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Abstract 

This dissertation presents the investigations of different systems relevant for safety assessment 

studies of nuclear waste repositories using the X-ray based synchrotron techniques: An L3/M4,5 

edge HR-XANES, L3 edge EXAFS and 3d4f RIXS as well as other complementary techniques, 

including XPS, XRD and SEM/TEM. 

In the first section, the U interaction with magnetite is investigated. In the first of the two 

investigated systems the U(VI) co-precipitated with magnetite nanoparticles with varying U 

concentrations, pH~8.0 and I[NaCl]=0.192 M is discussed. The U redox states and speciation 

after a short-term (10 days) up to long-term interaction time (373 days) were studied by U L3/M4 

edges HR-XANES and EXAFS techniques. Samples kept under ambient conditions are also 

investigated. The U M4 edge HR-XANES technique clearly detected three different redox 

states: U(IV), U(V) and U(VI) simultaneously present in the magnetite after 10 days and mainly 

a mixture of U(IV) and U(V) after 147 days interaction time. It is found that U(V) is stabilized 

in octahedral sites in the structure of magnetite at environmentally relevant concentration and 

was stable after 226 days exposure on air. In the second system the U(VI) redox behavior by 

interaction with magnetite nanoparticles in batch static conditions is investigated. A long-term 

batch sorption experiment (175 days) under nearly neutral pH conditions and I[NaCl]=0.01 M 

is performed. The effect of aqueous Fe(II) on the U redox states and the Fe speciation are 

studied. It is shown that the amount of U(V) stabilized on the surface of magnetite is 50% for 

175 days aged samples. After addition of Fe(II) and two days contact time no U(IV) is formed, 

whereas the amount of U(V) has increased by 10%. 

An interesting outcome of the studies is the apparent stabilization of U(V) in co-precipitation 

studies even under reducing conditions. Two species could be identified by EXAFS: 

incorporation in octahedral magnetite sites and as non-stoichiometric UO2+x.  
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In the second section, the results from exploring structural investigations of three different U 

and Pu systems are presented. The very first study of U(VI) and U(V) carbonate complexes 

using in-situ spectroelectrochemical cell by U M4 edge HR-XANES and 3d4f RIXS techniques 

coupled with in-situ UV-Vis spectroscopy is presented. One of the main tasks of this work 

includes the development, building and tests of the in-situ cell coupling spectroscopy with 

electrochemistry. Reference U M4 edge HR-XANES spectra and 3d4f RIXS maps for U(VI) 

and U(V) carbonate complexes are measured for the first time. The spectra will be used for 

speciation analyses for identification of U(V)-yl species. Significant differences in the 

electronic structures of these complexes is found. A series of UO3 polymorphs are investigated 

for the first time by the U M4 edge HR-XANES technique. A fingerprint approach was proposed 

and applied to compare the level of covalency of the U-yl bonds within the UO3 polymorphs. 

The order of the increase in covalency in the materials is found to be the same from the 

spectroscopy and the thermodynamic results based on free Gibbs energies of formations in 

series α-UO3 < β-UO3 < γ-UO3 < UO3·1-2H2O.  

In the third part, Pu oxidation states, Pu(III), Pu(IV), Pu(V) and Pu(VI) in perchlorate solution 

and colloidal Pu(IV) prepared electrochemically are investigated for the first time by using Pu 

L3/M5 edges HR-XANES and 3d4f RIXS techniques. One of the key parts of this work is the 

development and testing of a set of cells for liquid, redox sensitive Pu samples, allowing the 

spectroscopic measurements. All measured HR-XANES spectra have significantly reduced 

spectral broadening resulting in better energy resolved features for all regions of the spectra. 

These spectra will be applied as references in future Pu speciation studies. It is demonstrated 

that the Pu M5 edge HR-XANES technique detects 6% Pu(VI) present in a Pu(IV) sample. 
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1. Introduction and Motivation 

A fundamental understanding of the physical and chemical properties of the early actinide (An) 

elements (Ac-Am) and their interactions with the environment are obligatory for the long-term 

safety assessment of nuclear waste repositories (Figure 1.1). [1-3] Development of strategies 

for safe storage and disposal of radioactive wastes requires mechanistic understanding of the 

interaction of the waste products with the container materials in case of water accessing the 

waste. This necessitates speciation studies of radionuclides using advanced, sensitive 

techniques. [4-6]  

 

 

Figure 1.1. Schematic view of a potential nuclear waste repository including different 

barriers and an example of a corrosion process, which takes place by interaction of ground 

water with the storage container and the waste; a simplified list of final repositories in 

different type of geological formations considered by different countries is also included. 

(Source Nagra Info, 2010-2014) 
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For example, groundwater in a nuclear waste repository (NWR) and radiation induced redox 

processes can lead to oxidation of the inner iron (Fe) walls of the canisters resulting in formation 

of Fe oxides including, magnetite, maghemite and other Fe oxy(hydr)oxide phases. [7-9] It has 

been demonstrated that Fe containers can fail due to corrosion in abiotic conditions; these 

processes may potentially last thousands of years, depending on the disposal concept and the 

host rock considered, years resulting in Fe oxidation and destruction of the canister walls, 

followed by corrosion of the spent nuclear fuel (SNF). [10] In case of interaction with 

oxygenated water or due to radiolysis effects, the oxidation of the An to soluble and highly 

mobile redox states interacting with Fe corrosion products arising from continuous Fe  

dissolution and remineralization processes can lead to re-immobilization of such species. 

Uranium is a main constituent of radioactive wastes (e.g. SNF) but it is also present in high 

quantities in contaminated sites after U ore reprocessing and technogenic accidents. Several 

redox active species control the U behaviour in the environment including redox active 

inorganic, i.e. iron, sulphur, nitrogen and dissolved oxygen [11, 12] as well as organic and 

biological species. [13-15] From those processes, significant interest lies in the investigation of 

the heterogeneous reduction of U(VI) by ferrous iron (Fe(II)). Such interactions are believed to 

be key processes influencing the mobilization/immobilization of U in the near and far field of 

the NWR. [16, 17] Uranium is often found as a mixture of its redox states in respective 

experiments. U has two environmentally relevant oxidation states, U(IV) and U(VI), and an 

intermediate U(V) with poorly understood chemical behaviour and interaction with the 

environment. U(V) is often not considered at all due to the lack of reliable detection methods. 

Recent works aimed to reconsider the significance of U(V) for U (geo)chemical systems.             

[16-18]  
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Besides U, one of the most challenging and important elements in SNF is plutonium (Pu). The 

long lifetime of the notably 239Pu contribute significantly to the long-term radiotoxicity 

inventory of spent nuclear fuel (SNF). It has been shown that up to four Pu oxidation states may 

coexist under environmentally relevant conditions, each having different potential migration 

pathways in the environment. [3, 19] For reliable predictions of the mobility and the 

concentration of Pu under the geochemical conditions of nuclear waste repositories, a set of 

thermodynamic parameters and ion interaction coefficients are necessary. These parameters can 

be derived by combining dedicated wet chemistry (solubility and sorption) experiments with 

sensitive spectroscopic investigations. It is well known that Pu(IV) has a high tendency towards 

hydrolysis, polymerization and subsequent colloid formation under environmental conditions, 

depending on the aqueous solution redox potential. These colloids are believed to be in 

equilibrium with ionic solution species and in this case are part of the thermodynamic system 

of Pu aqueous chemistry. However, their formation is still not well understood and their role 

for Pu redox chemistry remains controversial. [20] The standard X-ray absorption spectroscopy 

(XAS) technique applied under ex-situ conditions cannot characterize the Pu polymers due to 

their heterogeneity and simultaneous presence of different species. Application of selective 

spectroscopic techniques would open up the possibility to gain deeper insight into the formation 

processes and stability of Pu species, which are highly relevant for the redox chemistry of Pu 

in aqueous solution at geochemically relevant concentrations. [5, 21, 22] 

One widely used technique to determine An oxidation states is 4f X-ray photoelectron 

spectroscopy (XPS). [23, 24] The method provides mainly surface sensitive information about 

the An oxidation states by detecting variations in the binding energies of 4f electrons appearing 

as a chemical shift of peaks in spectra and by the observation of characteristic satellites.                      

[25, 26] For example, the energy shifts between the U 4f peaks characteristic for U(VI), U(V) 

and U(IV) oxidation states usually amount to a few tens of eV and strongly overlapping. 
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As a result, it is often not possible to distinguish and unambiguously quantify the different U 

oxidation states. In a review of XPS studies related to U(IV), U(V) and U(V) compounds  it has 

been shown that energy positions of U 4f peaks for some U(V) compounds can be similar with 

to those being characteristic for U(IV). [27] In case of mixtures of U oxidation states, the XPS 

analysis depends on the applied fitting procedure and can lead to ambiguous results. The 

analysis of U(V) is based on the evaluation of satellite peaks, which are only detectable with a 

sufficiently high signal to noise ratio for samples with high U content. Such samples are 

obviously not relevant for environmental studies. XPS also requires investigation of samples in 

ultra-high vacuum, which can potentially influence the chemical state of U and, that of the An 

in general.  

The X-ray absorption spectroscopy (XAS) based methods, i.e. An L3 X-ray absorption near 

edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) have been 

intensively applied to investigate An oxidation states and their local coordination environments 

in environmentally relevant systems. [16, 28-34] The An L3 edge XANES spectra are sensitive 

to the An oxidation states but the spectra are dominated by broad features due to large core-hole 

lifetime broadening effects. This prevents reliable characterization and quantification of the 

different An oxidation states in the same material. The high-energy resolution XANES (HR-

XANES) technique at the U M4,5 absorption edges was demonstrated to be very valuable for 

studies related to U oxidation state analysis in systems containing mixed oxidation states. [35] 

An M4,5 edges HR-XANES has a great advantage over the conventional An L3 edge XANES: 

reduced core-hole lifetime broadening for U M4,5 and L3 edges results in better resolved spectral 

features. [36] In turn, this allows for more precise oxidation state analysis. The method is also 

a direct probe for the An 5f valence states, which are of significant importance for the chemical 

bonding in An complexes. [35, 37] The An L3 edge HR-XANES provides also additional 

information about the unoccupied 6d valence states of An compared to the conventional 

XANES method.  
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The main aims of this Doctoral Project are:  

1) To unambiguously verify the U(V) species after interaction of U(VI) with magnetite 

nanoparticles under different reaction conditions using spectroscopic methods         

(Sections 4.1 and 4.2); 

2) To design, build and apply the first compact in-situ electrochemical cell for reduction 

of U(VI) to U(V) by combining electrochemistry with UV-Vis and U M4,5 edges                

HR-XANES/RIXS techniques (Section 5.1); 

3) To design, build and apply a set of inert-gas liquid cells for An M4,5 edge                      

HR-XANES/RIXS studies of Pu(III)-Pu(VI) in perchloric acid solutions (Section 5.3); 

4) To perform pioneering investigations of the unoccupied 5f and 6d valence states of U 

and Pu in three different reference systems and thereby fully demonstrate the 

characterization potential of the HR-XANES and RIXS techniques for electronic 

structure studies of An (Sections 5.1 and 5.3);  

5) To generate U/Pu M4,5 and L3 edge HR-XANES reference spectra for speciation 

analysis of U and Pu in both laboratory and environmental systems (Sections 5.1, 5.2 

and 5.3). 

In each section the U M4 and Pu M5 edges HR-XANES and 3d4f RIXS results are 

complemented by one or several of the following complimentary characterization methods: 

XAFS, XPS, resonant inelastic X-ray scattering (RIXS), Transmission and secondary electron 

microscopies (TEM and SEM), X-ray diffraction (XRD) and ultraviolet-visible-near infrared 

(UV-Vis-NIR) technique. Quantum-chemical calculations with the FEFF code and resulsts 

from thermodynamic modelling have also been used to support some of the experimental results 

(Sections 5.2 and 5.3). 
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2. X-ray based spectroscopy techniques  

2.1. X-ray absorption spectroscopy (XAS). Basic principles  

XAS is a widely used technique for investigating the chemical speciation of An, i.e. oxidation 

states and local atomic structure in a variety of samples in environmentally relevant studies. 

[38] The advantage of this technique over for example, XRD, is that it can be used to study 

non-crystalline (amorphous and liquid) samples. In addition, it probes the local atomic 

environment of each absorbing atom, whereas XRD measures only ordered regions containing 

several unite cells. For environmentally relevant samples where the An concentrations are 

usually low, excluding U minerals and contaminated sites with high An contents, XAFS spectra 

are recorded in fluorescence and transmission modes. The absorption coefficient is measured 

as a function of the incident X-ray energy.  

For fluorescence mode (Equation 1): 

0

)(
I

I
d

f
                    (1) 

Where d is the thickness of the sample, I0 – intensity of incident X-rays and If – intensity of 

fluorescence X-rays. 

For transmission mode (Equation 2): 











tI

I
d 0ln)(          (2) 

Where I0 is the intensity incident photons and It - the intensity of transmitted photons. 

The XAFS spectrum is divided into two parts. The first part beginnings from about -50 eV and 

ends at about +250 eV relative to the absorption edge and is called XANES. This region 

partially overlap with the EXAFS part of the spectrum. EXAFS typically starts after the most 
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intense absorption resonance (white line, WL) and continues to 1000 eV or more above the 

absorption edge. Figure 2.1.1 depicts the XAFS spectrum of uranium dioxide (UO2). 

The sharp rise in the absorption coefficient (absorption edge) occurs when the incident energy 

exceeds the binding energy of a core level electron, which is first excited to unoccupied bound 

states and when the energy is sufficiently high to the continuum states. The WL of the  XANES 

is mainly used for determination of the redox state and to selectively probe the angular 

momentum projected unoccupied states of an atom as consequence of the dipole selection rule, 

i.e. electronic transitions are allowed only between energy states that differ in azimuthal 

quantum number (l) by ±1: Δl = ±1. This refers to 2p → nd transitions for An L2,3 edges. It also 

fingerprints to some extend the coordination geometry of the absorbing atom. EXAFS probes 

the local atomic environment of the absorbing atom. The EXAFS spectrum contains 

information on the types and number of atoms in coordination with the absorbing atoms, their 

interatomic distances and the degree of local structural disorder. [39, 40] 
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Figure 2.1.1. The XAFS spectrum of UO2; the U absorption edge energy (E0), the 

XANES and the EXAFS regions are marked. 
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To describe the EXAFS spectrum χ(k) the EXAFS equation is used, which can be represented 

as a sum of all scattering paths of the photoelectron in Equation 3. [41, 42] 


i

i kk )()( 
                  (3) 

Where χ is a scattering path of the photoelectron. Each χ can be written as Equation 4: 

)(/22

2

0
22

2
)](2sin[)()()( kRk

iii

i i

i
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ii eekkRkF
kR

SN
k                       (4) 

where Ri is described by Equation 5: 

iii RRR  0                    (5) 

and k is described by Equation 6: 

)(2 00



EEE
mk e


                  (6) 

Here, the terms Fi (k), φi(k), and λ(k) are the scattering amplitude of the photoelectron, the phase 

shift of the photoelectron, and the mean free path of the photoelectron. These parameters can 

be calculated by the ab initio quantum-chemical FEFF code based on the multiple-scattering 

theory. [40] Ri is the half path length of the photoelectron: the distance between the absorber 

and a coordinating atom for a single-scattering event. The value of R0i is the half path length 

used in the theoretical calculation, and is modified by ΔRi and shows a change in the interatomic 

distance relative to the initial path length Ri.  

The variables described below can be determined by modelling the EXAFS spectrum. Equation 

5 is used to express the excess kinetic energy of the photoelectron in wavenumbers (k) by using 

the mass of the electron me and the Plank’s constant (ħ). Here, ΔE0 relates to a change in the 

photoelectron energy and it can be calculated by FEFF code. It is used to align the energy scale 
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of the theoretical spectrum to match the measured spectrum. It can be further simplified and 

represented as Equation 7:  

051.0 EEk                    (7) 

Here 0EE   is in units of eV, and k is in units of Å−1, where E is the incident energy of the 

photon and E0 is electron binding energy of the emitted photoelectron. The EXAFS equation 

includes the following components: NiS0
2 changes the amplitude of the EXAFS signal and does 

not depend on k. The subscript i indicates that this value can be different for each path of the 

photoelectron. S0
2 has a value between 0.7 and 1.0. [38]. 1/Ri is a contribution from a shell of 

atoms at a distance Ri which decreases with increasing distance from the absorber atom. 

sin[2kRi + φi(k)] considers the oscillations in the EXAFS signal with a phase represented by 

2kRi + φi(k). The path of the photoelectron is described by the distance which photoelectron 

travels to the neighbour atom (Ri) and then back (2Ri). In order to determine a phase shift it is 

multiplied by k. φi(k) is a phase shift of the photoelectron caused by the interaction of the 

photoelectron with the nuclei of the absorber atom. Fourier transform (FT) of the sine function 

results in peaks at the interatomic distances between the absorber and coordinating atoms. In 

222 kie 
part, the σ2 is the mean-square displacement of the bond length between the absorber 

atom and the coordinating atoms in a shell. This term also includes contributions from thermal 

disorder and from structural heterogeneity. EXAFS measures the distribution of the distances 

between the absorber atom and each of the coordinating neighbour atoms within a shell in terms 

of a σ2 value.  λ(k) is a mean free path of the photoelectron, which can be treated as the average 

distance that a photoelectron travels after its excitation. [38] 
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2.2. High-energy resolution X-ray absorption near edge structure           

(HR-XANES) and resonant inelastic X-ray scattering (RIXS) 

techniques. Basic principles 

In this section, the HR-XANES technique is discussed. An L3 edge conventional XANES 

spectroscopy has been commonly used for most environmentally relevant U studies.                 

[29, 43-46]  

In conventional fluorescence mode the An L3 edge XANES spectrum is usually measured with 

a solid state detector (SSD) with detector’s resolution exceeding 100 eV which is much higher 

than the energy width of a core-hole (< 10 eV). For example in the U L3 edge XANES 

measurement the spectral energy resolution is limited by a large core-hole lifetime broadening 

of ~7.4 eV due to the short core-hole lifetime of the U 2p3/2 level. [36]  The resolution is 

additionally influenced by instrumental broadening originating from the beamline optical 

components. Thus the total energy resolution of the XANES spectrum is described as a 

combination of the core-hole width and the instrumental effects, which are described 

mathematically as Lorentzian and Gaussian type broadenings, respectively. [47] The spectral 

broadening can be significantly reduced by applying high-energy resolution multi analyzer 

crystal (MAC)-Spectrometer. The central component of the MAC-Spectrometer used in this 

doctoral project is a spherically bent free of defects usually Si/Ge crystal with specific 

orientation that diffracts the characteristic fluorescence emitted from the sample and focuses it 

onto a SSD. In such experimental setup, the analyser crystal is positioned in a one-to-one 

focusing Rowland geometry with a SSD and a sample. [48, 49] In order to increase the solid 

angle of collection the MAC-Spectrometer contains five analyser crystals. This setup is adopted 

from original design realized for the Beamline ID26, ESRF.  
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The advantage of this experiment is that the width of the spectrum is no longer limited by the 

2p3/2 core-hole lifetime but by the sharper 3d5/2 width in the final state. [50-52]  

The technique of reducing the core-hole lifetime broadening obtained in the XANES spectra 

by using MAC-Spectrometer was first shown by Hämäläinen et al. on lanthanide systems. [53] 

The technique has been named as partial fluorescence yield XANES (PFY-XANES), high-

energy resolution fluorescence detected XANES (HERFD-XANES or HR-XANES in the text).  

[51, 52, 54, 55] The spectral broadening achieved for the U L3 edge HR-XANES spectrum 

becomes lower than the width of the 2p3/2 core-hole and has been estimated as ~4.5 eV.  It can 

be further reduced by recording HR-XANES spectra using other emission lines, i.e. Lβ5 (5d3/2 

→ 2p3/2) with spectral broadening estimated as ~1 eV. This resolution is sufficient to resolve 

separate peaks resulting from a crystal field splitting of the U 6d states in UO2. [50, 56] An L3 

edge XANES probes unoccupied An 6d states and is sensitive to its octahedron coordination 

and to crystal field splitting effects, however the most interesting properties of U and the other 

An originate from the participation of the 5f valence states in the chemical bonding. These are 

located closest to nuclei and do not overlap much with the 6d, 7s and 7p orbitals (Figure 2.2.1).  

