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Abstract

Electrical impedance tomography (EIT) is a non-invasive method for imaging the electrical conduc-
tivity of an object from electrode measurements on its surface. Possible applications and the diag-
nostic value of EIT depend on the quality of the EIT images, that is, on their resolution and their
reliability. Moreover, computational efficiency and ease of use are desired for clinical routine. To
obtain a conductivity image from the measurements, a mathematical inverse conductivity problem
(ICP) needs to be solved which suffers in several respects: It is highly nonlinear, severely ill-posed,
highly underdetermined, and some necessary model parameters are usually not known accurately.

This work contributes to the development of EIT in two regards: By providing new theoretical in-
sights into the underlying mathematical model, and by optimizing and extending an efficient general
purpose inversion scheme to harmonize with the ICP.

In the first part, a novel analytic relation between the underlying conductivity and the observed data
is derived for non-concentric circular geometries. From that relation, quantitative insights about the
instability of the ICP and the resolution of a given EIT setting are derived. Based on this data, a
discretization of the conductivity space is proposed which complies with the maximal resolution of
the setting. In the second part, a holistic reconstruction framework is introduced which estimates
unknown model parameters prior to solving the ICP with an inexact Newton-type method. The
performance and reliability of this framework is improved by eliminating sources of instabilities,
by abandoning generic assumptions, and by gathering and using prior knowledge about the specific
setting and model. In particular, a tailored conductivity transformation decreases the nonlinearity,
while a novel weighting scheme resolves the underdetermination of a subproblem by promoting
non-oscillatory conductivities. The versatility of the proposed framework allows us to incorporate
additional problem-specific optimizations, three of which are showcased and evaluated in this work.
All theoretical findings are complemented by extensive numerical studies that verify the efficiency
and robustness of the proposed framework for a variety of experiments with simulated and measured
data.
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1. Introduction

1.1. Background

The question of determining the distribution of electrical conductivity inside heterogeneous ob-
jects arises in various disciplines of engineering sciences including medical imaging, geophysics, and
process tomography. It first appeared in the 1930s [Sli33, Lan36] as a one-dimensional geophysi-
cal problem of identifying layers of soil of varying, material-specific electrical conductivity; that is,
conductivity was considered as a parameter of depth. This was particularly useful for finding under-
ground ores, oil, and gas deposits characterized by distinct conductivities. Electrical conductivity is
the ability of a material to transport electric current, and requires charge carriers like freely moving
electrons in metals, ions in liquids and plasmas, or electrons and holes in crystal lattices of semi-
conductors. Thus, the electrical conductivity is a material property, and knowing the conductivity
values can be used to localize materials inside heterogeneous objects.

Medical interest started four decades later. Henderson and Webster presented an “impedance cam-
era” [HW78] producing a two-dimensional projection-type image of the spatial distribution of the
electrical conductivity inside the human thorax, and Barber and Brown introduced the first tomo-
graphic impedance imaging system; see [BB84]. The intracellular and extracellular areas in body
tissue contain salt ions making them highly conductive, while the cell membrane is resistive, so dif-
ferent cellular structures lead to distinct electrical conductivities. This makes it possible to localize
blood, bones, and different kinds of body tissue from conductivity data. In particular, the conduc-
tivity of healthy and cancerous cells may vary significantly [FM26, SSBS88] due to cell membrane
damages and a different packing density of cancerous cells.

Recognizing the value for diagnostics and patient monitoring sparked a whole field of potential ap-
plications in non-invasive medical imaging, known as electrical impedance tomography (EIT). A key
advantage over established imaging techniques is that the EIT measurement setup consists mainly
of a current source, electrodes, a voltmeter, and multiplexers, which allows for cheap and mobile
measurement devices. Potential medial applications comprise mammography, thorax-imaging, bed-
side lung monitoring, perfusion monitoring, and time difference (functional) EIT, for example in the
human brain; see e.g. [Hol93, Fre00]. Moreover, EIT has non-medical applications in process tomog-
raphy, where materials or liquids are checked for defects such as inclusions, cracks, or air bubbles,
causing jumps in electrical conductivity [WB95].
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1. Introduction

The mathematical foundation of EIT is Calderón’s pioneering work [Cal80], a note “on an inverse
boundary value problem”. In general, inverse problems conclude on an underlying cause from given
observed effects as input data. Conversely, finding an effect of a known cause is called the evalua-
tion of the corresponding forward operator (forward problem). A forward operator in EIT assigns a
current-potential behaviour on the domain boundary to each conductivity distribution in the inte-
rior. The mathematical task in EIT is the inverse conductivity problem (ICP), i.e. to determine the spa-
tial conductivity distribution – or some information about it – from an observed current-potential
boundary behaviour. The links between the conductivity and the current-potential behaviour are
Kirchhoff’s current law and the conservation of charge, forming an elliptic partial differential equa-
tion (PDE) for the potential inside the domain, in which the conductivity appears as a coefficient.

The central aspects of the ICP are its uniqueness (“Is the conductivity fully characterized by the
observed data?”), its stability (“Can we continuously conclude from the data on the underlying con-
ductivity?”) and its recoverability (“Is there a feasible inversion algorithm to solve the ICP?”). The
first two questions have been solved for Calderón’s problem, with a negative answer on the stability
[Ale88] and positive answers on the uniqueness in very general settings in two and three dimensions;
see [AP06, Uhl09]. Moreover, a variety of inversion schemes to solve the ICP have been proposed,
with an outline of popular concepts following in the next section and in Appendix A.

Calderón’s boundary model for the ICP is fully continuous, i.e. applied currents and observed po-
tentials are represented by Neumann and Dirichlet traces of interior potentials, respectively. This
is appealing from an analytical point of view, since fundamental results from functional and com-
plex analysis can be used to investigate the forward problem and the inverse problem. However in
practice, currents and potentials can only be applied and accessed through electrodes, thus the data
is inherently discrete. These electrodes introduce side-effects on the boundary behaviour. Being
built from highly conductive materials, electrodes have a shunting effect on the interior potential.
Moreover, electro-chemical effects at the electrode-domain interface cause a highly resistive layer at
current-carrying electrodes, called the contact impedance. As a consequence, the boundary model
was successively refined, from the simple gap model through a shunt model to the gold standard com-
plete electrode model (CEM), which uses mixed (Robin-type) boundary conditions to model both the
shunting effect and the contact impedances. It was verified to be both mathematically sound and
physically accurate up to measurement precision [CING89, SCI92] in several tank experiments.

Unlike Calderón’s continuum boundary problem, the ICP for electrode models – i.e. the recovery of
the conductivity from a finite set of electrode current-potential observations – is underdetermined.
To assign a unique conductivity to an observed set of data, a restriction of the solution space is re-
quired. Additionally, the lack of stability, called ill-posedness of the ICP, is inherited from Calderón’s
model. Finally, the mixed boundary conditions make it difficult to analyze the CEM, in particular
to quantify the local instability of the ICP in various regions of the domain. For example, boundary
data in Calderón’s model can be arbitrarily localized and the instability vanishes towards the bound-
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1. Introduction

ary. This does not hold for the CEM, where the localization of currents and potentials is limited by
the electrode and gap widths.

A tool to investigate the instability is the local sensitivity, i.e. the impact of local changes in conductiv-
ity to the observed current-potential behaviour at the electrodes. The local sensitivity has been rec-
ognized valuable and studied extensively for Calderón’s model e.g. in [SYB84, Isa86, SBB87, Dob92],
and recently for the CEM, where it was used to obtain resolution guarantees [HU13] and to enhance
the stability of the inversion [WR14].

As a consequence, inversion schemes profit from the exact modelling of the electrode behaviour
and systematically addressing problems arising from this model. Firstly, model parameters like
the domain geometry, the electrode location and the contact impedances have a huge impact on
the measured data, and therefore should be known accurately, and otherwise estimated during the
inversion process. Next, the restriction of the solution space should be both justified by the physical
problem and suitable for obtaining uniqueness and supporting stability of the inversion process.
Finally, the inversion algorithm must be computationally feasible. Moreover, it should be capable of
incorporating prior assumptions on the underlying conductivity and applying regularization, based
on noise and sensitivity information. For ease of use, it should be free of design parameters which
require problem-specific tuning.

1.2. Scope and outline

Despite its clinical potential and an abundance of theoretical research on EIT, the severe ill-posedness
of the ICP and the resulting low resolution of EIT images still greatly limit its diagnostic value.
While combined imaging techniques counter some of the EIT inherent problems1, there is still a clear
demand for capable and reliable inversion schemes based purely on EIT data. Since the formulation
of Calderón’s problem, a wealth of approaches to analyze and solve the ICP have been proposed,
reflecting entirely different points of view of electrical engineers, physicians, and mathematicians,
on the “same” medical imaging problem [BB84, KV87, YWT87, SV90, CIN+90, SCII91, WHWT93,
DS94, RGA96, VVK+98, BH00, KKSV00, SMI00, Bru01, PL02, Hol04, CCT05, LR06, BDGV08,
LHH08, LR08, KNS08, MS12]. An outline of various popular concepts, including the preceding
references, is given in Appendix A.

All concepts are based on a particular theoretical or heuristic design idea and have emerged and
prevailed for very different reasons, including simplicity, ease of use, model reduction, rigorous

1There are combined imaging methods like magnetic resonance electrical impedance tomography [SKW05] or frequency-
difference and ultrasound modulated electrical impedance tomography [HLU15] which drastically improve the resolution
and reduce the ill-posedness, and thus counter many of the problems arising in EIT. However, the additional machinery
conflicts with the idea of a simple hardware setup, and makes it impractical for many EIT applications.
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1. Introduction

mathematical uniqueness theory, or explicit design of regularization strategies in standard frame-
works. Among the mathematical models, the gap between theoretical findings in Calderón’s model
and the inherently finite electrode data is reflected by the conceptual discrepancy of the inversion
schemes designed for these models. Moreover, the approaches usually focus on the inversion itself,
and are content with the input data required by the model, rather than extensively gathering and
incorporating prior information available for the ICP. Often, required model parameters, e.g. the
contact impedances or the required regularization parameters, are fit “by hand” to obtain best re-
sults, which makes it difficult to use such an approach in an automated manner. To the knowledge
of the author2, the two commercial EIT systems currently available on the market (by Drägerwerk
AG & Co. KGaA, Germany, and by swisstom AG, Switzerland) use a simple linearization of the
ICP by default, thus falling short of their full potential for nonlinear inversion.

Yet, the best hope for obtaining useful reconstructions is to gather all available information about the
accurate physical model, the setting, and the measured data, to analyze and address difficulties arising
from the realistic complete electrode model, and to incorporate this knowledge into the inversion
scheme.

Consequently, the purpose of this work is to address the ICP of the CEM in a holistic manner,
to provide further research in all stages of the reconstruction procedure, and to assemble this
knowledge into a model-tailored, efficient, and easy-to-use inversion scheme.

Firstly, it is essential to understand and analyze electrode models, paying special attention to the na-
ture of the instabilities which the model introduces to the inverse problem. To that end, a sensitivity
analysis of the CEM is performed in chapter 3. The main tool for this analysis is a novel analytic
solution to the forward problem for the CEM in the presence of non-centered conductivity pertur-
bations on the disk, which is presented in section 3.2 and proved in Appendix B. The sensitivity be-
haviour of the CEM is then investigated in section 3.3 and compared to Calderón’s model in section
3.4. In section 3.5, we show how the sensitivity information can be used to design resolution-based
discretizations of the conductivity space, which prove to be superior over generic discretizations in
our numerical examples. This discretization strategy for disks is extended heuristically to simply
connected domains.

In chapter 4, a standard nonlinear iterative output-least-squares approach is analyzed and re-designed
step by step to harmonize with the CEM. To set up the inversion scheme, a novel initialization
strategy for CEM model parameters is derived in section 4.1, and a symmetry property of the model
is used to estimate the data noise level and to obtain a stopping criterion for the iterative inversion.
Next, we investigate the nonlinearity and constrainedness of the ICP, and transform the problem
to be more suitable for unconstrained iterative linearization in section 4.2. Introducing a novel

2After personal correspondence with company representatives at the “International Conference on Biomedical Applica-
tions of Electrical Impedance Tomography” in 2014 and 2015.
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1. Introduction

weighting scheme in section 4.3, two fundamental problems of the linearized problem – the under-
determination and the ill-posedness – can be addressed simultaneously. We show that this weighted
solution satisfies a prior assumption on the conductivity, with the consequence that spurious oscilla-
tions are avoided when resolving the underdetermination of the linear problem. The last ingredient
of the tailored inversion scheme is the regularized inexact Newton-type method REGINN, which
was introduced in [Rie99] and first applied to the ICP in [LR06]. With a slight modification pre-
sented in section 4.5, it is free of design parameters. At that point, all steps can be combined to
a model-aware Newton-type inversion scheme (MANTIS), a fast, stable, and easy to use reconstruc-
tion framework carefully designed for the CEM, without the need of hand-tuning regularization
parameters or using calibration data. Note that most of the presented techniques can also be used
independently to improve other, existing inversion schemes which profit from a well-founded model
initialization, knowing error bounds, applying parameter transformations, or incorporating sensi-
tivity information.

Various problem-specific extensions are showcased to emphasize the versatility of the presented
MANTIS framework in chapter 5. In particular, it can be readily extended to handle geometry
uncertainties with concepts from [VKV+02, DHH+12, DHSS13a] (section 5.1), to incorporate spar-
sity information using Banach spaces [MRLa14, MR14, Mar15] (section 5.2), and to apply heuristic
concepts like iterated nonlinear filtering (section 5.3).

Finally, an extensive numerical evaluation of the presented concepts is performed in chapter 6. The
individual and combined impacts of the inversion scheme modifications are studied in detail for
various low and high contrast conductivities in circular and non-circular domains, for simulated
and measured data, and for a varying number of electrodes, varying model parameters, and different
noise levels. For the 3D reconstructions, MANTIS was incorporated into the open source MATLAB
toolbox EIDORS [PL02] under GNU General Public Licence. It is available, along with a test
script demonstrating how to use the MANTIS code in EIDORS, at SourceForge under http://

eidors3d.sourceforge.net (developer version).

We start by introducing the mathematical framework in chapter 2.
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2. Principles of electrical impedance
tomography

In this chapter, the mathematical formulations of the forward and inverse conductivity problem in
EIT are introduced. To that end, the behaviour of currents and potentials inside a conducting object
is derived from Maxwell’s equations, and the injection of currents and observation of boundary
potentials is formulated mathematically in Calderón’s continuum setting and in electrode settings in
section 2.1. Next, the model is discretized in section 2.3, which is necessary for numerical treatment.
This has significant effects on the behaviour of the inverse problem, which is introduced in the
mathematical framework in section 2.4, and basic properties and issues are discussed.

2.1. Forward models

A forward model is a mathematical relation “in direction of causality”, that is, an effect is modelled
for a given underlying cause. In EIT, the electrical conductivity of an object causes a characteristic
potential inside the object and on its boundary when a current is injected. At this point, it is not
intuitively clear whether the conductivity or the injected current should be considered the “cause”
of the potential, as both together generate the potential. However, one is usually not content with a
single current injection, but tries to consider all possible currents and their corresponding potentials.
From this perspective, the conductivity can be considered the cause for an observed current-potential
relation on the boundary. The connection between the conductivity, the currents and the potential
fields can be derived from Maxwell’s equations, which is outlined next.

2.1.1. Maxwell’s equations for electrical conductivity

This work considers real-valued isotropic conductivities and time-static (direct current) measure-
ments, that is, all frequency coefficients and changes in time disappear in Maxwell’s equations. A
more general derivation for time-harmonic fields is given e.g. in [MS12]. The relevant Maxwell’s

6



2. Principles of electrical impedance tomography

equations in the time-static case are given as

∇× E = 0, (Faraday’s law) (2.1)

∇×H = j, (Ampere’s law) (2.2)

where E, H and j are the electric field, the magnetic strength, and the current density, respectively.
Moreover, Ohm’s law states that

j = σE, (2.3)

where σ is the electrical conductivity, i.e. the coefficient of interest in EIT.

On a simply connected domain, Faraday’s law and the Kevin-Stokes theorem imply that the irro-
tational electric field E is path independent, which in turn implies that E can be expressed as the
gradient of a scalar potential u:

E = −∇u. (2.4)

Observing that ∇·(∇×H) = 0 and applying (2.3) and (2.4) to Ampere’s law yields the conservation
of charge

−∇ · (σ∇u) = 0, (2.5)

a partial differential equation relating the conductivity σ to the interior potential u.

2.1.2. Calderón’s model

Motivated by (2.5), Calderón’s continuum model can now be formulated by introducing the proper
function spaces. However, one has to pay attention to the spatial dimension of the problem, which
is emphasized in the following

Remark 2.1 (Spatial dimension of the problem). While Maxwell’s equations are given in
three spatial dimensions, Calderón’s classical formulation [Cal80] is given in R2. Fortu-
nately, both the forward and the inverse problem can be formulated independently of
the spatial dimension. There are however notable technical differences in the uniqueness
results of the ICP, mainly due to the rich structure of complex analysis that can be used
to study the R2 ∼= C problem, which is not available in R3. In this work, the analysis of
chapter 3 uses conformal mapping properties and is thus limited to the R2 setting, while
all considerations of chapters 4 and 5, including the presented inversion scheme MANTIS,
are independent of the spatial dimension. Consequently, the numerical simulations in
chapter 6 are performed in two and three dimensions, except for those few relying on
the discretizations derived in chapter 3. Thus, both cases are considered in the following
unless explicitly stated otherwise.
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2. Principles of electrical impedance tomography

Consider a compact, simply connected and piecewise smooth Lipschitz domain Ω⊂Rn, n∈ {2,3},
and let, for some 0<c� 1,

σ ∈ L∞+ (Ω) =
{
ϕ ∈ L∞(Ω): c ≤ ϕ ≤ c−1 a.e.

}
(2.6)

be an isotropic conductivity coefficient in the space of essentially bounded and positive functions on
Ω. In the following, the usual notation Hs(X)=W s,2(X) for a Sobolev space of order s∈R is used.
The subscript “�” for a space H denotes vanishing mean, i.e. H� := {ϕ∈H : 〈ϕ,1〉H,H∗ = 0}, where
H∗ is the dual of H . A special case of interest in this work is RL� =

{
x∈RL :

∑L
l=1xl = 0

}
.

Definition 2.2 (Potentials and currents). Any function u ∈H1(Ω) satisfying (2.5) on Ω
is called a potential for σ. Its boundary trace

f := u|∂Ω ∈ H1/2(∂Ω)

is called the according boundary potential, and

jν := ν · j = σ
∂u

∂ν
∈ H−1/2(∂Ω)

is called the outer normal boundary current density, or simply boundary current, where ν
denotes the outer normal on ∂Ω.

If u is such that

(jν , f) ∈ H−1/2
� (∂Ω)×H1/2

� (∂Ω),

then the pair (jν ,f) is called a (continuum) Neumann-Dirichlet (ND) datum in this work.

A classical result for elliptic systems is that for any jν ∈H−1/2
� (∂Ω), there exists a u ∈H1(Ω) such

that (jν ,f) is a ND datum and moreover, the maps

Rσ : H−1/2
� (∂Ω)→ H

1/2
� (∂Ω), jν 7→ f, (continuum ND operator)

Λσ : H1/2
� (∂Ω)→ H

−1/2
� (∂Ω), f 7→ jν , (continuum DN operator)

(2.7)

are bounded linear operators; see e.g. [McL00]. The condition jν ∈H−1/2
� (∂Ω) is a conservation of

charge condition as the normal current density over the boundary integrates to zero. It is necessary
for the existence of a solution. The condition f∈H1/2

� (∂Ω) is a grounding condition for the potential,
making f and u= f |∂Ω unique among all potentials which solve the elliptic system.

We are now able to formulate the forward problem in Calderón’s model.
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2. Principles of electrical impedance tomography

Definition 2.3 (Calderón’s model). The map

F : L∞+ (Ω)→ L(H−1/2
� (∂Ω), H1/2

� (∂Ω)), σ 7→ F(σ) := Rσ = (jν 7→ f)

is called the forward operator of Calderón’s model (or continuum model).

In two dimensions, F is one-to-one; see [AP06]. In 3D, there are several similar results for slightly
different function spaces for σ; see [Uhl09] for an overview.

2.1.3. The complete electrode model

Calderón’s continuum model is a natural choice in the mathematical treatment of boundary value
problems. However, most H−1/2

� (∂Ω) currents cannot be realized in practice, and potentials cannot
be measured continuously along the boundary, but only through a fixed number of electrodes. Thus,
it is natural to define a set of simply connected and pairwise separated electrodes as a subset of the
boundary.

Definition 2.4 (Electrodes). For L ∈ N≥2, we denote by E1,...,EL a set of simply con-
nected and pairwise separated electrodes, which we identify (in a slight abuse of notation)
with the subset on ∂Ω that they cover, that is,

E1, . . . , EL ⊂ ∂Ω closed and simply connected on ∂Ω,

El ∩ Em = ∅ for l,m ∈ {1, . . . , L} , l 6= m.

The easiest way to discretize Calderón’s model is to restrict boundary currents jν to functions which
are piecewise constant on the electrodes and vanishing on the gaps (gap model). However, electrodes
are usually built from highly conductive metal, which we consider to be a perfect conductor, hence
the potential along each electrode is assumed to be constant. This shunting effect is incompatible with
the gap model, since this would require to define both Dirichlet and Neumann values simultaneously
on the same part of the boundary, which is impossible. The shunting effect is considered in the shunt
model which defines the boundary currents implicitly.

Definition 2.5 (Shunt model). The boundary conditions

−∇ · (σ∇u) = 0 on Ω, (2.8)

f ≡ Ul ∈ R on El, l = 1, . . . , L, (2.9)

jν = 0 on ∂Ω \ E, E := E1 ∪ . . . ∪ EL, (2.10)∫
El

jν dS = Il, l = 1, . . . , L, (2.11)

where f =u|∂Ω and jν = ν ·σ∇u, are called the shunt model.
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2. Principles of electrical impedance tomography

A boundary current jν is uniquely defined in this model for a given net current vector I =
(I1, ... ,IL)> ∈ RL� ; see [SCI92]. The corresponding potentials u and f are unique up to a con-
stant, and the previous (arbitrary) grounding condition f ∈ H1/2

� (∂Ω), i.e.
∫
∂Ωf dS = 0, can be

replaced by the more convenient condition

L∑
l=1
|El|−1

∫
El

f dS =
L∑
l=1

Ul = 0, that is, U = (U1, . . . , UL)> ∈ RL� .

When assessing the shunt model in practice, the predicted behaviour of the current-potential elec-
trode data did not match the measurements observed in tank experiments [CING89]. Rather, the
measurements postulate an additional resistivity at the electrode-domain interface for currents pass-
ing in normal direction, causing a potential drop. The reason is an electrochemical effect on the
surface of current-carrying electrodes, forming a highly resistive layer at its surface. This effect can
be incorporated into (2.8) by introducing contact impedances z1, ... ,zL ∈ R>0 for each electrode.
Then, the electrode behaviour is fully described by

Definition 2.6 (Complete electrode model). For electrode contact impedances z1,...,zL ∈R>0

and any σ ∈L∞+ (Ω), the set of equations

−∇ · (σ∇u) = 0 on Ω, (2.12)

f + zljν = Ul on El, l = 1, . . . , L, (2.13)∫
El

jν dS = Il, l = 1, . . . , L, (2.14)

jν = 0 on ∂Ω \ {E1 ∪ . . . ∪ EL} , (2.15)

where f =u|∂Ω and jν = ν ·σ∇u, is called the complete electrode model (CEM).

For any current (vector) I = (I1,...,IL)> ∈RL� , there is a unique u ∈H1(Ω) and a unique potential
(vector) U = (U1,...,UL)> ∈RL� satisfying (2.12)–(2.15). Conversely, any potential U ∈ RL� can be
reached. The current-to-potential map,

Rσ ∈ L(RL� ), I 7→ RσI = U,

which is the ND operator of the CEM, is thus well-defined and one-to-one and moreover bounded,
linear, and symmetric; see [SCI92]. It can therefore be represented by a symmetric matrix in RL×L.
The map

F : L∞+ (Ω) ⊃ D(F )→ L(RL� ), σ 7→ F (σ) := Rσ = (I 7→ U),

is called the forward operator of the CEM. Its domain of definition D(F ) may vary depending on the
context. We will later consider piecewise constant conductivities.

This refined model reproduces the tank experiments accurately up to measurement precision
[CING89], and is considered the gold standard electrode model. The symmetry and the vanishing
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2. Principles of electrical impedance tomography

column sums of Rσ immediately yield the upper bound

dim (range(F )) ≤ L(L− 1)
2 ,

for the information about σ contained in Rσ.

To “sample” Rσ, the CEM equations (2.12)–(2.15) can be solved for multiple current vectors which
leads to

Definition 2.7 (Measurement pattern, data, and operator). We call any matrix I ∈
RL×M consisting of M ∈N current vectors, that is,

I =
(
I(1)| . . . |I(M)

)
, where I(m) ∈ RL� for m = 1, . . . ,M,

a measurement pattern. The corresponding potential matrix

U = (U (1)| . . . |U (M)) = RσI ∈ (RL� )M (or, more generally, in RL×M )

forms the (measurement) data, and the operator

FI : L∞+ (Ω) ⊃ D(F )→ (RL� )M , σ 7→ F (σ)I = U ,

is called the measurement operator of the CEM. If M = 1, i.e. I = (I) for a single current
vector I ∈RL� , we also write FI instead of FI .

Note that rank(I) ≤ L− 1, and rank(I) = L− 1 if and only if I(1),...,I(M) form a frame of RL� ,
in which case the operators F and FI are equivalent since F (σ) = I+FI(σ), where I+ denotes
the Moore-Penrose inverse of the matrix I with only constant vectors in the null space. From an
engineering point of view, it is easiest to build an EIT system with only one single current source,
which results in only two nonzero entries in each current vector. An example is the popular adjacent
current pattern defined as

(Iadj)
(m)
l =


1, l = m,

−1, l = (m+ 1 mod L),

0, otherwise,

for l= 1,...,L and m= 1,...,M . If M =L−1, Iadj contains a basis of RL� , whereas for M =L we
have an overdetermined frame.

A current frame of theoretical interest, called �-frame in this work, consists of M =L−1 or M =L

current vectors with entries

(I�)(m)
l =


L−1
L , m = l,

− 1
L , otherwise,

for m,l= 1,...,L, yielding I+
� = I� and thus FI� =F . Again for M =L, the frame is redundant.
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2. Principles of electrical impedance tomography

Remark 2.8 (Other measurement protocols and incomplete data). In practice, sometimes not
the potential vectors are acquired, but other “measurement protocols” like pairwise elec-
trode voltage measurements are used. Moreover, measurements on current-carrying elec-
trodes are often omitted, leading to incomplete measurement data. This case is considered
in more detail in section 4.1.3.

Numerous studies have investigated the performance of different current frames regarding their opti-
mality for various noise levels, sometimes under additional current amplitude or power restrictions,
both for Calderón’s model and for electrode models; see e.g. [CI92, LKM01, DHSP05]. One can
also consider partial data operators, i.e. measurement operators mapping on a subset of U , which is
of practical interest in measurement setups where measurements on current-carrying electrodes are
avoided. This will be outlined in the numerical evaluation in chapter 6.

To study the CEM, it is useful to consider it in a weak formulation. The corresponding bilinear,

continuous and elliptic operator a :
(
H1(Ω)×RL�

)2
→R is given as

a ((v, V ), (w,W )) =
∫

Ω
σ∇v · ∇u dx+

L∑
l=1

1
zl

∫
El

(v − Vl)(w −Wl) dS. (2.16)

By the Lax-Milgram lemma, there exists a unique solution (u,U)∈H1(Ω)×RL� of

a ((u, U), (w,W )) =
L∑
l=1

IlWl for all (w,W ) ∈ H1(Ω)× RL� , (2.17)

which was shown to agree with the solution of (2.12)–(2.15); see [SCI92, Hyv04].

2.1.4. Fréchet-di�erentiability of the forward operators

A fundamental property of the operators F , F and FI is their Fréchet-differentiability [KKSV00,
LR06]. This allows us to consider Newton-type methods for inversion. Moreover in certain cases,
the nonlinearity of the CEM forward problem is limited since F and FI satisfy a tangential cone
condition [LR08, Theorems 3.4 and 4.9]. The relevant results are formulated in our notation in the
following for the reader’s convenience.

Theorem 2.9 (Fréchet derivative for the CEM). Let z1,...,zL be fixed positive contact im-
pedances and I ∈RL� be a current vector. For σ ∈ int(D(FI)), the measurement operator FI is
Fréchet-differentiable at σ. If η ∈L∞(Ω) such that σ+η ∈D(FI), then the Fréchet-derivative
of FI at σ in direction η is given as F ′I(σ)η := U ′, where U ′ is the second component of the
unique solution (u′,U ′)∈H1(Ω)×RL� to the variational problem

a
(
(u′, U ′), (w,W )

)
= −

∫
Ω
η∇uI∇w dx for all (w,W ) ∈ H1(Ω)× RL� , (2.18)

and uI is the first component of the solution of (2.17) for a given current vector I .
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2. Principles of electrical impedance tomography

Proof. See [LR06, Theorem 4.1] and [KKSV00].

By concatenating F ′
I(1) ,...,F

′
I(M) for a given current frame, we obtain the Fréchet derivative of FI

(and in particular F ′ for I = I�). Moreover, F ′ is Lipschitz continuous [JM12]. In a discretized
setting, the nonlinearity is also limited by a tangential cone condition; see section 2.3.

2.2. Noise model

In this section, we formulate a noise model for EIT data and explain how pseudo-random noise is
generated in our numerical examples.

2.2.1. Modelling data noise

There are various sources of data errors in EIT. The most obvious source is noise in the measured
data caused by imperfections of the measurement equipment: The potentials recorded by the volt-
meter are correct only up to measurement precision, and other electrical components like imperfect
current sources introduce additional errors. There are several ways to measure the electrode poten-
tials, for example by recording the voltages between each electrode and a reference point in turn, or
by recording pairwise voltages between the electrodes e.g. on adjacent electrodes. Thus, the mea-
surement protocol has an impact of the amplification of noise in U . Moreover, there are errors
from imperfect modelling (e.g. when dealing with anisotropic materials) and from imperfect model
parameters, such as geometry errors and incorrect contact impedances.

These quantities are very problem-specific and usually impossible to access or to correlate exactly.
For that reason, additive Gaussian white noise is often assumed to perturb the model data [MS12].

Definition 2.10 (Noise model). In this work, we consider noisy data to be potentials per-
turbed entry-wise by independent and identically distributed (iid) additive Gaussian white
noise of (usually unknown) variance v > 0, that is,

Uv = U +Nv, (Nv)lm
iid∼ N (0, v) for l = 1, . . . , L, m = 1, . . . ,M. (2.19)

The Frobenius norm of the noise matrix Nv, called noise level in this work, will be of
special interest, thus we denote it by

δ := ‖U − Uv‖Fro = ‖Nv‖Fro .

In chapter 4, this noise model will be used to obtain a stopping criterion for the iterative inversion
algorithm.

Regarding the justification of additive noise, we give the following
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2. Principles of electrical impedance tomography

Remark 2.11 (additive vs. multiplicative noise). Due to the arbitrary grounding condition
of the measured potentials, a multiplicative noise model for U is usually not justified since
any entry could be set to zero by shifting the grounding correspondingly, resulting in
zero noise in that entry. However for measurement protocols like the adjacent electrode
voltages, a multiplicative/proportional error for this “potential difference” measurement
might be justified, leading to a different noise model.

In our numerical implementations, the MATLAB function randn was used to generate pseudo-
random Gaussian noise. If not stated otherwise, the default setting (Mersenne twister with seed 1)
was used to initialize the pseudo-random number generator.

2.2.2. Generating noisy data

For our numerical evaluations in chapter 6, we need to simulate noisy data by adding pseudo-random
noise to the simulated forward solutions. In principle, we could specify a variance v>0 explicitly and
generate a realization of Nv using a pseudo-random number generator, but what is a realistic value
for v? We assume a measurement equipment to have a precision which is relative to the magnitude
of a single measurement vector, i.e.∥∥∥(Uv)(m) − U (m)

∥∥∥
2∥∥U (m)

∥∥
2

≈ δrel > 0 for all m = 1, . . . ,M,

and we call δrel the relative measurement noise. In particular, we have for all m= 1,...,M that

δrel ≈ E

∥∥∥(Uv)(m) − U (m)
∥∥∥

2∥∥U (m)
∥∥

2
=
∥∥∥U (m)

∥∥∥−1

2
E
∥∥∥(Nv)(m)

∥∥∥
2

=
√

2v
∥∥∥U (m)

∥∥∥−1

2

Γ
(
L+1

2

)
Γ
(
L
2

) ,

with Euler’s gamma function Γ. The last equality is due to the Chi distribution of
∥∥∥(Nv)(m)

∥∥∥
2

for

N
(m)
l

iid∼N (0,v); see standard literature [FEHP11]. Solving for v yields

v ≈ 1
2(δrel)2

∥∥∥U (m)
∥∥∥2

2

 Γ
(
L
2

)
Γ
(
L+1

2

)
2

, m = 1, . . . ,M.

By a least-squares fit for v over all measurements, we get the minimizer

v̂ = v̂(δrel) := (δrel)2

2M

 Γ
(
L
2

)
Γ
(
L+1

2

)
2

M∑
m=1

∥∥∥U (m)
∥∥∥2

2
.

Thus, for a given set of simulated potential data U and a given relative measurement noise δrel > 0,
we simulate noisy data by

U v̂ = U +N v̂(δrel), (2.20)
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2. Principles of electrical impedance tomography

where N v̂(δrel) is a realization of a pseudo-random noise matrix as in (2.19).

2.3. Model discretization

So far, very general EIT settings were considered regarding the choice of the domain geometry and
the space of admissible conductivities. These spaces are suitable for a theoretical analysis of the
problem, but analytic solutions of the forward problem are known only for a tiny set of particular
domain geometries and conductivity distributions, namely concentric conductivities on a disk and
some conformally equivalent settings.

Solving any more general forward problem requires the use of numerical methods, which in turn re-
quire a discretization of the setting. This means that both the domain geometry and the conductivity
space need to be discretized.

2.3.1. Finite element discretization for solving the forward problem

In our numerical experiments, we use the finite element method (FEM) to approximate forward
solutions of the CEM. Thus, we assume Ω to be (or to be approximated by) an n-dimensional
polytope, where each electrode surface is a set of facets connected by ridges. A decomposition of
Ω into Q ∈N tetrahedral cells ∆1,...,∆Q is called a finite element mesh (or FEM discretization, FEM
triangulation) and is denoted by ∆ = {∆1,...,∆Q}. In the remainder of this work, we consider
piecewise linear basis functions for the potential.

2.3.2. Discretization of the conductivity space

For numerical inversion, conductivities should be represented in a finite dimensional basis, thus it
is necessary to reduce the set of admissible conductivities to a finite dimensional subset of L∞+ (Ω).
As the electrical conductivity is a material property, σ is assumed to be constant throughout each
object inside the domain. Thus, it is reasonable to restrict σ to piecewise constant functions on a
partition P = {Ω1,...,ΩP }, P ∈N, of Ω:

σ ∈ DP =
{
σ1χΩ1 + . . .+ σPχΩp

∣∣ c ≤ σ1, . . . , σP ≤ c−1
}
⊂ L∞+ (Ω).

Here, the cells {Ω1,...,ΩP } can be any partition of Ω into simply connected – not necessarily tetra-
hedral – subdomains. For example, we will design sensitivity based domain discretizations P in
chapter 3 which are Voronoi tessellations on Ω.
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In particular, P and ∆ do not need to coincide. However if ∆ is not a refinement of P , nontrivial
projection operators are required to solve the forward problem for σ ∈DP numerically on ∆, pos-
sibly introducing additional errors to the forward solution. In the remainder of this work, boldface
symbols denote the coefficient vectors corresponding to conductivities and conductivity updates,
e.g. σ ∈RP+ and η ∈RP such that

σ =̂ σ = σ1χΩ1 + . . .+ σPχΩP ∈ DP ⊂ L
∞
+ (Ω)

and

η =̂ η = η1χΩ1 + . . .+ ηPχΩP ∈ L
∞(Ω),

respectively.

In this discretized setting, the nonlinearity of the forward map is limited locally in the following
sense:

Theorem 2.12 (Tangential cone condition). Let P be a fixed triangulation of Ω. For any
σ ∈ int(DP), there is an l ∈ N such that for L ≥ l and σ̃ ∈ DP sufficiently close to σ, the
tangential cone condition∥∥F (σ̃)− F (σ)− F ′(σ)(σ̃ − σ)

∥∥
L(RL) . ‖σ̃ − σ‖∞ ‖F (σ̃)− F (σ)‖L(RL) (2.21)

holds uniformly in L.

Proof. See1 [LR08, Theorem 4.5].

Note that ‖·‖L(RL) = ‖·‖Fro is the Frobenius norm when we identify the linear maps with their
coefficient matrices if RL is equipped with the Euclidean norm. The tangential cone condition also
holds for the FEM approximations uniformly in ∆ provided the FEM triangulation is sufficiently
fine [LR08, Theorem 4.9].

2.3.3. Computation of the Fréchet derivative

Generally, the Fréchet derivative of the forward operator FI can be evaluated by solving the system
weak formulation (2.18) given in Theorem 2.9. In our numerical evaluations, we compute it by
sampling its entries for the �-frame and M =L by(

F ′I�(σ)[η]
)
l,m

= −
∫

Ω
η∇u(l)∇u(m) dx, l,m = 1, . . . , L, (2.22)

where u(m) is the second component of the solution of (2.17) for current I(m)
� ; see [PL02, Hol04]

for details. Note that in these references, non-normalized unit currents with entries I(m)
l = δml are

1The cited work considers the more general case of piecewise polynomial conductivities and non-polyhedral domains.
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considered, which are not in RL� . However, the variational problem (2.17) has a solution also in this
more general setting, and the gradient of the second component agrees with ∇u(m) for the m-th
vector of the �-frame. By linearity, the Fréchet derivative for an arbitrary current vector I is then
given by

F ′I(σ)[η] = F ′I�(σ)[η]I ∈ RL� .

After solving the forward problem (2.17) numerically using finite elements with linear ansatz func-
tions on a triangulation ∆, the gradients on each cell can be approximated by the corresponding con-
stants

{
∇u(m)

1 ,...∇u(m)
Q

}
obtained from the FEM forward solution, that is, ∇u(m)(x)

∣∣∣
∆q

≈∇u(m)
q

and ∫
∆q

∇u(l)(x)∇u(m)(x) dx ≈ |∆q| ∇u(l)
q · ∇u(m)

q .

This yields ∫
Ωp
∇u(l)(x)∇u(m)(x) dx ≈

∑
{q : ∆q∩Ωp 6=∅}

|∆q ∩ Ωp| ∇u(l)
q · ∇u(m)

q . (2.23)

In MATLAB, the FEM gradient approximations ∇u(m)
q can be obtained from the FEM solution

using the PDE toolbox function pdetrg.

Remark 2.13. For computing the forward solution using the FEM, the conductivity must
be projected from DP onto ∆. If ∆ is not a refinement of DP , this can again be achieved
by the projection

σ|∆q
≈ 1
|∆q|

∑
{p : Ωp∩∆q 6=∅}

|∆q ∩ Ωp|σp.

2.4. The inverse conductivity problem

The inverse conductivity problem (ICP) is the mathematical task of concluding on the underlying
conductivity of a setting from the observed boundary data. In Calderón’s model, this means to
evaluate the inverse F−1 of the forward operator. However for measured data and electrode models,
instability and non-uniqueness need to be considered carefully. Given noisy potentials Uv as in
(2.19), a very general formulation of the problem of interest is

“Given Uv, find a conductivity σ̂ ∈ DP satisfying FI(σ̂) ≈ Uv.” (2.24)

In this section, the main issues of the ICP for the CEM with noisy measured data are described.
They arise from the nonlinearity (section 2.4.1), the constrainedness (sec. 2.4.2), the non-uniqueness
(sec. 2.4.3) and the ill-posedness (sec. 2.4.4) inherent to the model, and from geometry and parameter
uncertainties of the setting (sec. 2.4.5). After remarking on iterative inversion in general (sec. 2.4.6),
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the inexact Newton-type algorithm REGINN [Rie99] is presented in section 2.4.7 as a basis for
designing a model-aware inversion scheme for the CEM in chapter 4.

