

HGF-Activities for liquid metal fast reactor systems

M. Daubner, S. Gordeev, M. Haselbauer, W. Hering, W. Jäger, A. Onea, J. Pacio, S. Perez, A. Ponomarev, A. Rineiski, V. Sanchez, Th.Wetzel - presented by **R. Stieglitz** S. Eckert^{*1}, E. Fridman^{*1}, G. Gerbeth^{*1}, U. Hampel^{*1}, S. Kliem^{*1}

^{*1} Helmholtz Center Dresden-Rossendorf

Institute for Neutron Physics and Reactor Technology (INR)

Content

- Fast Reactor R&D in the Helmholtz-Programm PoF-III
- Advanced measurement techniques
- Infrastructures
- Thermalhydraulics
- Safety assessment

FR research in Helmholtz-Programm PoF-III

- PoF-III Funding Period 2015-2019
- FR –Research and Development embedded in Waste Management Strategies

(subtopic 1.2)

- Scenario studies
- Partitioning
- Transmutation and safety assessment of transmuting reactors (spent nuclear fuels-SNF)
- Waste conditioning by cermic matrices
- Nuclear legacy waste and decommssioning

Substantial reduction compared to previous funding period

- declining core design activities (e.g. abdication of KAPROS)
- reduced effort in safety analysis
- reorientation of experimental program towards neighbouring R&D fields
- enhanced engagement in EU-Programs (only to be complemented by nat. funds)

Contributing Centers

- Helmholtz Center Dresden Rossendorf (HZDR)
- Karlsruher Institute of Technology (KIT)

3 GIF 14th SFR Safety&Operation PMB Meeting, 15th-18th March 2016, KIT, Germany | R. Stieglitz

General capabilities

- Flow rate
- Velocity measurement
- Flow visualization -2 phase flow
- Flow field reconstruction

ADVANCED INSTRUMENTATION TECHNIQUES

How to measure in liquid metals ?

- Karlsruhe Institute of Technolog
- Flow rate electro-magnetic, Dp, UTT, momentum based
- Visualization techniques
 - X-Ray tomography
 - indirect

direct

- CIFT, Utra-sound-transient time (UTT),....
- Velocitydirect

direct

- Pitot-Tube (Δp)
 - magnetic potential probes (MPP)
 - fibre-mechanics
- Non-intrusive Ultra-sound doppler velocimetry (UDV), multi units mapping
- Surfaces /2-phase
 - resistance probes
- indirect X-ray, UTT
 - optic means for surfaces
- Neutronic core monitoring
- fission chambers
- semi-conductors- SiC based- diode (SPND) (neutron-generator available)

Flow rate-EMFM

Design wishes

- High penetration depth δ of field *B* into duct (\Rightarrow low f f = frequency AC current supply)
- High magnetic field strength (high $\Delta \Phi_{\text{RMS}}$)
- Large amount of windings ($\sim n$ *n*=wire turns)

Counter arguments

- low *f* yield high sensitivity to ambient stray signals
- high *B* modifies the flow Hartmann number *Ha*<<1 (*Ha*=(EM-forces/viscous forces))

$$Ha = d \cdot B \sqrt{\frac{\sigma}{\rho v}}$$

too large f yield skin-effect

 $\int d^2 \mu \sigma \ll 1$

Local velocity - Lorentz Force Flowmeter (L2F2)

- Measurement of force/torque via permanent magnet close to the wall
- Force equal to Lorentz force F_L in flow
- Force/torque depended on near wall velocity
- New Multi-degree of freedom sensor: all 3 components of torque and force

x 10⁻⁴

10

multi degree of freedom sensor

Local flow velocity - UDV

Ultra-Sound Doppler Velocimeter (UDV)

- Principle (particle tracking)Distance change from sensor due to motion from $1 \rightarrow 2$ between two pulses.
- Determination of the time difference from the phase shift between received echoes
- \Rightarrow Velocity at a discrete distance

Profile

- Separation of sound path in time intervals (gates Δt) allows recording of a velocity profile. Therefore.
 - Coupling of a time t_i with a measurement position
 - Determination of the local velocity u_i in the interval *i*

