.2. For evaluation of the model results

on Ftrop, the RC is calculated from ERA-Interim reanaly-

sis. Moreover, data of atmospheric SF6 concentrations from

July 2002 to April 2012 are available from the Michelson

Interferometer for Passive Atmospheric Sounding (MIPAS;

Fischer et al., 2008) instrument for the calculation of mean

AoA. Here, we use mean AoA from the MIPAS-ENVISAT

(Environmental Satellite) level 1b spectra version 5 (Haenel

et al., 2015), which is an update of Stiller et al. (2012).

4.6.1 The tropical upward mass flux

Figure 23 shows the time evolution of the annual mean trop-

ical upward mass flux from 1960 to 2100 from the simu-

lations in the lower (around 70 hPa, top), middle (around

10 hPa, middle), and upper (around 1 hPa, bottom) strato-

sphere. ERA-Interim data are included from 1979 to 2013.

All simulations show an increase in Ftrop with rising atmo-

spheric mixing ratios of GHGs, which is well known from

earlier CCM simulations (e.g. Butchart et al., 2010; Oberlän-

der et al., 2013). In the lower and middle stratosphere, the

model simulations are grouped with respect to their underly-

ing SSTs, whereas the vertical resolution has a minor influ-

ence on the performance of the RC. The RC2-simulations are

in better agreement with ERA-Interim data than the simula-

tions RC1-base-07/08 for the 1980s and 1990s. After 1995

the ERA-Interim data show a negative trend in the tropical

upward mass flux (at 70/74 hPa), which is not captured by

the model simulations. As shown by Seviour et al. (2012),

this negative trend contains large uncertainties, and does not

occur in other reanalysis systems or when using different es-

timates of upwelling in ERA-Interim (Abalos et al., 2015).

The nudged simulations, especially the simulations RC1SD-

base-09/10 without global mean temperature nudging, are

closer to ERA-Interim data than the RC1-simulations with-

out nudging. The strong influence of the SSTs in contrast to

the relatively small influence of the vertical resolution on the

tropical upward mass flux shows the strong SST effect on the

stratospheric mass transport, known from earlier studies (e.g.

Garny et al., 2011; Oberländer et al., 2013). The simulation

RC2-oce-01 with interactively coupled ocean (Sect. 3.11)

shows a smaller mass flux than the other simulations and

therefore fits best to ERA-Interim observations in the lower

and middle stratosphere.

In the upper stratosphere the vertical resolution plays an

increasing role. Ftrop is smaller in the simulations with 90

levels, which is in better agreement with ERA-Interim data.

As the nudging does not extend up to 1 hPa (Sect. 3.1), the

RC1SD-simulations do not perform better than the other sim-

ulations.

4.6.2 Mean age of stratospheric air

Figure 24 shows the mean age of stratospheric air from the

simulations (colours) and MIPAS data (black) averaged from

2002 to 2011 at around 50 hPa (20 km for MIPAS). The

simulation results group according to their vertical resolu-

tion: the simulations with L47 show a lower mean AoA at

all latitudes compared to the simulations with 90 levels, i.e.

www.geosci-model-dev.net/9/1153/2016/ Geosci. Model Dev., 9, 1153–1200, 2016
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Figure 23. Annual mean tropical upward mass flux (108 kgs−1) at

70/74 hPa (top), 9/10 hPa (middle), and 1 hPa (bottom). The simu-

lation results (colours) are compared to ERA-Interim data (black).

a stronger stratospheric transport. Results of the vertically

higher-resolved set-ups are in better agreement with the MI-

PAS observations, the L90 results fit well with a mean AoA

of around 3 years at mid-latitudes from MIPAS. Moreover,

the nudged simulations perform slightly better compared to

the MIPAS observations than the free-running simulations.

In the tropics and at higher latitudes mean AoA from MIPAS

is higher by about one-half and up to 2 years, respectively.

However, note that AoA derived from SF6 measurements by

MIPAS is affected by the mesospheric sink of SF6, which is

not represented in the model. In particular in high latitudes,

this effect can lead to an overestimation of AoA as derived

from SF6 of up to 2 years (Haenel et al., 2015). A lower mean

AoA and therefore a faster mass transport from model sim-

ulations compared to observations is well known from other

CCMs (SPARC, 2010). The simulation with coupled ocean

lies in between the vertically lower and higher-resolved sim-

ulations and thereby fits better with observations from MI-

PAS than the L47 simulations with prescribed – observed or

simulated – SSTs.

The time evolution of mean AoA from the model simula-

tions at different stratospheric heights and latitudinal bands is

depicted in Fig. 25. As MIPAS data are available for 10 years

only, it is included as a mean over the years 2002 to 2011

with the corresponding standard deviation. Consistent with

the rising trend in Ftrop (Sect. 4.6.1), all simulations show

a decrease in the mean AoA in the entire stratosphere. The

implied BDC increase is the strongest in the lower strato-

sphere at mid- and high latitudes.