2.4.1. Nonlinearity

The measurement operator FI is highly nonlinear. The nonlinearity of the ICP entails the typical
issues of nonlinear inverse problems, in particular the existence of local minima of the function
σ 7→ ‖F (σ)−Uv‖ and possible convergence issues of iterative solvers.

2.4.2. Constrainedness

On top of being nonlinear, the measurement operator is also constrained by the positivity of the
conductivity σ ∈ L∞+ (Ω). This must be accounted for when applying iterative inversion to ensure
that the sequence of conductivities generated during the iteration satisfies this constraint. A common
method is to apply a transformation t : L∞+ (Ω)→ L∞(Ω) acting “pointwise” on the conductivity
values, and to apply the iterative inversion to the transformed, unconstrained quantity. A popular
transformation is the log-conductivity t(σ)=log(σ), but many other choices are possible. In chapter
4 , the σ-ρ-transform is introduced and studied, complemented by numerical examples in 6.

2.4.3. Uniqueness

In Calderón’s model, uniqueness was shown for all spatial dimensions n≥ 2 for very general con-
ductivity spaces; see [AP06] for the most general result in 2D and [Uhl09] for an overview of various
uniqueness results in slightly different functions spaces for n≥ 3. All uniqueness results only hold
for isotropic conductivities, as diffeomorphisms can be used to transform the setting into a new
setting with a different, anisotropic conductivity having the same ND map [Syl90].

In contrast, the ICP for the CEM is highly underdetermined: Since FI has finite-dimensional range
and D(FI) is infinite dimensional in the general setting, there are different conductivities resulting
in the same measurement operator.

2.4.4. Ill-posedness

An inverse problem is well-posed in the sense of Hadamard if it is uniquely solvable and the solution
depends continuously on the data. Otherwise, it is ill-posed.

In that sense, the ICP is ill-posed both for Calderón’s model and for the CEM. The former is shown
by a classical example due to Alessandrini [Ale88]. Since Alessandrini considers the map σ→ Λσ
(cf. (2.7)) in slightly different function spaces, we restate a variant of this example from [Bru99,
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2. Principles of electrical impedance tomography

section 3.2], considering the ND map Rσ as a linear bounded operator on L2(∂Ω). Let Ω =B1(0),
σ1(x)≡ 1 and

σk(x) =

1, k−1 < |x| ≤ 1,

1 + kπ−
1
2 , 0 ≤ |x| ≤ k−1,

for k ∈ N≥2. (2.25)

Then we have

‖σk − σ1‖L2(Ω) = 1 for all k ≥ 2, but ‖Rσk −Rσ1‖L(L2(∂Ω)) → 0 as k →∞, (2.26)

which shows that F−1 is discontinuous. This example uses an explicit singular value decomposi-
tion of Rσ for conductivities with concentric jump-discontinuities on a disk, which will also be an
ingredient for the sensitivity analysis presented in chapter 3.

Alessandrini also presents two stability estimates for spatial dimensions n≥ 3. The global estimate
[Ale88, Theorem 1]

‖σ − σ̃‖L∞(Ω) . log
(∥∥Λσ − Λσ̃

∥∥−δ
L(H1/2(Ω),H−1/2(Ω))

)
(2.27)

for smooth conductivities 0<c≤σ,σ̃∈Hα(Ω), α>2+ n
2 , δ∈(0,1), is a very “weak” stability estimate

of logarithmic type, and thus the ICP is usually said to be exponentially unstable. However, the local
(boundary) estimate [Ale90, Theorem 1.2]

‖σ − σ̃‖L∞(∂Ω) .
∥∥Λσ − Λσ̃

∥∥
L(H1/2(Ω),H−1/2(Ω)) (2.28)

for σ,σ̃∈H1,p(Ω), p>n, c≤σ,σ̃≤c−1 for some c>0, shows that a sufficiently smooth conductivity
can be obtained stably at the boundary from DN data.

These two results characterize the main issue of the ICP: The information about the conductivity
contained in the boundary data decays rapidly away from the boundary in typical norms. This has
been further investigated e.g. in [Dob92, Pal02, MMM04].

Next, we conclude from these continuum model results on the instability of the ICP for the CEM.
To that end, an interesting observation is that the measurement operator FI is “contained” in
Λσ. Let u(1), ... ,u(M) be the first components of the solutions to (2.17) for some conductivity σ

and current vectors I(1), ... ,I(M). For f (m) := u(m)|∂Ω, m = 1, ... ,M , we find from (2.13) that
U

(m)
l = |El|−1 ∫

El
f (m)(x) + zlΛσf (m)(x)dS. Thus, the entries of FI(σ) are basically projections

of (Id+zlΛσ)
∣∣∣span{j(1)

ν ,...,j
(M)
ν } , and we cannot expect a better stability for the CEM than for the

continuum model. Even worse, we cannot expect results of the type (2.27), (2.28) for two reasons:
Obviously, underdetermination for the CEM is in contrast to both estimates. Moreover, Calderón’s
model and the CEM are fundamentally different since potentials or normal currents can be arbi-
trarily localized in the continuum model, which is prohibited in the CEM by the electrode and gap
sizes. This makes it impossible to formulate results like [Ale90, Lemma 3.1] for the CEM, which
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2. Principles of electrical impedance tomography

guarantees the existence of potentials satisfying (2.5) and having “nice” properties at arbitrarily cho-
sen locations inside Ω.

As a consequence, the non-uniqueness and instability must be accounted for to obtain a unique and
stable solution for (2.24), which is complicated by the severe nonlinearity of the problem. This
requires regularization methods for nonlinear ill-posed problems. These issues are be investigated
and model-tailored solutions are proposed in sections 4.2–4.4

2.4.5. Model uncertainties

The terms “model uncertainties” and “model errors” are used ambiguously in the literature, and all
aspects should be considered for solving the ICP.

Firstly, they may refer to a mismatch between the physical properties of a phenomenon and its
mathematical description, like the propagation of electrical currents inside a conducting medium or
the behaviour at electrodes. Here, the CEM was evaluated to reproduce physical measurements up
to measurement precision, at least for a set of saline tank experiments [CING89, SCI92].

Secondly, these terms may refer to an inexact reproduction of the setting under investigation within
a model. This could be geometry errors for the underlying domain, wrong sizes and locations for
the electrodes, or wrong contact impedances for the CEM. The impact of such a mis-modelling on
the ICP can be rather severe; see e.g. [DHSS13a]. This means that all measures should be taken to
obtain this information from the outside, i.e. by other imaging or measurement modalities, before
solving the ICP. For example, a wearable electrode belt was demonstrated recently that uses sensors
to detect the shape of the chest cross-section in real-time [NKI+15]. The contact impedances are
usually impossible to obtain from the outside, which means they need to be estimated by hand
or from the data. In section 4.1.1, a direct (non-iterative) estimator for the contact impedances
will be presented, along with an estimate for the background conductivity of a setting. In chapter
5, we will outline how these initial estimates, as well as the electrode positions and sizes, can be
updated simultaneously while solving the ICP, incorporating ideas of [VKV+02] and [DHSS13a] in
the model-aware inversion scheme presented in this work.

Thirdly, “model uncertainties” may refer to the choice of design parameters, sometimes called hyper-
parameters, steering the amount of regularization to stabilize the inversion scheme. Classical ex-
amples are Tikhonov-type regularization methods with a regularization parameter in front of the
penalty/smoothing term of the Tikhonov functional. A “good” choice is usually highly problem
specific and may vary over many orders of magnitude depending on the setting, the data noise, the
problem discretization, etc. The inversion scheme presented in this work does not rely on abstract
design parameters. Instead, it relies on the knowledge of the noise level δ for applying regulariza-
tion. For that reason, a method to estimate δ for a given set of measurement data will be presented
in section 4.1.2.
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2. Principles of electrical impedance tomography

2.4.6. Iterative inversion methods

It is outlined briefly in the introduction and (in more detail) in Appendix A that there are many
approaches for solving the ICP numerically. Yet, only few methods are capable of modelling the
electrode behaviour of the CEM, and among those, iterative methods are the only2 methods for
solving the ICP in the sense of (2.24).

Iterative inversion schemes generate a sequence of conductivities
{
σ(1),σ(2),...

}
⊂D(FI) such that

FI(σ(k)) approximates the noisy data Uv as k increases. Note however that we can’t expect conver-
gence to Uv since it is usually not in the range of the measurement operator FI , thus we need to
abandon the idea of solving the equation FI(σ) =Uv. Moreover due to the underdetermination and
instability of the problem, one should take care generate a “nice” sequence

{
σ(k)

}
k

that avoids noise
amplification. This can be done by using a regularization strategy.

Two methods are commonly used to resolve these issues. The first one is to alter the nonlinear
operator to obtain a stable and (uniquely) solvable problem. Arguably the most popular method is
the nonlinear Tikhonov regularization:

Find σ̂α = arg min
σ∈D(FI)

Jα(σ), where Jα(σ) = ‖FI(σ)− Uv‖2Y + α ‖σ‖2X , (2.29)

‖·‖X and ‖·‖Y are norms in D(FI) and RL×M , respectively, and α is a design parameter. A (lo-
cal) minimum can then be approached using an iterative method to minimize Jα(σ), which is a
locally well-posed problem. The local minimizer is usually obtained by a Newton iteration; see
e.g. [VVK+98]. On the existence and uniqueness of such a minimizer, as well as a parameter strategy
α=α(δ) for a known noise level δ=‖U −Uv‖, see e.g. [JM12]. The nonlinear Tikhonov-Phillips reg-
ularization is sometimes used as a performance benchmark for other methods, but parameter strate-
gies for α like the discrepancy principle, L-curve methods [Han92] or generalized cross-validation
[Wah77] often require to solve (2.29) for many parameters α, each by an iterative method, which is
a great computational effort.

The second popular class of methods for iteratively solving the ICP are Gauß-Newton methods.
Instead of modifying the nonlinear problem by applying regularization, Newton’s method is ap-
plied to (2.24) directly, but the linearized problem is regularized in each Newton step. This has
the advantage that the wealth of theory for linear ill-posed problems can be used to stabilize the
linearized problem, e.g. by applying a Landweber iteration, ν-methods, the conjugate gradient
method, or linear Tikhonov-Phillips regularization [Rie99]; the latter yields the popular Levenberg-
Marquardt method. Combining regularized linearization with a suitable stopping criterion for New-

2There are only two other methods considering the CEM known to the author that do not use a Newton-type iteration
in one way or another: The localized potentials method reconstructs the support of inclusions, rather than a full EIT
image, and artificial neural network approaches are blind to the model (non-phenomenological) and rely purely on the
provided training data.
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2. Principles of electrical impedance tomography

ton’s method, a regularization strategy for the nonlinear problem can be obtained. A variant of this
approach, the class of inexact Newton-type methods, is introduced in the following section.

2.4.7. Inexact Newton-type methods

Inexact Newton-type methods for nonlinear ill-posed problems in the sense of Hadamard were in-
troduced in [Han97], and further convergence theory was established in [Rie99, Rie05, LR10] in a
general scope and in [LR06, LR08] for EIT. The basic concept will be introduced in the following.

Let D(FI) =DP and let FI(σ+) =U for some σ+ ∈ int(DP). Moreover, let ‖Uv−U‖Fro = δ and let
σ(0) ∈DP be an initial guess. We want to generate a sequence

{
σ(k)

}
k
⊂DP approaching σ+ by

σ(k+1) = σ(k) + η(k), k ∈ N0.

The idea of Newton-type methods is to approximate the inaccessible exact update η(k)
e := σ+−σ(k)

by a linearization of the operator FI . For U (k) :=FI(σ(k)), the exact update satisfies

F ′I(σ(k))η(k)
e = U − U (k) − E(σ+, σ(k)),

where E(σ,σ̃) := FI(σ)−FI(σ̃)−F ′I(σ̃)(σ− σ̃) is the linearization error. Since this error and the
exact data U are unknown, Newton-type methods consider the linearized system

F ′I(σ(k))η(k) = d(k), (2.30)

where d(k) :=Uv−U (k).

The ill-posedness of the ICP is inherited by this linearization, thus a regularization strategy is re-
quired to solve (2.30) in each Newton step.

The idea of inexact Newton-type methods is to solve the system (2.30) only to a certain relative preci-
sion θk ∈ (0,1] in each iteration. To that end, an inner sequence

η(k,l), l = 0, 1, . . . (2.31)

is generated. The sequence is stopped at the unique index Lk where the relative residual criterion∥∥∥F ′I(σ(k))η(k,Lk) − d(k)
∥∥∥

Fro
≤ θk

∥∥∥d(k)
∥∥∥

Fro
<
∥∥∥F ′I(σ(k))η(k,l) − d(k)

∥∥∥
Fro

(2.32)

for all l= 1,...,Lk−1 is reached, and the Newton update is set to η(k) = η(k,Lk).

This scheme is called REGINN (REGularized INexact Newton method) [Rie99]. It is essential to
choose the parameters θk large enough to obtain a stable approximation to the linearized problem,
but small enough to obtain convergence of the Newton iteration. An a-posteriori parameter strategy
for choosing θk, k= 0,1,2,..., is given in [Rie99, eq. (6.1) and (6.2)], and a slightly modified version
of this strategy will be used later in this work.
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2. Principles of electrical impedance tomography

Since Uv is usually not in the range of FI , we cannot hope to obtain convergence of the type
σ(k) → σ+ (k →∞) for some σ+ ∈ DP satisfying FI(σ+) = Uv. Instead, we are content with a
conductivity giving a nonlinear residual reasonably close to the data error. This is called Morozov’s
discrepancy principle, and the Newton iteration is stopped at the index K ∈N satisfying

K = K(δ,Uv) = min
{
k ∈ N :

∥∥∥FI(σ(k))− Uv
∥∥∥

Fro
≤ τδ

}
, (2.33)

for some constant τ > 1.

REGINN for the ICP of the CEM is summarized in Algorithm 1. It will serve as a “prototype” for
our model-tailored inversion in chapter 4.

Algorithm 1: REGINN for the CEM

input : Measurement pattern I, noisy data Uv, initialization σ(0) ∈DP , noise level δ, tolerance
τ > 1.

output: Conductivity estimate σ.

1 Set k= 0, d(0) =Uv−FI(σ(0));
2 while

∥∥∥d(k)
∥∥∥

Fro
>τδ do

3 Find η(k) satisfying
∥∥∥F ′I(σ(k))η(k)−d(k)

∥∥∥
Fro
≤ θk

∥∥∥d(k)
∥∥∥

Fro
;

4 Set σ(k+1) =σ(k) +η(k) ;
5 Set d(k+1) =U−FI(σ(k+1));
6 Set k= k+1;
7 end
8 Set σ=σ(k);

To be computationally efficient, it is desirable to reach (2.32) with few inner iterations, i.e. for Lk
small for each k = 0,...,K. Since the stopping criterion is a relative decrease of the linear residual,
a natural choice is the conjugate gradient (cg) method, which decreases the linear residual faster than
any other Krylov subspace method:

η(l,k)
cg = arg min

{∥∥∥F ′(σ(k))η − d(k)
∥∥∥

Fro
: η ∈ Kl

(
F ′I(σ(k))∗F ′I(σ(k)), F ′I(σ(k))∗r(k)

)}
, (2.34)

where

Kl(A, x) := span
{
x,Ax, . . . , Al−1x

}
(2.35)

is the l-th Krylov subspace for A and x, and r(k) = d(k) usually. REGINN with a conjugate gradient
inner iteration is called CG-REGINN.

Lechleiter and Rieder showed in [LR08, Remark after Theorem 4.9] that when τ large enough and
the tangential cone condition holds (in particular, sufficiently many electrodes and σ(0) sufficiently
close to σ+), one gets∥∥∥Uv − FI(σ(k+1))

∥∥∥
Fro
≤ C

∥∥∥Uv − FI(σ(k))
∥∥∥

Fro
for k= 0,1,...,K−1 and some C < 1.
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2. Principles of electrical impedance tomography

This means that CG-REGINN is well-defined locally, in particular K<∞, and the nonlinear resid-
ual decreases monotonically. Moreover, limδ→0σK(δ,Uv) → σ+. Thus, CG-REGINN with the
discrepancy principle yields stable convergence locally under these assumptions. Our numerical
examples will show that a modification of CG-REGINN is a competitive solver even when the as-
sumptions for the tangential cone condition are not satisfied, in particular when F ′ is not injective.
The key ingredient will be the treatment of the underdetermination of the linearized problem by
introducing a weighted minimum norm solution in section 4.4.

Remark 2.14 (Evaluation of the Fréchet derivative for CG-REGINN). When using the cg
method3 to solve the linear system (2.30), it is, in principle, not necessary to compute the
Fréchet derivative F ′I explicitly. Instead, we only need to evaluate it and its adjoint in one
direction in each cg iteration. This means that instead of assembling F ′I , we can successively
solve the system given in Theorem (2.9) and its adjoint problem in each cg iteration.

However, sampling the entries of F ′I by (2.22) is fast, especially when using linear ansatz
functions for the forward problem, as the gradients appearing in (2.22) are constants in that
case. Thus from our experience made in the numerical examples, it is only recommended
to iteratively solve (2.30) if an explicit initialization of F ′I leads to memory problems.

3Or other Krylov space methods.
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3. Sensitivity analysis of the complete electrode
model

The conductivities defined in (2.25) have inhomogeneities which are successively localized about the
origin, but with increasing contrast. The instability result (2.26) suggests that the support size of
a conductivity perturbation has a higher impact on the boundary behaviour than the contrast, at
least locally. However for a fixed discretization, that is, with a lower bound for the support size of
conductivity changes, we have (under additional assumptions) the tangential cone condition (2.21),
which is a local stability property. This means that setting a certain minimum discretization size of
the conductivity space has a stabilizing effect on the ICP.

The purpose of this chapter is to investigate the sensitivity of the boundary data to changes in
conductivity, depending on the size and location of the change. To that end, definitions of sensitivity
and distinguishability of conductivities are introduced in section 3.1. For calculating sensitivities, it
is necessary to evaluate the measurement operator. To do so, a novel analytic solution to computeRσ
for circular, non-centric geometries is derived in section 3.2. This solution relies on the properties
of conformal maps. Thus, the results of this chapter are restricted to the 2D case.

The conformal mapping solution is used to evaluate sensitivities at arbitrary locations inside a disk
in section 3.3, which can be used to generate a “sensitivity map” of the domain. The sensitivity
behaviour of Calderón’s model and the CEM are compared in section 3.4. Based on these findings,
a discretization of the conductivity space DP using a Voronoi tessellation is proposed in section 3.5.
The key idea of this discretization is that changes in each conductivity coefficient have a roughly
homogeneous sensitivity, i.e. they change the boundary data by the same amount. This realizes a
trade-off for numerical inversion: We can greatly reduce the number of degrees of freedom in regions
of low resolution and recover finer details in regions of high resolution by adaptive discretization
sizes.

Finally, an approximation scheme is introduced which heuristically extends this concept to non-
circular domains and speeds up the discretization.

Part of the work presented in this chapter was previously published – with slight modifications – in
the SIAM Journal of Imaging Sciences [WR14].
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3. Sensitivity analysis of the complete electrode model

3.1. Sensitivity and distinguishability

The sensitivity for distinguishing a conductivity σ∈L∞+ (Ω) from a reference conductivity σ̃∈L∞+ (Ω)
is a measure of the difference of their corresponding boundary data. The exact definition may vary
depending on which boundary model and measurement model is considered.

For Calderón’s model, it is common to consider the difference of the ND maps (as operators on
L2(∂Ω)) in the induced operator norm, that is,

λ∗
σ,σ̃

:=
∥∥Rσ −Rσ̃∥∥L2(∂Ω) , (3.1)

see e.g. [Isa86, section III]. The corresponding equivalent for the CEM is the spectral norm∥∥Rσ−Rσ̃∥∥2 of the CEM current-to-voltage map, which is considered e.g. in [HU13].

However for solving the ICP, it is natural to consider the information contained in the measured
data rather than considering the full current-to-voltage map which might be unavailable. Moreover,
the spectral norm of a matrix is its maximum singular value and thus, the spectral norm neglects a
large amount of information in the difference of the operators.

Thus to distinguish conductivities by their boundary behaviour, it is arguably more adequate to
consider the measurement operators in a Frobenius-type norm instead of the current-to-voltage map
with the spectral norm. In this work, we consider the following two definitions of sensitivity:

Definition 3.1 (Absolute and relative measurement sensitivity). For a current frame I
and σ,σ̃ ∈L∞+ (Ω), we call

|λ|σ,σ̃ := ‖FI(σ)− FI(σ̃)‖Fro =
(

M∑
m=1
‖FI(m)(σ)− FI(m)(σ̃)‖22

)1/2

and (3.2)

λσ,σ̃ :=
(

M∑
m=1

‖FI(m)(σ)− FI(m)(σ̃)‖22
‖FI(m)(σ̃)‖22

)1/2

(3.3)

the absolute and relative (measurement) sensitivity for distinguishing σ from the reference
conductivity σ̃, respectively.

Both absolute and relative sensitivity have their purpose for investigating the ICP. In the presence of
measurement noise, two conductivities can be distinguished if their absolute sensitivity exceeds the
data noise level.

Definition 3.2 (Distinguishability). Two conductivities σ,σ̃ ∈ L∞+ (Ω) are called distin-
guishable under a given noise level δ if

|λ|σ,σ̃ > δ.

However, the norms of FI(σ) and FI(σ̃) are very sensitive to the absolute values of the conductivi-
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3. Sensitivity analysis of the complete electrode model

ties σ and σ̃ and the current amplitudes
∥∥∥I(m)

∥∥∥
2
, m= 1,...,M . When normalizing by the reference

measurements in (3.3), these effects are reduced greatly. Figure 3.1 shows absolute and relative mea-
surement sensitivities for a circular setting with 8 electrodes and varying σ and σ̃. For designing a
sensitivity-based conductivity discretization DP (section 3.5) prior to solving the ICP, we consider
it more appropriate to use λσ,σ̃, which is less sensitive to the a-priori unknown quantities. From an
engineering point of view, the relative sensitivity corresponds to a measurement precision relative to
the voltage amplitudes.

10 -2 10 -1 10 0 10 1
10 -2

10 -1

10 0

10 1

10 2

Figure 3.1.: For conductivities σ̃= sχB1(0) and σ= s
(
χB1(0) +χB0.5(0)

)
, the figure shows

s 7→ |λ|σ,σ̃ (black) and s 7→λσ,σ̃ (red) plots for s ∈ [10−2,101]. The absolute mea-
surement sensitivity is highly sensitive to the absolute conductivity values. Setting:
Unit disk with 8 equi-spaced electrodes covering 50% of the boundary, contact im-
pedances z1,...,zL = 0.01, adjacent current frame. To evaluate |λ|σ,σ̃ and λσ̃,σ, the
current-to-voltage maps FI(σ) and FI(σ̃) were computed by the analytic solution
presented in the next section (equation (3.14)).

3.2. Analytic solutions on the disk

Boundary value problems for PDEs, like the forward problem in EIT, are usually solved with nu-
merical methods like the FEM. However for some basic geometries, nontrivial solutions to (2.5) are
known and analytic properties of the DN and ND operators can be obtained. This was used already
in the first work on this topic by Calderón [Cal80] for the continuum model to obtain injectivity of
F ′ on a disk at a homogeneous conductivity.

Two beautiful properties of Calderón’s model on the disk will be the ingredients of this section:

1. For concentric conductivities, the trigonometric functions are eigenfunctions of the ND oper-
ator Rσ. Thus, if the corresponding eigenvalues can be determined, the forward problem can
be solved analytically by expanding a normal current jν ∈L2(∂Ω) in the trigonometric basis.
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3. Sensitivity analysis of the complete electrode model

2. Equation (2.5) remains valid under conformal mapping; cf. standard literature [Neh52, SL91].
This allows us to conclude from a concentric setting to the ND map of a conformal image; see
section 3.2.2.

Computing analytic forward solutions for the CEM is less obvious due to the indirect nature of the
boundary conditions (2.13) and (2.14). A solution for the concentric “N-ring case”, i.e. for a finite
number of concentric rings in the disk, each having a constant conductivity, is given in [SCI92]. A
simpler approach for homogeneous conductivities on the disk is given by Demidenko in [Dem11].

In section 3.2.1, Demidenko’s approach is applied to a conductivity with a single centered perturba-
tion, using the representation of [SCI92, Appendix 3]. Then, conformal maps are applied to non-
centered conductivities, resulting in a “generalized” CEM with non-constant contact impedances
along each electrode, in section 3.2.2. By extending the solution of section 3.2.1 to this generalized
setting, a novel analytic forward solution for the CEM in a non-concentric setting is obtained.

3.2.1. Solutions for concentric conductivity perturbations

Throughout this chapter, we assume that Ω = B1(O) is the unit disk1 in R2. For σ0,σ1 > 0 and
r0 ∈ (0,1), we consider the conductivity

σ(r, θ) =

σ0, 0 ≤ r ≤ r0,

σ1, r0 < r ≤ 1,
(3.4)

in a polar coordinate system (r,θ) ∈ [0,1]× [0,2π). For Neumann data jν ∈ L2
�(∂Ω) in Calderón’s

model, let u=u(r,θ) be a corresponding interior potential and f =u|∂Ω∈L2(∂Ω) its Dirichlet data.
We will express u as a Fourier series in polar coordinates. To that end, u can be split into even and
odd parts in θ, and each part can be treated separately. Thus, assume first that u is even in θ. By
[SCI92, eqn. (A3.4)], u is of the form

u(r, θ) = u0 +



∞∑
k=1

(
r

r0

)k
a

(1)
k cos(kθ), 0 ≤ r ≤ r0,

∞∑
k=1

(
r−ka

(2)
k + rka

(3)
k

)
cos(kθ), r0 ≤ r ≤ 1,

for some coefficients u0 and a(1,2,3)
k ∈R. For r > 0, the current field in radial direction is

σ
∂u

∂r
(r, θ) = σ



∞∑
k=1

k

(
r

r0

)k−1
a

(1)
k cos(kθ), 0 < r ≤ r0,

∞∑
k=1

(
krk−1a

(3)
k − kr

−k−1a
(2)
k

)
cos(kθ), r0 ≤ r ≤ 1.

1All calculations can easily be extended to disks of arbitrary radius; see Remark 3.11.
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By matching the continuous functions u and σ∂u/∂r at r= r0 for r→ r−0 and r→ r+
0 , we find from

the orthogonality of the Fourier basis that

a
(1)
k = a

(3)
k rk0 + a

(2)
k r−k0 and σ0a

(1)
k = σ1

(
a

(3)
k rk0 − a

(2)
k r−k0

)
.

Substituting the first into the second equation, we get

a
(2)
k = cka

(3)
k with ck := σ1/σ0 − 1

σ1/σ0 + 1r
2k
0 ,

thus outside the perturbation, u has the representation

u(r, θ) = u0 +
∞∑
k=1

(
rk + r−kck

)
a

(3)
k cos(kθ),

∂u

∂r
(r, θ) =

∞∑
k=1

k
(
rk−1 − r−k−1ck

)
a

(3)
k cos(kθ).

By evaluating u at r = 1 and defining ak := (1+ck)a
(3)
k , we can express the potential and normal

current at the boundary as

u(1, θ) = u0 +
∞∑
k=1

ak cos(kθ),

σ1
∂u

∂r
(1, θ) = σ1

∞∑
k=1

dk ak cos(kθ), where dk := k
1− ck
1 + ck

. (3.5)

For the odd part of u in θ we can do the same calculations, replacing the cosine terms by sine terms
and introducing coefficients bk. Combining both, we get the representations

f(θ) = u(1, θ) = u0 +
∞∑
k=1

ak cos(kθ) + bk sin(kθ), (3.6)

jν(θ) = σ1
∂u

∂r
(1, θ) = σ1

∞∑
k=1

dk (ak cos(kθ) + bk sin(kθ)) , (3.7)

for some Fourier coefficients u0, ak, bk ∈ R (u0 = 0 if f ∈ L2
�(∂Ω)) and dk as above, k ∈ N. This

means that for centered perturbations, the trigonometric functions are eigenfunctions of Rσ with
eigenvalues τσ,k = (σ1dk)−1.

To obtain analytic forward solutions for the CEM from the continuum representations (3.6)–(3.7),
we can interpret the interior potential u as the first component of the solution (u,U) to the varia-
tional approach (2.17) for some current vector I ∈ RL� . For the CEM and σ smooth near ∂Ω, we
have that u|∂Ω∈H3/2−α(∂Ω) and jν ∈H1/2−α(∂Ω) for all α> 0; see [DHH+12, Remark 1] and the
references therein. This guarantees a sufficiently fast decay of the coefficients for the convergence of
(3.6) and (3.7) in the classical sense.
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3. Sensitivity analysis of the complete electrode model

Then, the current vector I can be expressed by substituting equation (3.7) into (2.14), which gives

Il =
∫
El

jν dS = σ1

∞∑
k=1

dk (aksl(k)− bkcl(k)) (3.8)

with definite integrals

sl(k) = sin (k(θl + ωl))− sin (k(θl − ωl))
k

, cl(k) = cos (k(θl + ωl))− cos (k(θl − ωl))
k

, (3.9)

where θl ∈ [0,2π) is the angular coordinate of the lth electrode center and ωl > 0 is its angular
half-width. However, it is advisable to exploit relation (2.13) by rewriting the normal current as

jν = z−1
l (Ul − u) on El, l = 1, . . . , L. (3.10)

Then, the electrode currents can be expressed by the faster converging Fourier series (3.6) as

Il = 1
zl

(
|El| (Ul − u0)−

∞∑
k=1

aksl(k)− bkcl(k)
)
. (3.11)

This expression is free of the O(k) coefficients dk.

By extending the result of Demidenko [Dem11, Appendix] to non-homogeneous conductivities, the
unknown Fourier coefficients can be obtained. To that end, the approach of [Dem11, Appendix]
can be applied to (3.6) and (3.7) for obtaining the Fourier coefficients u0 and ak,bk, k ∈ N corre-
sponding to a given voltage pattern U = (U1,...,UL)> in the CEM. To achieve this, we substitute
these representations of u(1,θ) and jν(θ) into (3.10) which yields

σ1

∞∑
k=1

dk (ak cos(kθ) + bk sin(kθ))

=


1
zl

(
Ul − u0 −

∞∑
k=1

ak cos(kθ) + bk sin(kθ)
)

on El, l = 1, . . . , L,

0, otherwise.

(3.12)

Then, we multiply (3.12) with cos(nθ), n ∈N0, and sin(nθ), n ∈N, respectively and integrate in θ
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3. Sensitivity analysis of the complete electrode model

over [0,2π) which leads to the set of equations

0 =
L∑
l=1

Ul − u0
zl

2ωl

−
∞∑
k=1

ak
zl

∫ θl+ωl

θl−ωl
cos(kθ) dθ + bk

zl

∫ θl+ωl

θl−ωl
sin(kθ) dθ for n = 0,

σ1πdnan =
L∑
l=1

Ul − u0
zl

∫ θl+ωl

θl−ωl
cos(nθ) dθ

−
∞∑
k=1

ak
zl

∫ θl+ωl

θl−ωl
cos(nθ) cos(kθ) dθ + bk

zl

∫ θl+ωl

θl−ωl
cos(nθ) sin(kθ) dθ, n ∈ N,

σ1πdnbn =
L∑
l=1

Ul − u0
zl

∫ θl+ωl

θl−ωl
sin(nθ) dθ

−
∞∑
k=1

ak
zl

∫ θl+ωl

θl−ωl
sin(nθ) cos(kθ) dθ + bk

zl

∫ θl+ωl

θl−ωl
sin(nθ) sin(kθ) dθ, n ∈ N, (3.13)

where θl ∈ [0,2π) is the angular coordinate of the lth electrode center and ωl > 0 is its angular
half-width. These equations can be rewritten as an infinite system of linear equations2 for u0,ak,bk

as (
A B

B> C

)(
u0, a1, a2, . . . , b1, b2, . . .

)>
=
(
rU

sU

)
(3.14)

with the sequences

rU =
(
rU0 , r

U
1 , . . .

)>
, sU =

(
sU1 , s

U
2 , . . .

)>
,

and matrices

A =


A00 A01 . . .

A10 A11 . . .
...

...
. . .

 , B =


B01 B02 . . .

B11 B12 . . .
...

...
. . .

 , C =


C11 C12 . . .

C21 C22 . . .
...

...
. . .

 ,

2In an abusive order of the coefficients (since A is infinite dimensional). However, this notation will be convenient when
considering truncated versions of the system.
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with entries

Ank =
L∑
l=1

1
zl

∫ θl+ωl

θl−ωl
cos(nθ) cos(kθ) dθ︸ ︷︷ ︸

= 1
2 [sl(k−n)+sl(k+n)]

+δnkσ1πdk, n ∈ N0, k ∈ N0, (3.15)

Bnk =
L∑
l=1

1
zl

∫ θl+ωl

θl−ωl
cos(nθ) sin(kθ) dθ︸ ︷︷ ︸

=− 1
2 [cl(k−n)+cl(k+n)]

, n ∈ N0, k ∈ N,

Cnk =
L∑
l=1

1
zl

∫ θl+ωl

θl−ωl
sin(nθ) sin(kθ) dθ︸ ︷︷ ︸

= 1
2 [sl(k−n)−sl(k+n)]

+δnkσ1πdk, n ∈ N, k ∈ N,

rUn =
L∑
l=1

Ul
zl

∫ θl+ωl

θl−ωl
cos(nθ) dθ︸ ︷︷ ︸

=sl(n)

, n ∈ N0,

sUn =
L∑
l=1

Ul
zl

∫ θl+ωl

θl−ωl
sin(nθ) dθ︸ ︷︷ ︸

=−cl(n)

, n ∈ N,

where δnk is the Kronecker delta. The above integrals have analytic solutions with sl(k) and cl(k)
given by (3.9) for k 6= 0 and sl(0) := 2ωl, cl(0) := 0. By solving (a truncated version of) equation
(3.14), the Fourier coefficients of the potential f and current jν can be obtained from the electrode
potentials U1,...,UL. In summary, we have proved the following theorem:

Theorem 3.3 (Fourier coefficients for the CEM). The coefficients u0 and ak, bk, k ∈N, of
(3.6) and (3.7) satisfy the linear system of equations (3.14).

In practice, the Fourier series must be truncated to get a finite system of linear equations.

Remark 3.4 (Truncation index of the Fourier series). The truncation index N should be cho-
sen with respect to the electrode widths such that the potentials and normal currents along
all electrodes are approximated well by the truncated Fourier series. In particular, if |E|min

is the smallest electrode angular width, the truncation index should be chosen well above
the “critical” index Nmin :=

⌈
2π/|E|min

⌉
of a Fourier sum that can resolve details of size

|E|min. In our implementations, we found N = 1000+32Nmin to give results of very high
accuracy. In [Dem11], N = 500 is used for settings with 4 and 16 electrodes.

For σ as in (3.4), we can now compute the current-to-voltage map Rσ as follows:

1. Choose a basis U = (U (1)|...|U (L−1)) of RL� .

2. Define a truncation index N .
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3. For each U (m), m= 1,...,L−1, compute the Fourier coefficients u(m)
0 ,a

(m)
k ,b

(m)
k , k= 1,...,N ,

by solving the truncated linear system (3.14).

4. Compute the corresponding electrode currents I(m)
l , m= 1,...,L−1, l= 1,...,L, by equation

(3.11).

5. Compute the current-to-voltage map as Rσ =UI+.

By evaluating Rσ1χΩ (i.e. for constant conductivity) and Rσ for σ as in (3.4), we can compute the
sensitivities |λ|σ,σ1

and λσ,σ1 for distinguishing a conductivity with centered circular perturbation
from the homogeneous background. Clearly, |λ|σ,σ1

and λσ,σ1 depend (nonlinearly) on the values
σ0 and σ1 and the radius r0 of the perturbation.

From this sensitivity information, we get a stability argument by the following monotonicity prop-
erty:

Theorem 3.5 (Monotonicity property of the sensitivity). Let σ1,η > 0 and let

σB = σ1 + ηχB, σD = σ1 + ηχD on Ω for some subsets B ⊂ D ⊂ Ω.

Then, |λ|σD,σ1
≥ |λ|σB ,σ1

and λσD,σ1 ≥λσB ,σ1 .

Proof. This is a CEM version of [GIN90, Appendix I]. The energy functional

J(w,W ) = 1
2a ((w,W ), (w,W ))−

L∑
l=1

IlWl

of the bilinear elliptic operator a from (2.16) has the minimizing property

J(u, U) = min
(w,W )∈H1(Ω)×RL

J(w,W ),

where (u,U) is the solution of the variational CEM problem (2.17) for current vector I . For the
conductivities σB and σD, denote by aB and aD their corresponding bilinear operators, by JB and
JD their energy functionals, and by (uB,UB) and (uD,UD) their CEM solutions for I , respectively.
Comparing the definitions of JB and JD with (2.17), we immediately get

JB(uB, UB) = −1
2〈I, UB〉 and JD(uD, UD) = −1

2〈I, UD〉.

From σD ≥σB on Ω, it follows that

JD(uD, UD)− JB(uD, UD) = 1
2

∫
Ω

(σD − σB) |∇uD|2 dx ≥ 0.

By the minimizing property for JB , we get

−〈I, UD〉 = 2JD(uD, UD) ≥ 2JB(uD, UD) ≥ 2JB(uB, UB) = −〈I, UB〉.
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In terms of ND maps, we have that UB =RσBI and UD =RσDI , thus

〈I, (RσD −RσB )I〉 ≤ 0 (3.16)

for all I ∈RL� . Similarly, we get 〈I,(RσD−Rσ1)I〉≤ 0 and 〈I,(RσB−Rσ1)I〉≤ 0, which means that
both operator differences are negative semi-definite on RL (the eigenvalue for constant vectors is 0).
Combined with (3.16), we have

〈I, (RσD −Rσ1)I〉 ≤ 〈I, (RσB −Rσ1)I〉 ≤ 0 ∀ I ∈ RL. (3.17)

The first consequence of (3.17) is that the sensitivity is monotonous in the spectral norm:

‖RσD −Rσ1‖2 ≥ ‖RσB −Rσ1‖2 ,

which was presented in [WR14, Appendix C]. Moreover as (3.17) holds on any subspace of RL, the
Courant-Fischer min-max theorem yields

κDl ≤ κBl ≤ 0, l = 1, . . . , L,

where κD1 ≤ κD2 ≤ ...≤ κDL = 0 and κB1 ≤ κB2 ≤ ...≤ κBL = 0 are the eigenvalues of RσD −Rσ1 and
RσB−Rσ1 , respectively. From this we get the monotonicity in the Frobenius norm

|λ|2σD,σ1
= ‖RσD −Rσ1‖

2
Fro = tr

(
(RσD −Rσ1)2

)
= (κD1 )2 + . . .+ (κDL )2

≥ (κB1 )2 + . . .+ (κBL )2 = tr
(
(RσB −Rσ1)2

)
= ‖RσB −Rσ1‖

2
Fro = |λ|2σB ,σ1

.

Moreover, by considering each measurement individually, we have for m= 1,...,M that

‖FI(m)(σD)− FI(m)(σ1)‖22 = ‖FI(m)(σD)− FI(m)(σ1)‖2Fro

≤ ‖FI(m)(σB)− FI(m)(σ1)‖2Fro = ‖FI(m)(σB)− FI(m)(σ1)‖22 .

Dividing by ‖FI(m)(σ1)‖22 and summing over m yields the monotonicity of the relative sensitivity
λ2
σD,σ1 ≥λ

2
σB ,σ1 , which completes the proof.

A similar monotonicity holds for increasing contrast:

Theorem 3.6 (Monotonicity property continued). Let σ1,η,η̃ > 0, η̃ > η. Then for

σ = σ1 + ηχB, σ̃ = σ1 + η̃χB on Ω for some B ⊂ Ω,

we have |λ|σ̃,σ1
≥ |λ|σ,σ1

and λσ̃,σ1
≥λσ,σ1 .