Flow visualization- 2 phase-flow –X-Ray

13

Main feature:

- X-ray visualization of two-phase flows
- Restriction of the mold size in beam direction
- Example : LIMMCAST @ HZDR

Technology systems

- Ioop facilities
- material and qualification stands

INFRASTRUCUTRES

Infrastructures –material qualification

Material corrosion

COSTA = COrrosion test stand for STagnant liquid lead Alloys

- Operative since : 1997
- Pb or Pb-Bi
- Equipped with O₂-control
- Influence of protection layers and coatings on corrosion

Coolant control

KOSIMA: Karlsruhe Oxygen Sensor In Molten Alloys.

- Operative since: 1998
- Pb or Pb-Bi
- Equipped with O₂-control
- Development and calibration of oxygen sensors

KOCOS: Kinetics of Oxygen COntrol Systems

- Operative since: 1999
- Pb or Pb-Bi
- Equipped with O₂-control

 Diffusion coefficient and mass exchange rates for oxygen

19 GIF 14th SFR Safety&Operation PMB Meeting, 15th-18th March 2016, KIT, Germany | R. Stieglitz

HELMHOLTZ

Features

- Generic phenomena (micro-scale)
- FR –FA flow experiments
- System tool qualfication

THERMAL-HYDRAULICS

Expertise fields

- Design basis events (from core
 system)
- Accident analysis (from failure ⇒core degradation)
- Containment behavior

SAFETY ASSESSMENT

29 GIF 14th SFR Safety&Operation PMB Meeting, 15th-18th March 2016, KIT, Germany | R. Stieglitz

Design basis events – DYN3D

Neutronic analysis of the BFS-73-1 critical assembly using DYN3D and Serpent

3D detailed assembly calculation

- DYN3D: diffusion calculations
- Serpent: MC calculations
- Generation of few-group XS for DYN3D
 Reference solution

Assembly keff: Difference: -12 pcm

Assembly radial power distribution

Rel. diff. in [%] Serpent_vs. DYN3D

Design basis events - Coupling PARCS/SAS-SFR

Methods applied

- "on-the-fly" XS generation system ("Sigma-0" method, 33 EG, all nuclides)
- data exchange procedure with time clocking
- geometry transfer, expansion model developed (independent axial representation in TH and N models and averaged fissile core height)

Capability to account reactivity feedbacks:

- fuel Doppler
- axial + radial expansion of pin & SA elements
- sodium density and void
- fuel and clad relocation

Validiation: ESFR Reference Oxide core, BOL

- models for 2 and 10 channels
- feedbacks for all important nodes of fissile height and upper core regions (UAB, UGP, USP)

PhD Ponomarev

Design basis events - Coupling PARCS/SAS-SFR

Design basis events - Coupling PARCS/SAS-SFR

Transient simulations results CR movement

□ Case #3 - outer CRs withdrawal: 2.10\$

- power rapid increase by factor 2.65, radial power redistribution up to 8%
- fuel failure occurred (few nodes in mid.plane): ch#2 at 2.596 s, ch#1 at 4.046 s

Accidental safety analysis- Frame

FR cores with TRU= core not in most reactive configuration Re-criticality potential allow disruptive accidents (CDAs)

CDA described by 3 different phases :

- Initiation Phase (IP) ⇒ can-wall failure
- Transition Phase (TP) ⇒ creation of molten fuel pool,
- Expansion Phase (EP) ⇒mechanical energy release.
- Multi-physics description mandatory N/TH/SM

Options

- SAS4A/SAS-SFR- FRED (channel approach) for IP
- SIMMER for TP and EP
- SIMMER stand-alone simulation

Complementary approach

Model optimization in accidental codes mainly ASTEC

- boiling models, gap heat transfer, fission gas behaviour (axial fuel expansion, melting limits), clad mechanics
- SIMMER improvements
 - thermal expansion reactivity feedbacks (axial/radial)
 - reactivity effects due to fuel-steel mixing
 - fine mesh approach
 accountance for coherency effects

Accidental safety analysis- SIMMER developments

Simmer III, IV advancements

- modifications TH –SM Coupling
- advanced neutron physics description (incl. expansion, feedbacks)