The 5f unoccupied states can be 

directly probed by measuring U 

XANES spectra at the M4,5 edges 

using the Mβ (4f5/2 →3d3/2) (M4 edge)  

or Mα (4f7/2→3d5/2) (M5 edge) 

emission lines.  U M4 edge has an 

advantage over the M5 edge due to 

~200 eV higher energy facilitating 

less losses of X-ray signal and slightly 

better energy resolution of the     

 

Figure 2.2.1. Radial extent of Pu 5f valence electrons. 

The radial probability P(R) of finding electron at a 

distance R from nucleus is shown for the valence 5f, 6d, 

7s and 7p orbitals for Pu(III). The solid lines show the 

probabilities after the inclusion of relativistic effects. 

(Used from Los Alamos Science Journal, 2000, by D. 

Clark) 
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MAC- Spectrometer for the Mβ emission line. [56] 

In this case the width of the spectral 

features is no longer limited by the 3d3/2 

core-hole lifetime, but by the sharper 4f5/2 

lifetime broadening of ~0.37 eV. [57] The 

examples of U L3 and M4 edges 

conventional and HR-XANES spectra for 

U(VI) uranyl type compounds are shown 

in Figures 2.2.3 a, b. The spectral peaks 

are more intense and are better resolved 

for both edges with a remarkable 

difference for the U M4 edge for which two additional higher energy separate peaks are clearly 

resolved. 

 

Figure 2.2.3.  U L3 (a) and M4 (b) edges conventional and HR-XANES spectra 

of Cs2(UO2)Cl4 and UO3·1-2H2O (meta-schoepite), respectively. 
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Figure 2.2.2. Schematic electron excitations and 

emission transitions for An L3 and M4,5 edges.  
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An example of a resonant inelastic X-ray scattering (3d4f RIXS) contour map of U(VI) is 

depicted in Figure 2.2.4. This 3d4f RIXS map comprises the Uβ emission of U measured as a 

function of the excitation energy across the U M4 absorption edge. The HR-XANES spectrum 

corresponds to the cut parallel to the excitation energy performed at the maximum of the normal 

emission line. The normal emission is recorded for excitation energies well above the 

absorption edge when the photoelectron is excited to the continuum, i.e. the atom is ionized.  
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Figure 2.2.4.  U 3d4f RIXS map of U(VI) in     

1 M HClO4 aqueous solution. 
Figure 2.2.5. Schematic representation of RIXS 

processes for An. 
 

RIXS is a process where electron is first excited from the ground state (3d105fn for U) to 

unoccupied bound states (3d95fn-1, intermediate state) followed by relaxation processes with 

emission of characteristic X-rays after the core-hole is filled with an electron from higher 

energy states (3d105fn, final state). [35, 50, 58, 59] Figure 2.2.5 represents a scheme for two 

RIXS processes for the An M4,5 edge. In this work, the core-to-core RIXS (3d4f RIXS) 

technique is used. For this RIXS process, the 3d core-hole is filled from another core like state 

4f. The overall spectral broadening is dominated by the core-hole lifetime broadening, which 

has contributions from the intermediate and final states and can be estimated by the approach 

shown by de Groot et al. [47]  
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The experimental spectrum also includes instrumental broadening effects with two main 

contributors: beamline (energy resolution of the DCM, size of the beam on the sample etc.) and 

spectrometer (quality and bending radius of the analyzer crystals, Bragg angle etc.).  

The total experimental energy bandwidth is estimated as 0.7 eV for the ID26 Beamline [35]; 

the value is ~0.5 eV higher, 1.2 eV, for both U (M4 edge, 3728 eV) and Pu (M5 edge, 3775 eV) 

at the INE-Beamline mainly due to a bigger spot size of the incident beam. These values are 

determined by measuring the full width at half maximum (FWHM) of the elastic peak.   

All relevant An L3 and M4,5 edges (Pa-Cm) are accessible over the Lα1, Mα and Mβ emission 

lines with the available at the INE-Beamline (5 Si(111), 5 Ge(111), 5 Si(220)) analyzer crystals 

(Figure 2.2.6). 

 

 

Figure 2.2.6. Emission energies and the corresponding analyzer crystals and Bragg angles for An 

Mβ/Mα (a) and An Lα1 (b) emission lines for An Z=90-96. 
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The measured absorption edges of U and Pu, emission lines, the used analyser crystals and 

corresponding Bragg angles are listed in Table 2.2.1. 

Table 2.2.1. Emission energies, analyzer crystals and corresponding Bragg 

angles used in the U and Pu L3 as well as U and Pu M4,5 edges HR-XANES 

measurements. 

Absorption edge, [eV]/ 

emission line, [eV] 

Electronic 

transition 

Analyser 

crystals 

Bragg 

angle, θ° 

U L3 (17168) / Lα1 (13618) 3d5/2 → 2p3/2 Ge(777) 77.39 

Pu L3 (18057) /Lα1 (14282)   3d5/2 → 2p3/2 Si(777) 75.70 

U M4 (3726) / Mβ (3337)  4f5/2 → 3d3/2 Si(220) 75.18 

Pu M5 (3775) / Mα (3351),  4f7/2 → 3d5/2 Si(220) 75.22 
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3. Experimental techniques 

3.1. X-ray absorption spectroscopy 

The XAS experiments were performed at the INE-Beamline for An research (ANKA 

synchrotron radiation facility, Karlsruhe). [54] The layout of the INE-Beamline is shown in 

Figure 3.1.1.  

 

 

 
Figure 3.1.1. 3D graphical layout of the INE-Beamline. Source [54] 
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A double crystal monochromator (DCM) equipped with two Ge(422) crystals was used for the 

energy monochromatization. The U and Pu L3 edge XAFS spectra were recorded in 

fluorescence detection mode by registering the U Lα1 (13618 eV) and the Pu Lα1 (14282 eV) 

fluorescence lines, respectively, as a function of the incident photon energy by means of a five-

element high purity Ge solid state detector (Canberra) (U: Section 4.1; Pu: Section 5.2 ).  

Y (K edge = 17038 eV) and Zr (K edge = 17998 eV) foils were simultaneously measured with 

the U and Pu samples in transmission mode, respectively; these foils were also used for energy 

calibration of the DCM.  

The samples in form of suspensions (U: Section 4.1) or aqueous solutions (Pu:  Section 5.3) 

were placed into 300 µl vials and positioned into the inert gas cell. Ar gas was flushed 

continuously during the experiment. From three to six scans were usually collected at room 

temperature and averaged for each sample. The averaged XAFS scans were normalized by 

subtraction of a linear background function from the featureless pre-edge region and 

normalization of the edge jump to unity. The EXAFS spectra were extracted and analyzed with 

the ATHENA and ARTEMIS programs, respectively, included in the IFEFFIT package. [60] 

The single scattering paths used in the modelling procedure were generated with the FEFF9.5 

code. [61, 62] More details on the preparation of the samples and the analyses of the spectra 

are given in Sections 4.1 and 5.3 for U and Pu, respectively. 
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3.2. High-energy resolution X-ray absorption near edge structure 

spectroscopy and resonant inelastic X-ray scattering  

The HR-XANES experiments were performed at the INE-Beamline (ANKA) for U           

(Sections 4.1, 5.1 and 5.2) and Pu (Section 5.3) [54] and at the Beamline ID26 (ESRF) for U 

(Sections 4.1 and 4.2). [48]  The U and Pu 3d4f RIXS experiments were carried out at the INE-

Beamline. Two Si(111) and Ge(422) crystals were set in the DCM and used for the U/Pu M4,5 

and Pu L3 edge experiments at the INE-Beamline, respectively. The beam was focused to 

~0.500 mm vertically and ~0.500 mm horizontally at the position of the sample, XANES 

spectra were measured in high-resolution mode using the MAC-Spectrometer depicted in 

Figure 3.2.1. (Pruessmann, PhD Thesis, 2016) The sample, five analyzer crystals and a single 

diode silicon drift detector (SDD Vortex) were arranged in a vertical Rowland geometry (Figure 

3.2.1 top left). The Si(220) (edges, emission lines)/Ge(777) (edge emission line) five 

spherically bent crystal analyzers with 1 m bending radius were applied. A glovebox equipped 

with a chamber for transfer of samples was built around the MAC-Spectrometer to minimize 

losses of X-ray intensity for the U/Pu M4,5 edge experiments. Constant He flow was maintained. 

The O2 level was monitored and kept constant (~0.1%) inside the He box. The experimental 

energy resolution measured for the U/Pu M4,5 edge HR-XANES experiments was ~1.2 eV; it 

was determined by measuring the FWHM of the elastic peak. The experimental energy 

resolution was not measured for the Pu L3 edge experiments due to the low intensity of the 

elastically scattered X-rays. U/Pu M4,5 edge HR-XANES and normal emission spectra of a 

uranyl peroxide mineral (UO4·2H2O)/UO2 and PuO2 for U and Pu, respectively, were measured 

after each sample to verify the energy calibration of the DCM and the alignment of the MAC-

Spectrometer. Zr foils was measured in transmission mode simultaneously with the samples for 

the Pu L3 edge HR-XANES experiments. Resonant inelastic X-ray scattering (3d4f RIXS) maps 
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for U/Pu compounds were measured by recording HR-XANES across the normal Mβ/Mα 

emission line.  

 

 

 

Figure 3.2.1. A photograph of the MAC-Spectrometer installed at the INE-Beamline (right). 

A scheme of the Rowland circle geometry (top left). The He glovebox and the transfer 

chamber for the samples (left bottom). 
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For the measurements of the U L3 and M4 edges HR-XANES spectra at the ID26 beamline, 

ESRF. The incident energy was monochromatized by a Si(111) DCM. Rejection of higher 

harmonics was achieved by three Si mirrors at an angle of 3.5 mrad (for the U M4 edge 

experiment) and three Pd mirrors at an angle of 2.5 mrad (for the U L3 edge experiment) relative 

to the incident beam.  

The beam size was focused to ~0.150 mm vertically and ~0.450 mm horizontally for the 

measurements at both absorption edges. XANES spectra were measured in high-resolution 

mode using a MAC-Spectrometer. The sample, analyzer crystal and silicon drift diode (SDD) 

were arranged in a vertical Rowland geometry. The U HR-XANES spectra at the L3/M4 edges 

were obtained by recording the maximum intensity of the U Lα/Mβ emission lines. Ge(777) 

(emission line) or the Si(220) (emission line) diffraction order of five spherically bent Ge/Si 

crystal analyzers with 1 m bending radius were used. The experimental energy resolution was 

~2.6 eV for the U L3 and ~0.7 eV for the U M4 edge and was determined by measuring the 

FWHM of the elastic peak. The paths of the incident and emitted X-rays through air were 

minimized in order to avoid losses in intensity due to absorption. Depending on the edge, from 

ten to forty-four scans were measured for each sample. Samples were checked for the radiation 

damage by measuring very fast scans (12 sec/spectrum) with and without 200 µm Al foil 

attenuating the beam intensity. For the U M4 edge changes in the spectral shape were detected 

after 60 seconds of measuring time, therefore each XANES spectrum has been collected at a 

fresh sample spot and measured for 12 s/spectrum; all spectra were normalized to the maximum 

absorption intensity.  
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3.3. X-ray photoelectron spectroscopy 

The U containing magnetite samples were prepared for X-ray photoelectron spectroscopy 

(XPS) measurements in the glove box under Ar atmosphere. The dried solid samples were 

pressed on indium foil and mounted on the gas tight sample holder. Transfer of the samples 

under Ar atmosphere into the XP spectrometer was achieved by means of an O-ring sealed 

vacuum transfer vessel. 

XPS measurements were carried out by using a ULVAC-PHI VersaProbe II instrument 

equipped with a monochromatized Al Kα X-ray source (1486.6 eV) operated at 33 W source 

power. The spectrometer has a hemispherical capacitor analyzer and a detector consisting of a 

micro channel plate with 16 anodes. Calibration of the binding energy scale of the spectrometer 

was performed using well-established binding energies of elemental lines of pure metals 

(surface cleaned by Ar ion beam sputtering, monochromatic Al Kα: Cu 2p3/2 at 932.62 eV, Au 

4f7/2 at 83.96 eV. [63] The difference of binding energies between both lines is adjusted by the 

electronics to coincide with the reference value of 848.66 eV within ± 0.1 eV. Standard 

deviation of binding energies is within ± 0.1 eV for conductors and within ± 0.2 eV for non-

conducting samples. Spectra were collected at a take-off angle of 45° (angle between sample 

surface and analyzer). During analysis, the pressure inside the spectrometer was about 2×10−7 

Pa. Elemental composition of the sample surface was analyzed by survey spectra recorded with 

pass energy of 187.85 eV at the hemispherical capacitor analyzer.  The areas of elemental lines 

(after Shirley background subtraction), sensitivity factors, asymmetry parameters, and 

transmission function of the analyzer were used to calculate the atomic concentrations. To 

retrieve information about the chemical state of the elements, narrow scan spectra of elemental 

lines were recorded with pass energy of 46.5 eV allowing the acquisition of high-resolution 

spectra. The XP spectrometer results a FWHM of 0.7 eV for the Ag 3d5/2 line at this pass energy.  
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The magnetite powder samples were almost conductive, thus only a small shift for charge 

referencing (< 0.3 eV) to the O 1s elemental line of magnetite at 530.2 eV was applied. [64] 

Charge referencing to the C 1s elemental line of adventitious hydrocarbon commonly used was 

not practical since the C 1s spectra exhibited noisy spectra at low intensity. Curve fitting of the 

narrow scans of elemental lines was performed by the program PHI MultiPak, version 9.6.0 

(data analysis program) using a nonlinear least-squares optimization procedure with Gaussian-

Lorentzian sum functions after subtraction of an iterated Shirley background. 
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3.4. X-ray diffraction 

X-ray diffraction (XRD) experiments were performed using a X-ray tube and a synchrotron as 

sources of X-ray radiation. Bruker AXS D8 laboratory powder diffractometer equipped with a 

BSI (Baltic Scientific Instrument) Si(Li) solid detector and a Cu Kα X-ray source was applied. 

Synchrotron based XRD experiments were performed at the SUL-X-Beamline at ANKA (KIT, 

Karlsruhe). [65] A Si(111) crystal pair with a fixed beam exit was used as a monochromator. 

The X-ray beam was aligned to an intermediate focus, and then collimated by slits located at a 

distance of the intermediate focus to 500 µm × 500 μm and subsequently focused with a 

Kirkpatrick-Baez mirror pair to about 250 µm (hor.) × 150 μm (vert.) size at the sample 

position. XRD patterns were measured in transmission mode with a CCD detector using 2×2 

binning during 90 seconds of exposure time. The beamline was operated at energy of 17000 eV 

(λ=0.731708 Å). All measurements have been performed under air and room temperature. Data 

analysis was performed using FIT2D program [66] for radial integration of the Debye rings and 

DIFFRAC.EVA V3.1 program for background subtraction and diffraction peaks evaluation. 

Measured spectra were compared with reference XRD patterns from the American Mineralogist 

Crystal Structure (AMCSD) and the Inorganic Crystal Structure (ICSD) databases. 
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3.5. Scanning and transmission electron microscopies 

For imaging purposes two different devices have been used, the scanning and transmission 

electron microscopies (SEM and TEM).  

For SEM a commercial CamScan CS44FE Field Emission SEM (Cambridge, UK) has been 

used. For TEM imaging FEI Tecnai G2 F20 X-TWIN machine has been used operated at 200 

kV in high-resolution transmission electron microscopy (HR-TEM) mode. A sample 

preparation procedure was as following: the U containing magnetite suspension was rinsed by 

MilliQ water and a TEM specimen was prepared by dispersing the rinsed solution on a carbon 

thin film on a Cu grid followed by that the solution was dried up at room temperature with an 

Ar atmosphere.  
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4. U interaction with magnetite 

A number of laboratory studies have been performed to clarify the fate of U(VI) by interaction 

with magnetite. [28, 29, 45, 46] Due to kinetic effects during interaction with Fe(II)/Fe(III) 

species, U is often found as a mixture of its redox states. U has two environmentally relevant 

redox states, U(IV) and U(VI), and an intermediate as well U(V) with poorly understood 

chemical behavior and interaction with the environment. U(V) is often not considered due to 

the lack of reliable detection methods. Recent works aimed to reconsider the significance of 

U(V) for U containing (geo)chemical systems. [16-18]  

Two different U-Fe systems are investigated in the present Section:  

The first part is dedicated to co-precipitation of U(VI) at varying concentrations with magnetite 

nanoparticles. The U redox states and U speciation after a short (10 days) and a long-term 

interaction period (ca. 373 days) are studied. Investigations related to U(VI) removal by 

magnetite nanoparticles in batch static and dynamic systems are also performed. The long-term 

batch sorption study takes place for 175 days is under nearly neutral pH conditions.  
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4.1. U(VI) co-precipitation with magnetite nanoparticles 

There are several studies investigating the potential investigations of uranium into the iron oxy-

(hydr)oxides: ferrihydrite, goethite and hematite partly in presence of Fe(II). [17, 67] No studies 

were specifically dedicated to the co-precipitation of uranium for environmentally relevant 

concentration with one of the most relevant iron oxide phases under reducing condition namely, 

magnetite. The investigations presented here are concentrated on the redox and speciation 

characterization of uranium in the final product formed by co-precipitation of U with magnetite. 

Specifically the U redox states and speciation in magnetite nanoparticles with varying (1000-

10000 ppm) U loadings were investigated by U M4/L3 edges HR-XANES and U L3 edge XAFS 

as well as TEM. SEM, XRD, XPS and thermodynamic modeling were additionally used to 

characterize the magnetite nanoparticles. The main aim is to verify the presence of U(V) in this 

system and to describe its local coordination environment. A long-term study (373 days) was 

performed to elucidate the stability of U(V) incorporated in the structure of magnetite. It is 

demonstrated that the applied U M4 edge HR-XANES method is capable of detection of U(IV), 

U(V) and U(VI) simultaneously present in the same sample at environmentally relevant 

concentrations.  
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4.1.1. Materials and Methods 

4.1.1.1. Preparation of the samples 

To a 50 mL Teflon container inside an argon (Ar) glovebox equipped with pH, Eh electrodes 

(Metrohm) and a dropping funnel, the calculated amounts of aqueous FeCl3, FeCl2 (starting 

pH=2.3) and an aliquot of U(VI) (UO2Cl2, pH=2.5) were added followed by dropwise addition 

of 0.5 M NaOH. The pH of the resulting suspension was adjusted within a range 7.5-8.0. The 

suspension was stirred overnight, pH and Eh values were recorded and pH was adjusted if 

necessary by adding 0.1 M NaOH. After complete precipitation the aliquot of supernatant was 

filtered with a 0.22 µm Millipore filter and investigated by ICP-MS to determine the U and Fe 

concentrations. The U and Fe concentrations were found below the respective detection limit 

(< 0.1 ppb for U) and (< 300 ppb for Fe). Experimental details for U, Fe and salt concentrations 

as well as pH, Eh measurements are given in Table 4.1.1. 

Table  4.1.1. U and Fe concentrations, pH, Eh and Ionic strength (I[NaCl]). Detailed information is 

given in Table 4.1.2. 

Sample [U], ·10-5 M [Fe], M I[NaCl], M pH initial Eh initial, 

mV 

pH final Eh final, 

mV 

Um10 20 0.062 0.192 2.2 740 8.0 -330 

Um6 12 0.062 0.192 2.3 750 7.5 -310 

Um3 6 0.062 0.192 2.4 740 7.7 -210 

Um1 2 0.062 0.192 2.3 760 7.7 -370 

Um1a 2 0.062 0.192 - - - - 

Umh 6 0.062 0.020 7.1 110 7.7 160 
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4.1.1.2. Speciation methods 

Several spectroscopic and microscopic techniques have been used for sample characterization. 