The simulations with 90 levels show higher mean AoA at

all stratospheric layers and latitudinal bands and therefore fit

better with MIPAS observations. In the lower stratosphere

(Fig. 25, top), the nudged simulations RC1SD-base-07 and

Figure 24. Mean age of stratospheric air (years) at

47 hPa/48 hPa/20 km, 90◦ N–90◦ S, averaged for the years

2002 to 2011. The simulation results (colours) are compared to

MIPAS data (black).

RC1SD-base-10 are in best agreement with the observations,

especially at mid-latitudes. The simulation RC2-oce-01 lies

in between the L90 simulations and the vertically lower-

resolved simulations. In contrast to the findings for the RC

(Sect. 4.6.1), the vertical resolution is much more important

for the mean AoA than different SST data sets.

In the middle and upper stratosphere (Fig. 25, middle

and bottom) the differences between the simulations become

smaller and the mean AoA from observations gets consider-

ably larger than from the simulations. One reason is the dif-

ferent derivation of the mean AoA: for EMAC an inert syn-

thetic tracer is used, compared to the SF6 tracer for the ob-

servations. SF6 is inert in most parts of the stratosphere, but

photochemically destroyed in the mesosphere. The decent of

SF6-poor air from the mesosphere into the stratosphere raises

the calculated mean AoA (Stiller et al., 2012). This might

explain some of the deviations between EMAC and MIPAS

data in the upper stratosphere.

In summary, EMAC is able to simulate the Brewer–

Dobson circulation in terms of the tropical upward mass flux

and the mean age of stratospheric air in reasonable agreement

with ERA-Interim reanalysis data and MIPAS observations,

respectively. The simulations with 90 levels show a slower

transport in the lower stratosphere than the simulations with

the lower vertical resolution and are therefore in better agree-

ment with observations. The simulation RC2-oce-01 with

coupled ocean performs best concerning the lower and mid-

dle stratospheric RC. Mean AoA from this simulation lies in

between the resolutions L47 and L90.
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Figure 25. Time series of mean age of stratospheric air

(years) at 74 hPa/18 km (top), 9 hPa/10 hPa/30 km (middle), and

1 hPa/50 km (bottom), averaged over the tropics (30◦ S–30◦ N, left

column), mid-latitudes (30–60◦ N/S, middle column), and high lat-

itudes (60–90◦ N/S, right column) in the annual mean. The simula-

tion results (colours) are compared to MIPAS data (black), which

is averaged for the years 2002 to 2011 with the corresponding stan-

dard deviation.

4.7 Tropospheric and stratospheric ozone

In this section we evaluate the ozone distributions of the

simulations by comparing with observations. Data used as

references are BSTCO (Bodeker Scientific combined total

column ozone database; Bodeker et al., 2005) for total col-

umn ozone (TCO), AURA Microwave Limb Sounder/Ozone

Monitoring Instrument (MLS/OMI; Ziemke et al., 2011) for

tropospheric and stratospheric partial column ozone (TPCO,

SPCO), and the ozone sonde data set described by Tilmes

et al. (2012) for ozone profiles. Since the data sets and sim-

ulations cover different time periods, the analyses are per-

formed for the periods 1980–2011 and 2005–2011 for TCO

and the partial columns, respectively, except for the RC1-

aero-07 simulation which starts in 1990. The comparison

with the ozone sonde data is based on the period 1995 to

2011. Time series are shown for all years that are avail-

able. Simulation data and observations are regridded to the

coarsest common grid and represented on the same time axis

for each comparison. To test the statistical significance we

applied the paired t test, based on observation–simulation

pairs of values from each step of the respective time axes

(diagnostic-specific). The portrait diagrams for overall mean

bias metrics were adapted from the corresponding analyses

of Righi et al. (2015), and also share some routines with the

ESMValTool (Eyring et al., 2015).

Figure 26 provides an overview of the TCO bias in the

different simulations with respect to the BSTCO database,

globally and for different latitude bands. Bias and t test cal-

Total column ozone BIAS %

Figure 26. Mean total column ozone bias (in %) between the sim-

ulations and the reference data set BSTCO for different latitude

bands. The analyses are based on annual means of the years 1980 to

2011. The only exception is RC1-aero-07, which starts 1990.

culations are based on annual data, spatially averaged for the

corresponding latitude bands. Weighting considers grid cell

area and the number of days per month. The null hypothesis

of a zero bias can be rejected with a significance level of at

least 90 % for each tile (not shown). TCO is overestimated in

all simulations, and the bias generally increases from north

to south. Nudging reduces the bias, particularly in the SH

high latitudes. We also note that the simulations with global

mean temperature nudging (RC1SD-base-07, RC1SD-base-

08) agree better with BSTCO reference data than the corre-

sponding simulations without nudging wave zero of the tem-

perature field (RC1SD-base-10, RC1SD-base-09).