Accidental safety analysis- SIMMER developments Performance assessment by Space Time Neutronics (STN) Benchmark 1.4 SIMMER-III upper axial blanket 1.2 1 barrel 0.8 0.1 radial fuel core Reactivity (8) 0.6 blanket bullet 0.4 0.2 lower axial blanket 0 z 0.0001 -0.2 $0.0607 \, {\rm m}$ -0.4 $0.8562 \,\mathrm{m}$ 0.006 0.012 0.014 0.018 0 0.0020.0040.008 0.010.016 1.1722 m Time(s) Results PhD Marcetti, Reineiski

- Excellent agreement in reactivity, flux, amplitude (<1% deviation)
- Similar performance for 2D ULOF of pool type LMFBR
- space-time-kinetics also with heterogenous approach validated

Accidental safety analysis- SIMMER developments

IAEA Benchmark (EBR-II Shutdown Heat Removal Tests) Results:

- Good agreement with partners <u>and</u> experiment, using HEX and XYZ models.
- Excellent performance of PARTISN XYZ model for criticality, reactivity effects, power profile

Accidental safety analysis- Containment behaviour

Sodium fires (physical & chemical processes) in severe accidents Approach: Validation of CONTAIN LMR wrt. single effect phenomena

atmosphere thermodynamics including condensation and vaporization of sodium;

Burn chamber:

220m³

Oxygen

injection

m 0.

Volume

6.0 m

Containment V=220 L

zł

0

Na

Burning pan

(A=2 and 12 m²)

ε

0

. o

filling pipe with

o-spray device

- reactions between sodium and oxygen or water (sodium spray or pool fires);
- sodium aerosol behaviour.

Reference FAUNA experiments @ KIT CONTAIN- Features

- oxygen diffusion model (pool-fire), spray fire models
- sodium combustion chemistry
- aerosol description (diffusion, graviational settling, agglomeration)

experiment No.	F1	F2	F3
pool surface (m ²)	2	2	12
sodium (kg)	150	250	500
pool depth (mm)	90	150	50
c ₀₂ (vol.%)	19-22	17-25	15-25
T_{start} (°C)	550	550	550
<i>T_{Pan}</i> (°C)	250	250	250

More information:

- Gordeev et al. 2014, CONTAIN-LMR simulation of sodium aerosol behaviour during sodium fires, ICAPP 2014.
- Cherdron W, 1985. Thermodynamic Consequences of Sodium Spray Fires in Closed Containments. Part 1. KfK 3829, Juni 1985

Accidental safety analysis- Containment behaviour

Computed vs. measured oxygen concentration and gas temperature in containment

Results

measured vs. calculated average values of burning rates

Experiment	Experiment (kgNa/m ² h)	CONTAIN- LMR (kg Na/m ² h)	•
F1	29.5	30.	
F2	21	28.5	
F3	33	30	•

For F1 and F2 the max. gas temperature in second phase of pool fire over-predicted + cooling down more abrupt. (Reason: @ large pool depth crusting of the pool surface controls combustion process in second fire phase.

incomplete combustion of sodium and slow cooling down of hot reaction residuals and unconsummated sodium.

OVERALL

reasonable description of different sodium fire types More accurate prediction requires both experimental and numerical efforts

43 43 S. Gordeev 29. September 2008, FZK

SUMMARY

- SFR related R&D mainly conducted in frame of international programs (EU programs, bilateral cooperations) – focus reactor safety
- Participation in international context (IAEA, NEA-OECD), in particular for IAEA CRP projects desired – conceived as preservation of competence
- Technology development reduced in nuclear context but also contributions in future by R&D in complementary science fields

R&D focus

- Development of simulation tools to improve analytic capabilities
- Technology development as cornerstone of knowledge
- Safety assessment as mission of provisionary R&D in Helmholtz
- Education and training

DRESDYN

A European platform for dynamo experiments and thermohydraulic studies with liquid metals

10 Hz

Internal containment (~ 50% of the lab) for a precession driven dynamo experiment

START-UP 2016

45

Water pre-experiments : mid 2017 first Na experiments: 2017/2018