The U M4/L3 edges HR-XANES, U L3 edge XAFS, U 4f and Fe 2p XPS, SEM and TEM as 

well as powder XRD are described in Section 3. The U M4/L3 edges HR-XANES spectra were 

measured in the energy range of 3723 eV to 3735 eV for M4 edge and from 17142 eV to 17242 

eV for L3 edge with step sizes of 0.1 eV for both edges for Sections 4.1 and 4.2. 

Ten days after preparation of the Um1 Um3, Um6 and Um10 samples U M4/L3 edges HR-

XANES spectra were measured at the ID26 Beamline, ESRF, Grenoble. An inert gas (Ar) 

sample holder comprising a double compartment has been designed and used for the 

experiments (Figure 4.1.1). To avoid contact of the samples with air they were transported in a 

gas tight aluminum cylinder filled with Ar and opened very shortly prior to the measurements. 

All samples were prepared in an Ar glove box with O2 level < 1 ppm. After the U M4 edge HR-

XANES measurements the samples were disposed of. Samples aged for 147 days sampled from 

the same synthesis batch (Um1, Um3, Um6 and Um10) were studied with U L3 edge XAFS at 

the INE-Beamline, ANKA, Karlsruhe, using an inert gas cell. [54] The Um1 sample has been 

kept outside of the Ar glovebox in non-hermetically sealed plastic vials for 142 days (Um1a) 

prior to the U M4 edge HR-XANES measurements at the INE-Beamline using a X-ray emission 

spectrometer. [68] In order to minimize the absorption of the low energy photons by the salts 

formed at the surface of the Um1a sample, the magnetite suspension has been very quickly 

washed with MQ-H2O prior to the U M4 edge HR-XANES measurements. The same Um1a 

sample has been kept in the sample holder at ambient conditions for 84 days and was studied 

again with U L3 edge XAFS at the INE-Beamline.  

All XPS and XRD measurements were done for samples sampled from the same batch 310 and 

480 days after their preparation, respectively. Table 4.1.2 summarizes the descriptions of the 

samples and the applied characterization methods. 
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4.1.1.3. EXAFS analysis 

Three U-O, two U-Fe and one U-U single scattering paths (total six) were used to fit the EXAFS 

spectra of the Um10, Um6 and Um3 samples. No U-Fe2 and U-U1 were resolved in the EXAFS 

spectrum of the Um1a sample. A shell-by-shell modeling approach was followed in the EXAFS 

analyses. The shells were modeled using structural parameters from the following databases: 

U-O1, 2.37 Å and U-U, 3.87 Å: UO2 ICSD 168164; U-O2, 2.65 Å: UO2, ICSD 82477; U-O3, 

1.77 Å: UO3·1-2H2O; ICSD 82477; U-Fe1, 2.97 Å and U-Fe2, 3.48 Å; Fe3O4, AMCSD 

0002400. The amplitude reduction factor (S0
2) was set to 0.77 as determined from EXAFS 

analyses of a bulk UO2 reference sample measured at the same experimental conditions. The 

shells were fitted in the following order: U-O1, U-U, U-Fe1, U-O3, U-O1, U-Fe2. For each 

shell, initially R values were allowed to vary, while N values were fixed; N and R were 

consecutively varied until the best fit was obtained; this procedure was repeated for each shell. 

The Debye-Waller factors (DW) and the energy shifts of the ionization potential (ΔE0) were 

always varied.  The amount of variables were kept approximately half or less the number of 

independent data points during the fitting. No U-U1 and U-Fe1 shells were used to model the 

EXAFS spectrum of the Um1a sample. For all EXAFS fits, the general requirement was to 

obtain a goodness of fit parameter (r) of about 0.01, i.e. 1% difference between data and model 

(Table 4.1.3). The ΔE0 parameters found for all spectra were between 5.0 and 7.3 and 

correspond to the values found for similar studies. [29, 30, 67] The DW for U-Fe1 are 2-4 times 

higher than those obtained for U-O and U-U shells, due to the structural interference introduced 

by widely varying U-Fe distances. [17, 32, 69] 
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Figure 4.1.1. Design of the sample holder used for the U M4 edge HR-XANES 

experiments at ESRF. 
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Table 4.1.2. Descriptions of the samples and lists of the applied characterization 

techniques.  

Sample ID Sample description Technique /  days after 

preparation 

Um10 Suspension: 10000 ppm U, 

Magnetite - 4.8 g/L, pH=8.0 

U M4 edge HR-XANES / 10 

U L3 edge HR-XANES / 10  

SEM / 70 

U L3 edge EXAFS / 147 

Fe 2p XPS / 310 

XRD / 10  

XRD / 480 

Um6 Suspension: 6000 ppm U, 

Magnetite - 4.8 g/L, pH=7.5 

U M4 edge HR-XANES / 10 

U L3 edge HR-XANES / 10  

U L3 edge EXAFS / 147 

Fe 2p XPS / 10 

Fe 2p XPS / 310 

XRD / 480 

Um3 Suspension: 3000 ppm U, 

Magnetite - 4.8 g/L, pH=7.7 

U M4 edge HR-XANES / 10 

U L3 edge HR-XANES / 10  

U L3 edge EXAFS / 147 

Fe 2p XPS / 310 

XRD / 480 

Um1 

 

 

Suspension: 1000 ppm U, 

Magnetite - 4.8 g/L, pH=7.7 

U M4 edge HR-XANES / 10 

U L3 edge HR-XANES / 10  
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4.1.2. Results and Discussion 

4.1.2.1. Characterization of magnetite nanoparticles  

The formation of the magnetite nanoparticles can be described with the following reaction      

[70-72]: 

Fe2+ + 2Fe3+ + 8OH- → Fe3O4↓ + 4H2O     [~ 1 wt % NaCl]   (1) 

The formation of magnetite undergoes several recrystallization steps and is schematically 

depicted in Figure 4.1.2. Several possible interaction mechanisms of U with iron oxide phases 

are also schematically shown. 

 

 

 

Figure 4.1.2.  Schematic representation of the formation of magnetite through continuous 

recrystallization of Fe oxy-(hydr)oxide species and possible U interaction mechanisms with these 

species. [2, 73] 
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The Fe Pourbaix diagram depicted in Figure 4.1.3 

confirms that the samples containing 1000 (Um1) 

and 3000 (Um3) are inside the stability field of 

magnetite; the samples containing 6000 (Um6) 

and 10000 (Um10) ppm U are located at the 

magnetite/goethite border. Several Fe(III) oxy-

(hydr)oxides phases like for example 

Fe(OH)3(am), FeO(OH)(cr) and Fe2O3(cr) [73] 

with different degrees of crystallinity and/or 

crystal structures are reported in the literature as 

relevant products for reaction (1).  

The use of (FeO(OH)(cr) in the thermodynamic 

modelling is favoured as it is one of the main 

intermediate phases forming during the magnetite 

nanoparticles’ formation. [17] SEM image 

(Figure 4.1.4) and XRD patterns (Figure 4.1.5) 

reveal that highly crystalline magnetite 

nanoparticles with octahedral shape and 10-30 

nm size are formed. No detectable FeO(OH)(cr) 

or any other Fe containing crystalline phases are 

found. 
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Figure 4.1.3. Fe Pourbaix diagram for Um1, 

Um3, Um6 and Um10. Symbols correspond 

to experimental pH and Eh measurements for 

Um1 - Um10 samples with 1000  [U]tot 

[ppm]  10000. Calculations performed with 

[Fe]tot = 0.062 M and I[NaCl] = 0.192 M 

(Table 4.1.1). 

 

      

Figure 4.1.4. SEM image of Um10             

(100 nm scale). An octahedrally shaped 

magnetite particle is circled. 
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4.1.2.2. Redox state of Fe 

Fe 2p XPS spectra reveal a slight 

decrease of Fe(II) indicated by the 

reduced intensity of the Fe(II) 2p3/2 

peak for 310 days  compared to the 

spectrum of a 10 days aged Um6 

sample (Figure 4.1.6 b). The Fe(II) 

content is slightly reduced in all Um1-

Um10 samples aged for 310 days to 

Fe(II)/FeTOT=28±3% compared to 

stoichiometric Fe2O3 (Fe(II)/FeTOT= 

33±3%). The differences between the 

samples are within the experimental 

error.  The analysis of the XPS spectra 

were performed as described in Huber 

et al. [30] 

An additional approach for 

quantification of Fe(II) is the analyses 

of the pre-edge region of Fe K edge 

HR-XANES spectra.  This method 

was used to quantify variations of 

Fe(II)/Fe(III) within several wt % in 

different Fe compounds and minerals. 

[74].  
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Figure 4.1.5.  XRD patterns for the 10 days aged Um10 

sample (top; laboratory based measurements at INE) and 

for the 480 days aged Um10, Um6, Um3, Um1 as well as 

Um1a samples (bottom; synchrotron based measurements 

at the SUL-Beamline, Section 3.4). Incident X-ray beams 

with 8.05 keV and 17.00 keV energies are used for the 

laboratory and synchrotron experiments, respectively. 

This leads to a shift of the 2 Theta angle.  Reference 

spectra are taken from ICSD. 



4.1. U(VI) co-precipitation with magnetite nanoparticles 

35 
 

The energy distance between the main peak and the satellite peak in the emission Fe Kβ spectra 

is smaller for Fe(II) compared to Fe(III) and has been also extensively exploited for Fe 

oxidation state analyses. [48, 74] In Figure 4.1.7 the Fe K edge HR-XANES (a) and Fe Kβ 

emission spectra (b) of Fe in U co-precipitated with magnetite (Um6) are compared with spectra 

of magnetite (Fe(II)/FeTOT = 30±3%) prepared without U, and reference spectra of materials 

containing Fe(II) (FeO) and Fe(III) (FeO(OH)). The FeO sample was partially oxidized prior 

to the experiments as indicated by the lower intensity of peak A compared to peak B in the pre-

edge region of the XANES spectrum (Figure 4.1.7 a). The spectra for the Um1-Um10 samples 

are very similar therefore the Um6 is used here as a respective example. There is only a minor 

intensity difference for the pre-edge XANES spectrum and no differences for the emission lines 

of the Um6 sample compared to the spectrum of the Fe3O4 reference. Clearly, the sensitivity of 

the two methods is not sufficiently high to detect small variations in Fe redox states. The 

detection limit can be dramatically increased by using Fe Kβ1,3 emission satellite lines as was 

previously demonstrated. [48] 
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Figure 4.1.6. Fe 2p3/2 XPS spectra 

for Um10-Um1 samples aged for 

210 days (a) and for Um6 aged for 

10 and 310 days (b). 

Figure 4.1.7. Fe K edge HR-XANES (a) and Fe Kβ1,3 X-ray 

emission (b) spectra of  FeO, FeO(OH), Fe3O4 and Um6. The 

pre-edge regions are enlarged in the insets. 
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4.1.2.3. Redox state of U  

The redox states of U in the Um1, Um3, Um6 and Um10 samples were characterized 10 days 

after the preparation of the samples by the U M4 edge HR-XANES technique. Figure 4.1.8 

depicts the U M4,5 edge HR-XANES spectra of the Um1-Um10 samples and U4O9 as well as 

Umh with 3000 ppm U adsorbed. The latter samples are used as reference compounds. 
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Figure 4.1.8. U M4 edge HR-XANES spectra of the U4O9, Um1, Um3, Um6, Um10 and Umh 

samples shifted along the y-axis (a) and of the Um1, Um3, Um6, Um10 and Umh samples plotted 

without a shift along the y-axis (b).  

 

The absorption spectra typically shift to higher energies by increasing the U redox state due to 

the reduced screening of the 3d3/2 core-hole by the decreased electronic charge density on the 

U atoms. Smaller energy shifts of about 0.5 eV can be caused by variations of the 

electronegativity of the bonding partner, changes in symmetry, short and long range atomic 

order etc. for the same U redox state as found in U L3 edge XANES studies. [75, 76]  
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For the U M4 edge HR-XANES method discussed here, the energy shift varies within ~0.2 eV 

as found from different U(V) containing organic and inorganic compounds. It was demonstrated 

that U4O9 contains equal amounts of U(IV) and U(V) described by the two peaks separated 

apart by ~1 eV. These spectral features are named A and B in the U M4 edge HR-XANES 

spectrum of U4O9 (Figure 4.1.8 a). Maghemite has the same inverse spinel crystal structure as 

magnetite with the specificity that Fe(II) is oxidized to Fe(III). The main absorption peak C of 

the Umh spectrum is shifted by ~0.4 eV to higher energies as compared to peak B, which is 

characteristic for U(V). Hence U(VI) is the main redox state of U in the Umh sample.  

Spectral features D and E are 

characteristic for U(VI) and U(V) 

forming short trans-dioxo bonds 

with typical lengths of < 1.77 Å and 

< 1.91 Å (uranyl (U-yl), 

respectively. [37, 77, 78] Peak E 

describes transitions of 3d3/2 

electrons to σ* orbital containing a 

mixture of U with O valence 

orbitals. The π* orbitals probed by 

peak D contain typically also valence orbitals of equatorial ligands. [37]  

The spectrum obtained for Um1 containing 1000 ppm U demonstrates the promising 

capabilities of the U M4,5 edge HR-XANES technique. Even at low An contents of samples in 

the trace concentration range, being relevant for environmental samples and studies in the 

context of nuclear waste disposal, speciation information can be obtained. [79, 80].  
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Figure 4.1.9. General schematic overview of the methods’ 

sensitivity for speciation of An. M4,5 edge XANES has a 

great potential for An speciation at much lower 

concentrations (Readopted from W. Runde, Los Alamos 

Science, 2000) 
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A schematic overview of the sensitivity of different methods for An speciation is shown in 

Figure 4.1.9. The energies of the two main absorption resonances of the Um1 spectrum 

correspond to the energy positions of the main peaks of the U4O9 reference spectrum (Figure 

4.1.8 a). [35] Based on this strong experimental evidence we conclude that  after 10 days 

interaction time U(V) is formed in Um1 coexisting with minor amount of U(IV) visible as a 

shoulder on the low energy side of the main absorption peak. Features D and E are absent in 

the Um1 spectrum. This confirms that U(VI) is not present in the Um1 sample and  that U(V) 

does not form U-yl type of bonding.  

It is evident that by going from the Um1 to the Um10 spectrum the intensity of feature A 

decreases, the energy position of feature B shifts to higher energies and features D and E gain 

intensities. These spectral changes strongly suggest that the relative contributions of U(IV) 

decreases, whereas the U(VI) content rises continuously going from 1000 ppm U (Um1) to 

10000 ppm U  (Um10) in the samples (Figures 4.1.8 b). The increase of U(VI) is attributed to 

the fact that the exceed of its solubility limit for U(VI) solid phases are exceeded of schoepite 

(~4·10-6 M) resulting in precipitation [81, 82] along with the formation of U(V) and U(IV) 

species.  

The U M4 edge HR-XANES technique is clearly capable of detecting the three different redox 

states, i.e. U(IV), U(V) and U(VI), being present simultaneously in the same sample. The 

measured spectra are free of artifacts induced by sample preparation since no any complex 

preparation is required for these and most sample systems in general. The quantitative analyses 

are currently under development. One of the difficulties is the challenging estimation of the 

absorption cross sections for the different U oxidation states. 
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4.1.2.4. Analysis of non-stoichiometric UO2  

The atomic environments and redox states of U in 147 days aged Um1-Um10 samples are 

probed by U L3 edge XANES and EXAFS techniques.  

(Figures 4.1.10 a and 4.1.11 a; Table 4.1.3).  
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Figure 4.1.10. U L3 edge XANES spectra of po-mag42 [30], Um1a, Um1, Um3, Um6, Um10 

(aged for 147 days), Um1a  (aged for 373 days including 226 days under ambient conditions), 

Umh (aged for 330 days), and UO2 (a): U L3 edge HR-XANES spectra of Um1, Um3, Um6, 

Um10 (aged 10 days), Umh (aged 55 days) and UO2 (b).  
 

The U L3 edge XANES spectra of the Um1-Um10 samples clearly shift to lower energies on 

going from the Um1 to the Um10 compared to the U(VI) reference spectrum of the Umh sample 

revealing rising U(IV) content in the samples (Figure 4.1.10 a; discussion in the next section). 

U(IV) is the dominant specie in the Um10 sample. The FT-EXAFS spectra and their best fits 

for the Um1, Um3, Um6 and Um10 samples are depicted in Figure 4.1.11 (Figures AI.1-4).  
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The first coordination sphere of U is best modeled with three U-O distances (R). The obtained 

U-O1 R=1.69-1.73 Å is a typically short bond length for U(VI). It has been demonstrated that 

such peaks do not have any structural significance since they are caused by multi-electronic 

excitations appearing at ~10.5 Ầ-1 in the EXAFS spectrum. [34, 83] In contrast, Conradson et 

al. proposed that these short U-O distances are characteristic for U(VI) in a series of UO2+x 

compounds. [84] Herein the short U-O1 distance is considered in the EXAFS model without 

attempting to its interpretation; the structural parameters obtained from the fit do not change 

substantially with and without modeling this peak but the goodness of fit improves.  
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Figure 4.1.11. Magnitude of FT-EXAFS data (colored rhombs) and best fits for the Um10, Um6, 

Um3, Um1 (a) and Um1a, Um1 (b) samples.  
 

The main U-O2 distance decreases continuously from 2.29(1) Å to 2.17(1) Å within the Um10-

Um1 series, whereas U-O3 remains within the region R=2.38(2)-2.44(2) Å (Table 5.1.3 and 

Figure AI.4).  
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The coordination numbers (N) vary N=0.2(1)-0.4(1), N=2.7(3)-3.0(3) and N=1.7(1)-2.4(1) for 

O1, O2 and O3, respectively (Table 4.1.3 and Figure AI.4). It was reported that for increasing 

x in UO2+x, the first O coordination sphere of U splits to two dominant peaks similar to the 

results presented here. [84]   

Table 4.1.3.  EXAFS fit results for Um10, Um6, Um3, Um1 and Um1a samples (SP denotes 

scattering path, N – coordination number, R – bond distance, σ2 - Debye-Waller factor, ΔE0 – 

energy shift, S0
2 – amplitude reduction factor and r - goodness of fit parameter. Errors are given in 

the parentheses as the last decimal in the fit value. t - parameters were fixed after  obtaining the 

best fit). 

Sample/ 

Parameter 

SP N R, [Å] σ2[·10-3Å2] ΔE0, [eV] 

 

S0
2 r, [chi2] 

Um10 U-O1 0.4 (2)t 1.73 (3) 6 (1) 7.3 (3) 0.77 0.004 

 U-O2 2.9 (2) 2.29 (1) 6 (1)    

 U-O3 2.1 (2) 2.44 (2) 6 (1)    

 U-Fe1 1.2 (4) 3.14 (2) 13 (4)    

 U-Fe2 0.5 (2)t 3.45 (2) 4 (3)    

 U-U1 5.2 (8) 3.84 (1) 6 (1)    

Um6 U-O1 0.4 (1)t 1.69 (2) 6 (1) 7.0 (4) 0.77 0.004 

 U-O2 2.7 (3) 2.25 (1) 6 (1)    

 U-O3 1.7 (1) 2.38 (2) 6 (1)    

 U-Fe1 2.7 (5) 3.13 (2) 6 (2)    

 U-Fe2 0.6 (3)t 3.50 (2) 5 (3)    

 U-U1 3.6 (6) 3.83 (1) 2 (1)    

Um3 U-O1 0.3 (1) 1.70 (1) 6 (1) 7.2 (3) 0.77 0.004 

 U-O2 2.8 (3) 2.22 (1) 6 (1)    

 U-O3 2.4 (1) 2.43 (2) 6 (1)    

 U-Fe1 3.4 (6) 3.13 (1) 13 (1)    

 U-Fe2 0.6 (3)t 3.34 (2) 6 (4)    

 U-U1 3.2 (7) 3.84 (1) 2 (1)    

Um1 U-O1 0.2 (1)t 1.73 (3) 6 (1) 6.8 (9) 0.77 0.008 

 U-O2 3.0 (3) 2.17 (1) 6 (1)    

 U-O3 1.7 (1) 2.38 (2) 6 (1)    

 U-Fe1 4.9 (8) 3.18 (2) 18 (2)    

 U-Fe2 0.6 (3)t 3.55 (3) 1 (1)t    

 U-U1 2.9 (7) 3.85 (1) 2 (1)    

Um1a U-O1 0.7 (2) 1.79 (1) 4 (1) 5.0 (9) 0.77 0.008 

 U-O2 3.3 (3) 2.13 (1) 4 (1)    

 U-O3 0.8 (1)t 2.40 (1) 4 (1)    

 U-Fe1 5.0 (6) 3.19 (1) 17 (2)    
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The observed trend for these two main U-O distances is reverse compared to our EXAFS results 

since R(U-O) grows as a function of the increasing non-stoichiometric oxygen in UO2 (R(U-

O2)=2.17-2.29 Å, R(U-O3)=2.38-2.44 Å). [84] This can be explained by the presence of a 

second U(V) site becomes significant as a function of the decreasing U concentration in the 

discussed samples in addition to the potential U(V)/U(VI) constituent of the UO2+x particles. 

