

International symposium on Advanced Battery Power April 26-27, 2016, Münster/Germany poster No. P1-07

Karlsruhe Institute of Technology

Lithium-ion battery liquid electrolyte characterization with programmed-current derivative chronopotentiometry (PCDC)

Andreas Hofmann*, Thomas Hanemann*,**

- Karlsruher Institut für Technologie, Institut für Angewandte Materialien Werkstoffkunde (IAM-WK), Karlsruhe, Germany Andreas Hofmann, e-mail: andreas.hofmann2@kit.edu, Tel. +49 (0)721-608-25920
- Universität Freiburg, Institut für Mikrosystemtechnik (IMTEK), Freiburg, Germany **

Summary

Development of safe

- electrolytes for energy storage (battery applications)
- Investigation of lithium mobility in liquid battery electrolytes via programmed current chronopotentiometry measurements

Motivation

The measure of Li transference numbers can be achieved by different methods field gradient nuclear magnetic resonance, including pulsed Bruce-Vincent/potentiostatic polarization, galvanostatic polarization, moving boundary method and electromotive force method.

- Significant differences among these methods are found due to different assumptions and experimental conditions during the measurement
- Prerequisites are necessary which restrict the electrolyte formulations
- The behavior of the electrolyte in the Li-ion cell and in particular the Li-cell performance can be predicted only in a very limiting manner based on the knowledge of Li transference numbers
- The measure of the lithium mobility in the electrolyte is investigated with programmed current derivative chronopotentiometry (PCDC)

Measurement of the lithium mobility via programmed-current derivative chronopotentiometry

Potential (vs. Li/Li⁺) versus current during programmedcurrent chronopotentiometry (working electrode: lithium, counter/reference electrode: lithium, eight layer glass fiber separators GF/B (d = 13 mm); $b = 100 \ \mu A \ s^{-1}$). Between both measurements, a polarization at 1 mA was applied for 1h. Thereafter, it was waited after the potential difference was dropped below 3 mV.

Potential (vs. Li/Li⁺) versus current during programmedcurrent chronopotentiometry (working electrode: lithium, counter/reference electrode: lithium, $b = 100 \ \mu A \ s^{-1}$, electrolyte: ELM-0). The first number represents the layers of separators (GF/B) and the second number represents the number of measurement of each cell. A relaxation to E < 5 mV is obtained within a few hours.

A current (1) respectively current density (j) that increases linearly with time is imposed to LilLi Swagelok-cells with several layers of glass fibre separators. Above a certain applied current limit the voltage increases in a dramatic fashion because no more Li ions can be delivered by the electrolyte. That way, I_{max} corresponds to the maximum accessible lithium ion flux under applied current conditions.

- LillLi cell configuration
- Applying a time-dependent current $I(t) = \beta \cdot t \ (\beta = 100 \ \mu \text{As}^{-1})$
- A current corresponds to a specific electrode reaction
- Measuring the voltage response
- Determining the current limit
- It is shown that neither the deposition nor the dissolution of lithium is ratedependent
- The ionic polarization inside the cell should be in same order of magnitude

Potential (vs. Li/Li⁺) versus current during programmedcurrent chronopotentiometry (working electrode: lithium, counter/reference electrode: lithium, four-layer glass fiber separators GF/B).

Therefore, a pre-polarization at 1 mA s⁻¹ is performed up to identical potential differences (0.7 V vs. Li/Li⁺)

Potential (vs. Li/Li⁺) versus current during programmedcurrent chronopotentiometry (working electrode: lithium, counter/ reference electrode: lithium, $b = 100 \ \mu A \ s^{-1}$, electrolyte: ELM-0).

Potential (vs. Li/Li⁺) versus current during programmedcurrent chronopotentiometry (working electrode: lithium, counter/reference electrode: lithium, $b = 100 \ \mu A \ s^{-1}$, electrolyte: ELM-0).

- The current limit is significantly affected by the electrode area
- Lithium plating onto stainless steel or metallic electrodes
- Lithium plating and dissolution not rate-determining
- Both individual potential plateaus (observed within the first measurements) disappear continually after several successive measurements
- Formation of Helmholtz double layers at Li and dendritic lithium surfaces is supposed which becomes more pronounced at high current densities
- The critical current decreases slightly within the first 1-3 galvanostatic measurements ($\sim 2 - 4$ mA) and then remains more or less constant
- This can be attributed to irreversible reactions at the beginning, e.g. removing very thin layers onto Li (Li₂O or Li₃N) electrochemically
- Different numbers of separator layers (distance between Li-Li-electrodes) do not affect the current limit significantly
- The current jump between 4 10 V vs. Li/Li⁺ can be seen as current limit
- Dendritic growth and differences in the Li-Li distance do not have a significant effect on the critical current jump
- The observed potential increases with ascending current based on solvation effects, lithium dissolution, lithium plating or interactions with separator material in the electrolyte which hamper the movement of the Li-ions
- In case of lithium as active electrode material, the electrode area A varies within the experiment because of lithium dendritic growth
- A continuous decrease of the Li-Li distance due to dendritic Li deposition affects the electric field inside the cell
- Nevertheless, the experiments reveal that these effects are small compared to the voltage jump due to discontinued Li⁺ flux

Conclusions and outlook

- Presentation of a novel approach for quantification of the lithium mobility
- Possibility for preliminary investigation of lithium-ion battery electrolytes (novel pre-screening method for liquid electrolytes)
- Comparison of various liquid electrolytes is possible including ionic liquids
- Cell performance may be different based on specific electrode reactions

References

Hofmann et al., "Novel Electrolyte Mixtures Based on Dimethyl Sulfone, Ethylene Carbonate and LiPF₆ for Lithium-Ion Batteries", J. Power Source 298, 322-330 (2015).

Acknowledgements

AH acknowledges support by Deutsche Forschungsgemeinschaft (Sachbeihilfe, HO 5266/1-1).

* C/n: current rate when the cell is charged or discharged completely in n h

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