Figure 27 shows the climatological annual cycle of TCO

for the BSTCO observations (Fig. 27a) and the high-

resolution (L90MA) RC1 (Fig. 27b), RC2 (Fig. 27c) and

RC1SD (Fig. 27d) simulations as well as the simulation with

coupled ocean (RC2-oce-01, Fig. 27e). In general the sea-

sonal cycle and the spatial distribution are well reproduced in

the simulations with low TCO in the tropics and maximum

values in the NH high latitudes in winter and spring. The

minimum TCO values occur in SH spring in the SH polar

region, which is referred to as the ozone hole. However, the

temporal evolution of the ozone hole is not fully captured and

the minimum TCO values are mostly underestimated, i.e. too

much ozone is simulated. The differences (Fig. 27f–i) show

that in SH spring the positive bias related to the underestima-

tion of the ozone hole is the largest in the free-running RC1-

base-07 (Fig. 27f) and RC2-oce-01 (Fig. 27i) simulations,

whereas the smallest bias is found in the nudged simulations

(Fig. 27h). Further analysis showed that the underestimation

of the ozone hole in the free-running model simulation re-

sults from a too weak polar vortex, also apparent as too high

temperatures in SH high latitudes in Fig. 12. We found that

(planetary scale) wave fluxes in SH mid-latitudes are over-

estimated, and thus the polar vortex is too disturbed. The

www.geosci-model-dev.net/9/1153/2016/ Geosci. Model Dev., 9, 1153–1200, 2016
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Figure 27. Left column (a–e): climatological annual cycle of total column ozone (1980–2011, in DU) from BSTCO observations (a) and

selected simulations (RC1-base-07: b; RC2-base-04: c; RC1SD-base-07: d; RC2-oce-01: e). Middle column (f–i): difference between the

simulations and the BSTCO observations (in DU). Right column (j–l): difference (in DU) between the corresponding simulations with high

(b–e) and low vertical resolution (RC1-base-08: j; RC2-base-05: k; RC1SD-base-08: l). Statistical significance is tested with the paired t test.

Statistically significant changes on the 95 % confidence level are coloured.

overestimation of SH spring TCO in the free-running sim-

ulations is smallest in the RC2 simulations with prescribed

(simulated) SSTs/SICs (Fig. 27g). This is caused by a re-

duced (wave number 1) heat flux in the SH mid-latitudes

for simulated compared to observed SSTs, which leads to

a stronger polar vortex from August to October and lower

temperatures inside the vortex (not shown). This favours the

formation of polar stratospheric clouds and hence the hetero-

geneous ozone destruction.

The best agreement is found in the NH polar region in

winter and spring in the free-running L90MA simulations

(Fig. 27f, g). Comparing the L90MA and L47MA simu-

lations (Fig. 27j–l), we find higher TCO values (and thus

a larger bias) in the extra-tropics in the L47MA free-running

simulations, but smaller values (and thus a smaller bias) in

the nudged simulations.

The evolution of TCO between 1960 and 2100 is analysed

for different latitude bands (Fig. 28). Related to the increase

of ODSs during the 20th century and their regulation since

Geosci. Model Dev., 9, 1153–1200, 2016 www.geosci-model-dev.net/9/1153/2016/
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Figure 28. Time series of annual mean total column ozone (in DU) averaged over different latitude bands. BSTCO observations are shown

in black. Note the different scales for the different regions.

the 1990s (e.g. World Meteorological Organisation, 2014),

TCO shows a negative trend until the 2000s and a positive

trend in the 21st century in the extra-tropical regions. The de-

crease in the nudged simulations is comparable to the obser-

vations, whereas it is slower in the free-running simulations.

In the future, all simulations project an increase of extra-

tropical TCO with a return to 1980 levels until 2100. This

positive trend is consistent with earlier CCM studies (e.g.

SPARC, 2010; World Meteorological Organisation, 2014).

At SH mid- and high latitudes the return to 1980 levels is

delayed in the L90MA simulations compared to the L47MA

simulations, which is linked to the larger ozone loss in the

1990s (see Fig. S35). In the tropics, TCO slightly increases

in the first half of the 21st century in all RC2 simulations, and

decreases afterwards. This is related to a strengthening of the

BDC (see Sect. 4.6.1) during the 21st century, which leads

to an enhanced export of lower stratospheric ozone and thus

counteracts the chemically induced ozone increase. To better

understand the differences between the simulations and the

observations, the partial column ozone for the troposphere

and the stratosphere is analysed (Fig. 29). Regarding the free-

running L90MA RC1 simulation, a significant positive TCO

bias to the observations is found in the tropics and the SH.

The main contribution to the overestimation of TCO in the

tropics results from tropospheric ozone, while in the SH the

stratospheric ozone bias is larger. Including global mean tem-

perature in the nudging leads to a better agreement in the

tropical tropospheric ozone column and the SH stratospheric

ozone column, but enlarges the positive bias of stratospheric

ozone at NH mid-latitudes. For all simulations the mean bias

of tropospheric column ozone to the observation is shown in

Fig. 30. It is positive in all regions and simulations (see also

Righi et al., 2015). Taking into account the corrected road

traffic emissions (RC1SD-base-10a), the tropospheric partial

www.geosci-model-dev.net/9/1153/2016/ Geosci. Model Dev., 9, 1153–1200, 2016



1186 P. Jöckel et al.: ESCiMo with MESSy v. 2.51

Total column ozone

90
0

 N

60
0

 N

30
0

 N

30
0

 S

60
0

 S

90
0

 S

 EQ

90
0

 N

60
0

 N

30
0

 N

30
0

 S

60
0

 S

90
0

 S

 EQ

90
0

 N

60
0

 N

30
0

 N

30
0

 S

60
0

 S

90
0

 S

 EQ

Strato. partial column ozone

Tropo. partial column ozone

Figure 29. Left column: climatological annual mean of observed total column ozone (BSTCO, top) as well as stratospheric (middle) and

tropospheric (bottom) partial column ozone (AURA MLS/OMI), all in DU. The tropospheric and stratospheric partial columns are integrated

from the surface to the (on-line diagnosed, see text) tropopause and above the tropopause, respectively. The analyses cover the years 2005 to