This U(V) site has major participation in the Um1 sample. The U-O2 distance R=2.17(1) Å for 

the Um1 sample is within the bond length region (2.10-2.20 Å) most typical for U(V) 

compounds reported in the literature. [16]  In contrary, the UO2+x species dominates in the 

Um10 sample and its fraction decreases when going from the Um10 to the Um1 sample. The 

interatomic distances in the Um10 sample are closest to the structural parameters obtained for 

the UO2.20 sample studied by Conradson et al. [84]; this is the sample with the highest fraction 

of excess oxygen (x=0.2). Based on XANES analyses, the authors claim U(IV) and U(VI) as 

main contributions in this sample. However, they do not consider that the U L3 edge XANES 

spectrum of U(V) uranate (U-ate) can be shifted to higher energies compared to the UO2 WL 

position. [75, 84]. It has been also shown with the help of U M4 edge HR-XANES that U4O9 

(x=0.25) and U3O8 (x= 0.67) contain U(IV), U(V) and U(V) and U(VI), respectively. The U L3 

edge XANES data differs from the spectra presented by Conradson et al. since there is about 4 

eV energy shift of the WLs to higher energies of the spectra compared to the UO2 reference 

(Figure 4.1.10 a). This shift might be caused by the presence of U(V)/U(VI) in UO2+x and/or 

due to the U(V) specie incorporated in octahedral sites in magnetite (see the Results and 

Discussions below). The presence of UO2+x in the Um1-Um10 samples is also supported by the 

intense peak at about 3.84 Å characteristic for the scattering of the photoelectron from U atoms 

in the second coordination sphere of U. The U coordination numbers vary between about 

N=2.9(7)-3.6(6) (Um1, Um3 and Um 6) and N=5.2(8) (Um10).  
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All N are strongly reduced compared to bulk UO2 (R(U-O2)=2.36 Å and N=8; R(U-U1)=3.88 

and N=12)  likely due to structural disorder caused by the large contribution of U surface atoms 

in the small nanoparticles and increase of non-stoichiometry of UO2. [84, 85] 

TEM analyses clearly detect crystalline nanoparticles with size of about 4-5 nm possibly grown 

on the surface of the magnetite particles (Figure 4.1.12) with lattice parameters very close to 

stoichiometric UO2. Due to the relatively large error bars for the obtained lattice parameters (a 

= 0.271±0.004 nm) it is not possible to distinguish between UO2 and UO2+x hence we conclude 

that they are both likely.  

U(VI) species detected by the U M4 

edge HR-XANES technique after 

10 days interaction time of U with 

the magnetite nanoparticles are 

clearly reduced predominantly to 

U(IV) after 147 days. No significant 

redox changes are found for Um1 

(see also the discussion below). It 

can be concluded that the EXAFS 

and the HR-XANES results confirm major U(V) and U(IV) contributions in the Um1 sample 

10 and 147 days after the preparation of this sample. The U L3 edge XANES, EXAFS and TEM 

results suggest presence of UO2+x nanoparticles with 4-5 nm size and U(V) incorporated into 

the structure of magnetite in the Um1-Um10 samples. No indications for U(VI)/U(V)-yl are 

found (Figure 4.1.11 a,b). 

 

 

 

 

 

Figure 4.1.12. High-resolution TEM image of Um1 (aged 

330 days). 
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4.1.2.5. U(V) incorporated in Fe octahedral sites of magnetite 

The U L3 edge HR-XANES spectra measured for the 10 days aged samples Um1-Um10 and 

spectra of the UO2 and Umh reference compounds are depicted in Figure 4.1.10 b. Feature C 

clearly visible in the Umh spectrum is characteristic for U(VI)-yl. It has smeared-out intensity 

in the spectra of the Um3-Um10 samples and it is missing in the spectrum of the Um1 sample. 

This result clearly demonstrates that U-yl type of bonding is not significantly contributing in 

these materials as confirmed also by the U M4 edge HR-XANES analyses of the Um1-Um10 

samples (Section 4.1.2.3). The WLs of the spectra of the Um1-Um10 samples are shifted to 

higher energies compared to the UO2 spectrum and coincide with the U(VI) reference 

compound (Umh). In addition, feature B’ increases in intensity from the Um10 to the Um1 

spectrum and the WL becomes broader. The spectrum of the Um1 sample has well pronounced 

A and B’ shoulders previously described as characteristic for U(V). [75] These experimental 

evidence strongly suggest an increasing contribution of U(V) in an octahedral environment, 

which dominates in the Um1 sample. 

Existence of U(V) in octahedral environment is also supported by the U L3 edge XANES 

spectra measured for samples Um1-Um10 aged 147 days and Um1a aged 373 days. The spectra 

of the Um1-Um10 samples exhibit a trend and clearly shift to higher energies compared to UO2. 

The WL becomes broader and the post-edge absorption resonance at about 17191 eV transforms 

from a single asymmetric to symmetric double peak (Figure 4.1.10 a). For comparison, the 

spectrum published by Huber et al. is also plotted where a presence of U incorporated in 

octahedral environment was reported. [30] In contrast, the spectrum of the Um1a sample shifts 

to higher energies compared to the Umh reference, the A and B` shoulders and the shift of the 

post-edge resonance to higher energies further indicate that U is likely incorporated in 

octahedral sites in the magnetite.  
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The shift to higher energies is about 2 eV compared to the spectrum of U(VI)-yl, which is more 

characteristic for U(V) in octahedral/distorted octahedral and generally U-ate type of bonding. 

[75, 86] U(VI) with such local atomic environments would be positioned at least 3 eV compared 

to the WL maximum of U(VI)-yl. [87] This shift can be also partially caused by the minor 

U(VI)-yl, found to have minor contribution in this sample (Figures 4.1.10 a). 

The best fits to the FT-EXAFS spectra also reveal coordination of U to Fe atoms, which is most 

prominent for the Um1 sample. 

Two U-Fe interatomic distances are resolved: 

U-Fe1, R=3.14(2), N=1.2(4) (Um10) –                 

R=3.18(2), N=4.9 (8) (Um1) and insignificant 

contribution of a U-Fe2 shell with coordination 

numbers of about 0.5 (Table 4.1.3). Somewhat 

longer R (+ 0.04 Å) and N (fixed at 6) for U-Fe 

have been previously reported for U 

incorporated in Fe octahedral sites. [18] The 

octahedral and tetrahedral Fe sites of magnetite 

have R=2.97 Å, N=6 and R=3.48 Å, N=4, 

respectively. Based on the obtained results 

from experiments and modeling we propose 

that the second U(V) species, different from the 

U(V) constituent of the UO2+x particles, are 

incorporated in the magnetite structure in octahedral Fe sites. [18] The EXAFS and HR-XANES 

analyses of the spectra of the Um1a sample strongly support this hypothesis.  
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Figure 4.1.13. U M4 edge HR-XANES spectra 

of Um1, Um1a   after 147 days (measured at the 

INE-Beamline) and Umh after 373 days. 
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The FT-EXAFS spectra of the Um1 and Um1a samples are compared in Figure 4.1.11 b.  

It is apparent that the peaks characteristic for the U coordination to O (R(U-O1)=2.13(1) Å, 

N=3.3(3); R(U-O2)=2.40(1) Å, N=0.8(1) and Fe (R(U-Fe1)=3.19(1) Ầ, N=5.0(6)) are 

preserved, whereas the peak describing the coordination to U is absent in the FT-EXAFS Um1a 

spectrum. The U(IV) is likely to be oxidized to U(VI)-yl as suggested by the U-O1 bonding 

distance R=1.79(1) Å, N=0.8(1).  

The disappearance of the peak characteristic for U at about 3.84 Å can be explained by increased 

disorder during the partial oxidation of U leading to distractive interference of the scattered 

photoelectron waves. It is remarkable that R for the main U-O2 distance decreases to 2.13 Å 

for the Um1a sample compared to R=2.17 Å for the Um1 sample. This result implies further 

stabilization of U(V) within the magnetite structure with U-O distance reported for U(V) in 

magnetite. [16] The HR-XANES supports this EXAFS result. The shoulder characteristic for 

U(IV) is not visible, whereas features D and E typical for U(VI)-yl appears in the U M4 edge 

HR-XANES spectrum of Um1a (Figure 4.1.13). The main peak maximum has energy position 

very similar to Um1, which strongly suggests that the main redox state of U is U(V) (Figure 

4.1.8). The stability of U(V) upon exposure to air (Um1a sample) can be explained by its 

incorporation into the octahedral sites of magnetite. It is possible that the surface of the 

magnetite is oxidized while the bulk of the material remains unchanged. This hypothesis is 

corroborated by the XRD results since the XRD patterns of the Um1 and the Um1a samples are 

very similar and typical for the structure of magnetite (Figure 4.1.5). The small contribution of 

the possible surface species is not detected by XRD.  
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4.1.3. Conclusion 

This study demonstrates for the first time that the HR-XANES technique is capable for 

detection of three different oxidation states of U: U(IV), U(V) and U(VI) simultaneously 

present in the same sample. It is revealed that U with concentrations above the solubility limit 

(~3·10-6 M) precipitates in U(VI) phases found for 10 days aged Um3-Um10 samples. These 

U(VI) phases transform to UO2+x clusters with ~5 nm size grown on the magnetite nanoparticles 

as revealed for the 10 and the 147 days aged samples. These are strong evidences that the 

recrystallization process has slow kinetics and needs more than 10 days to complete. There is 

no clear U-U coordination visible in low quality FT-EXAFS data (not shown here) for the 10 

days aged samples. Therefore it is likely that the initially found U(IV) is either not a component 

of UO2+x particles or respective solid phases are strongly disordered.  In addition, it is revealed 

that a U(V) specie is stabilized in the Um1-Um10 samples and represents a main constituent of 

the Um1 sample during the probed time period from 10 to 373 days. It is found that the U(V) 

is incorporated in the Fe octahedral sites of magnetite for 147 and 373 days aged samples. Eh 

measurements suggest that the U should be reduced to U(IV) state. Apparently, the solid phase 

structures seem to stabilize incorporated U(V) species. The U(V) remains stable even upon 

oxidation of the magnetite for 226 days. One possible hypothesis is that oxidized surface layers 

of the magnetite particles protect the U(V) species incorporated in the magnetite structure from 

oxidation. Variations in the solid surface Fe speciation as a function of time and U concentration 

will be studied in future investigations combining SEM, TEM and spectroscopic techniques.  

The presented results are a breakthrough in a long and intensive discussion on the reduction 

mechanisms of U(VI) in contact with magnetite. The proposed U M4 edge HR-XANES 

technique demonstrates its strong capability for redox studies of An.



4.2. Influence of Fe(II) on the redox state of U sorbed on magnetite 

48 
 

4.2. Influence of Fe(II) on the redox state of U sorbed on magnetite  

This section discusses the influence of aqueous Fe(II) on the U redox states of U sorbed for 175 

days on magnetite nanoparticles. Results obtained from U L3/M4 edges HR-XANES and U 4f, 

Fe 2p XPS techniques are presented. The sensitivities of the three methods are compared. The 

concentration of [U]=3·10-5 M in the pH range of 7.0-7.5 is higher than the solubility limit of 

U(VI) (i.e. schoepite [81]) and is higher than those usually taken for geochemical studies        

(10-6-10-11 M), [88] but well above the detection limits of the XPS and HR-XANES techniques. 

It can be argued whether the prepared samples are relevant for naturally occurring conditions. 

Results from spectroscopic investigations of such samples can nevertheless help to verify 

thermodynamic speciation calculations, which in turn might be transferred to U speciation 

predictions for concentrations ranges relevant to environmental conditions. The presented 

experiments can also serve as proof of principle experiments needed to establish reliable 

experimental protocols for future investigations including environmentally relevant U 

concentrations. [33]  
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4.2.1. Materials and Methods 

 

4.2.1.1. Preparation and analyses of the magnetite nanoparticles 

The magnetite nanoparticles were prepared by reaction of FeSO4 with KOH and KNO3 [89] 

under Ar atmosphere in a glovebox. Freshly prepared magnetite suspension was dialyzed 

against deionized water until the electric conductivity was comparable to that in deionized water 

(4 µS/cm). The magnetite concentration in the prepared suspension was 50.5 g/L. The magnetite 

suspension was stored in Nalgene bottles in a glovebox under Ar atmosphere prior the batch 

experiments. Maghemite was prepared by heating the freeze-dried magnetite suspension in a 

dry box at 250 °C for 2 h under ambient conditions. 

XRD and SEM have been performed as discussed in Sections 3.4 and 3.5.  

The specific surface area of the nanoparticulate magnetite was determined by Brunauer–

Emmett-Teller (BET) N2-adsorption (AUTOSORB-1, Quantachrome Corporation). The 

freeze-dried magnetite suspension was heated under anoxic conditions to 80 °C and degassed 

for 60 min. The determination of the surface area was done via the multiple-point method at 

different pressures and a subsequent fit with BET isotherm. 
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4.2.1.2. U(VI) batch sorption on magnetite/maghemite 

The batch sorption experiments were conducted in a glove box under Ar atmosphere (< 2 ppm 

O2) at room temperature (25 °C). Magnetite suspension (2 g/L) was prepared in 125 mL 

Nalgene vial by diluting magnetite stock suspension (50.5 g/L) with Ar purged MQ water (18 

µS/cm). A background electrolyte NaCl concentration was adjusted to 0.02 M. U(VI) as uranyl 

chloride (pH~2.5) was added by small portions to the magnetite suspension to avoid individual 

U(VI) phases precipitation. The final U concentration ([U]) was 3∙10-5 M.  (U(VI) solubility 

limit is ~4∙10-6 M [81])  The pH value of a resulting suspension was immediately adjusted to 

approximately neutral pH variations were continuously recorded during the experiment with a 

digital pH-meter equipped with Thermo-Scientific pH electrode. The maghemite batch 

experiment was performed in the same way as that of magnetite.  

Eh was recorded for each pH measurement by a Pt combined Metrohm electrode. Before pH-

Eh measurements, the bottle with the magnetite/maghemite suspension was shaken and 

measurements were performed after sedimentation of the nanoparticles. Eh measurements were 

recorded only after 10 minutes while gently stirring the suspension due to the drift of Eh in first 

minutes of the measurement.  

After 175 days of interaction time a calculated amount of aqueous Fe(II) (0.36 mg) was added 

to a 5 ml portion of batch suspension to recrystallize magnetite closer to its stoichiometric 

Fe(II)/FeTOT ratio of 0.33. The amount of Fe(II) was estimated by analyzing XPS spectra 

measured for as prepared and reacted magnetite. For spectroscopic analysis, the solid phase was 

separated from the supernatant by using a magnet inside the glovebox and prepared for XPS 

and HR-XANES measurements.  
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4.2.1.3. Spectroscopic measurements 

The Um175 and Um175f samples were studied by XPS analysis of the U 4f and Fe 2p electron 

binding energies as well as by U M4/L3 edges HR-XANES spectroscopic techniques as 

described in Sections 3.2 and 3.3. Table 4.2.1 summarizes the samples investigated in the 

present study.  
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4.2.2. Results and Discussion 

Well-shaped magnetite crystals with average particle size of 100 nm are formed with a minor 

contribution of goethite precipitating as needle-like crystals on the surface of the magnetite 

nanoparticles (Figure 4.2.1). Powder XRD analyses confirm the formation of the magnetite and 

maghemite particles used for the batch sorption experiments (Figure 4.2.2).  

U is quantitatively removed from solution by 

magnetite after 29 days of interaction time. There 

are two most likely mechanisms for U(VI) 

removal including its sorption on the surface of 

the magnetite and precipitation as a solid mineral 

phase. U(VI) can be reduced to form mixed 

U(IV)/U(V) or U(VI)/U(V) oxy-(hydr)oxide 

species. [90] It has been shown that U removal 

strongly depends on pH, initial U concentration, 

U/Fe3O4 mass ratio, Fe(II)/Fe(III) ratio and Eh value. [30] In this work the pH was kept 

constantly at 7±0.5 to prevent removal of Fe(II) from the magnetite structure. According to the 

Pourbaix diagram (Figure 4.2.3) for [U]=3∙10-5 M and 0.01 M NaCl as a background 

electrolyte, U is expected to precipitate in the form of UO3·1-2H2O. One has to note, that 

magnetite is under those conditions not stable and might convert at the surface to maghemite. 

Only in the experiment where Fe(II) is added, pe value is in a range where magnetite can be 

stabilized. In Table 4.2.1 descriptions of the samples and the spectroscopic techniques used are 

summarized. 

 

 

 
 
Figure 4.2.1. SEM image of magnetite.  
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Figure 4.2.2. XRD patterns of magnetite (a) and 

maghemite (b) nanoparticles. The most intensive 

peak has a shift characteristic for the structure of 

maghemite. ICSD 26410 and AMS (0007898) 

XRD patterns are used as references. 

Figure 4.2.3. U Pourbaix diagram. The symbols 

correspond to experimental pH and Eh 

measurements for the Um175f, Um175 and Umh 

samples ([U]tot = 3·10-5 M and I[NaCl] = 0.01 M). 

 

 

 
Table 4.2.1. Name of samples and spectra, contact time of U with magnetite, amount of U removed by 

magnetite and maghemite for suspension containing [U]=3∙10-5 M and [NaCl]=0.01 M, pH, Eh values 

and applied spectroscopy techniques. 