The proof is analogous to the previous one. From theorems 3.5 and 3.6, we obtain the following
corollary, which is helpful for designing sensitivity-based discretizations:

Corollary 3.7. If for σ1,η > 0, B ⊂Ω, a perturbed conductivity σ1 +ηχB is distinguishable
from a homogeneous background σ1, then any conductivity σ1 + η̃χD with η̃ ≥ η, D ⊃B, is
also distinguishable from σ1.
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3.2.2. A generalization using conformal maps

Conformal maps have been used for analyzing Calderón’s model on the unit disk [SYB84] and for
investigating its resolution [SBB87]. Moreover, quasi-conformal maps have been used for recon-
structing quasi-conformal (anisotropic) images of realistic boundary shape settings for Calderón’s
model and electrode models [KLO05].

Using conformal diffeomorphisms on the unit disk, we will compute Rσ analytically for conduc-
tivities with circular perturbations at arbitrary locations inside the unit disk by reducing the non-
centered situation to the centered case of the previous section. This will be done by mapping the disk
conformally onto itself such that the non-centered perturbation is centered about the origin (Lemma
3.8), then transforming the CEM boundary description accordingly (Theorem 3.9) and solving the
forward problem in this transformed setting (Theorem 3.10).

Due to the nature of conformal maps, the current-to-voltage map of the conformally mapped setting
agrees with the one of the initial geometry when the boundary parameters are modified accordingly.
With this technique, we can determine sensitivities of all circular conductivity perturbations inside
a disk.

Let w : B1(O)→ B1(O) be a conformal diffeomorphism on the unit disk that maps a point T =
(T,ϕ)∈ [0,1]× [0,2π) to the origin O. Then for3 C∼R2, w and its inverse are given (up to rotation)
by4

z 7→ w(z) = e−iϕz − T
1− T e−iϕz and y 7→ w−1(y) = eiϕ y + T

1 + Ty
. (3.18)

In particular, a point on the boundary is again mapped to the boundary since∣∣∣w(eiθ)
∣∣∣ =

∣∣∣w−1(eiθ)
∣∣∣ = 1, θ ∈ [0, 2π). (3.19)

Our aim is to transform an EIT setting conformally such that a disk

BrQ(Q), Q = (Q,ϕ) ∈ [0, 1)× [0, 2π) and 0 < rQ < 1−Q,

is mapped by w to a disk Br0(O) centered about the origin for some 0<r0 < 1. This is depicted in
Figure 3.2.

3We identify R2 in polar coordinates with the complex plane, using whatever notation is more convenient.
4The arguments (T,ϕ) are omitted. They denote the geometric parameters of w and w−1 throughout this work.
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w

O r0

ϕ

Q
T
rQ

Figure 3.2.: The conformal map w maps B1(O) onto itself, T to O and BrQ(Q) onto Br0(O).

The relations between the perturbation parameters Q and rQ, the parameters T and ϕ of the accord-
ing conformal map w and the resulting radius r0 are summarized in the following Lemma.

Lemma 3.8. LetQ= (Q,ϕ)∈ [0,1)× [0,2π) and 0<rQ< 1−Q. If w is such that

w
(
BrQ(Q)

)
= Br0(O) for some 0 < r0 < 1,

then Q and rQ satisfy the equations

Q = T
1− r2

0
1− r2

0T
2 and rQ = r0

1− T 2

1− r2
0T

2 , (3.20)

and the parameters T and r0 are given as

T =
1 +Q2 − r2

Q −
√

(1 +Q2 − r2
Q)2 − 4Q2

2Q and

r0 =
1−Q2 + r2

Q −
√

(1−Q2 + r2
Q)2 − 4r2

Q

2rQ
. (3.21)

In particular, the angular parameter ϕ ofQ and w is identical. Moreover r0>rQ and T >Q.

Proof. First, we relate the unknown radius r0 with the action of w. Using the fact that w−1 (a
Möbius transform) maps circles onto circles and has an axis of symmetry in direction eiϕ gives

w−1(±r0e−iϕ) = ±r0 + T

1 + Tr0

!= Q± rQ,

thus by adding the equations for “+” and “−”, we get

2Q = r0 + T

1− Tr0
− r0 + T

1− Tr0
= 2T 1− r2

0
1− T 2r2

0
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which is the first equality in (3.20), while subtraction yields

2rQ = r0 + T

1 + Tr0
+ r0 − T

1− Tr0
= 2r0

1− T 2

1− r2
0T

2 ,

which is the second equality. Resolving the quadratic terms (3.20) for T and r0 and picking the
solutions in [0,1] gives the claimed expressions (3.21), see [SYB84, section 5].

Lemma 3.8 states that any non-centered disk can be mapped onto a centered disk by a Möbius trans-
form, i.e. a conformal map operating on the unit disk. We will use this for solving a CEM forward
problem for non-centered inhomogeneities. The following theorem shows that a non-concentric
CEM forward problem can be reduced to a modification of a centered forward problem:

Theorem 3.9 (Conformal mapping of the CEM). Let Ω=B1(O) with electrodesE1,...,EL⊂ ∂Ω
and contact impedances z1,...,zL > 0. For σ1 > 0, η ∈R such that σ1 +η > c, Q= (Q,ϕ) ∈
[0,1)× [0,2π) and 0<rQ< 1−Q, consider the conductivity

σ = σ1 + ηχBQ(rQ) ∈ L∞+ (Ω). (3.22)

For I∈RL� , let (u,U) be the solution of (2.17) in the above setting with Dirichlet and Neumann
traces f = u|∂Ω and jν = σ1

∂u
∂r |∂Ω, respectively. Let w be the conformal map with parameters

ϕ and T as in Lemma 3.8 and denote by

θ̃ := g(θ) := arg(w(eiθ)), that is θ = g−1(θ̃) = arg(w−1(eiθ̃)),

the boundary parametrization under conformal mapping. Finally, define by

uw := u ◦ w−1 and σw := σ ◦ w−1

the w-transformed potential and conductivity, respectively, by

fw := f ◦ g−1 and jwν (θ̃) := 1− T 2

1 + T 2 + 2T cos(θ̃)
jν(g−1(θ̃)) (3.23)

the w-transformed Dirichlet and Neumann data, respectively, and by

Ewl := g(El) and zwl (θ̃) := 1 + T 2 + 2T cos(θ̃)
1− T 2 zl, l = 1, . . . , L, (3.24)

the w-transformed electrodes and contact impedances, respectively.
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Then, I and U satisfy the w-transformed CEM equations

−∇ · (σw∇uw) = 0 on Ω, (3.25)

fw(θ̃) + zwl (θ̃)jwν (θ̃) = Ul on Ewl , l = 1, . . . , L, (3.26)∫
Ew
l

jwν dS = Il, l = 1, . . . , L, (3.27)

jwν = 0 on ∂Ω \ {Ew1 ∪ . . . ∪ EwL } , (3.28)

This means that the ND map Rσ of the initial problem agrees with the ND map Rwσ of the
w-transformed problem.

Note that the contact impedances zwl in Theorem 3.9 are varying in angular direction along each
electrode, so equations (3.25)–(3.28) are an extension of the classical CEM model (2.12)–(2.15).

Proof of Theorem 3.9. Set

wr := |w| , w−1
r̃ :=

∣∣∣w−1
∣∣∣ , wθ := arg(w), w−1

θ̃
:= arg(w−1).

Being conformal maps, w and w−1 satisfy the Cauchy-Riemann equations. In particular, we have at
the boundary that

g′(θ) = ∂wθ
∂θ

(r, θ)
∣∣∣∣
r=1

= ∂wr
∂r

(r, θ)
∣∣∣∣
r=1

and (g−1)′(θ̃) =
∂w−1

θ̃

∂θ̃
(r̃, θ̃)

∣∣∣∣∣
r̃=1

= ∂w−1
r̃

∂r̃
(r̃, θ̃)

∣∣∣∣∣
r̃=1

.

By the cosine rule, we find that

(wr(r, θ))2 =

∣∣∣rei(θ−ϕ) − T
∣∣∣2∣∣1− rT ei(θ−ϕ)
∣∣2 = r2 + T 2 + 2rT cos(θ − ϕ)

1 + r2T 2 + 2rT cos(θ − ϕ) and

(
w−1
r̃ (r̃, θ̃)

)2
=

∣∣∣r̃eiθ̃ − T ∣∣∣2∣∣∣1 + r̃T eiθ̃
∣∣∣2 = r̃2 + T 2 − 2r̃T cos(θ̃)

1 + r̃2T 2 − 2r̃T cos(θ̃)
,

resulting (after some more algebra) in

g′(θ) = ∂wr
∂r

(r, θ)
∣∣∣∣
r=1

= 1− T 2

1 + T 2 − 2T cos(θ − ϕ) and

(g−1)′(θ̃) = ∂w−1
r̃

∂r̃
(r̃, θ̃)

∣∣∣∣∣
r̃=1

= 1− T 2

1 + T 2 + 2T cos(θ̃)
. (3.29)

Moreover, it follows from (3.19) that the modulus is constant along the boundary in angular direc-
tion. Again using the Cauchy-Riemann equations, this gives

0 = ∂wr
∂θ

(r, θ)
∣∣∣∣
r=1

= − ∂wθ
∂r

(r, θ)
∣∣∣∣
r=1

and 0 = ∂w−1
r̃

∂θ̃
(r̃, θ̃)

∣∣∣∣∣
r̃=1

= −
∂w−1

θ̃

∂r̃
(r̃, θ̃)

∣∣∣∣∣
r̃=1

.
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When transforming a potential u defined on the unit disk conformally to uw by

uw(w(z)) = u(z), i.e. uw(z) = u(w−1(z)),

then (3.25) is a classical result for elliptic PDEs under conformal mapping, see e.g. [Neh52, SL91].
Moreover, uw(1,θ̃) = u(w−1(1,θ̃)) = f(g−1(θ̃)) = fw(θ̃). For σ ≡ σ1 near the boundary and using
the two-dimensional chain-rule in polar coordinates, the transformed Neumann data reads

σ1
∂uw

∂r̃
(r̃, θ̃)

∣∣∣∣
r̃=1

= σ1
∂

∂r̃
(u ◦ w−1)(r̃, θ̃)

∣∣∣∣
r̃=1

= σ1
∂u

∂r
(w−1(r̃, θ̃))∂w

−1
r̃

∂r̃
(r̃, θ̃)

∣∣∣∣∣
r̃=1

+ σ1
∂u

∂θ
(w−1(r̃, θ̃))

w−1
θ̃

∂r̃
(r̃, θ̃)

∣∣∣∣∣
r̃=1︸ ︷︷ ︸

=0

= 1− T 2

1 + T 2 + 2T cos(θ̃)
jν(g−1(θ̃)) = jwν (θ̃). (3.30)

This immediately implies (3.28). Moreover for θ∈El, that is θ̃= g(θ)∈Ewl , we have that

Ul =f(θ) + zljν(θ) = f(g−1(θ̃)) + zljν(g−1(θ̃))

=fw(θ̃) + zl
1 +R2 + 2R cos(θ̃)

1−R2 jwν (θ̃) = fw(θ̃) + zwl (θ̃)jwν (θ̃) = Uwl

for l= 1,...,L, which is (3.26).

Finally, we obtain (3.27) by a change of variables in (2.14) together with (3.30) and (3.29) as

Il =
∫
El

jν(θ) dθ =
∫
g(El)

jν(g−1(θ̃))
(
g−1

)′
(θ̃) dθ̃

(3.30)=
∫
Ew
l

1 + T 2 + 2T cos(θ̃)
1− T 2 jwν (θ̃)

(
g−1

)′
(θ̃) dθ̃ (3.29)=

∫
Ew
l

jwν (θ̃) dθ̃.

As in the preceding section 3.2.1, the conformal image of the non-concentric conductivity is con-
centric, thus the transformed Dirichlet and Neumann data can again be expressed by Fourier series
as

fw(θ̃) = uw(1, θ̃) = ũ0 +
∞∑
k=1

ãk cos(kθ̃) + b̃k sin(kθ̃) and (3.31)

jwν (θ̃) = σ1
∂uw

∂r̃
(1, θ̃) = σ1

∞∑
k=1

dk
(
ãk cos(kθ̃) + b̃k sin(kθ̃)

)
, (3.32)

for some Fourier coefficients ũ0,ãk,b̃k, k ∈N (the tilde indicates that the coefficients originate from
the set of equations (3.25)–(3.28)).

The key result of this section is that these coefficients can again be obtained from the corresponding
electrode potential U ∈RL� by an infinite linear system of equations, similar to (3.14) for the concen-
tric case. Due to the somewhat lengthy expressions for the coefficients of this new linear system, its
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3. Sensitivity analysis of the complete electrode model

definitions and the proof of the following theorem are given in Appendix B.

Theorem 3.10 (Fourier coefficients for the extended CEM). The coefficients ũ0 and
ãk,b̃k, k∈N, of (3.31) and (3.32) satisfy the linear system (B.3).

Proof. See Appendix B.

Again, by solving a truncated version of equation (B.3), the Fourier coefficients ũ0 and ãk, b̃k,
k= 1,...,N , of the potential fw and the current jwν can be obtained from the electrode potentials
U1,...,UL. For the computation of the corresponding current vector, it is reasonable to integrate
over the right-hand side of (B.1) by the same argument as previously for (3.11). This yields

Il = 1− T 2

(1 + T 2)zl

(
2ωl(Ul − ũ0)−

∞∑
k=1

ãks̃l(k)− b̃k c̃l(k)
)

+ Tσ1
1 + T 2

∞∑
k=1

dk
[
ãk (s̃l(k − 1) + s̃l(k + 1))− b̃k (c̃l(k − 1) + c̃l(k + 1))

]
, (3.33)

where s̃l(k) and c̃l(k) are defined analogously to (3.9), replacing θl by θ̃l and ωl by ω̃l, l = 1,...,L.
Again, Remark 3.4 applies regarding the truncation. In this case, the truncation index depends on
the conformally mapped electrodes and thus onQ and rQ. For all following computations, we set

Nw := min {1000 + 32Nw
min, Nmax} , where Nw

min := d2π/min {|Ew1 | , . . . , |EwL |}e , (3.34)

and Nmax should be chosen with respect to the system memory limit since Nw
min→∞ for Q→ ∂Ω.

In all our computations implemented in MATLAB, we set Nmax = 32000 on a workstation with
120 GB of memory. This truncation limit is attained only very close to the boundary, e.g. for small
electrodes and Q> 0.95. Computations were performed for L= 5 and L= 8 in sections 3.5.1 and
3.5.2 and for L= 16 in section 3.5.3 and in the numerical examples of section 6.4.1.

Then for σ as in (3.22), we can compute the current-to-voltage map Rσ by Algorithm 2.

We conclude this section with the following

Remark 3.11. The scaling of the complex plane z 7→ αz, α > 0, is a conformal map. The
normal current density resulting from a transformed potential is jν 7→ α−1jν . The corre-
sponding boundary settings for preserving the ND map are El 7→αEl and zl 7→αzl. Thus,
we can consider disks of arbitrary size.
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3. Sensitivity analysis of the complete electrode model

Algorithm 2: Analytic CEM forward solution by conformal mapping
input : Conductivity values σ1, σ0, perturbation geometry Q= (ϕ,Q), rQ, electrode

parameters El, zl, l= 1,...,L.
output: Current-to-voltage map Rσ.

1 Choose a basis U = (U (1)|...|U (L−1)) of RL� ;
2 Define a truncation index N (e.g. by (3.34));
3 Compute parameters T and r0 by (3.21);
4 Apply conformal map w to obtain Ewl and zwl ;
5 for m= 1 to L−1 do
6 Compute ũ(m)

0 ,ã
(m)
k ,b̃

(m)
k , k= 1,...,N , by solving the truncated system (B.3) with

coefficients given by (B.4);

7 Compute I(m)
l for l= 1,...,L by equation (3.33).

8 end
9 Compute Rσ =U ·(I(1)|...|I(L−1))+;

3.3. Sensitivity distribution on the disk

With the analytic tool of the previous section, the sensitivity for detecting circular conductivity
perturbations can be tracked throughout the domain Ω =B1(O). To that end, we fix a background
conductivity σ1 > 1, a perturbation value η 6= 0 such that σ1 +η > c, and a sensitivity level λ > 0.
Then for Q= (Q,ϕ)∈Ω, we determine the radius rQ such that λ(σ1+ηχBQ(rQ)), σ1 =λ.

The radius rQ is determined iteratively by computing multiple forward solutions. Due to the mono-
tonicity of the sensitivity, this can be done by a simple line search strategy. In our experiments, we
observe a locally almost linear relation between the perturbation size and the sensitivity. Thus for
some initial guess r(0)

Q > 0, we use the iterative strategy of Algorithm 3 to obtain an approximation
to rQ.

In our tests, Algorithm 3 converges quickly, usually in 2–5 iterations for a relative tolerance of
∆λ= 0.01 if r(0)

Q is within an order of magnitude from rQ.

With this algorithm, we “sample” the perturbation sizes for a fixed sensitivity λ>0 at a set of points
inside the domain. That way, we obtain a sensitivity map for a certain background, contrast, and
electrode setting.

Figures 3.3(a)–(c) display sensitivity maps for different electrode geometries. The sensitivity distri-
bution is visualized by plotting the perturbation area

A
(k)
Q := πr2

Q(k) versus location Q(k), k = 1, . . . ,K,

(black dots and colored interpolation) for K=1185 equi-distributed sample points. For a better idea
of the sensitivity distribution, these figures also show contour lines for the values A(k)

Q .
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3. Sensitivity analysis of the complete electrode model

Algorithm 3: Iterative computation of rQ

input : σ1, η, Q, initial guess r(0)
Q , target sensitivity λ, relative tolerance ∆λ, electrode

parameters.
output: Approximation for rQ.

1 Set k= 0, A(−1) = 0, λ(−1) = 0;
2 Set σ(0) =σ1 +ηχB

r
(0)
Q

(Q);

3 Compute λ(0) =λσ(0), σ1
using Algorithm 2;

4 while
∣∣∣λ(k)−λ

∣∣∣/λ>∆λ do

5 Set A(k) =π(r(k))2, a(k) = A(k)−A(k−1)

λ(k)−λ(k−1) , b(k) =λ(k)−a(k)A(k);

6 Set r(k+1)
Q =

√
λ−b(k)

πa(k) ; // Affine fit λ= a(k)π(r(k+1)
Q )2 +b(k)

7 Set k← k+1;
8 Set σ(k) =σ1 +ηχB

r
(k)
Q

(Q);

9 Compute λ(k) =λσ(k), σ1
using Algorithm 2;

10 end

11 Set rQ= r
(k)
Q ;

The computation parameters are

σ1 = 1, η = 1, λ = 0.01, ∆λ = 0.01, z1, . . . , zL = 0.01, M = L,

and adjacent currents Iadj are used. The number of Fourier coefficients is chosen by (3.34). In con-
trast to the continuum model, the sensitivity distribution is non-concentric and highly dependent
on the electrode configuration.

Figure 3.3(d) shows AQ versus Q plots in radial direction from the center of the disk to an electrode
center at the boundary for L= 8 electrodes (cf. red line in Figure 3.3(a)) and L= 16 electrodes, with
electrode width |El|= π

16 in the latter case. For this concentric electrode arrangement, we observe
a roughly sigmoidal (“S-shaped”) behaviour in radial direction. We also observe that increasing the
number of electrodes does not increase the sensitivity near the center of the disk, but greatly increases
sensitivity near the boundary.

In the following section, we will investigate how the measurement sensitivity of the CEM compares
to the sensitivity of Calderón’s model.
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3. Sensitivity analysis of the complete electrode model

Figure 3.3.: Sensitivity maps for various electrode configurations on the unit disk: Perturbation
areas versus perturbation centers (Q7→AQ=πr2

Q, black dots), interpolation (colored
surface) and “equal sensitivity" contour lines (bottom).

(a) Concentric electrode configuration with L= 8 electrodes, |E1|,...,|E8|= π
8 . Although the sensi-

tivity map appears almost radially symmetric, it has notable changes in angular direction near the
electrodes, which is highlighted by the contour plot. The red line shows the sensitivity change in
radial direction from the domain center towards the center of the first electrode; cf. Figure 3.3(d).

(b) Same configuration as in Figure 3.3(a), but with three electrodes removed (L= 5). The sensitivity
decreases significantly in the areas where the electrodes are removed, resulting in bigger values for
AQ.
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3. Sensitivity analysis of the complete electrode model

[Figure 3.3 continued]

(c) Setting as in Figure 3.3(a), but with varying electrode sizes, leading to different sensitivities near
small and big electrodes.

(d) Red line: AQ versus |Q| along a radial line for the concentric electrode arrangement; cf. Figure
3.3(a). The plot stops at |Q| = 0.93 because closer to the boundary, the radius rQ to preserve
sensitivity λ= 0.01 would exceed the domain boundary.
Black line: AQ versus Q for a concentric 16 electrode arrangement, |El| = π

16 . The sensitivity
increases significantly near the boundary, but not at the center of the domain.
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3.4. Comparison of Calderón’s model and the complete electrode
model

We now compare the behaviour of the CEM with Calderón’s model. To that end, we compare the
sensitivity results of the previous section with an estimate for Calderón’s model in 3.4.1 and with
results of MacMillan et al. [MMM04] in 3.4.2.

3.4.1. A sensitivity estimate for Calderón’s model

In the introduction of section 3.1, it was pointed out that it is difficult to compare the “spectral”
sensitivity λ∗

σ,σ̃
(3.1) of Calderón’s model with the “Frobenius type” measurement sensitivities |λ|σ,σ̃

(3.2) and λσ,σ̃ (3.3) of the CEM depending on the choice of the current frame. Nonetheless, we
can compare the sensitivities of both models to find similarities and differences of the sensitivity
behaviour.

To that end, we need to obtain sensitivity information for the continuum model for circular per-
turbations. For σ as in (3.4), the eigenvalues and eigenfunctions of Rσ are given by (3.6) and (3.7)
as

τσ,k := (σ1dk)−1 and cos(k ·)/
√
π, sin(k ·)/

√
π, k ∈ N,

with dk given by (3.5). In the homogeneous case σ0 =σ1, we have that dk=k and thus, ‖Rσ1‖2 =σ−1
1

(in particular ‖R1‖2 = 1, so λ∗σ,1 is already a normalized/relative quantity).

For centered conducting perturbations in (3.4), i.e. σ0 = σ1 +η, η > 0, we have that −1< c1 < c2 <

...< 0 for dk in (3.5). This means that

‖(Rσ −Rσ1)fk‖L2(∂Ω) = |τσ,k − τσ1,k| ‖fk‖ =
∣∣∣∣ 1 + ck
σ1k(1− ck)

− 1
σ1k

∣∣∣∣ = −2ck
σ1k(1− ck)

is decreasing in k for eigenfunctions fk. The sensitivity for detecting centered perturbations in
Calderón’s model (cf. equation (3.1)) is thus given by

λ∗σ,σ1 = −2c1
σ1(1− c1) , c1 = σ1/σ0 − 1

σ1/σ0 + 1r
2
0.

Solving this for r0 yields

r0 =
√√√√ λ∗σ,σ1σ1 (σ1/σ0 + 1)(

2− λ∗σ,σ1σ1
)

(1− σ1/σ0)
for

σ1
σ0

< 1, 0 ≤ λ∗σ,σ1 ≤
2
σ1

and λ∗σ,σ1 ≤
1
σ1
− 1
σ0
.

The restrictions on λ∗σ,σ1 guarantee that 0 ≤ r0 ≤ 1. For the special case σ1 = 1, η = σ0−σ1 = 1
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considered in the previous section, we obtain

r0 =

√√√√ 3λ∗σ1,1
2− λ∗σ1,1

for 0 ≤ λ∗σ,1 <
1
2 .

As in the CEM, the relation between the perturbation area πr2
0 and the corresponding sensitivity

λ∗σ1,1 is almost linear locally. This is shown in Figure 3.4, where πr2
0 is plotted versus λ∗σ1,1 for

λ∗σ1,1 ∈ [0,1/2).

Figure 3.4.: Perturbation area versus sensitivity for σ1 = 1 and η = 1 on the unit disk. Black
line: Continuum model sensitivities λ∗σ,σ1 7→πr2

0 for λ∗σ,σ1 ∈ [0,1/2). Red line: CEM
sensitivities λσ,σ1 7→ AO in the symmetric 8 electrode setting of Figure 3.3(a). In
both cases, the relation is almost linear locally.

Unfortunately for non-concentric perturbations, we are not aware of a closed-form formula to com-
pute the sensitivity versus a homogeneous background. However, we can use conformal maps to
derive a lower bound. To that end, let again Q= (Q,ϕ) ∈B1(O) and consider the conformal map
w−1 that maps Br0(O) onto BrQ(Q) for some rQ> 0. The parameters are given by (3.20) as

T = T (Q, r0) =
r2

0 − 1 +
√

(1− r2
0)2 + 4Q2r2

0

2Qr2
0

and rQ = r0
1− T (Q, r0)2

1− r2
0T (Q, r0)2 . (3.35)

Using (3.29) for w−1, any boundary potential fk and the corresponding normal current jν,k are
transformed to

fw
−1

k (θ) = fk(g(θ)) and jw
−1

ν,k (θ) = 1− T (Q, r0)2

1 + T (Q, r0)2 − 2T (Q, r0) cos(θ − ϑ)jν,k(g(θ)),

which is (3.30) for w−1 instead of w.

Denote by σw = σ ◦w the w−1-transformed conductivity, i.e. σw(w−1(x)) =σ(x). Although we do
not know the singular system ofRσw explicitly, we can get a lower bound for λ∗σw,σ1 by considering
the boundary potential f=cos(·)/

√
π with eigenvalue τσ=(σ1d1)−1. Using the conformal mapping
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properties Rσwjw
−1

ν = τσf
w−1

and Rσ1j
w−1
ν = τσ1f

w−1
and substituting fw

−1
and jw

−1
ν into the

definition of λ∗σw,σ1 , we obtain

λ∗σw,σ1 ≥

∥∥∥(Rσw −Rσ1)jw−1
ν

∥∥∥
2∥∥jw−1

ν

∥∥
2

= |τσ − τσ1 |

∥∥∥fw−1
∥∥∥

2∥∥jw−1
ν

∥∥
2

= αwλ
∗
σ,σ1 , where αw =

∥∥∥fw−1
∥∥∥

2∥∥jw−1
ν

∥∥
2
.

To find the radius r0 resulting in λ∗σw,σ1 ≥ λ= αwλ
∗
σ,σ1 for some fixed λ > 0, we need to solve the

implicit equation

r0 =
√√√√ α−1

w λσ1 (σ1/σ0 + 1)(
2− α−1

w λσ1
)

(1− σ1/σ0)
.

It is implicit because the parameter T of the conformal mapw−1 and thus αw depend on r0. However
for α−1

w λ� 1, r2
0 depends almost linearly on λ and the solution can be found quickly by the fixed-

point iteration

r0,k+1 =
√√√√ α−1

wkλσ1 (σ1/σ0 + 1)(
2− α−1

wkλσ1
)

(1− σ1/σ0)
, r0,0 =

√
λσ1 (σ1/σ0 + 1)

(2− λσ1) (1− σ1/σ0) ,

where w−1
k is the conformal map with parameter T =T (Q,r0,k).

Once r0 is found (to arbitrary precision), we can explicitly compute the size AQ = πr2
Q of a

conductivity perturbation centered about Q and resulting in sensitivity λ∗σw,σ1 ≥ λ. In partic-
ular, AQ → 0 as Q → 1 which is illustrated for σ1 = 1 and various contrasts η ∈ {1,10,100},
i.e. σ0 = σ1 + η ∈ {2,11,101}, in Figure 3.5. The perturbation size is clearly nonlinear in the
contrast and again sigmoidal in the location; cf. Figure 3.3(d).

3.4.2. Comparison with results of MacMillan et al.

In [MMM04], the detectability of perturbations in conductivity from a finite set of Neumann data
for the continuum boundary model is investigated. The central result in this work, [MMM04,
Corollary 2.5 and section 2.3.2.], is an estimate of the form

‖Rσjν − f‖H1/2(∂Ω) + ε ≥ sup
j1,j2 6=0

C |
∫
Ω(σ − σ̃)∇u1 · ∇u2 dx|

‖j1‖H−1/2(∂Ω) ‖j2‖H−1/2(∂Ω)
, jν ∈ I∗, C = max

z∈Ω

σ(z)
σ̃(z) , (3.36)

where I∗ ⊂ H
−1/2
� (∂Ω) is a given finite set of Neumann data, f = Rσ̃jν + εn is noisy Dirichlet

data, uk is a potential for σ satisfying Rσjk = uk|∂Ω for Neumann data jk ∈H
−1/2
� (∂Ω), k ∈ {1,2},

and ε= ε(εn,jν) is an error term depending on the data error εn and the non-optimality of jν for
distinguishing σ from σ̃. Given a fixed ε > 0, meshes called graded grids are generated in [MMM04,
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section 2.3.2.] by finding the sizes Aη = |supp(η)| of local perturbations η=σ− σ̃ such that

sup
j1,j2 6=0

C

∣∣∣∣∣
∫

supp(η)
η∇u1 · ∇u2 dx

∣∣∣∣∣‖j1‖−1
H−1/2(∂Ω) ‖j2‖

−1
H−1/2(∂Ω) = ε. (3.37)

To compare the radial resolution of the graded grids with our results, we plot Aη versus the center
of supp(η) in Figure 3.5 (marked with asterisks). Lacking an explicit formula, the information was
obtained from the left grid of [MMM04, Fig. 3.1], where ε=0.1 and max|η|=1 are considered. The
perturbation sizes for a fixed ε show a similar radial behaviour as our continuum sensitivities of the
previous sections.

Figure 3.5.: CEM sensitivity (red line): Relative sensitivity for the 16 electrode configuration;
as in Fig. 3.3(d).
Spectral sensitivity of Calderón’s model (black lines): Perturbation size versus
radial position is plotted (|Q| 7→AQ) for the lower bound 0.02 = λ≤ λ∗σw,σ1 , back-
ground σ1 = 1 and the contrasts η = 1 (solid line), η = 10 (dashed) and η = 100
(dotted) as described in section 3.4.1.
Sensitivity by MacMillan et al. (asterisks): Sensitivity plot center(η) 7→Aη from
analysis by MacMillan et al. [MMM04], as described in section 3.4.2. The sensitiv-
ity behaviour towards the boundary, although in a different norm, is similar to our
results of section 3.4.1.

3.5. Sensitivity-based discretizations

For solving the ICP numerically, the discretized conductivity space DP was introduced in section
2.3. This discretization is a trade-off between achievable resolution of the reconstructed image, the
underdetermination of the inverse problem, and the computational cost. The previous section shows
that the sizes of detectable conductivity perturbations vary greatly throughout the domain. For EIT
with noisy data, we can not expect to recover conductivity details which have a sensitivity below
the noise level. Thus, it is reasonable to discretize the conductivity space adaptively based on the
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sensitivity information: In regions of low sensitivity, we can discretize coarsely to limit the number
of unknowns, while refining the discretization in regions of high sensitivity allows us to resolve
details that would be lost otherwise. A positive side-effect is that from the local “blockiness” of the
discretization, we already get a visual idea of the local resolution that can be expected. This helps
for distinguishing artifacts from information contained in the image.

One way to generate piecewise constant discretizations that reflect the local sensitivity is to use a
meshing algorithm which is capable of generating tailored local mesh sizes. Then, the interpolation
of the local sensitivity samples as in Figures 3.3(a)–(c) can be used as a local mesh size function5.

A more straight-forward discretization approach is given in this section. In 3.5.1, we will “fill”
the domain with non-overlapping circles obtained from the analytic solution for a fixed sensitivity
λ > 0. Applying a Voronoi tessellation to the circle centers, we obtain a discretization with cells
having roughly homogeneous sensitivity for conductivity changes at constants.

In almost concentric settings, we observed a behaviour of the perturbation sizes which is roughly
sigmoidal with respect to the electrode distance. Using this observation, we define a heuristic ap-
proximation of sensitivity based discretizations in 3.5.2 which can be computed rapidly. The concept
is extended to non-circular domains in 3.5.3, and for triangulations in 3.5.4.

3.5.1. Optimal resolution meshes on the disk

The design idea of sensitivity based (piecewise constant) discretizations is that changes in each con-
ductivity basis coefficient result in roughly the same amount of change in the measurements. For
circular domains and circular perturbations, we can use Algorithm 3 to determine perturbation
sizes that satisfy this criterion. A set of non-overlapping circular perturbations, each leading to
λσ,σ1 = 0.02, is shown in Figure 3.6(a).

Recall that we want to obtain a partition P of the entire domain, which is not possible with non-
overlapping circles. To obtain a partition, we thus need to assign the space outside the circles to some
cells. A natural way to obtain a partition of Ω with one cell for each circle is to apply a Voronoi
tessellation to the circle centers, and truncate it at the domain boundary. This does not guarantee
that the entire circle is contained in the cell belonging to the circle center, but gives good results
nonetheless in all of our tests.

However, the Voronoi cells can be considerably bigger than their corresponding circles, in particular
if the circles were not packed densely in Ω. The set of circles in Figure 3.6(a) was obtained from
the sampled sensitivities in Figure 3.3(a) by successively adding or rejecting perturbation supports
corresponding to the points Q(k), k = 1,...,K, as described in Algorithm 4. The problem here is
that the set of K = 1185 test points is rather coarse for the purpose of filling the domain densely.

5With appropriate extrapolation outside the convex hull.
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Algorithm 4: Sensitivity based domain discretization using a Voronoi tessellation.
input : Domain and electrode geometry, conductivity values σ1,σ0> 0, sensitivity λ> 0,

ordered set of points T =
(
Q(1),...,Q(K)

)
⊂Ω.

output: Domain discretization P .

1 Set B= ∅, C= ∅;
2 repeat
3 Pick the first element Q from T and set T := T \ Q;
4 Determine rQ by Algorithm 3;
5 if BrQ(Q)⊂B1(O) and BrQ(Q)∩C= ∅ then
6 Set B :=B∪Q, C := C∪BrQ(Q), T := T \BrQ(Q);
7 end
8 until T = ∅;
9 Set P as Voronoi tessellation of B, truncated to B1(O);

Thus, one could either choose a much finer test set beforehand, or interpolate the perturbation areas
linearly between the sample points on a much finer set of points. To avoid negative values when
extrapolating linearly outside the convex hull of the sample points, we define

Amin := 1
2 min
k=1,...,K

AQ(k)

as a lower bound for the extrapolated perturbation areas. This is done, using 80081 interpolation
points, in Figure 3.6(c). Figures 3.6(b) and (d) show the truncated Voronoi tessellations correspond-
ing to (a) and (c). Figures 3.6(e) and (f) show Voronoi tessellations corresponding to the geometries
of Figures 3.3(b) and 3.3(c).
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Figure 3.6.: Non-overlapping perturbations and Voronoi tessellations generated by Algorithm
4.

(a) Set of non-overlapping perturbations, each
having a sensitivity of λ= 0.02 in the set-
ting of Figure 3.6(a). K = 1185 sample
points were used.

(b) Voronoi tessellation corresponding to the
perturbation centers of Figure 3.6(a) (90
cells).

(c) The perturbation areas of Figure 3.6(a)
were interpolated/extrapolated on a set of
80081 points before applying Algorithm 4.

(d) Voronoi tessellation corresponding to the
perturbation centers of Figure 3.6(c) (142
cells).
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[Figure 3.6 continued.]

(e) Voronoi tessellation corresponding to the
5 electrode setting of Figure 3.3(b) (80
cells).

(f ) Voronoi tessellation corresponding to the
varying size 8 electrode setting of Figure
3.3(c) (143 cells).
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3.5.2. A heuristic approximation of sensitivity based discretizations

In the computation of the analytic CEM solutions by Algorithm 2, a linear system with a dense
(2N + 1)× (2N + 1) coefficient matrix needs to be initialized and solved (by QR factorization),
where N is the truncation index of the Fourier sum. Although this matrix is reasonably condi-
tioned even for large N , the memory and computation time increase quadratically. Figure 3.7 shows
the truncation index N and the computation time (in seconds) in our non-optimized MATLAB im-
plementation versus the location Q in the settings of Figure 3.3(c), i.e. for 8 symmetric electrodes
and λ = 0.02. In particular, the computation of the analytic solution is costly near the boundary,
and Algorithm 4 for computing the sensitivity based discretization is mainly of theoretical interest,
but not feasible in practice.

Figure 3.7.: Computational effort for initializing the matrix coefficients and solving the linear
system (3.14): Truncation index N (red) and computation time (black, in seconds)
versus the radial parameter Q of the perturbation center Q. The dashed line marks
our limit Nmax = 32000. Setting as in Figure 3.3(a).

To reduce the computation time drastically, we want to exploit the sigmoidal behaviour (cf. Figure
3.3(d)) of the sensitivity by using a heuristic sigmoidal approximation of the sensitivity map. In
Figures 3.3(a)–(c), we observe that the perturbation size decreases as the perturbation center approx-
imates electrode corners. This is because the current density ‖σ∇u‖ is very high in these locations,
thus changing σ there leads to bigger changes in the boundary potentials.

Assume now that we know, for some λ > 0 and some electrode setting, the perturbation size AO
at the disk center. Denote by E−l and E+

l the left and right electrode corners of the lth electrode.
Moreover define, for each Q∈Ω, the distance to the closest left and right electrode corners by

d±Q := min
l=1,...,L

∣∣∣Q− E±l ∣∣∣ ,

53



3. Sensitivity analysis of the complete electrode model

and denote their maximum values by d±max := maxQ∈Ω
{
d±Q

}
. Finally define, for all Q∈Ω,

rH
Q := rlim

1−

√
d+
Q · d

−
Q

d+
max · d−max

 , 0� rlim < 1,

which is a kind of “normalized radial parameter” with respect to the closest electrode corners.

Then, our proposed heuristic approximation AH
Q for the perturbation size AQ is given by a scaled

and shifted cosine function:

AH
Q := AO

2
(
1 + cos

(
πrH
Q

))
. (3.38)

The parameter rlim < 1 is introduced to avoid rHQ → 1 and thus AHQ → 0. In the following, we let
rlim = 2 |Emin|

|∂Ω| , where |Emin|= min{|E1|,...,|EL|}, to account for the increased resolution obtained
near electrodes when using smaller electrodes.

Figure 3.8 contains plots of the sampled sensitivities AQ (black dots) and the heuristic approxima-
tions AH

Q (blue surface). The approximation is very good in particular in the symmetric electrode
setting, and somewhat off near the boundary where the electrode setting is very asymmetric.

Figure 3.8.: Heuristic approximations AH
Q (blue surface) to the sensitivities AQ (black dots) of

Figures 3.3(a)–(c).

(a) Approximation for the setting of Figure 3.3(a). The red line shows the radial behaviour of the
sensitivity samples while the green line shows the heuristic approximation at the same locations.
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[Figure 3.8 continued]

(b) Approximation for the setting of Figure 3.3(b). The perturbation sizes are well approximated in
most regions, but somewhat under-estimated near the three removed electrodes.

(c) Approximation for the setting of Figure 3.3(a). The heuristic is good in the interior of the domain,
but is slightly off near the electrodes.
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3. Sensitivity analysis of the complete electrode model

Remark 3.12. Definition (3.38) is just a (crude) heuristic, so it is probably a bad approxima-
tion in some specific electrode settings. In particular, it does not use information about the
measurement current frame or contact impedances explicitly. Moreover, it approaches zero
as Q approaches an electrode corner, which is not necessarily the case for AQ. However, it
works well for our almost symmetrical electrode configurations, low contact impedances
and adjacent currents.

When using the heuristic, the computational cost is reduced to solving one single linear system
with 2N+1≈ 3000 unknowns and takes only about one second in our MATLAB implementation,
instead of a few days for evaluating AQ for hundreds of sample points near the boundary.

Moreover, the sensitivity information in the definition of AH
Q is solely contained in the perturbation

size AO at the disk center, which we observed to be roughly linear over a wide range of sensitivity
values in section 3.4.1 and in Figure 3.4 therein. Thus, we define a sensitivity dependent heuristic for
a sensitivity based perturbation size estimate by

AH
Q(λ) := λ

λ0

AO
2
(
1 + cos

(
πrH
Q

))
, (3.39)

where λ0 is the sensitivity for computing AO. With (3.39), we can generate approximations of
adaptive sensitivity based discretizations, called adaptive meshes in the following, for arbitrary sensi-
tivities.

