
Algorithmic Advancements and Massive
Parallelism for Large-Scale Datasets in
Phylogenetic Bayesian Markov Chain

Monte Carlo

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Andre Jakob Aberer

aus München

Tag der mündlichen Prüfung: 7. Dezember 2015

Erster Gutachter: Prof. Dr. Alexandros Stamatakis
Karlsruher Institut für Technologie

Zweiter Gutachter: Prof. Dr. Bernhard Misof
Universität Bonn

Hiermit erkläre ich, dass ich diese Arbeit selbständig angefertigt und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt sowie die wörtlich oder inhaltlich
übernommenen Stellen als solche kenntlich gemacht habe. Ich habe die Satzung der
Universität Karlsruhe (TH) zur Sicherung guter wissenschaftlicher Praxis beachtet.

Frankfurt, 24. April 2016
Andre J. Aberer

iii

Zusammenfassung

Ein bedeutendes Forschungsgebiet im Bereich der Bioinformatik ist die Phyloinformatik. In der
Phyloinformatik werden gegenwärtig statistische Modelle verwendet um auf evolutionäre Ver-
wandschaftsbeziehungen noch bestehender Spezies zu schließen. Anders gesagt, es wird versucht
den Baum des Lebens auf der Basis von genetischen Eingabedaten in silico zu berechnen. Im
Verlauf des letzten Jahrzehnts hat der technologische Fortschritt bei der Sequenzierung im Nass-
labor zu Datensätzen bislang unbekannten Ausmaßes geführt. Gegebene analytische Methoden
auf stetig wachsenden Datensätzen anzuwenden, stellt eine Herausforderung für die Informatik
dar. Somit wird die Skalierbarkeit von Software so wichtig wie die kontinuierliche Weiterentwick-
lung der zugrunde liegenden Methoden und Algorithmen.

Die bayesianische Statistik bietet ein etabliertes Verfahren in der Phyloinformatik, um evo-
lutionäre Bäume unter komplexen Modellen mittels der Markov-Ketten-Monte-Carlo-Methode
(MCMC) zu berechnen. Neuartige Datensätze, die ganze Genome umfassen, haben Hauptspeicher-
und Laufzeitanforderungen, die nur mit Hilfe großer Computer-Cluster und Supercomputer
bewältigt werden können. Die Skalierbarkeit bestehender Anwendungen beschränkt sich jedoch
auf höchstens einen Computerknoten mit geteiltem Hauptspeicher (der somit mehrere CPUs
umfasst). In dieser Arbeit wird ein benutzerfreundliches Softwarepaket vorgestellt, das über eine
dreistufige MPI-Pthread-Hybrid-Parallelisierung verfügt. Bei ausreichenden Computerressourcen
können damit dem Stand der Technik entsprechende Analysen auf Datensätzen von fast unbe-
schränktem Ausmaß durchgeführt werden. Die Software integriert bestehende Optimierungen
(zum Beispiel zur Speicherreduzierung), die für die Maximum-Likelihood-Methode entwickelt
wurden. Darüber hinaus setzt die Software technische Verbesserungen um, die spezifisch für
Berechnungen mittels bayesianischer Statistik entwickelt wurden. Es werden weiterhin Optimie-
rungen eingeführt, die von generellem Interesse für Anwender der MCMC-Methode sind. Konkret
handelt es sich hierbei einen nicht-blockierenden Algorithmus für die Metropolis-Kopplung von
Markov-Ketten.

Zur methodischen Verbesserung des bayesianischen MCMC-Verfahrens in der Phyloinforma-
tik wird ein Aspekt untersucht, der ungefähr 50% der Gesamtlaufzeit der Methode in Anspruch
nimmt: Hierbei handelt es sich um das Sampling von Kantenlängen des evolutionären Bau-
mes. Zunächst wird eine neuartige Charakterisierung der A-posteriori-Verteilung von evoluti-
onären Kantenlängen vorgenommen. Daraufhin wird ein Vorschlagsmechanismus für das MCMC-
Verfahren abgeleitet, der wesentlich effizienter ist als herkömmliche Kantenlängen-Vorschlags-
mechanismen. Dies wird erreicht, indem Kantenlängen gemäß einer Γ-Verteilung vorgeschlagen
werden, welche die A-Posteriori-Verteilung der Kantenlängen unter Zuhilfenahme des Newton-
Raphson-Verfahrens approximiert. Im Zuge der Newton-Raphson-Optimierung liegen optimale
Kantenlängen und die Ableitungen der unkorrigierten logarithmischen A-posteriori-Wahrschein-
lichkeit vor, die den Ausgangspunkt der Approximation darstellen. Des Weiteren wird untersucht,
wie sich die A-posteriori-Wahrscheinlichkeiten von Kantenlängen ändern, wenn eine neue Topolo-
gie vorgeschlagen wird. Hierauf aufbauend, werden Hybridvorschlagsmechanismen evaluiert, die
Topologie und Kantenlängen gleichzeitig vorschlagen. Es ist darauf zu schließen, dass für eine
vorgeschlagene Topologie suboptimale Kantenlängen kein essentielles Hindernis für die Effizienz
gängiger Topologievorschlagsmechanismen darstellen.

Schlussendlich wird das so-genannte Schurken-Taxon-Problem behandelt, in dem es um Spe-
zies geht, deren Position sich im Baum des Lebens nicht eindeutig festlegen lässt. In einer
Bootstrap-Analyse (zur Ermittlung von Konfidenzwerten für evolutionäre Verwandtschaftsbezie-
hungen) können Schurken-Taxa verschiedene evolutionäre Positionen in den zugrunde liegenden

Bootstrap-Replikat-Bäumen annehmen. Der Informationsgehalt der Statistik einer Bootstrap-
Analyse lässt sich erhöhen, indem Schurken-Taxa aus den Bootstrap-Bäumen entfernt werden.
Die Identifikation einer Menge von Schurken-Taxa, die den Informationsgehalt optimiert, ist NP-
hart. In dieser Arbeit wird ein exakterer Algorithmus zur Lösung diesen Problems eingeführt
(dem jedoch immer noch ein Greedy-Verfahren zugrunde liegt). Die effiziente Implementierung
dieses Algorithmus liefert Laufzeitverbesserungen von bis zu drei Größenordnungen im Vergleich
zu einem zuvor publizierten Algorithmus. Der Algorithmus übertrifft einen ähnlichen wesentlich
stärker heuristisch orientierten Algorithmus sowohl in Laufzeit als auch bezüglich der Qualität
(das heißt dem Informationsgehalt) des Ergebnisses. Im Rahmen der resultierenden paralleli-
sierten Methode wird auch ein Webserver (mit Visualisierung) zur Verfügung gestellt, der es
Benutzern erlaubt, die Ergebnisse verschiedener algorithmischer Parametrisierungen zu verglei-
chen. Somit können Benutzer auf interaktive Weise in ihren Datensätzen andernfalls verborgene
Hypothesen empirisch sichtbar machen.

vi

Abstract

One of the prominent research areas in the field of bioinformatics is phyloinformatics. Current
phyloinformatics employs statistical models for unraveling evolutionary relationships among ex-
tant species. In other words, we strive to infer the tree of life in silico based upon genetic input
data. Over the past decade, advances in wet-lab sequencing technology (namely, next-generation
sequencing and third-generation sequencing) have given rise to datasets of unprecedented di-
mensions. These datasets induce a high computational burden for analytical methods. Thus,
improving scalability is as important as continued methodological and algorithmic improvements.

Bayesian inference is a well-established method in phyloinformatics for reconstructing evolu-
tionary trees under complex evolutionary models using the Markov chain Monte Carlo (MCMC)
method. Emerging genome-sized datasets have memory and runtime requirements that can only
be met by large clusters and supercomputers, yet scalability of existing applications is limited to
at most one shared-memory computing node (i.e., several CPUs). We introduce a user-friendly
software package employing a three-tier MPI-Pthreads hybrid parallelization that (given enough
resources) allows conducting state-of-the-art analyses on datasets of almost arbitrary size. This
tool integrates existing optimizations (e.g., memory saving techniques) that have been devel-
oped for maximum likelihood inference. Furthermore, it contains technical improvements that
are specific to Bayesian inference. We introduce optimizations that are of general interest to
practitioners of MCMC, such as a non-blocking algorithm for Metropolis-coupled chains.

For the methodological improvement of phylogenetic Bayesian MCMC, we examine an aspect
that accounts for approximately 50% of the overall runtime in Bayesian phylogenetic inference:
sampling the branch lengths of evolutionary trees. First, we present a novel characterization of
the posterior distribution of evolutionary branch lengths. Then, we derive a proposal mechanism
for the MCMC that is substantially more efficient than traditional branch length proposals. We
achieve this by proposing new branches according to a Γ distribution that approximates the
branch length posterior via the Newton-Raphson method. Thereby, we obtain optimized branch
lengths and their derivatives of the uncorrected logarithmic posterior probability that form the
basis of our approximation. Moreover, we examine how branch length posteriors change when
new tree topologies are proposed and evaluate hybrid proposals that propose a topology and new
branch lengths simultaneously. We find that, for popular topological proposals, branch lengths
that are suboptimal for the proposed topology do not affect MCMC efficiency substantially.

Finally, the so-called rogue taxon problem revolves around species with an unclear position in
the tree of life. In a bootstrap analysis (which tests statistical support for evolutionary relation-
ships), rogue taxa may assume different positions in the bootstrap replicate topologies. Excluding
these species from the tree set results in more informative summary statistics. However, identi-
fying a set of taxa that maximizes informativeness is NP-hard. In this thesis, we present a more
exact graph-based algorithm for determining rogue taxa (that however still is greedy in nature).
Its efficient implementation results in a runtime improvement of more than three orders of mag-
nitude compared to a previously published näıve algorithm. It outperforms a related strongly
heuristic algorithm both in terms of runtime and quality (i.e., informativeness) of the result.
The resulting parallelized method is accompanied by a web server (including visualization) that
allows users to compare the results of various algorithm parametrizations. Thus, users can in-
teractively explore and uncover hypotheses about otherwise hidden evolutionary relationships in
their datasets.

Acknowledgments

First and foremost, I would like to thank Prof. Alexandros Stamatakis for several years
of excellent scientific supervision, for sharing his expertise and for providing me with
guidance and freedom in equal parts for accomplishing this thesis.

I am grateful to Prof. Bernhard Misof for his interest in my research and for agreeing
to review this thesis. Furthermore, I would like to express my sincere gratitude to
Prof. Fredrik Ronquist for hosting my research stay at the Naturhistoriska riksmuseet in
Stockholm, many discussions on Bayesian matters and the intensive research experience
on Öland.

On a personal note, I am thankful for the consistent support of my parents Jakob and
Anita and my brother Dominik. In particular, my deepest gratitude goes to Sabrina
with whom I could share the ups and downs of my scientific development like with no
other person.

As a research venue, the Exelixis lab excels by bringing together a talented group
of people with diverse backgrounds. Thus, a thanks for many hours of interesting dis-
cussions and collaboration goes to Fernando Izquierdo-Carrasco, Simon Berger, Nikos
Alachiotis, Pavlos Pavlidis, Kassian Kobert, Jiajie Zhang, Solon Pissis, Tomáš Flouri,
Diego Darriba, Paschalia Kapli, Alexey Kozlov and Lucas Czech. Moreover, I am happy
that my paths crossed with Mark Holder, Emily McTavish, Will Pearse and Christian
Goll.

Finally, I would like to express my gratitude to Klaus Tschira, founder of the Heidelberg
Institute for Theoretical Studies which provided the funding for my position.

ix

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Scientific Contribution . 2
1.3 Thesis Structure . 3

2 Concepts in Evolutionary Bioinformatics 5
2.1 Evolution . 5
2.2 Sequence Alignment . 7
2.3 Phylogenetic Trees . 9
2.4 Distance-Based Phylogenetic Inference . 11
2.5 Maximum Parsimony . 11
2.6 Inference Under Probabilistic Models . 13

2.6.1 Probabilistic Evolution . 13
2.6.2 Likelihood Computation . 15
2.6.3 Variable Rates Among Characters 18
2.6.4 Maximum Likelihood Analysis . 20

3 Elements of Bayesian Inference in Phylogenetics 23
3.1 Methodology . 23

3.1.1 Bayesian Inference . 23
3.1.2 Metropolis-Hastings Algorithm . 25
3.1.3 Priors . 27
3.1.4 Tuning Proposals . 30
3.1.5 Assessing Convergence . 31

3.2 Proposals for Continuous Parameters . 33
3.2.1 Sliding Window . 33
3.2.2 Multiplier . 34
3.2.3 Node Slider . 37
3.2.4 Tree Length Multiplier . 40
3.2.5 Dirichlet Proposals . 41

3.3 Topological Proposals . 44
3.3.1 Stochastic Topology Proposals . 44
3.3.2 Guided SPR Proposals . 46

3.4 Metropolis-Coupled Markov Chain Monte Carlo 48
3.5 Summary . 49

xi

Contents

4 Advanced Proposals On Branch Lengths and Topology 51
4.1 Examination of Branch Length Posteriors 52

4.1.1 Data and Reference Runs . 52
4.1.2 Expected Acceptance Probability 52
4.1.3 Estimation of Posteriors . 55
4.1.4 Appropriateness of Fitted Distributions 58

4.2 Newton-Raphson-guided Branch Length Proposals 60
4.2.1 Branch Length Optimization . 60
4.2.2 Newton-Raphson on Branch Length Posteriors 62
4.2.3 Proposal Design . 64
4.2.4 Observed Acceptance Probabilities of NR-based Proposals 66
4.2.5 Sampling efficiency . 68

4.3 Topology Hybrid Proposals . 70
4.3.1 Impact of Topological Moves on Branch Lengths 71
4.3.2 Construction of Hybrid Proposals 72
4.3.3 Evaluation of Hybrid Proposals . 75

4.4 Summary . 77

5 Massively Parallel Bayesian Inference 79
5.1 Sequential ExaBayes . 79

5.1.1 Sequential Software Design . 79
5.1.2 Sequential Performance . 84

5.2 Parallelization . 88
5.2.1 Types of Parallelism . 88
5.2.2 Parallelism in Phylogenetic BI . 89
5.2.3 Implementation in ExaBayes . 92
5.2.4 Evaluation of MPI-based Data-Level Parallelism 96
5.2.5 Chain-Level Parallelism . 101

5.3 Load Balancing . 105
5.3.1 Partitioned Analyses in ExaBayes-1.2.1 105
5.3.2 Improved Data-to-Processor Assignment 110

5.4 Memory Reduction Techniques . 112
5.5 Large-Scale Bayesian Inference . 114
5.6 Summary . 120

6 Identification of Rogue Taxa in Tree Sets 123
6.1 Introduction . 123

6.1.1 Consensus Trees And Support . 123
6.1.2 Problem Description: Rogue Taxa 126

6.2 Related Algorithms . 127
6.3 RogueNaRok algorithm . 128

6.3.1 Algorithm Description . 128
6.3.2 Approximation via Dropset Size 131
6.3.3 Updating Instead of Recomputing the Merger Graph 132

xii

Contents

6.4 Evaluation . 132
6.4.1 Runtime Improvements . 132
6.4.2 Qualitative Improvement . 134
6.4.3 Effect on Phylogenetic Accuracy 135

6.5 Webservice . 140
6.6 Summary . 141

7 Conclusion and Outlook 143

List of Figures 145

List of Tables 147

List of Acronyms 149

Bibliography 153

xiii

1 Introduction

1.1 Motivation

The theory of evolution through natural selection as popularized by Charles Darwin is
not merely the very foundation to evolutionary biology as it is known and taught today.
Ideas that go along with this theory comprise (i) the concept that all life can be traced
back to a single common universal ancestor, (ii) that species adapt to their environment
in a process driven by the struggle for existence, and (iii) that traits of individuals within
a species can vary and are passed down to offsprings. Darwin implied that these natural
laws have to apply to the Homo sapiens as well. The impact that these ideas had on
science, society, and human self-perception can not be overrated.

Today, the idea that the branching patterns of species give rise to the tree of life
(TOL) is widely acknowledged. For inferring evolutionary relationships among species,
early evolutionary biologists were restricted to using the morphological traits of species
as their primary data source. After the discovery of the structure of the desoxyribonu-
cleic acid (DNA) by James Watson and Francis Crick, DNA sequencing arose in the
1970ies and provided molecular data as an alternative data source. Through continued
technological progress, the growth of the amount of available sequence data is analogous
to the exponential growth of available computing resources. With the introduction of
second-generation techniques, the growth of available sequence data even surpasses the
increase in available computing power. Wet-lab sequencing progress culminated in the
sequencing of the human genome in 2003. Today, more than ten years later, datasets
have become available that comprise the genomes of several species. These datasets are
assembled to provide definite answers about the evolutionary relationship among the
species under examination.

Involved statistical models have been developed for inferring evolutionary trees from
sequence data. While computational inference under these models initially was deemed
unfeasible, technological progress and algorithmic advancements lead to the inception
of the field of phyloinformatics as a sub-discipline of bioinformatics and scientific com-
puting. Tree inference using Bayesian statistics is highly popular, however no high-
performance computing (HPC) software is available that allows to harness supercom-
puting resources for evolutionary analyses of challenging datasets. Methodologically, a
key component of Bayesian estimation of the TOL are so-called proposal mechanisms.
The lack of efficiency of these proposal functions often renders the Bayesian method
unfeasible for datasets with weak signal. Finally, even the post-analysis of the output
of evolutionary inference tools can become computationally prohibitive. For instance,
Bayesian inference can produce output with millions of tree samples. Computing a con-
sensus tree (i.e., a summary statistic of sampled trees) and refining the result using a

1

1 Introduction

so-called rogue taxa analysis can be computationally prohibitive for existing methods.

1.2 Scientific Contribution

The central contribution of this thesis is the development of a user-friendly production-
level HPC software package (called ExaBayes) for the Bayesian inference of evolution-
ary trees from datasets of almost arbitrary size (given sufficient computing resources)
using state-of-the-art statistical models. First and foremost, ExaBayes features a novel
three-tier MPI/thread hybrid parallelization (at data-level, chain-level and run-level).
We demonstrate, that ExaBayes scales up to 32,768 CPU cores. Thus, ExaBayes is
capable of reducing the runtime of a small analysis from 1 day 4 hours to 43.6 seconds
(whereas short refers to an analysis parameter that usually must be chosen much larger
in order to achieve more accurate results). For chain-level parallelism, ExaBayes in-
troduces a non-blocking algorithm that increases parallel efficiency from 50% to 60% in
the best case. Furthermore, as a HPC tool, ExaBayes implements adapted memory
saving techniques that have previously been developed for maximum likelihood infer-
ence [56] and also implements an improved load balance algorithm developed by Kobert
et al. [60] Also, ExaBayes introduces a load balance mechanism that is specific to
Bayesian MCMC on highly partitioned datasets (i.e., distinct evolutionary parameters
are assumed for different parts of the input data). We also report on first experiences
with analyzing whole-genome datasets using ExaBayes.

The Bayesian framework used in ExaBayes requires a plethora of proposal functions.
Several improvements to existing proposal functions (which are implemented in Exa-
Bayes) are discussed in the thesis. Apart from that, we introduce a novel branch length
proposal that uses a highly accurate approximation of the target branch length posterior
distribution to efficiently propose branch lengths. This proposal is unique in the sense
that, it allows to propose branch lengths de novo, that is, without relying on previous
branch lengths. The design of this proposal required to analyze and characterize branch
lengths in the Bayesian framework in-depth, an effort that has not been conducted
before in that way. In addition, we examine how inferred branch lengths change under
topological proposals and use this information to design novel hybrid proposals that
update the topology and the branch lengths simultaneously.

In this thesis, we also describe a novel algorithm (called RogueNaRok) for iden-
tifying unstable taxa (so-called rogue taxa) in a set/sample of evolutionary trees that
have been inferred by ExaBayes for instance. The state-of-the-art algorithm preceding
RogueNaRok employs several heuristic assumptions that limit the quality of the iden-
tified set of rogue taxa. While still being a greedy algorithm, RogueNaRok is exact
in its assessment of how the removal of species from a tree set will influence the sum-
mary statistics of interest. Algorithmic engineering substantially improves the runtimes
of RogueNaRok. Thus, RogueNaRok allows to identify rogue taxa that are more
harmful than those identified by previously employed algorithms, while being substan-
tially faster. In consequence, RogueNaRok is particularly suited for extremely large
datasets in terms of both, the number of trees, and species.

2

1.3 Thesis Structure

ExaBayes [1] has been published in Molecular Biology and Evolution, a prestigious
peer-reviewed evolutionary biology journal (impact factor: 9.1 as of 2015). Rogue-
NaRok, the stand-alone version, and webservice have been published in Systematic
Biology (impact factor: 14.4 as of 2015). The implementation and empirical evaluation
of the novel load balance algorithm is a minor contribution to a paper by Kobert et
al. [60] that has been published at a peer-reviewed bioinformatics workshop. A third pa-
per that deals with posterior distributions of the branch lengths on a tree, describes the
novel branch length proposal as well as its application to existing topological proposals
has also been published in Systematic Biology.

Several research projects that have been conducted during the course of the thesis do
not form part of this dissertation. A major contribution is AnA-FiTS, a highly efficient
forward-in-time simulator for population genetic datasets. It improves runtimes over
existing methods via a graph-based algorithm and low-level technical optimizations [4].
A plethora of empirical data analyses on supercomputers resulted in a publication about
the evolutionary relationship of the major bird orders that was published in Science [57].
Rogue taxon analyses on empirical dataset with RogueNaRok resulted in contributions
to several peer-reviewed journal publications [27, 87, 111] including a letter published
in Science [77]. The implementation of the Message Passing Interface (MPI) paral-
lelism in the phylogenetic likelihood library (PLL) represents further contributions to
a peer-reviewed journal publication [39] and to a workshop publication [24]. Runtime
analyses, I/O and startup optimizations of ExaML (a tool for HPC maximum likeli-
hood inference) contributed to a peer-reviewed HPC conference paper [110] and a journal
publication [62].

1.3 Thesis Structure

In Chap. 2, we discuss several concepts that are essential for inferring the TOL. In
particular, the statistical models are introduced that underlie TOL inference using the
maximum likelihood method and the Bayesian framework. Subsequently, Chap. 3 pro-
vides a detailed description of how Bayesian inference of the TOL can be accomplished.
Furthermore, essential methodological variations and improvements that have been de-
veloped for ExaBayes are discussed in this Chapter. In Chap. 4, we start with a
detailed statistical analyses of branch lengths in the Bayesian framework. Based upon
these insights, novel methods for proposing branch lengths are introduced and subse-
quently used to develop and evaluate a new class of hybrid proposals that update the
topology and the branch lengths simultaneously. Chap. 5 highlights the implementation
and parallelization of ExaBayes. Initially, the sequential performance of ExaBayes is
compared to the state-of-the-art software MrBayes. Subsequently, the various levels of
parallelization in ExaBayes are described and evaluated. This Chapter also discusses
improvements to load balancing and memory reduction techniques that are implemented
in ExaBayes. Finally, ExaBayes is run on the SuperMUC supercomputer to infer
a tree from a simulated whole-genome dataset that comprises 200 species. Chap. 6
covers aspects pertaining to the post-analysis of trees that have been inferred (resp.,

3

1 Introduction

sampled) using software such as ExaBayes. The quality of the consensus of a set of
trees can be confounded by the presence of unstable taxa (so-called rogue taxa). This
Chapter describes a highly efficient algorithm for the identification of these problematic
taxa. In Chap. 7, we conclude and discuss open questions for future research based on
the results of this dissertation.

4

2 Concepts in Evolutionary Bioinformatics

2.1 Evolution

Evolution is the continuous change of inheritable information over subsequent genera-
tions of a population. Thus, the term evolution does not apply to individuals but to a
population as a whole. According to a simplistic definition (that fits sexually reproduc-
ing individuals), a species is the largest set of individuals that is capable of producing
offspring. In biology, the primary evolutionary information source is the desoxyribonu-
cleic acid (DNA), respectively the ribonucleic acid (RNA). The DNA and RNA are two
similar polymers that are often denoted as the blueprint of life. The entirety of the
inheritable DNA of a species is referred to as genome. Depending on the species, the
genome may be partitioned into several chromosomes, where a chromosome is defined as
a continuous sequence of DNA/RNA monomers (i.e., a small number of comparably sim-
ple molecules that can form a higher-complexity molecule that is called polymer). Genes
are small stretches of the genome that are transcribed into messenger RNA by specific
types of polymerases. The messenger RNA in turn is translated into proteins [124]. DNA
triplets are translated into an amino acid (AA) each and thus proteins emerge as linear
polymers of AAs. A strand of DNA forms a double helix with a reverse complementary
copy of itself. For practical reasons, we usually only consider single-stranded DNA. Es-
sentially, it is a sequence of the four nucleobases: adenine (A), cytosine (C), thymine (T)
and guanine (G). In a double helix, A preferentially bonds with T and C preferentially
bonds with G. Single elements of a DNA sequence often are referred to as base pairs
(bps).

While the redundant structure of the double helix allows for error correction during
DNA replication, the replication process is error-prone by design. The erroneous repli-
cation of DNA is referred to as mutation. Thus, a mutation manifests itself either as a
replacement (i.e., substitution) of one base (resp., bp) or the deletion (resp., insertion)
of a bp into the sequence. Mutations are the primary source of diversity (if inherited to
the succeeding generation) and thus the central driving force behind evolution. Many
mutations do not influence the ability of an individual’s offspring to reproduce. In other
words, they are neutral and do not impact the fitness of the individual (that is de-
termined by its number of offspring). On the other hand, some mutations may cause
fitness disadvantages such as Mendelian diseases (e.g., cystic fibrosis). Furthermore, the
cumulative effect of mutations influences continuous traits such as the body height of
an individual. The idea that the change induced by a mutation has an effect on the
ability of an individual to reproduce is referred to as selection and represents another
important evolutionary force.

A further concept that is specifically studied in population genetics, is genetic drift : if

5

2 Concepts in Evolutionary Bioinformatics

we assume random mating among individuals of a population, there is a chance that the
number of carriers of a positively selected mutation decreases over generations, because
individuals do not reproduce as expected. Thus, even the frequency of an allele (i.e.,
a genetic variant) with deleterious effect may increase over time. Once, all individuals
carry the deleterious mutation, the only way to remove the mutation from the gene pool is
the unlikely event of a backwards mutation or the reintroduction of the extinct allele via
individuals of another population of the same species (i.e., via migration of individuals).
Specifically, for asexually reproducing species, the accumulation of such deleterious and
fixated mutations (i.e., a mutation carried by every individual in a population) can
ultimately lead to a mutational meltdown [72] that drives the species into extinction.

The manifestation and genetic stabilization of two distinct sexes in sexually reproduc-
ing species as well as sexual reproduction itself comes with substantial risks and resource
requirements. An initial attempt to explain the phenomenon of distinct sexes was the
theory that recombination makes mutational meltdown less likely [81]. Recombination
is a process that occurs during reproduction and creates mixed DNA sequences that are
composed of DNA sequences of either parent. Sexually reproducing species have two or
more sets of chromosomes (not counting sex chromosomes), that means every cell in an
organism contains n copies of each chromosome. Thus, in case of a diploid species (i.e.,
two sets of chromosomes), each individual inherits one set from each parent. A single or
multiple cross-over of DNA strands from each of the parents during reproduction (resp.,
the creation of cells used for reproduction) thus creates a mixed descendant strand.

Long-standing genetic isolation of populations of the same species eventually results
in the two populations becoming less compatible and eventually, two new species emerge
from a common ancestor. Specifically, the genetic code for translating triplets of RNA
into AA that form proteins corroborates the hypothesis, that all life on earth originated
from a single common ancestor [113]. However, exchange of genetic material among
species is still possible after a speciation event and was apparently not uncommon in
early times of evolution [28]. Specifically, bacterial species are capable of horizontal gene
transfer, that is, genetic information can be exchanged among individuals of a popula-
tion. Thus, it is still a subject of debate, to which extent the relationship among all
extant species resembles a tree or network of life. The evolutionary forces discussed in
this Section, primarily shape the genetic diversity of populations. However, these pop-
ulation genetic effects have an impact on the evolutionary relationship among closely
related species. For instance, there is a high chance that two or more gene lineages
co-exist in an ancestor species that later diverged into distinct species. If one of these
lineages gave rise to a gene lineage that diverged into a separate species, then the evo-
lutionary history for this gene is different from the evolutionary history of the species.
This effect is known as incomplete lineage sorting (ILS) or deep coalescence. ILS is the
reason, why part of the human genome is more closely related to the orangutan than to
the chimpanzee, whereas the latter is assumed to be the closest evolutionary relative of
man [51].

6

2.2 Sequence Alignment

2.2 Sequence Alignment

Because of the aforementioned evolutionary forces the genomes of distant species (also
referred to as taxa) exhibit substantial differences. Even individuals within homogeneous
diploid populations are typically noticeably genetically different (with the exception of
identical twins). The linear polymer structure of proteins and DNA provide the essential
input data for many problem settings in bioinformatics: sequence data. In case of DNA,
the alphabet of the sequence consists of the four previously mentioned nucleic bases: A,
C, G and T, whereas in case of RNA, uracil (U) replaces T. The alphabet of AA sequences
typically consists of 20 amino acids, not counting species-specific exceptions such as
selenocysteine.

An important step in many phyloinformatic analyses is the alignment of two or more
orthologous regions of the genome. Orthologs are sequences that are similar by descent
from a common ancestor (see Fig. 2.1). In contrast, homologous regions can be similar
because of orthology or because of genetic duplication events. Because of mutations and
insertions, respectively deletions of subsequences, the sequence identity of orthologous
regions can be low, depending on the time that has passed between the divergence of
taxa and the mutation rate of the species. Thus, for both types of data, an additional
symbol is included in the alphabet to either represent missing data (represented via ?

or N) or the absence of an orthologous bp (represented via -).
For a given scoring scheme (penalizing sequence substitution and insertion/deletion

operations), the Needleman-Wunsch algorithm [82] allows us to determine an optimal
alignment of two sequences with sequence lengths m and n in O(m · n) using dynamic
programming. Formally, an alignment is defined as a matrix A = ai,j , where the i-th row
represents sequence data of taxon i and the j-column is referred to as its j-th character
(see Fig. 2.1).

Using a simple modification of the original algorithm [103], we can identify sub-regions
in the two sequences that yield an optimal alignment score. These local alignments
marked an important step towards querying a sequence against a sequence database
(resp., the concatenation of all sequences in a database). However, with technological
improvement of sequencing methodology, the size of sequence databases soon reached a
level for which exact database queries became prohibitive. For instance, one of the most
popular sequence databases (GenBank) grew from 680,338 bps as of December 1982
to 165,722,980,375 bps as of August 2014 [see online statistics of 14]. Blast [8] is a
popular heuristic algorithm for local alignments that trades sensitivity against runtime.
In brief, the Blast algorithm avoids the computation of an entire dynamic programming
matrix by focusing on small high-scoring sub-sequences (words). High-scoring regions are
identified in the database and subsequently extended. The algorithm also accounts for
the possibility of encountering high scoring regions by chance and assesses the statistical
significance of matches. Blast reduced the complexity of database searches to O(nw),
where n is the number of bps in the database and w is the sub-sequence length [8].

Determination of an optimal alignment of more than 2 sequences becomes computa-
tionally prohibitive for an increasing number of sequences. In fact, the multiple sequence
alignment (MSA) problem is NP-complete [123] and an exhaustive solution for n se-

7

2 Concepts in Evolutionary Bioinformatics

ch
a
ra

cte
r

sequence

GC-C GX
A T G CCW

GC-C TY
T G T C-Z

A T G T CV

X
W

Y
Z

C
A

C
-

A

C
C

C
T

T

-
C

-
C

CV

C
C

C
T

T

C
A

C
-

A

X
W

Y
Z

C
A

C
-

A

G
T

T
T

T

G
G

G
G

G

-
C

-
C

CV

G
G

G
G

G

replicate 1 replicate 2

GC-C G
XA T G CC

W

GC-C T
Y

T G T C-
Z

A T G T C
V

1
2

3

Figure 2.1: Left: an alignment data matrix comprising the sequence of 5 taxa and 5 charac-
ters. Two examples of possible alignment replicates (see Sect. 2.6.4) are depicted below the
original alignment matrix. Right: An unrooted phylogenetic tree comprising 5 taxa and their
sequences, along with branch lengths v1, . . . , v7. Red arrows indicate an upward recursive
traversal of the tree with inner nodes 1..3 towards a virtual root (star symbol on v3).

quences with lengths l1, . . . , ln has runtime and space requirements in O
(∏

i∈1..n li
)
.

Notice that, for the creation of a MSA, we need orthologous sequences as input (which
are often obtained via Blast). Clustal [50] implements an approximate algorithm and
was one of the first production-level tools for MSA. First, it creates pairwise alignments
of all sequences in order to derive a guide tree from the similarity scores of the pairwise
sequence alignments. This guide tree is subsequently used for creating the MSA by iter-
atively extending an initial pairwise alignment (progressive alignment). Since alignment
quality is essential for downstream analyses, the complexity of alignment algorithms
increased over time. Muscle [30] is a state-of-the-art tool that is based on the same
underlying guide-tree principle as Clustal, but ultimately constructs a MSA in three
phases: (i) use sub-sequence frequencies (i.e., k-mers) and a clustering procedure to cre-
ate a draft guide tree for an initial progressive MSA, (ii) create an improved progressive
MSA using a guide tree that is obtained via a more accurate alignment-based distance
measure with subsequent clustering and (iii) several refinement iterations that revisit
vertices of the guide tree and re-align the two MSAs defined by the subtrees on each side
of a vertex.
Muscle is an example for the type of hybrid algorithms that is needed in evolutionary

biology to obtain an acceptable result in a feasible amount of time. Further efforts to
improve MSA quality focused on more accurately modeling of biological processes. For
instance, Prank [71] models insertions and deletions as distinct evolutionary events
and thereby tries to reduce the number of evolutionary events necessary to describe
sequence evolution. Apart from that, special-purpose alignment tools like PaPaRa [17]
solve domain-specific problems, like the efficient and accurate alignment of short sub-

8

2.3 Phylogenetic Trees

sequences to an existing reference alignment.
Alignment tools use a guide-tree to incorporate as much phylogenetic information (i.e.,

information regarding the evolution of the sequences) as possible into the MSA inference
process, yet these phylogenetic methods typically are heuristics for reasons of runtime
efficiency. Software packages such as BAli-Phy [92] try to avoid alignment bias via a
simultaneous alignment and phylogenetic inference process at the expense of substantial
runtime requirements.

2.3 Phylogenetic Trees

We define an unrooted phylogenetic tree comprising n taxa as an undirected graph τ =
{V, E}, where V = {t1, t2, . . . , tn, i1, . . . , im} is a set of vertices or nodes and E ⊂ V2 is a
set of edges or branches. We define the degree d of node k as

d(k) =
∣∣{(ki, kj) ∈ E | ki = k ∨ kj = k}

∣∣ . (2.1)

A subgraph of a phylogenetic tree is called a path p(k1, kn) = (V ′, E ′) from k1 to kn, if V ′ ⊂
V, E ′ ⊂ E and E ′ = {k1, k2, k3, . . . , ki−1, ki} and V ′ = {(k1, k2), (k2, k3), . . . , (ki−1, ki)}. A
graph is an unrooted phylogenetic tree, if there exists exactly one path between any two
nodes ki and kj . For an illustration of a phylogenetic tree, see Fig. 2.1.

In each phylogenetic tree comprising n taxa, we have n nodes t1, . . . , tn with degree 1
that are called outer nodes or tip nodes and represent taxa, respectively the observed
sequences (e.g., W, . . . , Z in Fig. 2.1). Inner nodes i1, . . . , im (e.g., 1, . . . , 3 in Fig. 2.1)
are hypothetical common ancestors of the taxa under examination. We call a phyloge-
netic tree binary or fully resolved, if there exists no node ki ∈ V with d(ki) > 3. Thus,
a fully resolved (i.e., binary) phylogenetic tree contains n− 2 inner nodes and 2 · n− 2
nodes in total.

Some phylogenetic models – specifically those that assume a molecular clock [132] –
require rooted trees. In rooted trees, edges typically are directed. For the remainder
of this thesis, we will focus on unrooted trees only. While unrooted undirected trees
assume evolution to be symmetric, in reality time can be considered as being the “direc-
tion” of evolution: branches are then directed from ancestor node to descendant node.
However, the symmetry assumption in an unrooted tree yields desirable properties for
mathematical models of evolution (see Sect. 2.6). For rooting an unrooted tree after the
tree inference, practitioners usually include an evolutionary distant group of taxa in the
analyses (also referred to as outgroup). The position of the outgroup in the phylogenetic
tree then serves as a root.

Phylogenetic trees are leaf-labeled, that is, inner nodes are indistinguishable from each
other. There exist 3 distinct phylogenetic trees (resp., topologies) for a set of 4 taxa,
which is the smallest biologically meaningful tree. Since a fully resolved tree contains
2 · n − 3 branches, we have 2 · n − 3 possibilities to insert an additional taxon into an
existing tree with n taxa. Accounting for duplicates yields the following equation [35] for

9

2 Concepts in Evolutionary Bioinformatics

obtaining the number of possible phylogenetic trees depending on the number of taxa n:

(2n− 5)!

2n−3(n− 3)!
, n ≥ 3. (2.2)

This means, for instance, that for 20 taxa, there exist almost 2.22 × 1020 trees that
explain the evolutionary history of these taxa. This immense number of combinatorial
possibilities is the main challenge for phylogenetic inference methods as well as phylo-
genetic post-processing alike. Assume, we want to compare τ1 and τ2 which have been
inferred from an identical alignment, but using different inference methods. While effi-
cient algorithms for identifying common subtrees [40] exist, there is a high chance that
subtrees with small differences are similarly optimal for given criteria. Thus, common
subtrees in τ1 and τ2 possibly do not comprise large sets of taxa.

Instead, many methods in phylogenetic post-processing revolve around the branches
E of a tree. Two nodes t1 and t2 are called connected, if there exists a path p(t1, t2). The
removal of a branch b ∈ E , divides a tree into two separately connected subgraphs γ′ =
(E ′,V ′) and γ′′ = (E ′′,V ′′), such that τ = (V ′∪V ′′, E ′∪E ′′∪{b}). Inner nodes are unlabeled
and can be neglected, thus we say that the removal of b partitions the set of outer nodes
t1, . . . , tn into two complementary sets T = {t1, . . . , ti} and T = {ti+1, . . . , tn}. We call
this partition of T a split or a bipartition and denote it as (T |T) = (t1, . . . , ti|ti+1, . . . , tn).
Bipartitions with |T | = 1 or |T | = 1 are contained in every tree with an identical set of
outer nodes and thus are called trivial.

Each branch b ∈ E defines a bipartition and each phylogenetic tree is equivalent to a
set of bipartitions. The opposite is not necessarily true, since a set of bipartitions may
contain conflicting bipartitions that can not occur in the same tree. A bipartition (T |T)
can be considered as the smallest unit of evolutionary information and identifies the
hypothesis that the taxa in T are more closely related to each other than the taxa in T .
For example, consider removing of branch (1, 2) in the tree of Fig. 2.1. We obtain the
bipartition (VW |XY Z), which in turn means that V and W are related more closely
to each other than to any of the taxa X,Y or Z (ignoring the fact that in a biological
context trees must be rooted).

We can now define a distance measure between phylogenetic trees τ1 and τ2 that is
based on the number of shared bipartitions. Given the sets of non-trivial bipartitions
Bτ1 and Bτ2 of τ1 and τ2, we define the Robinson-Foulds (RF) distance [95] as

RF (τ1, τ2) =
1

2
·
∣∣{b | (b ∈ Bτ1 ∧ b 6∈ Bτ2) ∨ (b 6∈ Bτ1 ∧ b ∈ Bτ2)}

∣∣ . (2.3)

The original authors of the RF-distance proofed that their distance measure is a
metric on the space of trees. The quartet distance is an alternative distance measure for
unrooted phylogenetic trees [21]. Here, we extract induced subtrees of each combination
of 4 taxa from the phylogenetic tree and consider these quartets as smallest unit of
phylogenetic information. An appealing property of this approach is, that for each
quartet of taxa, there exist only 3 different topologies (see Eq. 2.2). The quartet
distance between τ1 and τ2 is defined as the number of quartets that are unique to one
of the two trees.