 

Short 

name 

Contact time, 

day 

U removed, 

% 

pH Eh, mV   Technique 

Um175 175 99.5 7.5 50 U M4/L3 edges HR-XANES, 

U 4f, Fe 2p XPS 

Um175f 175 + 2 days 

with Fe(II) 

99.5 7.1 -150 U M4/L3 edges HR-XANES,  

U 4f, Fe 2p XPS 

Umh 55 99 7.7 160 U M4/L3 edges HR-XANES 
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4.2.2.1. U 4f and Fe 2p XPS  

The O 1s binding energy at 530.2 eV was used to calibrate the energy positions of the U 4f 

peaks measured for the same sample. The U 4f5/2 and 4f7/2 XPS spectra for the Um175 and 

Um175f samples are depicted in Figure 4.2.4 a,b. Both spectra exhibit double peaks. The fitting 

of the spectra reveal that the two peaks part of the 4f7/2 spectrum have 380.5 eV and 381.8 eV 

energy positions characteristic for U(V) and U(VI), respectively. This result agrees with 

previous reports. [16] For the Um175f spectrum the intensities of the U(V) main peaks and the 

satellite structures clearly have risen after addition of Fe(II) to the Um175 sample, whereas the 

U(VI) peaks have reduced intensities (Figure 4.2.4 a,b). The best fit to the spectra reveal ~45% 

and ~55% U(V) for the Um175 and the Um175f samples, respectively. No main or satellite 

peaks characteristic for U(IV) are visible in any of the spectra, which is also not to be expected 

at the relatively high pe values. The amount of structural Fe(II) in the reacted magnetite is 

decreasing as can it be seen from the decreasing intensity of the Fe(II) peak at ~708.0 eV (Figure 

4.2.4 c). At the same time, the intensity of the Fe(II) satellite peak  (~716.5 eV) is increasing in 

the Um175f sample. This might indicate that the added Fe(II)aq preferably adsorbs on the 

surface of magnetite without significant structural rearrangement at nearly neutral pH values or 

the lower pe value of the suspension stabilizes the magnetite. [91] A recent study has shown 

that Fe(II)aq ions only exchange with structural Fe(II) in magnetite maintaining the 

Fe(II)/Fe(III) ratio close to close to the stoichiometric. [92] However, it is also shown that 

Fe(II)aq added to non-stoichiometric magnetite leads to the conversion to the compound with 

stoichiometric composition. [46] Recrystallization processes induced by addition of Fe(II) can, 

to some extent, promote the U(V) incorporation into octahedral magnetite sites as has been 

shown recently for ferrihydrite with sorbed U(VI). [17] 
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Figure 4.2.4. U 4f XPS spectrum of Um175f (violet) and its best fit (black) (a). Spectral features 

characteristic for U(V) and U(VI) are shown with green and red lines, respectively. U 4f XPS spectra of 

Um175f and Um175 (b). Fe 2p XPS spectra of stoichiometric Fe3O4, Um175f, Um175 and γ-Fe2O3 (c). 
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4.2.2.2. U L3 edge HR-XANES 

 The U L3 edge HR-XANES spectra of the Um175 and Um175f samples and the U4O9 and Umh 

reference materials are depicted in Figure 4.2.5 a’,b’. The Umh sample contains only U(VI) as 

indicated by the 1.6 eV energy shift of the WL compared to the WL in the U4O9 spectrum. It 

has been shown that U4O9 consists of 50% U(IV) and 50% U(V). [35] The energy positions of 

the WLs of the spectra of the Um175 and Um175f samples and the Umh reference are very 

similar. The WLs are much broader and the post edge features at about 17186.5 eV are smeared 

out for the Um175 and Um175f spectra. These features are characteristic for the multiple 

scattering of the photoelectron from the two axial O atoms part of U(V)/U(VI)-yl short covalent 

bonds. The results suggest that the U(V) found by the XPS studies potentially present in the 

Um175 and Um175f samples does not form a uranyl type species. The U L3 edge XANES for 

U(V)-yl shifts typically to lower energies compared to the U(VI)-yl spectrum. U(V)/U(VI) can 

form  long bonds with O > 2 Å which are often assigned to uranate species. In this case a shift 

of the spectrum to higher energies compared to U(VI)-yl is observed. [30, 75] The broadening 

of the WL can be also caused by disorder effects due to large distribution of U(VI)-Oaxial 

distances. Mixtures of U redox states often lead to ambiguous results by analyses of U L3 edge 

XANES spectra due to the predominance of broad spectral features. The U L3 edge HR-XANES 

technique is more sensitive compared to the conventional method but as it is demonstrated here, 

it is limited due to the still high core-lifetime broadening strongly contributing to the spectrum.   
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4.2.2.3. U M4 edge HR-XANES 

Compared to the U L3 edge technique, U M4 edge HR-XANES provides more details with 

respect to the U redox states in the samples. The U M4 edge HR-XANES spectra of the Um175 

and Um175f samples and the U4O9 and Umh reference compounds are shown in Figures 4.2.5 

a,b. The energy positions of the C, D and E peaks are very similar for the Um175 and Umh 

spectra. This is clear evidence that U(VI) dominates in the Um175 sample. The missing U(V) 

contribution detected by XPS for this sample can be attributed to the different penetration 

depths of these two techniques. XPS probes only the surface layer (~1 nm), whereas the U M4 

edge HR-XANES is a bulk sensitive method. The comparison of the two spectroscopy 

techniques suggests that U(V) in the Um175 sample is formed explicitly in surface layers.  

The main peak C of the Um175f spectrum is shifted about 0.2 eV towards the characteristic for 

U(V) peak B of U4O9. This experimental evidence confirms substantial U(V) contribution in 

the Um175f sample. Since the intensities of peaks D and E significantly decrease but do not 

shift in energy, it is likely that the U(V) does not form U-yl type of bonding (Section 4.1).  The 

U M4 edge HR-XANES results agree with the results obtained from the XPS analyses. 

Although a reducing Eh was observed (Table 4.2.1) after adding Fe(II) no evidence for U(IV) 

has been found. No apparent U(VI) reduction to U(IV) was as well reported by Latta et al. by 

analyzing U redox behavior in stoichiometric magnetite by conventional U L3 edge XANES; 

U(VI) was found to be reduced to U(IV) only when Fe(II)/FeTOT in the solid was higher than 

0.42. [46] The results of the presented study can be explained by the low [H+] and low magnetite 

stoichiometry, which does not provide favorable conditions for U(VI) reduction to U(IV). This 

assumption is supported by thermodynamic considerations. According to the Pourbaix diagram 

U(IV) formation is also not to be expected (Figure 4.2.3). 
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Figure 4.2.5. U M4 (a, b) and U L3 (a’, b’) edge HR-XANES spectra of U4O9 (black), Um175f (violet), 

Um175 (magenta) and Umh (marine-blue).  

 

 

 
Table 4.2.2. Energy positions of the spectral peaks. 

 

Edge  U M4 (± 0.05 eV)  

Peak A B C D E 

[eV] 3725.4 3726.4 3726.8 3728.6  3731.9 

Edge  U L3 (± 0.05 eV)  

Peak F G H  

[eV] 17174.8 17176.5 17186.8   
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4.2.3. Conclusion 

Under the given conditions of the present experiments magnetite reduces U(VI) to U(V) after 

long interaction (175 days). The addition of Fe(II) leads to an increasing U(V) content and may 

induce partial recrystallization of the magnetite leading to incorporation of U(V) in its structure. 

These results help to understand previous contradictory reports discussing identification of 

U(V) in magnetite reacted with U(VI). The U reduction kinetics strongly depend on the Eh/pH 

conditions, the stoichiometry of magnetite and the U concentration etc. The here presented 

investigations demonstrate that the U M4 edge HR-XANES technique is very suitable for           

in-situ short and long-term studies aiming mechanistic understanding of the influence of these 

factors on the U redox behavior and kinetics.  To avoid the oxidizing effect from intruded air 

during the long-term experiments further studies need to be performed with suitable sample 

cells, which are able to strictly control redox conditions. XPS apparently provides information 

predominantly from the sample surface, while the XAS signal is averaged over the bulk. One 

has to note that sample preparation and the need to transfer the sample to the XPS instrument 

may cause artifacts in measurements. Investigations of systems with environmentally relevant 

U concentrations lower than those investigated here will be possible at the CAT-ACT-

Beamline, ANKA, which is expected to provide two orders of magnitude higher photon-flux 

compared to the INE-Beamline.  
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5. HR-XANES and RIXS investigations of U and Pu systems 

Detailed speciation analyses of mixtures of An in different oxidation states using spectroscopy 

methods require spectra of suitable reference samples. Of fundamental interest is also to obtain 

information about the electronic structure of the An and their compounds by probing directly 

their unoccupied valence states using advanced HR-XANES and RIXS methods. [35, 55] The 

potential of these techniques has not yet been completely revealed and exhausted as up to date 

only a very few investigations of An systems are present in the literature. [35, 37, 50, 55] The 

intermediate oxidation states of the An are often unstable under ambient conditions therefore it 

is obligatory to develop and build suitable cells for synchrotron based experiments under 

controlled conditions, e.g. absence of O2 etc. It is desirable to carefully monitor the changes of 

the An oxidation states before and after the experiments using alternative methods. An advanced 

approach is to perform the An oxidation states investigations directly at the experimental station 

at the Beamline and to probe in-situ the changes in the electronic and geometric structures of 

the An species. Such an in-situ cell can maintain well controlled reaction conditions, i.e. redox 

potential but can also comprise a combination of spectroscopy methods simultaneously applied 

on the sample.  

This section presents results from the investigations of three different U and Pu systems. In the 

first part for the first time U(VI) and U(V) carbonate complexes in aqueous media are 

investigated using an in-situ spectroelectrochemical cell by U M4 edge HR-XANES and RIXS 

techniques coupled with in-situ UV-Vis spectroscopy. The main part of this work includes the 

development, building and tests of the in-situ cell coupling spectroscopy with electrochemistry 

applied for these experiments. 
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U is known to form several oxy-(hydr)oxide species with quite close compositions but different 

structures. XPS U 4f spectra of UO3 polymorphs compared to a synthetic UO3·1-2H2O do not 

show any differences (within the analytical uncertainty) therefore they do not provide 

information about variations in the U electronic structure of these compounds. [27] In the 

second part a series of (α,β,γ)-UO3 polymorphs and the synthetic U(VI)-yl compound meta-

schoepite, widely used as a U(VI) reference in XAS studies, are for the first time investigated 

by the U M4 edge HR-XANES method. A fingerprint approach is proposed and applied to 

compare the level of covalency of the U-yl bonds in the UO3 polymorphs. The experimental 

results are supported by quantum chemical calculations with the FEFF code and thermodynamic 

considerations.   

In the third part the electrochemically prepared Pu oxidation states Pu(III)-Pu(IV)-Pu(V)-

Pu(VI) in perchlorate aqueous media and colloidal Pu(IV) are investigated by using Pu L3 and 

M5 edge HR-XANES techniques. Some of the experimental results are supported by quantum 

chemical calculations. The key part of this work is the development and tests of a set of cells 

for redox sensitive Pu sample aqueous solutions. 

For the first time a set of liquid cells and an in-situ cell for experiments fulfilling the technical 

and safety requirements of the U/Pu M4,5 edge HR-XANES/RIXS experiments have been built 

and successfully applied as a major part of this Doctoral Project.
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5.1. In-situ spectroscopy of the electrochemical reduction of U(VI) to U(V)  

in carbonate complexes  

5.1.1. Introduction 

It has been shown that U-yl carbonates are one of the main species formed under aerobic 

conditions after a few years of SNF storage. [93] U-yl carbonate complexes are the most 

relevant species found in groundwater as well as in sea and ocean waters. [94] From all 

identified minerals, U-yl carbonates are the only mineral group where U(V) is known to be 

stabilized in the crystal structure. [95] Not much is known about the chemical and physical 

properties of [UVO2]
+ due to its thermodynamic instability. Several studies exist including 

laboratory synthesized U(V) in inorganic and organic compounds. [77, 90, 96] A very recent 

EXAFS study was reported for a U(V) carbonate complex formed during a ferrihydrite 

transformation to goethite catalyzed by Fe(II). [17] A few available studies utilizing U L1,3 edge 

XAFS based methods are reported for electrochemically prepared U(V) tricarbonato 

complexes. [97, 98] Other methods used for investigations of these complexes include UV-Vis, 

Raman, NMR, powder XRD techniques as well as theoretical calculations. [99-106]  

One of the main challenges in studying U(V) compounds is their high chemical instability 

leading to disproportionation reactions, which demands well controlled conditions (i.e. an inert 

atmosphere) during the experiments. One of the best approaches is to maintain the redox 

potential of U(V) by an electrochemical setup. U(VI)-U(V) electrochemistry in carbonate media 

is an established method with well-defined stability conditions for U(V) species: It is often 

combined with UV-Vis spectroscopy for characterization of the U oxidation states. [97, 107] 
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The synchrotron based X-ray methods 

provide the opportunity to combine two 

different spectroscopy tools; UV-Vis 

spectroscopy gives information mainly 

about molecular speciation, X-ray based 

methods are used to study materials on the 

atomic level (Figure 5.1.1). The application 

of in-situ based electrochemistry eliminates 

the artefacts resulting from alteration of the 

samples during their storage and transportation prior the spectroscopic measurements.  

The main aims of this work include: 

1) Development and building of a compact in-situ spectroelectrochemical cell for studying 

the reduction of U(VI) to U(V) with the potential to be applied for other redox states 

and other An. The cell can uniquely combine electrochemistry with UV-Vis and HR-

XANES/RIXS investigations; 

2) Adoption of the cell for operation in the temporary controlled area of the INE-Beamline. 

The cell fulfils all technical and safety requirements for investigations of radiotoxic 

samples at the INE-Beamline; 

3) Application of the in-situ cell to study the change of the U 5f unoccupied valence states 

upon reduction of U(VI) to U(V) free from experimental artefacts by the U M4 edge 

HR-XANES and 3d4f RIXS techniques. Generation of U(VI) and U(V) reference 

samples for speciation investigations of U.  

 

 

 

 

 
Figure 5.1.1. The entire electromagnetic spectrum 

and used in-situ techniques used for molecular and 

atomic characterization of U species. (source 

www.ck12.org) 
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5.1.2. Materials and Methods 

5.1.2.1. Preparation of U stock solution  

The stock solution of Na4[U
VIO2(CO3)3]

 was prepared by dissolving freshly precipitated   

UO3·1-2H2O in 1.5 M Na2CO3 with continuous shaking of the mixture for several hours. The 

resulting yellow colour solution was filtered through 40 µm Millipore filter and the pH was 

adjusted to 11.8 with 0.5 M NaOH. The resulting solution was then analyzed for total U 

concentration ([U]). A 0.035 M U solution was used for bulk electrochemistry experiments, 

whereas a diluted 0.020 M U solution was studied by cyclic voltammetry (CV) measurements. 

Both solutions have been purged with Ar gas at least for 8 hours before using them for the 

electrochemical reactions. All procedures were carried out in an Ar glovebox                                    

(1-2 ppm O2, < 1 ppm CO2) at the INE laboratories.  
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5.1.2.2. Electrochemical procedures 

5.1.2.2.1. Cyclic voltammetry 

CV measurements were performed using a VoltaLab 21/PGP20 potentiostat using the 0.02 M 

U aqueous solution and 0.5 mm Ø Pt wires as working and counter electrodes and two different 

types of reference electrodes: Ag/AgCl [E0=195 mV] electrode with a Vycor glass frit and a 

Hg/HgO [E0=127 mV] electrode with ceramic frit designed for alkaline (1.5 M Na2CO3, 

pH=11.8) solution (both from ALS Co., Ltd).  

CV consists of cycling the potential (E) of an electrode, which is immersed in a solution, and 

measuring the resulting current (i). The potential of this working electrode is controlled versus 

a reference electrode (Hg/HgO was finally used for CV and bulk electrochemistry). The 

controlling potential, which is applied across these two electrodes, can be considered as an 

excitation signal. This excitation signal sweeps E of the electrode between two values. The CV 

is a graphical representation of i (y-axis) versus E (x-axis). Because E varies linearly with time, 

the x-axis can also be thought of as a time axis. The CV is performed for the qualitative analysis 

of the redox reactions taking place at the electrodes in a homogeneous chemical system. [108] 

The CV scan rate can be different and varies between 10 mV/s and 100 mV/s depending on the 

performance of the used potentiostat. In this case, only a single scan rate of 10 mV/s is available. 

More advanced instrumentation enables switching E and variable scanning rates (from 0 mV to 

-870 mV) applied to determine more precisely the reducing and oxidizing potentials in the 

system under study. A CV is obtained by measuring i at the working electrode during the 

potential scan. [108] i can he considered as the response signal to the potential excitation signal. 
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5.1.2.2.2. Bulk electrolysis 

For bulk electrolysis a Pt-mesh (80 µm, 25×35 mm) was used as a working electrode, Pt-spiral 

(0.5 mm Ø, 23 cm length) as a counter electrode and Hg/HgO as a reference electrode (all from 

ALS Co., Ltd). A 0.035 M U stock solution was added to the compact in-situ 

spectroelectrochemical cell developed and built within this doctoral project. The counter 

electrode was positioned inside a borosilicate tube with a glass frit at the bottom (16-40 µm 

pore size) to prevent the contact of the electrolyte formed at the working electrode with the 

oxidizing agents, e.g. the oxygen (O2) continuously evolving at the counter electrode     

(Equation 1).  

4OH- → O2↑ + 2H2O + 4e-         (1) 

O2 was evacuated through the polypropylene tube (0.2 mm Ø) connected at the higher part of 

the glass tube electrode compartment to a cover of the first containment vessel. A basic 

schematic principle of the electrochemical cell operation is shown in Figure 5.1.2. 

The 1 mm space between the two containments of the cell was flushed with He to remove the 

evolving O2 and the aerosol, i.e. products of the electrochemical reaction. Both were collected 

by an aerosol particle filter (DIN-30X, Topas Gmbh) installed at the opposite site of the outer 

He flushing adapter (6 mm Ø, Festo AG). The negative potential of -775 mV, determined from 

the CV measurements, was applied to reduce U(VI) to U(V) (Equation 2) 

[UVIO2(CO3)3]
4- + e- → [UVO2(CO3)3]

5-          (2) 
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Figure 5.1.2. Basic principle of three-electrode bulk electrochemical cell setup and 

operation. 
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5.1.2.3. In-situ UV-Vis spectroscopy 

UV-Vis spectra were continuously recorded in the range 360-520 nm in transmission mode 

during the in-situ electrochemical process using compact USB4000 UV-Vis spectrometer,        

D-2000 Deuterium lamp as a UV light source and a UV-Vis bifurcated optical fibers (all 

OceanOptics Gmbh) with a cord diameter of 400 µm. 100 spectra with 100 nm acquisition time 

were recorded and averaged to obtain the individual spectra presented in Figure 5.1.7. 

SpectraSuit Software (OceanOptics Gmbh) was used for analyses of the spectra. 
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5.1.2.4. U M4 edge HR-XANES/RIXS spectroscopy 

U M4 edge HR-XANES and RIXS maps were measured using the X-ray emission spectrometer 

at the INE-Beamline (ANKA) as described in Section 3.2. Five spectra were recorded and 

averaged for each of the two U(VI) and U(V) species recorded before and after electrolysis, 

respectively. The spectral energy range was from 3722 eV to 3750 eV with a 0.1 eV step size. 

3d4f RIXS maps were measured for emission energies from 3327 eV to 3338 eV with 0.33 eV 

step size and incident energies from 3720 to 3740 eV with 0.2 eV step size. To improve the 

spectral resolution an aluminum pinhole with a diameter of ~1 mm aperture was installed in 

front of the in-situ spectroelectrochemical cell at about 50 mm distance. To increase the signal 

to noise ratio all measurements were carried out inside a He glovebox installed around the 

spectrometer and the cell (O2 < 1000 ppm).  

 

5.1.2.5. Spectral area fitting 

The areas of the different peaks of the U M4 edge HR-XANES spectra for [UVIO2(CO3)3]
4- and 

[UVO2(CO3)3]
5-  are estimated by fitting the spectra with PseudoVoigt type profiles [47, 50] 

obtained by convoluting a Gaussian with a Lorenzian type profile using the Fityk program. 

[109] The spectra were normalized to the intensity of the post-edge region equal to 1. First, an 

arctangent function with a fixed step 0.5 and energy position 3737.2 eV describing the post-

edge jump was used. Second, the peaks A and C were fitted with two PseudoVoigt profiles, 

whereas the peak B was modelled with one Gaussian profile (Figure 5.1.10; Table 5.1.1). 
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5.1.3. Results and Discussion 

5.1.3.1. In-situ spectroelectrochemical cell 

A 3D design of the in-situ spectroelectrochemical cell developed, built and applied within this 

doctoral project is presented in Figure 5.1.3. 

 

 
 

 
Figure 5.1.3. 3D model of the in-situ spectroelectrochemical cell comprising: three 

electrodes; an inlet and an outlet for the He gas flow; a filter for aerosol particles, cell body 

with an implemented double containment; a window for a web camera; UV-Vis light source 

attached to the cell; UV-Vis spectrometer connected to the cell via an optical fiber; magnetic 

stirrer implemented on the bottom of the cell; windows for  incident X-ray beam and emitted 

X-ray fluorescence; double containment with exchangeable Kapton windows  (10-100 µm) 

which can be used for different measurements. 
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The design development, building and tests of the final cell have been carried out during eight 

months; two prototype cells have been assessed within this time. An advantage of the cell 

compared with those previously reported is the implemented UV-Vis setup, which allows 

simultaneous UV-Vis, electrochemistry and XAFS measurements at the beamline. In addition, 

this cell is designed for XAFS experiments at low photon energies 3000-4000 eV.  Two Kapton 

windows with 10 and 13 µm thickness absorbing only a few percent of the photons (~15% at 

3727 eV) but possessing long-term mechanical and chemical stability are implemented. A 

picture of the in-situ spectroelectrochemical cell during experiments at the INE-Beamline is 

shown in Figure 5.1.4.  