3.5.3. Adaptive meshes for simply connected domains

The analytic forward solutions and the sensitivity analysis of the previous sections are restricted to
circular domains. They rely on the closed-form conformal maps on the unit disk. The Riemann
mapping theorem guarantees conformal maps from any simply connected domain in R2 onto the
unit disk. However, the corresponding conformal map is usually not available in closed form, so the
transformed Dirichlet data, Neumann data and contact impedances can not be expressed in closed
form as in (3.23) and (3.24).

One possible way to overcome this is to compute the transformation numerically, e.g. by the
Schwarz-Christoffel mapping [Neh52], and to approximate the resulting (non-constant) contact im-
pedances by the constants

z̄wl := |Ewl | |El|
−1 zl, (3.40)

where Ewl are the conformally mapped electrodes. This approximation is reasonable for sufficiently
small electrodes and low contact impedances. For the resulting conformally mapped setting on the
unit disk, we can then compute a sensitivity based discretization, and map it back onto the initial
domain using the inverse conformal map. Figure 3.9 shows an L-shaped domain with 16 electrodes
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and its conformal image, on which the sensitivity based discretization was computed. The conformal
mapping was performed in MATLAB using the Schwarz-Christoffel toolbox (version 2.3) provided
by Tobin A. Driscoll on http://www.math.udel.edu/~driscoll/SC. Again, we also compute
the heuristic adaptive meshes instead of evaluating the sensitivity explicitly. Note that the conformal
mapping is unique only up to Möbius transforms, i.e. the transformations given in (3.18). In our
example we have chosen, among all Möbius transforms, the one (up to rotation) that maximizes the
minimum electrode length.

Figure 3.9 emphasizes a limitation of the conformal mapping approach: Non-convex domains, in
particular with re-entrant corners, can lead to very small electrodes. Thus for the Fourier-based
approach, a very high number of Fourier coefficients is required to resolve the boundary potentials
and currents in the representations (3.31) and (3.32). In particular, the truncation limitNmax =32000
was attained already for points with radial parameter Q> 0.85. This means that a reliable compu-
tation of the analytic forward solution is impractical near the boundary. However, the heuristic
approximation gives good results; see Figures 3.9(c), (d), (f).

Figure 3.9.: L-shaped geometry (a) and its conformal image on the unit disk (b). The re-entrant
corner of the L-shape corresponds to the leftmost point of the circle (red dots).
On the circular domain, the sensitivity based discretization is performed and the
resulting disks are mapped back to the original domain.

(a) L-shaped domain containing the confor-
mal images of the circular perturbations
AQ of (b) for λ= 0.02.

(b) Conformal image of (a) and circular per-
turbations from Algorithm 4 for L = 16,
zl = 0.01, l= 1,...,L, and λ= 0.02.
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[Figure 3.9 continued]

(c) As in (a), but using the heuristics AH
Q. (d) As in (b), but using the heuristics AH

Q.

(e) Voronoi tessellation of (a). (f) Voronoi tessellation of (c).

3.5.4. Adaptive triangulations

The Voronoi based domain partition presented previously is based on the availability of explicit
forward solutions for circular perturbations. In practice, we rarely want to compute thousands of
these forward solutions, which motivated the heuristic approximation of these meshes in sections
3.5.2 and 3.5.3. However in both cases, we end up with a partition of the domain which is not
conforming with FEM triangulations; i.e. the FEM triangulation is not a refinement of the conduc-
tivity discretization given byVoronoi tessellation. Thus, non-trivial projections need to be applied
between computing the forward solution and evaluating the linearized problem. This might impact
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the convergence properties of the Newton algorithm in particular near the stopping criterion.

To overcome that issue, we will generate sensitivity based conductivity triangulations. For conve-
nience of implementation, we fix the number of triangles in this discretization, rather than a target
sensitivity value. As a starting point, we take a generic triangulation ∆ of the domain with |∆|
triangles. This triangulation is most likely very irregular with respect to the sensitivity for pertur-
bations on each triangle. Then by (3.39), we determine the heuristic sensitivity for each triangle.
Next, we refine triangles in ∆ with higher-than-average sensitivity successively, thus reducing their
heuristic sensitivity. We repeat this process until a target number of Pt ∈N triangles is reached, that
is, |∆| ≥Pt.

In [LR06, section 5 and Figure 2], adaptively refined triangulations are used for computing the FEM
forward solutions. They are generated by solving multiple forward problems on a generic mesh and
refining this mesh successively at triangles where big “jumps” of the computed interior potential
occur. This can be done e.g. using the pdejmps and pdeadworst functions from the PDE-toolbox.
The advantage of our heuristic method is that no forward solutions need to be computed, which
decreases the initialization time of the discretization significantly (by one order of magnitude in our
MATLAB implementation).

Figure 3.10(a) shows a coarse generic triangulation of a circular setting with 8 electrodes, generated
by the MATLAB PDE-toolbox function initmesh. It has |∆|= 628 triangles. Figures 3.10(b) and
(c) show adaptive refinements of this mesh for Pt = 1500 and Pt = 5000, respectively. Figure 3.10(d)
shows an adaptive refinement generated using the functions pdejmps and pdeadworst.

Due to their refinement near the electrodes, these sensitivity based triangulations are also suitable
for solving forward problems by the FEM if Pt is sufficiently high and the triangles are not too
irregular. The latter can be achieved by an appropriate refinement strategy for the triangles, e.g. by
dividing a triangle on the longest edge, or refining it “regularly” into four triangles by connecting
the side midpoints.

In summary, the sensitivity based triangulations are easy to use, have desired sensitivity proper-
ties for piecewise constant conductivity discretizations, and are suitable for solving the discretized
forward problem by finite elements, thus we will use them in most of our numerical examples in
chapter 6. Nonetheless, examples using the Voronoi-based conductivity discretizations will also be
presented.
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Figure 3.10.: Triangulation and adaptive refinements of a circular domain with 8 electrodes.

(a) Generic triangulation of a polygonal ap-
proximation of the disk with 628 triangles.
Computation time in our MATLAB im-
plementation: 0.09s.

(b) Adaptive refinement with 1507 triangles,
based on the heuristic formula (3.39).
Computation time: 0.26s.

(c) Adaptive refinement with 5028 triangles,
based on the heuristic formula (3.39).
Computation time: 0.63s.

(d) Adaptive refinement with 5019 trian-
gles, generated using the MATLAB
PDE-toolbox functions pdejmps and
pdeadworst; cf. also [LR06, Fig. 2],
where a similar mesh is generated.
Computation time in our MATLAB
implementation: 5.6s.
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3.6. Sensitivity analysis: conclusions

The purpose of chapter 3 was to get insights about the conductivity information contained in CEM
data. To that end, Definition 3.1 of the measurement sensitivities proved to be a useful tool: The
absolute sensitivity (equation (3.2)) allowed to define a notion of distinguishability (Definition 3.2).
With this definition, upper limits for the resolution of a particular geometry, electrode setting and
background conductivity could be obtained by sampling the sensitivity for locally perturbed con-
ductivities. Moreover, a relative sensitivity was introduced (eq. (3.3)) which is more robust with
respect to the absolute conductivity values. It was used to generate sensitivity based conductivity
discretizations (Algorithm 4). These discretizations give a locally adaptive trade-off between degrees
of freedom and expected resolution for the ICP.

To evaluate the sensitivities, novel analytic forward solutions for conductivities with circular pertur-
bations on the disk were introduced. They were derived from the known continuum model forward
operator for concentric conductivities, which was extended first for the CEM by introducing a lin-
ear system of equations for the Fourier coefficients of the solution (Theorem 3.3), and then for
non-concentric perturbations by applying conformal mapping (Theorem 3.10). By approximating
non-constant contact impedances with constants, the conformal mapping approach was extended to
generate sensitivity based discretizations for non-circular domains (section 3.5.3).

Finally, the behaviour of the sensitivity for perturbations approaching boundary electrodes was stud-
ied. Based on the observed sigmoidal behaviour, a heuristic for the perturbation support for a given
sensitivity was introduced (eq. (3.38)). This heuristic was used to rapidly approximate sensitivity
based discretizations, avoiding many evaluations of the forward operator. This heuristic can be used
to obtain sensitivity based triangulations for the conductivity, which was demonstrated in section
3.5.4. Reconstructions using sensitivity based conductivity discretizations and their approximations
will be presented in chapter 6.
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4. Model-aware inversion

In the preceding chapter, the link between conductivity changes and data changes was studied to get
quantitative information about the resolution limits of a given EIT setting. In this chapter, we return
to more general domains Ω in two and three dimensions and pick up the central questions given in
the introduction of this work:

How can the ICP be solved in a “model-aware” way, using all the information contained in the
data and obtained from the model? Moreover, can “abstract” design parameters be eliminated
to make it convenient to use?

Our starting point for the design of such an inversion scheme is the inexact Newton-type method
CG-REGINN [Rie99, Rie05, LR06] which was presented in section 2.4.7 and in Algorithm 1. It
has several valuable properties: Newton-type methods are well-understood analytically and numeri-
cally, make use of the Fréchet-differentiability of the forward operator, and are very flexible, which
will be used in chapter 5. Moreover, the conjugate gradient regularization scheme is quick as it
minimizes the number of required iterations for the linearized system, which greatly reduces error
amplification.

This chapter is organized as follows: In section 4.1, we derive initializations for the Newton itera-
tion. These comprise model parameters such as the contact impedances of the electrodes, an initial
conductivity guess, and a stopping criterion for the Newton iteration.

In section 4.2, we investigate the problems introduced by the constrainedness and severe nonlinearity
of the ICP. Using a parameter transformation, we can reformulate the ICP to be unconstrained,
which is advantageous for iterative inversion.

A crucial aspect of the ICP is its underdetermination. It appears in the Newton iteration when solv-
ing the discretized linearized system, which is heavily underdetermined for typical discretizations.
This introduces a design choice: We need to pick a unique solution from the underdetermined sys-
tem. A natural choice is a solution with few oscillations. In section 4.3, we will prove that such
solutions can be obtained by minimization in a weighted L2 norm. For constant conductivities,
these weights coincide with the weights of the well-known one-step linearization algorithm NOSER
[CIN+90], which is a popular choice to date for solving the linearized problem.
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The instability of the ICP appears both in the overall Newton iteration and in each linearized prob-
lem: Due to the measurement noise, the measured data is not necessarily in the range of the forward
operator. Thus, the outer iteration might not converge to an arbitrarily small residual, and the
linearized problem might yield highly oscillatory solutions even when using the weighted norm
minimization. To tackle the instability, we compute a regularized solution of the linearized sys-
tem using an incomplete conjugate gradient scheme (CG-REGINN, [Rie05]) in each iteration, and
we stop the iteration according to Morozov’s discrepancy principle. With a slight modification of
REGINN presented in section 4.4, the scheme is free of user-defined design parameters.

All steps are combined to a model-aware Newton-type inversion scheme (MANTIS) in section 4.5.
Afterwards, we will emphasize the flexibility of this framework by presenting several problem-
specific extensions to the model in chapter 5. Finally, the framework will be applied to an extensive
set of numerical examples in chapter 6.

Some parts of the work presented in this chapter were previously published, with slight modifica-
tions, in the journal Inverse Problems [WR15].

4.1. Initialization

A proper initialization of the Newton algorithm is important for two reasons: The measured data
is very sensitive to modelling errors of the setting, and Newton’s method converges only locally
in general. For most part of this work, we will assume that a good estimate of the geometry of the
setting is known, i.e. the shape of the domain and the size and location of the electrodes. This is justi-
fied by advances in measurement technology like electrode belts that can determine their own shape
[NKI+15], or when the boundary geometry was obtained previously, e.g. by CT/MRT images for
the human skull. While it is possible to recover this geometry simultaneously with the conductivity
from the measured data [VKV+02, DHSS13a], in this case a great part of the information contained
in the measured data is used for obtaining the boundary shape. Consequently, it is “lost” for the
conductivity reconstruction: The resulting conductivity is typically very smooth, especially near
the boundary, and shapes of conductivity perturbations are often not recovered correctly. Nonethe-
less, the MANTIS framework is capable of incorporating these simultaneous reconstructions, which
will be demonstrated in chapter 5 by reconstructing electrode sizes and positions along with the con-
ductivity.

In contrast, the contact impedance at the electrodes is a quantity that can not be obtained “from the
outside”. However, a good estimate can be obtained from the data, which will be shown in section
4.1.1. On top of that, the presented estimate also yields a best-matching constant conductivity for
the measured data (sometimes called “background conductivity”). This best-matching constant will
be used as an initial guess for the Newton iteration.
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To stop the Newton iteration, REGINN uses Morozov’s discrepancy principle (2.33). In practical
applications, the noise level δ is unknown. Fortunately, the measured EIT data is redundant for all
commonly used measurement current frames. This will be exploited in 4.1.2 for deriving a noise
level estimate from the data.

4.1.1. Conductivity and contact impedance initialization

A well-known [CIN+90] initial guess of the conductivity is based on the continuum model, more
precisely on the fact that (2.5) is Laplace’s equation for constant conductivities:

If σ = σ0χΩ, then potentials u for σ satisfy ∆u = 0,

i.e. a partial differential equation which is independent of σ0. Obtaining the constant σ0 ∈ R+

from the knowledge of the continuum ND operator Rσ can be formulated as a linear problem by
considering the resistivity ρ :=σ−1 =σ−1

0 χΩ. The map

ρ0 7→
(
ρ−1

0 ∇νu 7→ u|∂Ω
)

= (∇νu 7→ ρ0u|∂Ω) (4.1)

is linear in ρ0 :=σ−1
0 > 0.

Assume now in the continuum model that for some domain Ω, we have conductivities

σ = σ0χΩ and σ̃ = 1χΩ

and that we apply a set of M ∈N boundary current densities

j(m)
ν ∈ H1/2−α

� (∂Ω), m = 1, . . . ,M,

to both conductivity settings. At a set of L∈N points x1,...,xL∈∂Ω, we make point evaluations1

V
(m)
l := u(m)|∂Ω(xl) and Ṽ

(m)
l := ũ(m)|∂Ω(xl), l = 1, . . . , L, m = 1, . . . ,M,

where, for m= 1,...,M , u(m) and ũ(m) are the unique solutions of

∆u(m) = ∆ũ(m) = 0 on Ω,

σ0∇νu(m) = ∇ν ũ(m) = j(m)
ν on ∂Ω,

normalized such that
∑L
l=1V

(m)
l =

∑L
l=1 Ṽ

(m)
l = 0. Due to the linearity in ρ0, we get

V
(m)
l = ρ0Ṽ

(m)
l for l = 1, . . . , L, m = 1, . . . ,M. (4.2)

1This is possible since u(m)|∂Ω ∈H3/2−α(∂Ω), in particular the trace is continuous.
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To estimate the unknown value σ0, we interpret V (m)
l as some given potential measurements of a

setting, while Ṽ (m)
l are simulated forward solutions for unit conductivity in the same geometry.

In theory, σ0 could be obtained by (4.2) from a single potential measurement. However, when
the measured potentials are noisy, we can try to minimize the error of the estimate of σ0 over all
measurements.

Definition 4.1 (Continuum model conductivity estimate). By minimizing the func-
tional

M∑
m=1

L∑
l=1

(
V

(m)
l − 1

σ0
Ṽ

(m)
l

)2
,

we obtain the continuum model conductivity estimate for the best-matching constant con-
ductivity

σcont :=

M∑
m=1

L∑
l=1

(
Ṽ

(m)
l

)2

M∑
m=1

L∑
l=1

V
(m)
l Ṽ

(m)
l

; (4.3)

see [CIN+90].

A similar estimate can be obtained for the shunt model (cf. equation (2.8) and subsequent). To that
end, assume that we have L ∈ N electrodes E1, ... ,EL and, for a set of M ∈ N current patterns
I(1),...,I(M) ∈RL� , denote by

U
(m)
l ≡ u(m)|El and Ũ

(m)
l ≡ ũ(m)|El

the corresponding electrode potentials, where u(m), ũ(m) ∈ H1(Ω) and j
(m)
ν ∈ H−1/2

� (∂Ω) are
uniquely defined by∫

El

j(m)
ν dS = I

(m)
l ,

j(m)
ν ≡ 0 on ∂Ω \ {E1, . . . , EL} ,

j(m)
ν = σ0∇νu(m) = ∇ν ũ(m) on ∂Ω,

0 = ∆u(m) = ∆ũ(m),

for m= 1,...,M ; see chapter 2 and [SCI92]. Green’s identity for the harmonic functions u(m) and
ũ(m) yields ∫

Ω
∇u(m)∇ũ(m) dx =

∫
∂Ω
ũ(m)∇νu(m) dS =

∫
∂Ω
u(m)∇ν ũ(m) dS.
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In particular, we obtain

L∑
l=1

Ũ
(m)
l I

(m)
l︸︷︷︸

=
∫
El
j
(m)
ν dS

=
∫
∂Ω
ũ(m)j(m)

ν dS = σ0

∫
∂Ω
u(m)j(m)

ν dS = σ0

L∑
l=1

U
(m)
l I

(m)
l . (4.4)

Definition 4.2 (Shunt model conductivity estimate). For noisy potential data, mini-
mizing the error

M∑
m=1

((
L∑
l=1

U
(m)
l I

(m)
l

)
− 1
σ0

(
L∑
l=1

Ũ
(m)
l I

(m)
l

))2

,

over all measurements gives the shunt model conductivity estimate for the best-matching
constant conductivity value

σshunt :=

M∑
m=1

(
L∑
l=1

Ũ
(m)
l I

(m)
l

)2

M∑
m=1

(
L∑
l=1

U
(m)
l I

(m)
l

)(
L∑
l=1

Ũ
(m)
l I

(m)
l

) . (4.5)

Because of the aforementioned potential drop caused by the contact impedances at the electrodes
in the CEM, the conductivity estimates (4.3) and (4.5) become increasingly inaccurate for the CEM
as the contact impedances increase (the CEM approaches the shunt model as zl → 0, l = 1,...,L).
We propose a modified version of (4.5) to approximate a best-constant conductivity estimate for
the CEM which incorporates the contact impedances. In the CEM, we have from (2.13) and (2.14)
that

u(m)|El + zlj
(m)
ν |El ≡ U

(m)
l and

∫
El

j(m)
ν ds = I

(m)
l , l = 1, . . . , L, m = 1, . . . ,M,

while j(m)
ν =0 on the gaps. The same holds for ũ(m) and Ũ (m) in the reference setting. Unfortunately,

we can not apply Green’s identity as in (4.4) since u(m) and ũ(m) are not constant at the electrodes,
thus they can not be simply moved in and out of the integral. However, assuming that the electrodes
are small and sufficiently far apart from each other, it is reasonable to assume that the interior
potentials are roughly constant along each electrode, which yields the approximation

u(m) = U (m) − zljν ≈ const. = U
(m)
l − zl

I
(m)
l

|El|
, (4.6)

where the non-constant normal current jν was approximated by its mean value. Note that by the
trace theorem, u(m)|El ∈H1−α(El) and thus jν |El = z−1

l (U (m)
l −u(m)) ∈H1−α(El) for all α > 0,

i.e. the normal current density has increased smoothness when restricted to an electrode. Repeating

66



4. Model-aware inversion

this approximation for the reference data, we get

ũ(m) = Ũ (m) − z̃ljν ≈ Ũ
(m)
l − z̃l

I
(m)
l

|El|
, (4.7)

where z̃1,...,z̃l > 0 denote the contact impedances of the reference setting. Substituting these CEM
approximations into (4.4), we get

L∑
l=1

(
Ũ

(m)
l − z̃l |El|−1 I

(m)
l

)
I

(m)
l ≈ σ0

L∑
l=1

(
U

(m)
l − zl |El|−1 I

(m)
l

)
I

(m)
l (4.8)

for m = 1, ... ,M . Analogously to the continuum model and the shunt model, we minimize the
estimation error over all measurements, which gives

Definition 4.3 (CEM conductivity estimate). A CEM approximation for the best-
matching constant conductivity value is given by the CEM conductivity estimate

σCEM :=

M∑
m=1

(
L∑
l=1

(
Ũ

(m)
l − z̃l

|El|
I

(m)
l

)
I

(m)
l

)2

M∑
m=1

(
L∑
l=1

(
U

(m)
l − zl

|El|
I

(m)
l

)
I

(m)
l

)(
L∑
l=1

(
Ũ

(m)
l − z̃l

|El|
I

(m)
l

)
I

(m)
l

) . (4.9)

To emphasize the dependence of the estimate on the current frame I=
(
I(1),...,I(M)

)
and

the corresponding measurements U , we write

σCEM = σCEM(I,U).

Table 4.1 lists the conductivity estimates σcont
0 , σshunt

0 and σCEM from noise-free and noisy simulated
CEM data with L = 16 electrodes for various contact impedances. The CEM estimates σCEM are
good approximations of the true conductivity value (σ0 =0.25 in our example), while the continuum
and shunt approximations get worse for increasing contact impedance values. The forward data was
computed on a circular domain using the analytic forward solutions derived in chapter 3 for a full
set of M = 16 adjacent currents. Pseudo-random noise was added by the noise model (2.19), where
the variance v was scaled to obtain a (fairly high) noise level of δ= 0.1. To avoid inverse crime, the
simulated data U (m) was computed using the analytic solution of chapter 3, while the reference data
Ũ (m) was computed using a FEM with 6000 triangles refined near the electrodes.

The CEM conductivity estimate gives accurate results for a wide range of contact impedances. We
also evaluated the estimates in other geometries, like oval domains, square shaped domains, and the
L-shaped domain of Figure 3.9. The resulting estimates are very similar to those of the circular
domain given in Table 4.1, therefore these numbers are omitted.

There is, however, a drawback of the presented estimates: The contact impedances zl and z̃l need to
be known. The values z̃l are uncritical as we can choose them freely for our reference computations.
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noise \ z= zl = 1.00×10−3 1.00×10−2 1.00×10−1 1.00×10+0 1.00×10+1

δ= 0
σcont 2.47×10−1 2.63×10−1 3.64×10−1 7.34×10−1 9.61×10−1

σshunt 2.47×10−1 2.65×10−1 3.73×10−1 7.38×10−1 9.62×10−1

σCEM 2.45×10−1 2.50×10−1 2.53×10−1 2.49×10−1 2.50×10−1

δ= 0.1
σcont 2.47×10−1 2.63×10−1 3.65×10−1 7.35×10−1 9.62×10−1

σshunt 2.47×10−1 2.65×10−1 3.73×10−1 7.38×10−1 9.62×10−1

σCEM 2.46×10−1 2.50×10−1 2.53×10−1 2.49×10−1 2.50×10−1

Table 4.1.: Conductivity estimates based on the continuum model (σcont), shunt model (σshunt)
and CEM (σCEM). With increasing contact impedances, the continuum and shunt
model estimates get highly inaccurate because they ignore the potential drop caused
by the contact impedances.
Setting: True conductivity σ0 = 2.50×10−1. Circular domain with 16 equi-spaced
electrodes covering 50% of the boundary and normalized adjacent current patterns.

However, the true contact impedances zl of our measurement setting are typically not available, as
was pointed out at the beginning of this section. Thus, we want to estimate them simultaneously
with σ0 from the M equations (4.8). Unfortunately when using the same ansatz as for the best-
matching conductivity, this problem is underdetermined as we have L+ 1 unknowns and M ≤ L
equations. However, they can often be assumed to be roughly constant:

zl ≈ z > 0 for l = 1, . . . , L.

Using this assumption, we can rewrite equations (4.8) as

amρ0 + bmz = cm, m = 1, . . . ,M, where

am =
L∑
l=1

(
Ũ

(m)
l − z̃l |El|−1 I

(m)
l

)
I

(m)
l , bm =

L∑
l=1
|El|−1

(
I

(m)
l

)2
, cm =

L∑
l=1

U
(m)
l I

(m)
l ,

and ρ0 =σ−1
0 as before. We arrive at the overdetermined linear regression problem

a1 b1
...

...

aM bM


(
ρ0

z

)
=


c1
...

cM

 , (4.10)
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which can be solved in the least-squares sense as before. Thus, we obtain an estimate for the constant
z as a “by-product” when determining the best-matching constant conductivity value for a given set
of measured data. We denote the least-squares solutions of (4.10) by ρ̂0 and ẑ. In rare cases, usually
when z � ρ0, the resulting least-squares solution ẑ might be inaccurate and even negative due to
approximation or data errors. However, the exact value of the contact impedance is not important
in that case since the forward operator is very insensitive2 to the contact impedances if all zl� ρ0.

Definition 4.4 (CEM conductivity+contact impedance estimate). For 0<zmin�1, we
define the CEM contact impedance estimate as

zCEM,z := max {ẑ, zmin} .

Moreover, we define the corresponding conductivity estimate as

σCEM,z :=

ρ̂
−1
0 , zCEM > zmin,

σCEM using zl ≡ zmin in (4.8), otherwise.

Initializing the contact impedances to zmin is a “safety rule” when the simultaneous estimate fails.
Throughout this work, we use zmin := 10−4 ·min{|El| : l= 1,...,L}. We will always remark when
this minimum is attained in the numerical examples.

Remark 4.5 (Choice of the arbitrary contact impedance). To get a good approximation in
(4.7), it is advisable to choose the arbitrary contact impedances z̃l small. However for
z̃l→0, the FEM computation of Ũ (m) gets unstable. We obtained good results when using
z̃l := 10−3, l= 1,...,L, in all our numerical examples.

2The reason is that in this case, the potential drop at the electrodes is negligible compared to the potential gradient in the
interior. From a physical point of view, most of the energy of an applied current is dissipated inside the object, and
not on the electrode-object interfaces.
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Remark 4.6 (Underdetermination of the regression problem). For some special geometries
and current frames, the system (4.10) is underdetermined. This is the case for example in
our radially symmetric setting of Table 4.1, leading to a1 = ... = aM , b1 = ... = bM and
c1 = ...= cM when using adjacent currents. Since the current-to-voltage map Rσ is linear,
a simple way to resolve underdetermination is to perform a basis transformation in RL� :
If I∗= (I(1)

∗ ,...,I
(L−1)
∗ )∈RL×L−1

� forms an orthonormal basis of RL� , we replace I(m) by
I

(m)
∗ , U (m) by U (m)

∗ , and Ũ (m) by Ũ (m)
∗ in (4.10), where

U
(m)
∗ := (U (1), . . . , U (M))I+I

(m)
∗ Ũ (m) := (Ũ (1), . . . , Ũ (M))I+I

(m)
∗ ,

and I+ denotes the pseudo-inverse of I. In our numerical evaluations, we tested both the
reduced discrete cosine3 basis and the discrete Haar-wavelet4 basis for I∗. Both choices
resolved underdetermination and worked equally well. In practice, one can check the
condition of the coefficient matrix in (4.10), and perform a basis transform only if the
condition is bad.

Simultaneous estimates for the conductivity constant σ0 and contact impedance z are shown in Table
4.2 and Table 4.3. The settings are identical to the setting of Table 4.1. In Table 4.3, the robustness of
the estimates was evaluated by adding noise to the measurements U (m)

l according to the noise model
(2.19), and using contact impedances which vary by ±10%, i.e.

zl =
(
1 + 1

10nl
)

︸ ︷︷ ︸
∈[0.9, 1.1]

z,

where nl
iid∼ u[−1,1], i.e. the variations are independent uniformly distributed pseudo-random num-

bers for l = 1,...,L. All conductivity estimates are close to the exact value σ0 = 0.25. The contact
impedance estimates are also quite accurate unless z� ρ0.

z 1.00×10−3 1.00×10−2 1.00×10−1 1.00×10+0 1.00×10+1

zCEM,z 6.64×10−4 1.63×10−2 1.20×10−1 1.03×10+0 1.00×10+1

σCEM,z 2.50×10−1 2.49×10−1 2.46×10−1 2.43×10−1 2.42×10−1

Table 4.2.: Best-matching constant conductivity and contact impedance estimates for the CEM.
The exact conductivity is σ0 = 2.50×10−1. Setting as in Table 4.1. The Haar-Wavelet
basis transformation was applied to remove redundancy in the data and to obtain an
overdetermined problem, as described in Remark 4.6.

3Discrete cosine transform basis, omitting the constant vector. In our MATLAB implementation, we used the rows of
the matrix provided by the command dctmtx.

4Discrete Haar-wavelet basis (orthonormal vectors), omitting the constant vector. For this basis, the number of electrodes
L must be a power of 2.
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z 1.00×10−3 1.00×10−2 1.00×10−1 1.00×10+0 1.00×10+1

zCEM,z 1.08×10−2 2.54×10−2 1.31×10−1 1.06×10+0 1.03×10+1

σCEM,z 2.50×10−1 2.49×10−1 2.46×10−1 2.43×10−1 2.41×10−1

Table 4.3.: Setting as in Table 4.2, but with noisy data (δ= 0.1) and non-constant contact impe-

dances, i.e. zl =
(
1+ 1

10nl
)
z, where nl

iid∼u[−1,1] for l= 1,...,L.

4.1.2. Noise level initialization

To use Morozov’s discrepancy principle as a stopping rule for Newton’s method, an estimate of
the data noise level is required. For many inverse problems, this noise level is inaccessible, and
heuristic stopping criteria like the L-curve method or generalized cross validation are used instead.
Fortunately, CEM data is redundant, and this redundancy can be exploited to estimate the data noise
level δ.

Assume that we have a current frame I of full rank L−1. In the noiseless case, the current-to-voltage
map F (σ) = UI+ is symmetric. However for noisy data Uv as in (2.19), this is (most certainly) not
the case. By

Ev := UvI+ −
(
UvI+

)>
and ev := ‖Ev‖2Fro ,

we denote the symmetry error matrix and symmetry error, respectively. In particular, ev can be
computed from the measured data Uv without knowing the values of v or δ. From this quantity, we
derive an estimate for δ.

Recalling that Uv =U+Nv, we have

Ev = (U +Nv)I+ −
(
(U +Nv)I+

)>
= UI+ − (UI+)>︸ ︷︷ ︸

= 0 (symmetry)

+NvI+ −
(
NvI+

)>
,

which gives

Evkl =


0, k = l,
L∑
j=1

Nv
kjI+

jl −N
v
ljI+

jk, 1 ≤ k 6= l ≤ L.

In particular, each entry of the symmetry error matrix is a weighted sum of iid zero mean random
entries. From the linearity of the expected value, we get

Eev = E ‖Ev‖2Fro =
L∑

k,l=1
E
(
Evk,l

)2
=

L∑
j=1

(
I+
jl

)2
E
(
Nv
kj

)2

︸ ︷︷ ︸
=v

+
(
I2
jk

)2
E
(
Nv
lj

)2

︸ ︷︷ ︸
=v

= v
∑
k 6=l

∥∥∥I+
l

∥∥∥2

2
+
∥∥∥I+

k

∥∥∥2

2
= 2(L− 1)

∥∥∥I+
∥∥∥2

Fro
v.
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Using the Chi distribution of δ= ‖Nv‖Fro (cf. section 2.2.2), we obtain

Eδ = E ‖Nv‖Fro =
√

2
Γ
(
ML+1

2

)
Γ
(
ML

2

) √v ≈ √MLv. (4.11)

Since the gamma function grows as the factorial, the commonly used approximation in (4.11) is
helpful for evaluating Γ for typical L (≥ 16) and M (≥ 15). It is based on the asymptotic

lim
t→∞

Γ(t+ α)(Γ(t))−1t−α = 1.

To get an estimate for the noise level, we now combine the previous results. In the computation of
the expected values, the realizations ev and Ev were (in an abusive notation) replaced by its model
random variables. Replacing the expected values by the computable quantities, we get an estimate

vCEM := ev
2(L− 1)

∥∥∥I+
∥∥∥−2

Fro

for the underlying noise variance and an estimate

δCEM :=
√
MLvCEM (4.12)

for the data noise level.

Some evaluations of this estimate are shown in Table 4.4. To generate the measured data, the previ-
ously introduced adjacent, cosine and Haar-wavelet current frames were used. Pseudo-random noise
was generated according to (2.20) with a relative measurement precision η varying over several orders
of magnitude. A new, independent realization of noise was generated for each η and each measure-
ment basis. The conductivity and electrode setting are the same as in Table 4.1. In all evaluations,
the true noise level δ is within 6% of the estimated noise level δCEM, that is, |1− δ/δCEM|< 0.06. This
accuracy is important when using the approximation δCEM instead of the unknown δ in Morozov’s
discrepancy principle.

η δadjacent δCEM
adjacent δcosine δCEM

cosine δHaar δCEM
Haar |1− δ/δCEM|

1.0×10−4 1.10×10−3 1.09×10−3 1.44×10−3 1.51×10−3 1.68×10−3 1.62×10−3 < 5%
1.0×10−3 1.12×10−2 1.17×10−2 1.64×10−2 1.69×10−2 1.82×10−2 1.72×10−2 < 6%
1.0×10−2 1.08×10−1 1.07×10−1 1.53×10−1 1.60×10−1 1.68×10−1 1.73×10−1 < 5%
1.0×10−1 1.11×10+0 1.06×10+0 1.60×10+0 1.67×10+0 1.51×10+0 1.57×10+0 < 5%

Table 4.4.: Estimates of the data noise for simulated data with additive pseudo-random normal
noise of variance v̂(η) using adjacent, cosine and Haar current patterns. Each pair of
columns shows the exact noise δ=

∥∥N v̂(η)∥∥
Fro and its corresponding estimated noise

δCEM. An independent realization of N v̂(η) was generated for each estimate, using
the seeds k ·10j for the Mersenne twister with k = 1,...,4 (contact impedances) and
j= 0,...,2 (current frames). Setting as in Table 4.1.
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4.1.3. Measurement protocol and incomplete data

Throughout this work, we assume that for each current vector I=(I1,...,IL)>∈RL� (stimulation pat-
tern), a vector of potentials U =(U1,...,UL)>∈RL� is measured. In practice, the measurement proto-
col for acquiring data can be different. For example, some measurement equipments do not measure
potentials (against a grounding point), but measure potential differences, i.e. voltages between two
electrodes (for example neighboring electrodes) explicitly. That means that the current-to-potential
map Rσ must be replaced by a current-to-voltage map, e.g. by

I 7→ V =



U2 − U1

U3 − U2
...

UL − UL−1

U1 − UL


.

Since V can be obtained from U by a basis transform, all theoretical results in this work also hold
when considering the current-to-voltage map instead of the current-to-potential map. However, the
noise model might differ.

Matters get more complicated when current-carrying electrodes are excluded from voltage measure-
ments, leading to incomplete data. A common example is the incomplete adjacent-current-to-voltage
map

I
(m)
adj 7→



U2 − U1
...

Um−1 − Um−2

Um+2 − Um+1
...

U1 − UL


,

that is, all entries from current-carrying electrodes are excluded from the voltage measurements.

This is common practice in many applications in electrical engineering, mainly because the measure-
ments are considered unreliable due to the contact impedances. However in the CEM, the contact
impedances are incorporated into the model, thus the measurements on current-carrying electrodes
are valuable. In equations (4.9) and (4.10), we see that the product UlIl appears in each term, which
vanishes if Il = 0. This means that only potentials from current-carrying electrodes are used in the
contact impedance and conductivity estimate, and in fact a reliable estimate of the contact impedan-
ces is impossible without this data.

If potential/voltage measurements on the current-carrying electrodes are omitted, we conclude that
an accurate estimate of the contact impedances is not available. In this case, the contact impedan-
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ces can be initialized to a small generic constant5. However, an initial guess for the background
conductivity σCEM is still possible using these constants.

Moreover, an estimate for the noise level is also possible in this case by exploiting the reciprocity
principle for passive quadripoles

U
(m)
l+1 − U

(m)
l = U

(l)
m+1 − U

(l)
m , m /∈ {l − 1, l, l + 1} (mod L)

for noiseless data. Then, a noise estimate similar to (4.12) can be obtained by considering an appro-
priate noise model and the symmetry error∑∣∣∣(U (m)

l+1 − U
(m)
l )− (U (l)

m+1 − U
(l)
m )
∣∣∣2 ,

where the sum is taken over all available reciprocity pairs.

4.2. Nonlinearity and constrainedness

The ICP is a constrained and highly nonlinear problem, both for Calderón’s model and for the CEM.
This can lead to several problems for Newton-type algorithms as they solve unconstrained problems
by linearization. Firstly, a Newton update can give negative conductivities or – if the step size is
reduced accordingly – result in very slow convergence. This is particularly bad since the nonlinearity
of the forward map and thus the linearization error increase as the conductivity approaches zero.
Our numerical examples in section 6.2 will illustrate this effect. A classical and popular method to
obtain an unconstrained problem is to recover the logarithm of the conductivity,

log σ, or − log σ = log 1
σ

;

see [BS87]. This approach is also motivated by the filtered back-projection approach for EIT [Vau97].
To improve the convergence speed of a Newton-type method and to increase its convergence radius,
we aim to reduce the nonlinearity of the ICP. Unfortunately, the ICP for the CEM is always non-
linear, even in the most simple case when considering a one-dimensional conductivity space, due to
the impact of the contact impedances.

Thus to motivate coefficient transformations, we will again look at the most simple model first,
i.e. Calderón’s model for constant conductivities, as in equation (4.1).

When recovering inclusions inside a constant background, ND data is most sensitive to the back-
ground conductivity, thus improving the linearity with respect to the background is reasonable.
Improving the linearity is particularly useful when recovering inclusions in an unknown constant
background by linear (one-step) methods. This has been investigated in detail for lung EIT [GA14],
where reconstructions of σ, logσ and ρ = 1

σ with the (one-step) NOSER algorithm [CIN+90] are

5E.g. zgeneric
l = |El|, l= 1,...,L.
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compared. However, recovering the resistivity is again a constrained problem (ρ > 0). Conversely
to the conductivity case, linearization error increases for very small resistivities in the non-constant
case.

Instead of linearizing F directly, we want to apply the Newton step to an operator for the trans-
formed conductivity. To that end, we consider injective C1-transformations

t∗ : (0,∞)→ R, σ 7→ t∗(σ) =: σ∗,

and their corresponding transformed continuum and CEM forward operators defined by

F∗(t∗(σ)) = F(σ), that is, F∗(σ∗) = F(t−1
∗ (σ∗)), and

F∗(t∗(σ)) = F (σ), that is, F∗(σ∗) = F (t−1
∗ (σ∗)). (4.13)

Identifying a scalar σ > 0 with its constant conductivity σχΩ on Ω and interpreting the forward
operator as a function with scalar argument σ, we have for Calderón’s model that

F(σ) = 1
σ
F(1), thus F ′(σ) = −1

σ2 F(1) (4.14)

for the derivative in unit direction. Under transformation, we get

F ′∗(σ∗) =
[
F(t−1

∗ (σ∗))
]′

= −(t−1
∗ )′(σ∗)

[t−1
∗ (σ∗)]2

F(1) = s∗(σ∗)F(1)

for s∗(·) :=−(t−1
∗ )′(·)

[
t−1
∗ (·)

]−2 on the range of t∗.

Now, if s′∗ ≡ 0, then s∗ and thus F ′∗ are constant, hence F∗ is linear. In that sense, |s′∗(t∗(σ))| is an
indicator for the nonlinearity of F∗ at a conductivity constant σ. In particular for tρ(σ) := 1

σ , we
have that

t−1
ρ (σ∗) = σ−1

∗ , (t−1
ρ )′(tρ(σ)) = −σ2, and

∣∣∣s′ρ(tρ(σ))
∣∣∣ ≡ 0,

which is the linearity of Calderón’s problem for constant resistivities.

Our goal is to obtain a transformation t∗ that is unconstrained (like log(σ)), but has limited nonlin-
earity at constants (like tρ). To that end, we introduce the transformation

tα(σ) := (1− α)σ−1 − ασ (4.15)

for some parameter α∈ (0,1). Being the sum of two strictly decreasing C1 functions on (0,∞), tα is
clearly injective. Since tα(σ)→∞ (σ→ 0) and tα(σ)→−∞ (σ→∞), this transformation gives an
unconstrained parameter. Moreover, we have that

t−1
α (t) =

√
4α(1−α)+t2−t

2α , (t−1
α )′(tα(σ)) = −σ2

(1−α)+ασ2 and
∣∣s′α(tα(σ))

∣∣ = 2ασ3

(1+α(σ2−1))3 .