10

2.4 Distance-Based Phylogenetic Inference

So far, our definition of a phylogenetic tree τ only specifies a topology, that is, it
defines divergence events (i.e., the inner nodes) among taxa. If we extend the definition
of τ to be a weighted graph, we can define a branch length as the weight vi of branch bi
(see Fig. 2.1). A branch length vi then specifies the evolutionary distance of a taxon
or a subtree with respect to the remaining subtree connected by bi.

2.4 Distance-Based Phylogenetic Inference

Phylogenetic inference methods use sequence data to infer a phylogenetic tree (see
Sect. 2.3) that explains the evolutionary history of all taxa contained in that tree. One
of the most straight-forward ways of obtaining a tree from sequence data are distance-
based methods. The unweighted pair group method with arithmetic mean (UPGMA)
is an agglomerative clustering algorithm [104]. Its application is not limited to the phy-
logenetic inference problem. For inferring a phylogeny via UPGMA, we first compute
distances among sequences under examination and then cluster the sequences iteratively
by their distance (where the distance of a newly added cluster towards the remaining
clusters is recomputed each time). UPGMA yields a rooted ultrametric tree (i.e., the
sums of branch lengths on the paths from the root to each taxon are identical). UPGMA
is fast, but comes with the strong assumption of a molecular clock. Thus, UPGMA trees
are mostly used as starting trees for more involved inference methods or in alignment
algorithms that incorporate phylogenetic information (such as Muscle).

Another distance-based clustering algorithm is neighbor joining (NJ) [97]. As UP-
GMA, NJ is agglomerative, the main difference between the two approaches is the dis-
tance function used to calculate distances between clusters. Furthermore, NJ does not
assume a molecular clock, thus we do not obtain an ultrametric tree.

2.5 Maximum Parsimony

The aforementioned distance-based methods typically offer a deterministic algorithm to
infer the tree. In contrast to this, we can search for a tree that is optimal with respect to a
criterion. A popular, biologically motivated criterion is maximum parsimony (MP) [37].
It relies on Occam’s razor : among many hypothesis, the hypothesis with the lowest
number of assumptions is preferable. In the phylogenetic setting, this means that the
tree that can be explained by the least number of substitutions is considered optimal.
Note that, there may be more than one optimal tree with respect to the parsimony
criterion.

While there exist more involved scoring schemes (i.e., scoring different types of sub-
stitutions differently [100]), we focus on a simple parsimony cost-function, that puts the
same weight on every substitution. In Fig. 2.1, we can calculate the parsimony score
of the first character as follows: we can assume that the ancestral state of node 1 was A,
since both of its descendants V and W have an A at this character position. Similarly,
for node 3, we obtain a C as most parsimonious assumption. For node 2, we assume
that a deletion occurred along the branch v4 (from ancestor node 2 to species Z), so the

11

2 Concepts in Evolutionary Bioinformatics

internal state at node 2 can be assigned C. At a virtual root (depicted as a star symbol
in Fig. 2.1), we then need an additional substitution from A at node 1 to C at node 2.
Thus, we obtain an overall parsimony score of 2 for the first character. We obtain an
identical parsimony score, if we assume instead, that a substitution C → A occurred on
branch v5. There exist explanations that require more substitutions. However, we refer
to the parsimony score of a character as the one with the least number of substitutions.

We can use a dynamic programming algorithm [100], to compute the per-character
parsimony score efficiently: for a given topology τ comprising 2 · n − 2 nodes and a
sequence alignment aij , let Si,j(X) denote the parsimony score of observing state X at
node i for character j. We assume that the alignment row indices i correspond to indices
of outer nodes in τ . Assume that k and l are direct descendants of node i, then we can
compute the score Si,j(X) as follows:

Si,j(X) =


0, if d(i) = 1 ∧ ai,j = X;
1, if d(i) = 1 ∧ ai,j 6= X;
minY {Sk,j(Y) + Sl,j(Y) + δX,Y }, else;

where δi,j = 0, if i = j and 1 otherwise.
We have to start the recursion at a virtual root node that can be placed onto an

arbitrary branch of tree τ (since branches in τ are undirected and evolution is not
assumed to be directional). The parsimony score of character j is Pi = minX

{
Si,j(X)

}
,

where i is the virtual root node.
For a character to be informative under the parsimony criterion, we need at least two

different states to occur at least twice. Thus, character 2 and 3 are called parsimony-
uninformative and can be ignored when computing the parsimony score. The mutation
from G to T occurs at a trivial bipartition, thus we obtain the same parsimony score
for each topology (the same holds for character 3). Thus, we can compute the overall
parsimony score of the alignment and tree depicted in Fig. 2.1 as P = P1 + P4 + P5 =
2 + 2 + 1 = 5. Character 4 suggests a close evolutionary relationship between V and Z.
Indeed, a tree τ ′ that contains a bipartition (V Z |WXY) instead of (VW |XY Z) has
a more optimal score of 4 and is the unique most parsimonious tree for this example.
In other words, τ ′ explains the observed parsimony informative characters with only
4 substitutions.

For small trees (e.g., up to 10 taxa), we can exhaustively compute the score of every
tree topology and thus determine all parsimony values. For larger trees, a typical strategy
— that is implemented, for instance, in RAxML [108] — is to start with a randomized
stepwise addition sequence parsimony tree. This means, we start out with a trivial
tree of 3 taxa and then add one taxon after another in a random sequence. In each
addition step, we compute the parsimony score of all possible insertions (i.e., at every
branch for the current taxon) and choose the location with the lowest parsimony score
for addition. The resulting tree strongly depends on the order of the taxa that are added.
Once the tree contains the full set of taxa, we can improve the MP score of the tree by
perturbing the topology (for examples using topological perturbations, see Sect. 3.3.1)
and re-evaluating the parsimony score. General-purpose optimization algorithms, such

12

2.6 Inference Under Probabilistic Models

as greedy or evolutionary algorithms can be used to search for an optimal tree.
A parsimony-specific search algorithm is the parsimony ratchet [84]. Here, pertur-

bations of the topology are combined with modifications of the alignment matrix. We
usually reduce an alignment matrix into a matrix of unique characters (referred to as
alignment patterns) and assign a weight that equals the frequency of a character in a
matrix. In the parsimony ratchet search strategy, we repeatedly switch back and forth
between the original alignment and a reweighted alignment and execute the search al-
gorithm (using topological perturbations). The underlying idea is, that this facilitates
escaping islands of local optimality and we thus obtain more parsimonious trees.

2.6 Inference Under Probabilistic Models

The central disadvantage of distance- and parsimony-based methods is that multiple
substitutions (or an unobservable forward-backward substitution) at the same site can
not be modeled adequately. On simple 4 taxon trees, the parsimony criterion incorrectly
favors topologies that assume an evolutionary close relationship among highly diverged
taxa. This phenomenon has been termed long branch attraction (LBA) [32]. These
shortcomings gave rise to inference methods that derive their optimality criterion from
probabilistic models of sequence evolution. In the following, we describe the likelihood
criterion for a model of DNA evolution [for details, see 127, chapter 1+3, 35, chapter 16].

2.6.1 Probabilistic Evolution

Probabilistic evolutionary models consider substitutions as probabilistic events and ac-
count for any combination of events that could have occurred along a branch in a tree
(as depicted in Fig. 2.1). We can model the process of substitution as a continuous-time
Markov chain (ctMC) with a state space S = {A,C,G, T}. The Markov chain assumes
a specific state and transitions to another state at rates that are given by a transition
rate matrix Q that has dimensions |S| × |S| (see Fig. 2.2). Q is also called the chain’s
generator matrix. By definition, the rate at which the chain remains in its current state
is qii = −

∑
j 6=i qij . As a result each row of Q sums up to 0. An important feature of

a Markov chain is that transition probabilities only depend on the current state of the
chain (a realistic assumption for the biological process that is modeled).

If a Markov chain is irreducible (i.e., all states are reachable) and recurrent (i.e., it can
be in any state for an unbound number of times), then the probability that the chain
is in a particular state converges against an equilibrium distribution (as time t → ∞).
This equilibrium state is called the stationary distribution of the Markov chain. For
our biological model this means that if substitutions occur at random on a sequence at
given rates, the frequency of the four bases will eventually reach a stable distribution
{πA, πC , πG, πT } for t → ∞ regardless of the initial state. The process is illustrated on
the right-hand side of Fig. 2.2: if we start in A, then after time t1, the probabilities that
the chain is in state s ∈ S are {π′A, π′C , π′G, π′T }. After an additionally (randomly chosen)
time step t2, the probability distribution that a chain is in state s is {π′′A, π′′C , π′′G, π′′T },
before it reaches the stationary distribution after an infinite amount of time.

13

2 Concepts in Evolutionary Bioinformatics

T C

GA

A

TGC
A

TGCA

TGCA

Figure 2.2: Left: Illustration for the six instantaneous rates qij of a ctMC for state changes be-
tween the four states in DNA sequences. Right: Illustration of state frequencies starting from
an observed state A after time t1, after time t1 + t2 and after reaching stationary frequencies
(πA, πC , πG, πT) after an infinite amount of time. Arrows indicate transition probabilities.
For instance, the arrow from A to C at the Section of t1 represents the probability pAC(t1)
for a transition from A to C in time t1.

A large number of DNA substitution models have been developed. The Jukes-Can-
tor [58] model comes with the strong assumption, that there exists only one transition
rate between all states. The Kimura model [59] introduces two different rates (for state
transitions between two biological classes of nucleobases). Both models have Q matrices
that yield time-reversible Markov chains, that is, πiqij = πjqji,∀i, j ∈ S, i 6= j. While
there is no biological foundation to assume time-reversibility, it is a desirable mathemat-
ical property and assumed for simplicity and computational efficiency. We can formulate
a 6 parameter model comprising 6 rates ri↔j with qij = qji = ri↔j . Thereby, we obtain
different rates for each type of (reversible) transition. However, for such a Markov chain,
the stationary distribution πi would be strictly determined by Q. From a biological per-
spective it is important to allow for an arbitrary state composition in the equilibrium
state (e.g., we want to assume that a gene has a preference for certain bases). Thus, the
stationary frequencies πi should be free parameters as well. This requirement lead to
the development of the generalized time-reversible (GTR) model [115]. The Q matrix
of the GTR model parameterizes a reversible rate matrix with stationary frequencies

Q =


qAA rACπC rAGπG rATπT
rACπA qCC rCGπG rCTπT
rAGπA rCGπC qGG rGTπT
rATπA rGTπC rCGπG qTT

 , (2.4)

with qii = −
∑

j qij and thus yields a time-reversible Markov chain. Since (i)
∑

i∈S πi =

14

2.6 Inference Under Probabilistic Models

1 and (ii) because we fix rGT = 1.0 and represent remaining rij relative to rGT , the GTR
model has 8 free parameters. Constraint (ii) in fact is optional. However, if fulfilled and
if we scale Q such that the average transition rate ρ = 1, then branch lengths are nor-
malized such that a value of 1 indicates that we expect that 1 substitution has occurred
on average per character. The average transition (resp., substitution) rate is defined as

ρ = −
∑
i∈S

πiqii =
∑

(i,j)∈S2∧i 6=j

πiπjrij . (2.5)

The GTR model is the most general time-reversible substitution model and is a gen-
eralization of various models mentioned previously (e.g., Jukes-Cantor). It is worth
mentioning that there exists a total of 203 distinct time reversible models and that
choosing a model with as few free parameters as required is desirable to avoid over-
parametrization [55]. It is common practice to test several typically employed models
of DNA substitution on a MP tree [e.g., 90] under the likelihood criterion (described
in the following). Then, for the comprehensive analysis, we use the model that opti-
mizes a score based on the number of parameters in the model and the likelihood of the
model. Nevertheless, for DNA data, alignments usually provide enough information for
a meaningful application of the GTR model.

In a ctMC, we can derive the probabilities pij(t) for a transition from state i to j after
time t as P (t) = exp(Q · t). For simple models, such as the Kimura model, there exist
closed form derivations of P (t). In case of the GTR model, an Eigendecomposition of
Q is necessary for matrix exponentiation. That is, we need to determine an invertible
matrix U and its inverse U−1, such that Q = UΛU−1. Λ is a diagonal matrix containing
the Eigenvalues λi of Q. This allows us to exponentiate Eigenvalues and we obtain

P (t) = U ·


exp(λ1 · t) 0 0 0
0 exp(λ2 · t) 0 0
0 0 exp(λ3 · t) 0
0 0 0 exp(λ4 · t)

 · U−1. (2.6)

Notice that in Fig. 2.2, arrows depict various transition probabilities pij(t1) and pij(t2).
For each row transition probabilities must sum up to 1.

2.6.2 Likelihood Computation

Given an alignment A = aij and a transition rate matrix Q (parameterized with the
vectors ~π and ~r), we can use the transition probabilities P (va) and P (vb) to compute
the likelihood that two sequences a and b evolved from any common ancestor into their
observed state after time va and vb. As mentioned previously, we can scale the transition
rate matrix arbitrarily and thus employ a scaling factor, such that the expected number
of substitutions per character is 1. If we assume independence among characters, that is,
each character evolves independently from its adjacent characters, then we can compute
the likelihood as the product of the per-site likelihoods. In reality, this assumption is

15

2 Concepts in Evolutionary Bioinformatics

frequently violated. For numerical reasons, likelihood values usually are represented on
the logarithmic scale, thus we compute the sum of log-likelihood values over sites.

Consider taxa V and W in Fig. 2.1 that have diverged from their common ancestor
(node 1) in times v1 and v2. For each character ij ∈ S2 in their pairwise alignment A′,
we can compute the probability of observing these characters by assuming that the
ancestral sequence has state s ∈ S with probability πs and transitions into state i after
time va and into state j after time vb. Since we do not know the ancestral state, we sum
over all four possibilities (see Eq. 2.7). The time-reversibility of the GTR model allows
us to simplify the term to Eq. 2.8. In other words, the observation probability can be
reduced to the stationary frequency of state i times the transition probability to state j
(or vice versa):

fij(va, vb) =
∑
k

πkpki(va)pkj(vb); (2.7)

fij(va + vb) = πipij(va + vb) = πjpji(va + vb); (2.8)

g(A | va + vb, ~π, ~r) =
∑
i,j

nij log(πipij(va + vb)). (2.9)

Finally, we obtain the logarithmic likelihood g of observing alignment A′ given branch
length va + vb, the stationary frequencies ~π and reversible substitution rates ~r as the
weighted sum of the observation probabilities of alignment patterns (see Eq. 2.9). The
weight nij specifies, how often a pattern ij occurs in A′.

We can now extend the likelihood criterion to non-trivial tree topologies (such as
Fig. 2.1). Essentially, we assume a virtual root (star symbol in Fig. 2.1) where the
sequence represented by a ctMC (in stationarity) enters the tree at an arbitrary point
of time on v3. As mentioned previously, we do not have to decompose v3 into v′3 + v′′3
because of the time reversibility of the ctMC (as in Eq. 2.8). Instead, we only need to
sum over the stationary frequencies πx1 and the transition probability px1x2(v3) (as in
Eq. 2.9). We then add the transition probabilities from the two inner nodes 1 and 2 to
the outer nodes V,W,X, Y, Z and sum over all possible states of the inner (i.e., ancestral)
nodes 1, 2 and 3. The summation over the sequence length from 1, . . . , j (e.g., Wj is the
j-th character of sequence W) yields

g(A | τ,~v, ~π, ~r) =
n∑
j=1

(∑
(x1,x2,x3)∈S3

πx1 · px1x2(v3)

× px1Vj (v2) · px1Wj (v1)

× px2Zj (v4) · px2x3(v5) · px3Xj (v6) · px3Yj (v7)
)
.

(2.10)
In Eq. 2.10, ~v = {v1, . . . , v7} denotes the vector of all branch lengths in τ . The

summation over all states of the ancestors allows us to essentially consider any num-
ber and combination of substitutions that may have occurred along the evolution of
the sequences. Evidently, a näıve computation of Eq. 2.10 becomes computationally

16

2.6 Inference Under Probabilistic Models

intractable for larger trees. For the tree depicted in Fig. 2.1, we can reorder/factorize
summands in Eq. 2.10 using a principle called nesting rule. In the phylogenetic likeli-
hood context, this rule has been denoted as pruning algorithm [34] (not to be confused
with two different applications of the term prune that follow later). Notice that, this
pruning algorithm in essence is a dynamic programming algorithm. Thus, we can rewrite
Eq. 2.10 as

L3(x3) = px3Xj (v6) · px3Yj (v7); (2.11)

L2(x2) = px2Zj (v4) ·
∑
x3∈S

(
px2x3(v5) · L3(x3)

)
; (2.12)

L1(x1) = px1Wj (v1) · px1Wj (v1); (2.13)

g(A | τ,~v, ~π, ~r) =
∑
x1∈S

∑
x2∈S

πx1 · px1x2 · L1(x1) · L2(x2). (2.14)

The three terms L1, L2 and L3 represent the conditional probabilities of observing a
state in one of the ancestral nodes. Thus, we also refer to Li as a conditional probability
vector (CPV) at node i. Because of the aforementioned properties of the GTR model,
we can place the virtual root at an arbitrary branch in the tree and compute CPVs
with respect to this root, whereas the virtual root can be placed anywhere along a
branch (typically with distance 0 to one of the adjacent nodes). This concept has been
termed as the pulley principle [34]. Assume that we subsequently want to evaluate the
likelihood of Θ = {τ ′, ~v′ , ~π, ~r}, that is, a parameter vector where the topology has been
perturbed into τ ′ and/or some branch lengths ~v

′
have been modified. Then we can reuse

all CPVs, that represent subtrees in which neither topology nor branch lengths have been
modified. Thus, as a consequence of the pruning algorithm, we can substantially reduce
the runtime costs of likelihood evaluation by re-using already computed CPVs. As a
downside, CPVs typically dominate the memory requirements of likelihood computation
(discussed in detail in Sect. 5.4).

With respect to runtime requirements of likelihood computation, we can distinguish
three distinct classes of CPV computations, depending on the type of descendants a
and b of an inner node: (i) a and b are outer nodes (see Eq. 2.11 and Eq. 2.13),
(ii) one descendant is internal, one is external (see Eq. 2.12) and (iii) both nodes are
internal nodes (identical to the evaluation at the virtual root in Eq. 2.14 but without
~π). The computational effort for computing the CPV at a node directly follows from
Eq. 2.11, Eq. 2.12 and Eq. 2.13. For the mathematical representation of a base x
at, for instance, Wj , we initialize a state frequency vector with δx,i for the i-th position
(where δ is the Kronecker δ). Deletions and ambiguities (e.g., caused by sequencing
errors) can be incorporated as well: here, multiple entries of the state frequency vector
of an outer node can be initialized with 1 (resp., all entries are 1 in case of a missing
character).

A Q matrix can be defined for different data types, such as AA or even binary data
(i.e., presence or absence of a trait in a species). For AA data however, the Q matrix is
typically not estimated empirically, because of the substantial amount of free parameters

17

2 Concepts in Evolutionary Bioinformatics

(189 for ~r and 19 for ~π). Instead, fixed-rate matrices are used (e.g., [68]) and stationary
frequencies are either also provided by the model or estimated as free parameters.

Finally, this framework allows incorporating data from distinct data types and also
allows assuming different model parameters for partitions of the alignment. Thus, A can
be composed of {A1,A2, . . . ,An} (e.g., various genes), where Ai is called a partition.
Each partition can have distinct model parameters, for instance ~π1, ~π2, . . . , ~πn. The
combined log-likelihood is the sum of the log-likelihoods over all partitions. We call a
parameter linked with respect to a set of partitions p, if all partitions in p share this
parameter. Typically, τ and ~v are linked across all partitions (although StarBeast for
instance models a species tree and several gene trees separately [48]).

2.6.3 Variable Rates Among Characters

The model introduced in this Section so far represents a notable advancement over par-
simony (see Sect. 2.5) or distance-based methods (see Sect. 2.4) in terms of accurately
modeling evolution. An important extension to this model is the consideration that
some characters may evolve faster than others. Some characters may be highly con-
served (e.g., character 3 in Fig. 2.1), since a mutation would disrupt — for instance —
the function of a vital protein, while mutations at other characters are neutral since they
do not affect a functional part of the genome (e.g., character 1 evolves at a fast rate).

One of the most popular ways to account for this heterogeneity of the evolutionary
rate among characters is modeled via a discretized Γ(α, β) distribution [128]. The Γ dis-
tribution has the probability density function (PDF)

f(x;α, β) =
βαxα−1e−xβ

γ(α)
, (2.15)

where γ(α) is the gamma function.
Since we are only interested in the rates relative to each other, we set β := α and thus

constrain the Γ distribution to a mean of 1 (since the expectation value for X ∼ Γ(α, β) is
E[X] = α

β). For large values of α, we obtain distributions similar to a normal distribution
with low variance (since V ar[X] = α

β2), in other words, we assume that all characters
evolve at a similar rate. The variance of the Γ distribution increases for small values of
α (see Fig. 2.3). Here, (specifically, if α < 1) the model fits well to datasets where the
majority of the characters evolve slowly and the minority evolves quickly (i.e., we have
a high degree of rate heterogeneity).

We typically discretize the Γ distribution into four classes each with a different range
(ca, cb). The probability of each class must be the same, that is for any two classes c

and c′, we have
∫ cb
ca
f(x;α, β)∂x =

∫ c′b
c′a
f(x;α, β)∂x. Finally, one rate ρi is determined

for each class (either median or mean of the class) that represents the rate class.
We incorporate rates ρi during computation of the transition probabilities from the

transition rate matrix
Pρi(t) = exp(Q · t · ρi). (2.16)

18

2.6 Inference Under Probabilistic Models

0

1

2

3

4

0.0 0.5 1.0 1.5 2.0 2.5

Figure 2.3: Illustration of typical single-parameter Γ distributions.

19

2 Concepts in Evolutionary Bioinformatics

In other words, for the discretized Γ model, we assume 4 different models of sequence
evolution (with slower or faster rates) and ultimately average the likelihood over the
4 rate classes. For an appropriate α, this approximate integration of a Γ distribution
allows barely evolved characters to achieve high likelihood values for smaller ρi, while
highly diverged characters have a high likelihood for larger ρi. The number of free
parameters of the GTR+Γ model increases by 1 compared to the default GTR model
(namely, the α parameter). However, computational requirements as well as memory
requirements for storing CPVs increase by a factor of four.

2.6.4 Maximum Likelihood Analysis

The phylogenetic likelihood function (PLF) g(A |Θ) provides us with a means to com-
pare different parameter vectors Θ = {τ,~v, ~r, ~π, α}. In the maximum likelihood (ML)
framework, we try to find an estimate of the tree and the remaining parameters, that
maximizes the PLF. While the problem of determining the ML tree is NP-hard [22],
various tools exist that use search heuristics to deliver point-estimates of the PLF land-
scape. Phylip [31] and Paup* [114] pioneered phylogenetic ML inference. PhyML [46]
uses inexpensive to compute parsimony scores to eliminate topologies without the need
to evaluate their likelihood. Ipqnni [122] generates a set of candidate trees and opti-
mizes trees based on quartet information in the candidate tree set. Garli [133] and
specifically RAxML [108] are high-performance computing (HPC) tools that implement
an evolutionary optimization algorithm (Garli) and a multi-phase greedy hill-climbing
algorithm (RAxML).

Typically, ML analyses start from a randomly created tree or a MP tree and sub-
sequently optimize parameter values. With respect to the topology parameter τ , the
topology is refined iteratively (using operations similar to those described in Sect. 3.3.1).
A generic algorithm for optimization of continuous single parameters is Brent’s me-
thod [18]. Brent’s method typically is used iteratively for the optimization of one pa-
rameter at a time. An exception is the branch length parameter vector ~v. Since the
partial first and second derivatives of the PLF with respect to vi ∈ ~v can be computed
easily, more efficient optimization is possible [36] (for details, see Sect. 4.2).

The ML framework allows us to obtain an locally optimal estimate on the multidimen-
sional likelihood surface. Typically, the search for an optimal tree is complemented by
a non-parametric bootstrap analysis [33]. The underlying idea is that by permuting the
data, we obtain confidence-like support values for assessing the robustness of the inferred
phylogenetic relationships. This however is only one of several proposed interpretations
of the method’s result and the discussion did not result in a broadly accepted consen-
sus [105]. For an alignment with n characters, we can create an alignment replicate (see
Fig. 2.1) by drawing n characters from our original alignment with replacement. We
typically create between 100 and 1000 alignment replicates and infer a ML tree for each
of the replicates. Thereby, we obtain bootstrap trees. If there is conflicting signal in the
alignment, then a proportion of bootstrap trees will differ from the best-known ML tree
inferred on the original data. For downstream analysis of bootstrap trees, see Sect. 6.1.
Notice that, the use of the phylogenetic bootstrap is not limited to ML, but we can also

20

2.6 Inference Under Probabilistic Models

employ it in different phylogenetic frameworks, such as MP or NJ.

21

3 Elements of Bayesian Inference in
Phylogenetics

The content of this Chapter is predominantly of introductory nature and its con-
tent is not an original contribution, unless stated otherwise. Parts of this Chapter
have been derived from two peer-reviewed publications:

1. AJ Aberer, K Kobert, and A Stamatakis. “ExaBayes: Massively Parallel
Bayesian Tree Inference for the Whole-Genome Era”. In: Molecular biology
and evolution 31.10 (2014), pp. 2553–2556

2. AJ Aberer, A Stamatakis, and F Ronquist. “An Efficient Independence
Sampler for Updating Branches in Bayesian Markov chain Monte Carlo Sam-
pling of Phylogenetic Trees.” In: Systematic biology 65.1 (2016), pp. 161–
176

Contributions: All modification of Bayesian proposals with respect to the imple-
mentation in MrBayes (e.g., the differing implementation of stochastic proposals
on topologies). The partial Dirichlet proposal for AA-GTR matrices is an original
contribution (see Sect. 3.2.5). Furthermore, the derivation of the Hastings-ratio
for the node slider (see Sect. 3.2.3) is an original contribution.

This Chapter introduces a framework for Bayesian inference (BI) of phylogenetic trees
under the models described in Sect. 2.6. We first cover the basics of BI. Subsequently,
we discuss the essential proposals that allow us to sample proportional to the multi-
dimensional posterior. We differentiate between continuous and discrete parameters.
The entire framework is implemented in ExaBayes [1]. Many essential proposals are
not novel and have already been implemented in MrBayes for instance. We explicitly
describe how the set of proposals implemented in ExaBayes is different from traditional
proposals and provide a rationale. Finally, we describe the variant of Metropolis-coupling
that is implemented in ExaBayes.

3.1 Methodology

3.1.1 Bayesian Inference

BI is very similar to ML inference in that we can use the same ctMC model of sequence
evolution as the underlying model for phylogenetic inference (see Sect. 2.6). However,

23

3 Elements of Bayesian Inference in Phylogenetics

it differs in one essential aspect: the interpretation of probability. The classic (i.e.,
frequentist) interpretation of the probability Pr[X = x] = p of a dichotomic event is
that if we repeat an experiment n times, the outcome x will be observed p · n times,
while the complementary outcome x̄ will be observed (1 − p) · n times (given that n is
large enough). In other words, probability is defined by the relative frequency of events.
Contrary to that, in Bayesian statistics the same probability is a measure for the degree
of belief. For the above example, this means that, the degree to which we believe in the
occurrence of an event x is p. Conversely, our uncertainty whether the event occurs in
one instance of the experiment is 1− p.

In other words, frequentists rely on objectively measurable frequencies, while Bayesian
statisticians subjectify probabilities. The subjective nature of Bayesian belief manifests
itself in the Bayes’ theorem, that underlies Bayesian statistics:

Pr[Θ | A]︸ ︷︷ ︸
posterior probability

=

prior probability︷ ︸︸ ︷
Pr[Θ] ·

likelihood︷ ︸︸ ︷
Pr[A |Θ]

Pr[A]︸ ︷︷ ︸
data probability

(3.1)

=
Pr[Θ] · Pr[A |Θ]∫

Pr[Θ] · Pr[A |Θ] ∂Θ
. (3.2)

The theorem directly follows from the law of total probability. Applied to the phylo-
genetic context with a parameter vector Θ = {τ,~v, ~π, ~r} and an alignment A, it means
that we can determine the posterior probability (PP) of the model Θ given the data A as
the product of the prior belief in the model Θ and the likelihood of A given Θ, divided
by the probability of the data A. For instance, we can choose the prior distribution
to favor a simple model over a parameter-rich model for explaining the data. We then
assess our prior belief in the light of the data (i.e., using its likelihood) and obtain an
updated posterior belief for the model hypothesis. The probability of the data Pr[A] is
often hard or expensive to calculate. In simple cases, we can obtain Pr[A] by integrating
out Θ (see Eq. 3.2).

In the phylogenetic setting, we can use the Bayesian framework to obtain the joint
posterior probability of all parameters Θ given the alignment A. Naturally, we are
particularly interested in the topology parameter τ . If we know the joint probability
distribution Pr[Θ | A], we can determine the probability distribution of τ by integrating
out any remaining parameters (referred to as nuisance parameters):

Pr[τ | A] =

∫∫∫∫
Pr[τ,~v, ~π, ~r, α | A] ∂~r ∂~v ∂~π ∂α. (3.3)

By doing so, we now know the probability of a tree τ with respect to any choice of all
other parameters (rates in the GTR matrix, the branch lengths, or the α shape parameter
of the Γ model of rate heterogeneity). Alternatively, if we integrate out all parameters
except for α and branch lengths ~v, we obtain their joint probability distribution of α
and ~v and can examine relationships of the joint distribution.

24

3.1 Methodology

3.1.2 Metropolis-Hastings Algorithm

Eq. 3.3 describes a high-dimensional integral. The number of free parameters grows with
the number of taxa. Furthermore, in practice datasets are often also partitioned, that is,
distinct genes are concatenated into an alignment matrix and we allow to have distinct
(partially or fully independent) model parameters for each partition (e.g., α1, α2, . . .).
Eventually, only the topology might be shared across all partitions. Via partitioning we
increase the realism of the model as we allow for distinct evolutionary scenarios (e.g.,
substitution rates) for distinct genes. However, when analyzing large-scale datasets, we
can easily accumulate hundreds or even thousands of free parameters.

For computing the joint probability Pr[Θ | A] (i.e., the posterior probability), we
can use a numeric approximation algorithm, the Markov chain Monte Carlo (MCMC)
algorithm [76]. The MCMC method simulates a random walk of a Markov chain on the
PP landscape. The Markov chain in MCMC differs in two ways from the ctMC that is
used as a probabilistic model of sequence evolution. Firstly, we simulate a discrete-time
Markov chain, that is, time is discretized into generations. Secondly, instead of a single
discrete state (i.e., the nucleotide state), in each generation, the Markov chain assumes
values for each random variable in Θ (with τ being the only discrete state and the
remaining parameters all being continuous). The stationary distribution of the Markov
chain approximates the distribution of interest: Pr[Θ | A].

Algorithm 1 Metropolis-Hastings algorithm

Input: alignment A, weighted set of proposal functions Ψ, initial parameters Θ0,
Input: chain length n, uniform random numbers r1, . . . , rn ∈ [0, 1)
Output: chain c = {Θ0, . . . ,Θn} sampling proportionally to Pr[Θ | A]
1: function Metropolis-Hastings(A, Ψ, Θ0,n)
2: for i ∈ {1..n} do
3: qj ← drawn proportionally to its weight ωj in Ψ
4: Θ∗ ← parameter update drawn proportionally from qi(Θ

∗ |Θ)

5: a = ξ(Θ∗ |Θi−1) = min
(

1, f(Θ∗)·f(A |Θ∗)·q(Θi−1 |Θ∗)
f(Θi−1)·f(A |Θi−1)·q(Θ∗ |Θi−1)

)
6: if ri ≤ a then
7: Θi ← Θ∗

8: else
9: Θi ← Θi−1

10: end if
11: end for
12: return c = {Θ0, . . . ,Θn}
13: end function

In the following, we describe the general phylogenetic MCMC algorithm (see Alg. 1
for the pseudo code version). We start the random walk of the Markov chain in an ar-
bitrarily chosen initial configuration Θ0. The MCMC algorithm employs a weighted set
of proposals functions Ψ (also referred to as proposal mixture). Each proposal is associ-
ated with one or more parameters in Θ and provides a means to update the respective

25

3 Elements of Bayesian Inference in Phylogenetics

parameter values. In other words, proposals and their associated densities describe the
“steps” of the random walk that is performed on the posterior probability landscape
Pr[Θ | A] as well as the probability of performing the respective step. Each proposal
qj ∈ Ψ has a weight ωj , since we expect the number of generations that is necessary to
reliably integrate over a parameter to vary. Typically, a large fraction of generations is
required to integrate over the branch length parameter ~v and the topology parameter τ .

We simulate a generation of a chain c by first drawing a proposal qj at random from
Ψ according to its weight ωj . Subsequently, we draw an update Θ∗ from the density
of the proposal. In the original version of the MCMC algorithm by Metropolis et al.,
proposal densities were constrained to be symmetrical. In other words, we propose
according to a density qj(Θ). The Metropolis-Hastings (MH) algorithm [47] represents
a powerful extension (detailed in Alg. 1), where we allow for asymmetrical proposal
densities qj(Θ

∗ | Θ). This means that, we can propose an update Θ∗ based on the
current state Θ. As a consequence, the MH algorithm allows us to propose updates that
are close to the current value of Θ. Thus, the chain is less likely to leave a region of
high PP. Since we want to sample proportionally to Pr[Θ | A], we accept the updated
parameter vector Θ∗ proportionally to the change in posterior density. Notice that, we
calculate the ratio of posterior densities of Θ∗ and Θ as the prior ratio and likelihood
ratio of Θ∗ and Θ. Thus, using the MH algorithm we do not have to calculate the
problematic probability of the data Pr[A], since it cancels out in the posterior density
ratio.

In the MH extension of the MCMC algorithm, we have to consider another factor when
computing the acceptance probability ξ(Θ∗ |Θ) of a proposal qj : by using an asymmetric
proposal density qj(Θ

∗ | Θ), we bias the Markov chain towards certain values of Θ. In
other words, if we frequently propose specific values of Θ and accept proportionally to
the posterior density ratio, our samples of the PP are biased according to qj(Θ

∗ |Θ). To

correct for this bias, we have to include the proposal density ratio
qj(Θ |Θ∗)
qj(Θ∗ |Θ) to accept

or reject an update. This term is also referred to as Hastings-ratio and consists of two
components: in the denominator we have the density qj(Θ

∗ | Θ) of the update at hand
and the numerator is the density qj(Θ | Θ∗) of the reverse update that will restore the
original state Θ. The update and reverse update are sometimes also called forward and
backward move. Including the Hastings-ratio, the probability of accepting an update Θ∗

in the current state Θ is

ξ(Θ∗ |Θ) = min

1,
f(Θ∗)

f(Θ)︸ ︷︷ ︸
prior ratio

× f(A |Θ∗)
f(A |Θ)︸ ︷︷ ︸

likelihood ratio

× q(Θ |Θ∗)
q(Θ∗ |Θ)︸ ︷︷ ︸

Hastings-ratio

 . (3.4)

We use a random number ri ∈ [0, 1) and accept the update Θ∗, if ri ≤ ξ(Θ∗ | Θ).
Otherwise, the Markov chain remains in its current state Θ.

For adequately designed proposal functions Ψ, the Markov chain will rapidly leave the
initial state Θ0 and sample from regions of high PP. Fig. 3.1 depicts the unnormalized
posterior density trace plot of three Markov chains (i.e., not normalized by probability of

26

3.1 Methodology

the data, see Eq. 3.1). After 5,000 generations, all three chains sample parameter values
with very similar logarithmic posterior density. Thus, it is likely (yet never guaranteed),
that all chains have reached their stationary phase, that is, they sample parameter values
that are proportional to the absolute PP Pr[Θ | A]. The time (expressed as a number
of generations) that is necessary to reach this stationary phase is called burn-in. Chain
states prior to the burn-in are typically discarded from the sample. In Fig. 3.1 chain c1

(blue) and c2 (pink) employ the default proposal mixture as of ExaBayes version 1.4.1.
While c1 uses a MP tree as starting tree, c2 starts with a random tree. Although the
initial topology c2 is substantially less likely than the initial topology of c1, the burn-in
only takes about 2,000 generations for either chain. In contrast to the diverse proposal set
of c1 and c2, chain c3 (green) only applies a single topological proposal (the stochastic
nearest neighbor interchange (stNNI), see Sect. 3.3.1) that moves particularly slowly
through the tree topology space. Thus, the burn-in takes considerably longer. We call
a proposal qj more modest than another proposal qk, if qj does not change parameters
as drastically as qk. In the opposite case, we call qk bolder than qj . Typically (but not
necessarily), the acceptance rate of bolder proposals is lower than the acceptance rate of
more modest proposals.

The detailed Subfigure in Fig. 3.1 starting at generation 5,000 is a trace plot that is
typical for the random walk of a Markov chain on the landscape of Pr[Θ | A]. It directly
follows from the MH algorithm, that subsequent chain states are highly correlated. Thus,
we do not loose important information by thinning the chain, that is, we only store each
n-th sample. In practice, we always thin the chain. However, thinning is foremost a
pragmatic means to reduce disk space requirements for the samples.

Note that, the trace plot does not provide a means to identify whether the chains
correctly sample the posterior density proportionally (e.g., all there chains may have
ended up in the same local optimum). Furthermore, we can not tell from the trace plot,
how many generations will be necessary until we have an accurate approximation of
Pr[Θ | A]. Inefficient proposals will result in a high rejection rate and it will therefore
take a large number of generations until the states of the chain accurately approximate
the posterior. If a chain ca approximates the posterior faster than another chain cb, we
say that ca has better mixing than cb. Alternatively, we can expect that the time to
convergence is longer for cb than for ca.

Finally, BI inherits desirable properties from ML, such as statistical consistency. The
MH algorithm guarantees that the simulated Markov chain converges towards the target
distribution Pr[Θ |A] as the number of generations approaches infinity. Thus, under the
correct model and given appropriate priors, BI will reconstruct the true topology as the
amount of data in A approaches infinity.

3.1.3 Priors

For the phylogenetic models implemented in ExaBayes, priors on parameter values
play a minor, yet not negligible role. Even for comparably small input alignments,
the likelihood ratio between the proposed values Θ∗ and the current values Θ has a
substantially stronger impact on the acceptance probability ξ(Θ∗ |Θ) than the respective

27

3 Elements of Bayesian Inference in Phylogenetics

generation

un
no

rm
. l

og
. p

os
te

rio
r d

en
si

ty

−20000

−18000

−16000

−14000

−12000

0 2000 4000 6000 8000 10000

MP tree random tree
+ NNI

random tree

generation

un
no

rm
. l

og
. p

os
te

rio
r d

en
si

ty

−11900

−11890

−11880

−11870

−11860

5000 6000 7000 8000 9000 10000

Figure 3.1: Logarithmic unnormalized posterior density trace of three chains that were sim-
ulated using ExaBayes version 1.4.1. For the first chain (blue), we employed the default
proposal mixture and started in a MP tree. In contrast, the second chain (pink) uses a ran-
dom starting tree. The third chain (green) uses a random starting tree and only employs a
single particularly modest proposal for integration of the tree topology parameter. The inner
Subfigure depicts the random walk of the Markov chains in their potentially stationary phase.

28

3.1 Methodology

prior ratio. The exponential distribution with the density function f(x;λ) = λ exp(−λx)
is a particularly popular prior for univariate parameters (such as ~v or α). The density
function favors small values (i.e., high rate heterogeneity in case of α) and we only
have to choose one parameter λ, that reflects both the mean and standard deviation
(both λ−1). As a default in ExaBayes, we choose λ := 10 resulting in an expectation
that branch lengths are longer (i.e., 0.1 expected substitution per bp) than observed in
many biological scenarios. However, an exponential prior is primarily problematic, if λ
is too large [61], since we then strongly favor short branch lengths over longer ones. For
particularly small values of λ, an exponential prior converges against a uniform prior
and thus comes as close as possible to being non-informative.

Notice, that even uniform priors can not be considered as non-informative, since an
upper and lower bound are needed for a uniform distribution. Typically, we want to
avoid using strongly-informative priors, except when there exist good reasons for such
a strong prior belief: a reasonable application of strongly informative priors are priors
on the ages of internal nodes under models that use a molecular clock. In these cases,
an appropriate prior allows to incorporate carbon-dating evidence into the phylogenetic
analysis. Without such carbon dating evidence, practitioners of BI typically want an
exponential prior to reflect their prior belief in short branch lengths. Similar to MP (see
Sect. 2.5), we can thereby incorporate the assumption that a tree with few substitutions
is generally preferable.