2011. Middle column: differences between the RC1-base-07 simulation and the observations. Right column: same as middle column, but for

the RC1SD-base-07 simulation. Statistically significant changes on the 95 % confidence level are coloured.

column ozone increases by up to 3 % in the tropics and thus

also the bias is increased (not shown). Furthermore, the com-

parison of the two nudging methods shows again that the

mean bias is mostly reduced, if nudging of the global mean

temperature is included. For this, at least three effects are

potentially responsible: (1) as the temperature mean nudg-

ing increases overall the tropospheric temperature by up to

4 K (see Sect. 4.1), the temperature-dependent reaction ki-

netics is altered, pushing the chemistry into a new equilib-

rium state (e.g. Rasmussen et al., 2013). (2) The TPCO is re-

duced due to a decreased tropopause height, if mean temper-

ature is nudged. Indeed, the lower tropopause height (higher

tropopause pressure by up to +10 hPa) of RC1SD-base-

07 (with T nudging) compared to RC1SD-base-10 (with-

out T nudging) reduces the TPCO polewards of 40◦ lat-

itude by up to −0.4 DU (Fig. S38). Around 30◦ N/S, the

corresponding shift is up to −5 hPa increasing the TPCO

by up to 1.5 DU. The resulting global effect of this geo-

metrical tropopause shift (analysed for the 11-year period

2000 to 2010) is −0.1 DU. This effect is smaller, however,

than the influence of the tropopause definition: using the on-

line diagnosed tropopause (WMO definition equatorward of

30◦ latitude; iso-surface of 3.5 PVU potential vorticity pole-

ward of 30◦ latitude) of the submodel TROPOP instead of

the WMO tropopause partially compensates the high bias in

EMAC (poleward of 30◦ latitude: up to −4 DU; global aver-

age (2000–2010): −0.4 DU; see Fig. S39) when comparing

to MLS/OMI, where TPCO is based on the WMO tropopause

(but another temperature field). (3) The vertical temperature

gradient is reduced by the global mean temperature nudg-

ing, thus reducing the convective activity and with it the pro-

duction of NOx from lightning. Indeed, this is the case (see

Sect. 3.10.2 and Fig. 4): global mean temperature nudging

reduces the lightning NOx production from 4.5 Tg (N)a−1

(RC1SD-base-10) to 1.8 Tg (N)a−1 (RC1SD-base-07), i.e.

by 2.7 Tg (N)a−1. Using the results of Dahlmann et al. (2011,

their Fig. 3b) this explains a reduction of the ozone column

by about 5.4 DU (i.e. approximately 2 DU (Tg (N)a−1)−1).

Geosci. Model Dev., 9, 1153–1200, 2016 www.geosci-model-dev.net/9/1153/2016/
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Tropospheric column ozone BIAS %

Figure 30. Same as Fig. 26, but for the tropospheric partial col-

umn ozone. The reference data set is AURA MLS/OMI. All tiles

are based on annual mean values of the years 2005 to 2011 and sta-

tistically significant on the 90 % confidence level. Here, the WMO

tropopause definition has been used to be as consistent as possible

with the reference data set.

This is based on their finding that the average ozone produc-

tion efficiency by NOx from lightning is 5 times higher com-

pared to other NOx sources (except for aviation), and that

70 Tg (N)a−1 on average account for about 26.5 DU ozone

(i.e. 0.4 DU (Tg (N)a−1)−1 on average for all sources). This

dominating effect of the modified lightning NOx emissions

is further corroborated by the changed ozone production and

loss rates, which are altered by the global mean temperature

nudging mostly in the tropics, where the lightning NOx pro-

duction peaks (Fig. S40, Appendix A5).

Additional effects, which are however more difficult to

quantify, are direct effects on ozone by altered convection,

by altered mixing, or by modified stratosphere–troposphere

exchange.

In contrast to TCO, TPCO increases from 1960 to the

second half of the 21st century and slightly decreases af-

terwards (Fig. S36). This development is linked to the pre-

scribed emissions of tropospheric ozone precursors, in par-

ticular methane, according to the RCP6.0 scenario (Mein-

shausen et al., 2011).