The parameter α is a trade-off between reconstructing the resistivity (α→ 0) and the conductivity
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(α→ 1). It controls the maximum nonlinearity of tα and its occurrence:

max
σ∈(0,∞)

∣∣s′α(tα(σ))
∣∣ = s′α(0) = α

4 (α(1− α))
3
2
, arg max

σ∈(0,∞)

∣∣s′α(tα(σ))
∣∣ =

√
α−1 − 1.

The maximum nonlinearity is minimized at α̂= 0.25, so in a sense, this is an optimal choice.

Definition 4.7 (σ-ρ-transform). In the remainder of this work, we call

tα̂ : (0,∞)→ (−∞,∞), tα̂(σ) = 3
4σ −

σ

4 = 3− σ2

4σ ,

the σ-ρ-transform, as it is a convex combination of the negative conductivity and the resis-
tivity. The particular choice α̂=0.25 in (4.15) is optimal in the sense that maxσ∈(0,∞)|s′∗(t∗(σ))|
is minimized over all α∈ (0,1).

For numerical stability and for some theoretical results, the boundedness of the conductivity from
above and below (2.6) is crucial. These bounds can be realized explicitly using a tangent-type trans-
formation. One example is the following transformation, which concatenates a scaled and shifted
log-transform with a tangent to restrict the conductivity to the interval (cmin,cmax)⊂ (0,∞).

Definition 4.8 (tan-log-transform). In the remainder of this work, we call

ttl : (cmin, cmax)→ (−∞,∞), ttl(σ) = tan
(
π (log(σ)− log(cmin))
log(cmax)− log(cmin) −

π

2

)
the tan-log-transform. It is strictly monotonous and continuously differentiable as a con-
catenation of strictly monotonous and continuously differential functions.

One possibility is to initialize the constants with respect to the initial guess σCEM,z, for example as
cmin =σCEM,z×10−2 and cmax =σCEM,z×10+2, respectively.

In the following, we will consider conductivity transformations for non-homogeneous conductivi-
ties and for the CEM. In particular, we are interested in transforming piecewise constant conductiv-
ities σ ∈DP(Ω). The transformation is then interpreted as

t∗(σ) = t∗(σ1)χΩ1 + . . .+ t∗(σP )χΩP ∈ L
∞(Ω) for σ ∈ DP .

In particular, the positivity constraint for the coefficients t∗(σp) is dropped. For solving the lin-
earized problem in the transformed setting, we need to compute the Fréchet derivative of the trans-
formed operator F∗. Using the chain rule, we get the Jacobian – evaluated in the pth unit direction
of the discretized conductivity space – by

∂F∗(σ∗)
(∂σ∗)p

∣∣∣∣∣
t∗(σ)

= ∂F (t−1
∗ (σ∗))

(∂σ∗)p

∣∣∣∣∣
t∗(σ)

= ∂F (σ)
(∂σ)p

∣∣∣∣∣
σ

∂t−1
∗ (σ∗)

(∂σ∗)p

∣∣∣∣∣
t∗(σ)

=
[
F ′(σ)

]
p

(
(t−1
∗ )′(t∗(σ))

)
p
.

(4.16)
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Table 4.5 summarizes some properties of interest, i.e. the inverse map t−1
∗ , the nonlinearity indicator

|s′∗(t∗(σ))|, the Jacobian amplification (t−1
∗ )′(t∗(σ)), and the range, of some transformations which

are considered in the remainder of this work.

Transformation t∗ t−1
∗ (σ∗) |s′∗(t∗(σ))| (t−1

∗ )′(t∗(σ)) t∗((0,∞))

tId(σ) =σ σ∗ 2σ−3 1 (0,∞)

tlog(σ) =−log(σ) e−σ∗ σ−1 −σ (∞,−∞)

tρ(σ) =σ−1 σ−1
∗ 0 −σ2 (∞,0)

tα̂(σ) = 3−σ2

4σ

√
3+4σ2

∗−2σ∗
32σ3

(3+σ2)3
−4σ2

3+σ2 (∞,−∞)

ttl(σ) =
tan
(
π(log(σ)−log(cmin))
log(cmax)−log(cmin)−

π
2

) exp
[
log(a)+(log(b)−log(a))·
π−1(tan−1(σ∗)+π

2 )
] (omitted) (omitted)

ttl((cmin,cmax))=
(−∞,∞)

Table 4.5.: Properties (inverse map, nonlinearity indicator, Jacobian amplification and range) of
various conductivity transformations.

For solving the transformed ICP using the inexact Newton-type Algorithm 1, line 3 therein needs
to be replaced by

“Find η
(k)
∗ satisfying

∥∥∥(F∗)′I (t∗(σ(k))
)
η

(k)
∗ − d(k)

∥∥∥ ≤ θ(k)
∥∥∥d(k)

∥∥∥ ; ” (4.17)

and line 4 needs to be replaced by

“Set σ(k+1) = t−1
∗

(
t∗(σ(k)) + η

(k)
∗
)

; ”.

4.3. Underdetermination and prior assumptions

The linearized problem

Find η∗ ∈ L∞(Ω) satisfying (F∗)′I(σ∗)η∗ = d (4.18)

is highly underdetermined and severely ill-posed. We solve its discretization up to a certain tolerance
in each Newton step (4.17). By using these tolerances we control the amount of regularization
(REGINN), but do not resolve the underdetermination of the problem. Thus, we need additional
assumptions to obtain uniqueness.

We will formulate these assumptions first for the untransformed CEM forward operator FI ,
and consider the transformed setting in section 4.3.3.

The discretized linearized problem can be formulated as a linear system of equations for the coeffi-
cients of the conductivity update. To that end, define the sensitivity matrix S=S(σ)∈RK×P , where
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K =LM , column-wise by

Sp = col
(
F ′I(σ)χΩp

)
, p = 1, . . . , P, (4.19)

and col(·) denotes the operation of stacking a matrix into a column vector column-wise. Recall that
χΩ1 ,...,χΩP are the (orthogonal) basis functions used to generate the discretized conductivity space
DP for a partition {Ω1,...,ΩP } of Ω.

In the following, boldface symbols denote the coefficient vectors corresponding to conductivities
and conductivity updates, e.g. σ ∈RP+ and η ∈RP such that

σ =̂ σ = σ1χΩ1 + . . .+ σPχΩP ∈ DP ⊂ L
∞
+ (Ω)

and

η =̂ η = η1χΩ1 + . . .+ ηPχΩP ∈ L
∞(Ω),

respectively. Finally, we define the nonlinear residual vector by d = col(Uv−FI(σ)). Then, the
linear system for the coefficient vector reads

Find η ∈ RP satisfying Sη = d. (4.20)

4.3.1. A reconstruction prior for the Newton update

In the coefficient notation (4.20), it is clear that the problem is underdetermined since for commonly
used discretizations and settings, we have that |DP |=P �K =LM . Thus, we need to make a design
choice which solution to pick for the Newton update. To that end, we introduce a prior assumption
on the conductivity. We first consider the most simple case of underdetermination by assuming that
two columns Sp and Sq of S are collinear, that is,

Sq = βSp for some β ∈ R \ {0} and some 1 ≤ p, q ≤ P.

Then, the linear combination of unit vectors eq−βep is in the Null space of S. This means that we
have (at least) one degree of freedom in choosing ηq versus ηp in the solution η of (4.20).

Physically, the conductivity is a material property represented by a piecewise constant function.
Starting from a constant initial conductivity guess, it is thus reasonable to update indistinguishable
coefficients by the same amount:

If σp = σq and Sq = βSp, then find a solution η to (4.20) such that ηp = sign(β)ηq.

More colloquially, we do not want to introduce arbitrary oscillations in the Newton update which
are not justified by the measurements.

On the other hand, if σq 6=σq, then we already have an oscillation in the conductivity, so choosing
ηp = sign(β)ηq is not helpful in preventing oscillations. Instead, motivated by the inverse pro-
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portionality (4.1) of a homogeneous conductivity on the measured potentials, we will choose the
conductivity updates proportional to the local conductivity value to compensate for that effect.
This is postulated in the following prior on the solutions of the linearized system:

Definition 4.9 (Reconstruction prior). Assume that Sq = βSp for some p,q ∈ {1,...,P}
and some β∈R\{0}, which means that (4.20) is underdetermined in the coefficients η{p,q}
for all right-hand sides d ∈ RK . Then, we want to set η{p,q} proportional to their local
conductivities σ{p,q}, that is,

ηp
σp

=
sign(β)ηq

σq
. (4.21)

A solution η to Sη = d satisfying this criterion for all pairwise collinear columns of S is
said to satisfy the reconstruction prior.

The central result of this section is that a solution satisfying the reconstruction prior can be obtained
by considering a weighted pseudo-inverse matrix of S. This will be formulated in Theorem 4.11 and
Corollary 4.12. To formulate the results, we need to define weighted minimum norm solutions.

Definition 4.10 (Weighted minimum norm solution). Denote, for a positive definite
weight matrix 0<W ∈RP×P , a weighted inner product and its induced norm by

〈 · , · 〉W = 〈 · ,W · 〉RP and ‖ · ‖W =
∥∥∥W 1/2 ·

∥∥∥
2
,

respectively. Then, we define a weighted minimum norm solution η+W of the linear prob-
lem Sη=d by

η+ = η+(d) = S+Wd = arg min
η∈N (S)⊥W

‖Sη − d‖2 , (4.22)

where ⊥W denotes orthogonality with respect to the weighted inner product and thus,
S+W is a weighted pseudo-inverse of S.

For a diagonal weight matrix, a relation between the weights, the weighted minimum norm solution
(4.22) and a sensitivity matrix S with collinear columns is now given by

Theorem 4.11. Consider the situation of (4.22) with S ∈RK×P and assume that Sq = βSp

for some p,q∈{1,...,P} and some β∈RP \{0}. Further, letW =diag(w1,...,wP )>0. Then,
we have the proportionality relation

wp
‖Sp‖2

η+W
p (d) = sign(β)wq

‖Sq‖2
η+W
q (d)

for all d∈RK .
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Proof. Let K,P ∈ N, w1, ... ,wP > 0 and W = diag(w1, ... ,wP ). Further, let X =
(
RP ,〈·, ·〉W

)
and Y =

(
RK ,〈·, ·〉

)
, i.e. X is equipped with a weighted inner product and Y is equipped with the

standard inner product. Consider

S =
(
S1, . . . , SP

)
∈ RK×P

as an operator from X to Y and let N = rank(S)≤min{K,P}.

Denote, for some d ∈ RK , by η+W = η+W (d) ∈ RP the (unique) minimizer of ‖Sη−d‖2 in
N (S)⊥W , the W -orthogonal complement of the null space of S. Let S = UZV ∗ be the (reduced)
singular value decomposition of the operator S with singular values ζ1 > ... > ζN > 0 and singular
vectors v(1),...,v(N) ∈X , u(1),...,u(N) ∈Y , that is

U =
(
u(1)| . . . |u(N)

)
, Z = diag(ζ1, . . . , ζN ), V =

(
v(1)| . . . |v(N)

)
,

U unitary in (range(S),〈·, ·〉)⊂Y , V unitary in
(
N (S)⊥W ,〈·, ·〉W

)
⊂X . The adjoint operators are

thus given as U∗=U> and V ∗=V >W . Then, η+W is given by the pseudo-inverse S+W of S as

η+W (d) = S+Wd = (V Z−1U∗)d.

We now want to investigate under which circumstances two coefficients η+W
p (d),η+W

q (d) are pro-
portional for all d∈ Y . Denote by v(1)

> ,...,v
(P )
> ∈RN the columns of V >. For any p,q ∈ {1,...,P}

and any αp,αq ∈R\{0}, we have the equivalence

0 = αqη
+W
q − αpη+W

p = (αqeq − αpep)> S+Wd ∀ d ∈ Y

⇐⇒ 0 =
(
(S+W )> (αqeq − αpep)

)>
d ∀ d ∈ Y

⇐⇒ 0 = (U∗)> Z−1V >(αqeq − αpep)

⇐⇒ 0 = (U∗)> Z−1︸ ︷︷ ︸
full rank (=N)

(
αqv

(q)
> − αpv

(p)
>

)

⇐⇒ αpv
(p)
> = αqv

(q)
> . (4.23)

Assume now that two columns Sp and Sq are linearly dependent, that is, Sq = βSp for some β ∈
R\{0}. We then observe that

0 = Sq − βSp = S (eq − βep) = (UZV ∗) (eq − βep) = UZ︸︷︷︸
full rank (=N)

V >W (eq − βep)

⇐⇒ 0 = V >W (eq − βep)

⇐⇒ βwpv
(p)
> = wqv

(q)
> . (4.24)
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Equivalence between (4.23) and (4.24) holds for
αp
αq

= βwp
wq

. In this case, we have

Sq = βSp ⇐⇒ αqη
+W
q = αpη

+W
p ∀ d ∈ Y. (4.25)

Since |β|=
‖Sq‖2
‖Sp‖2

, we get
αp
αq

=
sign(β)‖Sq‖2wp
‖Sp‖2wq

. Substituting this into (4.25) completes the proof.

Theorem 4.11 illustrates how the scaling of the columns of S has an effect on the solution coefficients
of the linear system. However, the weights can be used to compensate this effect. We immediately
get a set of weights enforcing the reconstruction prior by the following

Corollary 4.12. For

WS,σ := diag
(
‖S1‖2 σ

−1
1 , . . . , ‖SP ‖2 σ

−1
P

)
, (4.26)

the weighted minimum norm solution η+WS,σ given by (4.22) satisfies the reconstruction prior.

Roughly speaking, the weights can be used to “stretch” orthogonality to compensate for the scaling
differences of the columns of S. As the pseudo-inverse is unique, we resolve underdetermination
and satisfy the reconstruction prior simultaneously by choosing η+WS,σ as the Newton update. We
also get the following estimate for “almost collinear” columns of S:

Corollary 4.13. Assume that Sp and Sq are almost collinear, that is, Sq = βSp +κk, Sp ⊥
k∈RP , ‖k‖2 = 1, β ∈R\{0}, κ> 0. Then,∣∣∣∣∣ wp

‖Sp‖2
η+W
p (d)− sign(β)wq

‖Sq‖2
η+W
q (d)

∣∣∣∣∣ ≤ ζ−1
min

(
κζ−1

min ‖Sq‖
−1 + cκ

)
‖d‖2 .

where ζmin is the smallest non-zero singular value of S and cκ=O(κ2) as κ→0. In particular,
the right-hand side vanishes as κ→ 0 if and only if k∈ span{Sl : l∈{1,...,P}\q}.

Note that Sp ⊥ k is not a restriction since k can be split into orthogonal parts, and Corollary 4.13
holds for modified constants β and κ.

Proof of Corollary 4.13. Using the singular value decomposition of S as in the proof of Theorem
4.11, we have that

κk = Sq − βSp = (UZV ∗) (eq − βep) = UZ
(
wqv

(q)
> − βwpv

(p)
>

)
.

Since β= sign(β)
√
‖Sq‖22−κ2

‖Sp‖2
(Pythagoras), it follows for αp = wp

‖Sp‖2
and αq = sign(β)wq

‖Sq‖2
that

‖Sq‖2

∥∥∥∥∥∥αqv(q)
> −

√
‖Sq‖22 − κ2

‖Sq‖2
αpv

(p)
>

∥∥∥∥∥∥
2

= κ
∥∥∥Z−1U>k

∥∥∥
2
≤ κ

∥∥∥Z−1
∥∥∥

2
.
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Using the triangle inequality, we obtain

∥∥∥αqv(q)
> − αpv

(p)
>

∥∥∥
2
≤ κ

∥∥∥Z−1
∥∥∥

2
‖Sq‖−1

2 + cκ, where cκ =

∣∣∣∣∣∣1−
√
‖Sq‖22 − κ2

‖Sq‖2

∣∣∣∣∣∣ |αp|
∥∥∥v(p)
>

∥∥∥
2
,

and conclude that cκ = O(κ2) as κ → 0. Again using the pseudo-inverse representations of the
solution coefficients η+W

p and η+W
q , we get∣∣∣αqη+W

q − αpη+W
p

∣∣∣ =
∣∣∣∣((U∗)> Z−1V >(αqeq − αpep)

)>
d

∣∣∣∣
≤
∥∥∥Z−1

∥∥∥
2

∥∥∥αqv(q)
> − αpv

(p)
>

∥∥∥
2
‖d‖2 ≤

∥∥∥Z−1
∥∥∥

2

(
κ
∥∥∥Z−1

∥∥∥
2
‖Sq‖−1

2 + cκ
)
‖d‖2 .

Note that in this expression, the singular values of S and thus Z−1 depend on k and κ. Recalling that
k= 1

κ(Sq−βSp)∈ span{S1,...,SP } and denoting by S0 :=(S1,...,Sp,...Sq−1,βSp,Sq+1,...,SP ) the
sensitivity matrix for κ= 0, we have to consider two cases as κ→ 0:

(i) rank(S0)< rank(S):
This occurs if and only if k /∈ span

{
S0

1 ,...,S
0
P

}
= span{Sl : l∈{1,...,P}\q}. From the

continuity of the singular values in the matrix entries, we have that the minimum singular
value ζmin of S vanishes as κ→ 0, thus

∥∥Z−1∥∥
2 = ζ−1

min→∞.

(ii) rank(S0) = rank(S):
Again by the continuity of the singular values, ζmin approaches the smallest non-zero singular
value of S0 as κ→ 0, thus

∥∥Z−1∥∥
2 is bounded and αqη+W

q →αpη
+W
p as κ→ 0.

Thus for αp = wp
‖Sp‖2

and αq = sign(β)wq
‖Sq‖2

, this completes the proof.

For W =WS,σ, Corollary 4.13 states that if two columns of S are almost collinear relative to the
rest of the columns, then their coefficients in the weighted pseudo-inverse are almost proportional to
the local conductivity. In practice, neighboring cells will often have corresponding columns in the
sensitivity matrix which are “almost linearly dependent” in the sense of Corollary 4.13, in particular
for very fine discretizations. Then, using the weights WS,σ causes their conductivity coefficient
updates to be “almost” proportional to the local conductivity values, thus reducing oscillations of
the conductivity in the Newton iteration.

In addition to the weights WS,σ we will also consider the weights

WId = Id, WS := diag (‖S1‖2 , . . . , ‖SP ‖2) and Wσ := diag
(
σ−1

1 , . . . ,σ−1
P

)
, (4.27)

in our numerical examples in chapter 6. The unit weights WId lead to the standard pseudo-inverse
solution in the coefficient space, while the weights WS normalize only for the column norms and
the weightsWσ only normalize for the local resistivity values, respectively. The positive effect ofWS

on conductivity updates has been observed in [CIN+90, CF02, SZTO08, Oh09], although without
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a thorough analysis of the reasons6. Theorem 4.11 and Corollary 4.13 fill this gap by showing that
the weights WS lead to non-oscillatory updates. At constant background, in particular for one-step
linearizations like NOSER, they are identical to the weights WS,σ and give updates satisfying the
reconstruction prior (4.21). Since the weights WS appear in the Tikhonov functional of the popular
NOSER algorithm [CIN+90], they are sometimes called NOSER prior in EIT literature. To our
knowledge, the weights WS,σ have not been considered previously.

4.3.2. Continuum interpretation of the weighted inner product

In Definition 4.10, a weighted coefficient space with inner product 〈·, ·〉W was introduced to obtain
a desired property for the coefficients η of the conductivity update η. How can this solution be
interpreted in the continuum formulation (4.18)? The canonical inner product on DP is

〈η, ξ〉L2(Ω) =
∫

Ω
η(x)ξ(x) dx.

If we can find a weight function w∈L∞+ (Ω) such that a weighted inner product

〈η, ξ〉w =
∫

Ω
η(x)ξ(x)w(x) dx

on DP satisfies

〈η, ξ〉W = 〈η, ξ〉w, (4.28)

then (RP ,〈·, ·〉W ) and (DP ,〈·, ·〉w) are isometrically isomorphic. If W = diag(w1,...,wP ), we have
that

〈η, ξ〉W =
P∑
p=1

ηpξpwp
!=

P∑
p=1

ηpξp

∫
Ωp
w(x) dx = 〈η, ξ〉w,

thus, (4.28) is satisfied e.g. for the piecewise constant weight function

w(x) :=
P∑
p=1
|Ωp|−1wpχΩp(x).

Then, η+W ∈DP corresponding to the coefficient vector η+W is characterized by

η+W = arg min
η∈N (F ′I(σ))⊥w∩DP

∥∥F ′I(σ)η − d
∥∥

Fro , (4.29)

where F ′I(σ) is considered as an operator onDP . The Frobenius norm in (4.29) is due to the identity
‖d‖2 = ‖col(d)‖2 = ‖d‖Fro.

6In [SZTO08], the improved reconstructions when using the weightsWS are explained by an observed decrease 3·1017→
1 ·1017 of the condition of Sη=d. Although improving the condition helps to stabilize the solution, we feel that the
main impact of these weights is how they modify orthogonality, and thus which types of solutions are promoted in
case of underdetermination.
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For the special cases W =WS and W =WS,σ, we make the following interesting observation in the
continuum representation. Recall definition (4.19) of the sensitivity matrix

Sp = col
(
F ′I(σ)χΩp

)
= col

(
−
∫

Ωp

(
∇u(l)(x) · ∇u(m)(x)

)
l,m=1,...,L

I dx
)
, (4.30)

where u(l), l= 1,...,L, are the first components of the forward solutions of the variational formula-
tion (2.17) for currents I(l)

� as described in section 2.3.3. For piecewise constant conductivities, we
have that u(l)|Ωp ∈C∞(Ωp) for each l= 1,...,L and p= 1,...,P , thus the sensitivity function

v̄I(x) :=
∥∥∥∥(∇u(l)(x)·∇u(m)(x)

)
l,m=1,...,L

I
∥∥∥∥

Fro

is piecewise continuous. Taking the Euclidean norm in (4.30), we get v̄I(x) |Ωp| ≈ ‖Sp‖2 on Ωp

for sufficiently refined discretizations P . Note that v̄ is independent of P for a fixed conductivity
σ. Hence, the weight functions wS and wS,σ corresponding to the weight matrices WS and WS,σ,
i.e. given by

wS(x) :=
P∑
p=1
|Ωp|−1 ‖Sp‖2 χΩp(x) and wS,σ(x) :=

P∑
p=1
|Ωp|−1 ‖Sp‖2 σ

−1
p χΩp(x),

satisfy wS ≈ v̄ and wS,σ ≈ v̄σ−1 on Ω for P sufficiently fine, i.e. they are almost independent of the
discretization geometry. We conclude with the following observation:

The weights WS,σ lead to unique Newton updates η+wS,σ which are almost independent of the
local discretization geometry and whose coefficients η+WS,σ = col(η+wS,σ ) satisfy the recon-
struction prior.

4.3.3. The reconstruction prior for the transformed forward operator

When considering a transformed forward operator F∗, i.e. updating the transformed conductivity
σ∗ = t∗(σ) in each Newton step, the inverse transformation t−1

∗ scales the conductivity updates
and thus removes the property introduced by the reconstruction prior. In particular after the k-th
Newton step, we have by Taylor expansion that

σ(k+1) = t−1
∗ (σ∗(k) + η(k)

∗ ) = t−1
∗ (σ(k)

∗ )︸ ︷︷ ︸
=σ(k)

+η(k)
∗ (t−1

∗ )′(σ(k)
∗ ) + o(η∗(k)),

thus

η(k) := σ(k+1) − σ(k) = η
(k)
∗
(
(t−1
∗ )′(σ(k)

∗ )
)

+ o(η∗(k)).

This means that, when using the weights WS,σ, the reconstruction prior is violated (to first order)
by the factor t−1

∗ (σ(k)
∗ ) after the inverse transform. To compensate for this effect, we can replace the
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weights WS,σ by the weights

WS∗,σ = diag
{

(t−1
∗ )′(t∗(σ1)) ‖(S∗)1‖2 σ

−1
1 , . . . , (t−1

∗ )′(t∗(σP )) ‖(S∗)P ‖2 σ
−1
P

}
, (4.31)

where S∗ is the sensitivity matrix for the transformed problem, i.e.

(S∗)p = col
(
(F∗)′I(t∗(σ))[χΩp ]

)
, p = 1, . . . , P. (4.32)

Then, if Sp ‖Sq, we have that (S∗)p ‖ (S∗)q, and Theorem 4.11 yields that

(η(k)
∗ )p

(
(t−1
∗ )′

(
(σ(k)
∗ )p

))
︸ ︷︷ ︸

=(η(k))p+o
(
(η∗(k))p

)
1
σ

(k)
p

= wp (η(k)
∗ )p

‖(S∗)p‖2
Th.4.11= wq (η(k)

∗ )q
‖(S∗)q‖2

= (η(k)
∗ )q

(
(t−1
∗ )′

(
(σ(k)
∗ )q

))
︸ ︷︷ ︸

=(η(k))q+o
(
(η∗(k))q

)
1
σ

(k)
q

for wp = (WS∗,σ(k))pp. This shows that the reconstruction prior is preserved to first order when
using the weights WS∗,σ. An interesting observation is that |(t−1

log)′(tlog(σ))σ−1| ≡ 1, meaning that
the log-transform inherits the conductivity-scaling implicitly: WSlog,σ =WSlog . The weight matrix
WS∗ is defined accordingly (cf. equation (4.27)).

The compensation of the transformation in the weights raises an interesting question: Is the conduc-
tivity transformation still useful, since its scaling effects are compensated in the weights to preserve
the reconstruction prior?

By the definition of the weighted minimum norm solution (4.22) for S∗, the weights only come
into play if the null space of S∗ is nontrivial; otherwise, N (S∗)⊥ =N (S∗)⊥W =RP independently
of the weights. However, the transformation still allows us to obtain an unconstrained problem.
Moreover, when considering inexact Newton updates η∗ satisfying

‖S∗η∗ − d‖2 ≤ θ ‖d‖2 and η∗ ∈ N (S∗)⊥W , (4.33)

the transformation influences which solution of the non-unique problem (4.33) is chosen. This
inequality is the coefficient-version of the inexact Newton update criterion (2.32) for the transformed
forward operator.

In other words, the reconstruction prior and thus the weights WS∗,σ are designed to avoid oscilla-
tions when resolving underdetermination of the linear problem, while the transformation is chosen
to obtain an unconstrained problem and possibly reduce the nonlinearity of the forward operator,
although the latter was only studied for homogeneous conductivities.

4.4. Inexact Newton updates and regularization parameters

In chapter 2, we outlined the concept of inexact Newton updates satisfying (2.32) to deal with the
instability of the linearized problem (2.30). In the coefficient notation for the transformed forward
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operator, we compute inexact Newton updates satisfying (4.33). To that end, a weighted regularized
conjugate gradient (cg) method will be formulated.

4.4.1. Weighted conjugate gradient iteration

Denote by

S
(k)
∗ (4.34)

the transformed sensitivity matrix for conductivity σ(k). Moreover, denote by

Kk,l∗ := Kl
(
(S(k)
∗ )′S(k)

∗ , (S(k)
∗ )′dk

)
⊂ N (S(k)

∗ )⊥, k ∈ N0, l ∈ N,

the l-th Krylov space (cf. eq. (2.35)) of the k-th Newton iteration. Here,

(S(k)
∗ )′ := (S(k)

∗ )>(W (k))−1.

denotes the adjoint matrix of S(k)
∗ with respect to the weighted inner product 〈·, ·〉W (k) , i.e. satisfy-

ing

x>(S(k)
∗ )′W (k)y = 〈x, (S(k)

∗ )′y〉W (k) = 〈S(k)
∗ x, y〉RLM = x>(S(k)

∗ )>y for all x ∈ RP , y ∈ RLM .

The l-th conjugate gradient iterate η(k,l)
∗ in the k-th Newton iteration then satisfies

η
(k,l)
∗ = arg min

η∗∈K
k,l
∗

∥∥∥S(k)
∗ η∗ − d(k)

∥∥∥
RLM

,

cf. equation (2.34). In particular, η(k,l)
∗ ∈ N (S(k)

∗ )⊥ and the residual is monotonously decreasing
sinceKk,l1∗ ⊂Kk,l2∗ for l1≤ l2. By l(k)

∗ , we denote the unique integer satisfying∥∥∥∥S(k)
∗ η

(k,l(k)
∗

∗ − d(k)
∥∥∥∥
RLM

≤ θ(k)
∥∥∥d(k)

∥∥∥
RLM

<
∥∥∥S(k)
∗ η

(k,l)
∗ − d(k)

∥∥∥
RLM

for l = 1, . . . , l(k)
∗ − 1,

for a parameter θ(k)∈ (0,1]. This parameter has a regularizing effect on the linear system since ηk,l
(k)
∗∗

gets highly oscillatory as θ(k)→ 0.

4.4.2. Safeguarding for the linear problem

In some examples, e.g. in the problems with additional degrees of freedom which will be introduced
in chapter 5, we observed that ∥∥∥S(k)

∗ η
(k,l(k)
∗ )

∗
∥∥∥� θ(k)∥∥d(k)∥∥

RLM

for l(k)
∗ very small (e.g. 1). This means that even a single cg step, i.e. a steepest descent decrease, may

undershoot the intended relative decrease θ(k) by far, possibly preventing the desired regularization
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effect. For that reason, we define the (preliminary) Newton update as

η
(k,l(k)
∗ )

∗ :=


η

(k,l(k)
∗ )

∗ ,
∥∥∥S(k)
∗ η

(k,l(k)
∗ )

∗
∥∥∥ ≥ θ(k)∥∥d(k)∥∥

RLM ,

η
(k,l(k)
∗ )

∗ − λ(k)
(
η

(k,l(k)
∗ )

∗ − η(k,l(k)
∗ −1)

∗

)
, otherwise,

where λ(k) ∈ (0,1) is chosen7 such that the equality∥∥∥S(k)
∗ η

(k,l(k)
∗ )

∗
∥∥∥ = θ(k)∥∥d(k)∥∥

RLM

holds. This way, we exactly meet the desired level of regularization by the inexact Newton update.

4.4.3. Safeguarding for the nonlinear problem

When using l(k)
∗ as a stopping index, one can observe in some numerical examples that l(k)

∗ drastically
increases in the last few Newton steps, i.e. shortly before the discrepancy principle is reached. This
leads to unnecessarily high oscillations in these Newton updates due to under-regularization. The
described behaviour has been observed already in [Rie99], and a safeguarding rule

θ(k) ≥ τδ
∥∥∥U (k−1) − Uv

∥∥∥−1

Fro

for the thresholds θ(k) was introduced to counter this effect; see [Rie99, eq. (6.2)]. We adopt this
strategy and additionally limit the maximum number of conjugate gradient iterations in each step
explicitly, i.e. we introduce numbers l(k)

max ∈N and set

l(k) = min
{
l
(k)
∗ , l(k)

max

}
.

The Newton update in the coefficient notation is then chosen as

η∗
(k) := η

(k,l(k))
∗ ,

leading to the new conductivity iterate σ(k+1)
∗ =σ(k)

∗ +η(k,l(k))
∗ .

4.4.4. Regularized weighted conjugate gradient algorithm

The conjugate gradient method for computing an inexact Newton update with a weighted coefficient
norm is summarized in Algorithm 5. For the iteration limit l(k)

max = ∞ and ignoring the linear
safeguarding (lines 12–14), Algorithm 5 coincides with [Rie05, Fig. 3.1] for X = (RP ,〈·, ·〉W (k)) and
Y =RLM in the notation therein, with the stopping criterion given in [Rie05, Fig. 1.1].

7Finding λ(k) is straight-forward since we are dealing with a linear problem.
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Algorithm 5: Regularized weighted conjugate gradient method

input : Sensitivity matrix S(k)
∗ , nonlinear residual d(k), weights W (k);

tolerance θ(k) ∈ (0,1], iteration limit l(k)
max ∈N.

output: Inexact Newton update η(k)
∗ , number of iterations l(k).

1 Set η= 0, d=d(k), β= 0, l= 0;
2 repeat
3 l= l+1;

4 v= (S(k)
∗ )>(W (k))−1d;

5 u=v+‖v‖2W (k)βu;

6 y=S
(k)
∗ u;

7 α= ‖v‖2W (k)/‖y‖22;
8 η=η+αu;
9 d=d−αy;

10 β= ‖v‖−2
W (k) ;

11 until ‖d‖2≤ θ(k)∥∥d(k)∥∥
2 or l≥ l(k)

max;
12 if θ(k)< 1 and ‖d‖2<θ(k)∥∥d(k)∥∥

2 then

13 η=η−
(
θ(k)∥∥d(k)∥∥

2−‖d‖2
‖d+αy‖2−‖d‖2

)
αu; // Scale last cg step to meet θ(k)

14 end

15 Set η(k)
∗ =η, l(k) = l;

4.4.5. Stopping rule and REGINN parameters

Finally, the Newton iteration is stopped by Morozov’s discrepancy principle (2.33). By k∗ ∈N, we
denote the unique index satisfying∥∥∥U (k∗)

∗ − Uv
∥∥∥

Fro
≤ τδ <

∥∥∥U (k)
∗ − Uv

∥∥∥
Fro

for all k ∈ {0, . . . , k∗ − 1} ,

where

U (k)
∗ = (F∗)I

(
σ

(k)
∗
)
.

Our inexact Newton iteration is completely defined as soon as we specify the REGINN parameters
τ , δ, and θ(k) for k=0,...,k∗. Since the exact noise level of the data is unknown, we use our estimate
(4.12). Motivated by the accuracy of this noise level estimate (±6% in our examples presented in
Table 4.4), we set

τ := 1.1 and δ := δCEM (4.35)

throughout this work.
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Remark 4.14. If significant model errors are expected, e.g. due to an unknown domain ge-
ometry, increasing τ might help to ensure convergence. However, this was not necessary
for our data, and the above constant was sufficient for the convergence of all of our numer-
ical examples, including the examples using the measured data from the tank experiments.

To choose the parameters θ(k) of the conjugate gradient iteration, we pick up the parameter strategy
of [Rie99] with a slight modification to eliminate the parameters which need setting-specific hand-
tuning. The first Newton iteration suffers most from the nonlinearity of the problem due to the
possibly large residual. Thus, we set

l(0)
max := 1 and θ(0) := 1

to make only one iteration and maximize regularization in the first Newton step. After this step, we
want to allow for a moderate increase of iterations to increase the speed of convergence, but limit it
to keep the regularization effect of the parameter choice. For the second iteration, we thus set

l(1)
max := 2l(0)

max = 2 and θ(1) :=

∥∥∥d(1)
∥∥∥

2∥∥∥d(0)
∥∥∥

2

∈ (0, 1),

where d(0) and d(1) are the nonlinear residuals before the first and before the second Newton itera-
tion, respectively. After that, we have enough information to use the REGINN parameter strategy
for θ(k) proposed by [Rie99]. Using this strategy, the relative decrease parameter is given by

θ(k) = θmax ·max
{
θ

(k)
∗ , τδ

∥∥∥U (k)
∗ − Uv

∥∥∥−1

Fro

}
, (4.36)

where

θ
(k)
∗ =



1, k = 0,∥∥d(1)∥∥
2/
∥∥d(0)∥∥

2, k = 1,

1− l(k−2)

l(k−1)
(
1− θ(k−1)), k ≥ 2 ∧ l(k−1) > l(k−2),

γθ(k−1), otherwise,

l(k) is the number of conjugate gradient iterations of the k-th Newton iteration, and γ and θmax

should be chosen close to 1, although their exact value is not critical. We set

γ := 0.99 and θmax = √γ (4.37)

throughout this work. Finally, we set l(k)
max = l(k−1) + l(k−2) for k ≥ 2 to allow for a “controlled”

increase of conjugate gradient iterations in each successive Newton step. In summary, the iteration
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4. Model-aware inversion

limits are

l(k)
max =


1, k = 0,

2, k = 1,

l(k−1) + l(k−2), k ≥ 2.

(4.38)

The regularization effect of (4.36) was studied in detail in [Rie99, Rie05]. In our modified version
(4.35)–(4.38), the parameter strategy is initialized dynamically a-posteriori for each reconstruction
and does not require “hand tuning” in different settings to obtain good results.

4.5. A model-aware Newton-type inversion scheme

In section 2.4.7, we formulated a generic version of the inexact Newton-type method CG-REGINN
as a basis for solving the ICP (Algorithm 1).

With the construction of suitable discretizations (section 3.5), the initialization of the relevant pa-
rameters (section 4.1), the design of tailored parameter transformations (section 4.2) and weighted
spaces (section 4.3), and finally with the definition of a robust choice of regularization parameters
(section 4.4), we have gathered all ingredients for our model-aware Newton-type inversion scheme
(MANTIS) based on CG-REGINN. The entire scheme is shown in Algorithm 6. The evaluation of
the forward operator and the sensitivity matrix can be done using the FEM as described in section
2.3.3 and equation (4.19).
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4. Model-aware inversion

Algorithm 6: MANTIS: Model-aware Newton-type inversion scheme for the ICP of the CEM
input : Measurement pattern I, noisy data Uv, boundary and electrode geometry information.
output: Conductivity estimate σ.

1 Set stopping parameters δ= δCEM and τ = 1.1, see eq. (4.12), (4.35) and Remark (4.14);
2 Initialize FEM triangulation ∆, e.g. by adaptive triangulation as in section 3.5.4;
3 Initialize discretized conductivity space DP , e.g. using8 P = ∆ or using one of the schemes

proposed in section 3.5;
4 Initialize contact impedances zCEM,z and conductivity σ(0) =σCEM,z as in Definition 4.4;

5 Apply conductivity transformation σ(0)
∗ = t∗(σ(0));

6 Set k= 0, d(0) =Uv−(F∗)I
(
σ

(0)
∗
)

;

7 while
∥∥d(k)

Fro
∥∥>τδ do

8 Compute θ(k) by (4.36) and l(k)
max by (4.38);

9 Compute S(k)
∗ (cf. (4.34)) by the FEM approximation (section 2.3.3) of (4.32);

10 Compute weights W (k) =W
S

(k)
∗ ,σ

(k)
∗

;

11 Compute9 η
(k)
∗ and l(k) by Algorithm 5;

12 Set σ(k+1)
∗ =σ(k)

∗ +η(k)
∗ ;

13 Set d(k+1) =Uv−(F∗)I
(
σ

(k+1)
∗

)
;

14 Set k= k+1;
15 end

16 Set σ= t−1
∗

(
σ

(k)
∗
)

;

8If ∆ is not a refinement of P , non-trivial projection operators need to be added to the algorithm before each evaluation of
the forward operator and the sensitivity matrix; see Remark 2.13. These projections are omitted here for better readability.
9Recall that boldface variables represent coefficient column vectors.
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5. Problem-speci�c extensions to the inversion
scheme

The generality and versatility of Newton-type methods are major reasons for their popularity and
success. Since the basic framework qualifies for a broad class of optimization problems, it can be
adapted or extended to solve highly problem-specific tasks.

In this chapter, we present three extensions of MANTIS: First, we extend the Newton scheme to
handle uncertainties in the boundary model in section 5.1. To that end, we make use of the Fréchet
differentiability of the forward operator with respect to the electrode geometry and the contact
impedances. Therein, tailored parameter transformations ensure the consistency of the boundary
model. Next, we demonstrate in section 5.2 that the use of sparsity-promoting Banach space methods
for REGINN, as studied in [MRLa14, MR14, Mar15], fits seamlessly into the MANTIS framework.
Finally, we present a heuristic scheme for encouraging piecewise constant conductivity solutions by
successive nonlinear filtering of the Newton iterates in section 5.3.

5.1. Recovering model parameters

In the previous chapters, we required the boundary model – or a good approximation of it – to
be known. It is needed for example to evaluate the forward operator and to compute its Fréchet
derivative in each Newton step. In some applications, e.g. in brain EIT or in process tomography,
this assumption is justified since the geometry is known a-priori, or it can be obtained by other
imaging modalities such as CT or MRI. However for dynamic imaging of soft tissue such as lung
monitoring, the boundary model, i.e. the shape of the object, the locations of the electrodes, and
even the contact impedances, may change over time. Thus, it is difficult to determine and track the
boundary geometry accurately.