For strongly interdependent parameters for which individual values need to sum to 1,
we typically employ a Dirichlet prior. In the phylogenetic context, a Dirichlet prior is
used for the stationary frequencies ~π or the normalized substitution rates ~r. For instance
for ~π, the density of the Dirichlet prior is defined as

f(πA, πC , πG;λA, λC , λG, λT) =
1

B(~λ)
·
∏
i∈S

πλi−1
i , (3.5)

where B(~λ) is the Beta function parametrized with ~λ. If λi = 1,∀i ∈ S, we obtain the
equivalent to a multivariate uniform prior, which is the typical setting for phylogenetic
BI. Typically, no prior information with respect to the stationary frequencies or reversible
substitution rates is available (although fixed-rate AA substitution models can optionally
include empirical frequencies).

For topologies, ExaBayes only allows for a uniform prior on τ (apart from fixing τ
to a certain topology). Consider that the prior belief that all topologies are equally
probable does not imply that we believe that all bipartitions have equal probability. In
this case, our prior belief depends on the number of taxa in the partitions of a bipartition
B = (b | b).

Assume, we want to compute the probability of a bipartition that partitions the set
of 10 taxa in a tree into a partition of size 2 and a partition of size 8. The number
of unrooted phylogenetic trees that have a specific bipartition is the product of the
number of rooted trees that can be constructed from one partition (i.e., only one possible
rooted tree for the partition with 2 taxa) times the number of rooted trees that can be
constructed from the complementary partition (i.e., there are 135,135 rooted trees with 8

29

3 Elements of Bayesian Inference in Phylogenetics

taxa). A bipartition with |b| = 3 and |b| = 7 on the other hand only occurs in 3×10, 395
trees. Thus, a uniform prior on bipartitions would conflict with a uniform prior on
trees [89]. This example further illustrates that a uniform distribution is not necessarily
a straight-forward non-informative choice for a prior.

3.1.4 Tuning Proposals

Many proposals on continuous parameters are parametrized themselves. Assume that as
a proposal density q(v∗ |v) for updating branch lengths, we employ a normal distribution
N (v, σ2) that proposes a new branch length v∗ around the current branch length v with
variance σ2. Here, σ2 is an adjustable/tunable proposal parameter. As we increase the
value of σ2, our proposal becomes bolder. However, drastic parameter updates usually
induce a stronger change in the posterior density and thus, the acceptance rate is likely
to decrease (i.e., the chain moves more slowly through parameter space).

By modifying these proposal parameters such as σ2, we can adjust how bold or mod-
est the proposed values Θ∗ will be. For proposals that draw updated values from a
multivariate normal distribution, it was shown that there exists an optimal acceptance
rate ξ(Θ∗ |Θ) = 0.234 [94]. Because of the involved nature of the PLF, no attempt has
been conducted to analytically determine an optimal acceptance rate for phylogenetic
BI. Yet, for practical reasons we can strive for a target acceptance rate of 25% and
thereby reduce the chance that proposals are either extremely modest or extremely bold
for the dataset being analyzed. For the example described above (i.e., a proposal using
the normal distribution that is parametrized with σ2), we can determine a new proposal
parameter σ2∗ given the previous parameter σ2 as [after 93]

σ2∗ = exp(log(σ2)± (i+ 1)−0.5). (3.6)

In Eq. 3.6, i counts the number of times, the parameter has already been tuned. We
typically estimate the current acceptance rate ξ̂ as the number of times the proposal
has been accepted during the 100 previous attempts. Whether we have to increase
or decrease σ2 depends on whether ξ̂ is larger or smaller than the target acceptance
rate and the direction that increases boldness/modesty of the proposal. Notice that,
for i → ∞, adaptations to σ2 become negligible, that is, σ2∗ → σ2. This means that
asymptotically, the tuning mechanism does not influence the proportional sampling of
the posterior by the Markov chain. However, tuning proposals improves the mixing of
the chain by dynamically adjusting the boldness of the proposals.

Many of the proposals that will be introduced throughout this Chapter have tunable
parameters. For the sliding window (see Sect. 3.2.1), we can adapt the window size δ.
For the branch length (see Sect. 3.2.2) or tree length multipliers (see Sect. 3.2.4), the
λ parameter that specifies the size of the sliding window on the logarithmic scale can
be tuned. Finally, for a Dirichlet proposal (see Sect. 3.2.5), we can tune the scaling
factor α.

30

3.1 Methodology

3.1.5 Assessing Convergence

Apart from criticism about the subjectivity in BI, another major problem with respect
to BI is the difficulty to determine whether a chain has converged against the posterior
we want to estimate. In practice, we assume that, if multiple chains that started at
independent locations in the parameter space (i.e., at Θ0,Θ

′
0,Θ

′′
0, . . .) converge against

the same stationary distribution, we can be increasingly confident about the convergence
(i.e., correctness) of the results as the number of independent chains we run increases.
However, in practice there is no way to rule out that all chains have been attracted by
the same local minimum and thus provide an incorrect or incomplete sample of Pr[Θ |A].
ExaBayes implements the following three methods for assessing convergence.

Effective Sample Size

An important convergence criterion for continuous parameters is the effective sample
size (ESS) of all states extracted from the chain. Since proposals for new states of
the Markov chain usually depend on the previous state of the chain, it is expected
that parameter values (e.g., branch lengths ~v) for subsequent generations are highly
correlated. A particularly high correlation can be expected, if the proposal in question
is frequently rejected (i.e., the parameter value remains the same) or if the parameter
updates are chosen in a too narrow region around the original value (e.g., see Sect. 3.2.1).
For highly correlated samples, the absolute number n of parameter samples therefore
does not indicate whether the underlying distribution has been sufficiently sampled. In
other words, we can not conclude that a chain approximates the target distribution well,
just because the chain has been running for a large number of generations.

The ESS measures the correlation in a set of samples Θ = θ1, θ2, . . . θn with mean µ.
It is based upon the autocorrelation coefficient rk that correlates a sequence with itself
for a given lag k (see Eq. 3.7). In other words, for a lag k an element θi is matched by
element θi+k. The auto-correlation at lag k is determined as

rk =

∑n−k
i=1 (θi − µ)(θi+k − µ)∑n

i=1(θi − µ)2
. (3.7)

Summing over all possible lags, we obtain the ESS as [see 127, p.161]

ESSΘ =
n

1 + 2 ·
∑∞

i=1 ri
. (3.8)

In essence, for a marginal distribution the corresponding ESS represents the number
of uncorrelated samples, if those were drawn identically and independently from the
underlying posterior distribution. In practice, the sum of autocorrelation coefficients is
typically not computed beyond a fixed number of elements (e.g., 2,000 in ExaBayes or
MrBayes), since autocorrelation rapidly decreases for increasing lags.

Potential Scale Reduction Factor

ESS values provide no inherent guarantee that the posterior has been sampled correctly.
High ESS values are necessary for reliable estimates of the posterior, but they are not

31

3 Elements of Bayesian Inference in Phylogenetics

sufficient: the ESS indicates that the available number of samples corresponds to a
certain number of uncorrelated samples, but not whether these samples approximate
the posterior. To satisfy the latter requirement, the potential scale reduction factor
(PSRF) [41] was introduced. Its underlying rationale is to start several chains at random
values that have a higher variance than the target posterior. Subsequently, it computes
two distinct estimators of the variance of the samples and uses their ratio to decide upon
the convergence of the samples of all chains to the target posterior:

W =
1

m

m∑
i=1

 1

n− 1

n∑
j=1

(xij − µi)2

 , (3.9)

B =
n

m− 1

m∑
i=1

(µi − µ)2, (3.10)

σ̂2 =
n− 1

n
W +

1

n
B. (3.11)

The PSRF is based upon the within-chain variation W and the between-chain variation
B
n for m chains with n samples each (where xij is the i-th sample of the j-th chain).
The within-chain variation W is defined as the average of the variances of the samples
xij in a chain (see Eq. 3.9) with respect to mean µi of samples xij in a chain i. We
compute the between-chain variation B

n as the variance of the sample averages µi of
chain i around the global average µ (computed from all samples xij , see Eq. 3.10). The
between-chain variation B

n is multiplied by n to account for the chain length. In case all
chains approximated the overall mean µ correctly, B

n approaches 0. The term σ̂2 (see
Eq. 3.11) is designed to be an estimator of the variance σ2 of the target posterior. By
design, σ̂2 overestimates the true σ2, when chains have not sufficiently converged. The
second estimator for σ2 is W, which is highly likely to underestimate the σ2, if chains
are stuck in local maxima. The PSRF is then defined as the ratio of σ̂2 and W. If all
chains have sufficiently converged (i.e., they do not just sample a local optimum close
to their initial state), the PSRF assumes values close to one (typically < 1.1 is deemed
sufficient). For the calculation of this statistic, it is important to discard the burn-in,
since otherwise the within-chain variance will be inflated.

Standard Deviation of Split Frequencies

A measure analogous to the ESS for the discrete topology parameter τ does not exist. As
an alternative, we can assess whether independent chains that have started at different
random or parsimony trees yield the same distribution for τ . However, given the large
number of trees that may be contained in the high PP region of τ (often exceeding 100 –
1,000 trees), estimating the marginal PP of distinct topologies can be prohibitively time
consuming in practice. The reason is that, often the total collection of sampled trees
in the high PP region is only marginally smaller than the number of unique sampled
topologies. If the PP is low for inner branches of the tree, then the high number of unique

32

3.2 Proposals for Continuous Parameters

tree topologies in the sample is the combinatorial result of competing inner branches.
Specifically, for trees comprising a high number of taxa with a high degree of uncertainty
there are cases, where no single tree is sampled more than once (e.g., see Sect. 4.1.1). If
split frequencies are similar for various independent chains, we can nonetheless assume
that we have accurately sampled the tree parameter τ . A popular measure for this, the
average standard deviation of split frequencies (ASDSF) [65] is defined as

ASDSF(B) =
1

m

∑
b∈B

√√√√ 1

n
·
∑

i∈{1..n}

(fi(b)− µb), (3.12)

MSDSF(B) = max
b∈B


√√√√ 1

n
·
∑

i∈{1..n}

(fi(b)− µb)

 , (3.13)

for n bipartitions b ∈ B, where B is the set of all bipartitions that occur in any of
the trees that have been sampled in any of the m independent chains c1 . . . cm. Here,
fi(b) indicates the frequency of bipartition b in the i-th chain ci and µb is the average
frequency of b. The default convergence threshold for the ASDSF is ≤ 5%. However, it
has been argued that this threshold should be reduced to at least 1% [125]. Typically,
the initial 25% of samples are discarded as burn-in. Bipartitions that do not occur in
more than 10% of samples in any of the chains are excluded from ASDSF computation.
Similarly to the PP of unique tree topologies, the accurate PP of a rare bipartition is
hard to estimate. A more conservative measure is the maximum standard deviation
of split frequencies (MSDSF) (see Eq. 3.13) that only considers the bipartition that
exhibits the highest deviation in split frequencies among chains.

3.2 Proposals for Continuous Parameters

In this Section, we discuss proposals for the continuous parameters comprising the α
shape parameter of the Γ model of rate heterogeneity, the substitution rates ~r, stationary
frequencies ~π, and branch length parameters ~v.

3.2.1 Sliding Window

One of the most basic proposals is the sliding window proposal. For a value x of pa-
rameter X and a given window size δ, we propose a new value x∗ := x + δ · (u − 0.5),
where u is drawn from a uniform distribution in [0, 1). ExaBayes implements a slid-
ing window for proposing rates ~r and frequencies ~π. Since for n frequencies, there are
only n − 1 free parameters, we are forced to modify more than one value at a time,
if we attempt to update a frequency using a sliding window. This also applies to the
substitution rates ~r, which at the level of ExaBayes are represented, such that their
sum is one. This is because the representation relative to a reference rate (as used by
the phylogenetic likelihood library (PLL) and the underlying model, see Sect. 2.6.1) is

33

3 Elements of Bayesian Inference in Phylogenetics

impractical for Bayesian proposals, specifically the Dirichlet proposal (see Sect. 3.2.5),
respectively Dirichlet priors (see Sect. 3.1.3).

In ExaBayes, for a sliding window proposal on rates or frequencies, we choose two
parameter values at random and increase one of them by some value drawn from the
sliding window, while the second value is decreased accordingly. Since the move is
symmetric, its Hastings-ratio is 1. Thus, apart from its simplicity, one of the major
advantages of the sliding window is the fact, that the acceptance probability is not
penalized by a Hastings-ratio.

For numerical reasons, the range of parameter values is further constrained by the
PLL [39], which is used for likelihood computations in ExaBayes. Furthermore, any
single component of ~π or ~r must not become negative. If the value drawn from a sliding
window exceeds the valid range, we project the value back into the valid range. Assume
we draw x∗ = x + 0.5δ and there exists an upper bound bupper with x < bupper < x∗.
Then, we instead propose a reflected x∗ = bupper − (x + 0.5δ − bupper). Note that, the
reflection does not affect the Hastings-ratio: while there is a higher probability of drawing
values close to bupper, the probability of drawing x from a sliding window around x∗ in
the reverse move increases by the same degree. Thus, the Hastings-ratio also is 1 for
this boundary case. Finally, δ is a tunable parameter (see Sect. 3.1.4).

3.2.2 Multiplier

Motivation

The range of values for a univariate component (e.g., branch lengths ~v or α parameter
of rate heterogeneity), for which we observe high PP can often stretch across more than
one order of magnitude. Furthermore, it is considered good practice in BI to start the
analysis in overdispersed states (i.e., parameters assume values drawn from a random
distribution that has a higher variance than the PP distribution). In both cases, a sliding
window has severe drawbacks. Depending on the window size, an excessive number of
steps may be necessary to change the component value by an order of magnitude (or
even worse, by more than one order). If window sizes are chosen too large and we have a
high PP region close to a parameter value of 0, then a considerable number of proposals
may be necessary until a value for this narrow interval is proposed.

Derivation

In such cases, a multiplier represents an advantageous alternative: we propose a new
value x∗ as x∗ = m · x, where x is the current state of the component and m = h(u)
is the multiplier generated by some function h from a random variable u that is drawn
from a uniform distribution in [0, 1). The following derivation of the proposal and its
Hastings-ratio represents a more detailed version of the derivation published in a study
on efficiency of topological proposals [65].

We require h(u) to be ∈ (a−1, a) to guarantee the reversibility of the proposal (oth-
erwise the chain would not be positively recurrent any more). In other words, the
reversibility ensures that we do not have proposals with a Hastings-ratio of 0. We also

34

3.2 Proposals for Continuous Parameters

postulate as a desirable property of h(u), that the probability of generating a multiplier
that increases the component value should be equal to the probability of decreasing the
component value. That is:

∫ a
1 h(u) ∂u =

∫ 1
a−1 h(u) ∂u. This is because there usually

exists no a priori reason to bias the proposal in either direction. In other words, we want
to draw a multiplier from a sliding window on the logarithmic scale in the range (a−1, a).
To satisfy the aforementioned requirements, we choose the density of the multiplier as
g(m) = 1

2 ln(a)·m .

Inverse transform sampling allows us to determine a function h(u), that transforms
uniformly distributed random numbers u into random numbers that are distributed
according to g(m), if the cumulative distribution function (CDF) has a closed form.
Thus, we first have to determine the inverse function of the CDF. The generalized anti-
derivative of g(m) is G(m) = ln(m)

2·ln(a) +C. If we constrain G(m) to the interval (a−1, a), we

obtain the CDF G(m) = lnm
2 ln(a) +0.5. We can now set G(m) := u and thus effectively ask

for which m we obtain a CDF value of u. As postulated earlier, the median of the CDF
is 1.0 (resp., G(1) = 0.5). If we solve for m, we obtain h(u) for generating multipliers
distributed according to g(u) ∈ (a−1, a):

m = h(u) = exp(2 · ln(a)︸ ︷︷ ︸
κ

·(u− 0.5)). (3.14)

Typically, the parameter κ := 2 · ln(a) is either provided by the user or tuned via a
tuning mechanism (see Sect. 3.1.4).

Hastings Ratio

Since the density of multipliers g(m) monotonically decreases, so does the proposal
density q(x∗ | x) = h(u) · x according to which we draw our proposed value x∗. In other
words, each multiplier < 1 (that shrinks x) has a higher density than each multiplier
> 1 that enlarges x. For reverting a move with a multiplier m, we have to draw the
inverse multiplier m−1. Thus, it is intuitively clear, that we need to account for this
disequilibrium (i.e., that either the forward or the backward move has a higher density
than the associated reverse move) via a Hastings-ratio 6= 1.0 in a multiplier move.

Compared to the sliding window proposal, the Hastings-ratio of a multiplier is not
trivial to determine. A powerful approach for calculating Hastings-ratios was developed
for reversible jump Markov chain Monte Carlo (rjMCMC) [45]. The rjMCMC method
allows for trans-dimensional moves, that is, moving between models with different num-
bers of parameters (one example of such a proposal would be to link or unlink partitions
for a parameter, e.g., α). This method, referred to as Green’s method [45], considers the
vectors of component values ~x∗ that have been proposed according to a deterministic
scheme (such as the multiplied value x∗ in our case) using a vector of random numbers
~r that follow a distribution g(~r). Inversely, values ~x are the initial component values
(prior to the proposal) that can be reached from state ~x∗ using random numbers ~r∗

that are distributed according to g∗(~r∗). According to Green’s method for rjMCMC, a

35

3 Elements of Bayesian Inference in Phylogenetics

generalized formula for the Hastings-ratio (including rjMCMC) is

q(~x | ~x∗)
q(~x∗ | ~x)

=
jM (~x∗)

jM (~x)
· g
∗(~r∗)

g(~r)
·
∣∣∣∣∂(~x∗, ~r∗)

∂(~x,~r)

∣∣∣∣ , (3.15)

where jM is a function that specifies the probability of choosing a specific move (forward
~x∗ or backward ~x), which in case of the multiplier can be ignored (since multiplier m and
reverse multiplier m−1 are fully determined by the proposal mechanism). As mentioned,
g∗ is the proposal density for proposing the backward move. However, in contrast to
rjMCMC, there is no need to differentiate between forward and backward proposals

in our move. Thus, we can set g∗ := g. Finally,
∣∣∣∂(~x∗,~r∗)
∂(~x,~r)

∣∣∣ is the absolute value of the

determinant of the Jacobian matrix for transforming vector {~x,~r} to {~x∗, ~r∗}. Each entry
of the Jacobian matrix contains the partial derivative of an element of the column vector
{~x∗, ~r∗} with respect to an element of the row vector {~x,~r} and accounts for interactions
between component values and random numbers used in the transformation.

Thus, for a multiplier m = h(u) on a single parameter component x (such as a single
branch length), the proposed state is x∗ = m · x. For the reverse move, we need to
multiply with m∗ = m−1. Thus, we can substitute Eq. 3.15:

q(x | x∗)
q(x∗ | x)

=
g(m∗)

g(m)
·

∣∣∣∣∣∣
∂x∗

∂x
∂m∗

∂x

∂x∗

∂m
∂m∗

∂m

∣∣∣∣∣∣ (3.16)

=
κ−1 ·m
κ−1 ·m−1

·

∣∣∣∣∣m 0
x −m−2

∣∣∣∣∣ (3.17)

= m2 · | −m−1 − 0| (3.18)

= m. (3.19)

To summarize, the Hastings-ratio for the proposed value x∗ := m · x, given the current
state x is simply the multiplier m, that is q(x | x∗)

q(x∗ | x) = m.

Application

Typically, classical statistical quantities that are used to characterize a distribution are
the mean and the standard deviation. However, for an optimal choice of κ (i.e., the
window size on the logarithmic scale), the only relevant statistic for characterizing an
underlying marginal posterior is its coefficient of variation (CV). The CV is a scale-
invariant statistic that indicates how strongly a distribution varies around its mean
value µ. It is defined as σ

µ (where σ is the standard deviation). As an example, consider
a marginal branch length posterior fv1 (with µ = 0.0001, CV = 1.0), a marginal branch
length posterior fv2 (with µ = 1.0, CV = 1.0) and fv3 (with µ = 0.0001, CV = 0.001).
Assuming, for simplicity, that fv1 and fv2 are similar (e.g., both unimodal distributions),
a branch length multiplier with tuned κ∗ can integrate over both distributions fv1 and
fv2 with similar efficiency, although both distributions have a mean that is at opposite

36

3.2 Proposals for Continuous Parameters

ends of the spectrum of typically observed branch lengths. However, such a proposal
will integrate over fv3 in a particularly inefficient manner. A branch length multiplier
based on the respective κ∗, proposes values that are too bold for fv3 , which results in
an excessive rejection rate.

In ExaBayes, the multiplier proposal is used for integrating over branch lengths
~v and the α shape parameter of the Γ distribution that models among-character rate
heterogeneity. For the branch length parameter, the multiplier represents a particularly
valuable proposal, since with an increasing number of taxa it becomes more likely that,
in the same tree we have some particularly long branches (e.g., in the range [0.1, 1.0]),
while other branches are particularly short (e.g., in the range [10−5, 10−3]). Efficient
integration over such a diverse set of branch lengths using sliding windows would require
several branch-specific sliding windows (i.e., one proposal instance for proposing branch
lengths for each individual bipartition). As we will see in Sect. 4.1.3, the range of CVs
of branch lengths in several empirical datasets is comparably limited. Thus, a single
branch length multiplier is sufficient to yield sufficient sampling efficiency and mixing
when applied to all branches in the tree.

3.2.3 Node Slider

In MrBayes a second move is specifically designed for integrating over branch lengths,
the node slider. The node slider can be interpreted as a less bold version of the Local
move [67] (introduced in BAMBE [102]). The Local move scales three adjacent branch
lengths (vax, vxy, vyc) with a multiplier m, where vax = (a, x), vxy = (x, y) and vyc =
(y, c) and where a, x, y and c are nodes in a tree τ .

Subsequently, we choose either subtree x or y and move the subtree using a uniform
slider along the path from a to c. All locations are allowed along a ↔ c. Assuming
subtree x was chosen for sliding, this means that

1. x assumes a new position along a and y, such that v∗ax + v∗xy = m · (vax + vxy)

2. or subtree x is reinserted in the adjacent branch (y, c) that is beyond a ↔ y.
which results in new branch lengths v∗xc, v

∗
yx and v∗ay with v∗xc + v∗yx = m · vyc and

v∗ay = m · (vax + vxy).

Thus, in case 2) the Local move also performs a nearest neighbor interchange (NNI)
move (see Sect. 3.3.1). We may say that the Local move tries to bridge the gap between
discrete topological changes and continuous branch length updates. Up until MrBayes
v.3.2 (excluding), the Local proposal was the only topological proposal available ex-
cept for the extending tree-bisection and reconnection (eTBR) proposal (see Sect. 3.3.1).
Since the Local proposal is comparably complex, its Hastings-ratio was initially incor-
rectly determined as m2 and later corrected to m3 by two separate proofs [53, 66].

The node slider operates on two adjacent branches vab and vbc (for an illustration,
see Fig. 3.2), respectively a path from node a over b to node c. Similarly to Local,
the node slider first scales these two adjacent branches and then slides the intermediate
subtree rooted at node b in either direction using a sliding window. Thus, we first

37

3 Elements of Bayesian Inference in Phylogenetics

b c
a

b
c

a

b c

a

Figure 3.2: Illustration of the node slider move. The sum of two adjacent branches vac is first
scaled via a multiplier h(u1). Subsequently, we propose a new ratio u2 according to which
v∗ab splits up v∗ac.

scale the joint branch path vac by a multiplier m = h(u1) for which we need a single
uniformly distributed random variable u1 (see Eq. 3.20). Thereby the length of the
path vac is transformed into v∗ac. Notice, that in contrast to the Local proposal, no
topological change can be induced. Next, we draw a second uniform random variable u2

that determines, whereto the subtree rooted at b will be slid along the path v∗ac. This
yields the proposed branch length v∗ab (see Eq. 3.21). Branch v∗bc needs not be considered
explicitly, since it depends on v∗ac and v∗ab. In contrast to the derivation of the Hastings-
ratio for the single parameter multiplier, we do not consider the distribution of the
multiplier for the terms g(~r∗) or g(~r). Instead, we directly treat h(u) as part of equations
that yield updated branch lengths as a function of two uniform variables u1 and u2. Thus,
for the Jacobian, we can consider the transformation of {~x,~r} = {vac, vab, u1, u2} into
{~x∗, ~r∗} = {v∗ac, v∗ab, u∗1, u∗2}.

For reversing a node slider move, we have to consider the steps in inverted order. We
need to draw the value from the uniformly distributed random variable u∗2 that restores
the original ratio between vab and vac (see Eq. 3.23). After that, we scale v∗ac back to
vac using an inverse multiplier m−1. As derived in Sect. 3.2.2, h(1−u) yields the inverse
multiplier of h(u), thereby we obtain u∗1 (see Eq. 3.22).

38

3.2 Proposals for Continuous Parameters

v∗ac = vac · h(u1), (3.20)

v∗ab = u2 · vac · h(u1), (3.21)

u∗1 = 1− u1, (3.22)

u∗2 =
vab
vac

. (3.23)

Since the node slider move is entirely deterministic, we do not have a choice between
multiple alternatives. Thus, the term jM in Eq. 3.15 cancels out. The second ratio
(i.e., g(~r)) need not be considered, since u1 and u2 are uniformly distributed. Thus, the
Hastings-ratio in this case, is simply the absolute value of the determinant of the partial
derivatives in the Jacobian matrix. The partial derivatives of {~x∗, ~r∗} = {v∗ac, v∗ab, u∗1, u∗2}
with respect to {~x,~r} = {vac, vab, u1, u2} yield the following Jacobian matrix

|J | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂v∗ac
∂vac

∂v∗ab
∂vac

∂u∗1
∂vac

∂u∗2
∂vac

∂v∗ac
∂vab

∂v∗ab
∂vab

∂u∗1
∂vab

∂u∗2
∂vab

∂v∗ac
∂u1

∂v∗ab
∂u1

∂u∗1
∂u1

∂u∗2
∂u1

∂v∗ac
∂u2

∂v∗ab
∂u2

∂u∗1
∂u2

∂u∗2
∂u2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.24)

The partial derivatives of formulas Eq. 3.20, Eq. 3.21, Eq. 3.22 and Eq. 3.23 are
straight-forward and allow us to determine the absolute value of the determinant of the

Jacobian matrix of Eq. 3.24. For the terms ∂v∗ac
∂u1

and
∂v∗ab
∂u1

, we have to calculate the
derivative of Eq. 3.14.

39

3 Elements of Bayesian Inference in Phylogenetics

|J | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h(u1) u2 · h(u1) 0 −vab
v2ac

0 0 0 1
vac

λvach(u1) λu2vach(u1) −1 0

0 vac · h(u1) 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.25)

=

∣∣∣∣∣0−
(

1

vac
· (−1) · vac · h(u1) · h(u1)

)∣∣∣∣∣ (3.26)

= h(u1)2. (3.27)

As we see in Eq. 3.25, only one component of the determinant of J is non-zero. We
conclude that, the Hastings-ratio of the node slider move is m2, where m = h(u1) is
the initial multiplier. As mentioned previously, re-parametrization does not affect the
outcome of Green’s method, thus we could have considered vab / vbc instead of vab / vac.
Alternatively, we could have considered the vector {~x,~r} = {vac, vab, h(u1), u2} with an
altered g(~r) and a partial derivation with respect to m = h(u1) instead of u1.

The parameter κ of the initial multiplier m is tunable. The sliding window however
(as in the Local move) is parameter-free. Thus, according to the authors of MrBayes,
tuning of κ does not necessarily improve the performance of the node slider, since the
acceptance ratio may be obfuscated by extreme values of the sliding window u2. Thus,
ExaBayes implements a node-slider without tuning. As an alternative to a sliding
window, a two-parameter distribution such as a Γ or a log-normal distribution could be
used for determining a reinsertion point. These distributions could be parameterized,
such that their expectation value equals vab

vac
. This would leave room for another tunable

parameter that determines the variance (and thus boldness) of the respective distribu-
tion. However, tuning multi-parameter proposals is substantially more challenging than
tuning single-parameter proposals. For multi-dimensional optimization a variation of
the popular simplex algorithm [83] could be employed. A possible optimality criterion
would be the distance to the target acceptance rate. However, acceptance rates for the
same set of proposal parameters can be different depending on whether the chain is still
in the burn-in phase or has already reached stationarity.

3.2.4 Tree Length Multiplier

Another proposal that is specific to branch lengths ~v is the tree length multiplier. As
the name suggests, we scale all values in the branch length vector ~v by a multiplier m

40

3.2 Proposals for Continuous Parameters

that is determined as described in Sect. 3.2.2. The tree length multiplier has been pro-
posed after observing that, specifically in partitioned datasets, BI yields branch lengths
that exceed the ML estimates by more than one order of magnitude [19, 75]. In many
instances, branch lengths from different chains did not converge to a common posterior
distribution with respect to the PSRF (see Sect. 3.1.5), for instance.

For n branch lengths ~v = {v1, v2, . . . , vn}, we can infer the Hastings-ratio analogously
to the Hastings-ratio of the branch length multiplier (see Sect. 3.2.2). Every proposed
branch length is determined as v∗i = h(u) · vi. By definition, deriving v∗i with respect to
any branch length other than vi yields 0. When we derive with respect to vi, we obtain
the multiplier m = h(u). As in Eq. 3.22, for the reversal, we have u∗ = 1− u and thus
only the diagonal of the Jacobian is non-zero. Thus, the Hastings-ratio of a tree length
multiplier for a tree with n branch lengths is

|J | =

∣∣∣∣∣∂(~x∗, ~r∗)

∂(~x,~r)

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣

∂v∗1 ∂v∗2 . . . ∂v∗n ∂u∗

∂v1 m 0 . . . 0 0
∂v2 0 m . . . 0 0
...

...
...

. . .
...

...
∂vn 0 0 . . . m 0
∂u λh(u)v1 λh(u)v2 . . . λh(u)vn 1

∣∣∣∣∣∣∣∣∣∣∣
= mn. (3.28)

ExaBayes inherits the internal representation of branch lengths from the PLL. Since
branch lengths are represented relative to the mean substitution rate, a proposal on ~π
or ~r (resp., proposing a new fixed-rate AA matrix) also affects absolute branch lengths ~v.
Thus, slider and Dirichlet proposals on ~π and ~r are tree length proposals as well and
thus the factor mn is added to the Hastings-ratio of these proposals.

3.2.5 Dirichlet Proposals

As mentioned in Sect. 3.1.3, using a Dirichlet prior represents a common choice for
multivariate distributions such as the posterior distributions that we obtain for param-
eters ~r and ~π. Analogously, we can draw multiple values at random from a Dirichlet
distribution. Assume a parameter vector ~x = {x1, . . . , xn}, such as for instance ~π or ~r.
As a proposal we can draw new values ~x∗ = {x∗1, . . . , x∗n} from a Dirichlet distribution
that is based on the previous values ~x. In other words, we draw ~x∗ from a Dirichlet dis-
tribution that has density f(x∗1, . . . , x

∗
n;αx1, . . . , αxn), where α is a tunable parameter

of this proposal. We can draw the i-th value of ~x∗, by first drawing from a distribution
with density Γ(αxi, 1) and then normalizing all values ~x∗, such that

∑
i∈1,...,n x

∗
i = 1.

For large values of α, the proposal ~x∗ is closer to the original values ~x (see Fig. 3.3). A
natural advantage of the Dirichlet proposal are the simultaneous updates of all values
~x∗. The Hastings-ratio is determined by the Dirichlet densities (see Eq. 3.5) of the
proposal and reverse proposal

q(~x | ~x∗)
q(~x∗ | ~x)

=
f(x1, . . . , xn;αx∗1 . . . αx

∗
n)

f(x∗1, . . . , x
∗
n;αx1, . . . , αxn)

. (3.29)

41

3 Elements of Bayesian Inference in Phylogenetics

0.
2

0.8

0.2

0.
4

0.6

0.4

0.
6

0.4

0.6

0.
8

0.2

0.8

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

● ●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0.
2

0.8

0.2

0.
4

0.6

0.4

0.
6

0.4

0.6

0.
8

0.2

0.8

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●
●

●

●
●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●
●

●●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

● ●

●

●

●●

●●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
● ●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●●
●

●

● ●

●

●

●
●● ●

●

●

●
●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
● 0.

2

0.8

0.2

0.
4

0.6

0.4

0.
6

0.4

0.6

0.
8

0.2

0.8

●●
●●
●

●

●

●
●●

●

●●

● ●

●
●

●

●●
● ●●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●
●

●●

●
●

●●
●

●
●

●●

●

●

●

●

●
●

●●

●
●

●
●●

●●

● ●

●

●

●
●●
●

●
●
●

●
●

●●●●
●

●

●
● ●

●●●●

●

●
●

●
●●

●
●

●●

●

●
●

● ●●

●
●

●

●●
●

●

●
●●●

●●●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●
●

●

●
●●

●●

●

●

●

●
●●

● ●

●

● ●
●

●

●
●

●

●
●●

●

●

●●

●

●
● ●

●
●●

●
●

● ●
●●

●
●

●

●

●
●●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●●●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●●
●

●

●

●

●●●
●

●

●
●● ●

●

●●

●

●●●

●

●
●
●

●

●
●●

●
●

● ●
●

●

●
●●

●
●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●

●
● ●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●
●

●

●
●●

●
●

●
● ●
●
●
●

●
●

●●

●

●
●

●

●

●

●

● ●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

● ●
●

●

●●

●●

●
●

●

● ●●

●●

●
●

●●

●

●
●

●
●

●●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●
●

● ●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●
●

●
●
●

●
●

●●
●

●
●

●

●●●●

●

●

● ●
●
●

●

●

●

●

●
●

● ●
●
●

●
●

●

●
●

●

●●

●
●

●

●

●
● ●●

●●

●

●
●

●
●

●

●

●

●

●●●
●●

●

●
●

●

●
●
●

●
●●

●

●
●

●

●

●●●●●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●
●

● ●
● ●

●

●●

●
●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●
●

●
●●

●

● ●●●●

●

●

●
● ●

●

●

●

●

●

●

●
●●

●
●

●●

●
●

●

●

●
●
●

●

●
●

● ●

●

●

●

●●
●

●●
●

●●
●

●

●

● ●

●
●
●

●
●

●●

●

●●

●

●

●

●
●

●

● ●

●
●

●
●

●●●●
●

● ●●
●

●

●
●

●

● ●●●
●

●

●

●
●●

●

●●

●

●
●

●

●
●
●

●

●
●
●

●
●

●●●

●
●

●

●

● ●●
●

●

●

●

●

●
●

●●●

●
●

●

●●

●
●

●
●

●

●

●
●
●

●

●

●● ●●

●●

●
●

●
●

●
●

●●

● ●

●
●

●●

●
●

●

●●

●

●●

●●

●

●
●

●
●

●
●●

●

●●
●●

● ●

●●

●●●
●

●

●

●

●

● ●●●
●●

●
●●

●

●
●
●●
●

●

●
●●

●

●

●
●●●

●●
●

●
●

●
● ●

●

●
●

●

●

●
●

●
●

●
●

●
●

● ●
●

● ●●
●

●●●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●●
●

●
●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●●
●

●●

●
●

●

●

● ●●
●●

●

●

●

●
●●●

●●
●●

●●

●
●●

●● ●
●

●
●

● ●●
●●

●

●
●

●● ●
●● ●

●

●
●

●

●

● ●
●

●●

●

●
●

●

●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

: : :

Figure 3.3: Ternary plot of 1,000 proposed values ~x∗ drawn from a Dirichlet distribution that
is based on original values ~x = {0.2, 0.3, 0.5} and has been scaled with an increasing value
of α.

Dirichlet Proposals in ExaBayes

As discussed in Sect. 2.6.1, for likelihood computations, we have to represent substi-
tution rates relative to one rate (which assumes a value of 1.0). In case of DNA data,
this reference rate is typically defined to be rGT . Furthermore, internally (in the nu-
merical implementation of ExaBayes), the branch lengths are represented relative to
the mean substitution rate (i.e., they depend only on ~π and ~r in the aforementioned
representation). As a consequence, updating ~π and ~r also modifies the overall branch
lengths (which needs to be considered in the Hastings-ratio and prior ratio of the affected
proposals). Thus, proposals integrating over state frequencies or substitution rates ef-
fectively also integrate over the tree length. Using the proposal mixture as applied in
MrBayes, we can observe that ExaBayes samples tree lengths much more efficiently
than MrBayes. However ~r is typically not sampled sufficiently. Thus, in ExaBayes
the weight ωTL of the tree length multiplier proposal (see Sect. 3.2.4) is reduced by 50%
and the weight ωsw for the sliding window, respectively ωdir of the Dirichlet proposals
on substitution rates are doubled. While this allows for good overall sampling efficiency,
the reference rate (in its relative form) is still sampled less efficiently in the worst case.
This is because updates of the reference rate heavily affect the mean substitution rate
and in turn lead to higher absolute values in the Hastings-ratio.

Modification for AA

We found that, even with tuning of proposal parameters, proposals usually applied to
DNA GTR matrices perform sub-optimally on AA GTR matrices. In a AA GTR matrix,
there are 189 substitution rates ~r to be estimated. Thus, a tuned Dirichlet proposal that
modifies all values in one step, will only apply modest updates that do not change
values substantially. On the other hand, a sliding window proposal that updates one
or two rates can perform a bolder update. This however, only affects a small part of
the matrix. As a compromise between the two alternatives, ExaBayes implements
a Dirichlet proposal that modifies all substitution rates associated with a specific AA
(e.g., rA·). This means, we only update 19 values at a time. The Hastings-ratio of this
proposal directly follows from the Dirichlet densities of the affected rates.

42

3.2 Proposals for Continuous Parameters
ES

S

15

20

25

72 140 775

standard: 50+50+0
standard + rate dirichlet: 33+33+33
rate dirichlet only: 0+0+100

#taxa in dataset

Figure 3.4: Sampling efficiency of AA GTR proposals: ESS averaged over all AA substitution
rates for three different proposal mixtures. For each strategy the weight of proposals spent on
(i) sliding window proposals, (ii) Dirichlet proposal and (iii) rate-specific Dirichlet proposals
is given.

43

3 Elements of Bayesian Inference in Phylogenetics

For three AA datasets (for details, see Tab. 5.1), we ran chains for 1,000,000 gen-
erations using three different proposal mixtures to evaluate this rate-specific Dirichlet
proposal (5 chains per strategy). In ExaBayes, the relative proportion of updates on
the substitution rate parameter amounts to 4.44%. In other words, the sum of weights ωi
of proposals that update the substitution rate parameter is 0.0444. Out of these 4.44%,
the default proposal mixture (strategy 1) applies 50% sliding window and 50% Dirichlet
proposals (also used as the default in MrBayes). For strategy 2, we added the rate-
specific Dirichlet proposal and applied all three proposals (uniform slider, Dirichlet and
rate-specific Dirichlet) with equal weight. In strategy 3, only the rate-specific Dirichlet
proposal is applied.

As shown in Fig. 3.4, exclusive usage of the rate-specific Dirichlet proposal leads
to increased sampling efficiency on 2 out of 3 datasets. However, it performs worse
than the standard strategy on the 72-taxon dataset. Strategy 2, which uses the rate-
specific Dirichlet proposal in addition to the default proposals leads to increased sampling
efficiency on all three datasets. Thus, ExaBayes uses strategy 2 for integrating over
the ~r parameter vector on AA GTR matrices.

3.3 Topological Proposals

Aside from uniform sampling across the protein model space (where we propose among
the standard fixed-rate AA GTR models), the topology represents the only discrete
parameter. In most cases, it is the primary parameter of interest. Proposals on topologies
can be divided into two classes: (i) random perturbations of the topology and (ii) guided
proposals. Guided proposals have to compute a guidance function that allows them to
make an informed decision about the topology to propose.