Vertically resolved ozone is compared to ozone sonde data

(Tilmes et al., 2012). This analysis has been adapted from

Righi et al. (2015), also sharing some routines with the ES-

MValTool (Eyring et al., 2015). Simulations were sampled

at the ozone sonde locations, binned according to latitude

ranges, and averaged with equal weights. All simulation out-

put time steps (every 10 h) from 1995 to 2011 contributed to

the calculation of annual cycle data. Ozone sonde data are

from the same period, but the annual cycle is based on less

samples. Thus, data are co-located in space, but not necessar-

ily in time. Most tiles are statistically significant (90 % level),

but each t test is based on 12 data pairs only. Figure 31 shows

the mean bias and corresponding significance for different

pressure levels and latitude bands. The comparisons to ozone

sonde profile data generally confirm the findings for total

and partial column ozone discussed above: There is mostly

a high bias, increasing from north to south, with nudged sim-

ulations performing best. The annual cycle of ozone volume

mixing ratio is generally well reproduced in the stratosphere

(except in the SH polar region) as well as in the troposphere

at mid-latitudes (Fig. S37). Some differences occur, however,

in the upper troposphere in the tropics and at high latitudes.

At the 250 hPa level the bias is strongly negative in northern

and southern high latitudes, reversing to positive towards the

tropics. The contrast of the bias in 250 hPa and neighbour-

ing levels is largest in the free-running simulations, indicat-

ing a dynamical problem in the tropopause region. We also

note that the positive bias in the lower stratosphere (100 and

50 hPa) is considerably larger in the SH, which is linked to

the underestimated ozone hole.

5 Summary and conclusions

With the chemistry–climate model EMAC (version 2.51), we

performed a set of reference simulations as recommended

by the Chemistry–Climate Model Initiative (CCMI): hind-

cast simulations (1950–2011) without and with specified dy-

namics and combined hindcast and projection simulations

(1950–2100) based on the RCP6.0 scenario. We performed

simulations at T42 spectral resolution with two different ver-

tical resolutions, L90MA and L47MA with 90 and 47 hybrid

model layers between the surface and approximately 80 km

altitude (in the MA), respectively. One simulation (1950–

2100) in T42L47MA was performed with an interactively

coupled ocean model and set up based on an extensive spin-

up procedure. For the simulation with specified dynamics,

two different Newtonian relaxation (nudging) set-ups, both

using ERA-Interim reanalysis data, have been applied: either

excluding or including the global mean temperature. Addi-

tional hindcast simulations have been performed with addi-

tional on-line calculated tropospheric aerosol, with and with-

out coupling to the cloud processes. All simulations have

been equipped with comprehensive on-line diagnostics.

The manuscript describes briefly the EMAC model up-

dates and in detail the different model set-ups, including

some unintended deviations from the CCMI recommenda-

tions and corresponding sensitivity simulations. The descrip-

tion also includes the applied on-line diagnostics and an anal-

ysis of the on-line calculated source (primary emissions) and

sink (dry and wet deposition, aerosol sedimentation) terms,

and is meant as data set description and reference for further

analysis of the close to 2 PetaByte comprising data set.

First analyses presented here focus mainly on an inter-

comparison between the different simulations from a global

perspective. The precipitation patterns of all simulations are
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t

Figure 31. Same as Fig. 26, but for the ozone volume mixing ratio at 6 selected pressure levels (700, 500, 250, 100, 50, 10 hPa). The ozone

sonde data set (Tilmes et al., 2012) is used as reference. All tiles are based on the annual cycle, calculated from monthly data of the years

1995 to 2011. Results of a paired t test for the probability to reject the null hypothesis of equal means is shown on the right.

within the range of results of comparable models, and the

coupled atmosphere–ocean model shows the largest devi-

ations from observations. The temperature distributions in

the nudged mode (without global mean temperature nudg-

ing) show a tropospheric and stratospheric cold bias of up

to 4 K. In free-running mode with prescribed SSTs and in-

dependent of the vertical resolution, the cold bias is largest

in the UTLS and the tropical stratosphere, whereas a pro-

nounced warm bias appears in the SH extratropics-to-polar

transition region (50–70◦ S) above 140 hPa and in the SH po-

lar region between 140 and 30 hPa. This warm bias is signif-

icantly reduced in the simulation with coupled ocean model.

For the stratospheric mean age of air, the vertical resolu-

tion has the largest impact: the mean age of air is on average

by about 1 year younger in L47MA compared to L90MA in

the lower stratosphere at mid- and high latitudes. The nudged

simulations with 90 layers show the best agreement with ob-

servations. The simulation RC2-oce-01 performs best con-

cerning the lower and middle stratospheric residual circula-

tion. For the tropical upward mass flux the impact of the SST

is larger compared to that of the vertical resolution.

Independent of the model set-up and the model resolution,

all free-running simulations show a positive bias of the total

ozone column of up to 40 DU increasing from about 5 DU

over the north pole to the maximum values in the SH polar re-

gion. Nudging reduces this bias, in particular in the SH polar

region. Independent of the set-up, the ozone bias in the trop-

ics is mainly caused by overestimated tropospheric ozone,

whereas in the extratropics and polar regions the contribu-

tion of stratospheric ozone increases with latitude.

Including the global mean temperature in the nudging pro-

cedure increases the tropospheric temperature by up to 4 K

throughout the year and weakens the vertical gradient be-

tween the surface and the tropopause (which is also shifted).