 
 
Figure 5.1.4. Picture of the in-situ spectroelectrochemical cell installed at the INE-Beamline inside 

the He glovebox. The MAC-Spectrometer and used instrumentation are shown too. 
 

 

 

 



5.1. In-situ spectroscopy of the electrochemical reduction of U(VI) to U(V) in carbonate 

complexes  

 

72 
 

The size of the cell (15 cm in height and 10 cm in width) was designed to fit into the transfer 

chambers of the gloveboxes at the INE laboratories and the INE-Beamline. The necessary 

double containment of the cell was achieved by inner and outer parts made from borosilicate 

glass and Plexiglas, respectively. Windows with 6 mm Ø equipped with 10 µm (inner) and 13 

µm (outer) Kapton films were introduced in the two containments. The connection of the main 

body and the cover of the assembled cell was glued with a 50 µm thick Kapton tape. The 

windows, the two UV-Vis fibers attached to the outer part of the cell and the end of the working 

Pt-mesh electrode were positioned at the same height. The magnetic module was attached on 

the bottom inside of the cell and fixed with a 1mm thick Al plate by four screws. The setup was 

stable during the experiment, which took place for more than 12 hours. No evaporation of the 

solution due to heating caused by the magnetic stirrer and the elevated temperature inside the 

He glovebox (42 °C) was noticed.  
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5.1.3.2. Cyclic voltammetry and chronoamperometry  

Prior to the electrochemical experiments CV were recorded by scanning the E within the desired 

range to determine the reduction and oxidation potential of the system under study. [108] Using 

different scan rates allows the determination of more precise potentials. The only scan rate 

available for the used potentiostat of 10 mV/sec resulted in broad and flat cathodic and anodic 

peaks, Pc and Pa, respectively, separated (ΔEp) by 190 mV (Figure 5.1.5). In the recent study of 

Ikeda et al. ΔEp was estimated to vary between 250 and 400 mV, which depends mainly on the 

scan rate of the CV. [97] 
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Figure 5.1.5. Cyclic voltamogramms of U tricarbonato 

complexes measured with scan rate of 10 mV/sec for Hg/HgO 

(a) and Ag/AgCl (b) reference electrodes. 
 

 



5.1. In-situ spectroscopy of the electrochemical reduction of U(VI) to U(V) in carbonate 

complexes  

 

74 
 

Pc and Pa peaks are very broad at low scanning rates and become much sharper with a slight 

shift to lower potentials. [97] The first tests showed that U(VI) can be reduced to U(V) without 

forming any U(IV) precipitates or other artefacts. The reducing E determined for the Hg/HgO 

and Ag/AgCl reference electrodes differs by approximately 65 mV (Figure 5.1.5, blue lines), 

which is in agreement with their different E0 values [Ag/AgCl, E0=195 mV] and [Hg/HgO, 

E0=127 mV]. Finally, a Hg/HgO electrode has been used for all experiments due to the much 

higher stability of the frit membrane compared to that of the Ag/AgCl electrode which quickly 

corroded at pH=11.8. To estimate the reduction kinetics of U(VI), preliminary tests were done 

in Ar glovebox in laboratory conditions. A nearly complete reduction of U(VI) to U(V) was 

recorded within ~2 hours (Figure 5.1.6). The reduction process proceeds very fast in the first 

20 minutes resulting into ~50% reduction of U(VI). The reduction rate slows down considerably 

after 40 minutes of electrolysis due to a decreasing U(VI) concentration and related to this 

electron transfer rate, which is described by a square root dependency on the current density. 

[110] 
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Figure 5.1.6. Decrease of the current density during U(VI) reduction 

to U(V) in 1.5 M Na2CO3 aqueous solution. Complete U(VI) reduction 

is achieved within 2 hours for the electrochemical setup used.  
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5.1.3.3. In-situ UV-Vis spectroscopy 

The UV-Vis spectroscopic technique can be used for molecular speciation of U. It is sensitive 

to the coordination symmetry of the studied U complexes. [111] UV-Vis spectra were 

continuously recorded during the experiment. The clearly resolved eight bands of the U(VI)-yl 

fine structure are measured for the U(VI) tricarbonato complex (Figure 5.1.7) before starting 

the reaction and agree well with results from previous studies. [101] [97]  
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Figure 5.1.7. In-situ measured UV-Vis spectra: U(VI) (orange), 50% reduced U(VI) 

(magenta),  100% reduced U(VI) to U(V) (brown and violet). The time passed after the 

beginning of the electrochemical reaction is indicated. Photographs of the U(VI) and U(V) 

tricarbonato complexes in aqueous carbonate media as prepared under laboratory 

conditions (top-right). 
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During the U(VI) reduction to U(V) the intensity of the absorption bands decreases (Figure 

5.1.7, magenta curve). U(V) has no bands in the monitored region (Figure 5.1.7, brown curve); 

The broad band characteristic for U(V) is in the Vis-NIR region, which is not measured in this 

study due to the limited spectral range of the spectrometer. [112]  

U(V) was stable for more than 12 hours while the redox potential was kept constant (Figure 

5.1.7, brown and violet curves).  

The orange curve in Figure 5.1.5 represents the UV-Vis absorption spectrum of the U(VI) ion 

in 1.5 M Na2CO3. The absorption spectrum is characterized by a very weak and broad 

absorption in the visible range between 380 nm and 490 nm with a characteristic fine structure 

as well as an intense absorption in the UV range that extends nearly continuous to lower 

wavelengths. The intense absorption in the UV range (not shown) has no structure and does not 

offer characteristic features for spectroscopic speciation. [111] The fine structure of the low-

energy absorption band is due to coupling of electronic transitions with the symmetric 

stretching vibration of the U(VI)-yl entity. [113] [114, 115] The absorption spectrum of U(VI) 

exhibits a band with significantly lower intensity in the visible range compared to that in the 

UV range (not shown here). The reason for this significant decrease has been discussed for a 

long time in terms of highest occupied molecular orbital (HOMO) and lower unoccupied 

molecular orbital (LUMO). [116, 117] Only detailed studies on Cs2(UO2)Cl4 single crystals 

unambiguously showed a symmetry forbidden nature of the HOMO-LUMO transitions and 

explained the nature of the absorption bands. [37, 114, 118] 

 

 

 

 

 

 



5.1. In-situ spectroscopy of the electrochemical reduction of U(VI) to U(V) in carbonate 

complexes  

 

77 
 

5.1.3.4. U M4 edge HR-XANES/RIXS 

The 3d4f RIXS map of U(VI) exhibits three resolved main regions (indicated by green, yellow 

and magenta arrows) (Figure 5.1.8 a). In the U(V) RIXS map one region appears as a very broad 

asymmetric structure with two distinguishable shoulders (see the arrows in Figure 5.1.8); The 

3d4f RIXS data is useful to obtain information about the U electronic structure, i.e. the U 5f 

states which are largely responsible for the unique properties of the U compounds. [35] The 

HR-XANES spectrum corresponds to a cut parallel to x-axis through this plane at the maximum 

of the emission line resulting in a significantly reduced spectral broadening (white arrow).            

[47, 53] The U M4 edge HR-XANES spectra of the U(VI) and U(V) tricarbonato complexes 

are depicted in Figure 5.1.9 (a, b). 
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Figure 5.1.8. 3d4f RIXS maps of 

[UVIO2(CO3)3]4- (a) and [UVO2(CO3)3]5-  (b). 

Figure 5.1.9. U M4 edge HR-XANES spectra 

of [UVIO2(CO3)3]4- (a) and [UVO2(CO3)3]5-  (b). 
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The U M4 edge HR-XANES spectrum of U(VI) (Figure 5.1.9 a) exhibits an intense main peak 

(A) at 3726.9 eV with two well resolved higher energy features (B and C) at 3728.5 eV and 

3732.0 eV (Table 5.1.1) characteristic for the U(VI)-yl structure. [35, 37, 51]. These peaks have 

been assigned to transitions of 3d3/2 electrons to 5fδ/5fφ (A), 5fπ (B) and 5fσ (C) unoccupied 

valence orbitals of U(VI) in the U(VI)-yl entity. [37] This assignment is valid also for the U(V) 

compound as found by DFT calculations. [97] In the U(V) spectrum, the main peak A, exhibits 

significantly less intensity and is shifted by ~0.8 eV to lower energies compared to that of 

U(VI). This energy shift is due to the better screening of the core-hole by the addition electron 

in the U(V) compound. The decrease in absorption intensity is a consequence of the less 

available unoccupied 5f states in U(V) ([Rn]5f1) compared to the empty 5f shell in U(VI) 

([Rn]5f0). The energy positions of the peaks B and C shift significantly to lower energies and 

become closer to the main peak A (U(VI): A-B=1.6 eV, U(V), A-C=5.1 eV;  U(V): A-B=1.0 

eV, A-C=3.4 eV). Clearly, the U M4 edge HR-XANES method provides quantitative 

information about the change in energy distances between the 5f based orbitals due to addition 

of an electron. This electron was previously found in the 5fδ orbital of U(V) and leads to 

pronounced reduction of the area of peak A. [97] Since the measurements are performed            

in-situ, any experimental artefact can be neglected. As a result, it can be postulated that one 

additional electron leads to ~41% decrease of the area of the first peak and ~20% of the area of 

the whole U M4 edge HR-XANES spectrum of [UVO2(CO3)3]
5- compared to that of 

[UVIO2(CO3)3]
4- (Table 5.1.1). This might be due to a reduced level of hybridization of 5f with 

p orbitals for the U(V) compound. The 5fδ and the 5fφ orbitals are non-bonding orbitals 

therefore the area of this peak A should not be influenced by changes of mixing of metal 5f with 

ligand p orbitals. The height of a peak is proportional to the absorption cross section, whereas 

the area of the peak to the oscillatory strength for the transitions to atomic and molecular orbitals 

of U. [119]  
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Currently performed quantum chemical calculations will allow to compare experimental with 

theoretical results and to verify the obtained results. U M4 edge HR-XANES has a substantial 

advantage over the conventional U L1,3 edge XANES. Due to larger core-hole broadening 

effects influencing the U L1,3 edge XANES spectra the energy shift between U(V) and U(VI) 

is rather small and the main absorption peak is dominated by a broad featureless structure. [97] 
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Figure 5.1.10. Measured (red) and best model (black dotted) 

spectra of the normalized U M4 edge HR-XANES spectra of 

[UVIO2(CO3)3]4- (a) and [UVO2(CO3)3]5-  (b). 
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Table 5.1.1. Energy positions and areas of the peaks for the U M4 edge HR-XANES 

spectra of [UVIO2(CO3)3]4- and [UVO2(CO3)3]5-; (Peak positions: OriginPro 9.1 program is 

used; error bars: ± 0.05 eV; areas: Fityk 0.9.8 program; error bars: ± 0.5 a.u.) 

                                                        Energy position 

Specie A, [eV] B, [eV] C, [eV] B-A, [eV] C-A, [eV] 

[UVIO2(CO3)3]4- 3726.9 3728.5 3732.0 1.6 5.1 

[UVO2(CO3)3]5- 3726.1 3727.1 3729.5 1.0 3.4 

  Peak area    

Specie A, [a.u.] B, [a.u.] C, [a.u.]   

[UVIO2(CO3)3]4- 51.0 29.4 13.5   

[UVO2(CO3)3]5- 29.9 29.7 15.2   
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5.1.4. Conclusion 

A novel spectroelectrochemical cell for in-situ electrochemistry, XAFS and UV-Vis 

experiments was designed, constructed and applied. A study of U(VI) reduction to the U(V) in 

the form of tricarbonato complex was performed for the first time using coupled in-situ UV-

Vis and U M4 edge HR-XANES/RIXS spectroscopies. Significant differences in electronic 

structures of these complexes is found. It is revealed that the main spectral peak A shifts by 0.8 

eV to lower energies confirming the reduction of U(VI) to U(V), which is independently and 

simultaneously verified by the UV-Vis measurements. The energy distance between the A and 

the B peaks changes by -0.6 eV, and between the A and C peaks by -1.7 eV for the U(V) 

compared to the U(VI) compound. These clear spectral changes measured in-situ can be used 

in future speciation analyses for identification of U(V)-yl species. The here presented results 

are very valuable for verification and improvement of theoretical approaches for calculations 

of the electronic structure of U(V). Further analyses will elucidate if the differences obtained 

for the U M4 edge HR-XANES spectra are comparable to transmission mode and conventional 

fluorescence mode measurements. It is still under discussion if the HR-XANES spectra are 

directly proportional to the absorption cross section. 
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5.2. Probing covalency in the UO3 polymorphs by a fingerprint approach  

5.2.1. Introduction 

Both structural and electronic properties of the uranium oxides are of fundamental and practical 

interest primarily due to the role of UO2 in the nuclear fuel cycle. [120, 121] UO2 frequently is 

exposed to oxidizing conditions and other binary oxides like, for example, U4O9 and U3O8 form 

at different stages of the nuclear fuel cycle. [122] UO3 has the highest oxygen content among 

the uranium oxides (except U-yl peroxides, UO4·xH2O). The chemical and physical properties 

of its polymorphs are also important to mining, milling, refinement and conversion processes 

that precede isotope enrichment within a nuclear fuel cycle. [123]   

In this study it is demonstrated a finger print approach for detection of changes in the bond 

lengths between U and the two axial O atoms in uranyl type of bonding. It presents the results 

of theoretical ab-initio full-multiple-scattering (FMS) HR-XANES simulations for α-UO3,        

β-UO3 and γ-UO3 phases by the FEFF 9.6 code. [62] Available thermodynamic data are used 

to explain the spectroscopic results. [3] 
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5.2.2. Materials and Methods 

5.2.2.1. Sample preparations 

The α-UO3 and β-UO3 phases were synthesized as reported in, [124] γ-UO3 was a commercial 

(Cameco Corp.), UO3·1-2H2O was prepared as described. [125] CaU2O7 was synthesized by 

recrystallizing UO3·1-2H2O in concentrated CaCl2 aqueous solution. Each compound with 

about 10 wt % of U was mixed with cellulose powder and pressed into a pellet. 

 

5.2.2.2. Analysis methods 

Samples were analyzed by synchrotron based XRD as described in Section 3.4. U M4 edge    

HR-XANES spectra were measured at the INE-Beamline as described in Section 3.2. Four 

spectra were collected for each sample. The spectral energy range was from 3710 eV to            

3780 eV with 0.1 eV step size. Thermodynamic data of Gibbs free energies of formation of U-

O compounds were used from Neck et al. [20] 
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5.2.2.3. Quantum chemical calculations 

The U M4 edge HR-XANES spectra were calculated with the FEFF9.6 ab-initio quantum 

chemical code based on the full-multiple-scattering theory (FMS). The algorithm for the FMS 

method has been described elsewhere. [126] Phase shifts of the photoelectron were calculated 

in the framework of the self-consistent crystal muffin-tin (MT) potential scheme with 15% 

overlapping MT spheres. The spectra have been simulated using several types of exchange 

potentials: non-local, Dirac-Fock, Hedin-Lundquist or Dirac-Hara potentials. The best 

agreement with experiment has been achieved for the spectra calculated with the Hedin-

Lundquist potential in Final State Rule (FSR) approximation for core-hole, reducing the 3d3/2 

core-hole life-time broadening (3.5 eV) to 2 eV and correcting the Fermi energy for            

UO3·1-2H2O and CaU2O7 by 0.5 eV. The atomic potentials were calculated self consistently 

for cluster sizes of about 7.0 Å around the absorber (including 101 atoms), while FMS 

calculations of U M4 edge HR-XANES were performed for cluster of 10 Å radii (285 atoms). 

For the simulations of the HR-XANES spectra, we have used the crystallographic data 

presented in Table 5.2.1. (Calculations were performed by Yulia Podkovyrina, South Federal 

University, Russia; FEFF input files for calculations are given in Appendix, Table AII.1) 

 
Table 5.2.1. Crystallographic data used for calculations of the U M4 edge HR-XANES spectra. 

 

Phase Space group Crystal system Atomic parameters #ICSD 

α-UO3 P-3m1 (#164  ) Trigonal a=b=3.97  c=4.16 

α=β= 90°   γ=120° 

31628 

β-UO3 P121 1 (#4 ) Monoclinic a=3.91  b=14.33 c=10.34 

α=β= γ=90° 

14314 

γ-UO3 I41/amd (#141) Tetragonal a=b=6.90 c=19.97 

α=β=γ=90° 

1093 

UO3·1-2H2O Pbcn (#60) Orthorhombic a=14.68 b=14.02 с=16.71 

α=β=γ=90° 

156714 

CaU2O7 R-3m (#166) Trigonal a=b=с=6.26 

α=36.32, β= γ= 90° 

31631 
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5.2.3. Results and Discussions 

UO3 polymorphs and UO3·1-2H2O can be synthesized by using uranyl nitrate hexa-hydrate as 

a starting material (Figure 5.2.1). 

 

Figure 5.2.1. Description of formation routes of α-UO3, β-UO3, γ-UO3 and UO3·1-2H2O 

synthesized from UO2(NO3)2·6H2O. 
 

The powder XRD patterns measured for the studied compounds correspond well with the 

spectra published in the ICSD database (Figure 5.2.2).  

 

 

 

 

Figure 5.2.2. Powder XRD patterns of α-UO3, β-UO3, γ-UO3 polymorphs (SUL-BL) and              

UO3·1-2H2O (Brucker Diffr.) together with XRD patterns published in the ICSD database (Table 

5.2.1). XRD of CaU2O7 is not available. 
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5.2.3.1. U M4 edge HR-XANES 

The U M4 edge HR-XANES spectra of the three UO3 polymorphs are plotted along with the 

spectra of UO3·1-2H2O and CaU2O7 in Figure 5.2.3. All U M4 edge HR-XANES spectra have 

three distinct spectral features marked with A (3727 eV), B (3729 eV) and C (3732 eV) 

(Figure 5.2.3a). The nature of the peaks A, B and C is described in Section 5.1. 
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Figure 5.2.3. U M4 edge HR-XANES spectra of UO3·1-2H2O, γ-UO3, β-UO3, α-UO3, and CaU2O7, 

(a), experimental and theoretical spectra for α-UO3 (b), β-UO3 (c) and γ-UO3 (d) phases. 
 

The hybridized U 5f and 6p orbitals form sigma covalent bonds mainly with 2p orbitals of the 

Oaxial atoms therefore the energy position of peak C is essentially influenced by variations of 

the U-Oaxial bond length. [35] U forms short 1.77 Å (U-yl) and longer, > 1.9 Å, (U-ate) U-Oaxial 

bonds in UO3·1-2H2O (1.78 Å) and CaU2O7 (1.91 Å), respectively (Table 5.2.2). These 

differences in bond lengths are reflected by the energy positions of peaks A, B and C.  



5.2. Probing covalency in the UO3 polymorphs by a fingerprint approach 

87 
 

Peak A is shifted to higher energies (+0.3 eV), whereas peaks B (-0.2 eV) and particularly C     

(-1.1 eV) are shifted to lower energies for CaU2O7 compared to UO3·1-2H2O. The elongation 

of the U-Oaxial (0.13 Å) in CaU2O7 leads to less electronic density in the vicinity of U, i.e. 

decreased covalency of the U-Oaxial bond; [114] as a result, due to worse screening of the core-

hole, the main peak A is shifted to higher energies compared to this peak in the UO3·1-2H2O 

spectrum. Figure 5.2.3 also demonstrates that the intensities of the peaks B and C decrease 

within the UO3·1-2H2O, γ-UO3, β-UO3 and α-UO3 series (Figure 5.2.3 a). Herein it is assumed 

that these variations of intensities might be related to the covalency of the U-Oaxial bond, i.e. 

higher covalency leads to higher intensity of these peaks. However, the peak C in CaU2O7 

spectrum exhibits an intensity comparable to that in UO3·1-2H2O, which indicates that the 

comparison of small changes in intensities of these peaks is only meaningful within a series of 

compounds with similar chemical compositions.  

Table 5.2.2. Average U-O bond lengths for α-UO3, β-UO3, γ-UO3, 

UO3·1-2H2O and CaU2O7. 