3.3.1 Stochastic Topology Proposals

Stochastic Nearest Neighbor Interchange

A particularly simple and modest proposal is the stochastic nearest neighbor interchange
(stNNI) [first discussed in 65]. Let bAB denote the branch between nodes A and B as well
as the subtree rooted at A (with B as sole descendant). For the stNNI, we first randomly
draw an inner branch bEF in τ , where E is an inner node with descendant subtrees A
and B and F is an inner node with descendant subtrees C and D. We can create two
alternative topologies around branch bEF . We obtain the alternative topologies τ1 and τ2

by modifying the original branches Eτ as follows

τ1 = NNI(A,D, τ) =
{
V,
(
Eτ \ {bAE , bDF }

)
∪ {bAF , bDE}

}
,

τ2 = NNI(A,C, τ) =
{
V,
(
Eτ \ {bAE , bCF }

)
∪ {bAF , bCE}

}
.

Thus, we effectively obtain an interchange between subtrees A and either subtree
C or subtree D (see Fig. 3.5 for an equivalent representation). If the NNI operator

44

3.3 Topological Proposals

is applied repeatedly to τ , we can transform τ into any tree τ ′. Since there are three
alternative topologies for each inner branch, the initial version of the stNNI proposal [65]
proposed one of the three NNI alternatives uniformly and thus left τ unchanged in 1

3 of
all cases. Subsequently, the stNNI (as well as all stochastic proposals discussed in this
Section) have been “metropolized”. That means, we constrain the proposed topology τ∗

to τ∗ 6= τ . The Hastings-ratio of this proposal is 1. Note that, branch lengths previously
associated with the root of a subtree (e.g., vAE) remain attached to the subtree. Thus,
for instance vAE becomes vAF .

Extending Subtree-Pruning and Regrafting

The extending subtree-pruning and regrafting (eSPR) [first discussed in 65] implements
a specific subtree-pruning and regrafting (SPR) move: we pick an inner branch bBD at
random, where B is an inner node with descendants C and A. Then, we pick any branch
bEF 6= bBD (either node E or node F may be external nodes). We obtain τ ′ from τ after
performing an SPR move as

τ ′ = SPR(bBC , bEF , τ) =
{
V,
(
Eτ \ {bAB, bBD, bEF }

)
∪ {bAD, bBE , bBF }

}
. (3.30)

Note that, if bEF = bDE (i.e., bEF is adjacent to bBD), then SPR(bBC , bDE , τ)
= NNI(C,E, τ). In other words, if the pruned subtree only traverses one subtree, then
there exists an equivalent NNI and therefore also an equivalent stNNI move. For re-
attaching the pruned subtree, there exist 2 · n′ − 3 possibilities, where n′ is the number
of external nodes in the remaining tree, after pruning (see Fig. 3.5 for illustration). A
completely random SPR proposal was found to be too bold [65] (i.e., acceptance proba-
bility is low). Instead the eSPR proposal prunes a subtree and then randomly descends
into the subtrees adjacent to the pruning position (here A and D). At each descent
point, we draw a random number r from a uniform distribution [0, 1) and compare it to
a stopping probability ps. If r < ps, then the traversal stops and the current branch is
chosen as reattachment location bEF . However, if r ≥ ps the traversal continues and the
subtree descends randomly in either subtree of the current branch (but not the branch it
previously visited – except external branches are encountered in ExaBayes as explained
later). Thus, the number of branches that is traversed by the pruned subtree before it
is inserted follows a geometric distribution. If in MrBayes the subtree traverses an ex-
ternal branch, the traversal is stopped immediately without the test against ps and the
external branch is chosen as reattachment location. It is easy to see that, the probability
of doing such a constrained move (terminating in an external branch) is not the same
as the probability of the reverse move. Since here we have one test less in the forward
move compared to the reverse move, the Hastings-ratio is ps. The Hastings-ratio is p−1

s

if the backward move is constrained (i.e., terminates at an external branch), while the
forward move is unconstrained. If none of the moves is constrained, the Hastings-ratio
is 1.0.

In contrast to MrBayes, we allow the subtree to continue its traversal in case an
external branch is encountered in ExaBayes. In other words, at outer branches we also

45

3 Elements of Bayesian Inference in Phylogenetics

apply the test against the stopping probability. If the traversal continues, then we decide
at random whether the subtree either traverses the yet unvisited neighboring subtree of
the current external branch or whether it traverses back to the branch from which it
arrived. Since the number of traversals (i.e., number of possible paths) for the forward
SPR move are the same as for the reverse SPR move, the Hastings-ratio of the eSPR
implemented in ExaBayes is always 1. A Hastings-ratio of 1 is advantageous in this
case, since there is no biological motivation to bias topological rearrangements towards
reattachment of subtrees at external branches.

In an eSPR, the previously existing branch length vBD is mapped to bBk, where k
is the last node that has been traversed by the subtree (either E or F for the notation
given above). Apart from that, all branch lengths remain unchanged at their associated
subtrees (e.g., bAD inherits branch length vAB).

Extending Tree-Bisection and Reconnection

The eTBR move is the boldest among the three stochastic topological proposals. A
tree-bisection and reconnection (TBR) operation is equivalent to performing two SPR
operations using the same initial branch bAB. Thus, in the eTBR, we first determine an
initial inner branch bAB and perform an eSPR move where the subtree bAB is pruned,
traverses adjacent branches and is reinserted according to the stopping criterion ps into
some branch bCD. Then, we prune the subtree bBA, perform the same procedure and
reinsert into a branch bEF . Note that, for sufficiently small ps, the eTBR can essentially
re-connect any two branches from the disconnected components of the graph that origi-
nated from the tree after bisection. In other words, the number of TBR moves for each
inner branch is in O(n2), where n is the number of taxa (see Fig. 3.5 for an illustration).
We can formally define the TBR move as:

TBR(bAB, bCD, bEF) = SPR
(
bBA, bEF ,SPR(bAB, bCD, τ)

)
. (3.31)

The Hastings-ratio of the eTBR directly follows from Eq. 3.31. Thus, in ExaBayes,
the eTBR has a Hastings-ratio of 1 as well. Furthermore, when an initial inner branch
bAB is chosen, that only has outer nodes as descendants of either A or B, the eTBR
automatically degenerates into a eSPR or stNNI move. The probability of an eTBR to
degenerate is huge, since by definition > 50% of all nodes are outer nodes. Up until
MrBayes version 3.1, the eTBR was the main topological proposal (complemented by
the Local move, see Sect. 3.2.3). Since, in practice, the acceptance rate of the eTBR
consistently is about 50% of the acceptance probability of the eSPR proposal, we can
assume, given the above argument about > 50% being outer nodes, that the eTBR
proposal rarely performs an actual non-SPR move. Thus, the eTBR proposal is not
used by default in ExaBayes as of version 1.4.

3.3.2 Guided SPR Proposals

The stochastic proposals discussed in Sect. 3.3.1 typically favor local rearrangements
and thus are likely to propose alternative topologies that are close (w.r.t. the RF-
distance) to the original topology. Yet, acceptance rates of topological proposals are

46

3.3 Topological Proposals

NNI SPR TBR

Figure 3.5: Three elementary operators for proposing topologies. In the NNI (left,) there are
2 alternatives for generating a new tree: either the red or the blue subtree interchanges with
its neighbor. In case of the SPR (middle), a pruned subtree B can be inserted into 6 out of 7
positions to yield a tree topology that is distinct from the original tree. For the TBR (right),
the tree is bisected between two nodes C and D. There are 3×3−1 possibilities to reconnect
the tree that result in a new topology.

still notoriously low, since a large proportion of proposals has a negative impact on the
likelihood ratio (given the immense number of trees). MrBayes, version 3.2, introduced
a SPR proposal that uses parsimony scores in order to derive a proposal density for τ [first
described in 65]. For the parsimony-guided subtree-pruning and regrafting (parsSPR)
move, we determine a random subtree bAB to be pruned and reinsert it into all possible
reattachment positions and calculate the parsimony score of this topology. Assume, the
alignment A is partitioned into P1, P2, . . . , Pk, where partition Pi has si = |Si| states (4
for DNA, 20 for AA and 2 for morphological data). Let Pars(Pi, τ) denote the parsimony
score for partition Pi and tree τ . Then in MrBayes, we derive a score

SP(τ | A) = −
k∑
i=1

Pars(Pi, τ) · w · log

(
s−1
i

(
1− exp(

−si
si − 1

· vtyp)

))
, (3.32)

where vtyp represents a typical branch length (of 0.05), where the logarithmic factor
allows to combine the parsimony score across partitions with different data types and
w is a heating factor that determines how strongly differences in parsimony score affect
the score SP. Let ~τ be all trees that originate from regrafting the pruned subtree. We
then obtain the proposal density as

S(τ∗ | A) = exp

(
min
τ ′∈~τ

{
SP(τ ′ | A)− SP(τ∗ | A)

})
,

q(τ∗ | τ) =
S(τ∗ | A)∑

τ ′∈~τ
S(τ ′ | A)

.

The Hastings-ratio of the parsSPR directly follows from q(τ∗ | τ) and q(τ | τ∗). Fi-
nally, MrBayes implements a random reweighting of character weights similar to the
parsimony ratchet (not implemented in ExaBayes).

47

3 Elements of Bayesian Inference in Phylogenetics

Several alternative guidance functions for proposing topologies in an informed manner
are possible. For instance, the posterior-guided subtree-pruning and regrafting (ppSPR)
proposal [52] directly uses the PP for deriving a proposal density (i.e., S(τ∗ | A) is
replaced by the posterior density of τ∗ given A while all remaining model parameters
are kept fixed). This means that a substantial number of PLF evaluations is necessary
for merely proposing a single novel tree topology. After the burn-in, obtaining a large
RF-distance between current topology τ and proposed topology τ∗ via a topological
proposal becomes unlikely. Thus, we typically only consider reattachment positions that
are within a radius of r of the pruning position in the guidance function of the ppSPR.
The proposal parameter r is either provided by the user or set to d log(n)

log(2) e by default,
where n is the number of taxa. In ExaBayes such a radius parameter is offered for both
the ppSPR as well as the parsSPR moves. The guided SPR proposals, always and often
substantially outperform the acceptance ratio of the eSPR (for details, see Sect. 4.3.3).

3.4 Metropolis-Coupled Markov Chain Monte Carlo

While the MH algorithm guarantees that the stationary distribution simulated via a
chain will approximate the posterior distribution after an infinite number of generations,
the practical challenge of MCMC is to maximize mixing efficiency (i.e., to minimize the
time to apparent convergence). The mixing efficiency depends on prior choice, signal
in the data, proposal design, and the initial values of parameters of the Markov chain.
A generalized approach that potentially improves the mixing of a chain is Metropolis-
coupled MCMC (MC3) [42].

In MC3, we simulate n chains that sample from heated posterior distributions Pr[Θ|A]βi ,
where the posterior of the i-th chain is heated by a chain-specific factor βi with βi ≤ 1.
Note that, β1 := 1, thus chain 1 samples from an unmodified posterior and is referred to
as the cold chain. Phylogenetic BI software packages (such as MrBayes or ExaBayes)
typically use a static heat ladder in which βi is given by Eq. 3.33 and δ > 0 determines
by which factor the heat increases among two chains with adjacent heat increments βi
and βi+1. Dynamic tuning of βi can potentially further increase mixing efficiency [11].
If we modify Eq. 3.4 to Eq. 3.34, we ensure that the i-th chain samples from posterior
Pr[Θ | A]βi . The central purpose of MC3 is to allow two chains i and j to swap their
states Θi and Θj with probability αswap(i, j) as described in Eq. 3.35. In simple terms,
a colder chain i always swaps with a hotter chain j, if the hotter chain is in a region of
higher PP. Otherwise, we swap proportionally to αswap(i, j) and the swapping probabil-
ity increases for similar βi and βj , respectively similar unnormalized posterior densities
f(Θi | A) and f(Θj | A). Thus, after burn-in, a swap most likely occurs between two
adjacent chains with an adjacent heat factor βi and βi+1. This scheme allows the cold
chain to leave local optima of regionally high PP.

48

3.5 Summary

βi =
1

1 + δ(i− 1)
, (3.33)

ξi(Θ
∗ |Θ) = min

(
1,

(
f(Θ∗) · f(A |Θ∗)
f(Θ) · f(A |Θ)

)βi
× q(Θ |Θ∗)
q(Θ∗ |Θ)

)
, (3.34)

ξswap(i, j) = min

(
1,
f(Θi)

βj · f(Θj)
βj

f(Θj)βj · f(Θi)βi

)
. (3.35)

The integration of a swap proposal into the MCMC framework is straight-forward:
for instance, in MrBayes, we allow each chain to proceed by k generations and then
propose l swaps between two chains that are randomly chosen for each swap. In Exa-
Bayes, instead of a fixed number of swap attempts, that takes place after a fixed number
of generations, we draw the number l of swap attempts from a binomial distribution:
for a user-specified expected number of swaps per generation µ and a number of coupled
chains c, we draw the number l of swaps we want to try from a binomial distribution

l :=

{
Bin(c, µc), if µ < 1;
Bin(2cµ, 1

2c), else.
(3.36)

This scheme allows for a higher randomness when swap attempts are proposed. This
random procedure increases the chance that there is a consecutive number of generations
in which no swap attempt is scheduled (this will be exploited later for the parallelization
of MC3, see Sect. 5.2.5). Parameter µ allows the user to specify an expected number of
swaps.

In practice, a study showed that MC3 improves convergence, when the posterior den-
sity exhibits multiple distinct peaks [125]. BI in phylogenetics has been severely criti-
cized, since we can construct a class of phylogenetic problems, where a single chain takes
an exponential number of generations to converge between mixtures of trees [78] that
have a high RF-distance among each other. Here, the application of MC3 resolved the
concerns raised by the introduction of this problem instance [96].

3.5 Summary

This Chapter offered a detailed introduction to and description of BI in phylogenetics.
For integrating over continuous parameters, we described sliders, Dirichlet proposals,
multipliers, the node slider as well as a tree length multiplier (whereas the latter two
are only applicable to branch lengths). By applying Green’s method, we demonstrated
how the Hastings-ratios of the multiplier, the node slider, and the tree length proposal
can be derived. To the best of our knowledge, this represents the first correct formal
derivation of the Hastings-ratio of the node slider (since up until MrBayes 3.2 the
Hastings-correction of the node slider was implemented incorrectly). We also introduced
a rate-specific Dirichlet proposal for the integration of substitution rates in the high-
dimensional AA GTR matrix. We determined that, for integrating AA substitution

49

3 Elements of Bayesian Inference in Phylogenetics

rates, a mixture of slider, Dirichlet, and partial Dirichlet proposal performs best. Fur-
thermore, ExaBayes-specific modifications have been discussed that are a consequence
of the internal branch length representation in the PLL. We explained simple stochastic
proposals for updating the topology parameter that are employed in ExaBayes and
showed the transitivity of these proposals. We explained a variation of the eSPR and
eTBR as implemented in ExaBayes that have a simple Hastings-ratio of 1.0, which
is advantageous for the acceptance probability of the proposal. Next, we discussed the
variants of guided topological proposals that are implemented in ExaBayes. To the
best of our knowledge, the ppSPR is the first production-level posterior guided proposal
for trees without molecular clock that is employed by default in a phylogenetic BI soft-
ware. Finally, we introduced a variation of the MC3 algorithm that is implemented in
ExaBayes and can yield higher parallel efficiency.

50

4 Advanced Proposals On Branch Lengths
and Topology

This Chapter exclusively features original work by Andre Aberer, if not explicitly
stated otherwise. This Chapter is based on the following publication:

• AJ Aberer, A Stamatakis, and F Ronquist. “An Efficient Independence
Sampler for Updating Branches in Bayesian Markov chain Monte Carlo Sam-
pling of Phylogenetic Trees.” In: Systematic biology 65.1 (2016), pp. 161–
176

Contributions: All contributions by Andre Aberer, except for the empirical version
of Eq. 4.2 (derived by Fredrik Ronquist).

The central aspect of this Chapter is the development of a novel approach that allows
proposing branch lengths from scratch with a particularly high probability of acceptance.
The developed proposal has the atypical, yet highly desirable quality that it yields a
branch length update without reliance on the current branch length value. Thus, the
proposal is a so-called independence sampler [120]. Throughout this Section we refer
to the branch length posterior for brevity what is technically the conditional posterior
probability of a focal branch length given that all remaining parameters are kept fix.

Initially, in Sect. 4.1 we characterize posterior distributions of branch lengths empir-
ically on real data. Subsequently, we assess to which extent parametric distributions
can be fitted to the observed posteriors. To achieve this, we define a measure that al-
lows to estimate the expected acceptance probability of a proposal that is based on a
parametric distribution. In Sect. 4.2, we adapt an existing optimization method for
optimizing branch length posteriors and derive proposals with the desired properties.
Finally, in Sect. 4.3, we combine the novel branch length proposal with several tradi-
tional topological proposals (that have been established in Sect. 3.3). We initially assess
how branch length posteriors change when the topology is modified. Based upon this,
we construct and evaluate hybrid proposals for proposing branch lengths and topology
simultaneously.

51

4 Advanced Proposals On Branch Lengths and Topology

4.1 Examination of Branch Length Posteriors

4.1.1 Data and Reference Runs

To analyze branch length posteriors and topological proposals, we compiled a repre-
sentative set of 15 publicly available empirical datasets that have been previously used
for assessing properties of topological proposals [65] or for assessing the convergence of
bootstrap support values [86] (see Tab. 4.1 for an overview of basic statistics extracted
from the MSAs). The number of taxa in the datasets ranges between 24 and 500. While
some of the datasets are concatenated super-matrices, for the sake of simplicity, we car-
ried out all analyses on unpartitioned alignments (i.e., all parameters are linked across
all partitions). Except for dat-140 which consists of AA data, all datasets are DNA
alignments. With 404 and 500 taxa, dat-404 and dat-500 induce large phylogenies that
are hard to resolve. The “character to taxon” ratio is highest in dat-125 (with close to
30,000 characters), dat-24 and dat-404 (both with more than 10,000 characters) and
particularly low for dat-354.

We require robust reference runs for comparing the result of chains against the as-
sumed true posterior probabilities of splits. Thus, we ran 10 independent chains for
107 generations using ExaBayes (version 1.3, see Tab. 4.1 for the number of trees in
the 50% credible set and the final ASDSF of all 10 chains). With an ASDSF of 1.25%,
dataset dat-27 does not satisfy a stringent convergence threshold of 1%. Since for the
reference estimate of the posterior, we combine the samples from all 10 chains, we can
assume that we obtain a sufficiently accurate sample of the posterior simply because we
have 10× more samples than if we only considered samples from a single chain.

Despite the long chain length, split frequencies did not converge for datasets dat-150
(ASDSF= 5.98%), dat-404 (ASDSF = 10.58%) and dat-500 (ASDSF = 3.653%, we
obtained similar results with MrBayes). From bootstrapping under the ML criterion,
we know that these datasets likely contain rogue taxa (see Sect. 6.4.2). Similarly, we
observed in BI, that for a subset of taxa there are several possible locations in the
tree with similar likelihoods. We nonetheless include these problematic datasets for the
following experiments to avoid a bias towards overly simple datasets. We eventually
obtained an acceptable degree of convergence for these datasets by only using ppSPRs
and parsSPRs as topological proposals and using the branch length proposal presented
in this Chapter. Dataset dat-404 still has an ASDSF > 1%, despite the fact that, we
only considered 8 chains, since 2 chains became trapped in regions of low PP.

4.1.2 Expected Acceptance Probability

Assume, we want to assess the capability of a proposal density function q(x∗ | x) to
approximate a marginal posterior density ϕ(x) =

∫
f(x,Θ | A) ∂Θ, where x is the

parameter of interest, f is the PP and Θ is a vector of parameters excluding x. According
to the MH algorithm, the acceptance probability is given by Eq. 3.4 as ξ(x∗ | x).

We can determine the expected acceptance probability (EAP) ξ̂(q | ϕ) of a proposal
density by averaging over all acceptance probabilities ξ(x∗ |x) weighted by the posterior

52

4.1 Examination of Branch Length Posteriors

id
#

ta
xa

#
ch

a
r-

a
ct

er
s

ty
pe

#
u

n
iq

u
e

pa
tt

er
n

s
ga

p
s

[%
]

fi
t(

b)
fi

t(
c)

a
sd

sf
[%

]
n

u
cl

.
d
iv

.
#

tr
ee

s
[5

0
%

]
#

tr
ee

s
[9

9
%

]

d
a
t-
2
4

24
14

19
0

D
N

A
46

00
0.

26
3.

43
-0

.4
96

0.
57

4
0.

14
4

1
3

d
a
t-
2
7

27
19

49
D

N
A

93
4

20
.0

5
1.

08
-0

.4
73

1.
25

0.
20

6
12

0
20

,0
37

d
a
t-
3
6

36
18

12
D

N
A

10
20

0.
02

1.
99

-0
.4

90
0.

10
8

0.
23

1
7

1,
88

9
d
a
t-
4
1

41
11

37
D

N
A

76
8

10
.7

9
1.

51
-0

.4
90

0.
73

2
0.

21
3

48
1

28
,7

66
d
a
t-
4
3

43
16

60
D

N
A

95
4

11
.0

3
1.

49
-0

.4
88

0.
44

7
0.

19
7

45
8,

11
2

d
a
t-
5
0

50
11

33
D

N
A

48
9

9.
33

1.
56

-0
.4

60
0.

41
4

0.
10

9
62

,4
35

16
,0

44
0

d
a
t-
5
9

59
18

24
D

N
A

10
37

0.
00

2.
72

-0
.4

91
0.

19
0

0.
21

3
2,

01
6

50
,0

74
d
a
t-
6
4

64
10

08
D

N
A

40
6

21
.2

1
1.

69
-0

.4
73

0.
34

7
0.

28
0

89
,7

50
18

7,
75

5
d
a
t-
7
1

71
10

82
D

N
A

44
5

35
.9

8
1.

59
-0

.4
62

0.
35

5
0.

12
5

10
0,

00
5

19
8,

01
0

d
a
t-
1
2
5

1
25

29
14

9
D

N
A

19
43

6
32

.7
2

2.
02

-0
.4

99
0.

05
34

0.
35

7
1

9
d
a
t-
1
4
0

1
40

11
04

A
A

10
41

0.
60

1.
25

-0
.4

94
0.

54
7

0.
45

6
24

5
20

,3
96

d
a
t-
1
5
0

1
50

12
69

D
N

A
11

30
4.

77
1.

61
-0

.4
86

0.
99

0.
22

0
10

0,
00

5
19

8,
01

0
d
a
t-
3
5
4

3
54

46
0

D
N

A
3
48

14
.7

1
0.

95
-0

.3
80

0.
89

9
0.

08
71

10
0,

00
5

19
8,

01
0

d
a
t-
4
0
4

4
04

13
15

8
D

N
A

74
29

78
.9

2
1.

54
-0

.4
86

2.
50

0.
29

9
87

,2
04

17
2,

66
4

d
a
t-
5
0
0

5
00

13
98

D
N

A
11

93
2.

48
1.

35
-0

.4
75

0.
82

9
0.

13
1

10
0,

00
5

19
8,

01
0

T
a
b
le

4
.1
:

D
at

as
et

s
u

se
d

fo
r

an
al

y
se

s
al

on
g

w
it

h
ch

a
ra

ct
er

iz
in

g
st

a
ti

st
ic

s.
L

a
b

el
s

fi
t(

b)
a
n

d
fi

t(
c)

re
fe

r
to

fi
t

p
a
ra

m
et

er
s

o
f

th
e

re
g
re

ss
io

n
m

o
d

el
fi
tt

in
g

th
e

n
eg

at
iv

e
va

lu
e

of
th

e
se

co
n

d
d

er
iv

at
iv

e
o
f

th
e

lo
g
-p

o
st

er
io

r
to

th
e

st
a
n
d

a
rd

d
ev

ia
ti

o
n

;
a
sd

sf
d

en
o
te

s
th

e
A

S
D

S
F

o
f

sp
li

t
fr

eq
u

en
ci

es
am

on
g

10
re

fe
re

n
ce

ru
n

s
(8

in
ca

se
o
f
d
a
t-
4
0
4

);
n

u
cl

.
d
iv

.
d

en
o
te

s
th

e
n
u

cl
eo

ti
d

e
d

iv
er

si
ty

in
th

e
a
li

g
n

m
en

t
a
n

d
#

tr
ee

s[
X

%
]

d
en

ot
es

th
e

n
u

m
b

er
of

tr
ee

s
in

th
e
X

-%
cr

ed
ib

le
tr

ee
se

t
fo

r
re

fe
re

n
ce

ru
n

s.

53

4 Advanced Proposals On Branch Lengths and Topology

density ϕ(x) and the proposal density q(x∗ | x):

ξ̂(q | ϕ) =

∫∫
ϕ(x) · q(x∗ | x) · ξ(x∗ | x) ∂x∗ ∂x. (4.1)

In our case, we want to assess the densities of given distributions. This means that our
proposals do not depend on the previous state x and we can simplify q(x∗ | x) = q(x∗).
A branch length is a continuous random variable for which a closed form of the integral
does not exist. Instead, we have to obtain an estimate of the posterior density ϕ̂(x)
that is discretized into an arbitrarily chosen number of n bins. Consequently, we have
to discretize the proposal density q(x∗) as well and thus can reformulate Eq. 4.1 as

ξ̂(q | ϕ̂) =
n∑
i=1

n∑
j=1

ϕ̂(xi) · q(xj) · ξ(xi | xj). (4.2)

Naturally, the ability of ξ̂(q | ϕ̂) to accurately predict the acceptance probability of a
proposal density q(x) with respect to ϕ(x) depends on the number of samples used for
estimating ϕ̂(x) and the number of bins n for the discretization of ϕ̂(x).

We can assess the accuracy of Eq. 4.2 by applying MCMC with a known posterior
and proposal density and subsequently measuring the observed acceptance probability
(OAP). Values determined via calculation of ξ̂(q | ϕ̂) are within the expected deviation.
For instance, consider two Γ distributions Γ(15, 4) and Γ(8, 2) (see Fig. 4.1a) and two
normal distributions N (6, 2) and N (8, 2) (see Fig. 4.1b). For the two Γ distributions,
the EAP measure predicts an acceptance ratio of 78.17% (with 106 samples and 50
bins), whereas empirical verification via MCMC yields an acceptance probability of
78.04% (106 generations). The same experimental setup for the two normal distributions
with equal variance but shifted mean yields an EAP of 48.17% and a verified empirical
acceptance probability of 47.91%. Typically, the EAP slightly over-estimates the true
acceptance probability, a fact that most likely is owed to the binning.

As an alternative, we can construct the continuous overlap of two density functions as
the integral of the minimum of either function divided by the integral of the maximum
of either function. However, despite being intuitive, this continuous overlap of proposal
density and posterior distribution can not be used as a reliable proxy for estimating
the acceptance probability. Instead, the acceptance probability of a proposal decreases
superlinearly with the overlap of distributions. We define the histogram overlap of two
sample populations of equal size as the sum of the minimum counts of either population
in every bin divided by the total number of samples in a population. Thus, the histogram
overlap of samples drawn from the two Γ distributions (Fig. 4.1a) is 83.42% (with an
acceptance ratio of ∼ 78%) and for the two normal distributions (Fig. 4.1b) we obtain a
histogram overlap of 61.70% (the acceptance ratio in this case is ∼ 48%). This illustrates
that if we want to use a proposal density q(x) to propose values for the posterior ϕ, then
q(x) has to be as similar to ϕ as possible in order to be effective.

54

4.1 Examination of Branch Length Posteriors

X

P(
X)

0.00

0.05

0.10

0.15

0.20

0 5 10

X

P(
X)

0.00

0.05

0.10

0.15

0.20

0 5 10

a) b)
X

P(
X)

0.0

0.1

0.2

0.3

0.4

2 4 6 8

Figure 4.1: Approximation of posterior distributions using a proposal density using two Γ dis-
tributions in a) and two normal distributions in b). Gray area indicates overlap (respectively
the histogram overlap of empirical data).

4.1.3 Estimation of Posteriors

For obtaining a representative set of empirical branch length posteriors, we ran a chain
on each of the datasets listed in Tab. 4.1. Depending on the dataset, we set the chain
length to a number of generations between 50,000 and 100,000 to assure that the chain
had reached a state that is typical for the stationary distribution. After this initial
phase, we saved the current parameter state of the chain. We then used this state as
a starting point for new chains that sample the conditional posterior of a single branch
length (one branch length per chain at a time). For these secondary chains, the only
proposal employed was the branch length multiplier (see Sect. 3.2.2). We extracted a
sample from the chain every 10 generations and continued sampling a branch until we
achieved a highly accurate ESS of at least 10,000. We specified an exponential prior
with parameter λ = 10 for this and all following experiments within this Section. We
occasionally verified that results did not change under a uniform prior. For runs on DNA
alignments, we used the GTR+Γ model [115, 128] and for AA datasets, we integrated
over all fixed-rate models available in ExaBayes.

Fig. 4.3 displays 4 typical branch length posteriors. For comparably short branch
lengths (see Fig. 4.3a, where mean µ = 0.00173), we observe an exponential-like distri-
bution, while branch length posteriors with a comparably high average as in Fig. 4.3d
(µ=1.06) resemble a bell-shaped distribution. Distributions between these two extremes
usually have a positive/right skew (i.e., according to the non-parametric definition the
mean of the distribution is greater than its median). Associated log-posterior density
curves usually have a short left tail and a long right tail (see Fig. 4.2). In case of bell-
shaped distributions, this does not affect the effectively sampled posterior distribution.
This is because the probability of excessively long branches becomes too small for being
sampled. In case of Fig. 4.3a, the logarithmic posterior density is linear, which from

55

4 Advanced Proposals On Branch Lengths and Topology

D
en

si
ty

20
40

60
80

10
0

12
0

0.010 0.015 0.020 0.025 0.030 0.035

−2
70

98
−2

70
94

−2
70

90

0.010 0.015 0.020 0.025 0.030 0.035

%
%

%
%

branch length, = 0.020 =0.00380,

lo
g

-u
n
it

s

Figure 4.2: Top: Logarithmic posterior density g(Θ | A) and logarithmic likelihood g(A |Θ) for
one branch length (x-axis). Bottom: Observed posterior ϕ̂ (as histogram) along with ML fits
of 4 different distributions and their respective EAP.

56

4.1 Examination of Branch Length Posteriors
D

en
si

ty

200

400

600

800

0.000 0.005 0.010

Weibull (99 %)
Gamma (99 %)
Log−Normal (84 %)
Normal (59 %)

a)

0.8 1.0 1.2 1.4 1.6

Weibull (83 %)
Gamma (99 %)
Log−Normal (99 %)
Normal (96 %)

D
en

si
ty

20

40

60

80

100

120

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Weibull (97 %)
Gamma (91 %)
Log−Normal (81 %)
Normal (88 %)

b)

d)c)
D

en
si

ty

1

2

3

4

5

D
en

si
ty

20

40

60

80

100

120

0.00 0.01 0.02 0.03 0.04 0.05

Weibull (96 %)
Gamma (93 %)
Log−Normal (78 %)
Normal (72 %)

Figure 4.3: Typical branch length posteriors with mean µ and standard deviation σ and ML fits
for 4 different probability densities under examination. Percentages in brackets indicate the
EAP for proposing on the given posterior using the respective density function. Posteriors
are given for a) an outer branch length from dataset dat-27, b) an inner branch of dat-59,
c) an inner branch length of dat-500 and d) an outer branch length of dat-354.

a phylogenetic point of view indicates that the most probable event is that no substi-
tutions have occurred between two nodes in a tree. The sampling accuracy for branch
lengths close to 0 is limited by the numerical stability of the underlying software. Thus,
the PLL prohibits values that become too small relative to the mean substitution rate.
On most datasets, this corresponds to minimum values in the range of ≈ 10−6 − 10−7.

While exponential-like distributions only occurred for distributions with the shortest
mean within a dataset, we noticed that the transition from an exponential to a bell shape
is dataset-specific. This transition is well-characterized by the skewness, defined as µ3

σ3 ,
where µ3 is the third standardized moment and σ is the standard deviation. Across all
datasets, the skewness is ∈ [0.0187, 2.16]. Thus, the skewness was positive for all 4,019
branches under examination. We repeated the experiment for selected datasets under a
uniform prior for branch lengths and successfully verified that the exclusively positive

57

4 Advanced Proposals On Branch Lengths and Topology

skew is not a mere consequence of the positively skewed exponential prior.
While dat-24, dat-36, dat-125 and dat-140 almost exclusively exhibited weakly

skewed distributions, we observed a particular abundance of strongly skewed distribu-
tions in dat-71 and dat-354. Considering the number of trees in the 50% or 90%
credible set (see Tab. 4.1), this suggests that a high number of strongly skewed (i.e.,
exponential-like) branch length posteriors is characteristic for a high degree of uncer-
tainty in the tree topology (as represented by large numbers of trees in the credible set).
In other words, if the most probable event is no substitution on a branch, we have weak
to non-existing evidence for the phylogenetic relationship represented by the branch and
thus many likely outcomes.

Finally, we observed a linear relationship between skewness and CV (defined as CV
= σ

µ) of the posteriors (see Fig. 4.4). In other words, weakly skewed distributions
deviate less from the mean than highly skewed distributions.

4.1.4 Appropriateness of Fitted Distributions

For finding a distribution that is suitable as a proposal density for a guided branch length
proposal, we fitted various distributions to the observed branch length posteriors ϕ̂.
For continuous distributions in the interval [0,∞) that exhibit a positive skew, the
Weibull distributionW(λ, k), the log-normal distribution log-norm(µ, σ) and the gamma
distribution Γ(α, β) are common choices. All three distributions depend on 2 parameters.
The exponential distribution Exp(λ) is a special case of the Γ distribution (with β := λ)
and a special case of the Weibull distribution (with k := λ). All of them are special
cases of the generalized Γ distribution, which however was not considered because of its
dependence on three parameters. Because of the bell shape of many of the distributions,
we also considered the normal distributionN (µ, σ) as a candidate for a proposal function.

We employed the R packages Mass [121] and Fitdistr [26] for obtaining ML estimates
of parameters fitted to branch length posteriors. While closed formulas exist for the
normal and log-normal distribution, parameters are numerically optimized for the Γ and
Weibull distribution. We used the EAP to determine the appropriateness of a fitted
distribution as a proposal density function, if applied to the observed branch length
posterior ϕ̂. Fig. 4.3 depicts the four fitted distributions for 4 representative branch
length posteriors.

For exponential-like distributions (see Fig. 4.3a), we get a close to optimal EAP
for the Γ and Weibull distributions that essentially degenerate to an identical, almost
exponential distribution (α := 1.08 for the example in Fig. 4.3a). As expected, the log-
normal distribution achieves a much lower EAP of 84% and a proposal based on a fitted
normal distribution would only be accepted in 59% of all cases. In contrast, for bell-
shaped posteriors with a high mean (see Fig. 4.3d), the Γ and log-normal distribution
perfectly match the observed posterior, whereas the normal distribution only performs
3% worse than Γ or the log-normal distribution. Here, the Weibull distribution exhibits
a poor fit and would only be accepted in 83% of all cases. Fig. 4.3b displays a posterior
for which the Weibull distribution outperforms any competing distribution with ≈ 97%
EAP compared to – for instance — 91% for a Γ distribution. Also, for the distribution

58

4.1 Examination of Branch Length Posteriors

skewness

co
e
ffi

ci
e
n
t

o
f

v
a
ri

a
ti

o
n

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0

024
027
036

041
043
050

059
064
071

125
140
150

354
404
500

Figure 4.4: Skewness and CV of all observed branch length posteriors sampled from any of the
15 datasets.

59

4 Advanced Proposals On Branch Lengths and Topology

depicted in Fig. 4.3c, the Weibull distribution yields a better proposal density than the
Γ distribution by a small margin of 3%. It is notable, that the branch of Fig. 4.3c is
an inner branch of the hard-to-resolve dataset dat-500. Despite the substantial number
of underlying samples (ESS > 10, 000), none of the distributions under examination
represent an optimal match and the region around the mode of the distribution is not
well-shaped.
Fig. 4.5 depicts the EAP for the distributions fitted to branch length posteriors across

all 15 datasets against the type of distribution. We here use the CV for characterizing
the distribution. Given the linear relationship we observed between skewness and CV,
this means that, exponential-like posteriors generally have a CV close to 1, whereas
bell-shaped posteriors have a CV close to 0. Fig. 4.5 confirms our observations from
Fig. 4.3: the normal distribution generally exhibits a good fit for posteriors with small
CVs, but becomes inefficient (with a EAP of less than 70%) for a CV close to 1. The
same holds for the log-normal distribution, which however still fits better to most pos-
teriors with intermediate skewness, respectively CV. For the vast majority of posteriors,
the Γ distribution has close to optimal (> 95%) EAP values. However, in the CV range
between 0.5 and 1.0 (i.e., strongly skewed or exponential-like), there exists a group of
outliers for which the Γ distribution merely achieves 85% − 95% EAP. In contrast, the
Weibull distribution shows optimal performance for strongly skewed branch length pos-
teriors. In particular, it has a higher EAP for the aforementioned outlier group. For
bell-shaped distributions, however, the performance of the Weibull distribution consis-
tently decreases to 80%− 85% EAP.

Across all posteriors under examination, the Γ distribution achieves an average of
97.4% EAP. If we assume that branch length posteriors are in fact Γ distributions, we
can explain the linear relationship between skewness and CV, since the Γ distribution
has a skewness of 2√

α
and CV of 1√

α
.

4.2 Newton-Raphson-guided Branch Length Proposals

4.2.1 Branch Length Optimization

The Newton-Raphson (NR) procedure is an iterative optimization algorithm, that allows
determining the optimal branch length vopt with respect to the likelihood for a given
branch in a given tree [36]. An update vk+1 that is closer to the optimum branch length
than the current value vk, is defined as

vk+1 = vk −
g′(A | vk,Θ)

g′′(A | vk,Θ)
, (4.3)

where g′(A|vk,Θ) is the first and g′′(A|vk,Θ) is the second derivative of the logarithmic
PLF with respect to the branch length vk. The PLL that is employed by ExaBayes,
offers an efficient implementation of the NR procedure. In most instances, no more
than 3-5 iterations are necessary to determine the optimum vopt. For instance, for the
optimization of 3,000 randomly drawn branches of dataset dat-150, in only 17.1 % of
all cases more than 5 iterations were necessary. Because of precomputations, iterations

60

4.2 Newton-Raphson-guided Branch Length Proposals

coefficient of variation

ex
pe

ct
ed

 a
cc

ep
ta

nc
e

[%
]

70

80

90

100

0.05 0.1 0.2 0.5 1

Gamma LogNorm

Normal

0.05 0.1 0.2 0.5 1

70

80

90

100
Weibull

Figure 4.5: CVs of sampled branch length posterior distributions (x-axis) of all datasets versus
the EAP (y-axis) for ML fits of parameters for a Γ, a normal, a log-normal and a Weibull
distribution. Red line represents a Loess [23] fit.

61

4 Advanced Proposals On Branch Lengths and Topology

after the first one can be computed more rapidly. The procedure can easily be modified
to optimize the logarithmic posterior density g(vk,Θ |A) instead of the logarithmic PLF
g(A| vk,Θ) by adding the first (resp., second) derivative of the logarithmic prior density
to the respective derivatives of the PLF. Evidently, for a uniform prior no modifications
are necessary. For an exponential prior on branch lengths parametrized by λ, we have
to add λ to g′(A | vk,Θ) (no modification of the second derivative is necessary, since
the second derivative of the exponential prior is 0). Recall that in ExaBayes, branch
lengths are represented relative to the mean substitution rate ρ, that is, the relevant
internal representation is a = −v

ρ and we derive the PLF with respect to a. Thus, the
derivative of the logarithmic prior density f(a;λ) with respect to a is

f(v;λ) = λ · exp(−λ · v),

f(a;λ) = λ · exp(λ · aρ),

ln f(a;λ) = ln(λ) + a · λ · ρ,
∂ ln f(a;λ)

∂a
= λρ.

4.2.2 Newton-Raphson on Branch Length Posteriors

Previous results (see Fig. 4.5) suggest that either the Γ or the Weibull distribution can
be employed to design a branch length proposal that samples the branch length param-
eter with close to optimal efficiency (i.e., we obtain a high ESS). While the posterior
itself is not known a priori, we have to estimate two parameters in order to determine
a proposal kernel that is a good approximation of the posterior. Here, we can employ
a NR optimization of the posterior density for obtaining the mode of the branch length
posterior (see Sect. 4.2.1). As a by-product of the NR method (and only in case of con-
vergence to the optimal branch length vopt), we obtain the value of the second derivative
of the log-posterior density g′′(vsubopt) where vsubopt is the branch length of the iteration
before convergence is achieved. Typically, the difference between g′′(vsubopt) and g′′(vopt)
is negligible, thus we assume that g′′(vsubopt) is very close to g′′(vopt). We can expect
that the second derivative at the optimum yields information about the variation in the
posterior distribution.