This alters the convective activity with a large impact on the

production of NOx by lightning, at least in the applied up-

draft velocity-based scheme. With this, we confirm an earlier

rule of thumb estimate deriving an increase of about 2 DU

in tropospheric total ozone column per Tg (N)a−1 light-

ning NOx production. The reduced lightning NOx produc-

tion with global mean temperature nudging is partly com-

pensated by an increased NOx release from soil, due to in-

creased soil temperatures. Whereas NOx emissions from soil

increase with the global mean temperature nudging, the ef-

fect on isoprene emissions from the biosphere is less pro-

nounced. Emissions from the ocean (DMS, C5H8, Br), in

contrast, are reduced by nudging, and even more reduced,

if global mean temperature is nudged. The oceanic uptake of

CH3OH is likewise reduced with (global mean temperature)

nudging. Deposition fluxes through scavenging and dry de-

position of ozone, nitrate, NOx , and sulfite are reduced by the

global mean temperature nudging at both vertical resolutions,

other deposition fluxes are less affected. At least for ozone,

Geosci. Model Dev., 9, 1153–1200, 2016 www.geosci-model-dev.net/9/1153/2016/
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nitrate, and NOx this is consistent to the likewise-reduced

lightning NOx production and the reduced O3 burden.

The increased tropospheric temperature through the global

mean temperature nudging slightly reduces the tropospheric

methane lifetime towards OH, this effect is larger in simula-

tions with the coarser vertical resolution (L47MA). Overall,

i.e. averaged over all simulations, the simulated OH lifetime

of methane is 8.0± 0.6 years in the period 2000–2004. This

is potentially too short, indicated by the consistently under-

estimated CH4 mixing ratios in the NH UTLS, i.e. compared

to observations at CARIBIC flight levels. Note that CH4 has

been prescribed (based on observations) by Newtonian relax-

ation at the lower boundary.

The simulation results will be made publicly available (see

next section) for further in-depth analyses. For intercompar-

ison with observations, we recommend to use the results

of the nudged simulation with all corrections, i.e. RC1SD-

base-10a. The results of RC1SD-base-07 and RC1SD-base-

08 should be used with caution, due to the large impact of

the global mean temperature nudging, for which no specific

parameter re-optimization for the radiation balance has been

undertaken yet. Such an optimization will certainly alter the

hydrological cycle, i.e. clouds and convection, and with it

also the lightning NOx production. Studies for which the

specified dynamics (nudging) is not desired, e.g. on trends

and frequency distributions, are best based on the results

of the free-running simulations with 90-level discretization.

Nevertheless, any intercomparison to those with 47 levels is

also desirable, in particular since the simulation with cou-

pled ocean model was performed with 47 levels in the at-

mosphere. Last, but not least, for further analyses on aerosol

and aerosol–cloud effects, only RC1-aero-07 (from 1991 on-

wards) and RC1-aecl-02 (from 1966 onwards) should be

used, respectively.

Code and data availability

The Modular Earth Submodel System (MESSy) is continu-

ously further developed and applied by a consortium of in-

stitutions. The usage of MESSy and access to the source

code is licensed to all affiliates of institutions, which are

members of the MESSy Consortium. Institutions can be-

come a member of the MESSy Consortium by signing the

MESSy Memorandum of Understanding. More information

can be found on the MESSy Consortium Web-site (http:

//www.messy-interface.org).

The data of the simulations described above will be made

available in the Climate and Environmental Retrieval and

Archive (CERA) database at the German Climate Com-

puting Centre (DKRZ; http://cera-www.dkrz.de/WDCC/ui/

Index.jsp). The corresponding digital object identifiers (doi)

will be published on the MESSy consortium web-page (http:

//www.messy-interface.org). A subset of the data of those

simulations covering consistently the requested time periods

(1960–2010 for RC1, and 1960–2099 for RC2) will be sub-

mitted to the BADC database for the CCMI project.

www.geosci-model-dev.net/9/1153/2016/ Geosci. Model Dev., 9, 1153–1200, 2016
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Appendix A: Additional on-line diagnostics

A1 TBUDGET

This submodel analyses the contribution of different produc-

tion cycles (e.g. associated with different source gases) to

selected tracers (type-2 family, see Jöckel et al., 2008). This

is done by defining additional diagnostic tracers to store cor-

responding production and loss rates. These are specified by

namelist entries together with the total tracer and the loss of

the total tracer. For a tracer C, a component-tracer Ci is cal-

culated by

d

dt
(Ci)= Pi +L×

(
Ci

C

)
, (A1)

where L is the destruction rate of C and Pi the produc-

tion of tracer Ci . A numerical correction (scaling) of Ci
to ensure that the sum (over i) of all Ci equals the total

tracer (family) C is applied automatically. In the simulations

this has been applied to distinguish short- from long-lived

halogenated species to assess the influence of VSLS (very

short-lived species) on the ozone budget; see Figs. S40–

S43: Type-2 tracer families Bry and Cly are defined in

the CTRL_FAMILY namelist of submodel TRACER, sub-

model SCALC (Kern, 2013) is used to sum the loss rates

LossBr and LossCl from their individual tendencies cal-

culated by SCAV, and in the CPL namelist of TBUD-

GET the corresponding diagnostic tracers BrS, BrL, ClS,

and ClL for short (S)- and long (L)-lived halogen com-

pounds, respectively, are defined for integration according to

Eq. (A1). In addition, tracers for reactive halogen production

from L- and S-lived halogenated compounds, respectively,

have been defined within the MECCA chemical mechanism

(see ESCiMo_MECCA_mechanism.pdf in the Supplement):

ProdLBr, ProdSBr, ProdLCl, ProdLBr. Note that these diag-

nostic tracers contain the accumulated (over time) rates.