As with the measurement noise and the contact impedances in section 4.1, one can try to obtain
boundary information directly from the measured data. When using Newton-type methods, a key
ingredient for this concept is the Fréchet differentiability of the forward operator with respect to
the boundary shape, the electrode size and location and the contact impedances; see e.g. [DHSS13a],
[DHH+12], and [VKV+02], respectively.
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5. Problem-specific extensions to the inversion scheme

However, this approach has a fundamental issue: The (already underdetermined) problem of re-
covering a conductivity is extended to the even more ambiguous problem of recovering both the
conductivity, the boundary shape, the electrode sizes and locations, and the contact impedances
simultaneously from the limited set of measurements. The most obvious ambiguity is due to the
conformal equivalence of EIT settings, which was used in chapter 3 first to generate different elec-
trode geometries resulting in the same CEM forward operator, and later to approximate sensitivity
based discretizations for non-circular domains. One such example is shown in Figure 5.1. For small
contact impedances, these settings are by construction indistinguishable by their measurement data,
which is emphasized by the following remark.

Figure 5.1.: Simply connected domain with 16 electrodes (left) and a conformally equivalent set-
ting on the unit disk (right). Any Moebius transformation of the right setting is also
conformally equivalent to the left setting. The conformal image was computed ap-
proximately using the Schwarz-Christoffel MATLAB toolbox (version 2.3) provided
by Tobin A. Driscoll (cf. chapter 3).

Remark 5.1 (Ambiguity due to conformal equivalence).

(a) Strictly speaking, the transformed CEM setting (3.25)–(3.28) is not a valid complete
electrode model in the classical sense, since the contact impedances are not constant
along each electrode. However, if the contact impedances are very small compared
to the interior impedance (z1,...,zL� σ−1 or simply z≈ 0), the exact distributions
of the contact impedances along the electrodes have practically no influence on the
measured data: they are indistinguishable from constant contact impedances even
at very low measurement noise. Moreover, it is not even clear whether the contact
impedances in real applications are homogeneous or varying along the electrodes.
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5. Problem-specific extensions to the inversion scheme

(b) In 3D settings, the underdetermination is even more severe, since we have additional
degrees of freedom for changing the domain shape and electrode positions, sizes and
shapes. Thus, as in the 2D case, we can not expect unique geometry information
from the measured data.

As a consequence, if the geometry is unknown and the contact impedances are small, the best we can
hope for is to obtain one conformal equivalent of the true boundary geometry from the measured
data.

Another ambiguity is obtained for the electrode sizes and the contact impedances. For small
electrodes and sufficiently big gaps, a constant ratio of electrode size versus contact impedance
(|El|z−1

l = const.) leads to practically indistinguishable electrode data in the presence of measure-
ment noise.

Since Newton-type methods are local by nature, we assume to have at least a rough initial guess of
the domain shape and the distribution of electrodes along the boundary to start with – an initial
guess for the contact impedances then follows from Definition 4.4. In this scenario, Newton-type
optimization of the boundary geometry will typically converge to a local solution, i.e. a conformally
equivalent setting “close” to the initial guess.

We now gather the necessary differentiability results for the forward operator and then assemble a
combined Fréchet derivative to optimize for the conductivity, the electrode size and position, and
the contact impedances simultaneously.

Remark 5.2 (Fixing the boundary geometry). Due to the conformal equivalence of different
geometries, any measurement data can be explained on any geometry for small contact
impedances. Thus, we fix the initial guess of the boundary shape. This way, we avoid
computing the Fréchet derivative with respect to a certain boundary parametrization, and
– more importantly – we avoid nontrivial mappings of the conductivity from the old
geometry to the new one.

5.1.1. Fréchet derivative with respect to the electrode geometry

For the ease of notation, the following considerations are restricted to the 2D case. More general
expressions can be found in the corresponding references.

By optimizing for the electrode geometry, we consider an extension of the ICP. Consequently, we
consider an extended forward operator F depending also on the electrode locations, sizes, and contact
impedances:

F : D(FI)×Dθ ×D|E| ×Dz → L(RL� ),

F
(
σ, (θ1, . . . , θL), (|E1| , . . . , |EL|), (z1, . . . , zL)

)
7→ (I 7→ U),
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5. Problem-specific extensions to the inversion scheme

where (θ1,...,θL)∈Dθ⊂ [0,|∂Ω|)L parametrizes the center points of the electrodes, (|E1|,...,|EL|)∈
D|E|⊂ [0,|∂Ω|)L parametrizes the electrode sizes, and (z1,...,zL)∈Dz⊂RL>0 are the electrode contact
impedances. The corresponding extended measurement operator is denoted by

F I : D(F )→ (RL� )M .

In [DHH+12, Theorem 4.1 and Corollary 4.2], the Fréchet derivative of the forward operator with
respect to an electrode perturbation is given about the origin, that is, at their current shape. In
the 2D case, perturbing the electrode boundary simply means to move the end-points of an elec-
trode. Moreover, the integral over the electrode boundary appearing in [DHH+12, Corollary 4.2]
is simply a point-evaluation of the interior potential u at the electrode edges in this case. Since
u|∂Ω ∈H1−α(∂Ω) for any α> 0, this point evaluation is well-defined.

The explicit formulas for the 2D case are given in the following. To that end, let

El = {γ(θ) : − ωl ≤ θ − θl ≤ ωl} for some θl ∈ [0, |∂Ω|) and ωl > 0, l = 1, . . . , L,

analogous to the circular geometry, where γ : [0, |∂Ω|]→ Rd (modulo |∂Ω|, where required) is a
continuous, piecewise smooth parametrization of ∂Ω with γ(0) = γ(|∂Ω|) and ‖γ′(θ)‖2 = 1 almost
everywhere.

By equally perturbing both electrode edges in the same direction, a Fréchet derivative with respect
to the electrode movement is given about its current position. For the l-th electrode, it is given
component-wise (omitting the arguments) by(

∂

∂θl
F

)
k,m

:=
(
F
′
θl

)
k,m

= −z−1
l

[ (
U

(k)
l − u(k)(γ(θl + ωl))

) (
U

(m)
l − u(m)(γ(θl + ωl))

)
−
(
U

(k)
l − u(k)(γ(θl − ωl))

) (
U

(m)
l − u(m)(γ(θl − ωl))

)]
,

where
(
u(k),U (k)

)
are the solutions of (2.17) for the k-th current I(k)

� of the �-frame and for conduc-
tivity σ. When perturbing both electrode edges by the same amount in opposite direction, a Fréchet
derivative with respect to the electrode size is given about its current size. For the l-th electrode size, it
reads(

∂

∂ |El|
F

)
k,m

:=
(
F
′
|El|

)
k,m

= −z−1
l

[ (
U

(k)
l − u(k)(γ(θl + ωl))

) (
U

(m)
l − u(m)(γ(θl + ωl))

)
+
(
U

(k)
l − u(k)(γ(θl − ωl))

) (
U

(m)
l − u(m)(γ(θl − ωl))

)]
.

In particular, F ′θl and F
′
|El| only differ by one sign in the sum. The Fréchet derivatives for the

measurement operator can again be obtained by a multiplication with the particular currents, i.e.(
F
′
I,θl

)
k,m

=
(
F
′
θl
I(m)

)
k

and
(
F
′
I,|El|

)
k,m

=
(
F
′
|El|I

(m)
)
k

for k,l= 1,...,L and m= 1,...,M , respectively, where I =
{
I(1),...,I(M)

}
.
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5. Problem-specific extensions to the inversion scheme

In chapter 4, the positivity constraint of the conductivity was treated by a suitable conductivity
transformations. The linearization of the forward operator with respect to the electrode geometry
brings a similar issue: One needs to make sure that the electrodes preserve positive size, do not
change order, and do not overlap. To that end, we again consider transformations from bounded to
unbounded parameter spaces which enforce these conditions. We want to perform electrode changes
independently of the neighboring electrodes, thus we introduce barriers at the gap centers. The gap
centers are parametrized by

θ̂l = 1
2 [(θl+1 − ωl+1)− (θl + ωl)] .

This situation is depicted in Figure 5.2, where the electrode center and their parameters θl are de-
picted in red, while the gap centers and their parameters θ̂l are depicted in blue.

El−1 El El+1

γ(θl−1) γ(θl)
γ(θl+1)

γ(θ̂l−1) γ(θ̂l)

γ(θl−ωl) γ(θl+ωl)

Figure 5.2.: Parametrization of the electrodes on the boundary. The gap centers θ̂1,...,θ̂L will be
the limits for the electrode movement and deformation in each Newton iteration.

Now we allow each electrode El, l=1,...,L, to move and change size within the boundary section{
γ(θ) : θ̂l−1 < θ < θ̂l

}
,

i.e. we want that the updated parameters θ(k+1)
l and ω(k+1)

l satisfy

θ̂
(k)
l−1 < θ

(k+1)
l − ω(k+1)

l < θ
(k+1)
l + ω

(k+1)
l < θ̂

(k)
l (modulo |∂Ω|), l = 1, . . . , L,

after the k-th Newton step. However, this is a coupled restriction for each electrode size and po-
sition. Thus, we further “split” this available space into one part for the electrode movement and
another part for the electrode size change, as shown in Figure 5.3. Therein, the yellow sections of
the boundary depict the parts of the boundary “reserved” for the electrode resizing, and the green
sections depict the parts for the electrode movement.

For the electrode sizes and the parameters of the locations, we thus obtain restrictions from below
and from above. One possibility to handle this restriction is to use a tangent-type transformation
for the parameters, mapping the interval boundaries to ±∞. First, we introduce a lower bound ζ(k)

l
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satisfying

0 < ζ
(k)
l < ω

(k+1)
l

for the updated half-width w(k+1)
l of the l-th electrode after the k-th iteration to ensure numerical

stability for the FEM forward solutions1. In our implementations, we use ζ(k)
l := 2

3ω
(k)
l . Moreover,

let

δl = 1
2 min

{
θ̂l − (θl + ωl), (θl − ωl)− θ̂l−1

}
> 0,

δl = θ̂l − θl − ωl − δl > 0, and

δl = θl − θ̂l−1 − ωl − δl > 0 (all possibly modulo |∂Ω|),

for each l= 1,...,L. Using these quantities, we restrict the electrode movement in the k-th Newton
step to

−δ(k)
l + θ

(k)
l < θ

(k+1)
l < δ

(k)
l + θ

(k)
l (5.1)

and the electrode resizing to

ζ
(k)
l < ω

(k+1)
l < ω

(k)
l + δ

(k)
l . (5.2)

In Figure 5.3, introduced quantities simply parametrize the boundaries of the yellow and green
sections for the electrode resizing and movement, respectively.

γ(θl)γ(θ̂l−1) γ(θ̂l)γ(θl−ωl) γ(θl+ωl)

γ(θl−ζl) γ(θl+ωl+δl)γ(θl−ωl−δl)

El

Figure 5.3.: Green: Reserved for electrode movement. Yellow: Reserved for electrode resizing.
Dark gray: Preserved minimum electrode width in the k-th iteration.

1The forward model might get unstable when electrodes or gaps shrink to a point.
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One possibility for defining “tangent-type” transformation is to choose

t
(k)
θl,tan(θ) = tan

 π

δ
(k)
l + δ

(k)
l

(
θ + δ

(k)
l − θ

(k)
l −

π

2

)
for the position update and

t
(k)
|El|,tan(θ) = tan

(
π

ω
(k)
l + δ

(k)
l − ζ

(k)
l

(
ω − ζ(k)

l

)
− π

2

)

for size update of the l-th electrode in the k-th iteration, respectively. These transformations map the
admissible interval for the position and size updates to the real line. As for the conductivity updates,
the corresponding Fréchet derivatives in the transformed setting can be computed by (4.16).

We denote the corresponding (transformed) sensitivity matrices for the electrode position and size
updates by Sθ ∈RLM×L and S|E| ∈RLM×L, respectively, where

(Sθ)l = col
(
F
′
I,θl,tan

)
and (S|E|)l =

(
F
′
I,|El|,tan

)
for l = 1, . . . , L,

respectively.

For convenience of notation, we moreover denote by F ′σ := F ′∗ the Fréchet derivative with respect
to the (transformed) conductivity and by Sσ :=S∗ the corresponding sensitivity matrix.

5.1.2. Fréchet derivative with respect to the contact impedances

The differentiability of the forward operator with respect to the contact impedances is studied e.g. in
[VKV+02]. In the notation of the previous section, the Fréchet derivative of the forward operator
with respect to the contact impedance zl of the l-th electrode is given by(

∂

∂zl
F

)
k,m

:=
(
F
′
zl

)
k,m

= − 1
z2
l

∫
El

(
U

(k)
l − u(k)

) (
U

(m)
l − u(m)

)
dS,

where (u(k),U (k)) is the solution of (2.17) for the current vector I(k)
� . The integral can be approx-

imated with a quadrature rule on the point values of the FEM approximations of u(k) and u(m),
k,m= 1,...,L. The positivity constraint can again be enforced with the log-transformation and the
chain rule (4.16).

The corresponding (transformed) sensitivity matrix is denoted by Sz.

5.1.3. Assembly of the sensitivity matrix and the weight matrix

To optimize for the conductivity, the electrode geometry, and the contact impedances simultane-
ously, the corresponding sensitivity matrices need to be concatenated in each Newton step. A crucial
question is how to weight the optimization of the different unknowns against each other. For the
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conductivity, we could come up with a natural weighting scheme (4.26) based on the reconstruction
prior (4.21).

Due to the underdetermination, the weighting of conductivity updates versus changes of the bound-
ary model forces us to make a design choice:

• If we have an accurate approximation of the true boundary geometry, then we should favor
conductivity updates over geometry changes.

• If the boundary model is inaccurate, then we should allow for bigger changes in the boundary
model.

This can be realized by specifying penalty parameters

w
(k)
θ > 0, w

(k)
|E| > 0, and w(k)

z > 0,

in each iteration and defining weight matrices

W
(k)
θ = Lw

(k)
θ IdL, W

(k)
|E| = Lw

(k)
|E| IdL, and W

(k)
z = Lw(k)

z IdL.

Therein, the factor L can be considered as a normalization for the number of unknowns.

The same normalization should be applied to the diagonal weight matrix for the conductivity coef-
ficients. For an arbitrary diagonal conductivity weight matrix W = diag(w1,...,wP ) (e.g. one of the
weight matrices proposed in (4.27)), we define a normalized version

W σ =

 P∑
p=1

wp

W.
For the combined vector of the conductivity update, electrode position updates, electrode size up-
dates and contact impedance updates

s(k) = (s(k)
σ1 , . . . , s

(k)
σP

; s(k)
θ1
, . . . , s

(k)
θL

; s(k)
|E1|, . . . , s

(k)
|EL|; s

(k)
z1 , . . . , s

(k)
zL

)>,

in the k-th Newton step, the combined sensitivity matrix reads

S
(k) =

(
S

(k)
σ S

(k)
θ S

(k)
|E| S

(k)
z

)
and the combined weight matrix reads

W
(k) =


W

(k)
σ 0 0 0

0 W
(k)
θ 0 0

0 0 W
(k)
|E| 0

0 0 0 W
(k)
z

 .

Now, REGINN can be applied to S(k) and W (k) instead of S(k)
∗ and W (k) in each iteration to obtain

the update coefficients s(k) for the conductivity, the electrode positions, the electrode sizes, and the
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contact impedances simultaneously.

Lacking an explicit convergence result for this extended scheme, we can use the weights w(k)
θ , w(k)

|E|,

and w(k)
z to successively “stabilize” the boundary model. Our aim is to reduce the amount of change

applied to the boundary model and freeze it completely after a certain amount of iterations. This
means that the simultaneous reconstruction of conductivity and boundary model can be seen as a
“pre-processing” step for the ICP.

To that end, we formally let

w
(k)
θ =

k
αθw

(0)
θ , 1 ≤ k ≤ Kθ,

0, otherwise,

w
(k)
|E| =

k
α|E|w

(0)
|E|, 1 ≤ k ≤ K|E|,

0, otherwise,

w(k)
z =

k
αzw

(0)
z , 1 ≤ k ≤ Kz,

0, otherwise,

for some penalty parameters αθ, α|E|, αz > 0 and some stopping parameters Kθ,K|E|,Kz ∈N. The
interpretation of w(k)

(·) = 0 is that the corresponding coefficient update vector s(k)
(·) and its sensitivity

matrix S(k)
(·) are removed from the linearized system, respectively. The initial penalty parameters

w
(0)
θ , w(0)

|E|, and w(0)
z should be chosen according to the accuracy of the initial guess of the boundary

model.

Remark 5.3 (Design parameter choices for optimizing the boundary model). In our numerical
experiments, we obtained good results using

w
(0)
θ = w

(0)
|E| = 1, w(0)

z = 100, αθ = α|E| = αz = 3
2 , and Kθ = K|E| = Kz = 50.

This means that the penalty is increased for the first 50 steps. Afterwards, the optimization
of the boundary model is stopped and the following Newton updates are only applied to
the conductivity.

5.2. Sparsity and Banach space methods

Although the set of admissible conductivities L∞+ (Ω) is not a Hilbert space, we have so far considered
the finite-dimensional discretized conductivity space DP and the space of the measurements (RL� )M

equipped with Hilbert space structures. In particular, we made use of inner products and weighted
L2-norms in the results of chapter 4.
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Indeed, the reconstruction prior (4.21) was designed to avoid oscillations in the Newton updates,
leading to smooth solutions which are characteristic for L2-type penalties: The Moore-Penrose
pseudo-inverse minimizes the L2-norm over all solutions of the linear system, typically leading to
smooth solutions with a fairly large support and thereby avoiding oscillatory solutions. However,
solutions with small support and high peaks are also penalized. As a consequence, small-support
inhomogeneities in the conductivity are usually not recovered accurately and rather “blurred out”in
the reconstructions.

In some EIT applications, in particular in process tomography, the aim is to detect small-support
inclusion, such as cracks or air bubbles, inside an otherwise homogeneous medium. In this case, it
is natural to model the searched-for inclusions as elements of the Banach space Lp(Ω), p≈ 1.

The inexact Newton-type method REGINN for Banach spaces was considered, and a convergence
and regularization analysis was established, in [Jin12, MRLa14, MR14] and in the PhD thesis
[Mar15], to which the interested reader is referred to for details.

Some of the concepts of REGINN (and thus, of MANTIS) are easily translated to the Lp-space set-
ting. For example, Morozov’s discrepancy principle (2.33) and the linear decrease criterion (2.32)
can be formulated equivalently using the corresponding Banach space norms. However, some pow-
erful tools like the conjugate gradient method rely on the structure of Hilbert spaces and are not
available in Banach spaces. Consequently, they need to be substituted: For example, Newton up-
dates satisfying the decrease criterion (2.32) in an Lp norm can be achieved by (usually much slower)
gradient-based methods like the Landweber method, or by Tikhonov-type methods. The conver-
gence analysis of these methods (see [Mar15] and the references therein) is more delicate and involves
nontrivial maps (duality maps) between the Banach spaces and their duals.

The numerical examples presented in section 6.6 encourage that some techniques presented in this
work, like the tailored discretizations of the conductivity space (chapter 3), the model-aware ini-
tialization of the background conductivity and the contact impedances (section 4.1), and the use of
tailored weights (section 4.3) for the conductivity space2, work well in the Banach spaces setting
of REGINN. We present some reconstructions assuming σ ∈ Lp(Ω), p= 1.1, and once again refer
to [Mar15] for further explanations and more numerical examples. For the linear problem, the it-
erated Tikhonov method is used with α = 0.1‖I‖2. Each Tikhonov minimizer is computed by a
Landweber iteration with step size 0.001‖I‖−1

2 .

2This might seem surprising at first glance since using these weights does not imply the reconstruction prior. In fact, the
reconstruction prior is not desired in Lp, p≈ 1, settings where sparse updates are preferred. Nonetheless, we observe
that using the weights (4.26) in Banach spaces reduces oscillations and artifacts in the reconstructions.
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5.3. Iterated nonlinear �ltering

The reconstruction prior (4.21) was formulated to avoid oscillatory conductivity updates. How-
ever, once oscillations are present in the conductivity iterate, they are typically not smoothed out
afterwards (and even might be necessary for the convergence of the algorithm). Moreover, the re-
construction prior does not hold in Banach spaces, and it is not clear if the associated weights are
optimal for reducing oscillations in this case.

To further reduce the amount of oscillations in the solution, while preserving the convergence of
Newton’s method, we can add an additional filtering step to each Newton iteration. To that end,
line 12 of Algorithm 6 is replaced by

σ
(k+1)
∗ = Φ(k)(σ(k)

∗ + η(k)
∗ ),

where Φ(k) is series of (nonlinear) filters to suppress oscillations. To preserve convergence3, the
changes made by the Newton update should “outweigh” the changes made by the filters. Hence, we
require that ∥∥∥Φ(k)

(
σ∗

(k) + η(k)
∗
)
−
(
σ∗

(k) + η(k)
∗
)∥∥∥

(RP ,Ω)
≤ α(k)

Φ

∥∥∥η(k)
∗
∥∥∥

(RP ,Ω)
, (5.3)

where
{
α

(k)
Φ

}
k∈N

is a decreasing zero sequence with α(1)
Φ ≤ 1, and

‖σ‖2(RP ,Ω) =
P∑
p=1

σ2
p |Ωp| for σ ∈ RP .

The coefficients α(k)
Φ can be chosen to control the desired amount of smoothing. In our numerical

examples, we use α(k)
Φ = k−

1/2.

In the following, we give two examples for such filters, namely scaled median filters and anisotropic
diffusion filters.

Example 5.4 (Scaled median filtering). Median filtering is a simple technique commonly
used in image processing for reducing highly oscillatory noise while preserving edges. In
our setting, the idea is to replace each conductivity coefficient by the median of its neigh-
bouring coefficients, i.e.

(Φ(σ))p = median {σq : Ωq is a neighbour of Ωp} .

The definition of a neighbour is not strict and depends on the geometry of the partition
P of Ω. For example, one could define a cell Ωq as a neighbour of Ωp if both cells share
a common edge (or node). Each cell is typically defined to be its own neighbour. Alter-
natively, one could use a fixed number of “next neighbours” with minimum distance to

3We emphasize that this method is a heuristic, and no rigorous convergence theory is established in this work.
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each cell. In MATLAB, this can be realized by the function knnsearch contained in the
statistics and machine learning toolbox.

Then in each Newton step, Φ(k) can be defined by

Φ(k)(σ) = λ(k)Φ(σ) + (1− λ(k))σ,

where λ(k)∈ (0,1] is chosen a-posteriori, i.e. the impact of the filtering is “scaled down” by
a convex combination of the filtered and unfiltered conductivity such that (5.3) is satisfied.

A more sophisticated technique is given in the following example.

Example 5.5 (Anisotropic diffusion filter). Anisotropic diffusion is an increasingly pop-
ular technique for edge-preserving or edge-enhancing image denoising [Wei98]. To that
end, we consider the solution u∈C

(
[0,T ];L2(Ω)

)
of the partial differential equation

∂tu = ∇ ·D∇u, u(0, ·) = σ, D∇u|∂Ω · ν = 0,

where σ ∈DP is the continuum representation of a conductivity coefficient vector σ, and
D is a (inhomogeneous, anisotropic) diffusion tensor; see e.g. [Wei98, chapters 1.3.3, 2,
5.1] for details. In particular, D can be designed to suppress diffusion across edges of big
conductivity changes, while allowing for diffusion along these edges and in regions where
conductivity changes are small.

Given u, we let Φ(k)(σ) = u(t(k)), where u(t) is the coefficient vector of a projection
of u(t) onto DP . Since u(t)→ σ as t→ 0, we can find a t(k) > 0 a-posteriori such that
(5.3) holds. In our “proof of concept” implementation, a finite difference scheme and the
explicit Euler method with variable step size is used to evaluate u. The parameter t(k) is
defined a-posteriori such that the Euler method stops one step before (5.3) is violated or
when a maximum number of Euler steps is reached.
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This chapter contains numerical experiments which complement the theoretical results presented
in chapters 3–5. All computations are performed in the MANTIS framework (Algorithm 6). The
2D version of MANTIS was implemented as a “stand-alone" program in MATLAB (version R2013a
and newer). A 3D version was integrated in the developer version of the open source MATLAB
toolbox EIDORS [PL02] under GNU General Public Licence. It is available, along with sev-
eral test scripts demonstrating how to use the MANTIS code in EIDORS, at SourceForge under
http://eidors3d.sourceforge.net.

The code is written with a focus on ease-of-use rather than performance. Still, the 2D implemen-
tation can be used on any typical notebook or desktop computer, whereas at least 8 GB of RAM
are recommended for 3D reconstructions in EIDORS. All results presented in this chapter were per-
formed on, and the listed computation times refer to, an Intel i7-2720QM CPU (4 cores at 2.20 GHz)
and 16 GB of RAM.

In section 6.1, we introduce several simulated and real-world measurement settings. To demonstrate
the versatility of the MANTIS framework, the simulated settings cover various scenarios. These
include convex and non-convex domains, varying numbers of electrodes, and different high and low
contrast conductivities with small and large inclusions inside constant or non-constant background
conductivities. The real-world measurements were kindly provided by Aku Seppänen (University of
Eastern Finland) and Stratos Staboulis (Aalto University) [DHSS13b] and by the Rensselaer group
[IMNS04].

All reconstructions use the parameter-free initialization for the contact impedances zCEM,z, the ini-
tial conductivity estimate σCEM,z (Definition 4.4), and the noise estimate δCEM (eqn. 4.12) derived in
section 4.1. The 2D reconstructions use adaptive triangulations, as presented in section 3.5.4, both
for the FEM computation and for the discretization of the conductivity space DP , unless stated oth-
erwise. The number of triangles P is chosen dynamically depending on the number of electrodes L
such that

P ≈ 400L.

For the simulated experiments, the relative error erel between the reconstructed conductivity σ and
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6. Numerical results

the exact conductivity σexact is computed numerically as

erel = 1
|∆err|

∫
∆err

|P∆errσrec(x)− P∆errσ(x)|
|P∆errσ(x)| dx, (6.1)

where P∆err is a piecewise constant interpolation on a very fine triangulation ∆err of Ω with roughly
30000–50000 triangles, and |∆err| is its total area.

In section 6.2, the impact of the weighted conductivity spaces and the conductivity transformations
on the speed and quality of the reconstructions is investigated. Section 6.3 shows reconstructions
of 3D models using the EIDORS implementation of MANTIS. In section 6.4, the performance
of different discretizations of the conductivity space is compared. Next, we present reconstructions
incorporating the recovery of model parameters, the use of sparsity promoting Banach space models,
and the effect of iterated nonlinear filtering in sections 6.5, 6.6 and 6.7, respectively. Finally, we
present the performance of MANTIS for measured data from saline tank experiments in section
6.8.

6.1. Numerical settings

We now introduce the settings used for the numerical experiments. All settings are denoted by a
capital letter followed by a number indicating the number of electrodes; e.g. “X.16” denotes setting
X with a 16 electrode configuration. If not stated otherwise, the electrodes in the 2D settings are of
equal size and equally distributed along the boundary, and cover 50% of the boundary surface, i.e.

|El| =
1

2L |∂Ω| , l = 1, . . . , L,

and the contact impedances are set to

zl = 0.05, l = 1, . . . , L,

to be of roughly the same order as the values observed in the tank experiments. Measurement data
is simulated for a full set of L=M adjacent currents, I = Iadj ∈ (RL� )L, unless stated otherwise.

For simulated data, we will consider setups with 16, 32 or 64 electrodes and noise levels of δrel =0.3%,
δrel = 0.2% and δrel = 0.1%, respectively1.

Recall that noisy data is simulated by the noise model (2.20) described in section 2.2.2. For each
setting, one independent sample of normal-distributed pseudo-random noise is generated using the
MATLAB function rand (Mersenne twister) with different seeds. As seeds we use three-digit num-
bers, where the first digit is the number of the setting and the other digits are the number of elec-
trodes, e.g. seedA.16 = 116 for setting A.16.

1To simulate “moderate”, “good” and “very good” measurement equipment, respectively.
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To avoid inverse crime, the noise-free measurement data is simulated on a much finer FEM mesh
with ≈ 50000 triangles, which is not a refinement of the meshes used for the inversion in MANTIS.
In settings A and B presented in the following, the analytic Fourier based method of section 3.2 is
used to generate the data.

Throughout all examples, we observed that for the 16 electrode case (256 potential measurements,
≈ 6000 triangles), the FEM computation time TFEM (in seconds) dominates over the assembly time
Tjac of the Jacobian and the computation time Tlinear of the linearized problem. For the 32 and
64 electrode cases, the assembly time of the Jacobian is generally more costly in our MATLAB
implementation.

6.1.1. Setting A: Circular perturbation inside the unit disk

In setting A, we consider a homogeneous background conductivity on the unit disk

ΩA = B1(0) ⊂ R2

with a circular perturbation, i.e.

σA = 0.25
(
1 + 10χBrA (xA)

)
, where xA = 0.4

(
1/
√

2
1/
√

2

)
and rA = 0.25.

Setting A.16 is displayed in Figure 6.1. The advantage of this setting is that the data can be generated
using the analytic Fourier approach, thus completely avoiding inverse crime. Table 6.1 shows the
absolute noise levels δ and the resulting MANTIS initializations δCEM (equation (4.12)), σCEM,z

and zCEM,z (Definition 4.4), as well as the number of Fourier coefficients Nw (equation (3.34)) for
computing the analytic forward solution.

0.2

0.5

1.0

2.0

Figure 6.1.: Setting A.16: Circular conducting inclusion inside the unit disk.
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Setting δrel δ δCEM zCEM,z σCEM,z Nω

A.16 0.3% 3.77×10−2 4.03×10−2 1.26×10−1 2.77×10−1 3585
A.32 0.2% 3.88×10−2 3.57×10−2 9.18×10−2 2.73×10−1 6172
A.64 0.1% 3.14×10−2 3.35×10−2 7.35×10−2 2.70×10−1 11345

Table 6.1.: Relative noise δrel, resulting noise level δ and the resulting MANTIS initializations
δCEM, zCEM,z and σCEM,z for setting A. Nw denotes the number of Fourier coeffi-
cients (cf. eqn. 3.34) for computing the analytic forward solutions.

Since the inclusion has a higher conductivity than the background, we observe that the background
conductivity is slightly over-estimated, and the contact impedances are also over-estimated. The
noise level estimate is very accurate in all cases. Recall that independent realizations of pseudo-
random noise are used for each setting.

6.1.2. Setting B: Thorax cross-section

Setting B resembles the cross-section of a human thorax with a highly conductive inclusion (“heart”,
σ= 0.75), two resistive inclusions (“lungs”, σ= 0.24), and one highly resistive inclusion (“spine”,
σ= 0.05) in an otherwise homogeneous background (“soft tissue”, σ = 0.42). The conductivity
values are chosen to agree with those of the experimental setup [IMNS04] (this setup will be pre-
sented later). The domain ΩB is scaled to fit into the square [−1,1]2. Setting B.16 is depicted in
Figure 6.2(a).

Since the exact geometry is often unknown in practical applications, we will also perform recon-
structions on a “generic” ellipsoidal approximation shown in Figure 6.2(b), denoted by B. The
domain ΩB is scaled such that |∂ΩB|=

∣∣∂ΩB
∣∣. The corresponding MANTIS initializations are shown

in Table 6.2.

Setting δrel δ δCEM zCEM,z σCEM,z

B.16 0.3% 2.55×10−2 2.59×10−2 4.08×10−3 3.42×10−1

B.32 0.2% 2.62×10−2 2.90×10−2 2.45×10−2 3.48×10−1

B.64 0.1% 2.08×10−2 2.10×10−2 3.71×10−2 3.55×10−1

B.16 0.3% 2.55×10−2 2.59×10−2 2.31×10−5 3.28×10−1

B.32 0.2% 2.62×10−2 2.90×10−2 8.91×10−3 3.34×10−1

B.64 0.1% 2.08×10−2 2.10×10−2 2.95×10−2 3.42×10−1

Table 6.2.: MANTIS initializations for the thorax model (setting B, cf. Figure 6.2) and its approx-
imation on an ellipse (setting B). The estimates of the contact impedances (5.00×10−2)
and the background conductivity (4.20×10−1) are more accurate for the exact model
and when increasing the number of electrodes.
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(a) Setting B.16

0.1

0.2

0.5

1.0

(b) Setting B.16

Figure 6.2.: Settings B.16 and B.16: 2D model of a human thorax (soft tissue, lungs, heart, spine)
and an ellipsoidal approximation to the geometry for inversion.

6.1.3. Setting C: Mixed backgrounds and contrasts

Setting C is an “artificial benchmark” for evaluating the ability of MANTIS to recover conductivities
with high- and low-contrast inclusions inside a non-homogeneous background. The domain is again
the unit disk ΩC =B1(0). It contains high-contrast inclusions of varying shape and distance to the
boundary. The background is split into two parts with different conductivity values. Setting C.16 is
shown in Figure 6.3.

0.1

0.2

0.5

1.0

2.0

5.0

10

Figure 6.3.: Setting C.16: “Synthetic benchmark” conductivity with two background parts
(σ=

√
2 top-left, σ= 1/

√
2 bottom-right), two highly resistive inclusions (σ= 0.1,

bottom-left and center) and one highly conducting inclusion (σ= 10, top-right).

The discontinuous background poses a particular difficulty for inversion. In fact, many theoretical
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results require the conductivity to be constant2 or smooth3 in a neighborhood of the boundary ∂Ω.
The MANTIS initializations for this setting are listed in Table 6.3.

Setting δrel δ δCEM zCEM,z σCEM,z

C.16 0.3% 1.26×10−2 1.20×10−2 4.82×10−2 8.83×10−1

C.32 0.2% 1.45×10−2 1.50×10−2 5.07×10−2 8.96×10−1

C.64 0.1% 1.42×10−2 1.42×10−2 5.08×10−2 9.08×10−1

Table 6.3.: MANTIS initializations for setting C. The initial conductivity value σCEM,z lies in
the interval [1/√2,

√
2] of the two background values in all cases (cf. Figure 6.3).

6.1.4. Setting D: Non-convex domain with a non-convex inclusion

Setting D is an L-shaped domain with |∂ΩD|= 8. The conductivity consists of a circular conducting
inclusion (σ= 4) and a resistive annular inclusion (σ= 1/4) inside a unit background (σ= 1). Setting
D.16 is depicted in Figure 6.4. The MANTIS initializations are listed in Table 6.4.

0.2

0.5

1.0

2.0

5.0

Figure 6.4.: Setting D.16: Non-convex domain with non-convex (annular) resistive inclusion
(σ= 1/4) and circular conducting inclusion (σ= 4) inside a homogeneous back-
ground (σ= 1).

Setting δrel δ δCEM zCEM,z σCEM,z

D.16 0.3% 1.22×10−2 1.39×10−2 3.94×10−2 8.39×10−1

D.32 0.2% 1.41×10−2 1.40×10−2 4.45×10−2 8.57×10−1

D.64 0.1% 1.26×10−2 1.23×10−2 4.70×10−2 8.78×10−1

Table 6.4.: MANTIS initializations for setting D.

2CGO solutions, see e.g. [MS12, Chapter 14.3]
3Factorization method for the CEM, see e.g. [LHH08, section 2]
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6.1.5. Setting E: 3D thorax model

To perform 3D reconstructions from simulated 3D data, the MANTIS framework was implemented
in the open source MATLAB toolbox EIDORS. EIDORS is available under GPL version 2 or 3 at
http://eidors3d.sourceforge.net/. In release 3.8, the MANTIS implementation can be found
in the subfolder dev/r_winkler/. EIDORS uses the Netgen mesh generator which is available
under LGPL at http://sourceforge.net/projects/netgen-mesher.

Setting E is a 3D model of the thorax of a pig. It was generated by extruding the geometry of a cross-
section of the pigs chest. The shape was obtained “by hand” from the 2D computed tomography
(CT) image shown in Figure 6.5 (top left). Inside this domain (σ= 0.42), a “lung” phantom (σ= 0.24)
was generated by extruding the lung shape from the CT image, and a “heart” phantom (σ= 0.75)
was modelled as an ellipsoid. On the boundary, 3 layers of 20 square-shaped electrodes each are
modelled. Figure 6.5 shows a FEM discretization of this setting (bottom left) and a cross-sections of
the model at each electrode plane (right).

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 6.5.: Setting E. Top left: CT image of a pig thorax. Bottom left: Extruded 3D model
from the shapes obtained from the CT image. Right: Horizontal slices through the
3D model at the center of each electrode ring.

The CT image of the pig was contributed to EIDORS by Marc Bodenstein (Universität Mainz). The
MATLAB code for generating extruded FEM models was contributed by Bartłomiej Grychtol et
al.; see [GLB+12]. The relative noise level was set to δrel

E = 0.1%. The contact impedances for the

110

http://eidors3d.sourceforge.net/
http://sourceforge.net/projects/netgen-mesher


6. Numerical results

simulation were set to zl = |El|= 0.0025, l= 1,...,L, in this setting. The corresponding MANTIS
initializations for different FEM discretizations are given in Table 6.5.

Setting δrel δ δCEM |∆| zCEM,z σCEM,z

E 0.1% 1.02×10−2 9.31×10−2 116311 3.51×10−3 4.12×10−1

73557 3.33×10−3 3.86×10−1

48560 1.60×10−3 3.35×10−1

Table 6.5.: MANTIS initializations for setting E, using 3 rings of 20 electrodes each. The back-
ground conductivity is σ=0.42, the contact impedances are zl=2.5×10−3, l=1,...,L.
The noise level estimate δCEM is independent of the FEM refinement.

6.1.6. Setting F: Saline tank experiments, part 1

The following two settings F and G use measured data from saline tank experiments. Here, it is
particularly convenient that the MANTIS framework has no problem-specific regularization param-
eters: It can be applied “out of the box” to all measurement settings, independently of their physical
dimensions, their conductivities, their measurement equipments, or the applied current patterns.

Setting F is a tank experiment using data contributed to EIDORS by Jon Newell and David Isaac-
son. The measurement system is called Rensselaer Adaptive Current Tomography (ACT 3). It applies
trigonometric current patterns and measures potentials at 32 electrodes simultaneously at a single
frequency (28.8 kHz). Details about the system can be found in [ESNI95].

The saline tank has a diameter of 30 cm. Each electrode is rectangular of height 1.6 cm and width
2.5 cm. The saline conductivity is σ = 0.42 S/m (Siemens per meter). Two agar phantoms rep-
resenting lungs (σ = 0.24 S/m) and one agar phantom representing the heart (σ = 0.75 S/m) are
placed inside the saline. The setting is shown in Figure 6.6. Details about the setting can be found
in [IMNS04].

The MANTIS initializations are listed in Table 6.6. The contact impedances of this setting are very
small, so the minimum value z = zmin = 2.5×10−4 is attained. The estimated absolute noise level
δCEM = 6.16×10+0 corresponds to an estimated relative noise level of roughly4 0.48%.

4Note that this noise level is not directly comparable to noise levels for adjacent currents, as measurements from trigono-
metric currents contain “more data” in some sense than measurements from adjacent currents. See [CSI+90] for
details.
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Figure 6.6.: Setting F: Saline tank with agar phantoms resembling a lung and a heart. 32 elec-
trodes are attached to the tank surface.

Setting (δrel)CEM δCEM zCEM,z σCEM,z

F 0.48% 6.16×10+0 2.50×10−4 [1] 2.98×10−1

[1]Initialized to zmin.

Table 6.6.: MANTIS initializations for the saline tank experiment by Isaacson et al. [IMNS04].
The estimated relative noise level (δrel)CEM was computed from δCEM and the voltage
amplitudes.

6.1.7. Setting G: Saline tank experiments, part 2

Setting G consists of various saline tank (86–106 cm circumference) experiments from data kindly
provided by Aku Seppänen (University of Eastern Finland) and Stratos Staboulis (Aalto University).
16 electrodes of height 5–7 cm and width 2–2.5 cm are used in each experiment, to which 15 pair-wise
currents are applied with one fixed “driving” electrode, i.e. the current frame is

I =





1
−1

0
...

0


,



1
0
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.