We determined g′′(vopt) for all branch length posteriors sampled in Sect. 4.1.3. Fig. 4.6
indicates that, there exists a power-law relationship between the standard deviation of a
branch length posterior and the negative value of g′′(vopt). For 11.1% of all branches, the
NR method did not converge to the optimum. This exclusively affects posteriors with
a CV close to 1. In other words, since for exponential distributions (which have a CV
of 1) the mode is 0 and the PLL does not allow evaluation of values below a threshold
for numerical reasons, the NR method fails by design. However, in these cases we can
assume that the posterior can be approximated by an exponential distribution.

For all branches, where NR successfully determines vopt and g′′(vopt), we fitted a power
function h(x) = b ·xc with g′′(vopt) as response variable h(x) and the standard deviation
of the posterior g(v) as explanatory variable x. We solved this non-linear regression
model for parameters b and c using numerical optimization (and with b, c ∈ R as model

62

4.2 Newton-Raphson-guided Branch Length Proposals

σ(branch length)

−
g

''(
v o

pt
)

100
102
104
106
108

10
−4

10
−3

10
−2

10
−1

nc=0%

24

nc=1.96%

27

10
−4

10
−3

10
−2

10
−1

nc=0%

36

nc=2.53%

41

10
−4

10
−3

10
−2

10
−1

nc=2.41%

43
nc=16.5%

50

nc=6.09%

59

nc=12%

64

nc=46.8%

71

100
102
104
106
108

nc=3.24%

125
100
102
104
106
108

nc=0.361%

140
10
−4

10
−3

10
−2

10
−1

nc=1.68%

150

nc=41.5%

354
10
−4

10
−3

10
−2

10
−1

nc=5.96%

404

nc=2.91%

500

not converged (11.1%)
converged (88.9%)

individual fit
consensus fit

Figure 4.6: Relationship between negative second derivative of the log posterior at the opti-
mized branch length g′′(vopt) in case of convergence and the standard deviation of the pos-
terior (σbranch length). Blue circles indicate that branch length optimization has converged,
gray circles indicate failed branch length optimization because of an exponential posterior.
The red line represents a dataset-specific (individual) fitted power function h(x), the gray line
represents an equal-weight global (consensus) fit. For each dataset nc yields the proportion
of branches with exponential posterior.

63

4 Advanced Proposals On Branch Lengths and Topology

parameters). An extension with an additive factor a ∈ R to h(x) = b · xc + a did not
improve the model fit. Tab. 4.1 displays the fitted parameters for each dataset as well
as a consensus fit (b = 1.61, c = −0.473) across branches from all datasets. For the
consensus fit, we randomly chose an equal number of branches from each dataset in
order to avoid that datasets with large numbers of taxa have a stronger impact on the
consensus than datasets with smaller numbers of taxa.

We observe that, specifically the exponential parameter b (which translates into the
slope of the doubly logarithmic Fig. 4.6), is similar across all datasets (i.e., b is in
[−0.463,−0.499]), except for dataset dat-354. Dataset dat-354 furthermore stands out
as having a particularly low nucleotide diversity (see Tab. 4.1), which appears to be the
cause for its high proportion of exponential-like branch length posteriors, respectively
posteriors for which NR does not converge. However, other datasets (e.g., dat-50) with
similar characteristics did not show atypical parameter values for a and b. Thus, we
assume that the comparably narrow range of σ values (i.e., the standard deviations)
as well as the location of the shortest values of σ observed among the branch lengths
posteriors, in this case leads to sub-optimal regression performance.

4.2.3 Proposal Design

Given the optimal branch length vopt and the second derivative of the log posterior den-
sity g′′(vopt), we can now formulate a system of equations that allows approximating the
posterior via some two-parameter distribution. For the Γ distribution, we can determine
α and β as follows:

mode: α−1
β = vopt,

standard deviation: α√
β

= b · (−g′′(vopt))c,

where b and c can either be fitted or we can use the aforementioned consensus parameters.
The solution of these equations for the Γ distribution is straight-forward. For the Weibull
distribution, it requires numerical optimization (i.e., Brent’s method [18]). In case of
the Γ distribution, we obtain

β =
vopt +

√
v2
opt + 4 · σ̂2

2 · σ̂2
, where σ̂ = b ·

(
g′′(vopt)

)c
,

α = vopt · β + 1.

Thus, given a current branch length vk, our NR-based proposal involves (i) a branch
length optimization, (ii) determining the proposal density function q (here using a Γ dis-
tribution), (iii) drawing a random number v∗k from q and (iv) calculating the Hastings-

ratio of q(vk)
q(v∗k) . We can use the same density q(x) for calculating the forward and the

backward probability, since the optimum vopt does not change (i.e., it does not depend
on the current branch length value).

In cases, where NR optimization fails, the branch length posterior predominantly is
an exponential distribution (i.e., in ∼ 80% of all instances). This means that, the log-
posterior density g is linear with a slope of nrd1 = g′(v) for arbitrary branch length

64

4.2 Newton-Raphson-guided Branch Length Proposals

λ of fitted exponential distribution

10
50

500
5000

50000

50 50
0

50
00

27 41

50 50
0

50
00

43 50

59 64 71

10
50
500
5000
50000

125
10
50

500
5000

50000
140 150 354 404

10
50
500
5000
50000

500

x = 2 * y
x = y

(b
l)

g'

Figure 4.7: On x-axis: λ-parameter of exponential distributions fitted to non-converged
exponential-like branch length posteriors. On y-axis: value of the first derivative of the
log-posterior density g′(x).

values v. The first derivative of the logarithmic density of the exponential distribution is
−λ. Thus, we can use q := exp(−d · nrd1) as a proposal kernel for branch lengths, where
the NR method does not converge. While we can expect d := 1 to yield good results
for purely exponential posteriors, there exists a problematic intermediate group of Γ-like
posteriors with comparably low α (and with α > 1) for which NR does not converge.
Tab. 4.1 suggests that the exponent c (representing the slope in Fig. 4.6) generalizes

well across various datasets, however that parameter b (the intercept in Fig. 4.6) is
dataset-specific (most likely coupled to the mean substitution rate ρ). Thus, we can
create a tuning scheme for the multiplicative factor b in order to increase the acceptance
probability of the proposal. As discussed in Sect. 3.1.4, for typical MH proposals we
aim for a target acceptance probability of ∼ 25% and tune according to the OAP within
the previous n (typically 100) generations. For the NR-based distribution proposal at

65

4 Advanced Proposals On Branch Lengths and Topology

hand, our target acceptance probability is 100%. If the proposal density approximates
the branch length posterior well, then proposals can not be too modest (which is the
motivation for the target rate of 25% otherwise). In contrast to the tuning of conventional
proposals, we have to keep track of the previous acceptance probability and change the
direction of tuning (i.e., whether to increase or decrease parameter b), once we observe
a lower acceptance probability compared to the previous tuning interval. Thus, we
can tune parameter b in case of NR convergence and parameter d for the proposal
kernel in case of non-convergence (this implies that internally we keep track of the
observed acceptance ratios separately for updates based on converged and non-converged
optimizations).

4.2.4 Observed Acceptance Probabilities of NR-based Proposals

We implemented three flavors of NR-based Γ proposals: (i) using individual (i.e., dataset-
specific) estimates for b (Γindi), (ii) using the consensus over all datasets for b (Γcons)
and (iii) a scheme that tunes parameter b in case of convergence and parameter d in
case of non-convergence as described in Sect. 4.2.3 (Γtuned). Given the occasionally
superior performance of the Weibull distribution, we implemented a NR-based Weibull
proposal (Wtuned) for comparison that employs the same tuning scheme as used for the
Γ distribution. For each dataset we ran 10 chains for 300,000 generations using (i) one
of the 4 branch length proposals (3 flavors of Γ and 1 Weibull version), (ii) a tree length
multiplier (see Sect. 3.2.4), and (iii) proposals on ~π, ~r and the α value of the Γ model
of rate heterogeneity (fixed topology, proposals weighted in a mixture of 20:1:1).
Fig. 4.8 depicts the OAPs for the 4 proposals under examination. While for 10 datasets

Γcons consistently achieves an OAP > 80%, the OAP is as low as ≈ 65% for datasets
like dat-354. On many datasets, the OAP of Γindi exceeds the OAP of Γcons by 10%,
such that more than 90% of proposals are accepted for 6 datasets. Naturally, since per-
dataset parameters are not known a priori, Γindi is impractical for BI and only serves
as an indicator of performance loss by using consensus parameters. Surprisingly, for
dat-50 and dat-36, Γindi performs worse than Γcons, although according to Fig. 4.6
consensus parameters are close to the individually fitted per-dataset parameters. For
dat-125, OAPs in chains vary strongly for Γcons. Additional experiments showed that
OAPs further decreased and many chains (also for other datasets) explore sub-optimal
regions of the posterior landscape, if we do not employ a tree length multiplier and pro-
posals on GTR parameters. Since BI on dat-125 is straight-forward otherwise (given
the small number of trees in the 50% and 100% credible set), we assume that tree length
(which is also modified by GTR proposals in ExaBayes) impacts the performance of
NR-based distribution proposals.

Finally the tuned proposal Γtuned consistently achieves high OAPs: for 10 datasets,
the average is above 90% and for none of the chains, the OAP is below 85%. While
for some datasets such as dat-43 or dat-64, the tuned proposal does not outperform
Γindi, it yields an additional 20% of accepted proposals for dat-71 compared to Γcons

(that represents the only design alternative for production runs). As expected, the
tuned Weibull proposal Wtuned consistently performs worse than (or at most as good

66

4.2 Newton-Raphson-guided Branch Length Proposals

70

80

90

Γ co
ns Γ ind

i

Γ tun
ed

W tun
ed

●

●

●

●

24

Γ co
ns Γ ind

i

Γ tun
ed

W tun
ed

●

●

●

●

27

Γ co
ns Γ ind

i

Γ tun
ed

W tun
ed

●
●

●

●

36

Γ co
ns Γ ind

i

Γ tun
ed

W tun
ed

●

●
●

●

41

Γ co
ns Γ ind

i

Γ tun
ed

W tun
ed

●

● ●

●

43

●

●

●

●

50

●

●

●

●

59

● ● ●

●

64

●
●

● ●

71

70

80

90
●

●
●

●

125

70

80

90

●

●

●

●

140

●

● ●

●

150

●

●

● ●

354

●

●
●

●

404

●

●

●

●

500

o
b
se

rv
e
d
 a

cc
e
p
ta

n
ce

 p
ro

b
a
b
ili

ty
 [

%
]

Figure 4.8: OAPs for a NR-based Γ proposal using consensus parameters (Γcons), for a Γ dis-
tribution proposal using parameters estimated on the individual dataset only (Γindi), for a
Γ distribution proposal with auto-tuned parameters (Γtuned) and a Weibull distribution pro-
posal using auto-tuned parameters. Each panel represents one of the 15 datasets.

67

4 Advanced Proposals On Branch Lengths and Topology

as) its tuned Γ counterpart (e.g., dat-140 by more than 10%). Datasets with a high
number of exponential posteriors (dat-71 and dat-354) indicate the importance of
tuning parameter d of the exponential proposal kernel: here Wtuned as well as Γtuned

achieve comparable OAPs.

4.2.5 Sampling efficiency

In conclusion, compared to a standard branch length multiplier proposal, we can expect
a 3 − 4× higher OAP for a tuned NR-based Γ proposal. Another striking advantage is
that branch length updates v∗ do not depend on the current branch length value. Thus,
we expect a low auto-correlation among states in a chain. In the following, we evaluate
the sampling efficiency of Γtuned compared to two popular proposals for branch lengths:
the branch length multiplier (see Sect. 3.2.2) and the node slider (see Sect. 3.2.3).

For each dataset with n taxa, we executed 1 chain and chose chain length and sampling
frequency as a function of n (total number of generations: 20, 000 · (2n− 3), sample ex-
traction every n generations), because substantial thinning can obfuscate low OAPs and
high auto-correlation among states in the chain. We used a typical tree extracted from
the previously discussed reference runs, kept all parameters fixed (using identical values
for frequencies, substitution rates and α := 1 for the Γ distribution of rate heterogeneity)
and using proposals for integration over branch lengths. We compare Γtuned to a tuned
branch length multiplier (i.e., we tune the uniform window size on the logarithmic scale,
see Sect. 3.2.2) and an untuned node slider (as described in Sect. 3.2.3).
Fig. 4.9a depicts ESS values for all branch lengths on a respective fixed tree for all

15 datasets depending on its CV. Apart from its relation to skewness, it is important to
verify that proposals depending on a previous state, have sufficient sampling efficiency
for high and low CV values of the underlying conditional posterior (e.g., a multiplier
tuned for CV ≈ 1 will have a low OAP and thus low ESS for posteriors with CV ≈ 1

32).
As expected, Γtuned overall samples branch lengths substantially more efficiently than
the multiplier or node slider proposal. On average (see Fig. 4.9b), Γtuned achieves an
ESS that is between 2× (dat-354 and dat-500) and more than 8× (dat-140) higher
than the sampling efficiency of a multiplier proposal. For 11 datasets, the performance
gain is in a range between 3− 4×. At the same time, Γtuned requires only an additional
10 − 20% of runtime (see Fig. 4.9c). For all proposals, the runtime dominating factor
appears to be the evaluation of CPVs. That is, the runtime requirement for evaluating
the likelihood at a randomly proposed branch in the tree. The cost for NR in case of
Γtuned is moderate, specifically given its at least quadratic rate of convergence [see 44].
In comparison, the node slider is faster than the multiplier, specifically on datasets with
a small number of taxa and/or characters. Since the node slider operates on two branch
lengths, it is more likely that CPVs of outer branches of the tree are involved which are
cheaper to compute. Our observations regarding runtime suggest that there is a huge
potential for runtime optimization, if branches for proposals are drawn such that the
number of CPVs that we need to evaluate is minimal.

In general, Fig. 4.9a corroborates our expectation that Γtuned mostly performs sub-
optimal for branch posteriors with a CV between 0.5 and 1, where NR does not converge

68

4.2 Newton-Raphson-guided Branch Length Proposals

coefficient of variation

ef
fe

ct
ive

 s
am

pl
e

si
ze

0
2000
4000
6000
8000

1/3
2
1/1

6 1/8 1/4 1/2 1

24 27

1/3
2
1/1

6 1/8 1/4 1/2 1

36 41

1/3
2
1/1

6 1/8 1/4 1/2 1

43

50 59 64 71

0
2000
4000
6000
8000

125
0

2000
4000
6000
8000

140
1/3

2
1/1

6
1/8 1/4 1/2 1

150 354
1/3

2
1/1

6
1/8 1/4 1/2 1

404 500

Gamma Multiplier Slider
re

l.
m

ea
n

ES
S

1/2
1
2
4
8

24 27 36 41 43 50 59 64 71 12
5

14
0

15
0

35
4

40
4

50
0

● ● ● ● ● ●
●

● ●
●

●

●

●

●
●

●

● ● ● ● ● ● ●
●

●

●

●
●

●
●

re
l.

ru
nt

im
e

[%
]

90
100
110
120

24 27 36 41 43 50 59 64 71 12
5

14
0

15
0

35
4

40
4

50
0

●●●● ●●●●
●●●● ●●●●

●●●●

●●●●

●●●●

●●●● ●●●● ●●●●

●●●●

●●●●
●●●●

●●●●

●●●●

●●●● ●●●● ●●●●
●●●● ●●●●

●●●●
●●●●

●●●● ●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

●●●●

a)

b)

c)

Figure 4.9: Comparison of sampling efficiency and runtime efficiency between the NR-based
Γ proposal (red), the branch length multiplier (black) and the node slider (gray). Panel a)
depicts the ESS versus the CV for posteriors of each branch length in a dataset. Panel b)
depicts the average ESS for datasets relative to the average ESS obtained by the multiplier
proposal. Panel c) depicts the mean runtime of proposals relative to the mean runtime of the
branch length proposal.

69

4 Advanced Proposals On Branch Lengths and Topology

on exponential posteriors. If the number of exponential posteriors is low, the efficiency
of Γtuned may be lower in this experiment than in practice, since in this case the pro-
posal has not been tuned often enough. We observe a negative correlation between
sampling efficiency of the two traditional proposals and Γtuned. That is, in contrast to
Γtuned, the two traditional proposals perform particularly well on exponential posteriors
and comparably bad on bell-shaped posteriors. This can be explained by considering
the Hastings-ratio of these proposals that depends on the value that the branch length
(resp., sum of branch lengths) is multiplied with. For instance, in case of strongly skewed
distributions doubling a branch length mostly yields a negative log-posterior ratio, which
however is compensated by a positive logarithmic Hastings-ratio. The opposite holds
for halving the branch length (except for values on the left side of the optimum of non-
exponential posteriors with high skewness). Thus, the Hastings-ratio is also responsible
for sub-optimal efficiency with almost symmetric posteriors (i.e., low skewness and low
CV). Proposals on posteriors with a high CV are more likely to be accepted (in case of
a multiplier proposal) than proposals for posteriors with low CV. Thus, we can expect
that high-CV posteriors have a strong impact on tuning and thus yield larger multipliers
that further decrease the performance of the multiplier on low-CV posteriors. For the
node slider (with proposal density ratio m2, where m is the multiplier), the effect of the
Hastings-ratio on the sampling behavior is even more pronounced.

4.3 Topology Hybrid Proposals

We extend our general analysis of branch length posteriors to the change of the posteriors
of branch lengths in topological proposals. As established, branch lengths represent our
expectation in the number of substitutions that have occurred along a given bipartition
of the tree defined by that branch. Since the set of bipartitions changes in a topology
proposal that transforms tree τ into τ∗, there is no inherently correct way to transfer
branch lengths from τ to τ∗ for new bipartitions. Consider a stNNI move (equivalent to
an eSPR that stops the traversal after a single step, see Fig. 4.10a), where subtree S
is removed from adjacent nodes A and B. Here, the position of the associated branch
length vSB can remain unchanged. Since the bipartition of vSB is the only bipartition
to change for this stNNI, this is the mapping that preserves most branch lengths at
its associated bipartitions. Fig. 4.10b depicts a bolder move. We refer to this class
of proposals as a SPR-3 move, since they change three bipartitions, respectively three
branches are traversed by the moving subtree S. The typical approach for mapping
branch lengths (e.g., in MrBayes) is to leave branch lengths unchanged except for vSB
which becomes the branch length connecting the subtree S and the last node that has
been traversed by S (vDS in Fig. 4.10b).

If branch lengths are ignored, for each of the three stochastic operators – stNNI, eSPR
and eTBR – a bolder proposal (with stNNI being less bold than eSPR and eSPR being
less bold than eTBR) is the transitive closure of less bold operators. For instance, each
eTBR can be expressed as 2 eSPRs and an eSPR can be expressed as n stNNIs. With
the branch length mapping of MrBayes, we loose this transitive property. In other

70

4.3 Topology Hybrid Proposals

a) NNI / SPR-1

b) SPR-3

A

B C

D

E

S

MrBayes

NNI-transitiveSA
B C

D

E

A

B C

D

E

S

S

A

B

C

S-0

B-0

B-1

B-1

S

A B

C
S-0

B-0

B-1

B-1

Figure 4.10: a) Branch length mapping for a NNI (resp., SPR-1) move. b) Two alternative
branch length mappings for a SPR-3 move (i.e., a SPR move that is equivalent to three NNI
moves). Left-hand version is typically applied in MrBayes/ ExaBayes, right-hand version
represents an alternative NNI-transitive version.

words, if branch lengths are altered, one eSPR can not be expressed by multiple stNNI
moves. We can however formulate an alternative NNI-transitive mapping for the eSPR
that yields an identical result as three stNNIs (in the example shown in Fig. 4.10b)
and effectively shifts branch lengths to the adjacent node in direction of the wandering
subtree S. For the given example, we thus map (vSB, vBC , vCD) to (v∗BC , v

∗
CD, v

∗
DS).

4.3.1 Impact of Topological Moves on Branch Lengths

For an assessment of how branch length posteriors change when we apply a single
topological move at a time, we ran a chain using default settings for each dataset for
20,000 generations to achieve a state typical for the convergent phase of the Markov
chain and then enumerated all possible moves for a SPR-n move (where n ∈ [1, 4]),
respectively limited the number to 200 randomly chosen SPR-n moves. For each dis-
tinct move, we integrated over branch lengths before and after applying the proposed
move. However, because of the computational cost, aside from the central branch lengths
(where the respective bipartition vanishes or appears, e.g., vSB and vDE), we limited the
set of integrated branches to those that surround the central branches. More specifically,
we ignore branches that are connected to the central branches by a path that is longer
than 5 branches. In the following, we otherwise identify (resp., categorize) branches by
their function in or their relationship to the central branches. As depicted in Fig. 4.10,
we name subtrees according to the following scheme: subtree S is removed from subtrees
A and B (where A is the subtree that keeps its bipartition and B is the first bipartition
that is lost because of the traversing subtree). Subsequent subtrees (if distinguishable)

71

4 Advanced Proposals On Branch Lengths and Topology

are numbered alphabetically. Branches that are contained in these subtrees are num-
bered by their depth (e.g., B-0 is the root of subtree B and B-1 is a branch that we
obtain by descending one branch from B-0). Thus, for instance for B-1 there exist up to
2 branches (resp., up to 4 branches for B-2) that are indistinguishable with respect to
their relationship to the root of subtree B. For integration, we applied a branch length
multiplier on randomly chosen branches in the branch length subset as defined above
and stopped the chain when the ESS for each posterior was > 200.

As expected, a topological change has a strong impact on the inner branches of a move
(inner-default, resp. inner-alt in Fig. 4.11). The topological change affects branches at
the root of involved subtrees to a lower degree (class close) and has nearly no effect on
branches that are further away from the central bipartitions (class distant). Particularly
for bolder moves, we observe that, if we apply the MrBayes mapping (inner-default)
branch length posteriors change substantially less on average than if we apply the NNI-
transitive mapping. For the MrBayes mapping a clear trend to shorter inner branch
lengths is observed. However, the NNI-transitive mapping leads to branch length changes
that are as drastic as the worst case in inner-default (i.e., vSB, the branch that is removed
and remapped) and that vary in both directions. Among branches at the root of involved
subtrees, there is a general tendency towards longer average branch lengths after the
move has been applied, specifically for the moving subtree (S-0). Fig. 4.11 only depicts
branches in moves that do not decrease the log-likelihood by more than 100 units. If all
branches are considered, some branch lengths are shortened by a factor of 1,024 after
applying the move. As we increase the likelihood threshold (focusing on better moves),
we gradually obtain less extreme ratios.

If we consider all moves (regardless of impact on likelihood), there is no correlation
among inner branches (mapped with inner-default) and branches in the class close (r =
−0.0532). For branches in the moves depicted in Fig. 4.11, there is a weak correlation
(r = −0.232) and if we only focus on moves with a comparably high likelihood ratio
of at least −10 log units, we obtain a moderate negative correlation of r = −0.403. In
other words, moves that are accepted have a strong tendency to shorten inner branches
and at the same time tend to extend adjacent branches of involved subtrees. We assume
that, this is because after burn-in, and before applying a move, the topology is in a
comparably parsimonious state (i.e., the topology pairs up taxa, s.t. few substitutions
explain the observed alignment). Moves applied to this state are more likely to yield
a worse model for the alignment. That is, we have to assume that more substitutions
took place between the common ancestor and the respective subtrees and thus branches
adjacent to the inner branches are elongated, while inner branches become shorter in
comparison.

4.3.2 Construction of Hybrid Proposals

The comparison of branch length posteriors in the context of topological moves suggests
that the acceptance ratio of topological moves may suffer from branch lengths that are
sub-optimal for the newly proposed topology. To account for that, MrBayes typically
applies a weak branch length multiplier (multiplies by a factor of ∈ [0.95, 1.05]) to the

72

4.3 Topology Hybrid Proposals

remapped branch length vSB. While the proposed value is based upon the previous
value (and is likely to propose a less optimal value), a central advantage of the NR-
based distribution proposal is the possibility to propose branches de novo. That is, we
can directly propose a branch length that most likely is close to the optimum. Ideally, for
proposing more than one branch length simultaneously with an update of the topology,
we want to propose according to the joint optimum of all proposed branches. This means
that we need to repeatedly optimize all branch lengths to be proposed until they jointly
converge. We consider a branch as converged, when the optimum changes by a factor of
less than 0.01 compared to the previous iteration [see 133, for more involved convergence
criteria].
Fig. 4.11 suggests that for the NNI, it is sufficient to either only propose the remapped

branch (vSB) or (as a bolder alternative) also propose lengths of branches A-S, B-0, B-C
and S-0. For SPR-n moves (with n > 1), we can construct increasingly bolder moves by
consecutively increasing the set of branches S to be proposed in the following order: S-B,
last branch traversed by subtree S (i.e., C-D in SPR-3), S-0, A-S, first non-traversed
branch (i.e., D-E in SPR-3), continuing with subtree branches (e.g., D-0) and inner
branches (e.g., B-C) in the direction from the reattachment location toward the pruning
location. However, since reversibility is a must for proposals, we have to choose the
set S such that the original state can be restored (i.e., such that we obtain a non-zero
Hastings-ratio). For instance, if for a SPR-3 move, we propose a new length for branch
C-D, we have to propose B-C in the forward move as well in order to obtain a reversible
proposal. This constraint hinders the construction of hybrid proposals that are tailored
for changes in the posterior density after applying a move. In other words, we have to
propose additional branch lengths to make the hybrid move reversible.

Thus, we examine 4 increasingly bold classes of hybrid proposals by adapting (i) only
the remapped branch S-B (abbrev. switch), (ii) all inner branches (abbrev. inner, e.g.,
B-C, C-D, D-S in SPR-3), (iii) all inner as well as the branches adjacent to the path of
branches traversed by S (A-S and D-E in SPR-3, abbrev. inner∗) and (iv) all branches
from (i) - (iii) as well as the root of all traversed subtrees (abbrev. close, S-0, B-0, C-0
and D-0 in SPR-3). Since after determining the joint optimum of all branches v∗i ∈ S,
each branch is proposed from a separate distribution Γv∗i , the Hastings-ratio can be
computed as the ratio

Hasting’s ratio of S =

∏
vi∈S Γvi(vi)∏
v∗i ∈S

Γv∗i (v∗i)
. (4.4)

This implies, that we also have to determine the joint branch length optimum for the
reverse move.

We implemented hybrid proposals for all 4 proposed sets S for the eSPR and parsSPR
(see Sect. 3.3.2) moves. In case of the stNNI proposal, only the switch and close case
are relevant. Since the eTBR is equivalent to two SPR moves, we can easily construct
analogous hybrid proposals by combining the branches to be proposed for both SPR
moves and by also including the bisected branch in set S. Furthermore, we adapted
the 4 alternatives for a ppSPR (see Sect. 3.3.2). For instance, for a hybrid proposal

73

4 Advanced Proposals On Branch Lengths and Topology

ra
tio

 o
f p

os
te

rio
r

m
ea

ns
 (

af
te

r
pr

op
os

al
 /

be
fo

re
 m

ov
e)

1/64

1/16

1/4

1

4

16

S−B

●

●

inner−default

 :
di

st
1

inner−alt

 :
di

st
1

A−0 A−S B−0
B−C C−0 S−0

● ● ● ● ● ●
●●

●●●●●
●
●●
●
●●
●●●

●
●●●●●
●
●
●●

●
●
●●●
●●
●●●●●●●●●●●●●●●●●
●
●●●
●●
●
●
●

●
●●●●●●●●
●●●●
●●
●
●●
●●●●●
●
●●●●●●●●
●●

●●

●
●●●
●●●
●
●
●
●●
●●●●●●
●
●
●

●●
●●
●●●
●
●
●
●●●●●●●●●●●●●
●
●
●
●
●

●
●
●●
●●●
●●
●
●

●
●●
●

●
●●
●
●
●
●●
●

●
●●
●
●
●
●●●
●●●

●●●●●●
●
●

●●
●●
●

●
●●
●
●●●●●●
●●

●●●

●●●●●
●●●

●●
●●●●●●
●
●
●●
●●●
●
●
●
●●●●●
●
●
●●
●
●●●●●

●●
●●

●
●
●●●●●●●
●
●

●●

●●●●●●●●●●●●
●
●●●●●●●
●
●●

●

●●●
●
●●●●●●●●●●●●

●
●●●
●

●●
●
●●●●●●●●●●●●●●●●
●
●●●
●
●●
●
●

●
●
●
●

●●●

●

●●
●
●
●
●●●●●●●
●●●
●●
●
●●●●●●●
●
●●●●
●

●
●
●●●

●●

●●●●●

●●
●●
●
●
●●
●

●●
●
●●●●
●●●
●●●
●
●●●
●

●●●
●●

●●
●
●
●
●●●●●
●●
●

●
●
●
●
●
●●
●

●

●

●

●●
●

●
●
●
●
●
●●●●
●
●●●●
●●

●
●●
●●●●●●
●●
●●

●
●
●
●
●
●●
●
●●●●
●●
●
●
●●●●●●●
●
●●●●●●
●

●●
●●

●
●

●●

●

●●●●●●●

●

●
●●

●

●●●●●●●●●●
●●●●
●●●●

●

●●
●●
●●●●●
●

●

●●

●●
●
●

●

●
●●

●

●●
●●●●
●●
●●●●●
●●
●●
●●
●●●●●●

●

●●●

●

●●●●
●●●●
●●

●●●
●●
●●●●●●●

●●

●●
●

●●

●●●
●
●●
●●●
●

●
●

●

●●
●
●

●

●

●

●
●
●●●

●●
●
●
●
●
●●
●●●●

●

●
●
●
●

●

●
●

●

●

●

●

●
●●
●
●●●●●
●

●●

●

●●
●●●

●
●

●
●●

●

●●

●

●●●
●
●●●
●
●
●●

●

●
●

●●●●●●●●●
●
●●●●

●

●●●
●●
●●

●

●●
●●
●
●
●●●●●●●
●
●●●
●
●●●
●●●●●
●●●
●

●

●
●
●●
●
●●●●●
●●●●
●
●
●●
●
●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●●
●

●

●

●●

●●●
●
●●

●

●●●●

●●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●●
●
●

●
●●●●●●●
●
●●
●
●●●●
●
●●●●
●

●

●●
●
●
●●●●

●
●
●

●

●

●●●●●
●

●

●
●
●

●

●●●●●

●

●●●●●●●●●●●●
●●●

●

●

●

●●

●
●●

●

●

●●

●

●●●●
●●

●

●
●●

●

●●

●

●

●

●●

●●

●●●●
●●●●●●●

●

●●●●●●●●
●
●
●
●●●●
●●●●
●●

●●

●

●●●
●●●●●●●
●
●

●

●●●●●

●

●

●

●●
●●●●●
●
●

●

●
●●●●
●
●●
●
●●
●
●●

●

●
●●
●
●
●●
●●●●
●
●
●
●
●
●●●●●●
●●
●●

●

●●●
●

●

●●●●●●●
●
●●●

●

●

●●

●

●
●●●●●●●●●●

●

●
●

●

●
●
●
●
●●●●●●●

●

●●●
●
●●●●●●●●
●●●●
●
●

●

●●●●●
●●●●

●
●●●●
●●●●

●

●●
●
●

●

●

●

●●●●

●

●

●
●

●

●

●
●
●●●

●●

●

●

●

●

●●●

●

●●●

●

●

●

●●

●

●

●

●

●
●
●

●

●●

●

●●
●

●

●●●●
●
●●
●

●●
●
●
●

●

●●●●
●
●
●
●
●●●
●●●●

●●●

●
●

●

●

●●●●●●
●

●

●●
●
●●●

●●

●

●

●●●●●●●●●

●

●●●●●
●●
●●

●

●

●

●
●

●●●

●

●●●●
●

●

●
●●

●●

●
●●

●●

●●
●●

●●

●●●
●●●●●●●

●

●●
●
●●●●●

●

●
●
●
●
●●●●
●

●

●●●
●●

●

●●
●●
●
●●●●
●
●
●●

●

●●

●

●●

●

●

●●●

●

●●●●

●●●
●
●
●
●
●●
●

●

●●
●●
●
●●

●

●

●●●
●
●

●

●

●●
●
●●
●
●●
●

●
●●●
●●
●
●
●●
●

●

●
●
●●
●
●
●●

●

●●

●

●●●
●
●

●
●
●●●
●●
●●

●

●●●●●●

●

●

●

●

●
●●●●●●●●

●

●
●
●●●●●●●●●●●●

●

●●●●●●

●

●●●

●

●●
●
●
●●
●

●
●●●●
●
●
●●●●

●

●

●

●
●●●
●●
●●

●

●

●

●

●
●
●
●●
●●
●

●●

●
●
●●
●

●

●

●

●

●

●●●

●

●●

●

●

●●

●

●●

●

●

●●

●●

●

●

●

●●

●
●
●

●
●
●
●

●

●
●●

●
●●

●●●
●
●●●●

●

●●●●
●
●●●●
●
●●●
●●
●●●●

●

●●
●●●●●●●●●

●
●●
●

●●●●

●

●

●

●●●●

●

●
●

●●
●●●●
●●

●●

●
●●
●●●●●●●●
●●
●

●●●●●●●●

●

●●

●

●●●●
●
●●●●
●

●

●●
●

●●●
●●●●
●●●●
●
●●●●●●●
●
●●
●
●●●●
●●●●
●
●●
●
●●●
●●●
●●●
●●
●
●
●
●●●

●●

●
●
●●●●
●
●
●
●●●●
●●
●
●

●●

●●

●●

●

●

●

●●

●

●

●

●

●●●●
●
●●●●●●●●

●●

●●●●
●
●●●●
●
●
●
●●●●●●
●
●
●●●●●
●●
●●●●●●

●
●
●

●●●
●

●

●

●

●
●
●●
●●●●
●●●

●

●

●

●
●●●●●●●
●
●●●
●
●●●

●

●
●●●●●●●
●
●●
●
●
●
●●
●

●
●
●●●●
●
●●
●●
●●
●
●
●●●●
●
●
●
●●●●●●●●

●

●
●
●●●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●
●●
●
●●●●●●●●●●
●
●●
●
●
●
●●
●
●●●●
●
●●
●●●●
●●●●
●

●
●
●

●
●●
●
●●●●●●●●●
●
●
●
●
●

●

●
●

●

●●●●●
●●
●
●●●●●

●

●

●

●●
●
●●

●

●●●
●●●

●
●
●

●

●●
●●●●●
●●

●

●
●●
●●
●
●●
●

●
●●●●
●
●●

●
●●●
●●●
●
●●●●●●●●

●
●●●

●

●

●
●
●
●
●

●
●●
●
●●●
●
●
●
●●
●
●●
●
●

●

●
●
●●
●
●●●●
●
●●●●●

●●
●●

●
●●

●●●●●●

●

●●●●
●●
●●

●

●●●●●●●
●●●●●●
●●●●●
●

●

●●
●●
●●●●●●●

●

●●

●●
●●
●

●

●●

●

●●●●●●●
●●
●●●●●

●

●●
●●
●●
●●
●●●●

●

●●●●●
●●●
●
●●

●●
●●
●●●●●●
●●

●

●

●●●

●●●●

●

●●●●
●●
●●●●●●
●
●
●
●
●

●●

●

●●●●
●

●●●●
●
●

●

●●●●●●●
●
●
●

●●
●

●
●
●
●
●
●

●

●●●●●●

●

●
●●
●

●

●

●

●
●●●●●
●
●

●
●

●

●
●

●
●

●

●●
●●●●●
●●●

●

●●

●

●
●●●●●
●
●
●
●●●●●
●

●

●
●●
●
●●
●
●●●●

●
●

●
●
●●●●●●

●●
●●
●

●

●

●
●
●●
●
●●●●●
●

●

●●●●●
●
●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●●●

●●●

●
●
●●●●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●●

●●

●●

●

●●

●

●●
●●●
●
●●●
●

●

●

●

●
●●●●●●●

●●
●●
●
●●●
●
●●
●●
●
●

close

 :
di

st
1

A−1 B−1 C−1 S−1

● ● ● ●●●
●●
●●
●●●●
●●●●●●
●●
●●●●●●●
●
●●
●●●●
●

●
●●

●

●

●

●●
●

●
●●●●
●
●
●
●
●●●●
●
●●●●●
●
●●
●●
●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●●
●
●●
●●
●
●●
●●●●
●●●●●●●
●●
●●
●
●
●
●
●●

●●●●●
●●
●●
●●●●●●●●
●●●●●●●●●●●●
●
●●

●●●
●
●
●
●
●●●●●
●●
●●●
●
●●
●
●●●
●
●●●●●
●
●●●●●●●●●●●●●●
●
●
●
●●●
●
●●
●●●
●●
●
●
●●
●●●●●●●●●
●●
●
●
●●●●●
●
●
●●●
●
●●
●
●●
●●
●●
●●●
●
●
●●●
●
●●●●●●●●●●
●
●●●
●
●●
●●●●●●●●●●
●
●●
●
●●
●●
●

●

●●●
●
●
●
●
●●
●

●
●●
●
●
●
●
●●●●●●●●
●
●●●●●●●●
●●●●
●●
●
●●●●
●
●●●●●●●
●●
●
●●
●
●
●●
●●
●
●
●●
●
●●●
●
●
●●●●
●●
●●●
●●●
●
●
●●
●●

●

●●●
●
●●
●
●
●●●
●●●●●
●
●●●●
●●●

●●
●
●●
●
●●●
●

●
●
●
●
●

●●
●
●
●●
●
●●
●
●●●
●●●●●
●
●
●

●
●●●
●
●
●
●●
●
●
●
●●
●
●
●
●
●

●
●
●●●●●●
●
●
●●●●
●
●
●
●●
●●●
●
●●
●●
● ●●●●●●

●

●

●
●

●
●●
●

●

●

●
●●●
●●

●●

●
●●●●●●●●●

●●●●●●●
●
●

●

●
●
●●●
●
●●
●●●●
●
●
●

●
●●●

●
●●●
●●
●

●

●●
●●●●●
●
●●
●●
●●
●●●
●
●●●●
●●
●●●
●●
●●
●●
●

●●

●
●
●●
●
●●

●

●
●●●●
●
●
●

●●

●●
●
●●
●

●●

●

●●

●

●

●

●
●

●

●●●●
●
●●

●●

●●●●●●●●●●●●●●●●●●
●
●●●●
●
●
●●
●●
●
●
●
●●

●●
●
●

●
●
●●●

●
●
●●●
●●
●
●

●●
●●●
●●
●
●●
●
●●
●
●●●●●●●●●●●
●

●

●
●●
●
●●
●
●●●●●●●●●●
●
●●
●●
●●
●●
●
●●●
●
●
●
●

●
●
●●●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●●●●●
●
●●
●●
●
●
●
●
●●●
●
●●●●●
●

●
●
●
●●●●●●●
●●●
●
●●
●●●
●●●
●●●

●

●●●●●●
●
●●
●
●●●
●
●●
●

●
●●
●

●

●

●

●●

●●

●●
●
●
●
●
●●

●

●●●●●●

●●●
●

●

●
●
●
●
●
●●
●
●

●●
●

●

●
●●
●
●●
●●
●
●●
●
●
●
●●

●●
●●

●

●

●
●
●
●
●●●
●●●●●●●
●●●
●●

●●●

●●●
●●
●●●●
●
●
●●
●
●●
●●
●
●
●
●
●●
●
●
●
●●
●
●●●● ●

●

●●●●●
●
●●

●

●
●●●●●
●
●●●●
●
●●●●●●
●
●●●●●
●●
●
●●
●
●●●
●
●●●●●●
●●
●
●●●
●
●●
●●●
●●●●
●
●●●●●●●●●●●●●●●●●
●●

●●
●
●
●
●
●●
●
●●
●●●
●●
●
●●
●●●●
●
●
●
●●
●●

●

●

●
●●
●●●●●

●
●●●●●●●
●
●
●
●●●
●
●
●●
●●●●
●●
●
●
●●●
●●
●
●●
●
●

●●
●●
●●
●
●

●
●●
●
●●

●
●
●
●
●●●●●●
●
●●
●
●●●●●●●●●
●
●●●●
●
●●●●●●●●
●
●
●●
●
●
●●
●●
●
●
●●
●
●
●
●●●●●●
●●
●●●●
●●●
●●●●●●●●
●●●
●●●●●●
●●
●●●●
●●●●●
●
●●●●
●
●●●
●
●●●●
●●
●●●●
●
●●●
●
●
●●●●●
●●
●