A2 O3ORIG

The ozone origin diagnostics of Grewe (2006) has been

applied to define 14 diagnostic ozone tracers (O3ONHTS,

O3OTRTS, O3OSHTS, O3ONPLS, O3ONMLS, O3OTRLS,

O3OTRMS, O3OSMLS, O3OSPLS, O3ONPUS,

O3ONMUS, O3OTRUS, O3OSMUS, O3OSPUS). Each

ozone tracer field is produced only in one specific region:

NHTS (Northern Hemisphere troposphere), TRTS (tropical

troposphere), SHTS (Southern Hemisphere troposphere),

NPLS (northern polar lower stratosphere), NMLS (north-

ern mid-latitudes lower stratosphere), TRLS (tropical

lower stratosphere), TRMS (tropical middle stratosphere),

SMLS (southern mid-latitudes lower stratosphere), SPLS

(southern polar lower stratosphere), NPUS (northern polar

upper stratosphere), NMUS (northern mid-latitudes upper

stratosphere), TRUS (tropical upper stratosphere), SMUS

(southern mid-latitudes upper stratosphere), and SPUS

(southern polar upper stratosphere). The sum of all 14

ozone origin tracers is the full ozone field. The definition of

the regions in terms of height and latitude is illustrated in

Fig. S45.

A3 CONTRAIL

The submodel CONTRAIL diagnoses the potential contrail

coverage (variable potcov), describing the fractional area

in which contrails can form and persist according to the

Schmidt–Appleman criterion (Schumann, 1996). In addition,

the potential contrail cirrus coverage (variable b_cc) is diag-

nosed, taking into account regions where contrails can persist

once they have been formed. Both variables were calculated

according to Burkhardt et al. (2008) and were output (chan-

nel “contrail_gp”) as 10-hourly global snapshots.

A4 Specific sampling of model data

With the submodel SCOUT (Selectable Column OUTput;

Jöckel et al., 2010, Sect. 5.2) hourly output of vertical profiles

(i.e. the model column) has been sampled during all simula-

tions at 49 stations of the NOAA/ESRL network, 16 stations

of the SHADOZ network, and 11 stations of the WOUDC.

The complete namelist for reference is shown in Fig. S47.

With the submodel SORBIT (Sampling along ORBITs,

Jöckel et al., 2010, Sect. 5.4) data along sun-synchronous or-

bits of eight different satellites have been output during all

simulations. The complete namelist for reference is shown in

Fig. S48.

With the submodel VISO (iso-surfaces and maps; Jöckel

et al., 2010, Sect. 5.1) isentropes of 340, 380, and 420 K

and iso-surfaces of 2, 3, and 4 PVU potential vorticity (PV)

are defined. On the PV iso-surfaces, pressure, potential tem-

perature, and temperature are mapped; pressure and PV are

mapped on the isentropes. Further temperature, geopoten-

tial, and potential temperature are mapped on the tropopause

(TP), and temperature and pressure on the planetary bound-

ary layer height (PBLH). See Fig. S46 for the complete

namelist. PBLH and TP are calculated by the submodel

TROPOP, TP is defined according to the WMO equatorward

of 30◦ latitude, and as 3.5 PVU iso-surface poleward. All cor-

responding surfaces and maps are output as 10-hourly snap-

shots.

With the submodel S4D (sampling in 4 dimensions; Jöckel

et al., 2010, Sect. 5.3) data along (available) tracks of sev-

eral research platforms have been sampled during the simula-

tions with specified dynamics (RC1SD-base). The complete

namelist for reference is shown in Fig. S48.

In addition to the 10-hourly global model output, 6-hourly

global snapshots have been written (channel “6h”) for the

horizontal wind velocity components (um1, vm1), temper-

ature (tm1), specific humidity (qm1), the vertical velocity

(etadot, vervel), and the geopotential (geopot).
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The submodel SATSIMS was used for the on-line calcu-

lation of cloud optical properties comparable to the Interna-

tional Satellite Cloud Climatology Project (ISCCP) data set

(Rossow and Schiffer, 1999) with the ISCCP cloud simulator

(Klein and Jakob, 1999; Webb et al., 2001). This uses cloud

optical thickness and cloud top pressure to derive cloud types

according to the ISCCP classification.

Monthly mean values (on-line calculated, channel “mm”)

and corresponding standard deviations have been output (in

addition) for the tracers CO2, O3, CH4, N2O, H2O, CF2Cl2,

CFCl3, HNO3, HNO3_nat∗, OH, O1D, Cl, and the photol-

ysis rate JCH4. Note that this additional output can directly

be used to set-up subsequent EMAC simulations in quasi-

chemistry-transport model (QCTM) mode (Deckert et al.,

2011).