Compound/value U-O short, [Å] U-O long, [Å] 

α-UO3 2.08 2.40 

β-UO3 1.70 2.25 

γ-UO3 1.83 2.27 

UO3·1-2H2O 1.78 2.36 

CaU2O7 1.91 2.31 
 

 

The energy position of peak B can be in principle influenced by variations of the U-Oaxial, but 

also by changes in bonding distances between U and the equatorial ligands. Up to several 

different U sites with variable U-Oaxial bond lengths are present in α-UO3, β-UO3 and γ-UO3.     

α-UO3 has two non-equivalent U positions; U forms bonds with the Oaxial atoms with two 

different average bond lengths, i.e. U(1)-Oaxial1=2.08 Å and U(2)-Oaxial2=2.40 Å.  
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The U atoms in β-UO3 can be divided into three groups: U(1) and U(2) have seven oxygen 

neighbours at distances varying between 1.69 Å and 2.72 Å, U(3) is coordinated by six oxygen 

atoms U(3)-Oaxial1=1.79 Å, U(3)-Oaxial2=2.17 Å, which form a deformed octahedron, U(4) and 

U(5) have six oxygen neighbours and form U-yl type of bonding. [127] In γ-UO3 all U atoms 

are surrounded by six oxygen atoms in distorted octahedral environment; the average U-Oaxial 

bond length is ~1.83 Å. [128] The energy positions of features A, B and C are related to the 

average U-Oaxial distances for the three UO3 compounds. The spectra of α-UO3 and γ-UO3 are 

similar to the spectra of CaU2O7 and UO3·1-2H2O, respectively. Therefore, in average the U-

Oaxial bonds with 1.83 Å bond length appear to have more covalent character in γ-UO3 compared 

to α-UO3, which has an average U-Oaxial bond length of 2.08 Å (Table 5.2.2). 

For each UO3 phase, the theoretical spectrum is a sum of weighted spectra obtained by placing 

the absorbing U atom at each non-equivalent crystallographic site. The FEFF9.6 code 

reproduces all spectral features at the correct energy positions for α-UO3 and β-UO3 (Figure 

5.2.3 b, c); some intensity differences are present. For γ-UO3 the distances between features A 

and B (A-B), and B and C (B-C) are larger for the experimental (A-B ~ 2.0 eV, B-C ~ 3.5 eV) 

compared to the calculated (A-B ~ 1.7 eV, B-C ~ 2.2 eV) spectra (Figure 5.2.3 d). 
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5.2.3.2. Thermodynamic approach 

Additional insights into the nature of the U-O bonds in the polymorphic phases of UO3 can be 

derived by comparing standard molar Gibbs energies of formation ΔfG°m of crystalline UO3, 

UO2+x phases and a U(VI)-yl type of compound. These compounds are systematically studied 

and thermodynamic parameters are summarized in several reviews and thermodynamic 

databases. [129-131]  

 ΔfG°m of crystalline UO2+x phases 

adopted from Guillaumont et al. 

[129] and Neck et al. [20] are plotted 

in Figure 6.2.4. As ΔfG°m is the free 

energy released during the bond 

formation [132], the lower the 

energy, the stronger must be the U-O 

bond. According to this, the covalent 

character of the U-O bonds would 

increase in the order α-UO3                      

(-1135 kJ/mol) < β-UO3 (-1142 

kJ/mol) < γ-UO3 (-1146 kJ/mol) < 

UO3·1-2H2O (-1158 kJ/mol) as 

demonstrated in Figure 5.2.4. This 

result agrees well with the 

spectroscopy results, which clearly 

suggest an increasing weight of U-O short covalent bonds in the materials following the same 

trend.   
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Figure 5.2.4. Standard molar Gibbs energies of 

formation of UO2+x  as a function of x. (Retrieved 

from [20]) 
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5.2.4. Conclusion 

It is demonstrated that a fingerprint approach using U M4 edge HR-XANES can be effectively 

applied for the characterization of U-yl and U-ate type of U-Oaxial bonding. Using this approach 

it is shown that U-Oaxial bonds have likely more covalent character in γ-UO3 compared to             

α-UO3. The order of the increase in covalency in the materials is found to be the same from the 

spectroscopy and the thermodynamic results based on free Gibbs energies of formations              

(α-UO3 < β-UO3 < γ-UO3 < UO3·1-2H2O).  The U M4 edge HR-XANES spectra of the UO3 

polymorphs are performed within the full-multiple-scattering (FMS) formalism. The input 

parameters are varied to obtain best agreement between theory and experiment. The FEFF9.6 

code emerges as a useful tool for calculation of U M4 edge HR-XANES spectra, as it 

successfully reproduced all spectral features for some of the studied compounds. 
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5.3. Study of the Pu oxidation states in perchloric acid  

5.3.1. Introduction 

Transuranium elements (Np, Pu, Am etc.) with various isotopic compositions generated in 

nuclear fuels during irradiation in a nuclear fission reactor represent long-term radiotoxic 

elements. Due to their ability to exist in different redox states, which greatly determines their 

chemical properties like for example solubility, the precise speciation analyses is of great 

importance for assessing and predicting their long-term radioecological behavior. This is 

relevant to Pu, which has been demonstrated to coexist in four (III, IV, V and VI) oxidation 

states in solution under environmentally relevant conditions. [19] The possibility for Pu to exist 

in higher oxidation states in a solid form of PuO2+x was shown experimentally for a PuO2 thin 

film, interacted with water [133] and later also confirmed theoretically. [134] The stabilization 

of Pu(V) in a thin PuO2 films was questioned by Neck et al. and a Pu(V)2xPu(IV)1−2xO2+x(s,hyd) 

mixed compound was described as a result of thermodynamic calculations. [20]  

The main goals of this section include: 

1) Development, building and testing of a cell for investigations of Pu species in a liquid 

phase with the potential to be applied for other redox states and other An. The cell fulfils 

the technical and safety requirements for investigations of radioactive samples at the 

INE-Beamline and is optimized for experiments with X-ray beam with 3-4 keV energy; 

2) Probing the Pu 5f and 6d unoccupied valence states of Pu(III), Pu(IV), Pu(V), and Pu(VI) 

by the Pu M5 and L3 edge HR-XANES as well as 3d4f RIXS. It is also aimed to provide 

Pu(III), Pu(IV), Pu(V), and Pu(VI) HR-XANES reference spectra for speciation 

investigations of Pu in laboratory and environmental studies. The Pu L3 edge EXAFS 

technique is applied for characterization of the local atomic environment of Pu.  The 

quantum chemical FEFF9.5 code is applied to complement and assist the interpretation 

of the Pu L3 edge HR-XANES spectra.  
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5.3.2. Material and Methods 
 

5.3.2.1. Pu oxidation states preparation 

Pure solutions of Pu in a given oxidation state [0.01-0.03 M Pu(III), Pu(IV), Pu(V), and Pu(VI)] 

in 1 M HClO4/NaClO4 media were prepared electrochemically in an inert gas glove box starting 

from a purified colloid free 0.05 M Pu(III/IV) stock solution in 1 M HClO4. The successive 

electrochemical steps are briefly outlined: an aliquot of the Pu(III/IV) stock solution was 

quantitatively reduced to Pu(III) at a potential of E = -400 mV [all E values are measured versus 

Ag/AgCl + 3 M NaCl]. Rapid oxidation of Pu(III) at E = 900 mV yielded a solution of 91% 

Pu(IV)aq/9% Pu(VI)aq. This specie was used for Pu L3 edge HR-XANES and XAFS 

measurements. The later prepared Pu(IV)aq contained 6% of Pu(VI)aq and was used for Pu M5 

edge HR-XANES/RIXS measurements. Subsequent oxidation at E=1900 mV led to pure 

Pu(VI) solutions. An aliquot of the latter was neutralized with 1 M NaOH [final pH~4] and 

carefully reduced to pure Pu(V) by applying a potential of E=600 mV. For all spectroscopy 

measurements, a 350 µl aliquot was taken from each fraction before the following 

electrochemical step. Vis-NIR spectra of the samples were recorded before and after the 

synchrotron based measurements. For the Pu(V) sample, 7% of the initial Pu(VI) had 

transformed to other Pu oxidation states [Pu(IV) + Pu(VI)]. 0.004 M colloidal Pu(IV) solution 

in 1 M HClO4 [96% Pu(IV)col + 4% Pu(IV)aq] was obtained by separation of Pu(IV) colloids 

from a supersaturated Pu(IV) solution using a 10 kD (2 nm) ultrafiltration step and used for all 

spectroscopic measurements. 100% purity was achieved for the Pu(III) and Pu(VI) solutions.    

(Pu oxidation state preparations were done by Dr. David Fellhauer, INE). 
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5.3.2.2. Pu L3 edge XAFS and L3/M5 edges HR-XANES/RIXS measurements  

The Pu L3 edges HR-XANES, Pu M5 edge HR-XANES/XANES/RIXS and L3 edge XAFS were 

measured as described in Sections 3.1 and 3.2. The spectral energy range was from 17973 eV 

to 18103 eV with 0.5 eV step size for L3 edge HR-XANES and 3760 eV to 3840 eV with 0.1 

eV step size for M5 edge HR-XANES/XANES. 3d4f RIXS maps were measured for emission 

energies from 3335 eV to 3355 eV with 0.33 eV step size and incident energies from 3770 to 

3793 eV with 0.5 eV step size. An in-house designed inert-gas cell [54] was used for the Pu L3 

edge HR-XANES and EXAFS measurements. For M5 edge HR-XANES/XANES/RIXS 

another suitable cell has been designed, tested and used for the measurements. The cell is 

described later in this section.  

3d4f RIXS maps are useful to determine the correct maximum emission energy for measuring 

HR-XANES spectra. The Pu M5 edge HR-XANES/XANES/3d4f RIXS were recorded two 

times. In September 2014 Pu(III)aq, Pu(IV)col and Pu(VI)aq were studied. The Pu M5 edge HR-

XANES were measured at Eemis=3350.0 eV. In March 2015 Pu M5 edge HR-

XANES/XANES/3d4f RIXS were recorded for Pu(IV)col and Pu(IV)aq. The 3d4f RIXS maps 

were measured at Eemis=3345.8 eV. The different emission energies can be explained by 

variations of the alignment of the spectrometer and have no physical meaning.  

Pu L3 edge EXAFS spectra were Fourier transformed (FT) and modeled with the ARTEMIS 

software (IFEFFIT). [135] The single and multiple scattering paths used to model the 

experimental spectra were calculated by the FEFF8.2 code. A k range of 2.7-9.5 Å-1 was used. 

A shell by shell approach was applied to model the data in R space within a range of R from 

1.05 to 3.7 Å for Pu(IV)col and from R=1.05 to 2.55 Å for the aqueous Pu species.. The 

amplitude reduction factor was set to unity and was fixed during the fitting process.  
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5.3.2.3. Quantum chemical calculations 

Ab-initio quantum chemical calculations of Pu L3 edge HR-XANES spectra and Pu d and f 

density of states (DOS) were performed with the FEFF 9.5 code based on the multiple scattering 

theory. [126] Structures of the Pu aqueous species were optimized using TURBOMOLE and 

DFT/BP86 with TZVP basis sets. For colloidal Pu(IV)aq L3 edge HR-XANES PuO2 crystal 

structure was collected from ICSD (55456). Clusters containing from 10 to 440 atoms were 

used for the calculation of scattering potentials. The core-hole lifetime broadening was reduced 

by 2.5 eV to obtain better agreement between experimental and theoretical spectra. Both dipole 

and dipole + quadrupole transitions are considered. All parameters used in the calculations are 

listed in Table 5.3.1. (Pu structures refinements were done by Dr. Bernd Schimmelpfennig, 

INE). 

 

Table 5.3.1. Input parameters for Pu L3 edge XANES FEFF9.5 calculations; * self-consistent field 

(SCF): controls FEFF's automated self-consistent potential calculations; ** when it is not used the 

f electron density is fixed at the atomic value in order to obtain well converged SCF potentials; *** 

used to customize the energy grid.  

Specie Edge SCF* 
Exchange 

Card 

Unfreezef 

** 

Egrid 

Card *** 
Multipole 

Atomic 

cluster 

size, Å 

Pu(III)aq L3 5.0 1 100 0.05 6 0  0 -2.5 yes -15  0 0.2 dip/dip+quad 10 

Pu(IV)aq L3 5.0 1 100 0.05 6 0  0 -2.5 yes -15  0 0.2 dip/dip+quad 10 

Pu(IV)col L3 5.0 1 100 0.05 6 0  0 -2.5 yes -15  0 0.2 dip/dip+quad 240 

Pu(V)aq L3 5.0 1 100 0.05 6 0  0 -2.5 yes -15  0 0.2 dip/dip+quad 10 

Pu(VI)aq L3 5.0 1 100 0.05 6 0  0 -2.5 yes -15  0 0.2 dip/dip+quad 10 
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5.3.3. Results and Discussion 

By synchrotron based investigations of Pu it is necessary to ensure that the Pu oxidation states, 

especially of air sensitive Pu(III) and Pu(V), are not affected during handling and transportation. 

X-ray induced radiation damage can also take place. Hence, the Pu oxidation states were 

verified before and after the HR-XANES and XAFS experiments using the Vis-NIR 

spectroscopy technique. This is a well-established method for Pu oxidation state analysis. [136] 

Vis-NIR spectra of four electrochemically prepared Pu(III)aq-Pu(VI)aq oxidation states and 

Pu(IV)col measured before and after the Pu L3 edges HR-XANES measurements are plotted in 

Figure 5.3.1. The Vis-NIR spectra were very similar for the species used for the Pu M5 edge 

HR-XANES/RIXS as well. No significant changes in the oxidation states were detected: the 

spectra for Pu(IV)aq show insignificant variations of about 2%. One exception is Pu(V)aq as               

7% of the initial Pu(V)aq has disproportionated to [Pu(IV)aq + Pu(VI)aq]. 
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Figure 5.3.1. Vis-NIR spectra of Pu(III)aq (a), Pu(IV)aq (b, bottom), Pu(IV)col (b, top), Pu(V)aq 

(c) and Pu(VI)aq (d) before (coloured curve) and after (black dashed curve) the experiments. 
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5.3.3.1. Pu L3 edge HR-XANES 

The conventionally measured Pu L3 edge XANES and HR-XANES spectra are plotted in 

Figures 5.3.2.  
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Figure 5.3.2. Conventional Pu L3 edge (a) and HR-XANES (b) of Pu(III)aq, Pu(IV)aq, 

Pu(IV)col, Pu(V)aq and Pu(VI)aq. 
 

The WLs (peak A) have higher intensities for all HR-XANES spectra compared to the 

conventional XANES. Additionally, the Pu(V)aq and Pu(VI)aq HR-XANES spectra exhibit 

better energy resolved post-edge features. The energy distance (ΔE) between features B and C 

measures the bond length (R) between Pu and the axial oxygen atoms (Oaxial): ΔE·R2 = const 

for actinyl-type oxygen bonding typical for Pu(V)aq and Pu(VI)aq. [19, 137] It is estimated, that 

the energy distance between WL and post-edge is 1.7 eV larger for Pu(V)aq compared to 

Pu(VI)aq and agrees with the change in U-Oaxial bond distances, which is decreasing from 1.82 

Å in Pu(V)aq to 1.74 Å in Pu(VI)aq. The HR-XANES spectra allow for more precise evaluation 

of these distances compared to the conventional spectra.  



5.3. Study of the Pu oxidation states in perchloric acid  

97 
 

The energy positions of the most intense feature A of the HR-XANES spectra range from 

18059.7 eV for Pu(III)aq to 18064.3 eV for Pu(VI)aq (Table 5.3.2). It is often used for Pu 

oxidation states analyses.  

Table 5.3.2.  Energy positions of spectral features for the Pu(III)aq, 

Pu(IV)aq, Pu(IV)col, Pu(V)aq and Pu(VI)aq for Pu L3 and M5 edge HR-

XANES spectra. (error bars: ± 0.25 eV (L3 edge), ± 0.05 eV (M5 edge)). 

Specie A, [eV] ΔE, [eV] B, [eV] (B-A), [eV] 

  L3 edge   

Pu(III)aq 18062.4 0 - - 

Pu(IV)aq 18066.8 4.5 - - 

Pu(IV)col 18066.8 4.5 - - 

Pu(V)aq 18064.8 2.4 18077.3 12.5 

Pu(VI)aq 18067.5 5.1 18081.7 14.2 

  M5 edge   

Pu(III)aq 3774.7 0 - - 

Pu(IV)aq 3776.4 1.7 - - 

Pu(IV)col 3776.1 1.4 - - 

Pu(VI)aq 3777.0 2.3 3781.2 4.2 
 

 

 

Quantum chemical calculations performed with the FEFF9.5 code are depicted in Figure 5.3.3. 

The Pu d and f density of states (d-, f-DOS) are plotted along with the Pu L3 edge HR-XANES 

spectra. The L3 edge HR-XANES describes excitation of 2p3/2 electrons predominately to d and 

s unoccupied states as implied by dipole selections rules (the angular momentum quantum 

number changes by ± 1). All spectra are described mainly by the unoccupied d-DOS as it has 

been previously observed for U. [55], [68] 

 

 

 

 

 



5.3. Study of the Pu oxidation states in perchloric acid  

98 
 

0

1

2

3

0

1

2

3

18050 18060 18070 18080

18050 18060 18070 18080

0

1

2

3

 

N
o

rm
a

liz
e

d
 i
n

te
n

s
it
y
 [

a
. 

u
.]

Pu(III)
exp 

 aq

Pu(III)
calc

 dip+quad

Pu(III)
calc

 dip 

d-DOS   f-DOS

Fermi energy

(a)E
f Pu(IV)

exp 
 aq

Pu(IV)
calc

 dip+quad

Pu(IV)
calc

 dip 

d-DOS   f-DOS

Fermi energy

(b) E
f

 

 

N
o

rm
a

liz
e

d
 i
n

te
n

s
it
y
 [

a
. 

u
.]

Pu(V)
exp 

 aq

Pu(V)
calc

 dip+quad

Pu(V)
calc

 dip 

d-DOS   f-DOS

Fermi energy

(d) E
f

 

Energy [eV]

Pu(IV)
exp 

 col

Pu(IV)
calc

 dip+quad

Pu(IV)
calc

 dip 

d-DOS   f-DOS

Fermi energy

(c) E
f

 

 

N
o

rm
a

liz
e

d
 i
n

te
n

s
it
y
 [

a
. 

u
.]