●

●●●●
●
●
●
●
●●●
●●●●●

●

●●●●●●

●

●
●
●
●
●●

●
●
●
●
●●●●
●
●●●
●

●

●
●●●●●●●●●●●●●
●
●●●●
●
●●●●●●●●●●●●
●●●●
●
●
●
●●●●●●●
●
●●●●
●
●
●●●
●
●●
●
●
●●●
●
●
●
●●●●●●
●
●

●
●●
●
●●●●
●
●●●●●
●●●●●●●●

●

●
●
●●●
●●●
●

●
●●
●
●
●
●●
●
●
●
●
●

●●
●●
●
●●●
●●●
●●●●
●●●
●●●●●
●
●●●●
●
●●
●●

●

●
●
●●
●
●
●●●
●
●
●
●
●●●
●
●
●
●

●

●
●
●●●●

●●
●
●●
●
●●
●●●●●●
●

●

●●●
●●
●●●●●●●●●●●●●●●
●●
●●●
●
●
●●●●●●●●
●●●●●
●
●
●
●
●●
●
●●
●
●●
●●
●●●●●●●●●
●●●
●●
●

●

●●●●●●●
●
●
●●
●
●

●●
●
●
●●
●●
●
●
●●
●
●●●●●●●●
●
●●
●
●●●
●
●●●●
●
●
●
●
●
●●
●●
●
●
●●●
●

●●
●
●
●●
●
●
●
●●●●
●●
●
●

●

●●
●
●●
●
●

●
●
●●
●
●●●●●●●●
●

●

●●
●
●
●●●●●
●
●●●●
●
●●●●

●

●
●

●
●●
●
●●
●
●●●
●
●●
●●
●
●

●
●
●
●
●●●●

●

●
●●●
●
●●●

●●
●●●

●

●
●
●●
●
●●●●●●●●●
●●●

●

●●●●●
●
●●●●●●●
●

●

●●●●●●
●●●●●●
●
●●
●●●
●●●●●●●●●●●●
●
●●●●

●

●●
●
●
●●
●●●●

●

●●
●
●
●●●
●●

●●

●

●●

●

●●●
●●

●

●

●
●●
●●

●

●●

●●

●
●●
●
●●
●●
●●●●●
●●
●●
●●
●
●

●●
●●
●

●●
●
●●
●

●
●●

●
●●●●●●
●

●
●
●●
●
●
●
●●
●
●●●●
●●

●●

●●●
●●●
●●

●

●●●●

●
●●●
●●
●●●

●●●

●
●
●
●
●●
●●●

●
●
●●●●
●
●
●
●
●
●
●●

●
●
●
●

●

●
●●
●

●●
●
●
●●
●
●●
●
●●●●●
●
●

●

●

●

●●
●●
●
●
●

distant

 :
di

st
1

1/64

1/16

1/4

1

4

16

B−C S−B

●
●

●
●
●

●●

●●●

●●●●●●
●●●
●●
●
●●●●
●

●

●●

●

●●●●
●

●
●
●

●

●
●●

●
●●●
●●
●●●●●
●
●
●●●●●●●●●
●

●●●
●●
●
●

●●●
●

●

●●

●
●

●
●●
●

●
●●
●

●

●
●

inner−default

 :
di

st
2

B−C S−B

●
●

●

●

●

●●●●
●
● ●

●●●

●

●

●●●

●

●
●

●●●

●

●

●
●

●●

●

inner−alt

 :
di

st
2

A−0 A−S B−0 C−0
C−D D−0 S−0

● ● ● ● ● ● ●
●●●

●

●
●●
●●●

●

●
●●●●
●
●●

●

●●
●●
●
●

●

●●●●

●

●●
●

●

●
●

●
●

●

●
●●●●●

●●●

●
●
●●●●●●
●
●●●●

●

●●●●●

●

●

●

●
●
●
●
●
●

●

●●●
●
●●

●

●

●

●
●●
●

●

●

●●
●
●

●●

●●

●

●
●
●●
●

●●●

●
●
●
●
●●
●●
●●●●●●

●●●

●

●●●

●●●

●●
●
●●

●

●●

●

●●

●●●

●●●
●
●
●

●●
●
●
●●

●

●●●

●●

●●●

●●
●
●
●

●●

●●●●
●

●●●
●

●●
●
●●
●●●

●
●●●
●
●●

●●

●
●●

●

●

●
●●

●

●

●●
●●●
●
●●●
●●●●●●●●●
●
●●

●

●●
●●
●
●●
●

●
●●●●●●●

●

●●●●
●
●

●●

●●●●●●●●
●
●●
●
●
●

●●●●
●●●
●
●●
●

●
●
●●

●●●
●
●
●
●●●●
●●●●●
●

●●●●●
●

●●

●

●●

●
●
●
●
●●
●
●
●●

●●●
●

●

●●●●●●

●●●
●

●

●●●●●●

●

●●

●

●
●
●●

●

●
●
●
●

●

●●●●●●●●●●●●●

●●●

●
●
●●
●●●●●

●

●
●

●
●●
●

●

●
●
●●
●
●●
●●●●
●
●●●
●

●

●
●
●●●
●●

●

●
●
●●
●●●
●●
●●

●
●●●●●●●●●

●

●
●●
●
●●●●●
●
●●
●●●●●●●
●●●●●
●
●
●
●
●
●●●●
●
●
●
●●
●
●
●●
●
●

●
●●●
●
●●
●
●

●●●
●
●●
●

●

●

●

●

●●
●
●●●

●

●

●●●

●
●●●

●●●

●
●
●
●●●
●●
●

●●●●
●●
●

●

●
●
●

●

●●

●

●●

●

●●●
●

●●

●●●●●●●●●●

●

●
●●●●
●●

●

●●●●●●●●●
●
●●●●
●
●●

●
●

●●●

●●●
●●

●

●

●●●

●●
●●

●

●

●
●

●●

●

●

●

●

●

●●●

●

●
●
●

●

●

●

●●

●
●
●
●
●●●●

●

●●

●

●●●

●

●●

●●●●●●●●

●

●●●●●●●●
●●
●●●●●●●●●

●

●

●

●●●●

●

●
●

●
●
●●●●

●

●●●

●

●

●●●●

●

●

●●●●

●
●●
●

●

●
●●
●
●

●

●●●●
●●

●

●
●
●

●

●

●

●
●●

●

●

●

●
●

●

●
●●●●
●●
●●●●●●●●
●
●●
●●●●●

●

●

●

●●●
●●

●

●

●●●●

●

●

●

●●

●

●

●

●●●●

●

●

●●

●
●

●●●

●

●
●●●●●●●

●

●

●●

●●

●
●●●●●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●
●

●●

●

●
●

●●
●

●

●●

●
●

●●

●

●

●●

●

●

●

●●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●
●
●●●●

●

●●

●

●●
●

●

●

●●●●
●

●

●

●●

●

●

●
●●●●
●●●●●●
●
●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●●●

●●●●●●●●●
●●
●●
●
●●●●
●
●
●●

●

●

●

●
●
●
●●●●

●

●●
●●●
●●●
●

●
●
●
●
●

●●

●●
●
●

●
●
●●●

●

●●
●

●●●
●
●

●

●●
●●
●●●●
●●●●
●
●
●
●●●●●●
●
●●●●●●●
●●●
●●●●●●
●●●●●

●
●●●
●
●●
●●●
●

●
●
●

●

●●●
●●
●

●

●

●●●

●

●

●
●
●●●●●●●
●
●
●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●
●●
●
●●
●

●

●●●
●●●●●
●

●
●

●

●

●

●

●

●

●●●●●●

●

●●
●

●

●●
●●

●

●
●
●●●
●

●

●●

●

●

●

●●●●●●●●●●

●●

●

●

●

●

●

●

●

●●●

●●●

●

●

●●●●●
●

●

●●
●●●●

●

●

●●

●
●
●●●

●

●
●

●

●●●
●
●●●●●●●●●

●

●

●

●

●

●

●

●●●
●
●
●

●

●●
●

●

●
●●

●

●
●
●

●

●●
●
●
●

●●
●●
●

●●

●●●●

●
●

●

●●●●●
●
●●●●●

●

●

●

●●●●
●
●

●

●●●●●●●
●
●●
●●●
●

●
●●
●●
●

●

●●

●
●
●

●

●

●●

●

●

●

●●
●
●●

●

●

●

●

●●
●●●

●●

●●

●●

●●

●
●

●
●
●●

●

●●●●
●
●
●●
●
●●
●●●

●

●

●●
●

●

●

●
●
●●●●●

●

●

●

●●
●●●●

●

●
●

●
●

●

●●
●

●

●●

●

●

●●

●

●

●●

●
●●
●
●

●●●●●●●
●

●

●

●

●
●
●

●
●

●●●●
●
●
●
●
●

●

●●

●

●

●

●
●

●

●●
●●●●●●●
●
●●
●
●●●●
●●

●

●●
●●

●
●●
●●
●
●●

●

●●●●●●●●
●●●●

●
●●
●
●
●
●
●

●

●

●

●

●

●●

●●●

●●

●●●
●●

●

●●●

●●●

●●●

●●●●●●●●
●
●
●
●

●●●
●
●●●●●●
●●
●
●
●●●●●
●●

●

●

●●●●

●●●

●
●●

●

●

●●

●
●●

●●
●
●●●●

●

●●●●●●●●●●
●
●●●●●●●●●●●

●
●●

●●●●

●

●●●●●●●●●●
●●●●

●●
●●
●●●
●
●●●●●●
●

●

●
●
●●
●
●●
●
●●●●●●●●●
●
●●

●●
●●●●
●●

●

●●●●●●●●●●

●

●●●
●
●
●

●

●

●

●
●●

●
●●

●●

●

●●
●●

●

●
●
●
●

●

●●●
●
●
●●
●●
●●

●●

●

●●
●●
●

●
●
●
●●
●●●●
●
●

●

●

●

●
●
●
●
●

●

●

●
●

●
●
●●●●●

●

●●●●●
●●

●
●

●
●

●●●●●

●

●●●●●●●

●●●●●●

●●

●●●●●●●
●●●●●●●●●●
●
●

●
●●●●

●
●●●●
●
●●●
●
●●●
●
●●
●
●
●
●

●

●●●●●●

●

●
●●●●●●●●●
●●●●●●●

●

●●
●●
●●●
●
●●●●●

●

●●
●●●●●●
●
●●●●●●

●●●●
●●●●
●
●
●

●

●●●
●
●●
●●
●
●●
●
●
●
●

●

●●

●
●●●
●

●

●●
●

●

●

●

●

●●

●●

●●

●

●

●

●●●●●●●●

●

●●●●●

close

 :
di

st
2

A−1 B−1 C−1 D−1 S−1

● ● ● ● ●●●●
●

●●●
●
●

●

●

●

●●●

●

●
●

●
●
●

●
●

●
●

●

●

●

●

●●

●

●
●
●●
●

●
●
●

●

●
●

●●

●
●●

●
●
●
●
●

●

●

●

●●●●
●
●●●●●

●

●●
●
●●
●
●●
●
●●●●●●●●●●●
●

●

●
●●●●
●

●
●●●
●
●●●●
●
●●
●

●

●
●●●●
●●
●
●●

●
●
●
●

●

●●●
●
●

●
●●●
●
●●●●
●●●
●●●
●
●●●●●
●
●
●●

●

●●●
●
●●
●

●
●●
●
●
●

●

●

●
●●

●●

●●●
●●●●●●●●●●●●
●

●●●●
●
●●●●
●

●
●●●
●
●
●

●●
●●●●●●●
●
●
●●
●●●
●
●
●●●●●●●●●●●●●●●●●●
●●
●●●●●
●●
●
●●●●●
●
●
●●
●●●●●●●●
●
●●●●
●
●●●
●
●●●●●
●
●
●●
●
●●
●
●●●
●
●

●
●●

●
●
●●
●●
●●
●●●●●●
●
●●●
●
●
●
●
●

●

●●●●
●●
●●●
●●●●●

●●

●
●●●
●●
●●
●
●●●
●●
● ●

●

●●
●●
●
●●●●
●
●
●

●
●
●

●
●●
●

●

●
●
●●
●

●●
●
●●
●
●
●
●
●
●●●

●

●
●●●
●●

●
●
●●
●●●●
●●●●●
●●●●
●●●●●●●
●
●●●
●
●
●●●●●●●
●
●●●
●●●●●●●
●

●

●●
●●
●
●●●●●●
●●

●●●
●
●
●●●●
●●
●
●●●
●
●
●
●●
●●
●●
●
●●
●●
●
●●●
●
●●●
●
●
●
●
●
●

●●
●●●●●●●●●
●
●
●
●●●●●●●●●
●●●

●

●●●●●●●●
●●●●●●●●●●●●●
●●●●
●
●
●●
●
●●●●●
●●●●
●

●●●
●
●●●●●
●
●●●●●
●
●

●●●●●●●●●●●●
●
●●●●●●●
●
●●
●
●
●●
●●
●

●●●
●
●●
●●
●●●
●●

●
●

●
●●

●●
●
●●
●
●
●●

●

●
●●●
●
●
●●
●
●●●
●

●
●●●
●●●●●●
●
●
●
●

●

●●
●

●●
●
●●●●

●●

●
●
●

●

●

●
●
●
●

●
●
●
●

●
●●●
●
●
●●●
●●●

●

●
●●●●
●●
●●

●●

●
●●
●
●
●

●

●
●●
●
●
●
●●●●●●●●●●●●●●
●●●●
●●
●
●●●
●

●

●●
●●

●●●

●
●●●●●

●

●

●●
●
●●
●●●●

●●
●●

●●●
●
●●
●
●●●
●●●●

●●
●●●●

●

●●●

●
●
●
●●
●

●
●●

●●●
●●●●

●

●●
●
●

●

●●●

●
●
●

●●
●●●●
●
●
●●●●●●●●●●●●●●●

●

●●●●●●
●
●
●●●●
●●
●●●●

●

●●●
●●●
●

●

●●●
●●
●
●●●●
●

●
●●●●●●●●●
●●●●●●●●●●●●●●●●

●●

●

●●●
●
●
●
●
●

●●

●

●
●
●
●
●
●
●●
●

●
●
●●

●●

●

●
●●●●
●

●●

●

●

●
●●●●
●

●

●
●●
●
●●
●

●
●
●●●
●●●●●●●

●

●

●

●●

●●
●
●

●●
●

●
●●
●
●●
●●

●●●
●●
● ●

●

●●

●●●

●
●●●●
●

●
●

●●●●
●●
●

●●
●

●

●

●

●

●
●
●

●●

●
●
●
●

●
●●
●

●
●
●

●
●●●
●
●

●
●

●●
●
●
●
●
●●●
●●
●
●●●●●●●
●
●●●●●●●●●●
●●●●
●●●●
●●
●●●●●
●

●
●
●

●
●●●●●
●●●
●

●

●
●
●
●●●
●
●
●
●●
●

●

●
●●●●
●●●●●●●
●
●
●
●●●●

●
●
●
●
●

●●
●
●●
●●
●
●●●●

●

●
●
●●
●
●●●
●
●

●
●
●●
●
●
●●●●●●●●●●

●
●●●
●
●●●
●●●●●
●
●●●
●
●●●●●●●●
●●●●●●●●●●●●●
●
●
●●●●
●●●●
●●
●
●
●
●
●
●●
●
●●●●●●●
●

●●
●●●

●●

●●
●
●●●●
●
●
●
●●●
●
●●●

●

●
●
●●●●
●
●●●●
●
●●●●
●
●●
●
●
●●●●●

●
●
●●●●●●
●

●●
●
●●

●●●

●
●
●●

●
●
●●
●
●
●●

●●

●
●
●●
●
●
●●
●
●

●
●●
●
●●●●
●●
●●●

●

●

●

●
●

●

●●

●

●

●

●●●

●
●

●●●

●
●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●●●

●●

●

●
●

●●

●
●

●

●●●
●

●

●

●

●
●

●

●●
●
●

●

●●

●●
●●

●

●

●

●
●●

●

●

●

●●

●●

●

●

●
●
●

●

●

●

●
●●●●●
●

●●●
●
●●●

●
●

●

●

●
●●●

●
●

●

●

●●

●●
●
●●
●

●●
●
●●

●

●●●●●
●
●●●

●
●

●

●●

●

●

●●

●●

●

●
●

●
●●

●

●
●

●●●●

●

●

●
●●●

●

●●
●●●

●●●

●●
●
●
●
●●

●

●●●●
●
●

●●

●●●
●●

●
●●●
●

●●●

●●●●●

●●
●

●●

●

●
●●
●
●●
●
●●
●
●●●●●

●

●●●●

●

●●●
●●

●

●

●●
●
●●

●
●

●
●●
●

●
●●
●
●

●

●

●●●●
●
●●●●

●

●

●

●

●

●

●●
●
●
●●
●●
●
●●●
●●
●

●●

●

●

●

●
●

●

●●●

●

●

●●
●●

●●

●
●

●

●●

●

●●
●

●

●

●●

●●●
●
●
●
●

●●●●●●●

●

●●●●●

●

●

●

●

●●

●●

●●●
●

●
●

●●

●

●
●
●●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●
●

●

●

●
●●
●
●●

●●●

●●

●

●●
●●
●

●

●●●
●
●
●
●
●●●●●

●

●

●

●

●●
●
●●

●●●
●●●

●

●

●

●
●
●

●

●●

●

●
●●

●●
●●
●

●●●

●●

distant

 :
di

st
2

1/64

1/16

1/4

1

4

16

B−C C−D S−B

●
●

●●●●●
●●●

●

●

●

●
●

●

●
●

●

●
●

●

●
●●●

●

●●

●
●

●●●
●
●●

●

●●
●●●●●●

●

●●

●●

●
●
●●
●
●

●
●

●
●
●●

●●

●

●
●
●
●●
●
●
●

●●●●●

●

●●
●●●

●

●●●

●
●●

●

●●

●●●
●●●

●●●

●

●

●●
●

●

●
●●●●
●●

●

●●●●●●
●

●

●

●
●

●
●
●●

●●
●

●

●

●

●
●

●

●●

●

●

●

●●

●

●●

●

●
●●
●
●●●

●

●

●●●
●●●●

●●●

●

●

●
●

●
●

●●●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●●

●

●
●●
●●

●

●●

●

●●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●●
●
●●●

●●●●

●
●●●

●
●

●

●

●●●●●●
●
●
●
●●●●
●

●●

●●●●●●●●●●
●●
●
●●●●
●●
●
●●

●

●●

●●
●●

●

●
●●●
●●
●

●

●

●●●

●●

inner−default

 :
di

st
3

B−C C−D S−B

●
●

●

●●●

●

●

●●
●●●
●

●

●●
●●

●

●●●

●
●●●●

●

●

●
●

●●●

●●

●●
●●
●●●

●●

●

inner−alt

 :
di

st
3

A−0 A−S B−0 C−0 D−0
D−E E−0 S−0

● ● ● ● ● ● ●
●●●

●
●
●

●
●

●
●●

●

●
●
●
●

●

●

●
●

●●

●

●●

●

●

●
●

●●

●

●●

●●
●●
●●●●

●

●
●●●

●
●●●●●●●●
●
●
●●●
●
●
●

●

●●●
●●

●
●●●●
●

●
●
●

●

●
●

●
●

●

●
●●●●●●●●●●●
●
●

●

●●
●
●
●●

●

●

●

●●●

●●

●●
●

●●
●●●

●

●●●●

●●

●

●●●

●

●

●

●●●●

●
●●

●

●

●
●
●
●

●●●●●
●
●
●
●
●
●●

●

●●●

●

●●●●

●●

●

●●●●

●●
●
●

●

●●

●

●

●

●
●

●

●
●

●●

●
●●●●

●
●

●
●●●●●
●
●●●●●●●●
●

●

●

●
●

●

●●
●
●
●●●●

●
●

●●
●

●●

●

●●
●

●
●●
●

●●

●

●

●
●●
●
●
●

●

●

●●
●

●

●
●

●

●●
●
●

●

●

●
●

●
●
●●●
●●

●

●

●

●
●
●

●

●
●●●
●●

●●

●●

●

●●●●

●

●

●
●●
●●

●
●●
●●

●●
●●
●

●

●●●
●●●
●●●●●●
●●
●
●●
●
●●●
●
●
●
●●●●
●
●●●
●●●●●●●
●●●●●●●●●
●
●●●●
●
●●
●
●●●●

●
●
●●●
●●
●
●●
●●●●●
●●
●

●●
●●●●●●
●
●

●●
●

●

●●●●

●●

●

●

●●●●
●

●●●
●●

●

●●
●

●●●●●

●

●
●●●●

●●●●●●

●
●●

●●●

●●●●●●●●●

●●●

●

●

●●

●●

●●●●●●
●●●●
●●
●
●
●

●●●●●

●●

●●

●
●●

●
●
●
●●●

●●
●

●

●●

●●●

●●

●

●●●
●

●

●

●●
●●●
●

●
●
●●●
●

●

●

●●●

●●●

●
●●
●

●●

●●

●

●●●

●
●

●

●●

●

●
●●●

●●●●●

●

●

●●●●

●

●
●
●

●
●
●●●

●

●

●

●●●

●

●●

●

●

●

●
●●

●
●

●●●

●
●

●

●
●●●●●●
●●●
●●
●

●

●

● ●●

●

●●●●
●
●●
●●
●
●
●●

●

●●

●

●●●●●●
●
●●●

●

●●

●

●

●

●

●

●●
●●●●●

●

●●
●
●
●●●●●●●
●●●●

●●

●●●●●●
●
●●

●

●●

●

●●●●

●

●●●●

●

●

●

●●●●●
●
●●●
●
●●●●
●●●
●
●●●●
●
●●
●

●

●
●
●

●

●●●●
●
●●
●●
●●●●●
●
●
●
●●●●
●●●●

●

●
●●●

●

●●●
●
●

●●●

●●●●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●●

●●

●

●●
●

●

●

●

●

●

●

●

●●●
●

●

●●●●●●●●●●●●

●

●

●●●

●●●

●

●●●●●●
●●●

●●

●

●
●●

●

●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●
●●●●
●

●

●●●●
●●
●●
●
●●●●●
●

●

●●
●
●

●
●●●●●
●
●●●●
●●
●●●●●●●
●●

●

●

●

●●
●●●●
●
●
●
●●●

●

●●

●

●

●
●

●

●●●●●●●●●●
●●

●
●

●
●

●

●
●
●

●

●

●

●
●●
●

●

●●
●
●

●

●

●

●●●●●●

●

●

●●

●●
●

●

●

●

●●

●

●●●●

●

●

●

●●

●●

●●

●

●
●
●
●

●●

●

●
●●
●
●
●

●

●
●●

●
●●●
●●●

●

●●
●
●●●●●●●

●

●●●●●●

●

●
●

●

●

●

●
●●
●

●

●

●
●

●

●

●●●●
●

●●

●
●

●

●

●●
●

●
●

●

●

●●●

●
●
●
●●
●
●
●

●
●

●
●●●

●●

●

●

●
●

●

●●

●
●

●●●

●
●●
●
●●

●
●

●

●

●

●●●●

●

●
●
●

●

●
●●●●

●
●●●
●
●

●

●
●●

●

●●

●●

●

●●
●

●

●

●

●

●
●
●●

●
●●●●●●●●

●●
●●
●

●●
●●●
●

●

●

●
●●

●●●
●

●●
●●●

●

●●●

●
●●

●●
●

●
●●●●●
●

●

●●
●

●

●●●●●●●
●●

●

●

●

●

●

●

●

●
●
●●●●●●●●●●
●
●
●

●●
●●

●●●●

●

●
●●●
●
●●●●●●●
●
●●
●
●

●
●●

●●●
●
●
●
●●●

●

●●
●●●

●
●

●●●
●
●
●●
●

●
●●

●

●●●

●

●●
●

●

●
●●●●

●

●●

●●
●
●
●
●●●●

●
●

●

●
●●
●●●●●

●●●●
●●

●

●●

●

●

●

●

●●●

●
●●●●●
●●●●●
●
●●
●●●●●●●●●●●●
●●
●●●
●●
●●●●
●
●●●

●

●

●●●
●

●

●

●

●
●

●●●

close
 :

di
st

3

A−1 B−1 C−1 D−1 E−1 S−1

● ● ● ● ● ●●

●
●

●

●●

●●

●●

●

●●●
●●

●●

●
●●
●
●
●
●●
●
●●●●
●●●
●●
●
●

●●
●

●

●
●
●●●●
●
●●
●
●
●●
●●
●●
●●
●
●
●●●●●●
●●
●●●●●●●●●
●
●●
●●●
●●
●
●●
●
●
●
●●
●
●
●
●

●
●
●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●
●
●
●●

●●
●
●
●
●
●
●
●●●●
●

●

●
●
●
●●●
●
●
●
●●●
●
●
●

●
●
●
●
●
●

●

●
●●
●
●
●
●

●
●
●
●
●

●

●

●
●
●●
●
●
●●
●●
●●●●
●●

●●
●
●●●
●
●●
●●●●
●●●●●●●
●●
●
●●●●●
●●
●●●
●
●
●
●●●
●

●●●●●●●●●●
●
●
●

●
●●●
●●
●
●
●
●
●●
●●
●●●
●
●●●●●
●
●●●●

●

●●●
●
●●●●●●●●●●●●●●●●●●
●
●●●●
●
●
●
●
●●
●
●
●
●

●
●●
●
●
●●●
●●

●
●
●●
●●
●●
●
●●
●●●
●
●●●
●●●●
●
●

●
●●
●
●

●

●●●●●●●●

●
●
●
●●
●
●●
● ●

●
●
●
●●●●●
●
●●
●
●●●●
●
●
●●●
●●●●●●●●●●●

●●●●●
●
●●
●
●●●●
●
●●●●●●●
●
●●
●
●
●
●
●●●●
●●
●
●●
●●●●●●●
●

●●
●●●●●●●●●●●●●●●●●●●
●●
●
●●
●
●
●
●
●●●
●●
●●
●
●
●
●
●●●
●

●

●

●

●
●
●●●
●

●

●●●

●

●
●
●

●

●
●●●●

●

●
●

●
●●
●
●●
●

● ●●
●●●
●
●●

●

●●●
●

●

●●

●
●
●
●●●

●

●

●

●●●●
●
●●●●

●

●●

●

●

●
●
●

●
●●●●●
●●●
●
●●
●
●
●

●●

●

●
●
●
●
●
●●

●

●

●

●

●●
●

●●
●●

●●
●
●
●
●●
●
●

●●
●
●●
●
●●
●
●●

●

●
●●
●●

●

●
●●
●
●●

●
●
●●●●●●●●●●

●●●

●

●
●●●
●

●
●
●●●●
●
●●●●●
●

●

●

●

●

●

●

●●●●●●
●●
●
●●●●
●
●
●●
●

●
●
●
●
●

●

●

●
●
●●
●●
●
●●
●●
●
●

●
●

●
●●●●●●●●
●●

●
●●●
●
●●
●

●●

●
●●●●

●

●

●

●●●

●

●●

●

●

●●
●●
●
●●●●

●
●●
●●

●●●●
●
●●
●●

●●
●●●●
●
●●
●●
●
●
●●●
●●●●●●●●
●●●●●●●●
●
●
●●
●●

●
●●
●
●
●
●

●●●
●●
●●●
●
●●●●●●●●
●
●
●
●
●
●
●
●

●
●
●
●

●
●●●●
●
●●●
●●
●
●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●

●
●
●
●
●●
●●
●●
●●●●●
●
●●●
●
●
●
●●
●●●●

●

●
●●●
●●
●
●●
●

●

●●
●
●
●
●
●●

●

●●

●●●●
●●●
●
●●
●
●●●
●●●●
●●●
●

●●

●

●
●
●

●

●●●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●
●

●

●●

●
●●

●

●●

●

●

●

●
●

●●●●

●

●

●

●●

●

●

●

●●

●●
●

●
●●●

●

●

●

●●
●

●

●●

●●●●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●●●

●

●●

●

●●

●
●●

●

●●●

●

●
●●●●

●●

●

●

●●

●

●

●

●

●

●●

●●

●
●

●

●

●

●●●●●●

●

●●●

●

●

●●●
●
●

●

●●

●

●
●●

●

●●

●●●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●●

●●
●
●●

●●

●

●
●
●

●

●
●

●

●
●
●

●
●
●

●●

●

●

●

●
●

●

●

●

●●●●●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●
●

●

●●●

●●

●●●
●●●●●
●
●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●

distant

 :
di

st
3

1/64

1/16

1/4

1

4

16

B−C C−D D−E S−B

● ● ●
●

●●●●●
●●

●●

●

●●

●●

●

●

●

●
●●●
●

●

●

●
●●

●

●●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●●

●

●

●●●
●●●

●●

●
●

●●

●●●
●●●●●●●

●

●●

●●

●

●●

●

●●

●
●

●
●
●

●

●

●●

●
●

●

●●

●

●

●●●●

●

●

●

●●

●
●

●●

●

●●

●

●●

●

●

●●
●

●
●

●
●

●●●●● ●

●

●●●
●
●
●●
●
●●

●

●

●

●●●

●
●

●
●●

●

●●●

●

●●
●
●●●
●●

●

●

●

●
●
●●
●
●●●●●
●●●●●
●●●●●

●

●●●●
●

●

●

●
●●
●●
●

●
●●●●
●
●
●●
●
●●●
●

●

●

●
●
●●

●

●
●●
●●

●

●

●

●

●

●●
●

●

●

●

●
●
●

●
●●
●
●●
●●

●
●

●
●●
●●

●●
●●●
●●
●
●●●●●●●
●
●●●
●
●
●
●
●
●●●●
●●

●

●

●

●
●●●

●

●●●●●●●
●

●●
●●●

●

●

●
●

inner−default

 :
di

st
4

B−C C−D D−E S−B

● ●
●

●

●●●●●

●●●●

●●●●

●

●

●

●

●● ●

●●●●

●

●

●●●●●●
●

●

●

●

●

●

●

●●
●

●
●●●●●●

●

●

●

●

●

●
●

●●

inner−alt

 :
di

st
4

A−0 A−S B−0 C−0 D−0 E−0 E−F F−0 S−0

● ● ● ● ● ● ● ●
●●

●●
●

●

●●

●

●●●●
●
●●●●●●
●●

●●
●●●●

●

●

●
●●

●●●●
●

●●
●
●●●

●
●●
●

●●
●●●●

●
●●

●●
●

●●●
●●●●●●●●
●●●●

●

●

●

●●

●

●
●

●

●●
●
●

●

●

●●

●

●●
●●
●

●●

●●
●●

●
●

●

●

●
●

●●

●●●●
●
●

●
●●
●●
●●●

●

●●
●●
●●●●●●●

●

●●
●●
●

●●●●●

●

●

●●
●

●

●

●

●
●
●
●
●
●●

●
●●●

●●●
●
●

●●

●

●●●

●
●●●
●
●●●●●
●
●●●●
●
●●●

●

●●●

●●

●●

●

●

●●●

●●

●

●
●

●

●

●●●
●●●●

●

●

●

●●●●●●●
●●

●

●
●

●●

●
●●

●

●

●●●
●
●
●

●●●
●

●●

●●
●
●

●
●

●●
●●
●●
●

●

●

●
●

●

●●

●

●

●

●

●
●

●●

●

●
●●●

●

●●

●

●
●
●●
●●●●●●
●

●

●●
●

●●●●
●●

●●●
●
●

●

●●●●
●
●
●

●
●●●●●●●●●●●●●●●●●●
●●●

●●

●
●
●
●●

●

●●●
●
●

●●
●●
●
●

●

●●
●●

●

●

●

●

●

●●

●●●

●

●
●●
● ●●●●●●●

●●●●●●●●
●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●

●●●

●●●●●●●
●●
●●
●●●●
●●
●●●
●●●●
●
●●●
●●
●

●●

●

●

●

●●

●

●
●●

●

●
●
●
●

●
●
●
●●

●

●●
●
●
●●●

●

●●●●●●●
●●●●●
●●●
●●●
●
●●●●●●
●●
●●●

●

●●
●
●

●●

●●●

●●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●●●

●

●

●●

●

●

●

●
●
●

●●

●

●
●●

●

●
●●●●
●
●●●●
●

●

●●●●

●

●

●
●

●

●

●

●●

●

●

●●●

●

●●

●

●●●●●

●●

●●

●●
●●

●
●●
●●

●

●●

●

●

●

●

●
●

●●
●
●
●
●
●●
●

●●
●
●●●
●

●●●
●

●●
●●●●●●●
●
●●●●●●●●●
●
●
●

●

●
●

●

●
●●
●
●
●●

●

●
●

●●
●
●

●●

●

●
●
●●●●●●
●

●

●●

●

●
●●●

●
●●●
●

●
●●
●●●●

●

●●●●●●

●●

●

●●
●●

●

●
●●●●●●●
●
●

●●
●

●

●
●
●
●
●●●

●

●

●

●

close

 :
di

st
4

A−1 B−1 C−1 D−1 E−1 F−1 S−1

● ● ● ● ● ● ●●
●

●●
●●●●●
●●
●●●
●●●
●●●

●

●

●
●
●
●
●●
●
●●●●●
●
●●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●●●
●
●
●
●

●

●●●●●
●●●
●●

●
●●
●●
●●●
●●
●

●

●
●

●

●●

●
●●●●●

●

●●●●
●●●
●
●
●
●●●●●●●
●
●●
●●
●●●●
●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●
●

●
●●
●
●
●●●●●

●●
●
●
●●

●

●
●
●
●●
●
●
●
●
●
●
●●

●
●

●

●●

●

●●
●

●
●●●●●●●●●●●●
●●●●
●●●●
●●
●●●
●●●●●●●●●
●
●
●●
●

●●
●●
●
●●
●●
●
●●
●
●
●●
●●
●●●
●
●
●
●

●
●●●
●
●●
●
●●●●●●●●●
●
●●●
●

●●●
●
●●●
●●●●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●
●

●

●●●
●●
●●●●
●●
●
●
●
●
●●●
●

●
●●
●
●●
●

●

●

●●
●
●

●

●
●●

●●
●●
●

●
●●●
●●●

●

●●●

●

●

●●●
●

●

●
●

●●●●●
●●
●●
●
●
●

●●
●
●
●
●
●
●
●
●

●

●
●
●●●●●●●●●●●●●●●●●●●●
●

●
●
●●

●

●
●
●

●●
●●●●
●
●
●●

●
●●●
●
●●
●
●●
●
●●

●
●●
●●

●

●●●
●●

●●●
●
●
●●●●●
●
●●
●
●
●
●●●●●●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●
●●●●
●

●
●
●
●
●●●●●●
●●
●
●
●●
●
●●
●●
●
●●

●

●

●

●●
●●

●

●●
●
●●●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●

●●

●

●
●

●

●

●
●

●

●●

●●●●●●●

●

●

●

●●
●

●

●●●

●

●●

●●

●

●●

●●

●●●
●●
●

●●

●

●●

●●

●

●●

●

●
●

●●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●●

●
●
●●
●

●

●

distant
 :

di
st

4

Figure 4.11: Ratios of branch length posterior means before and after application of a SPR-n
move (here, indicated as dist-n). Only moves that do not decrease the likelihood by more
than −100 log units are depicted. Values above red line indicate that branch length means are
longer after the topological change. The x-axis enumerates branch names before a topological
move has been applied. For branches with vanishing bipartitions, inner-default displays ratios
according to the MrBayes-mapping and inner-alt displays ratios according to the alternative
NNI-transitive mapping. The classes close and distant display branch categories by their
depth in the respective subtrees (more distant branches not shown).

74

4.3 Topology Hybrid Proposals

of switch and ppSPR, we determine the PP at each reattachment location in a radius
around the pruning point. Whenever the subtree is reattached, we optimize all branch
lengths in set S, before evaluating the PP of this particular proposal. This then allows
proposing a SPR move based upon the PP with optimized branch lengths. However,
since we can not propose optimized branches in conjunction with the SPR move, we then
propose all branch lengths in set S using the NR-based Γ proposal. Thus, depending on
radius and set S these posterior-guided hybrid proposals rapidly become computationally
prohibitive.

4.3.3 Evaluation of Hybrid Proposals

In the following, we assess the convergence efficiency of the aforementioned 5 topological
proposals either (i) in their plain form, (ii) as a hybrid proposal in combination with a
branch length multiplier (only modes switch and inner) or (iii) as hybrid proposals in
combination with a NR-based Γ proposal (all 4 modes). We ran 8 independent chains
starting from a random tree and employing default proposals for all other model param-
eters with the exception of topological and branch length proposals. The proposal under
examination (i.e., cases i-iii) was the only topological proposal allowed and a NR-based
Γ proposal replaced the branch length multiplier and node slider. After 1,000,000 gen-
erations, we calculated the ASDSF between the sampled trees and the reference tree set
created for the respective dataset (see Tab. 4.1 and Sect. 4.1.1).

Overall, we do not observe that the Γ hybrid proposals consistently yield a better level
of convergence than traditional proposals that do not propose branch lengths simultane-
ously (see Fig. 4.12 for datasets discussed here, results for remaining datasets are less
conclusive). On dat-27, multiplier hybrid proposals converge on average as fast as the
respective plain proposals (except for the eSPR). However, the Γ hybrid proposals con-
sistently achieve a higher level of convergence than the plain proposal for this dataset.
Similarly, Γ hybrid proposals achieve an overall better level of convergence on datasets
dat-36 and dat-125. Both datasets have particularly small 50% and 90% credible tree
sets. We also observe advantageous convergence behavior of Γ hybrid proposals on dat-
150 for the parsSPR and ppSPR (the three remaining classes of topological moves did
not converge).

In contrast to dat-36 and dat-125, for dataset dat-150 no tree was sampled twice
in the reference runs. This suggests a flat posterior landscape that only allows the
two guided proposals to reach the region of high PP. While any kind of additional
branch length proposal (also the multiplier in case of the parsSPR) improves convergence
behavior, there still is a noticeable proportion of chains employing hybrid proposals, that
end up in local optima. We assume that, while Γ hybrid proposals may decrease burn-
in time, they do not necessarily traverse a rough topological posterior landscape more
efficiently.

For dataset dat-354, any set of branch lengths proposed via the NR-based Γ proposal
clearly decreases convergence. In contrast, adding a multiplier decreases convergence
to a lesser degree. We assume that, the NR-based Γ proposal performs poorly in this
case because of a large proportion of branches for which the NR method does not con-

75

4 Advanced Proposals On Branch Lengths and Topology

hybrid proposal type

A
S

D
S

F
 to

 r
ef

er
en

ce
 r

un
s

1/16

1/4

1

4

16

M
−in

ne
r

M
−s

witc
h
Non

e

G−s
witc

h

G−in
ne

r

G−in
ne

r*

G−c
los

e

● ● ●
●

●

●
●

●

eTBR

02
4

M
−in

ne
r

M
−s

witc
h
Non

e

G−s
witc

h

G−in
ne

r

G−in
ne

r*

G−c
los

e

●

●
●

●

stNNI

02
4

M
−in

ne
r

M
−s

witc
h
Non

e

G−s
witc

h

G−in
ne

r

G−in
ne

r*

G−c
los

e

●

●

●
● ●

●
●

eSPR

02
4

M
−in

ne
r

M
−s

witc
h
Non

e

G−s
witc

h

G−in
ne

r

G−in
ne

r*

G−c
los

e

●

●

●

●

●

●

●

●

parsSPR

02
4

M
−in

ne
r

M
−s

witc
h
Non

e

G−s
witc

h

G−in
ne

r

G−in
ne

r*

G−c
los

e

● ●
●

lnPostSPR

02
4

1

4

16

● ● ●
●

●
● ●●

●

eTBR

02
7

● ●
●

●

stNNI

02
7 ● ●

●

●
● ●

●

eSPR

02
7

● ● ●
● ●

●
●

parsSPR
02

7

●

● ●●

●

lnPostSPR

02
7

1/4

1/2

1

2
●

●

●
● ● ● ●

●

●

eTBR

03
6

●

●

● ●

●

●

stNNI

03
6 ●

●

●
●

● ●
●

●
●

eSPR

03
6 ● ●

● ● ● ● ●

●

parsSPR

03
6

● ● ●

lnPostSPR

03
6

1/16

1/4

1

4

16
●

● ● ● ● ●
●

●

●
●

eTBR

12
5

● ●
● ●

●

stNNI

12
5 ●

● ●
● ● ● ●

eSPR

12
5 ●

● ●

●
●

●
●

parsSPR

12
5

●

●

lnPostSPR

12
5

1

2

4

8

16
● ●

● ● ● ● ●
eTBR

15
0

● ● ● ●
●

stNNI

15
0

● ● ● ● ● ● ●
●

●

eSPR

15
0

●
●

●

●
●

● ●

● ●

●

parsSPR

15
0

●

●

●

lnPostSPR

15
0

1

2

4

8

16

● ● ● ●
●

●
●●

eTBR
35

4 ●
●

●

●

stNNI

35
4

●
●

● ●
● ●

●

●

●

●

eSPR

35
4

● ● ● ●
● ●

●

●

parsSPR

35
4

●
●

●

●

lnPostSPR

35
4

Figure 4.12: Performance of 4 classes of hybrid proposals employing a Γ-proposal (G-switch,
G-inner, G-inner∗ and G-close) compared to hybrid proposals employing a multiplier (M-
inner and M-switch) and also contrasted by default proposals (None) for 6 datasets. Each
box depicts the ASDSF between 8 independent chains and the concatenated set of reference
trees. Dashed red line represents a lax convergence threshold (5%), red solid line a strict
threshold for convergence (1%).