A5 Additional diagnostic tracers

The submodel DRADON (diagnostic Radon, Jöckel et al.,

2010, Sect. 6.1) has been used to simulate 222Rn and 210Pb

with a constant 222Rn source of 10 000 atomsm−2 s−1 over

ice-free land (zero elsewhere). Aerosol properties (σ = 2, ra-

dius= 5× 10−7 m) have been assigned to 210Pb by the sub-

model PTRAC (via a dummy AEROSOL tracer), so that the

loss processes (submodels SCAV, SEDI and DDEP) are sim-

ulated realistically.

For additional analyses of the ozone budget, accumu-

lated ozone production and loss rates (diagnostic tracers)

have been defined within the MECCA chemical mechanism

(ProdO3, LossO3, redirected for output to channel “o3orig”),

as well as contributions by individual reactants or reac-

tant families: LossO3Br, LossO3Cl, LossO3H, LossO3N,

LossO3N2, LossO3O, LossO3R, LossO3Hn, LossO3Nn,

LossO3Cln (channel “tr_o3_bud”); LossHO2, LossO1D,

LossOH (channel “tr_o3_tbud”). All were output as 10-

hourly global snapshots. Note that these diagnostic tracers

contain the accumulated (over time) rates.

An additional set of tracers, (CFCl3)c, (CF2Cl2)c,

(CH3CCl3)c, (N2O)c, (CF2ClBr)c, and (CF3Br)c, have

been included in the MECCA chemical mechanism: they

were relaxed (with submodel TNUDGE, relaxation time

constant τ = 3 h) towards a constant mixing ratio of

100 pmolmol−1 at the surface and reacted in the same

way as the corresponding species without index c (see ES-

CiMo_MECCA_mechanism.pdf in the Supplement).

As proposed by CCMI (Eyring et al., 2013b), several addi-

tional diagnostic tracers were included as listed in Table A1.
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Table A1. Additional diagnostic tracers. Acronyms in parentheses denote the submodels simulating the indicated processes. Corresponding

data files are listed in Table E1.

Tracer Defining Description

submodel

SF6 PTRACa Newtonian relaxation (TNUDGE)c towards time series based on observations (see Fig. E6)

AOA PTRAC Age of air tracer; Newtonian relaxation (TNUDGE)c at lowest model layer towards linearly in time increasing

mixing ratio

SF6_AOA PTRAC Age of air tracer; Newtonian relaxation (TNUDGE)c at lowest model layer towards a latitude dependent, lin-

early in time increasing mixing ratio

SF6_AOAc PTRAC Age of air tracer; Newtonian relaxation (TNUDGE)c at lowest model layer towards a linearly in time increasing

mixing ratio

SF6_CCMIe PTRAC Emissions (OFFEMIS) according to EDGAR v4.2 database (see Fig. E55)

SO2tf,g PTRAC anthropogenic emissions (OFFEMIS) as SO2, wet removal (SCAV) as SO2

NH_05d TREXPb Newtonian relaxation (TNUDGE)j towards surface layer mixing ratio (100 nmolmol−1) over 30–50◦ N, 5-day

exponential decay (e-folding time τ = 4.32× 10−5 s)

NH_50d TREXP As NH_05, but 50-day exponential decay

NH50Wd,g TREXP As NH_50, but additional wet removal (SCAV) as HNO3

AOA_NHd TREXP Newtonian relaxation (TNUDGE)j towards zero mixing ratio at surface level between 30 and 50◦ N; uniform

fixed source (OFFEMIS) of 3.171× 10−08 (= years s−1) moleculesm−3 s−1

ST80_25d TREXP Newtonian relaxation (TNUDGE)j towards 200 nmolmol−1 above ca. 80 hPa (level 61 in L90MA, level 20 in

L47MA); 25-day exponential decay

CO_25h TREXP Emitted (OFFEMIS) as anthropogenic CO; 25-day exponential decay

CO_50h TREXP Emitted (OFFEMIS) as anthropogenic CO; 50-day exponential decay

AOA_CCMId TREXP Newtonian relaxation (TNUDGE)j towards zero mixing ratio at surface layer; uniform fixed source (OFFEMIS)

as AOA_NH

O3(s)
d,i MECCA Stratospheric ozone tracer; Newtonian relaxation (TNUDGE)j towards O3 in the stratosphere; destroyed in the

troposphere as O3; the corresponding loss rate tracer LO3(s) is a qualitative measure for the troposphere to

stratosphere exchange of ozone (Roelofs and Lelieveld, 1997; Jöckel et al., 2006)

a Jöckel et al. (2008); b Jöckel et al. (2010; Tracer Release EXPeriment; Sect. 6.3); c relaxation time constant τ = 3 h; d according to CCMI (Eyring et al., 2013b; Sect. 4.2); e dissenting

from d without interpolation of emission time series to monthly values; f dissenting from d with transient anthropogenic emissions; g see ESCiMo_SCAV_mechanism.pdf in the

Supplement; h dissenting from d with seasonal cycle of emission; i see ESCiMo_MECCA_mechanism.pdf in the Supplement; j relaxation time constant is equal to model time step

length.
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The Supplement related to this article is available online

at doi:10.5194/gmd-9-1153-2016-supplement.
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