Inside the saline, highly conductive (metal) and highly resistive (plastic) objects are placed. More
details about the settings can be found in [DHSS13b]. The considered measurement setups are
shown in Figure 6.7. They are denoted by setting G.I–G.V, respectively.

The corresponding initializations are listed in Table 6.7. We observe that the relative measurement
error of the equipment in these experiments is roughly 0.25–0.50%, and that the contact impedances
are very small in settings G.II–V, but quite large in setting G.I. We also note that the two resistive
inclusions in setting G.III lead to a lower initial conductivity guess, compared to the other settings.
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(a) Setting G.I (two conduc-
tive inclusions), circular
boundary approximation.

(b) Setting G.II (resistive and
conductive inclusion), elliptical
boundary approximation.

(c) Setting G.III (two re-
sistive inclusions), el-
liptical boundary ap-
proximation.

(d) Setting G.IV (con-
ductive and resistive
inclusion), ellip-
tical boundary
approximation.

(e) Setting G.V (resistive
and conductive inclu-
sion), 3-point Bézier
curve “smoothed triangle”
approximation.

Figure 6.7.: Settings G.I–V: Tank experiments with 16 electrodes. The red dotted lines mark the
boundary of the approximate geometry which is used for inversion. In the inversion
model, the electrodes are placed equispaced along the boundary.

Setting (δrel)CEM δCEM zCEM,z σCEM,z

G.I 0.25% 1.43×10−2 8.58×10−1 2.64×10−1

G.II 0.27% 1.98×10−2 2.00×10−4 [1] 2.30×10−1

G.III 0.47% 2.22×10−2 2.00×10−4 [1] 2.09×10−1

G.IV 0.46% 1.89×10−2 3.99×10−2 2.75×10−1

G.V 0.39% 1.55×10−2 2.00×10−4 [1] 2.55×10−1

[1]Initialized to zmin.

Table 6.7.: MANTIS initializations for the saline tank experiment by Isaacson et al. [IMNS04].
The approximate relative noise levels (δrel)CEM were computed from δCEM and the
voltage amplitudes.
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6.2. Impact of the conductivity transformation and the weights

As discussed in section 4.3, the linear system in each Newton iteration is usually highly underdeter-
mined. The norm of the discretized conductivity space thus influences the pseudo-inverse solution,
which is approximated by the regularization scheme.

In this section, MANTIS reconstructions for settings A–D are presented using identity weights
WId, sensitivity-normalized weights WS∗ , conductivity-normalized weights Wσ and sensitivity and
conductivity normalized weights WS∗,σ, cf. equations (4.27) and (4.31).

To distinguish the individual and combined impacts of using weighted spaces and applying conduc-
tivity transformations, all combinations of weights and the conductivity transformations tId, tlog, tα̂
and ttl (cf. Table 4.5) are applied to settings A and B.

Since we observe that the results for the tan-log-transform are almost identical to those of the log-
transform, they are omitted in the tables and figures for the sake of clarity.

6.2.1. Results for setting A

Figure 6.8 shows reconstructions from setting A.32, i.e. data generated by the Fourier approach for
L=32 electrodes and artificial noise δrel =0.2%. It is clearly visible that usingWS∗ andWS∗,σ reduces
oscillations in the solution; cf. Definition 4.9. We also note that the solution with the smallest error
(6.8(f)) does not necessarily lead to the best visual result.

Figure 6.9 shows reconstructions using tα̂ and WS∗,σ for various electrode numbers and noise levels.
Increasing the number of electrodes only improves the reconstruction result in this setting if the
noise level also decreases.

Tables 6.8–6.10 give further information about the performance of MANTIS for settings A.16, A.32,
and A.64, respectively. We observe that the number of Newton iterations k∗ usually decreases when
using conductivity transformations, and that the accumulated number of cg iterations

∑k∗
k=1 l

(k)

decreases when using weighted conductivity norms.

Note that, as mentioned in section 4.3.3, the conductivity scaling in Wσ and WS∗,σ is cancelled
out when using the log-transform, thus the corresponding reconstructions are identical (up to some
variation in the computation time) to those of WId and WS∗ , respectively.
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0.2

0.5

1.0

2.0

(a) Setting A.32 (δrel = 0.2%) and reconstructions for different transformations and weights:

WId WS∗ Wσ WS∗,σ

tId

(b) erel = 25.31%. (c) erel = 23.33%. (d) erel = 22.94%. (e) erel = 20.89%.

tα̂

(f ) erel = 13.41%. (g) erel = 17.62%. (h) erel = 18.16%. (i) erel = 19.05%.

tlog

(j) erel = 17.97%. (k) erel = 18.92%. (l) erel = 17.97%. (m) erel = 18.92%.

Figure 6.8.: Reconstructions from setting A.32. Using weights containing S∗ reduces oscillations
drastically.
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0.2

0.5

1.0

2.0

(a) Setting A

L= 16 L= 32 L= 64

δrel = 0.3%

(b) erel = 20.12%. (c) erel = 20.73%. (d) erel = 20.19%.

δrel = 0.2%

(e) erel = 19.98%. (f ) erel = 19.05%. (g) erel = 18.03%.

δrel = 0.1%

(h) erel = 20.22%. (i) erel = 17.66%. (j) erel = 15.69%.

Figure 6.9.: Impact of increasing the number of electrodes and reducing the noise level. Increas-
ing the number of electrodes only improves the reconstruction if the noise level
decreases. Conductivity transformation: tα̂. Weights: WS∗,σ.

116



6. Numerical results

t∗ W erel (%) k∗
∑k∗
k=1 l

(k) min(σ) max(σ) TFEM (s) Tjac (s) Tlinear (s)

tId WId 25.31 14 56 9.07×10−2 9.39×10−1 0.70 0.71 0.13
tId WS∗ 23.33 11 43 1.54×10−1 1.00×10+0 0.65 0.58 0.10
tId Wσ 22.94 11 49 1.46×10−1 1.23×10+0 0.53 0.50 0.11
tId WS∗,σ 20.89 10 37 1.80×10−1 1.43×10+1 0.53 0.47 0.09
t
α̂

WId 16.89 11 32 1.97×10−1 9.39×10−1 0.54 0.48 0.09
t
α̂

WS∗ 17.84 9 31 2.00×10−1 3.01×10+0 0.44 0.38 0.08
t
α̂

Wσ 18.15 11 36 1.91×10−1 6.33×10+0 0.54 0.48 0.09
t
α̂

WS∗,σ 20.12 10 36 1.87×10−1 1.56×10+0 0.49 0.43 0.09
tlog WId 20.33 12 44 1.78×10−1 2.52×10+0 0.63 0.58 0.10
tlog WS∗ 20.51 10 36 1.84×10−1 1.51×10+0 0.55 0.49 0.08
tlog Wσ 20.33 12 44 1.78×10−1 2.52×10+0 0.56 0.53 0.10
tlog WS∗,σ 20.51 10 36 1.84×10−1 1.51×10+0 0.49 0.45 0.09

Table 6.8.: Setting A.16: Reconstruction properties of MANTIS with δrel = 0.3% for various
conductivity transformations t∗ and conductivity weights W . The columns display
the relative error erel (in percent, cf. eqn. (6.1)), the number of Newton iterations k∗,
the number of accumulated inner (cg) iterations, and the minimum and maximum of
the recovered conductivity. The correct minimum and maximum of the conductivity
in this setting is min(σ) = 2.5×10−1 and max(σ) = 2.25×10+0, respectively. The last
three columns show the accumulated computation time (MATLAB implementation,
in seconds) TFEM for solving the forward problems, Tjac for assembling the Jacobian,
and Tlinear for solving the linear problem (cg iterations), respectively.

t∗ W erel (%) k∗
∑k∗
k=1 l

(k) min(σ) max(σ) TFEM (s) Tjac (s) Tlinear (s)

tId WId 24.22 17 140 1.00×10−2 1.11×10+0 2.22 5.60 2.08
tId WS∗ 22.01 14 92 1.76×10−1 1.26×10+0 1.83 5.52 1.36
tId Wσ 21.43 15 108 1.17×10−1 1.48×10+0 1.93 4.90 1.59
tId WS∗,σ 18.95 14 78 1.88×10−1 1.77×10+0 1.83 4.59 1.14
t
α̂

WId 13.41 15 79 1.94×10−1 9.21×10+0 1.95 4.88 1.13
t
α̂

WS∗ 17.62 14 64 2.00×10−1 2.74×10+0 1.79 3.47 1.01
t
α̂

Wσ 15.25 13 68 1.82×10−1 7.50×10+0 1.70 4.21 1.00
t
α̂

WS∗,σ 19.05 13 73 1.92×10−1 1.86×10+0 1.69 4.21 1.11
tlog WId 17.97 13 84 1.62×10−1 3.69×10+0 1.75 4.21 1.15
tlog WS∗ 18.92 13 73 1.90×10−1 1.80×10+0 1.69 4.18 1.08
tlog Wσ 17.97 13 84 1.62×10−1 3.69×10+0 1.72 4.25 1.23
tlog WS∗,σ 18.92 13 73 1.90×10−1 1.80×10+0 1.72 4.24 1.09

Table 6.9.: Setting A.32: Reconstruction properties of MANTIS for δrel = 0.2% (columns as in
Table 6.8).
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t∗ W erel (%) k∗
∑k∗
k=1 l

(k) min(σ) max(σ) TFEM (s) Tjac (s) Tlinear (s)

tId WId 21.65 18 153 9.35×10−2 1.02×10+0 7.31 44.31 17.09
tId WS∗ 20.25 16 100 1.82×10−1 1.47×10+0 6.72 40.17 11.13
tId Wσ 18.18 16 123 1.51×10−1 1.37×10+0 6.78 40.21 13.67
tId WS∗,σ 15.82 16 86 1.94×10−1 2.84×10+0 6.72 39.20 9.72
t
α̂

WId 11.71 15 93 2.07×10−1 8.75×10+0 6.33 37.64 10.40
t
α̂

WS∗ 13.73 15 81 2.03×10−1 5.32×10+0 6.24 36.81 9.12
t
α̂

Wσ 12.76 14 84 1.99×10−1 6.52×10+0 5.83 34.45 9.45
t
α̂

WS∗,σ 15.69 17 86 1.94×10−1 2.96×10+0 7.02 41.96 9.75
tlog WId 15.07 15 93 1.83×10−1 2.92×10+0 6.31 37.28 10.37
tlog WS∗ 15.77 15 81 1.95×10−1 2.93×10+0 6.45 37.86 9.43
tlog Wσ 15.07 15 93 1.83×10−1 2.92×10+0 6.35 37.74 10.76
tlog WS∗,σ 15.77 15 81 1.95×10−1 2.93×10+0 6.20 37.35 9.25

Table 6.10.: Setting A.64: Reconstruction properties of MANTIS for δrel = 0.1% (columns as
in Table 6.8).
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6.2.2. Results for setting B

As the shape and the inclusions of setting B are more complex (e.g. non-convex boundary shape
and lung models), we expect MANTIS to take more Newton and cg iterations before convergence.
Indeed, we find that without conductivity transformation and weights, the number of Newton
iterations increases significantly compared to setting A. However, when using the transformations
and the weighted norms, the number of iterations remains roughly the same, leading to a decrease
of roughly 50% for the Newton iterations and a decrease of roughly 30% for the cg iterations.

In Figure 6.10, the MANTIS results of B.64 for the different transformations and weights are dis-
played. As for setting A, we observe that oscillations are reduced for the weights WS∗ and WS∗,σ,
leading to a better localization of the features, in particular of the heart and spine model shapes.

Figure 6.11 gives a comparison of different noise levels and electrode numbers. Here, we clearly
see the improved resolution when decreasing the noise and increasing the number of electrodes.
Tables 6.11–6.13 give further information about the performance of MANTIS for settings B.16,
B.32, and B.64, respectively.

t∗ W erel (%) k∗
∑k∗
k=1 l

(k) min(σ) max(σ) TFEM (s) Tjac (s) Tlinear (s)

tId WId 22.67 15 60 1.00×10−2 8.84×10−1 0.70 0.57 0.14
tId WS∗ 21.09 12 41 1.63×10−1 7.58×10−1 0.56 0.45 0.10
tId Wσ 21.89 18 53 7.08×10−2 1.11×10+0 0.83 0.68 0.13
tId WS∗,σ 20.69 14 42 1.83×10−1 0.90×10−1 0.65 0.52 0.11
t
α̂

WId 22.02 18 58 1.74×10−1 7.02×10+0 0.85 0.68 0.14
t
α̂

WS∗ 21.06 11 38 2.00×10−1 1.28×10+0 0.53 0.42 0.09
t
α̂

Wσ 21.56 18 61 1.56×10−1 4.52×10+0 0.82 0.68 0.14
t
α̂

WS∗,σ 20.67 11 38 1.86×10−1 9.31×10−1 0.53 0.43 0.09
tlog WId 21.40 22 59 1.26×10−1 2.03×10+0 0.99 0.83 0.15
tlog WS∗ 20.67 12 40 1.84×10−1 9.17×10−1 0.57 0.46 0.10
tlog Wσ 21.40 22 59 1.26×10−1 2.03×10+0 1.01 0.84 0.15
tlog WS∗,σ 20.67 12 40 1.84×10−1 9.17×10−1 0.58 0.45 0.10

Table 6.11.: Setting B.16: Reconstruction properties of MANTIS for δrel = 0.3% (columns as
in Table 6.8).
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0.1
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(a) Setting B.64 (δrel = 0.1%) and reconstructions for different transformations and weights:

WId WS∗ Wσ WS∗,σ

tId

(b) erel = 15.84%. (c) erel = 14.27%. (d) erel = 15.21%. (e) erel = 14.53%.

tα̂

(f ) erel = 17.13%. (g) erel = 15.44%. (h) erel = 15.71%. (i) erel = 14.64%.

tlog

(j) erel = 15.11%. (k) erel = 14.56%. (l) erel = 15.11%. (m) erel = 14.56%.

Figure 6.10.: Reconstructions from setting B.64. Using weights WS∗ or WS∗,σ reduces oscilla-
tions drastically.
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(a) Setting B

L= 16 L= 32 L= 64

δrel = 0.3%

(b) erel = 20.67%. (c) erel = 15.81%. (d) erel = 14.31%.

δrel = 0.2%

(e) erel = 20.16%. (f ) erel = 15.76%. (g) erel = 14.24%.

δrel = 0.1%

(h) erel = 19.98%. (i) erel = 14.96%. (j) erel = 14.64%.

Figure 6.11.: Impact of the number of electrodes and the noise level.
Conductivity transformation: tα̂. Weights: WS∗,σ.
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t∗ W erel (%) k∗
∑k∗
k=1 l

(k) min(σ) max(σ) TFEM (s) Tjac (s) Tlinear (s)

tId WId 17.44 20 63 1.90×10−2 7.66×10−1 2.51 6.76 1.00
tId WS∗ 16.08 14 39 1.69×10−1 0.78×10−1 1.84 4.67 0.65
tId Wσ 16.65 20 57 8.79×10−2 9.04×10−1 2.62 6.92 0.95
tId WS∗,σ 15.71 13 38 1.87×10−1 9.44×10−1 1.70 4.46 0.64
t
α̂

WId 17.53 16 49 1.93×10−1 5.02×10+0 2.09 5.49 0.82
t
α̂

WS∗ 16.49 12 35 2.01×10−1 1.40×10+0 1.59 4.09 0.60
t
α̂

Wσ 16.43 16 50 1.75×10−1 2.55×10+0 2.09 5.48 0.83
t
α̂

WS∗,σ 15.76 12 35 1.91×10−1 9.77×10−1 1.59 4.13 0.59
tlog WId 16.17 21 56 1.47×10−1 1.32×10+0 2.70 7.16 0.94
tlog WS∗ 15.99 12 31 1.85×10−1 9.84×10−1 1.58 4.09 0.54
tlog Wσ 16.17 21 56 1.47×10−1 1.32×10+0 2.79 7.24 0.93
tlog WS∗,σ 15.99 12 31 1.85×10−1 9.84×10−1 1.61 4.15 0.52

Table 6.12.: Setting B.32: Reconstruction properties of MANTIS for δrel = 0.2% (columns as
in Table 6.8).

t∗ W erel (%) k∗
∑k∗
k=1 l

(k) min(σ) max(σ) TFEM (s) Tjac (s) Tlinear (s)

tId WId 15.84 24 101 1.83×10−2 7.93×10−1 10.18 61.72 11.84
tId WS∗ 14.27 28 81 1.52×10−1 8.53×10−1 11.66 71.66 9.89
tId Wσ 15.21 32 102 9.07×10−2 9.08×10−1 13.77 83.76 12.52
tId WS∗,σ 14.53 23 79 1.79×10−1 1.01×10+0 10.08 60.08 9.55
t
α̂

WId 17.13 32 96 1.92×10−1 4.37×10+0 13.57 82.46 11.76
t
α̂

WS∗ 15.44 16 67 1.95×10−1 1.55×10+0 7.04 41.84 7.78
t
α̂

Wσ 15.71 33 90 1.75×10−1 2.20×10+0 14.12 85.93 11.09
t
α̂

WS∗,σ 14.64 15 66 1.78×10−1 1.03×10+0 6.64 38.90 7.77
tlog WId 15.11 28 81 1.46×10−1 1.23×10+0 12.05 72.60 10.12
tlog WS∗ 14.56 15 67 1.78×10−1 1.01×10+0 6.52 38.95 7.81
tlog Wσ 15.11 28 81 1.46×10−1 1.23×10+0 11.93 72.70 10.02
tlog WS∗,σ 14.56 15 67 1.78×10−1 1.01×10+0 6.51 38.84 7.78

Table 6.13.: Setting B.64: Reconstruction properties of MANTIS for δrel = 0.1% (columns as
in Table 6.8).

122



6. Numerical results

6.2.3. Results for setting C

For the reconstructions of the artificial “mixed background, mixed contrast conductivity” setting C,
we omit, for the sake of simplicity, the reconstructions for tlog. Its behaviour is very similar to tα̂,
with tlog having a tendency of converging slightly faster and tα̂ having a tendency of a slightly lower
error; see also [WR15] where this behaviour was reported for a very similar setting.

For this high contrast, mixed background conductivity, we expect the transformed and weighted
inversion to be significantly faster than the untransformed case, since the nonlinearity of the problem
is more severe. Indeed, we observe that when using identity weights WId and transformation tId, the
Newton scheme struggles to resolve the high contrast, thus it approaches a highly oscillatory local
minimum and barely converges at all5. However, using either any of the weight matrices WS∗ ,
Wσ, WS∗,σ, or any of the proposed conductivity transformations, reduces the number of iterations
drastically. The best performance is obtained when using tα̂ together with WS∗,σ; see Figures 6.12
and 6.13 for plots of the solutions of C.16 and C.64, and Tables 6.14 and 6.16 for the corresponding
iteration counts, respectively. Although the plots are omitted, the reconstruction details for C.32
are given in Table 6.15.

t∗ W erel (%) k∗
∑k∗
k=1 l

(k) min(σ) max(σ) TFEM (s) Tjac (s) Tlinear (s)

tId WId 50.72 400 1 173 1.00×10−2 5.34×10+0 18.54 15.71 3.05
tId WS∗ 41.49 13 60 1.66×10−2 5.71×10+0 0.63 0.50 0.15
tId Wσ 48.58 19 108 1.00×10−2 8.54×10+0 0.97 0.76 0.25
tId WS∗,σ 45.32 12 44 2.80×10−1 1.06×10+1 0.59 0.47 0.11
t
α̂

WId 53.76 12 64 2.97×10−1 1.05×10+1 0.60 0.46 0.15
t
α̂

WS∗ 46.43 10 39 3.27×10−1 9.06×10+0 0.49 0.38 0.10
t
α̂

Wσ 52.11 12 62 2.58×10−1 1.50×10+1 0.60 0.47 0.15
t
α̂

WS∗,σ 45.15 10 39 2.87×10−1 1.09×10+1 0.50 0.38 0.10

Table 6.14.: Setting C.16: Reconstruction properties of MANTIS for δrel = 0.3% (columns as
in Table 6.8).

5Still, the error erel of the Newton iterates decreases continuously during inversion.
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(a) Setting C.16 (δrel = 0.3%) and reconstructions for different transformations and weights:

WId WS∗ Wσ WS∗,σ

tId

(b) erel = 50.72%. (c) erel = 41.49%. (d) erel = 48.58%. (e) erel = 45.32%.

tα̂

(f ) erel = 53.76%. (g) erel = 46.43%. (h) erel = 52.11%. (i) erel = 45.15%.

Figure 6.12.: Reconstructions from setting C.16.

t∗ W erel (%) k∗
∑k∗
k=1 l

(k) min(σ) max(σ) TFEM (s) Tjac (s) Tlinear (s)

tId WId 50.40 4 563 13 726 1.00×10−2 7.06×10+0 606.67 1606.34 231.25
tId WS∗ 36.01 13 69 1.00×10−2 8.12×10+0 1.76 4.49 1.09
tId Wσ 45.78 29 237 1.00×10−2 1.14×10+1 3.75 10.05 3.64
tId WS∗,σ 39.86 10 45 1.64×10−1 1.79×10+1 1.37 3.46 0.72
t
α̂

WId 48.30 16 121 2.23×10−1 1.23×10+1 2.09 5.55 1.87
t
α̂

WS∗ 41.24 10 47 2.47×10−1 1.29×10+1 1.36 3.38 0.72
t
α̂

Wσ 47.01 16 112 1.78×10−1 1.90×10+1 2.11 5.51 1.71
t
α̂

WS∗,σ 39.49 10 41 1.84×10−1 1.87×10+1 1.37 3.46 0.66

Table 6.15.: Setting C.32: Reconstruction properties of MANTIS for δrel = 0.2% (columns as
in Table 6.8).
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(a) Setting C.64 (δrel = 0.1%) and reconstructions for different transformations and weights:

WId WS∗ Wσ WS∗,σ

tId

(b) erel = 47.59%. (c) erel = 35.57%. (d) erel = 40.83%. (e) erel = 35.87%.

tα̂

(f ) erel = 43.38%. (g) erel = 37.20%. (h) erel = 41.46%. (i) erel = 35.52%.

Figure 6.13.: Reconstructions from setting C.64.

t∗ W erel (%) k∗
∑k∗
k=1 l

(k) min(σ) max(σ) TFEM (s) Tjac (s) Tlinear (s)

tId WId 47.59 4 832 16 870 1.00×10−2 7.85×10+0 2183.22 13086.83 2115.02
tId WS∗ 35.57 14 77 1.00×10−2 9.25×10+0 6.17 36.04 9.23
tId Wσ 40.83 32 310 1.00×10−2 1.26×10+1 13.80 83.86 35.89
tId WS∗,σ 35.87 11 55 8.14×10−2 2.44×10+1 4.71 27.84 6.65
t
α̂

WId 43.38 19 200 2.16×10−1 1.35×10+1 8.19 48.63 22.65
t
α̂

WS∗ 37.20 11 59 1.84×10−1 1.50×10+1 4.93 28.72 7.08
t
α̂

Wσ 41.46 20 172 1.76×10−1 2.21×10+1 8.72 52.47 20.26
t
α̂

WS∗,σ 35.52 11 52 1.06×10−1 2.58×10+1 4.95 28.78 6.39

Table 6.16.: Setting C.64: Reconstruction properties of MANTIS for δrel = 0.1% (columns as
in Table 6.8).
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The impact of the noise level and the number of electrodes is displayed in Figure 6.14. The back-
grounds are resolved correctly in all settings. The inclusions are detected as well, but the contrast
is better as the noise level decreases, and the features are better resolved – in particular near the
boundary – as the number of electrodes increases.
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2.0
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(a) Setting C

L= 16 L= 32 L= 64

δrel = 0.3%

(b) erel = 45.15%. (c) erel = 43.49%. (d) erel = 42.60%.

δrel = 0.2%

(e) erel = 42.26%. (f ) erel = 39.49%. (g) erel = 39.73%.

δrel = 0.1%

(h) erel = 39.91%. (i) erel = 35.89%. (j) erel = 35.52%.

Figure 6.14.: Impact of the number of electrodes and the noise level. The contrast is improved
as the noise level is reduced, while the features are better resolved as the electrode
number increases. Conductivity transformation: tα̂. Weights: WS∗,σ.
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6.2.4. Results for setting D

The impact of the weights in MANTIS in this non-convex setting is similar to the one of the previous
setting: Using the identity transformation tId and identity weights WId requires significantly more
Newton and cg iterations and leads to oscillatory solutions, in particular in the resistive part of the
conductivity; see Figure 6.15 for the results for D.16, D.32 and D.64. Due to the similarity, we omit
a detailed individual comparison of the transformations and weights for setting D as they give no
additional insight into the behaviour of MANTIS.

0.2

0.5

1.0

2.0

5.0

(a) Setting D (b) erel = 25.75%,
k∗= 13.

(c) erel = 20.22%,
k∗= 24.

(d) erel = 17.87%,
k∗= 207.

Figure 6.15.: With identity transformation (tId) and weights (WId), the solution is oscillatory and
convergence is slow. Conductivity reconstructions are shown for D.16 (δrel =0.3%)
in (b), for D.32 (δrel = 0.2%) in (c) and for D.64 (δrel = 0.1%) in (d).

To assess the capability of MANTIS for recovering non-convex features inside non-convex domains,
reconstructions for different noise levels and electrode numbers and using tα̂ and WS∗,σ are given in
Figure 6.16, supplemented by additional information in Table 6.17.

L δrel erel (%) k∗
∑k∗
k=1 l

(k) min(σ) max(σ) TFEM (s) Tjac (s) Tlinear (s)

16 0.3 24.99 7 17 3.54×10−1 3.36×10+0 0.33 0.28 0.05
16 0.2 23.87 9 31 3.98×10−1 3.74×10+0 0.41 0.35 0.08
16 0.1 22.67 14 78 3.92×10−1 4.26×10+0 0.64 0.57 0.19
32 0.3 20.56 8 30 4.28×10−1 4.15×10+0 1.17 2.88 0.49
32 0.2 19.13 11 47 3.72×10−1 4.62×10+0 1.47 3.96 0.76
32 0.1 16.46 16 98 3.16×10−1 5.22×10+0 2.07 5.80 1.57
64 0.3 17.95 7 25 3.71×10−1 4.65×10+0 3.25 19.00 3.20
64 0.2 16.84 9 39 3.45×10−1 4.77×10+0 4.36 24.61 5.08
64 0.1 15.34 13 57 3.12×10−1 5.19×10+0 5.92 35.19 7.13

Table 6.17.: Setting D: Reconstruction properties of MANTIS for D.16, D.32 and D.64 with
various noise levels. Conductivity transformation: tα̂. Weights: WS∗,σ.
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0.2

0.5

1.0

2.0

5.0

(a) Setting D

L= 16 L= 32 L= 64

δrel = 0.3%

(b) erel = 24.99.%. (c) erel = 20.56%. (d) erel = 17.95.%.

δrel = 0.2%

(e) erel = 23.87.%. (f ) erel = 19.13%. (g) erel = 16.84%.

δrel = 0.1%

(h) erel = 22.67%. (i) erel = 16.46%. (j) erel = 15.34%.

Figure 6.16.: Impact of the number of electrodes and the noise level. For higher noise level and
fewer electrodes, the Newton iteration stops before the non-convex features are
resolved. Conductivity transformation: tα̂. Weights: WS∗,σ.

6.3. 3D reconstructions

Using the Netgen mesh generator from EIDORS allows to specify different “target” mesh densities
for the electrode discretization and for the interior. As the mesh is used both as a conductivity
discretization and to compute the forward solution in the Newton steps, it is highly recommended
to refine the mesh at the electrodes, where the potential gradients are biggest. The following recon-
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structions use discretizations which are 25× finer at the electrodes than in the interior. The forward
mesh was generated to conform with the discontinuities of the simulated conductivity with 219851
tetrahedrons. The inverse mesh was generated independently and generically without the knowledge
of the true conductivity, with far fewer tetrahedrons.

Figures 6.17(b)–(d) show MANTIS reconstructions for various mesh refinements. The quality of
the forward solutions affects the quality of the initial guesses zCEM,z and σCEM,z. This influences the
performance of the reconstructions significantly. The corresponding initializations and more details
about the reconstructions are given in Table 6.18. Note that the increased computation time for the
finer FEM discretization is partly compensated by the reduced number of Newton and cg iterations.

(a) Setting D (b) |∆|= 48560 (c) |∆|= 73557 (d) |∆|= 116311

Figure 6.17.: MANTIS performance using EIDORS 3D model and different FEM refinements
for the forward solver. Top: 3D model. Bottom: Horizontal slices at each electrode
layer.
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|P| zCEM,z σCEM,z k∗
∑k∗
k=1 l

(k) TFEM +Tjac (s) Tlinear (s)

116311 3.51×10−3 4.12×10−1 7 33 241.71 16.98
73557 3.33×10−3 3.86×10−1 8 40 162.30 13.90
48560 1.60×10−3 3.35×10−1 10 75 145.25 15.60

Table 6.18.: Setting E: Initializations and reconstruction properties of MANTIS for different
FEM refinements.

The assembly of the Fréchet derivative F ′I of size 3600×116311 in EIDORS leads to a total memory
consumption of 7.3 GB in MATLAB in our numerical example. For even larger systems, it might
be advantageous to solve the weak formulation given Theorem (2.9) for each cg iteration, instead of
assembling and storing the sensitivity matrix F ′I explicitly, as noted in Remark 2.14.
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6.4. Reconstruction on sensitivity-based meshes

In section 3.5, sensitivity based discretizations were designed to conform with the resolution of a
given EIT setting. Our goal was to find a discretization which corresponds to a given noise level
(3.5.1–3.5.3), or to generate a discretization with a fixed number of cells and roughly uniform sensi-
tivity (3.5.4). Here, we present some reconstructions on various discretizations to study their impact
on the reconstruction performance.

6.4.1. Comparison of sensitivity based and uniform discretizations

Figure 6.18 shows reconstructions of the data from setting A.16 (δrel = 0.3%) for conductivity dis-
cretizationsDP with varying partitions P . For Figures 6.18(b) and (f), P was generated by a Voronoi
tessellation with the interpolation approach described in section 3.5.1. For 16 electrodes, a relative
noise level of δrel =0.3% corresponds to a relative sensitivity of λ=(

∑16
l=10.0032)1/2 =0.012, cf. equa-

tion 3.3. For computational reasons, the radii of the perturbations were computed for λσ,σ1 = 0.02,
and multiplied by

√
0.012/0.02 to approximate inclusions of relative sensitivity 0.012. The resulting

mesh consists of |P|= 434 Voronoi cells. In Figures 6.18(c) and (g), an adaptive triangulation with
Pt = 434 is used, as described in section 3.5.4. This gives |P| = 444 triangles. In Figures 6.18(d)
and (h), the domain was discretized uniformly into |P|= 437 squares. For all reconstructions, the
forward computations were performed using a much finer FEM discretization with |∆|= 6510 tri-
angles.

Further properties of the reconstructions are listed in Table 6.19. We note that using sensitivity based
discretizations of the conductivity space significantly reduces the number of Newton iterations over
a uniform “pixel” discretization with the same number of degrees of freedom. Compared to the
results of Table 6.8, where |P|= |∆|= 6510 and no interpolation is needed, we note that the time
for assembling the Jacobian and performing the cg iterations is reduced due to the lower dimension
of DP . However, the additional cost for the interpolations outweighs this in our implementation.
Still, using a lower dimension for DP for reconstruction might be of interest when memory usage is
an issue.

A similar behaviour can be observed for setting C. Reconstructions are shown in Figure 6.19 and
the corresponding details are listed in Table 6.20.
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0.2

0.5

1.0

2.0

(a) Setting A.16 (b) erel = 25.13%,
k∗= 16.

(c) erel = 26.44%,
k∗= 15.

(d) erel = 26.60%,
k∗= 158.

(e) FEM mesh,
|∆|= 6510

(f ) erel = 20.05%,
k∗= 12.

(g) erel = 19.48%,
k∗= 12.

(h) erel = 19.59%,
k∗= 37.

Figure 6.18.: Reconstructions for setting A.16 on different conductivity discretizations.
(b)–(d): Identity transformation tId and weights WId.
(f )–(h): σ-ρ-transform tα̂ and weights WS∗,σ.
Using sensitivity based discretizations in (b) and (f) or adaptive triangulations in
(c) and (g) significantly reduces the number of Newton iterations over uniform
conductivity discretizations in (d) and (h). For evaluating the forward operator,
the FEM triangulation in (e) was used.

cond. discretization parameters |P| erel k∗
∑k∗
k=1 l

(k) TFEM Tjac (s) Tlinear (s) Tint

sens. based (Voronoi) tId,WId 434 25.13% 16 67 0.80 0.16 0.02 3.23
sens. based (Voronoi) t

α̂
,WS∗,σ 434 20.05% 12 42 0.60 0.11 0.02 2.49

adaptive triangulation tId,WId 444 26.44% 15 64 0.80 0.25 0.04 10.09
adaptive triangulation t

α̂
,WS∗,σ 444 19.48% 12 43 0.62 0.13 0.02 2.52

uniform discretization tId,WId 437 26.60% 158 456 7.72 1.62 0.20 32.80
uniform discretization t

α̂
,WS∗,σ 437 19.59% 37 84 1.88 0.40 0.04 7.82

Table 6.19.: Setting A.16: Reconstruction properties of MANTIS for different conductivity dis-
cretizations. Tint denotes the total computation time (in seconds) for interpolating
between the FEM discretization ∆ and the conductivity mesh P .
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(a) Setting C.16 (b) erel = 45.15%,
k∗= 195.

(c) erel = 49.23%,
k∗= 183.

(d) erel = 50.35%,
k∗= 574.

(e) FEM mesh,
|∆|= 6510

(f ) erel = 45.59%,
k∗= 12.

(g) erel = 45.72%,
k∗= 12.

(h) erel = 45.01%,
k∗= 38.

Figure 6.19.: Reconstructions for setting C.16 on different conductivity discretizations. Dis-
cretizations as described in Figure 6.18.

cond. discretization parameters |P| erel k∗
∑k∗
k=1 l

(k) TFEM Tjac (s) Tlinear (s) Tint

sens. based (Voronoi) tId,WId 434 45.15% 195 597 9.04 1.89 0.23 40.54
sens. based (Voronoi) t

α̂
,WS∗,σ 434 45.49% 12 12 0.61 0.13 0.02 2.48

adaptive triangulation tId,WId 444 49.23% 183 802 8.70 1.86 0.25 39.19
adaptive triangulation t

α̂
,WS∗,σ 444 45.72% 12 47 0.67 0.12 0.02 2.60

uniform discretization tId,WId 437 50.35% 574 1978 27.78 6.11 0.69 124.90
uniform discretization t

α̂
,WS∗,σ 437 45.01% 38 91 1.87 0.38 0.04 8.11

Table 6.20.: Setting C.16: Reconstruction properties of MANTIS for different conductivity
discretizations.
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6.4.2. Impact of the discretization re�nement

In section 4.3.2, we showed that the weights WS∗ and WS∗,σ lead to reconstructions which are
asymptotically discretization independent. Here, we verify this effect numerically for settings A.32
and C.32 with δrel =0.2%, using conductivity discretizations on meshes P with |P|=1000 to 12000
triangles.

The evolution of the reconstruction error and the number of Newton iterations versus |P| is shown
in Figure 6.20. The reconstruction results for 2000, 5000 and 12000 triangles are shown in Fig-
ure 6.21. We observe that the reconstructions indeed approach a “steady state” as the number of
triangles increases, i.e. the reconstruction is almost independent of the discretization.

2000 4000 6000 8000 10000 12000
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17
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2000 4000 6000 8000 10000 12000

9
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17

38
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40
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42

Figure 6.20.: Newton iterations (black) and reconstruction error (red, in %) for settings A.32
(left) and C.32 (right) versus number of triangles |P| of the conductivity discretiza-
tions based on adaptive triangulations; cf. section 3.5.4.

|P|≈ 2000 |P|≈ 5000 |P|≈ 12000
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Figure 6.21.: Reconstructions of A.32 (top) and C.32 (bottom) on adaptive triangulations with
different refinements.
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6.5. Model parameter reconstructions

In this section we consider the extended forward operator F introduced in section 5.1 and perform
simultaneous reconstructions of the conductivity, the electrode locations and sizes, and the contact
impedances.

6.5.1. Incorrect model: “badly attached” electrodes

First, we consider setting B.32 with δrel = 0.1% and with two electrodes in the non-convex part of
the boundary having a high contact impedance:

zl =

1, l ∈ {10, 25} ,

0.05, l ∈ {1, . . . , 32} \ {10, 25} .

In practice, this can happen e.g. when the electrodes are badly attached. This is depicted in Fig-
ure 6.22(a), with electrodes 10 and 25 colored in red. Results without and with simultaneous recon-
struction of conductivity and contact impedances are shown in Figure 6.22(b) and (c), respectively.
The contact impedances are recovered accurately; see Figure 6.23.

0.1

0.2

0.5

1.0

(a) Setting B (b) erel = 44.65%,
k∗= 29.

(c) erel = 15.06%,
k∗= 35.

Figure 6.22.: Simulation of two “badly attached” electrodes with high contact impedances:
z10 = z25 = 1 (red). Using the fixed initial guess zCEM,z = 0.082 for all electrodes
in (b) leads to a highly resistive conductivity reconstruction near these electrodes,
which in turn causes the reconstruction to fail. When recovering conductivity
and individual contact impedances simultaneously, the bad contacts are accurately
recovered and the conductivity reconstruction succeeds; see Figure 6.23 for the
recovered contact impedances.
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1 4 8 12 16 20 24 28 32
0

0.5

1

Figure 6.23.: Exact (black) and recovered (red) contact impedances at the 32 electrodes of setting
B.32 with δrel = 0.1%; cf. Figure 6.22.

6.5.2. Incorrect model: highly �uctuating contact impedances

Next, we assume the contact impedances to be highly fluctuating. Thus, we let

zl = 0.001 + 0.2 · dl ∈ [0.001, 0.201],

where dl∼u(0,1)∈ [0,1] are pseudo-random independently and uniformly distributed numbers gen-
erated by the MATLAB function rand with default seed. Again, the reconstruction fails with fixed
initial guess (Figure 6.24(b)) and succeeds when recovering the contact impedances simultaneously
(Figure 6.24(c)). The true and recovered contact impedances are shown in Figure 6.25.

0.1

0.2

0.5

1.0

(a) Setting B.32 (b) erel = 53.05%,
k∗= 20.

(c) erel = 14.89%,
k∗= 24.

Figure 6.24.: Simulation of highly fluctuating contact impedances. When recovering conductiv-
ity and individual contact impedances simultaneously, the conductivity reconstruc-
tion succeeds; see also Figure 6.25 for the corresponding contact impedances.

1 4 8 12 16 20 24 28 32
0

0.1

0.2

Figure 6.25.: Exact (black) and recovered (red) contact impedances at the 32 electrodes of setting
B.32 with δrel = 0.1%; cf. Figure 6.24.
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6.5.3. Incorrect model: wrong boundary geometry

Now, we assume that the boundary geometry is not known exactly, which is usually the case for
thorax imaging. As described in section 6.1.2, recovering both the boundary shape and the electrode
configuration simultaneously is an underdetermined problem. Here, we try to obtain a conformal
equivalent of the true conductivity by simultaneously recovering the conductivity and the electrode
positions and sizes, with the parameters given in Remark 5.3. For simplicity, a new FEM discretiza-
tion is generated in each Newton step, and the conductivity discretization is held constant. As in
the preceding section, the total computation is dominated by the interpolation time.

Reconstructions of the measurements of B.32 with δrel = 0.1% on the elliptical domain of Fig-
ure 6.2(b) without and with optimizing for the electrode locations and sizes are shown in Fig-
ure 6.26(b) and (c), respectively. The reconstruction succeeds when modifying the boundary geom-
etry, and fails otherwise. Note however that in both cases, the discreprancy principle was reached.

0.1

0.2

0.5

1.0

(a) Setting B.32 (b) k∗= 34. (c) k∗= 75.

Figure 6.26.: Reconstruction on the wrong geometry: The data of setting B.32 with δrel = 0.1%
was used for inversion on an elliptical domain. If the boundary geometry is fixed,
the reconstruction fails (b). When reconstructing the electrode sizes and locations
simultaneously with the conductivity, the reconstruction succeeds (c).