76

4.4 Summary

verge (see Fig. 4.6). For all chains, we obtain an OAP for the NR-based Γ proposal
ranging between 89% and 90% (identical to results from Fig. 4.8). We expect that the
convergence disadvantage of Γ hybrid proposals increases with the number of proposed
branches, because more factors are added to its Hastings-ratio (see Eq. 4.4). Thus, it
is likely that the Γ distribution poorly approximates a specific kind of branch length
posteriors that might be important for accepting hybrid moves. A higher number of
proposed branches increases the probability that a Γ distribution poorly approximates
a branch with ensuing consequences for the acceptance probability of the move.

For datasets dat-125 and dat-24 that have particularly few trees in their credible
sets, Γ-ppSPR hybrid proposals achieve particularly rapid and accurate convergence to
the topology of the reference runs (ASDSF ≈ 0.0625). In contrast, while multiplier
hybrid proposals perform comparably on most datasets, the addition of the multiplier
clearly decreases convergence performance for datasets dat-43, dat-59 and dat-64.

4.4 Summary

The results presented in this Chapter suggest that in the absence of a molecular clock,
a Γ distribution accurately describes the posterior distribution of branch lengths (with
some exceptions, where a Weibull distribution yields a more precise description). We
determined that the skewness and CV (both closely entangled for a Γ distribution) are
important characteristics that essentially divide branch length posteriors into two classes
of distributions: bell-shaped distributions that represent strong phylogenetic signal and
exponential-like distributions for which the most likely outcome is the absence of substi-
tutions (thus weak phylogenetic signal). We observe a relationship between the number
of trees in the credible set and the presence of exponential-like distributions. However,
phylogenies of datasets with a huge number of trees in the credible set are not necessarily
hard to resolve.

While a huge number of branch length posteriors was visually inspected, no clearly bi-
modal distribution was encountered. However, for a small proportion of branch lengths,
we observed that the mode was flattened out and inaccurately matched by a Γ distribu-
tion.

We determined rules for a highly accurate approximation of branch length posteriors
based on the optimized branch length posterior density and its first and second derivative.
We derived a branch length proposal that is highly efficient in terms of acceptance
ratio and allows us to propose branches de novo without depending on the previous
branch length. While slightly slower, this proposal yields substantially higher ESS values
for sampled branch lengths (although the advantage over the node slider and branch
length multiplier decreases in the presence of a tree length multiplier). Interestingly,
this proposal often has a sub-optimal OAP of 50% - 70% during burn-in. Furthermore,
it often performs sub-optimally if a chain is stuck in a local optimum. The results
suggest that the efficiency of commonly employed branch length proposals (branch length
multiplier and node slider) is biased by their respective Hastings-ratio. This is, they
are more efficient on exponential-like distributions. In contrast, the novel NR-based

77

4 Advanced Proposals On Branch Lengths and Topology

proposal performs sub-optimally, when the NR method does not converge for highly
skewed posteriors.

In this Chapter, we examined how branch length posteriors change under topological
moves. The results validate that the branch length mapping currently employed in Mr-
Bayes/ExaBayes is the best choice among the available alternatives. Particularly, the
initial branches that are traversed by a pruned subtree in a move do not change drasti-
cally. Furthermore, we observed a negative correlation between the impacts on branch
lengths after applying a move with high acceptance probability: using the mapping of
MrBayes, the traversed inner branches become shorter while adjacent branches (i.e.,
branches peripheral to the central branches) are extended to a minor degree.

Based on our observations, we formulated a strategy for proposing branch lengths
simultaneously with a SPR-n move. The insight, which branch lengths are strongly af-
fected by a topological move, can furthermore be useful for the development of ML search
strategies. Ultimately, the resulting hybrid proposals sporadically improved convergence
behavior. However, they did not consistently and substantially outperform existing pro-
posals to justify the additional runtime required for computing the expensive proposal
kernels. Moreover, we found that multiplier hybrid proposals are not as detrimental
to convergence as previous experiments suggested. Finally, the lacking performance
improvement that comes with the application of Γ hybrid proposals strongly suggests
that we can reject ill-fitting branch lengths as the major reason for slow topological
convergence. It is likely that the notoriously difficult task of achieving and improving
topological convergence requires a new class of radical topological proposals. For in-
stance, proposals that decompose and reconstruct a connected part of the topology may
be able to switch between trees of high PP and can thus be considered more powerful
than SPR moves. The capability to propose branch lengths de novo (as established with
the NR-based Γ proposal), could prove essential for the design of such radical proposals
on topology.

In ExaBayes v.1.4, we employ the NR-based Γ proposal to replace the multiplier and
node slider proposals on branches. Given the efficiency of the NR-based Γ proposal, we
decrease the default proportion of branch length proposals and increase the frequency of
topological proposals. A higher proportion of topological proposals reduces the time to
topological convergence. In production runs using the new default settings and starting
with a random tree, we noticed an increased probability for the chain being attracted by
a local minimum. According to our experience, the NR-based Γ proposal also performs
well for unlinked (i.e., per-partition) branch lengths. To compensate for the primary
weakness of the Γ proposal (reduced efficiency when integrating over exponential-like
branch length posteriors), we also added a modified branch length multiplier to the
proposal mixture. All hybrid proposals (employing multipliers or NR-based branch
length proposals) are available in ExaBayes v.1.4, but disabled by default.

78

5 Massively Parallel Bayesian Inference

Parts of the content of this Chapter are derived from the following peer-reviewed
publications:

1. AJ Aberer, K Kobert, and A Stamatakis. “ExaBayes: Massively Parallel
Bayesian Tree Inference for the Whole-Genome Era”. In: Molecular biology
and evolution 31.10 (2014), pp. 2553–2556

2. K Kobert, T Flouri, AJ Aberer, and A Stamatakis. “The Divisible Load
Balance Problem and Its Application to Phylogenetic Inference”. In: Algo-
rithms in Bioinformatics. Springer Berlin Heidelberg, 2014, pp. 204–216

Contributions: Works within this Chapter are original contributions by Andre
Aberer, if not explicitly stated otherwise. The algorithm outlined in Sect. 5.3.2
was developed by Kassian Kobert and Tomáš Flouri. Implementation and evalua-
tion in ExaBayes and ExaML were performed by Andre Aberer. Several design
decisions in the early development of the sequential version of ExaBayes emerged
from discussions with Kassian Kobert. Large-scale alignments used within this
Chapter were created by Kassian Kobert.

In this Chapter, we focus on the implementation of phylogenetic BI, specifically with
respect to parallelization and technical aspects that coincide with parallization. After
an initial overview in Sect. 5.1.1 over the general design, we evaluate the sequential
performance of ExaBayes in comparison to MrBayes (see Sect. 5.1.2). We then
discuss the parallelization scheme of ExaBayes in Sect. 5.2. Subsequently, we discuss
various techniques to improve load balance in ExaBayes (see Sect. 5.3) and continue
with techniques for reducing the memory requirements of ExaBayes (see Sect. 5.4).
Finally, we conduct BI on a full-length simulated genome alignment using ExaBayes
and discuss the results.

5.1 Sequential ExaBayes

5.1.1 Sequential Software Design

In the following, we describe the overall program design of ExaBayes version 1.4, not
considering the parallelization that is covered in more detail in Sect. 5.2. Furthermore,
we focus on the part of the program that does BI and do not go into detail for any of the

79

5 Massively Parallel Bayesian Inference

helper programs (e.g., for consensus tree computation). For an accompanying unified
modeling language (UML) class diagram, see Fig. 5.1.

Top-Level View

The specification of the analyses to be conducted is passed to ExaBayes via a configura-
tion file. Thus, the configuration file specifies what kind of MCMC analysis is conducted
(e.g., parameter setup, enabling and weighting of proposals), while command line argu-
ments indicate how the analysis is executed (e.g., the degree of parallelization employed).
ExaBayes employs the Nexus class library (NCL) [70] for parsing configuration files in
Nexus format [73].

At the root of the ExaBayes class hierarchy is the SampleMaster, that sets up and
orchestrates the analysis, for instance, with respect to input/output (I/O). Thus, tran-
sitively, SampleMaster has ownership of any object instance except for ParallelSetup

(see Sect. 5.2) that needs to be initialized statically at the very beginning of program
execution (in order to set up the parallel environment). SampleMaster initializes a num-
ber of independent Markov chains according to the information in the configuration file.
Each of the independent chains may be coupled with several heated chains in order to
execute MC3 simulations (see Sect. 3.4). An independent run (resp. chain) is repre-
sented by CoupledChains. In the instantiation of this class, ExaBayes constructs as
many chains as requested for MC3, but at least one. Thus, class Chain implements the
MCMC algorithm and CoupledChains is responsible for MC3, if specified.

As established in Sect. 3.1.1, in BI we want to sample across a multivariate parameter
space. Parameters such as the α shape parameter of the Γ distribution of rate heterogene-
ity or the stationary frequencies ~π are implemented as realizations of the abstract class
AbstractParameter. Realizations of AbstractParameter are not aware of the current
state of the Markov chain. Therefore, concrete parameter values such as branch lengths
are stored in class TreeAln. Realizations of AbstractParameter must instead imple-
ment methods for communicating (resp., applying) concrete parameter values to class
TreeAln, respectively extracting parameter values from TreeAln. All parameters are
owned by a Chain and each parameter requires a prior that is a realization of the abstract
class AbstractPrior. Priors must yield the logarithmic prior probability (getLogProb)
or provide certain short-cuts to update the prior for a change in tree length for instance
after we proposed new parameters in the GTR matrix (accountForMeanSubstChange).
In case of an exponential prior on branch lengths, these short-cuts ensure, that we do not
have to compute the prior probability for each value, but instead we can perform a single
update depending on the tree length. For instance, if an exponential prior with parameter
λ := 10 is required for branch lengths, then we create an instance of ExponentialPrior
and set it as a prior in the relevant BranchLengthParameter instance.

Random Numbers

Randomness provides an interface to the pseudo random number generator (PRNG)
library Random-123 [98] that is used in ExaBayes for generating the random numbers

80

5.1 Sequential ExaBayes

S
e

ri
a

liz
a

b
le

1

1R
a

n
d

o
m

n
e

ss
+

re
b

a
se

F
o

rG
e

n
e

ra
ti

o
n

(i
n

t)
-c

tr
:

ra
n

d
C

tr
_

t
-k

e
y:

 r
a

n
d

K
e

y_
t

11

1
..

n

0
..

n

0
..

n

T
re

e
A

ln
p

ro
v

id
e

s
 i

n
te

rf
a

c
e

 t
o

 P
L

L
m

a
n

a
g

e
s

 P
L

L
 r

e
la

te
d

 r
e

s
o

u
rc

e
s

0
..

n

P
ro

p
o

sa
lS

e
t

1

P
a

rs
S

p
rP

ro
p

o
se

r

L
ik

e
lih

o
o

d
S

p
rP

ro
p

o
se

r

E
xt

e
n

d
in

g
T

b
rP

ro
p

o
se

r

S
ta

tN
N

IP
ro

p
o

se
r

E
xt

e
n

d
in

g
S

p
rP

ro
p

o
se

r
1

T
o

p
o

M
o

ve
P

ro
p

o
se

r
+

d
e

te
rm

in
e

M
o

v
e

(.
..

)
+

d
e

te
rm

in
e

B
a

ck
P

ro
b

(.
..

)
+

g
e

tP
ro

p
o

sa
lD

e
n

si
ty

()
:l

o
g

_
d

o
u

b
le

L
ik

e
lih

o
o

d
E

va
lu

a
to

r
p

ro
v

id
e

s
 i

n
te

rf
a

c
e

 t
o

 P
L

L
m

a
n

a
g

e
s

 P
L

L
 r

e
la

te
d

 r
e

s
o

u
rc

e
s

1
..

2
_

m
o

ve
s

T
o

p
o

M
o

ve
+

a
p

p
ly

(T
re

e
A

ln
)

+
g

e
tE

va
lB

ra
n

ch
(.

..
)

+
g

e
tI

n
ve

rs
e

()
:T

o
p

o
M

o
ve

+
g

e
tB

ra
n

ch
e

sT
o

P
ro

p
o

se
()

:
ve

ct
o

r<
B

ra
n

ch
P

la
in

>
+

g
e

tD
ir

ty
N

o
d

e
s

()
:

v
e

c
to

r<
in

t>

T
b

rM
o

ve
S

p
rM

o
ve

D
is

tr
ib

u
ti

o
n

B
ra

n
ch

L
e

n
g

th
B

ra
n

ch
L

e
n

g
th

M
u

lt
ip

li
e

r
A

m
in

o
M

o
d

e
lJ

u
m

p

1
..

n

1
..

n
S

a
m

p
le

M
a

st
e

r
C

o
u

p
le

d
C

h
a

in
s

C
h

a
in

st
e

p
()

-g
e

n
e

ra
ti

o
n

:
in

t
-h

a
st

in
g

s:
lo

g
_

d
o

u
b

le

G
e

n
e

ri
cT

o
p

o
P

ro
p

o
sa

l
P

a
ra

m
e

te
rP

ro
p

o
sa

l
p

ro
p

o
s

e
s

 c
o

n
ti

n
u

o
u

s
p

a
ra

m
e

te
rs

A
b

st
ra

ct
P

ro
p

o
sa

l
+

a
p

p
ly

T
o

S
ta

te
(.

..
)

+
e

va
lu

a
te

P
ro

p
o

sa
l(

..
.)

+
re

se
tS

ta
te

(.
..

)
+

a
u

to
tu

n
e

(.
..

)
_

p
ri

m
P

a
ra

m
Id

s
:

v
e

c
to

r<
in

t>
_

se
cP

a
ra

m
Id

s:
 v

e
ct

o
r<

in
t>

T
o

p
o

lo
g

yP
a

ra
m

e
te

r
R

e
vM

a
tP

a
ra

m
e

te
r

P
ro

tM
o

d
e

lP
a

ra
m

e
te

r
F

re
q

u
e

n
cy

P
a

ra
m

e
te

r
B

ra
n

ch
L

e
n

g
th

P
a

ra
m

e
te

r

1

_
p

ri
o

r

U
n

if
o

rm
P

ri
o

r
F

ix
e

d
P

ri
o

r

D
is

cr
e

te
M

o
d

e
lP

ri
o

r
D

ir
ic

h
le

tP
ri

o
r

E
xp

o
n

e
n

ti
a

lP
ri

o
r

A
b

st
ra

ct
P

ri
o

r
+

g
e

tL
o

g
P

ro
b

(P
a

ra
m

e
te

rC
o

n
te

n
t)

 :
 l

o
g

_
d

o
u

b
le

+
a

cc
o

u
n

tF
o

rM
e

a
n

S
u

b
st

C
h

a
n

g
e

()
 :

 l
o

g
_

d
o

u
b

le

A
b

st
ra

ct
P

a
ra

m
e

te
r

+
e

xt
ra

ct
P

a
ra

m
e

te
r(

T
re

e
A

ln
):

P
a

ra
m

e
te

rC
o

n
te

n
t

+
a

p
p

ly
P

a
ra

m
e

te
r(

P
a

ra
m

e
te

rC
o

n
te

n
t,

T
re

e
A

ln
)

-_
p

a
rt

it
io

n
s

:
v

e
c

to
r<

in
t>

R
a

te
H

e
tP

a
ra

m
e

te
r

F
ig
u
re

5
.1
:

S
im

p
li

fi
ed

to
p

-l
ev

el
v
ie

w
of

th
e

o
b

je
ct

tr
ee

th
a
t

im
p

le
m

en
ts

B
I

in
th

e
se

q
u

en
ti

a
l

ve
rs

io
n

o
f
E
x
a
B
a
y
e
s.

S
ev

er
a
l

cl
a
ss

es
a
n

d
cl

as
s

m
et

h
o
d

s
ar

e
om

it
te

d
fo

r
cl

ar
it

y.
B

ol
d

fo
n
t

o
u

tl
in

es
cl

a
ss

re
sp

o
n

si
b

il
it

ie
s.

81

5 Massively Parallel Bayesian Inference

that are needed to simulate Markov chains. Random-123 is a counter-based PRNG, that
is particularly suited for parallel computing. Essentially, it maps a key k (equivalent
to a seed number) and a counter value c to a pseudo random number r. Random-123

provides several PRNG algorithms that pass rigorous tests for correlation or structure
within the sequence of random numbers (e.g., they pass the TestU01 suite [69]). A
general advantage of counter-based PRNGs (although not required for ExaBayes) is
that they avoid the so-called birthday problem: for different key values k1 and k2, we are
guaranteed to obtain distinct random sequences. In contrast, the popular 19,937-based
Mersenne Twister (MT19937) does not offer this guarantee, when initialized with distinct
seed values. Thus, with the MT19937 for an increasing number of PRNG instances (e.g.,
in case every process instantiates a PRNG), we increase the probability that the random
sequences of two PRNGs overlap and we obtain compromised random numbers. In Exa-
Bayes, we compose counter c (typically 2× 32-bit integer) from the current generation
value (using 48 bits, that is, we can execute up to 248 − 1 = 2.8 · 1014 generations) and
use a 16-bit integer for counting, how many random numbers have been consumed for
computing the proposal of the current generation. Thus, this scheme allows us to set the
PRNG to the adequate state for each generation. Specifically, we can leap-frog into the
next generation in order to determine for instance the next branch that will be chosen
for a branch-length proposal. Based on this knowledge, we can choose an optimal virtual
root for likelihood evaluations in the current generation. This has been implemented in
ExaBayes. However, no substantial gain in runtime performance has been observed.

In ExaBayes, Chain owns a chain-specific PRNG that provides random numbers
for proposals. Furthermore, CoupledChains owns a PRNG for proposing swaps among
coupled chains, when MC3 is enabled.

Interface to the PLL

TreeAln and LikelihoodEvaluator represent the primary interface to the PLL [39], that
is used for the efficient evaluation of the PLF. TreeAln holds an instance of pllInstance
and partitionList, two structs that are defined in the PLL. Thus, ExaBayes effec-
tively uses the PLL’s topology representation. TreeAln manages all resources required
for likelihood evaluations, such as for instance, arrays for multiple sets of branch lengths
~v1, . . . , ~vn. In order to reduce code complexity on the side of the PLL, ExaBayes-specific
modifications to the PLL are reduced to a minimum. In those cases where code modifica-
tion of the PLL is unavoidable for employment in ExaBayes, the respective functions
are implemented as part of the ExaBayes code instead. One such exception is that
ExaBayes allows for a dynamically chosen number of distinct branch length parame-
ters (i.e., the maximum number of distinct branch lengths is not chosen at compile-time).
The associated resource arrays are managed within TreeAln. To fulfill this requirement,
direct modification of the PLL was necessary.

The only PLL-resource not managed by TreeAln, but by class LikelihoodEvaluator
are the CPVs that are used for likelihood evaluations. LikelihoodEvaluator provides
an interface for invalidating CPVs. As established in Sect. 2.6.2, in many instances
it is sufficient to update only a small set of CPVs (e.g., in the best case, we only

82

5.1 Sequential ExaBayes

have to update n + 1 CPVs for an SPR-n move). LikelihoodEvaluator offers an
imprint method that effectively creates a snapshot of all current CPVs. For likelihood
evaluations that are requested after an imprint call was issued, CPVs are swapped
with reserve arrays if there is the need to recompute CPVs under changed parameters.
After an imprint, each CPV is swapped at most once. That means that, if a proposal
needs to conduct several evaluations at an inner node (e.g., for computing a ppSPR,
see Sect. 3.3.2), the CPVs will be reused after the initial swap. During the imprint

call, we also create a backup of the orientations of the CPVs (i.e., the information
on which subtree is represented by the CPV). For an illustration see Fig. 2.1, where
orientations of CPVs are represented by red arrows. In case a proposal is rejected,
LikelihoodEvaluator can therefore restore all CPVs and their respective orientations
to the state before evaluating the proposal.

However, the PLL does not allow for keeping track of per-partition orientations of
CPVs, a feature that is needed in some configurations by ExaBayes (e.g., when no
proposal sets are used, see Sect. 5.3.1). Therefore LikelihoodEvaluator can also store
per-partition orientations and has to prepare the pllInstance for partition-wise com-
putation of CPVs.

Proposals

Class AbstractProposal provides an abstraction for the various proposals that are
implemented in ExaBayes. At start-up, proposals are instantiated based upon

• instantiated parameters (e.g., for an AA partition, a FrequencyParameter that
models stationary frequencies is only instantiated if explicitly specified by the
user),

• available priors (i.e., no proposals are instantiated for a parameter with a prior
that enforces fixed values),

• proposal configuration provided by the user (i.e., users may disable specific pro-
posals by setting their weight to 0).

All proposals must implement methods for (i) proposing a new state Θ∗ of the param-
eter vector, (ii) for resetting the parameter vector into its previous state Θ and (iii) a
method that describes the most efficient way to evaluate the likelihood of the proposed
change. Proposals can have tunable parameters (e.g., the δ of a sliding window, see
Sect. 3.2.1) that are different for each chain. Thus, proposals are chain-specific and are
owned by a chain. Each proposal holds ids of primary parameters of interest (owned
by the chain, typically only one) as well as secondary parameters that may need to be
changed by the proposal as well (e.g., branch lengths when the tree length has changed
as a consequence of a frequency proposal).
ParameterProposal is a generic proposal that uses its associated parameter to set

parameter values (e.g., of frequencies ~π) that are proposed by a template parameter
class (either a sliding window or a Dirichlet proposer). All proposals on topology are
implemented using an abstract factory pattern. The abstract factory TopoMoveProposer

83

5 Massively Parallel Bayesian Inference

produces a topological move TopoMove as its abstract product. TopoMove can either
be a NNI, a SPR or a TBR move (see Sect. 3.3). Furthermore, TopoMoveProposer

provides the probabilities of the forward and backward move. This is non-trivial in cases
of guided hybrid proposals, such as a ppSPR that optimizes branches at each location.
As derived in Sect. 3.3, two branches suffice to represent a SPR. Furthermore, the NNI
is a special case of a SPR and a TBR is the concatenation of two SPR moves. Thus,
it is sufficient to implement all functionality required by TopoMove once in SprMove.
For instance, SprMove provides a method that yields its inverse (i.e., a complementary
SPR move that reverts the tree to its original state). Furthermore, SprMove has a
method that determines branches (depending on configuration, see Sect. 4.3) that need
to be optimized for hybrid moves. Both methods also apply to NNI moves (since these
are implemented as a SPR-1 move). TbrMove employs these methods of SprMove to
effectively execute two subsequent SPRs.

Typically, realizations of AbstractParameter do not own any parameter-specific data
and tunable parameters are stored in realizations of AbstractProposal. An exception
is BranchLengthParameter. Here, tunable parameters (i.e., parameters b and d) of the
NR-based Γ proposal (see Sect. 4.2.3) are stored in BranchLengthParameter. Thus,
hybrid proposals can propose branch lengths de novo by employing the tuned parameters
of the NR-based Γ proposal.

Serialization and Checkpointing

ExaBayes implements checkpointing, that is, the current state of all Markov chains,
proposals and PRNGs can be written to file at given intervals. In case the inference is
aborted (e.g., by wall-time restrictions of cluster resources), a roll-back is possible. If
ExaBayes is invoked with checkpointing enabled, an aborted analysis can be continued.
For a restart from a checkpoint file, ExaBayes sets up SampleMaster as if invoked anew
and then overwrites all state-specific fields with data from the checkpoint file.
ExaBayes comes with a strong guarantee of reproducibility, that is, if restarted from

a checkpointing file, ExaBayes produces the exact same outcome. To achieve this goal,
all classes relevant to the state of the MCMC process have to be serializable (i.e., inherit
from the abstract class Serializable).

5.1.2 Sequential Performance

ExaBayes implements a set of proposals that is similar enough to the proposals im-
plemented in MrBayes, such that a fair runtime comparison between the two tools is
feasible. To achieve this, we have to set the radius parameter of the parsSPR to a number
that covers the entire tree. The sequential runtime performance is vastly dominated by
likelihood evaluations (typically about 95%). Among the remaining factors that affect
the runtime, the parsimony score computation deserves mentioning. In ExaBayes par-
simony computations account for a particularly low fraction of total runtime (typically
1-2%), since ExaBayes integrates the highly efficient parsimony implementation of the
PLL [originally published in 6].

84

5.1 Sequential ExaBayes

Thus, given the comparability of the proposal mechanisms, the runtime assessment
largely boils down to a comparison of the underlying likelihood implementations in a
Bayesian framework. For ExaBayes as well as MrBayes a number of different PLF
implementations are available. The native likelihood implementation in MrBayes uses
streaming SIMD extensions (SSE) for vectorization. Furthermore, the native version
employs single-precision floating point arithmetics. While conducting numerical opera-
tions on single-precision floating point numbers is faster and requires 50% less memory
than under double-precision, using single-precision comes at the cost of reduced nu-
merical accuracy of likelihood computations. The runtime costs of double-precision
versus single-precision are not straight-forward to estimate: for single-precision, more
operations that ensure numerical stability (so-called scaling operations) are necessary
compared to double-precision. Particularly in the context of ML tree searches, the re-
duced numerical range can lead to problems with numerical stability [16]. Here, searches
for trees with more than 2,000 taxa can become infeasible. While we will not analyze
the numerical stability of BI programs under single-precision arithmetics, we did not
encounter any issues pertaining to numerical stability with MrBayes. Note that, alter-
natively, MrBayes can also be configured to employ either single- (non-vectorized) or
double-precision (vectorized) floating point numbers when using the Beagle [12] library
for likelihood calculations, instead of its native implementation.
ExaBayes employs the highly optimized likelihood implementations (all double-

precision) provided by the PLL. Apart from a SSE-optimized version, ExaBayes also
comes with a version of the PLL that is optimized for central processing units (CPUs)
offering advanced vector extension (AVX) intrinsics. Thus, ExaBayes makes full use
of modern vector processing units that are available in recent x86 CPUs. Furthermore,
the PLL offers a likelihood implementation that omits the computation of conditional
likelihoods for subtrees that entirely consist of undetermined or gap characters (while
still yielding the correct likelihood) using subtree equality vectors (SEVs) [56]. This
extension (which can be combined with either the SSE or AVX version) is particularly
useful for large phylogenomic datasets consisting of several concatenated genes that usu-
ally contain a substantial proportion of missing data (e.g., due to the unavailability of
orthologs). For instance, the proportion of undetermined/missing data in the largest
super-matrix in a recent study [27] is 78.68%. For comparison, one of the largest matri-
ces [57] that has been analyzed to date (with 51 taxa and 322,150,876 bps) has 15.3 %
missing data, which translates into 2.52 · 109 unknown/deletion (i.e., - and N) elements
in the alignment matrix.

We executed a single chain using the different likelihood implementations in ExaBay-
es (version 1.2.1) and MrBayes (version 3.2.2.) on various empirical single-partition
small- to medium-sized datasets (see Tab. 4.1) that were used for benchmarking pro-
posal efficiency [64] and for evaluating the so-called bootstopping criterion [86]. In
Fig. 5.2, we compare runtimes (averaged over 3 independent runs) relative to the
non-SEV SSE version of ExaBayes (referred to as reference case or exa-sse-nosev).
Compared to exa-sse-nosev, the SEV versions in ExaBayes perform similarly to the
reference case. However, SEV-versions are substantially faster for datasets with many
taxa and a high proportion of missing data. Specifically, on the 994-taxon and 1,481-

85

5 Massively Parallel Bayesian Inference

#taxa in dataset

re
la

tiv
e

pe
rf

or
m

an
ce

 [%
]

−50

0

50

100

24 27 29 36 41 43 44 50 52 59 64 71 72 12
5

14
0

15
0

35
4

40
4

50
0

62
8

77
5

99
4
14

81
19

08
20

00

●

●
●

●

●
● ●

● ●
●● ●●●●●

●●
●● ●●

●

●

●●
●●

●
●●● ● ●● ●●

●● ● ●
●

● ●
●

●

●●

●●
● ●● ●

● ● ●
●● ●● ●● ●●●● ● ●

●

● ●

●

●

●

exa−avx−nosev
exa−avx−sev
exa−sse−sev
mrb−double
mrb−native
mrb−single

Figure 5.2: Sequential runtime performance comparison between ExaBayes and MrBay-
es employing various implementations of the PLF. Runtimes are relative to the runtime of
ExaBayes using the non-SEV (nosev) SSE implementation. Runtimes for MrBayes using
either its native (mrb-native) implementation or a single- (mrb-single) or double-precision
(mrb-double) implementation provided by Beagle.

86

5.1 Sequential ExaBayes

taxa characters proportion of gaps [%] unique site patterns data type

24 14,190 0.26% 4,600 DNA
27 1,949 20.42% 934 DNA
29 2,520 30.57% 1246 DNA
36 1,812 0.02% 1,020 DNA
41 1,137 10.79% 768 DNA
43 1,660 11.03% 954 DNA
44 5,582 8.60% 2,788 DNA
49 1,149 3.29% 628 DNA
50 1,133 9.33% 489 DNA
52 2,157 25.19% 867 DNA
59 1,824 0.03% 1,037 DNA
64 1,008 21.21% 406 DNA
71 1,082 36.28% 445 DNA
72 32,883 52.09% 30,274 AA

125 29,149 32.72% 19,436 DNA
140 1,104 0.60% 1,041 AA
150 1,269 4.77% 1,130 DNA
354 460 14.71% 348 DNA
404 1,3158 78.92% 7,429 DNA
628 1,228 36.44% 1,033 DNA
775 4,519 19.35% 3,838 AA
994 5,533 71.39% 3,363 DNA

1,481 1,241 26.58% 1,241 DNA
1,908 1,424 58.38% 1,209 DNA
2,000 1,251 12.98% 1,251 DNA

Table 5.1: Real-world datasets for runtime comparisons listing number of taxa, number of
characters, proportion of gaps in percent, number of unique site patterns and data type.

87

5 Massively Parallel Bayesian Inference

taxon datasets, the SEV implementations noticeably outperform all alternatives. For
the latter case, the AVX version outperforms the reference case by more than a factor
of 2.

As expected, the AVX version of the likelihood function is consistently faster than the
SSE version (between 19.6% and 43.2%). With the exception of two AA datasets, the
double-precision implementation of Beagle is consistently and noticeably slower than
its ExaBayes counterpart. For three DNA datasets (with 994, 404 and 1,908 taxa),
exa-sse-nosev is more than two times faster than its Beagle equivalent. The single-
precision version of Beagle in most cases is negligibly faster than the reference case,
but never outperforms neither of the AVX implementations in ExaBayes. On every
dataset, the native likelihood implementation in MrBayes is faster than its Beagle
counterparts. While the native likelihood implementation of MrBayes is consistently
faster than exa-sse-nosev, it generally is slower than either the AVX version of either the
SEV or the non-SEV likelihood implementation in ExaBayes, except for 5 datasets.
Three of these are AA datasets, where the native MrBayes likelihood implementation
outperforms any alternative noticeably (more than two-fold in 2 cases).

5.2 Parallelization

5.2.1 Types of Parallelism

At implementation level, two popular approaches to implement parallelism are processes
and threads. We refer to either of these as parallel entities (PEs), if there is no need to
distinguish between them.

The central difference between processes and threads is that threads share a common
memory space, while distinct processes do not. This allows for highly efficient memory-
based communication with thread-level parallelism, however also poses challenges to
implementers: if thread ta wants to read memory that is provided by thread tb, then we
must make sure that ta does not read sections from memory that have not been written
by tb yet. Constructs that allow to order multi-threaded read-write operations comprise
barriers (threads have to wait until all threads have reached the barrier) or semaphores
(only m of n threads can execute a part of the code in parallel while remaining threads
have to wait until threads have left the protected code area). Another disadvantage of
shared-memory space are memory allocation dependencies: if memory is managed via
a central lock (which is the case in the default memory allocator), then simultaneous
memory allocations by several threads can yield a bottleneck. In ExaBayes, we employ
the portable interface for creation and management of threads that has been introduced
to the standard template library (STL) in the C++11-standard.

The Message Passing Interface (MPI) [79] is an interface specification that allows
multiple processes to communicate via messages. We distinguish between point-to-point
communication among two processes and collective communication. An example for the
latter is the MPI Broadcast operation, where one process (referred to as root) broadcasts
a data array to all processes in a pre-defined process group (referred to as communicator).
MPI operations can be blocking or non-blocking. In the former case, affected processes

88

5.2 Parallelization

4

1

node B
2

3

node D
1

4

node A
2

3

node C

node E
6

7

node F
5

8

independent runs

coupled
chains

likelihood evaluation

Figure 5.3: The three levels of parallelism implemented in ExaBayes. Run-level parallelism:
PEs on computing nodes A-D execute one independent run; nodes E,F and other nodes (not
shown) execute another independent run. Chain-level: nodes A and B simulate the chains
with heat ids 2 and 4, while nodes C and D execute chains with heat ids 1 and 3. Data-level:
All 4 PEs on one node evaluate the PLF and parsimony score for a part of alignment A.

wait for the completion of a call (i.e., they possibly have to wait for their peer processes to
send or receive data). In case of non-blocking communication, the sending as well as the
receiving process initiate a communication step. Communication is then executed in the
background (e.g., using a threaded implementation). Processes can check whether the
communication has succeeded and either release memory resources needed for the send
operation or process the received data. Notice that, collective non-blocking operations
have not been introduced to the MPI standard until version 3.0 [80]. It is debatable,
whether non-blocking collective operations would allow for more efficient communication:
potentially, communication overhead is hidden within the MPI implementation, whereas
the more complex implementation in ExaBayes (that is described later) is tailored
for its use case and therefore more efficient. Thus, ExaBayes does not employ these
operations, since in ExaBayes, we aimed for MPI-2 compatibility.

5.2.2 Parallelism in Phylogenetic BI

Phylogenetic BI is suited for parallelization at three distinct program layers (see Fig. 5.3).
Several analyses can be started independently from each other. Such independent runs
are mostly embarrassingly parallel, that is, there exist almost no dependencies among
PEs. PEs only have to communicate in order to write checkpoints, to print status infor-
mation and in order to check for topological convergence. We refer to this parallelism
as run-level parallelism.

Chain-level parallelism specifies the concurrent execution of Metropolis-coupled chains

89

5 Massively Parallel Bayesian Inference

(see Sect. 3.4). In other words, a group of PEs simulates one Markov chain out of several
coupled chains. Naturally, there is a strong dependency among PE groups, since in order
to execute a swap, a PE group has to receive the posterior value from its peer group
working on the chain to be swapped with.

Finally, data-level parallelism means that several PEs contribute to the simulation of
a chain. The runtime-intensive kernel to be parallelized is mainly the evaluation of the
PLF and to a lesser extent the parsimony score evaluation (e.g., required by the parsSPR
proposal). Here the dependencies among PEs are even more fine-grained: for instance,
if we evaluate several possible reattachment positions for a ppSPR, a PE has to wait for
all peer PEs that simulate the same chain in order to obtain the posterior density at the
given attachment location.

We thus formulate our requirement to the parallelism in ExaBayes as follows: we
want ExaBayes to be able to execute n independent analyses, where each analysis
comprises m coupled chains. ExaBayes shall use an arbitrary number of PEs p and
execute n′ analyses in parallel, while for each analysis m′ coupled chains are executed in
parallel. This implies that we do not require p to be divisible by either m′ or n′.

If p is a multiple of m and n, then we can use a Cartesian grid to model the assignment
of runs and coupled chains to PE groups. For a three-tier parallelization, this means
that we use a Cartesian cube, assigning three coordinates (x1, x2, x3) to each PE group.
Thus, all runs i with (i mod n) ≡ a are executed by PEs with x1 = a (where “mod”
is the modulo operator). Furthermore, a chain j in run i with (i mod n) ≡ a and
(j mod m) ≡ b is only computed by PEs with (x1 = a) ∧ (x2 = b). Typically, the
modulo operator is used to derive (x1, x2, x3) from the r-th PE (i.e., its rank is r).
However, this results in an assignment scheme, that does not favor locality: for example
for n′ := 4, rank 0 and rank 192 would be assigned x1 := 0 and thus would contribute to
the same independent runs, although it is likely that these PEs are executed on different
computing nodes. Instead, we require an assignment that minimizes the rank-differences
among these PEs that will communicate frequently.

Assume communicator C comprises several PEs with ranks {rj} = {0, 1, . . . , size(C)−
1}, where size(C) denotes

∣∣{rj}∣∣. We want to split C into k new sub-communicators C ′i
such that they obey the previously postulated locality property. The size of the new
sub-communicators C ′i is determined as

size(C ′i) =

{
d size(C)

k e, if i < k′;

b size(C)
k c, else;

where k′ = (size(C) mod k) is the number of PEs that obtain one additional PE. Given
size(C ′i) and k′, we can now compute the assignment of rank rj to communicator id i.
When we split a communicator, id i is referred to as color. We can determine the new
rank r′j of a PE with current rank rj within the new sub-communicator C ′i as

r′j =


rj

size(C′i)
, if rj < k ·

⌈
size(C)
k

⌉
;

k′ +

(
rj − k′ ·

⌈
size(C)
k

⌉)
·
(⌊

k
size(C)

⌋)−1

, else.

90

5.2 Parallelization

rj → (x1, r
′
j) → (x1, x2, x3)

0 (0, 0) (0, 0, 0)
1 (0, 1) (0, 0, 1)
2 (0, 2) (0, 1, 0)
3 (0, 3) (0, 1, 1)
4 (0, 4) (0, 2, 0)

5 (1, 0) (1, 0, 0)
6 (1, 1) (1, 0, 1)
7 (1, 2) (1, 1, 0)
8 (1, 3) (1, 1, 1)
9 (1, 4) (1, 2, 0)

10 (2, 0) (2, 0, 0)
11 (2, 1) (2, 0, 1)
12 (2, 2) (2, 1, 0)
13 (2, 3) (2, 2, 0)

Table 5.2: Example of recursive splitting of a communicator C with 14 ranks (named rj) for the
parallel execution of 3 independent runs with 3 coupled chains (also executed in parallel). We
first split into 3 communicators C ′x1

(for three distinct independent chains), then the ranks
r′j of the new sub-communicators are used to split each of the 3 sub-communicators into 3
sub-sub-communicators (each for a coupled chain in an independent run). Thus, for instance,
(2, 2, 0) is the 0-th (and only) PE that computes all chains l of runs k with (l mod 3 ≡ 2)∧(k
mod 3 ≡ 2).

The given splitting scheme ensures that remainder ranks (in case of division with re-
mainder) are first assigned to sub-communicators with ids i = 0, then i = 1 and so
on.

Using the scheme described above, we can split the initial communicator (in case we
solely use MPI this is MPI COMM WORLD) with ranks rj into sub-communicators C ′x1 . In
other words, we map rj to (x1, r

′
j), where x1 is the color of the rank and r′j is the

rank within the new sub-communicator. We repeat the split step and map ranks r′j to
(x2, r

′′
j). Thus, recursive splitting of the initial communicator yields a tuple (x1, x2, x3)

with x3 = r′′j that specifies that a PE is the x3-th PE that computes all chains assigned
to x2 in all independent runs that are assigned to x1.

Consider Tab. 5.2 for an example: here we split a communicator with 14 ranks into 3
PE groups that are each further sub-divided into 3 PE sub-groups. Notice that, multiples
of 9 PEs would be optimal for the given example. Yet, our two-step splitting scheme
only yields a slight imbalance, since some chains are computed by 2 PEs, while other
chains are only computed by one PE.