Energy [eV]

Pu(VI)
exp 

 aq

Pu(VI)
calc

 dip+quad

Pu(VI)
calc

 dip 

d-DOS   f-DOS

Fermi energy

(e) E
f

 
 

Figure 5.3.3. Pu L3 edge HR-XANES spectra, FEFF9.5 calculations of HR-

XANES spectra and d- and f-DOS of aqueous Pu(III)aq (a), Pu(IV)aq (b), Pu(IV)col 

(c), Pu(V)aq (d) and Pu(VI)aq (e). 
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The Pu L3 edge HR-XANES spectra of Pu(V)aq and Pu(VI)aq suggest the presence of a pre-edge 

feature not visible in the conventional spectrum. The still large core-hole and experimental 

broadening affect the spectra and prevent detection of these weak absorption resonances. A pre-

edge is mainly expected for higher Pu oxidation states of the (PuO2)
2+ ion, Pu(VI) (Figure 5.3.3 

e), due to a higher number of f electron vacancies in the 5f shell. Possible contributions   of 

transitions to f states to the pre-edge region of the spectra have been explored. A pre-edge 

absorption resonance appears in the spectra only by considering dipole and quadrupole 

transitions in the calculations, whereas no pre-edge is found when dipole transitions are 

included (Figure 5.3.3 e). The spectrum of Pu(VI)aq calculated by FEFF9.5 has the best 

agreement with the experimental HR-XANES spectrum. A well resolved multi peak structure 

arises in the d-DOS of Pu(IV)col spectrum and a double peak in the d-DOS of Pu(IV)aq. The 

peak A and post-edge peak positions in Pu(VI)aq agree well with the experimental spectrum, 

whereas in Pu(V)aq the post-edge is shifted considerably to higher energies. This indicates that 

the calculated Pu-Oaxial distance (1.74 Å) is shorter by 0.08 Å as compared to the experimentally 

determined Pu-Oaxial bond distance (1.82 Å). EXAFS analyses confirm this observation.  
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5.3.3.2. Pu L3 edge EXAFS 

The Pu L3 edge FT-EXAFS spectra in R-space are presented in Figure 5.3.4.  
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Figure 5.3.4. R-space fit results for the Pu(III)aq, Pu(IV)aq, Pu(IV)col, 

Pu(V)aq and Pu(VI)aq Fourier transformed magnitude of EXAFS data 

(coloured rhombs) and their best fits (dash dot line). The arrow indicated 

Pu-Pu coordination peak in Pu(IV)col. 
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Pu(III) and Pu(IV) are bound to the O atoms of water molecules: coordination number 

(N)=10.5(8) at 2.48(1) Å (Pu(III)) and N=11.2(5) at 2.34(1) Å (Pu(IV)) (Table 5.3.3). An 

additional peak at about 3.78 Å is found in the Pu(IV)col  spectrum, which is assigned to the Pu 

second coordination sphere. The low amplitude of this peak indicates coordination to a small 

number of Pu atoms (6) compared to stoichiometric bulk PuO2 (12) and may account for 

disorder and low dimensions of the colloids. [138] The Pu(V) and Pu(VI) FT-EXAFS spectra 

exhibit two intense peaks. The peak at lower Pu-O distance originates from the Oaxial atoms of 

the plutonyl ion, whereas the second intense peak describes the scattering of the photoelectron 

from the equatorial O atoms of the water ligands. The fit analyses show that the axial and 

equatorial Pu-O distances are 1.74(1) Å (Pu(VI)), 1.82(1) Å (Pu(V)) and 2.39(1) Å (Pu(VI)), 

2.50(1) Å (Pu(V)), respectively (Table 5.3.3). The results are in a good agreement with those 

obtained in a previous Pu oxidation states EXAFS study. [19] Additional plots of EXAFS data 

and best fits are given in Appendix, Figures AIII.1-3. 

Table 5.3.3. EXAFS fit results: SP - scattering path, N – coordination number, R – bond distance, σ2 

- Debye-Waller factor, ΔE0 – energy shift of the ionization potential, S0
2 – amplitude reduction factor 

and r - goodness of fit parameter. Errors are given in the parentheses as the last decimal in the fit 

value.  

Sample SP N R, [Å] ΔE0, [eV]  σ2[·10-3Å2] S0
2 r 

Pu(III)
aq

 Pu-O1 10.5 (8) 2.48 (1) -3.2 (8) 10 (2) 1.0 0.001 

Pu(IV)
aq

 Pu-O1 11.2 (5) 2.34 (1) -4.4 (5) 10 (1) 1.0 0.001 

Pu(IV)
col

 Pu-O1 

Pu-Pu 

7.9 (1) 

6.2 (9) 

2.30 (1) 

3.78 (2) 

4.2 (8) 

 

10 (1) 

 

1.0 0.006 

 

Pu(V)
aq

 Pu-O1 

Pu-O2 

2.0 (4) 

2.7 (3) 

1.82 (2) 

2.50 (1) 

5.2 (7) 

 

3 (2) 

 

1.0 0.005 

Pu(VI)
aq

 Pu-O1 

Pu-O2 

1.7 (2) 

3.6 (4) 

1.74 (1) 

2.39 (1) 

5.5 (9) 

2.5 (9) 

6 (5) 

4 (5) 

1.0 0.002 
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5.3.3.3. Pu M5 edge HR-XANES 

For the first time ever aqueous Pu species have been analyzed applying the HR-XANES 

technique at the Pu M5 edge. One essential part of these experiments performed at the INE-

Beamline was the design development, manufacture and tests of a suitable liquid cell. The main 

challenge was to avoid the chemical reaction of the HClO4 solution with the polyether ether 

ketone (PEEK) cell and the 13 µm thick Kapton window embedded onto the frame made from 

a Kapton tape (Figure 5.3.5).  

 
 

                         

                          
                

 

Figure 5.3.5. 3D design (top) and a photograph (bottom left) of the An M4,5 edge HR-XANES 

liquid cell (top). In the first version of the cell 10 µm PP has been used as a window material; as 

a result the colour of the Pu oxidation states can be distinguished and correlate well with the 

colours of the laboratory prepared Pu oxidation states (photograph bottom right) used for the Pu 

M5 edge HR-XANES/RIXS measurements. 
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1M HClO4 was found to be appropriate as no chemical damage of the cell and the window as 

well as no significant evaporation was observed after the acid solution remained in the cell for 

seven days. Four of the liquid cells were placed in an inert gas cell, which has an adapted design 

of the standard INE-Beamline inert-gas cell, [54] including larger windows and an inner volume 

(Figure 5.3.5). A single Pu M5 edge HR-XANES spectrum was measured for 60 min for a 

sample containing 0.05 M Pu. The intensity measured at the maximum of the WL of the Pu M4 

edge HR-XANES spectrum was 1760 counts/s at 122 mA ring current. Two scans were 

sufficient to obtain a high signal to noise ratio and to check for the reproducibility of the spectral 

features (Figure 5.3.6 a, b, c, d). 
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Figure 5.3.6. Conventional Pu M5 edge (black dashed 

curves) and HR-XANES (coloured curves) spectra of 

Pu(III)aq (a), Pu(IV)col (b), Pu(IV)aq (c), and Pu(VI)aq (d). 

Figure 5.3.7. 3d4f RIXS maps of 
Pu(III)aq (a), Pu(IV)col (b), Pu(IV)aq (c), 

and Pu(VI)aq (d). 
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The Pu M5 edge HR-XANES spectra obtained for the Pu(III)aq, Pu(IV)col, Pu(IV)aq and Pu(VI)aq 

species are plotted in Figure 5.3.5 in comparison to conventional M5 edge XANES spectra 

recorded in total fluorescence yield detection mode. The spectra exhibit narrower transition 

features compared to the conventional measurements due to smaller contribution of core-hole 

lifetime broadening effects. The Pu M5 edge HR-XANES describe transitions of 3d5/2 electrons 

to unoccupied U 5f states. The 5f valence states of An have a significant role in the chemical 

bonding. [37, 139] The main absorption peak of the HR-XANES spectra shifts to higher 

energies following the trend Pu(III)aq (0 eV) < Pu(IV)col (+1.4 ± 0.05 eV) < Pu(IV)aq [+ 6% 

Pu(VI)aq] (+1.7 ± 0.05 eV) < Pu(VI)aq (+2.3 ± 0.05 eV) (Table 5.3.2). The spectrum of Pu(VI) 

exhibits additional structures not observed in the conventional measurement. Pu(VI) is bound 

to two axial O atoms (Pu-Oaxial) forming short, linear bonds with a geometry analogous to the 

uranyl moiety. The Pu M5 edge HR-XANES resembles that of the U M4 edge U(VI) spectrum 

of UO3·1-2H2O discussed in Section 5.2. The absorption resonances A and B can be assigned 

similarly to electronic transitions from the 3d5/2 core level to 5fδ/5fϕ, 5fπ (A), and 5fσ (B) 

orbitals. The varying intensities and energy positions arise from differences in valence 

electronic configuration (5f0 for U(VI) and 5f2 for Pu(VI)) but can be as well influenced by the 

increased nuclear charge of Pu compared to U as well as the bonding interactions with the axial 

and equatorial ligands. How the Pu M5 edge HR-XANES spectrum is affected by these factors 

will be investigated by future quantum chemical calculations and comparison with suitable 

reference systems.  
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Figure 5.3.6 depicts the Pu M5 edge HR-XANES spectrum of the Pu(IV)col and the 94%  

Pu(IV)aq + 6% Pu(VI)aq samples. The method is clearly very sensitive to small variations of the 

Pu oxidation states as the spectrum containing 6% of Pu(VI) shifts with +0.3 eV to higher 

energies. In addition, a structure grows in intensity at the energy position (3782.2 eV) 

characteristic for the main absorption peak of Pu(VI) (arrow in Figure 5.3.8).  

The Pu L3 edge HR-XANES technique has much lower sensitivity. This is demonstrated in 

Figure 5.3.2 b. It is well visible that there is no energy shift between the Pu L3 edge XANES 

and HR-XANES spectra of Pu(IV)aq and Pu(IV)col. Note that about 9% Pu(VI)aq were present 

in the Pu(IV)aq sample. 
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Figure 5.3.8. Pu M5 edge HR-XANES spectra of Pu(IV)col and [Pu(IV)aq + 6% Pu(VI)aq]. 

Peak B is enlarged in the inset. 
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The peaks visible in the HR-XANES spectra can be clearly correlated to the more intensive 

structures of the 3d4f RIXS maps (Figure 5.3.7). All 3d4f RIXS maps exhibit also weak 

resonances located at lower emission energy corresponding to 4f5/2→3d5/2 transitions.  

The HR-XANES spectra are cut through the RIXS maps (see arrows in Figure 5.3.7) at the 

energy positions of the maxima of the normal emission lines measured well above the Pu M5 

absorption edge (3778 eV). These normal emission lines overlap for the different Pu oxidation 

states. It is well visible that the absorption resonances are shifted by ~1.35 eV to higher emission 

energies compared to the normal emission in the 3d4f RIXS maps. This indicates that the 

3d95fn+1 electronic configuration in the intermediate state of e.g. Pu(VI) screens better the core-

hole compared to the completely ionized case 3d95fn. Interestingly, the effect is not that strong 

for U(VI) (Section 5.1, Figure 5.3.6) as the main resonance is shifted only by about +1 eV 

compared to the normal emission. This can be explained with the more delocalized f states of 

U compared to Pu and therefore weaker interaction of the electron excited in the 5f states with 

the core-hole for U compared to Pu. 
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5.3.4. Conclusion 

Pu L3 and M5 edge HR-XANES and 3d4f RIXS spectra of Pu(III), Pu(IV), Pu(V) and Pu(VI) 

in aqueous solution as well as colloidal Pu(IV) have been measured. The spectra have reduced 

spectral broadening resulting in better energy resolved features for all regions of the spectra. Pu 

M5 edge HR-XANES spectra measure relative energies of Pu 5f valence orbitals and thereby 

can help to benchmark and drive improvement in theoretical calculations of electronic 

structures of Pu. In addition, the HR-XANES technique is valuable in speciation investigations 

as it provides increased sensitivity to minor contributions of Pu oxidation states in samples 

containing mixtures. It is expected that the resolution and photon flux will increase at the new 

CAT-ACT Beamline (ANKA), which will allow performing the analyses of An oxidation states 

for diluted samples. In principle, HR-XANES should allow to detect experimentally the 2-4% 

of Pu(V) in the Pu(V)2xPu(IV)1−2xO2+x(s,hyd) compound, which has been postulated based on 

thermodynamic calculations by Neck and colleague. [20] 

It is demonstrated that the 3d4f RIXS can be used as a tool for investigations of the level of 

delocalization of 5f valence orbitals of An for samples in solid, liquid phase and during chemical 

reactions as well as under extreme conditions.   
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6. Summary and Outlook 

In this Doctoral Project it was for the first time unambiguously demonstrated that the U(V) 

redox state is stable for up to 373 days when incorporated in octahedral sites of magnetite 

nanoparticles at concentrations of 1000 ppm of U(VI) when co-precipitated with magnetite. 

The stabilization of U(V) in the structure of magnetite did not appear to depend on the U 

concentration. U concentrations (3000-10000 ppm) above the solubility limit (~1000 ppm) of 

U(VI) led to precipitation of U(VI) phases, which recrystallize to UO2+x after more than 10 days 

interaction with the magnetite particles. The results clearly demonstrated that there are redox 

and recrystallization processes with relatively slow (> 10 days) kinetics. U(V) is also found to 

substantially contribute after reaction of Fe(II) with U(VI) sorbed for 175 days on the magnetite 

nanoparticles. The unambiguous characterization of U(V) is a breakthrough in a long discussion 

and will likely motive future broad application of the U M4 edge HR-XANES for geochemical 

speciation investigations of U. In such type of investigations, the short-term U redox speciation 

and kinetics can been studied in more details under controlled pH/Eh conditions by in-situ U 

M4 edge HR-XANES experiments. In combination with in-situ XRD, this allows for the 

recrystallization processes of Fe to be followed during the formation process of magnetite. It 

has been demonstrated that a fingerprint approach using U M4 edge HR-XANES can be 

effectively applied for characterization of U-yl and U-ate type of U-Oaxial chemical bonds. 

Using this approach it was shown that U-Oaxial bonds likely have more covalent character in γ-

UO3 compared to α-UO3. The order of the increase in covalency in the UO3 polymorphs was 

found to be the same as suggested by the spectroscopy and the thermodynamic results based on 

comparison of Gibbs free energies of formation  (α-UO3 < β-UO3 < γ-UO3 < UO3·1-2H2O). 

These studies also demonstrated the very high sensitivity of the An M4,5 edge HR-XANES to 

small changes of the U-Oaxial chemical bond. 
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It was shown that both M4,5 and L3 edges HR-XANES and RIXS immerge as highly valuable 

for investigations of 5f and 6d valence states of An. For the first time an in-situ cell combining 

electrochemistry with UV-Vis and U M4 edge HR-XANES has been developed, built and 

applied for the characterization of the U 5f valence states of U(VI) and U(V) carbonate 

complexes that are free from experimental artefacts. Changes in the relative energies of the 5f 

based orbitals of the U and the energy shift of the absorption edge induced by the presence of 

an additional electron in the 5fδ orbital of U(V) are measured. The oscillator strengths for 

3d3/2→5fδ transitions are compared for U(VI) and U(V) by evaluating the areas of the first most 

intense spectral peaks. The 5fδ orbital is the LUMO and has non-bonding character for both 

compounds, i.e. no ligand orbitals have significant contributions. The larger relative change in 

the area of the 5fδ peak compared to the area of the entire spectrum upon reduction of U(VI) to 

U(V) suggests less mixing of 2p ligand with metal 5f valence orbitals. These results indicate 

reduced covalency of the U-ligand bonding for the U(V) compound and will be verified with 

quantum chemical calculations currently being carried out. The area of each peak is 

proportional to the 5f content of the molecular orbital, which this peak probes. The U M4 edge 

HR-XANES results compared to equivalent measurements performed in conventional 

transmission and total fluorescence yield mode in order to validate if the HR-XANES is directly 

proportional to the absorption cross section.  

As a following step the in-situ cell can be upgraded for spectroscopic studies of the complete 

environmentally relevant U oxidation states series U(IV)-U(V)-U(VI) and of redox reactions of 

other An. 
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A set of inert gas liquid cells have been designed built and applied for Pu L3 and M5 edge HR-

XANES/RIXS investigations of Pu(III)-Pu(IV)-Pu(V)-Pu(VI) in perchloric acid for the first 

time. The changes of the Pu 5f and 6d unoccupied states and the energy shifts of the absorption 

edges of the spectra as a function of the additional 5f electrons upon reduction of Pu from Pu(III) 

to Pu(VI) have been measured. Due to difficulties in stabilizing Pu(V) for sufficiently high Pu 

concentrations, it was not possible to measure the Pu M5 edge HR-XANES/RIXS spectra of the 

this Pu specie. Comparison of Pu with U 3d4f RIXS demonstrated that this technique can be 

used for precise measurements of the level of localization of 5f orbitals of An. It also revealed 

that the Pu L3 edge HR-XANES can be applied for detection of small changes in the Pu-O bond 

distances for (PuO2)
2+ containing species. This is particularly important for samples with low 

Pu content (< 200 ppm), which is below the limit of detection for EXAFS measurements.  

The work presented in this dissertation demonstrated the high sensitivity of the An M4,5 edge 

HR-XANES techniques compared to the An L3 edge XANES/HR-XANES for detection of An 

oxidation states present in small amounts in mixtures. Reference spectra are needed for 

speciation analyses of U and Pu in laboratory and environmental systems, and have been 

measured. Currently the methods under development are expected to provide quantitative 

information.  

In a future experiment at the CAT-ACT beamline at ANKA, it will be attempted to detect for 

the first time experimentally the 2-4% of Pu(V) shown by thermodynamic calculation by Neck 

and colleagues to exist in the Pu(V)2xPu(IV)1−2xO2+x (s,hyd) compound. [20]. 
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Figure AI.1. R-space fit results for the Um10, Um6, Um3, Um1 and Um1a samples; 

magnitude of the FT-EXAFS (colored rhombs) and their best fits (black dash dot line); 

imaginary parts of the FT-EXAFS (light colored triangles) and their best fits (black 

dash line). The magnitudes of the FT-EXAFS fits for the different shells are shown 

vertically shifted.   
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Figure AI.2. k3-weighted filtered χ(k) for the Um10, Um6, Um3, Um1, and Um1a 

samples (colored rhombs) and their best fits (black solid line). 
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Figure AI.3. Back-transformed EXAFS for the Um10, Um6, Um3, Um1 and Um1a samples 

(colored rhombs) and their best fits (black solid line). 
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Figure AI.4. N and R values for U-O1, U-O2, U-Fe1 and U-U1 shells found from the 

best EXAFS fits for the Um10, Um6, Um3, Um1 and Um1a samples. 
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Table AII.1. FEFF9.6 input files for calculations of U M4 edge XANES spectra of α-UO3, β-UO3,                 

γ-UO3 and UO2. 

 

 
 
 
 
 
 

 

 

TITLE Uranium(VI) oxide-alpha 

 

CONTROL 1 1 1 1 1 1 

PRINT 1 0 0 0 0 0 

EDGE M4 

S02 1.0 

COREHOLE FSR 

XANES 6 0.05 0.3 

FMS 7 0      

LDOS -20 20 0.2  

SCF 3.7 0 30 0.05 10  

UNFREEZEF 

EXCHANGE 0 0 -2.5 -1  

POTENTIALS 

0 92 U     

1 92 U     

2 8 O    

TITLE Uranium(VI) oxide-beta  

 

CONTROL 1 1 1 1 1 1 

PRINT 1 0 0 0 0 0 

EDGE M4 

S02 1.0 

COREHOLE FSR 

XANES 5 0.05 0.3 

FMS 10 0      

LDOS -20 20 0.2  

SCF 7 0 100 0.05 10  

UNFREEZEF 

EXCHANGE 0 0 -2 -1  

POTENTIALS 

0 92 U     

1 92 U     

2 8 O 

 

 

TITLE Uranium(VI) oxide-gamma 

 

CONTROL 1 1 1 1 1 1 

PRINT 1 0 0 0 0 0 

EDGE M4 

S02 1.0 

COREHOLE FSR 

LDOS -20 20 0.2  

SCF 7 0 100 0.05 10  

UNFREEZEF 

EXCHANGE 0 0.5 -2 -1  

XANES 5 0.05 0.3 

FMS 10 0      

POTENTIALS 

0 92 U     

1 92 U     

2 8 O 

 

 

TITLE Uranium(IV) dioxide 

 

CONTROL 1 1 1 1 1 1 

PRINT 1 0 0 0 0 0 

EDGE M4 

S02 1.0 

COREHOLE FSR 

LDOS -15 5 0.2  

SCF 7.0 0 100 0.05 10 

UNFREEZEF 

EXCHANGE 0 0.5 -2 -1  

XANES 5.0 0.05 0.3 

FMS 10 0      

POTENTIALS 

0 92 U  

1 92 U  

2 8 O  
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Figure AIII.1. R-space fit results for the Pu(III)aq, Pu(IV)aq, Pu(IV)col, Pu(V)aq and 

Pu(VI)aq species; magnitude of the FT-EXAFS (colored rhombs) and their best fits 

(black dash dot line); imaginary parts of the FT-EXAFS (light colored triangles) and 

their best fits (black dash line). 
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Pu(V)aq and Pu(VI)aq (colored rhombs) and their best fits (black solid line). 
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Figure AIII.3. Back-transformed EXAFS for the Pu(III)aq, Pu(IV)aq, Pu(IV)col, Pu(V)aq 

and Pu(VI)aq and their back-transformed fits. 
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