6.5.4. Incorrect model: wrong contact impedances and boundary geometry

Finally, we optimize for all parameters of the extended forward operator F , i.e. the conductivity,
the electrode sizes and locations, and the contact impedances, simultaneously. The simulated data
was generated using the same contact impedances as in section 6.5.2 and the reconstruction was
performed on the same ellipse as in section 6.5.3, thus the effects of highly fluctuating contact impe-
dances and a wrong boundary geometry appear simultaneously.

As previously mentioned, small electrodes with low contact impedances give similar data as big
electrodes with high contact impedances, thus we can not expect to recover both values accurately.
However, the recovered conductivity on the ellipse is a good approximation of the true conductivity
on the correct geometry; see Figure 6.27.
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0.1

0.2

0.5

1.0

(a) Setting B.32 (b) k∗= 41. (c) k∗= 68.

Figure 6.27.: Reconstructions for both varying contact impedances and incorrect boundary ge-
ometry. Reconstruction on a fixed wrong model fails (b), simultaneous reconstruc-
tion succeeds (c).

6.6. Banach space reconstructions

So far, we used the cg method in an L2(Ω) (Hilbert space) setting for the conductivity to stably
approximate the weighted pseudo-inverse in the linearized problem. Now, we demonstrate the ver-
satility of MANTIS to do reconstructions in a Banach space framework, as explained in section
5.2.

In Figure 6.28, reconstructions for settings A.32, B.32, C.32, D.32 with δrel = 0.2% are compared for
the L2(Ω) Hilbert space framework versus the Lp(Ω) Banach space framework, where p= 1.1. For
the Banach space reconstructions, the transformations tα̂ and tlog and the weights WS∗ are used6; see
Table 6.21.

An interesting observation is that for the Banach space reconstructions, the difference between using
tα̂ and tlog can be significant, and the log-transform seems to give somewhat sparser supports for the
reconstructed inclusions.

6We observed that using the weights WS∗,σ in the Banach space setting may result in convergence problems if the
regularization parameters of the iterated Tikhonov method for REGINN in Banach spaces are fixed. For the weights
WS∗ , the parameter choice seems to be more robust, so these weights are used instead.
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Setting L2(Ω), tα̂, WS∗,σ L1.1(Ω), tα̂, WS∗ L1.1(Ω), tlog, WS∗
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2.0

A.32 (a) erel = 19.05% (b) erel = 20.16% (c) erel = 23.04%

0.1
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0.5

1.0

B.32 (d) erel = 15.76% (e) erel = 14.89% (f ) erel = 15.32%
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5.0
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C.32 (g) erel = 39.49% (h) erel = 45.60% (i) erel = 62.38%

0.2

0.5

1.0

2.0

5.0

D.32 (j) erel = 19.13% (k) erel = 22.46% (l) erel = 14.22%

Figure 6.28.: Various settings (left column) with 32 electrodes and δrel = 0.2% and correspond-
ing reconstructions using the cg method on L2(Ω) (2nd column) and the iterated
Tikonov method on L1.1(Ω) for tα̂ (3rd column) and for tlog (right column). Using
tlog on L1.1(Ω) seems to result in the sparsest recovered inclusions. The computa-
tion times are given in Table 6.21.
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setting space t∗ erel (%) min(σ) max(σ) TFEM (s) Tjac (s) Tlinear (s)

A.32 L2 t
α̂

19.05% 1.92×10−1 1.86×10+0 1.69 4.21 1.11
A.32 L1.1 t

α̂
20.16% 1.89×10−1 1.40×10+0 0.75 1.51 386.28

A.32 L1.1 tlog 23.04% 1.75×10−1 9.77×10−1 0.89 1.83 492.16
B.32 L2 t

α̂
15.76% 1.91×10−1 9.77×10−1 1.59 4.13 0.60

B.32 L1.1 t
α̂

14.89% 1.91×10−1 9.00×10−1 0.65 1.12 130.45
B.32 L1.1 tlog 15.32% 1.74×10−1 7.52×10−1 0.39 0.73 41.40
C.32 L2 t

α̂
39.49% 1.84×10−1 1.87×10+1 1.37 3.46 0.66

C.32 L1.1 t
α̂

45.60% 1.03×10−1 1.00×10+2 1.73 3.93 1155.97
C.32 L1.1 tlog 62.38% 1.00×10−2 1.00×10+2 1.47 3.53 600.95
D.32 L2 t

α̂
19.13% 3.72×10−1 4.62×10+0 1.47 3.96 0.76

D.32 L1.1 t
α̂

22.46% 3.21×10−1 3.28×10+1 1.33 3.22 1559.04
D.32 L1.1 tlog 14.22% 1.10×10−1 2.50×10+1 1.78 4.66 1001.34

Table 6.21.: Properties of the Banach space reconstructions. The computation time for the linear
problem (iterated Tikhonov method) is greatly increased over the corresponding cg
method in the Hilbert space setting.
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6.7. Reconstructions using nonlinear �ltering

In the previous numerical examples, it was demonstrated that using the weights WS∗,σ and a suitable
conductivity transformation (e.g. tlog or tα̂) leads to fast convergence and non-oscillatory solutions
of MANTIS in Hilbert spaces. To further enhance piecewise constant solutions, in particular for
the Banach space setting where the reconstruction prior does not hold, we pointed out in section 5.3
that iterated nonlinear filtering can be incorporated into MANTIS.

Here, we demonstrate the impact of using median filtering and anisotropic diffusion filtering for
reconstructions of settings C.32 and D.32 (δrel = 0.2%) for Hilbert space and Banach space settings
(cf. Figure 6.28 in the preceding section). The Hilbert space reconstructions, using tα̂ and WS∗,σ,
are shown in Figure 6.29. Using the filters slightly improves the visual appearance of the solutions,
but has no significant impact on the reconstruction error. The Banach space reconstructions, using
tlog and WS∗ due to our observations in the preceding section, are shown in Figure 6.30. Here, the
reduction of oscillations is somewhat more pronounced. Further details about the Hilbert space and
Banach space reconstructions are given in Tables 6.22 and 6.23, respectively.

Setting no filter median filter aniso. diffusion
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1.0
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C.32 (a) erel = 39.49% (b) erel = 39.94% (c) erel = 38.12%
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1.0

2.0

5.0

D.32 (d) erel = 19.13% (e) erel = 19.25% (f ) erel = 18.84%

Figure 6.29.: Hilbert space (L2(Ω)) reconstructions with iterated median filtering (3rd column)
and anisotropic diffusion filtering (right column), as described in section 5.3. Con-
ductivity transformation: tα̂. Weights: WS∗,σ.

From these reconstructions, we conclude that the anisotropic diffusion filter gives slightly improved
results over the “simple” median filter, but at greatly increased computational cost, in particular
since our MATLAB implementation of the anisotropic diffusion just serves as a proof of concept
and is highly non-optimized.
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Setting no filter median filter aniso. diffusion
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C.32 (a) erel = 62.38% (b) erel = 62.90% (c) erel = 46.14%
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D.32 (d) erel = 14.22% (e) erel = 13.81% (f ) erel = 15.26%

Figure 6.30.: Banach space (L1.1(Ω)) reconstructions with iterated median filtering (3rd column)
and anisotropic diffusion filtering (right column). Conductivity transformation:
tlog. Weights: WS∗ .

setting filter erel (%) k∗ min(σ) max(σ) TFEM (s) Tjac (s) Tlinear (s) Tfilter (s)

C.32 – 39.49% 10 1.84×10−1 1.87×10+1 1.37 3.46 0.66 –
C.32 median 39.94% 10 2.04×10−1 1.76×10+1 1.34 3.51 0.66 3.69
C.32 diffusion 38.12% 42 1.74×10−1 1.87×10+1 5.33 14.75 1.71 240.47
D.32 – 19.13% 11 3.72×10−1 4.62×10+0 1.47 3.96 0.76 –
D.32 median 19.25% 11 3.97×10−1 4.51×10+0 1.47 4.00 0.81 4.04
D.32 diffusion 18.84% 56 3.96×10−1 4.33×10+0 6.71 20.10 2.39 274.15

Table 6.22.: Properties of the Hilbert space reconstructions using median or anisotropic diffu-
sion filtering. Conductivity transformation: tα̂. Weights: WS∗,σ.

setting filter erel (%) k∗ min(σ) max(σ) TFEM (s) Tjac (s) Tlinear (s) Tfilter (s)

C.32 – 62.38% 10 1.00×10−2 1.00×10+2 1.46 3.53 600.95 –
C.32 median 62.90% 11 1.00×10−2 1.00×10+2 1.51 3.85 423.78 4.14
C.32 diffusion 46.14% 15 2.90×10−2 1.00×10+2 2.02 5.27 242.88 161.16
D.32 – 14.22% 12 1.10×10−1 2.50×10+1 1.78 4.66 1001.34 –
D.32 median 13.80% 10 2.17×10−1 1.33×10+1 1.53 3.86 1246.57 4.08
D.32 diffusion 15.26% 27 1.68×10−1 9.34×10+0 3.69 10.19 1338.63 166.22

Table 6.23.: Properties of the Banach space reconstructions using median or anisotropic diffu-
sion filtering. Conductivity transformation: tlog. Weights: WS∗ .
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6.8. Tank data reconstructions

Finally, we apply MANTIS to the measured tank data of settings F and G. Due to the experiences
gathered in the preceding numerical simulations, we will apply MANTIS with the transformation
tα̂ and the weights WS∗,σ both with and without optimizing the electrode parameters in the Hilbert
space setting, and with the transformation tlog and the weights WS∗ in the Banach space setting.
Due to our observations in the preceding numerical example, we use iterated anisotropic diffusion
filtering steps to discourage oscillatory solutions for the Banach space reconstructions.

In Figure 6.31, reconstructions for settings F and G.I–G.V in the Hilbert space setting (tα̂, WS∗,σ)
are shown when recovering no electrode parameters (2nd column), recovering only the contact
impedances (3rd column), and recovering both the contact impedances and the electrode sizes and
locations (4th column) simultaneously along with the conductivity.

Unfortunately, the scaling of the weights for the extended forward operator F is not suitable for
Banach space reconstructions, since the duality mapping is not linear. To obtain useful results, we
used the column-norm weights WS∗ for the whole extended sensitivity matrix S, and the damping
factors from Remark 5.3, but with w(0)

θ =w
(0)
|E| =w

(0)
z = 1. These reconstructions are shown in the

rightmost column of Figure 6.31. Reconstruction details, including the time Tmesh for generating
the forward meshes in each iteration (in seconds), are given in Table 6.24.

We observe that the artifacts due to boundary mis-modelling are successfully reduced using the
simultaneous reconstruction, and that both the Hilbert space and the Banach space reconstructions
recover the inclusions accurately (except for Figure 6.31(t), where the conductive inclusion is not
resolved with satisfactory contrast from the background).
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Setting L2(Ω), fixed L2(Ω), zl L2(Ω), zl, El L1.1(Ω), zl, El
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Figure 6.31.: MANTIS results for the tank experiments F (1st row) and G.I – G.V (2nd through
6th row). Lacking reference values, the color bars are scaled to the reconstructed
conductivity limits.
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setting space unknowns k∗ TFEM (s) Tjac (s) Tlinear (s) Tmesh (s)

F L2(Ω) σ 17 2.35 5.88 0.58 3.46
L2(Ω) σ, zl 19 2.58 7.30 0.66 3.27
L2(Ω) σ, zl, El 51 6.58 22.35 2.13 144.58
L1.1(Ω) σ, zl, El 2 0.39 0.89 56.84 10.30

G.I L2(Ω) σ 15 0.71 0.59 0.15 1.38
L2(Ω) σ, zl 30 1.56 1.69 0.24 1.39
L2(Ω) σ, zl, El 62 2.96 3.52 1.10 76.70
L1.1(Ω) σ, zl, El 12 0.68 0.88 83.00 24.41

G.II L2(Ω) σ 18 0.83 0.72 0.14 1.34
L2(Ω) σ, zl 18 0.87 0.93 0.13 1.38
L2(Ω) σ, zl, El 64 2.90 3.45 0.31 84.16
L1.1(Ω) σ, zl, El 9 0.47 0.59 57.42 19.93

G.III L2(Ω) σ 37 1.80 1.44 0.32 1.60
L2(Ω) σ, zl 32 1.51 1.58 0.29 1.65
L2(Ω) σ, zl, El 83 4.02 4.46 0.58 76.07
L1.1(Ω) σ, zl, El 51 2.86 3.57 738.37 117.50

G.IV L2(Ω) σ 47 2.18 1.89 0.48 2.29
L2(Ω) σ, zl 57 2.78 3.10 0.57 2.37
L2(Ω) σ, zl, El 84 3.93 4.38 0.77 79.73
L1.1(Ω) σ, zl, El 72 3.97 4.57 1481.60 108.59

G.V L2(Ω) σ 21 1.02 0.81 0.22 1.61
L2(Ω) σ, zl 19 0.89 0.94 0.20 1.50
L2(Ω) σ, zl, El 66 3.07 3.67 0.42 75.80
L1.1(Ω) σ, zl, El 24 1.15 1.44 382.67 27.03

Table 6.24.: Newton iterations and computation times for the tank experiment reconstructions.
In our MATLAB implementation, the times for re-meshing and for the linear system
in the Banach space setting dominate over the other parts.

6.9. Behaviour of the inexact Newton parameters during inversion

The design idea of the parameter strategy for REGINN in MANTIS was to apply regularization by
approximating solutions to the linear system in low-dimensional Krylov subspaces, and then gradu-
ally increase the Krylov space dimension to reach the discrepancy principle and obtain convergence.
If the tangential cone condition holds and the parameter τ is big enough, we know that both the er-
ror and the residual decrease monotonously [Rie05]. In our examples, the tangential cone condition
is not satisfied, and τ = 1.1 is chosen rather small. Nonetheless, the parameter strategy yields good
results in all reconstructions. In Figure 6.32, we display the behaviour of the parameters θ(k) and the
number7 of inner iterations for various reconstructions.

The update rule for the tolerances successfully leads to a gradual increase of cg iterations. Note how

7Since we are using the cg method, this is also the dimension of the Krylov subspace in which the solution of the the
linear problem is approximated.
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Setting L= 16, δrel = 0.3% L= 32, δrel = 0.2% L= 64, δrel = 0.1%
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Figure 6.32.: Evolution of the REGINN tolerances θ(k) (black) and the number of cg iterations
l
(k)
∗ (red) for during the Newton iterations, i.e. for k= 1,...,k∗. The update rule

for the tolerances successfully leads to a gradual increase of cg iterations.

the safeguarding rule can lead to a jump down in the number of cg iterations in the last Newton
step, thereby preventing an unnecessary decrease of the amount of regularization.

At this point, we want to comment on the computation of the Fréchet derivative; cf. section 2.3.3.
The Fréchet derivative can either be evaluated in each step of the conjugate gradient iteration using
formulation (2.18), which is basically the same computational effort as solving one forward prob-
lem. Alternatively, the entire Jacobian can be assembled explicitly using equation (2.22) once for an
entire Newton step, independently of the number of cg iterations. Depending on the number of cg
iterations, either the former or the latter might be advantageous. In particular, one could solve each
weak formulation for the first Newton steps when the number of cg iterations is small, and switch
to the latter once the number of cg iterations increase. Since we did not focus on optimizing the
computation times – in particular, the assembly of the Fréchet derivative is not multi-threaded in
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our implementation – we did not evaluate such a scheme numerically.

Finally, we display the evolution of the nonlinear residual and the reconstruction error in Fig-
ure 6.33.

Setting L= 16, δrel = 0.3% L= 32, δrel = 0.2% L= 64, δrel = 0.1%
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Figure 6.33.: Evolution of the nonlinear residual (red) and the reconstruction error (black) over
the Newton iterations. The nonlinear residual mostly decreases monotonically,
except for setting A.

The nonlinear residual decreases monotonically in all examples. The reconstruction error decreases
monotonically in most examples, except for setting A. Although the reconstruction error increases
in some Newton iterations for setting A, we observed in our experiments that the inclusions get
more pronounced in each Newton step, so the visual quality of the reconstructions still improves
monotonically.
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Electrical impedance tomography (EIT) opens up numerous new possibilities in tomographic imag-
ing. It is cost effective, portable, suitable for long-term monitoring, and allows for distinguishing
objects by their conductivity which are possibly indistinguishable by other imaging methods. How-
ever, despite more than 30 years of research in this field, its full potential is not yet available in
clinical and industrial applications. A main reason for this is the inherent instability of the under-
lying mathematical problem. Possible applications and the diagnostic value of EIT depend on the
quality of EIT images, that is, on their resolution and their reliability. Moreover, computational
efficiency and ease of use are desired for clinical routine.

7.1. Contributions to the �eld of research

This work contributes to the development of EIT in two regards:

• By providing new theoretical insights into the underlying mathematical model and

• by optimizing and extending an efficient general purpose inexact Newton scheme to harmonize
with the inverse conductivity problem of EIT.

All theoretical findings were complemented by extensive numerical studies.

New insights into the model: The complete electrode model (CEM) was established mathemati-
cally – and its physical accuracy was verified – already in the early 1990s. An accurate evaluation of
the forward operator, i.e. the computation of the current-to-voltage map for a given conductivity,
is of both theoretical and practical interest. However, analytic solutions are rare due to the indi-
rect (Robin-type) nature of the boundary conditions. Hence, the forward problem is commonly
solved numerically by the finite element method (FEM). An analytic forward solution of the 2D
model for circular domains and concentric piecewise constant conductivities was given in [SCI92]
using a Fourier expansion of the interior potential, and with a different approach in [Dem11] for
homogeneous conductivities. In chapter 3 of the present work, both results could be generalized to
non-concentric conductivities.
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The highly accurate forward solutions obtained by this analytic approach were used in section 3.3
to study the impact of local conductivity changes to the measurements. The resulting local sensi-
tivity information is valuable for quantifying the instability of the inverse problem locally. It was
used to obtain a theoretically justified discretization of the conductivity space. In section 6.4, this
discretization yielded improved numerical results over uniform discretizations.

Moreover, the analytic solutions served as input data for our numerical simulations (setting A; see
section 6.1.1). When simulating data and solving the inverse problem by the same numerical method,
it my occur that imperfections of this method cancel out; this effect is known as inverse crime. Using
the analytic approach to generate input data and the FEM for inversion, we avoid inverse crime and
thereby increase the reliability of the corresponding numerical experiments.

A model-tailored inversion algorithm for EIT: Iterative Newton-type schemes are a popular choice
for solving nonlinear optimization problems. Among these methods, the inexact Newton method
CG-REGINN is particularly fast and incorporates a regularization strategy, making it suitable for
ill-posed problems [Rie05]. However, Newton-type methods are designed to solve unconstrained
nonlinear problems locally by linearization. This raises issues for the inverse problem in EIT, which
has a positivity constraint on the conductivity and is highly nonlinear.

To resolve these issues, each step of the Newton scheme was investigated in this work and, if neces-
sary, modified to harmonize with the inverse conductivity problem for the CEM:

• Newton-type methods converge to a local solution, thus a well-founded initialization of the
Newton scheme is crucial for obtaining good results. Our conductivity initialization (Defini-
tion 4.4) was designed to account for the contact impedances of the model. In the presence of
contact impedances, it yields more accurate initial guesses than the commonly used initializa-
tion (4.3) which is based on the continuum model.

• Along with the conductivity initialization, we obtained an initial guess for the contact im-
pedances of the electrodes. These quantities are usually unknown, yet required to solve the
forward problem in each Newton step.

• A good approximation of the data noise level is crucial for stopping the Newton iterations.
It was obtained in section 4.1.2 from redundancy of the data due to a symmetry property
of the model. Using this estimate with Morozov’s discrepancy principle yielded good results
in all numerical examples of this work. It was especially useful for the data obtained from
saline tank experiments, where the amount and the distribution of the measurement noise is
unknown.

• The severe nonlinearity of the forward operator and the constrainedness of the conductivity
may cause Newton-type inversions to converge very slowly, to converge to a highly oscillatory
local minimum, or to fail by violating the positivity constraint. However, the positivity con-
straint can be removed and the nonlinearity can possibly be reduced by applying Newton’s
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method to a transformed forward operator. This is often done by considering the logarithm
of the conductivity, which is free of sign restrictions. However, other transformations can be
used instead. A general framework for transformed forward operators was introduced and a
novel transformation with an optimality property for constant conductivities was proposed
in section 4.2. Applying this transformation resolved convergence issues and significantly im-
proved the speed of the inversion in the presented numerical evaluations in section 6.2.

• An important design option of REGINN is the norm used for the discretized conductivity
space. In section 4.3, it was shown how the choice of the norm affects the resulting New-
ton update in each iteration. A central result of this work, Theorem 4.22, states that using
a weighted norm with the weights of equation (4.26) leads to Newton updates which satisfy
the reconstruction prior (4.21). This prior was designed to avoid spurious oscillations in the
updates. Another notable property of this weighted norm is that for sufficiently fine conduc-
tivity discretizations, the Newton update is almost independent of the discretization. This
was shown using a continuum interpretation of the weighted norm in section 4.3.2.

• To be useful in clinical routine, the inversion scheme must be robust and convenient to use.
For that reason, the regularization parameter strategy of REGINN was slightly modified by
eliminating user-defined parameters.

The resulting inversion scheme for the CEM which contains all these improvements, called model-
aware Newton-type inversion scheme (MANTIS), was tested extensively in chapter 6. The simulated
settings A–D therein were designed to cover a wide variety of possible scenarios, comprising various
boundary shapes, homogeneous and heterogeneous conductivity background, high and low contrast
conductivity perturbations of different shape and distance to the boundary, and various electrode
counts and data noise levels. The 3D setting E was realized by implementing MANTIS in the open
source MATLAB toolbox EIDORS. Finally, settings F and G are based on real measurements from
tank experiments with different measurement equipments and different (trigonometric and pair-
wise) current patterns. In all scenarios, the tailored algorithm modifications resulted in significant
improvements over the generic inversion scheme. Moreover, MANTIS was successfully applied to
all settings “out of the box”, that is, there was no need to adjust regularization parameters manually
for any of the numerical examples.

Problem specific extensions: Finally, the versatility of MANTIS was demonstrated in chapter 5 by
adding several problem specific extensions to the inversion scheme:

• Unknown model parameters, like electrode positions and sizes and varying contact impedan-
ces, can be recovered simultaneously with the conductivity. This makes MANTIS suitable for
many EIT applications for which the boundary geometry is not known accurately. The trans-
formation framework introduced for the conductivity was also useful for the reconstruction
of the boundary parameters. This was verified numerically in section 6.5.
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• A Banach space version of REGINN was used instead of CG-REGINN in the MANTIS frame-
work to promote conductivities with sparse inhomogeneities. This is useful e.g. in material
testing, where objects are tested for cracks, air bubbles, or other small-support inclusions
inside an otherwise homogeneous material. In section 6.6, it was verified that the L1.1(Ω)
setting along with the log-conductivity transformation significantly promotes the sparsity of
reconstructed inclusions, compared to the Hilbert space setting.

• Iterated nonlinear filtering was introduced in section 5.3 and used in section 6.7 to further
promote non-oscillatory solutions. It was helpful in particular when using the Banach space
version of REGINN.

In summary, the proposed inversion scheme MANTIS is both self-contained and versatile. It can
be used to solve the inverse problem of EIT in a holistic manner, it is capable of incorporating
various additional constraints like smoothness or sparsity assumptions, and it can handle model
uncertainties. Based on the inexact Newton method CG-REGINN, it is computationally efficient,
in terms of computation time as well as memory usage, when solving the linear problem. Lastly,
it is free of design parameters and thus convenient to use for a variety of potential applications in
medical and industrial imaging.

7.2. Limitations and future research

Theoretical limitations and open problems: The analytic solution for non-centered perturbations
on circular domains was obtained using the rich conformal structure of the 2D case. Although of
theoretical interest, there are to date no analytic forward solutions (known to the author) to compute
the sensitivity of 3D geometries. Note that a similar discrepancy exists for the inverse problem in
Calderón’s model, where uniqueness in the 2D case was established for general L∞+ (Ω) conductivities
using complex geometrical optics solutions, but uniqueness in higher dimensions was only shown
for (piecewise) smoother spaces [Uhl09].

The conformal structure in 2D also has implications on the recoverability of the boundary geometry
from measurement data. While the conductivity can be recovered arbitrarily well in the noiseless
case, provided that sufficiently many electrodes are used [LR08], the conformal equivalence of elec-
trode configurations suggests that recovering the boundary geometry in the CEM is an inherently
underdetermined problem; cf. Remark 5.1. This means that a rough guess of the boundary shape,
the electrode and gap sizes, and some prior knowledge about the conductivity is required to ob-
tain good results. For example, in the literature the conductivity is assumed to be constant or very
smooth near the boundary in all cases (known to the author) in which the boundary shape is recov-
ered; see e.g. [KLO05, NKK11, DHSS13a]. Instead of recovering the boundary shape, we restricted
ourselves to recovering the electrode geometry along the boundary in sections 6.5.3 and 6.5.4. An
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interesting question for future research is if and how the true geometry can be recovered from con-
formally equivalent reconstructions under additional assumptions, e.g. when the true electrode and
gap sizes are known.

Computational efficiency: While the analytic forward solutions derived in chapter 3 were used as
a valuable tool for analyzing the model sensitivity, we did not focus on maximizing computational
efficiency for initializing and solving of the truncated linear system (B.3). Thus, the computation
times shown in Figure 3.7 can be considered at least partly due to our non-optimized “proof of
concept” MATLAB implementation.

Another “proof of concept” implementation was used in our numerical examples when recovering
the electrode sizes and positions. Therein, a new finite element mesh was generated in each iteration
and the conductivity was interpolated accordingly. This may be avoided by successively refining the
triangulation to conform with the updated electrode edges.

To further enhance the computational efficiency of MANTIS in terms of memory usage, a Kacz-
marz variant of REGINN may be used, as described in [MRLa14] for the Banach space setting.
Some early preliminary results however suggest that the Kaczmarz approach does not improve the
quality of the reconstruction in MANTIS. Moreover, it might introduce additional artifacts in the
reconstructions. As memory consumption was not an issue in our numerical examples, a Kaczmarz
version of MANTIS was not pursued any further within this work.

Application to clinical EIT data: In chapter 6, an extensive numerical evaluation based on simu-
lated data and measured tank data was presented. Although clearly of practical interest, numerical
examples using clinical EIT data are beyond the scope of this work. The same holds true for time-
resolved data. Here, iterative methods like MANTIS have the potential of reducing the computation
time of successive images by using preceding results to initialize the Newton iteration.

7.3. Final considerations

The paradigm of this work was to address the inverse problem of EIT in a holistic manner. In
particular, “generic” assumptions of the inversion scheme were systematically replaced by justified
information that was gathered from the model or extracted from the measurement data.

Although each part of the inversion was designed to harmonize with the whole scheme, the indi-
vidual modifications can also be considered as a “set of tools” to improve other existing inversion
techniques. For example, the presented initializations and the suggested discretization strategy might
be useful for other iterative inversion schemes.

Moreover, the choice of the conductivity transformation arose from the question “Is there a way to
make the problem more suitable for linearization?”. The untransformed forward operator of the CEM
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turned out to be particularly unsuitable for linearization. Thus, a transformation of the forward
operator might be considered for any gradient-based inversion scheme applied to EIT.

Lastly, the proposed weighted norm for the conductivity space with the weights (4.31) contains
information about the Jacobian of the measurement operator. This means that the norm depends
not purely on the conductivity, but also on the measurement operator, that is, on the information
about the conductivity contained in the measurements.

In summary, the performance and reliability of the considered inversion scheme for EIT was im-
proved by eliminating sources of instabilities, by abandoning generic assumptions, and by gathering
and using prior knowledge about the specific setting and model.
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A. A wealth of inversion approaches

Since the formulation of Calderón’s problem, a wealth of approaches to analyze and solve the ICP
has been proposed, reflecting entirely different points of view of electrical engineers, physicians, and
mathematicians, on the “same” physical problem.

An early concept is a filtered back-projection variant for the ICP, which is motivated by the prop-
agation of currents in homogeneous media and by concepts used in X-ray computed tomography
(where the name stems from) [BB84, SV90]. However, the propagation of currents inside the object
is modelled quite crude, with currents flowing rather localized than following the path of least resis-
tance. Moreover, the electrode behaviour is neglected. Although being fast and yielding acceptable
results in some clinical applications [Dö99], this method is considered deprecated [Hol04] since the
development of more advanced methods.

An approach motivated by electrical engineering is a simplified model of the propagation of currents
inside the object, given by a resistor network [BDGV08]. The charm of this approach is that results
from graph theory guarantee a unique solution of the resistor network problem [CM00] for certain
electrode configurations, which then can be projected back on the domain to obtain a conductivity
distribution. Moreover, a shunting effect of the electrodes can be considered in the model. This
method is justified mathematically for near-constant conductivities, but the inversion algorithm, a
sort of “layer stripping” method inside the resistor network to compute the resistances, is expo-
nentially unstable, similar to the continuum layer stripping algorithm [SCII91]. Thus, the concept
succeeds only for few electrodes and very low noise.

A whole field of entirely different, “purely mathematical” approaches originates from Calderón’s
continuum formulation of the ICP and uses a class of exponentially growing and decreasing func-
tions, the complex geometrical optics (CGO) solutions to the Laplace problem. The use of CGO
solutions and the transformation of Calderón’s problem to a Schrödinger equation led to a series
of uniqueness proofs for Calderón’s problem in two and three dimensions for conductivities with
decreasing regularity assumptions [SU87, Nac96, AP06]. Some of the proofs are constructive, yield-
ing direct reconstruction algorithms like [KV87] or the D-bar method [SMI00]. All methods are
based on the continuum boundary model, require very accurate data and assume constant conduc-
tivity near the object surface. A comprehensive overview of the history, the construction and some
modifications and extensions to these solutions is given in [MS12].
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All previously described methods lack an accurate modelling of the electrode behaviour. One rea-
son is that the boundary description of the CEM is bulky: Direct “pointwise” access to Dirichlet
(potential) data is lost due to the contact impedances, and a direct application of Neumann (current
density) data is impossible due to the shunting effect of the electrodes. This makes it hard to ana-
lyze the CEM in closed-form terms. However, two fundamental results link Calderón’s model to
the CEM. Firstly, the celebrated factorization method for inverse scattering problems [CK96, Kir98]
can be applied to the Calderón’s problem [Bru01], more precisely, to the difference of the forward
operators for homogeneous and perturbed conductivities. Applying the factorization method to
this difference data shows that the support of the inclusions from a connected background can be
uniquely identified by a direct, parallel reconstruction algorithm, which is a fundamental result in
its own right [BH00]. Additionally, this difference of forward operators can be approached by its
CEM equivalents as the number of electrodes increases [LHH08]. The key observation here is that
some effects introduced by electrodes cancel out in the difference data, making it easier to address
the CEM analytically. A remarkable consequence is that the linearized problem of the ICP for the
CEM has a unique solution, i.e. the Fréchet derivative of the forward operator is injective for a large
class of discretized conductivity spaces, assuming that the number of electrodes is big enough, yet
finite [LR08].

Finally, there is a wide variety of iterative regularized Newton-type methods, arguably the most
renowned technique for solving nonlinear ill-posed inverse problems [KNS08]. They stem from
the fact that the forward operators of the ICP are differentiable [KKSV00]. Thus, they can be
successively linearized to find a conductivity fitting the observed data, e.g. by minimizing a reg-
ularized output-least-squares functional. Newton-type methods are appealing for solving the ICP
of the CEM for several reasons. Most importantly, the forward operator of the CEM and its
Fréchet derivative can be evaluated stably and at moderate computational cost using the finite el-
ement method (FEM) [PL02]. This means that all electrode effects modelled by the CEM are
considered. Moreover, Newton-type methods are well understood analytically and numerically,
and many modifications and extensions are known to improve the speed and radius of conver-
gence, to address instabilities arising from ill-posedness, data noise, and mis-modelling, or to reduce
computation time. Variants include the Gauß-Newton method, the Levenberg-Marquardt method,
Quasi-Newton methods and inexact Newton methods with various penalty/smoothing terms; see
e.g. [YWT87, WHWT93, RGA96, CCT05, LR06] and the review article [Hol04]. We explicitly in-
clude the nonlinear Tikhonov regularization and its probabilistic sibling in the Bayesian framework
here, as the minimizer of the Tikhonov functional and the MAP solution of the Bayesian model are
usually determined by Newton-type algorithms; see e.g. [VVK+98, KKSV00]. Prominent reductions
of Newton’s method are one-step linearizations, like the Tikhonov-regularized NOSER algorithm
[CIN+90] and a total-variation-regularized algorithm [DS94]. To further reduce the computational
effort in these one-step approaches, the Fréchet derivative at a constant conductivity and for a fixed
geometry is usually pre-computed and factorized.
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A. A wealth of inversion approaches

Im summary, different approaches have emerged and prevailed for very different reasons, including
simplicity, ease of use, rigorous application of concepts from uniqueness results, and explicit design
of regularization strategies in standard nonlinear inversion frameworks.

157



B. Fourier coe�cients of the extended
complete electrode model

Proof of Theorem 3.10. In contrast to Theorem 3.3, we now have to deal with non-constant contact
impedances zwl which complicate the integral expressions.

In the preceding proof, the reciprocal of the contact impedance appears in (3.12) due to equation
(3.10). However, the reciprocal of the transformed conductivity zwl (cf. (3.24)) is unsuitable for
closed-form integration when multiplied by cosine or sine terms as it contains a cos(θ̃) term in the
denominator. To solve (3.26) for jwν and yet avoid 1

cos(θ̃) terms on either side of the equation, we use
the representation

1 + T 2

1− T 2 j
w
ν (θ̃) =


1
zl

(
Ul − fw(θ̃)

)
− 2T cos(θ̃)

1− T 2 jwν (θ̃) on Ewl ,

0 otherwise.
(B.1)

As in the centered case, we substitute the Fourier representations (3.31) and (3.32) of fw and jwν
into (B.1) and multiply both sides with the test functions cos(nθ̃), n ∈ N0, and sin(nθ̃), n ∈ N,
respectively. Then, we again integrate in θ̃ over [0,2π). For better readability, we use t(nθ̃) as a
placeholder for any of these (cosine and sine) test functions. On the left-hand side, we get

∫ 2π

0
t(nθ̃)1 + T 2

1− T 2 j
w
ν (θ̃) dθ̃ =


0 for n = 0,

πσ1
1 + T 2

1− T 2dnãn for the cosine terms,

πσ1
1 + T 2

1− T 2dnb̃n for the sine terms.

(B.2)

On the right-hand side, we get

L∑
l=1

Ul
zl

∫ θ̃l+ω̃l

θ̃l−ω̃l
t(nθ̃) dθ̃ − ũ0

L∑
l=1

1
zl

∫ θ̃l+ω̃l

θ̃l−ω̃l
t(nθ̃) dθ̃

−
∞∑
k=1

ãk

L∑
l=1

[
1
zl

∫ θ̃l+ω̃l

θ̃l−ω̃l
t(nθ̃) cos(kθ̃) dθ̃ +2Tσ1dk

1− T 2

∫ θ̃l+ω̃l

θ̃l−ω̃l
t(nθ̃) cos(θ̃) cos(kθ̃) dθ̃

]

−
∞∑
k=1

b̃k

L∑
l=1

[
1
zl

∫ θ̃l+ω̃l

θ̃l−ω̃l
t(nθ̃) sin(kθ̃) dθ̃ +2Tσ1dk

1− T 2

∫ θ̃l+ω̃l

θ̃l−ω̃l
t(nθ̃) cos(θ̃) sin(kθ̃) dθ̃

]
,

158



B. Fourier coefficients of the extended complete electrode model

where θ̃l and ω̃l denote the centers and half-widths of the electrodes Ewl respectively for l= 1,...,L.
We again rearrange each equation to be used as one row of a linear system of equations for ũ0 and
ãk,b̃k, k∈N, and return to the notation of (3.14). In the conformally mapped case, we get (with the
same abusive ordering) the system(

Ã B̃1

B̃2 C̃

)(
ũ0, ã1, ã2, . . . b̃1, b̃2, . . .

)>
=
(
r̃U

s̃U

)
. (B.3)

The coefficients are given by

Ãnk =
L∑
l=1

1
zl

∫ θ̃l+ω̃l

θ̃l−ω̃l
cos(nθ̃) cos(kθ̃) dθ̃ + δnkπσ1

1 + T 2

1− T 2dk (B.4)

+ 2Tσ1dk
1− T 2

L∑
l=1

∫ θ̃l+ω̃l

θ̃l−ω̃l
cos(nθ̃) cos(θ̃) cos(kθ̃) dθ̃

=
L∑
l=1

1
2zl

[s̃l(k − n) + s̃l(k + n)] + δnkπσ1
1 + T 2

1− T 2dk

+ Tσ1dk
2(1− T 2)

L∑
l=1

[
s̃l(αn,k) + s̃l(βn,k) + s̃l(γn,k) + s̃l(κn,k)

]
, n ∈ N0, k ∈ N0,

B̃1
nk =

L∑
l=1

1
zl

∫ θ̃l+ω̃l

θ̃l−ω̃l
cos(nθ̃) sin(kθ̃) dθ̃

+ 2Tσ1dk
1− T 2

L∑
l=1

∫ θ̃l+ω̃l

θ̃l−ω̃l
cos(nθ̃) cos(θ̃) sin(kθ̃) dθ̃

=
L∑
l=1

1
2zl

[c̃l(k − n) + c̃l(k + n)]

+ Tσ1dk
2(1− T 2)

L∑
l=1

[
c̃l(αn,k) + c̃l(βn,k)− c̃l(γn,k)− c̃l(κn,k)

]
, n ∈ N0, k ∈ N,

B̃2
nk =

L∑
l=1

1
zl

∫ θ̃l+ω̃l

θ̃l−ω̃l
sin(nθ̃) cos(kθ̃) dθ̃

+ 2Tσ1dk
1− T 2

L∑
l=1

∫ θ̃l+ω̃l

θ̃l−ω̃l
sin(nθ̃) cos(θ̃) cos(kθ̃) dθ̃

=
L∑
l=1

1
2zl

[c̃l(n− k) + c̃l(n+ k)]

+ Tσ1dk
2(1− T 2)

L∑
l=1

[
c̃l(αk,n) + c̃l(βk,n)− c̃l(γk,n)− c̃l(κk,n)

]
, n ∈ N, k ∈ N0,
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C̃nk =
L∑
l=1

1
zl

∫ θ̃l+ω̃l

θ̃l−ω̃l
sin(nθ̃) sin(kθ̃) dθ̃ + δnkπσ1

1 + T 2

1− T 2dk

+ 2Tσ1dk
1− T 2

L∑
l=1

∫ θ̃l+ω̃l

θ̃l−ω̃l
sin(nθ̃) cos(θ̃) sin(kθ̃) dθ̃

=
L∑
l=1

1
2zl

[s̃l(k − n)− s̃l(k + n)] + δnkπσ1
1 + T 2

1− T 2dk

+ Tσ1dk
2(1− T 2)

L∑
l=1

[
−s̃l(αn,k) + s̃l(βn,k) + s̃l(γn,k)− s̃l(κn,k)

]
, n ∈ N, k ∈ N,

r̃Un =
L∑
l=1

Ul
zl

∫ θ̃l+ω̃l

θ̃l−ω̃l
cos(nθ̃) dθ̃ =

L∑
l=1

Ul
zl
s̃l(n), n ∈ N0,

s̃Un =
L∑
l=1

Ul
zl

∫ θ̃l+ω̃l

θ̃l−ω̃l
sin(nθ̃) dθ̃ = −

L∑
l=1

Ul
zl
c̃l(n). n ∈ N.

with Kronecker delta δnk, dk as in (3.5),

αn,k := −k − n+ 1, βn,k := −k + n+ 1, γn,k := k − n+ 1, κn,k := k + n+ 1,

and s̃l(k),c̃l(k) defined analogously to sl(k),cl(k) in (3.9), replacing θl and ωl therein by θ̃l and ω̃l,
respectively, for l= 1,...,L.

Note in particular that in contrast to the previous proof, B̃1
nk 6= B̃2

kn in general for T > 0 due to the
influence of the coefficients dk.
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