91

5 Massively Parallel Bayesian Inference

5.2.3 Implementation in ExaBayes

Decentralized Parallelism

ExaBayes features a MPI and thread-based hybrid parallelization, that is, for instanti-
ating n PEs, we can start k MPI processes (possibly on compute nodes that do not share
memory) and each process subsequently starts l processes, such that n = k ·l. In order to
retain maximum flexibility of the threaded implementation, we allow threads to behave
like processes, that is, the shared memory among processes is reduced to message queues
for exchanging information to peer threads. In other words, the globally decentralized
parallelization scheme also extends to thread parallelism. We call the parallelization
in ExaBayes decentralized, since every PE essentially conducts the simulation of all
chains and all runs assigned to it independently and there exists no central instance that
orchestrates the inference.

A popular counterpart to decentralized parallelism is the master-worker approach:
here a single PE is declared the master and activates busily waiting worker PEs. For
instance, in the thread parallelizations of RAxML [108] or RAxML-Light [111] this
scheme is used efficiently to evaluate the PLF or calculate the derivatives of the PLF for
the NR optimization of the branch lengths. However, in the MPI version of RAxML-
Light, this master-worker scheme induced a substantial communication overhead with
a noticeable negative impact on parallel efficiency. Thus, for large-scale phylogenetic
ML inferences, ExaML was introduced that implements a decentralized parallelization
scheme [110].

See Fig. 5.4 for a UML class diagram representing the hybrid parallelization. Pa-

rallelSetup is at the root of the object tree and essentially is a singleton in that it
is instantiated only once and passed as reference where needed. ParallelSetup holds
three communicators. A global communicator allows communication with all PEs that
have been started. Furthermore, there is a run-specific communicator for communication
with all PEs that share the same x1 (resp. compute the same runs) and a chain-specific
communicator for the communication with all PEs with common x1 and common x2.
The latter communicator is used wherever multiple PEs evaluate the PLF or parsimony
score simultaneously, or when derivatives of the PLF are computed concurrently for
branch length optimization.

Hybrid Parallelism

IncompleteMesh implements the mapping of the rank of the global communicator rj
to the Cartesian coordinates (x1, x2, x3) (see Sect. 5.2.2). ThreadResource allows a
process to initialize threads. When a thread is started, an instance of ParallelSetup

is created by the initial process and passed to all threads that are started subsequently.
This means that this instance and its members are the sole regions of the program
where memory areas are shared among threads. Thus, the initial process only sets up
ParallelSetup, initializes MPI (a static method in ParallelSetup) and initializes the
unique log file. Afterwards, threads are started and behave like MPI processes. This
also applies to the splitting of communicators: in the abstraction Communicator, each

92

5.2 Parallelization

0.
.2

_s
en

tR
eq

s

1

_r
ec

vR
eq

P
en

di
ng

S
w

ap
::I

m
pl

P
en

di
ng

S
w

ap
::I

m
pl

Lo
ca

lS
w

ap
-_

da
ta

R
ec

ei
ve

d:
 v

ec
to

r<
ch

ar
>

_i
m

pl

_i
m

pl

R
em

ot
eC

om
m

::I
m

pl
+

co
m

m
: M

P
I_

C
om

m

R
em

ot
eC

om
m

::I
m

pl

_i
m

pl

P
en

di
ng

S
w

ap

_i
m

pl

_i
m

pl

C
om

m
R

eq
ue

st
::I

m
pl

-_
ar

ra
y

:
ve

ct
or

<c
ha

r>

C
om

m
R

eq
ue

st
::I

m
pl

-_
re

q:
 M

PI
_R

eq
ue

st
-_

ar
ra

y
:

ve
ct

or
<c

ha
r>

C
om

m
R

eq
ue

st
+g

et
A

rr
ay

()
 :

 v
ec

to
r<

ch
ar

>

sw
ap

A
bs

tr
ac

tP
en

di
ng

S
w

ap
+a

llH
av

eR
ec

ei
ve

d(
P

ar
al

le
lS

et
up

)
: b

oo
l

+i
sF

in
is

he
d(

)
: b

oo
l

+i
ni

tia
liz

e(
...

)

S
w

ap
E

le
m

+o
nl

yO
ne

Is
M

in
e(

)
: b

oo
l

+b
ot

hA
re

M
in

e(
)

: b
oo

l
-_

ge
n:

 in
t

-_
id

A
: i

nt
-_

id
B

: i
nt

-_
r

: d
ou

bl
e

1.
.n

1.
.n

M
es

sa
ge

Q
ue

ue
+p

ro
du

ce
(m

sg
:v

ec
to

r<
T>

,
fo

rW
ho

m
:v

ec
to

r<
in

t>
)

+c
on

su
m

e(
m

yI
d:

 in
t)

:
tu

pl
e<

bo
ol

,v
ec

to
r<

T>
 >

--
im

pl
em

en
ts

 l
oc

k-
ba

se
d

S
P

M
C

 q
ue

ue

M
es

sa
ge

Q
ue

ue
S

in
gl

e
+p

ro
du

ce
(m

sg
:v

ec
to

r<
T>

)
+c

on
su

m
e(

m
yI

d:
in

t)
--

im
pl

em
en

ts
 l

oc
k-

fr
ee

 S
P

S
C

 q
ue

ue

«i
nt

er
fa

ce
»

C
om

m
C

or
e

+S
E

LF
 s

pl
it(

co
lo

r:
 v

ec
to

r<
in

t>
, r

an
k:

 v
ec

to
r<

in
t>

)
+g

et
R

an
k(

):
 in

t
+s

iz
e(

):
 s

iz
e_

t
+g

at
he

r(
m

yD
at

a:
 v

ec
to

r<
T>

,
ro

ot
:in

t)
:

ve
ct

or
<T

>
+s

ca
tte

rV
ar

ia
bl

eK
no

w
nL

en
gt

h(
al

lD
at

a:
ve

ct
or

<T
>,

co

un
t :

ve
ct

or
<i

nt
>,

 d
is

pl
:v

ec
to

r<
in

t>
, r

oo
t:i

nt
)

+b
ro

ad
ca

st
(d

at
a:

ve
ct

or
<T

>,
 r

oo
t:

in
t)

 :
 v

ec
to

r<
T>

+a
llR

ed
uc

e(
m

yD
at

a:
ve

ct
or

<T
>)

:
ve

ct
or

<T
>

+r
ed

uc
e(

da
ta

:v
ec

to
r<

T>
,

ro
ot

:in
t)

 :
 v

ec
to

r<
T>

w
ai

tA
tB

ar
rie

r(
)

+f
in

al
iz

e(
)

+a
bo

rt
()

+i
ni

tC
om

m
(a

rg
c:

 in
t,

ar
gv

: c
ha

r*
*)

1

_l
oc

al
C

om
m

1_r
em

ot
eC

om
m

M
PI

-C
om

m

D
um

m
y-

C
om

m

_c
ha

in
C

om
m

_r
un

C
om

m
_g

lo
ba

lC
om

m

Lo
ca

lC
om

m
-c

om
m

Tr
ee

U
p(

da
ta

:v
ec

to
r<

T>
,

ro
ot

:in
t,

C
O

M
B

IN
E

_F
U

N
)

: v
ec

to
r<

T>
-c

om
m

Tr
ee

U
pA

sy
nc

(d
at

a:
ve

ct
or

<T
>,

ro

ot
:in

t,
C

O
M

B
IN

E
_F

U
N

)
: v

ec
to

r<
T>

-c
om

m
Tr

ee
D

ow
nA

sy
nc

(d
at

a:
ve

ct
or

<T
>,

ro

ot
:in

t,
C

O
M

B
IN

E
_F

U
N

)
: v

ec
to

r<
T>

-_
co

lo
rs

: v
ec

to
r<

in
t>

-_
ra

nk
s:

 v
ec

to
r<

in
t>

R
em

ot
eC

om
m

1
1

C
om

m
un

ic
at

or
m

ap
To

Lo
ca

lR
an

k(
in

t)
 :

in
t

m
ap

To
R

em
ot

eR
an

k(
in

t)
 :

in
t

In
co

m
pl

et
eM

es
h

+g
et

R
an

kF
ro

m
C

oo
rd

in
at

es
()

: i
nt

-_
ru

nD
im

S
iz

e:
 in

t
-_

ch
ai

nD
im

S
iz

e:
 in

t
-_

gl
ob

al
D

im
S

iz
e:

 in
t

P
ar

al
le

lS
et

up
is

G
lo

ba
lM

as
te

r(
)

: b
oo

l
is

R
un

Le
ad

er
()

: b
oo

l
is

C
ha

in
Le

ad
er

()
 :

bo
ol

Th
re

ad
R

es
ou

rc
e

+r
el

ea
se

Th
re

ad
s(

)
+t

hr
ea

dS
ta

rt
(C

om
m

an
dL

in
e

&
cl

, P
ar

al
le

lS
et

up
*

pl
)

-_
th

re
ad

s:
 v

ec
to

r<
th

re
ad

>
-_

tid
2r

an
k:

 u
no

rd
er

ed
_m

ap
<t

hr
ea

d:
:id

,in
t>

F
ig
u
re

5
.4
:

C
la

ss
d

ia
g
ra

m
il

lu
st

ra
ti

n
g

th
e

p
a
ra

ll
el

iz
a
ti

o
n

sc
h

em
e

a
s

o
f
E
x
a
B
a
y
e
s,

v
.

1
.3

.

93

5 Massively Parallel Bayesian Inference

thread is a distinct PE with rank rj that is determined from the MPI rank and its
thread-specific rank stored in ThreadResource.

In ExaBayes, the C interface to the MPI implementation is wrapped in RemoteComm

(notice that a C++ interface specification has been deprecated as of version 2.2 of the
MPI standard). LocalComm on the other hand represents a thread-level communicator.
All three communicator classes have to implement a common interface that provides
essential parallel operations such as the previously mentioned broadcast operation. The
methods in the respective interface CommCore are template methods, that is, the opera-
tions can be performed on various types (e.g., int or double) and template arguments are
then mapped to wrapper classes from which the respective MPI constant (e.g., MPI INT

or MPI DOUBLE) can be retrieved. While this increases type safety, the natural choice
of implementing CommCore as an abstract class is prohibited, since template methods
can not be declared virtual. In other words, combining run-time with compile-time
polymorphism would be required here, but is not available in C++.
Communicator C has an instance of RemoteComm R and an instance of LocalComm

named L. Thus, we can compose operations on all PEs in a Communicator C using
operations on R and L. For example consider the Allreduce operation, which for Exa-
Bayes is one of the most important operations: Allreduce is a blocking collective call
that reduces a vector with respect to an arithmetic operation such that the result is
available at every PE in the communicator. The Allreduce operation is essential for
the data-level parallelism: several PEs that evaluate the parsimony score or likelihood
of a tree all obtain the same value and are able to continue the simulation based upon
the result that has been computed in parallel. Communicator implements its Allreduce
by (i) reducing the vector in its LocalComm, (ii) an Allreduce in RemoteComm (only
one thread of LocalComm participates in this call) and (iii) broadcasts the result to all
members of the LocalComm.

Notice that there exists an important constraint to the hybrid parallelism implemented
in ExaBayes: all threads started by a process must either be part of the same commu-
nicator C or if threads started by a process belong to several communicators Ck, then no
threads started by any further process can be part of any of the communicators Ck. This
restriction has few consequences for productive use of ExaBayes, since the thread-level
parallelism mostly is implemented as an alternative to MPI parallelism (for systems,
where no MPI implementation is available). Thus, the instances of either LocalComm or
RemoteComm typically are trivial (i.e., there is only one process or processes do not start
threads).

Modular Compilation

The ExaBayes software package includes a purely threaded binary executable and sev-
eral helper programs (e.g., for computing consensus trees). These post-processing tools
employ the same code basis as the ExaBayes executable. Thus, it is desirable to be
able to compile generic ExaBayes code into a static library that can then be linked
with application-specific code into the respective executable. Application-specific code
of – for instance – the consense program (for computing consensus trees) only con-

94

5.2 Parallelization

sists of command line interpretation and library calls to the ExaBayes-library (e.g.,
a class ConsensusTree is instantiated). In ExaBayes, essentially all code that needs
MPI support is encapsulated by a few classes of which RemoteComm, CommRequest and
AbstractPendingSwap are represented in Fig. 5.4 (for more information about the func-
tionality of the classes, see Sect. 5.2.5). ExaBayes uses the pointer-to-implementation
(PImpl) idiom to specify an interface that hides the encapsulated MPI functionality. We
provide a MPI-capable implementation in the compilation module MPI-Comm (that has
been compiled using the MPI compiler) as well as a dummy module Dummy-Comm (see
Fig. 5.4). The latter implements the sequential equivalent of the requested operations.
For instance, the dummy Allreduce simply returns the input array. Thus, we can create
MPI-capable executables by statically linking the MPI compilation unit (and by using
MPI linker flags) and obtain an MPI-less executable by statically linking the dummy
module.

In the PImpl idiom, a wrapper class essentially only forwards all calls to its implemen-
tation (which in our case can either be provided by the dummy module or by the MPI
module). This approach comes with a slight performance disadvantage that is caused
by the indirection. Also, methods provided by the implementation can not be inlined,
since they are part of different compilation units.

Implementation of Thread Parallelism

LocalComm implements thread parallelism in ExaBayes and emulates communication
among processes (as e.g., MPI COMM). A simple pattern for the communication among two
threads is a message queue. A message queue is a thread-safe data structure, that is,
methods that extract the state or modify the state of an instance must work consistently
under concurrent access. In other words, we guarantee that a modification on the data
structure is propagated to all threads and threads do not operate on an outdated version
of the data.

Essentially, message queues are queue data structures (i.e., messages are processed
in the order that they have entered the structure). A producer can add messages into
the queue, consumers extract information. Message queues are characterized by the
number of producers and consumers. ExaBayes employs two different kind of messages
queues: single producer single consumer (SPSC) queues and single producer multiple
consumer (SPMC) queues. In the simplest case, we implement parallelized access to
data structures by protecting critical operations via locks (e.g., std::mutex in C++11).
If concurrent access to data structures does not employ locks, we call the data structure
lock-free. Lock-free queues guarantee system-wide progress. That is, according to the
strict definition of system-wide progress [49], we are guaranteed that for an infinite
number of times, the operation on the data structure finishes after a finite number of
steps. In other words, there exists at least one thread that makes progress. Wait-freedom
has the even stronger guarantee, that every thread makes progress (w.r.t. the access call)
within a finite number of steps [49]. As we guarantee stronger properties progress, the
implementation complexity increases.

As a thread-to-thread communication pipeline, ExaBayes implements a lock-free

95

5 Massively Parallel Bayesian Inference

SPSC queue, since for the SPSC case, a lock-free implementation is straight-forward [43].
Class MessageQueueSingle implements such a lock-free SPSC queue. For n threads
LocalComm needs to instantiate 1

2(n2 − n) pipelines (i.e., instances of MessageQueue-

Single). Lock-freedom can yield advantageous performance for fine-grain parallel tasks
(such as the data-level parallelism in BI). Lock-freedom of SPMC queues is substantially
more complex. Thus, ExaBayes implements a blocking SPMC queue (i.e., a lock is
employed) in MessageQueue. A LocalComm first instantiates several SPMC queues. Exa-
Bayes then uses these queues to emulate asynchronous communication similar to the
request-based system in MPI (e.g. MPI Request, for details see Sect. 5.2.5).

ExaBayes uses the point-to-point pipelines provided by the lock-free SPSC queues
to implement collective operations. For instance, for a straight-forward emulation of a
MPI Broadcast, the root thread can post a message to the queue of each participating
peer thread. In this case, we would require (n − 1) sequential communication steps for
n participating threads. To improve efficiency, LocalComm implements communication
trees. This means that messages are propagated in a tree-like manner: the root thread
posts a message into the queue of threads 1 and 2 using the pipeline from the root to
thread 1, respectively from the root to thread 2. After receiving the data, thread 1 posts
to threads 3 and 4, while, at the same time, thread 2 posts to threads 5 and 6. In the ideal
case, a communication tree takes the equivalent of dlog2(n)e sequential communication
steps. We call the concrete example a downward communication tree, since information
flows from the root to external nodes.

Alternatively, messages are propagated from the external nodes towards the root via an
upward communication tree. For instance, in a gather operation, each thread contributes
a fraction of an array that is concatenated at the root. Here, the thread with rank 1
checks its pipelines for incoming messages from ranks 3 and 4. If both messages are
received, the messages are concatenated and are posted into the pipeline from thread 1
to the root.
LocalComm provides generic upward and downward communication trees that take a

function f as input. Function f specifies, how communicated messages are transformed.
Thus, a broadcast for instance is implemented as a downward communication tree (i.e.,
information is propagated from the root to peer threads) and f is a trivial function that
returns the input data. A gather operation on the other hand is implemented as an
upward tree and f concatenates messages. To reduce code complexity, the important
Allreduce operation is implemented as a Reduce with a subsequent Broadcast opera-
tion, although more involved algorithms exist that are more runtime-efficient depending
on hardware latency and message size [116].

5.2.4 Evaluation of MPI-based Data-Level Parallelism

In the following, we evaluate the MPI-based data-level parallelism implemented in Exa-
Bayes. The correctness of the thread- and MPI-parallelizations implemented in Exa-
Bayes can typically easily be verified given the reproducibility of ExaBayes runs.
In most instances, ExaBayes simulates the exact same chain (or chains in case of
MC3) for a given random number seed independent of the number of processes or the

96

5.2 Parallelization

parallel configuration (i.e., any assignments (x1, x2, x3)) that is employed. However,
data-level parallelism changes the order for adding up per-site log-likelihoods to the
final likelihood of a tree. Thus, a different number of processes can sometimes induce
altered floating point rounding errors that can lead to divergences (i.e., while this does
not violate the correctness of the result, we will not simulate the exact same chain).
For sufficient load (e.g., every PE is assigned ∼300 characters of an alignment), we
did not observe performance differences between the MPI and thread parallelism. For
small alignments and many PEs however, the thread implementation performs worse
than MPI. In contrast to the internal MPI implementation, the thread implementation
in LocalComm is not optimized for non-uniform memory access (NUMA) architectures.
Potentially, performance under a master-worker scheme for threads could achieve higher
efficiency, however this conflicts with the decentralized parallelization approach used in
ExaBayes. Thus, in this Section and Sect. 5.2.5, we will not evaluate the efficiency of
thread parallelism at data-level or chain-level.

For evaluation, we sub-sampled a simulated whole-genome alignment (see Sect. 5.5)
to obtain a dataset D5e5 with 500,000 bp, a dataset D1e6 with 1,000,000 bp and a dataset
D5e6 with 5,000,000 bp. All datasets comprise 200 taxa. The memory requirements of
BI for these datasets are roughly 24 giga byte (GB), 48 GB and 240 GB, respectively
(see Sect. 5.4 for the calculation of memory requirements). We measured the strong
scaling capabilities of ExaBayes, that is we increased the number of processors while
the problem instance (i.e., alignment size) was kept fixed. We quantify the strong scaling
behavior of ExaBayes using parallel speedup and parallel efficiency metrics. Parallel
speedup is defined as the ratio of the execution time of the fastest sequential implemen-
tation (fT1) and the execution time with n processes (Tn). Parallel efficiency measures
whether speedup increases proportionally to the number of processes employed (it is
thus defined as the speedup divided by the number of processes).

We examined the scaling behavior of ExaBayes on AMD Magny-Cours Opteron
nodes. A node contains 4 multi-core CPUs with 12 cores each and is equipped with
128 GB random access memory (RAM). We ran a chain using an increasing number of
processes for 3,000 generations on dataset D1e6 and using default MCMC parameters
with the SSE version of ExaBayes. For this experiment, we focus on D1e6, since this is
the largest dataset of the available datasets that can be processed using the sequential
version of ExaBayes to determine ft1 as the fastest known reference (for DNA data
and with double-precision, see Sect. 5.1.2). In Fig. 5.5.a, we observe a super-linear
speedup for 2 and 4 processes compared to the sequential runtime. The peak parallel
efficiency for D1e6 on the Magny-Cours nodes is 110.3%. As we increase the number of
processes, the parallel efficiency decreases to 43.1% for 48 processes (i.e., full utilization
of a single compute node). If we increase the number of processes to 96, 192, 288 and 384
(which corresponds to 2, 4, 6 or 8 entire compute nodes), the parallel efficiency recovers
and reaches 58.4% in the best case (for 288 processes). On dataset D1e6, ExaBayes
achieves a maximum parallel speedup of 208.1× for 384 processes.

The runtimes for an increasing number of processes in Fig. 5.5.a indicate that parallel
efficiency on data-level in phylogenetic BI is primarily memory-bound. The initial super-
linear speedup occurs because of increased cache efficiency (i.e., a larger total of cache

97

5 Massively Parallel Bayesian Inference

#processes
1 2 5 10 20 50 100 200 500

1

2

5

10

20

50

100

200

0

20

40

60

80

100

120

sp
ee

du
p

pa
ra

lle
l e

ffi
ci

en
cy

 [%
]

Figure 5.5.a: Parallel speedup and parallel efficiency for 3,000 generations of a chain on a
dataset with 200 taxa and 1,000,000 bp. Starting from the sequential case (1 process), the
number of processes on the x-axis increases in powers of 2 until a full node is utilized (48
processes, indicated by dashed red line). Afterwards, several computing nodes are employed
and a total of 96, 192, 288 and 384 processes are used.

#processes
1 10 100 1000 10000

1
2

5
10
20

50
100
200

500
1000
2000

0

20

40

60

80

100

sp
ee

du
p

pa
ra

lle
l e

ffi
ci

en
cy

 [%
]

Figure 5.5.b: Parallel speedup and parallel efficiency for 100,000 generations of a chain on a
dataset with 200 taxa and 500,000 bp. Aside from the sequential case, the number of processes
are powers of 2 (starting at 16, ending at 16,384) on a logarithmic x-scale.

98

5.2 Parallelization

memory reduces the number of read/write accesses involving the RAM). As the number
of processes that are executed on a single computing node increases, RAM bandwidth
becomes the major bottleneck for competing CPU cores and cancels out any gains in
cache efficiency. When we use several computing nodes, the total memory bandwidth
increases and leads to the observed improvement in parallel efficiency. Eventually, par-
allel efficiency decreases for a second time when communication overhead kicks in. The
inevitable limits to the scalability of any parallelized code are given by Amdahl’s law [9]:
Assuming that the execution time for parallelized regions of the code can be reduced
almost arbitrarily (given enough processors), the execution time for sequential parts re-
mains constant. Thus, sequential execution time leads to hard limits on the maximum
speedup that can be achieved for a parallel code.

We considered a second computer architecture for the evaluation of data-level par-
allelism: computing nodes of the SuperMUC supercomputer that consist of 4 AVX-
capable Intel Sandy Bridge processors with 4 cores each (i.e., 16 processes per node in
total; 32 GB RAM per node, whereas 24 GB are typically available to users). For de-
termining runtimes, we ran one chain for 100,000 generations using default settings on
the SuperMUC supercomputer. Here, D5e5 is the largest alignment that can still be
computed on a single SuperMUC computing node. For D5e6, we instead report scaling
factors/efficiency that indicate how well the code scales compared to reference cases
that are already executed on several computing nodes. We measured parallel execution
times for numbers of processes that are a power of two (from 16 to 16,384 for D5e5 and
from 256 to 32,768 for D5e6).
Fig. 5.5.b shows parallel speedup and efficiency for a single chain on D5e5 and for

numbers of processors that are powers of 2 (from 16 to 16,384). We obtain a maximum
parallel speedup of 2,368 with 8,192 processes. In absolute terms this means that the
runtime could be reduced from 103,191 seconds (sec) (≈ 1 day, 4 hours) in the sequential
case to 43.57 sec with more than 8,000 processors. The runtime can not be decreased
beyond this point, since with 16,384 processors, each processor works on less than 31
characters and thus communication overhead dominates runtime (resp., Amdahl’s law
applies). For Fig. 5.5.b, we did not examine single-node scaling behavior, but we expect
that for 2 or 4 processes we would observe an initial increase in parallel efficiency before a
parallel efficiency decrease for the full computing node (as in Fig. 5.5.a). Here, parallel
efficiency peaks at 128 processors and decreases afterwards because of communication
overhead. Thus, with 128 processors the runtime can be reduced to ≈ 1, 010 sec, while
the waste of CPU cycles because of communication overhead is minimal.

Memory requirements of large alignments often exceed the available main memory on a
single computing node. In these instances, it is not possible to determine the sequential
runtime fT1. Instead, we use a Tn′ (with n′ < n) as reference and report scaling
factors and scaling efficiency accordingly. For Fig. 5.6, we ran a chain on the 200-taxa
alignment with 5,000,000 bp (one order of magnitude larger than the aforementioned
dataset). The increased size of the alignment allows the code to scale up to more than
32,000 processes achieving a scaling factor of 42.5× compared to using 256 processes.
For the smaller dataset (i.e., 5 · 105 bp), the scaling efficiency peaks at 1,024 processes.
Since we can not determine the sequential runtime of the code, the initial rise in scaling

99

5 Massively Parallel Bayesian Inference

#processes
500 1000 2000 5000 10000 20000

1

2

5

10

20

50

0

20

40

60

80

100

120

sc
al

in
gsc

al
in

g
fa

ct
or

effi
ci

en
cy

 [%
]

Figure 5.6: Scaling Efficiency (on log-scale) and scaling efficiency for 100,000 generations of
a chain on a dataset with 200 taxa and 5,000,000 bp. The number of processes starts with
16 processes and doubles at every data point up until 32,768 processes.

100

5.2 Parallelization

efficiency (which corresponds to the second peak of parallel efficiency for multi-node
runtimes) here leads to super-linear scaling.

5.2.5 Chain-Level Parallelism

Blocking Implementation

For parallelization of the MC3 procedure (see Sect. 3.4), ExaBayes extends the chain-
level parallelization introduced in MrBayes [7] for the case where several PEs jointly
simulate a single chain: each PE instantiates an analysis-specific PRNG and can thus
precompute all swap attempts at any generation number for the entire analysis. A swap
attempt is sufficiently defined as a tuple S = (ci, cj , r, g) (represented by class SwapElem
in Fig. 5.4), where ci and cj are the ids of the involved chains i and j. Furthermore,
r is a uniform number in [0, 1) used for determining acceptance and g is the generation
in which i and j attempt a swap. PEs compute generations of all chains assigned to
them. Since swaps occur at random in ExaBayes, there is a higher chance, that there
is a window, where several consecutive generations can be computed without the need
to swap.

If a PE does not simulate any chain i or j of a swap S, then S can be ignored by
the PE. We refer to trivial swaps, when i and j both are assigned to the respective PE.
Thus, trivial swaps can be executed without any interaction with other PEs and are not
different to the sequential MC3 procedure. Remote swaps are swaps for which one local
chain swaps with a chain j that is simulated by a different set of PEs. Here, the respective
PE does not have any information about the state of j available. Remote swaps are
problematic for parallel efficiency, since a set of PEs working on one chain has to wait for
the set of PEs working on the other chain to complete. For a remote swap attempt in the
original parallel algorithm, the two processes (simulating one of the chains involved in the
swap) exchange the PP and their heat id value. If the swap is accepted (according to r),
the identity (i.e., the heat id i used for calculation of heat βi, see Sect. 3.4) of the remote
chain is assumed. With the introduction of tuned proposals, chains have to swap the
entire set of proposal states including observed acceptance probability counters, which
drastically increases the amount of information to be communicated among processes.

In version 1.2.1, ExaBayes provides a blocking and a non-blocking implementation of
MC3. Note that, Fig. 5.4 only depicts the non-blocking version of the MC3 algorithm.
The blocking algorithm was removed from subsequent versions of ExaBayes and thus
no threaded implementation exists.

The blocking MPI implementation of chain-level parallelism employs Intercomms in-
stead of default MPI communicators (both represented by MPI Comm) which by default are
intra-communicators. Given two distinct groups of processes with coordinates (x1, x2, x3)
that are either part of the same communicator Ck, respectively Cl. If processes in Ck
and Cl contribute to the same run (i.e., share x1) and m chains are executed in parallel,
then we have to create an intercomm Ilk for communication between processes in Ck
and processes in Cl. All processes in Ck with x2 = i create (m − 1) intercomms with
all process groups with x2 6= i. The intercomm needs a designated root in the remote

101

5 Massively Parallel Bayesian Inference

communicator Cl, which is set to (x1, l, 0) in our case. Given an established intercomm
Iij , the implementation of blocking MC3 is straight-forward: assume processes Ck sim-
ulate chain i and processes Cl simulate j, where i < j. Then processes in Ck first use
their intercomm Iij to broadcast a serialized version of the chain (i.e., heat id, PP and
proposal parameters) to processes in Cl. After the blocking broadcast has succeeded,
the Ck receive a broadcast from Cl containing the serialized version of chain j.

Non-blocking Implementation

As an alternative to the blocking implementation, ExaBayes introduces a non-blocking
algorithm for MC3 (using threads and/or processes). The central difference between both
algorithms is illustrated in Fig. 5.7: in the blocking version and for a remote swap, PEs
have to wait for PEs that simulate the remote chain. In the non-blocking algorithm
on the other side, processes initiate a request for communication (i.e., instantiate a
CommRequest) and can proceed to compute generations of other chains that are assigned
to them (e.g., the blue and yellow chain that are assigned to process group 1). PEs can
later check, whether their request has been fulfilled and can continue to simulate the
potentially swapped chain, if information about the remote chain has been transmitted.
Notice that, waiting times still may occur, if one of the chains runs out of work. In
principle, this scheme can be extended to the run-level as well: in case PEs are waiting for
remote chains to finish, these PEs could continue to simulate chains of other independent
runs. However, when chains that form an independent run are not being simulated
(i.e., suspended), CPVs are deallocated to reduce the overall memory footprint. Thus,
this extension of the non-blocking algorithm would also substantially increase memory
requirements.

For the MPI and threaded implementation, a PE creates an instance of PendingSwap
(see Fig. 5.4). As explained in Sect. 5.1.1, we here employ the PImpl idiom and
provide either a MPI based implementation or a dummy implementation for a trivial
RemoteComm. Assume we are using MPI and that processes in sub-communicator Ck
simulate chain i and processes in Cl simulate chain j, then for a swap S = (i, j, r, g), each
process with coordinates (x1, i, x3) has to exchange information with the process that has
coordinates (x1, j, x3). In other words, each process executes the swap with the process
that has the same rank (i.e., x3 coordinate) in the remote process group. If size(Ci) <
size(Cj), then processes (x1, i, x3) also send chain information via a CommRequest to
processes (x1, i, x3 +size(Ci)), if such a process exists. Processes that do not have a peer
in the remote process group do not send chain information. Using this asynchronous
communication scheme, processes can continue to simulate other chains that are assigned
to them and are not blocked, in case a remote chain has progressed to the generation in
which the swap occurs.

However, synchronization among processes simulating the same chain still is necessary.
While some processes in a communicator Ci may have already received information from
processes in Cj , it is essential for forthcoming operations (e.g., PLF evaluations) that
all peers in Cj have received the respective information and all processes in Cj continue
to evaluate the same consistent chain. For this, an Allreduce operation is necessary.

102

5.2 Parallelization
ti

m
e

process group 1 process group 2

blocking

0000

1

1
1

1swap

2

3

2

swap

2

2

3

process group 1 process group 2

non-blocking

0000

1

1
1

1

2

3

swap

2
2

2

3
swap

computing

inactive

waiting

Figure 5.7: Comparison between the blocking (left) and the non-blocking (right) algorithm
for MC3. Two distinct groups of processes compute a total of 4 coupled chains (i.e., two
chains are computed in parallel and 2 chains are assigned to each group). The color of a
chain represents its heat id (e.g., blue chain is the non-heated chain), numbers inside circles
indicate the generation of the respective chain. In this scenario, the yellow and the red chain
successfully swap after generation 1 and the green and the blue chain attempt a swap after
generation 3.

103

5 Massively Parallel Bayesian Inference

Thus, after computing as many generations as possible for assigned chains, all processes
in a communicator enter a phase where they check which requests have been resolved for
all peers in the same communicator and then execute the respective swaps. This step
allows processes to make a synchronized decision on which chain to execute next.
LocalSwap is a realization of AbstractPendingSwap that emulates a similar behavior

for the thread-based implementation. For the implementation of non-blocking commu-
nication, MPI employs tags. That is, processes send tagged messages and receiving
processes check for messages by tag. Similarly, for the thread-level implementation, we
can use the SPMC message queue (class MessageQueue in Fig. 5.4) to post messages
with tags. Note that, the most efficient way to map integers N × N → N is the Cantor
pairing function

pair(a, b) =
1

2
· (a+ b) · (a+ b+ 1) + b. (5.1)

For the MPI implementation, if processes with ranks ri and rj have to swap chains a
and b, the respective processes can use the tags pair(ri, pair(a, b)) and pair(rj , pair(a, b))
for sending and receiving messages.

On the other hand, when a thread communicator Ck initiates a swap, the root of
Ck (i.e., the thread with coordinates (x1, k, 0)) posts a messages with tag pair(i, j) into
the run-specific message queue. The equivalent for checking, whether all processes have
received the remote chain information is that all threads in Ck check for a message with
tag pair(j, i). When this message has been consumed by each thread in Ck, the swap has
been executed and we can continue simulating the potentially swapped chain. Thus, for
synchronization, the thread-implementation also needs an Allreduce over the threads
in Ck in order to assure that all threads have received the remote chain information.

Notice that, our definition of a SPMC queue slightly deviates from how SPMC message
queues are commonly defined. Typically, a SPMC means that many consumer threads
can dequeue messages that have been produced by a single producer thread and it is not
important how many messages are dequeued by which consumer. In our case, we need
to make sure that each consumer has read the message exactly once, before dequeuing it.

Evaluation of MPI-based implementation

A straight-forward way of demonstrating scalability of chain-level parallelism is to ana-
lyze its weak-scaling properties (e.g. as performed in [7]). Weak scaling means that the
amount of work per process is kept fix (i.e., each process is assigned one of the n coupled
chains) and we examine the ratio of sequential runtime (employing a single chain) to
the runtime of p processes working on p chains (where one swap is attempted once all
chains have progressed by 1 generation). As illustrated in Fig. 5.8.a on a dataset with
150 taxa and 1,269 bp, the implementation in ExaBayes has a minor speed advantage
over MrBayes, mostly because of the aforementioned modification to draw the number
of swaps per generation at random. While linear scaling could be demonstrated for Mr-
Bayes [7], in our experiment neither MrBayes nor ExaBayes exhibit linear scaling.
We assume this is because of the substantially higher communication overhead that is
necessary for exchanging chains with tuned proposals. In Fig. 5.8.a, we also included

104

5.3 Load Balancing

runtimes for the case that 2 processes are assigned to each chain. For 2 processes per
chain, the runtime is close to 2× as fast (however, scaling efficiency is lost because of
the increased need for synchronization among processes).

A major short-coming of this weak scaling plot is, that the number of swap attempts
is limited to an average of one per generation. The simple addition of heated chains to
a set of coupled chains with a fixed heating scheme and a fixed number of swaps can
be highly detrimental to overall performance [11] (aside from increasing runtime). For
instance, with 32 coupled chains, 1 swap attempt per generation, and the default heating
scheme (as also employed in MrBayes), a cold chain was only involved in 92 successful
swap attempts during 50,000 generations. Thus, it becomes increasingly unlikely that
any information from hotter chains is propagated to the cold chain.

Thus, in Fig. 5.8.b, we compare the scaling efficiency of 16 coupled chains running
on 32 processes for increasing granularity of chain-level parallelism and for an increasing
number of swap attempts per generation. As expected, scaling efficiency decreases as
the number of swap attempts per generation is increased. We have chosen a small
simulated dataset that comprises 200 taxa and 5,000 characters. Since this dataset is too
small for 16 processes, we observe sub-optimal parallel efficiency at the left-hand side of
Fig. 5.8.b, where only data-level parallelism is employed (i.e., all 16 processes evaluate a
part of the alignment and no remote swaps occur). As more and more coupled chains are
executed in parallel (to the point where each chain is executed in parallel by 2 processes
at the right-hand side of Fig. 5.8.b), efficiency of data-level parallelism increases, since
every process has a sufficient amount of PLF work. With increased chain-parallelism
however, processes spend more time waiting for remote chains to complete.

This effect is alleviated by the non-blocking implementation. In the best case, the
non-blocking version improves the parallel efficiency by 10.3%. In absolute terms this
means that the non-blocking version reduces the runtime by 18.6%, a difference that
easily accumulates to several hundred CPU hours for average phylogenomic datasets.
The non-blocking implementation consistently outperforms the blocking version, even in
extreme cases such as with 16 swap attempts per generations (i.e., each chain is expected
to swap 2 times per generation).

5.3 Load Balancing

5.3.1 Partitioned Analyses in ExaBayes-1.2.1

Improvements

As mentioned in Sect. 2.6.2, alignments can be subdivided into partitions where dis-
tinct evolutionary models are assigned to each partition. When p PEs are employed
for data-level parallelism, we usually employ a cyclic data distribution (CDD) scheme
to assign every p-th character of a partition to PE i using an offset of i. PEs evaluate
their portion of the data and communicate their partial result to peer PEs to deter-
mine the tree likelihood. Aside from the compute-intensive parallelized evaluation of the
likelihood, preprocessing steps are necessary to determine in which order CPVs need to

105

5 Massively Parallel Bayesian Inference

#coupled chains

ru
nt

im
e

sc
al

in
g

fa
ct

or

5

10

15

20

5 10 15

●
●

●

●

●

● ExaBayes−1
ExaBayes−2
MrBayes

Figure 5.8.a: Comparison of weak scaling at chain-level between ExaBayes and MrBayes.
Number of coupled chains (all executed in parallel) on the x-axis. The y-axis shows ratio of
sequential runtime of a single chain of either ExaBayes or MrBayes and the runtime with
n coupled chains. We employed 1 process per chain in ExaBayes-1 and 2 processes per chain
in ExaBayes-2.

number of parallel coupled chains

sc
al

in
g

ef
fic

ie
nc

y
[%

]

30

40

50

60

1 2 5 10

●

●
●

●

●

non−blocking

1 2 5 10

●
● ● ●

●

blocking

#swaps / generation
● 2 4 8 16

Figure 5.8.b: Scaling efficiency of parallel execution of 16 Metropolis-coupled chains using
32 processes. Scaling efficiency for non-blocking algorithm left and blocking algorithm right
for an increasing number of swaps per generation and an increasing number of chains executed
in parallel (x-axis).

106

5.3 Load Balancing

cyclic character distribution entire partition distribution

p1p1

p1

p3 p4p2

p2

p3

p4

Figure 5.9: Distribution schemes in ExaBayes: in the CDD scheme (left) with two partitions
every 4th site is assigned to PE p1, whereas in the MPS distribution scheme (right, illustrated
with 21 partitions), entire partitions are assigned to PEs such that the number of sites per
PE is similar (yet rarely identical).

be evaluated and need to exponentiate the transition rate matrix Q using the precom-
puted eigenvector/eigenvalue decomposition. Since each partition requires these steps,
the sequential overhead can outweigh the distributed (resp., parallelized) likelihood eval-
uation. If we assign entire partitions to PEs using a multi-processor scheduling (MPS)
algorithm [130], the sequential overhead is distributed equally among PEs (see Fig. 5.9
for an illustration of data distribution).

If all partitions are unlinked for a parameter, BI on highly partitioned datasets (i.e.,
the alignment comprises > 10 partitions) only requires the evaluation of one parti-
tion per proposal, yet when executed in parallel an expensive communication step (i.e.,
Allreduce) is necessary after evaluation. In these cases, ExaBayes bundles all pro-
posals of a specific type (e.g., proposals on per-partition substitution rates ~ri) into a
proposal set (class ProposalSet in Fig. 5.1). If a proposal set is drawn for a genera-
tion, an update is proposed for each parameter in the proposal set (whereas a parameter
can comprise a single partition only or is linked across several partitions). Since the like-
lihood ratio for each parameter is completely independent, we can evaluate the likelihood
for the changed parameters on the entire alignment and then only require a single ex-
pensive Allreduce at the end. Proposals within a set are still tuned separately. Because
of the independence of partitions, the usage of proposal sets does not have a negative
impact on mixing efficiency. No modification of the Hastings-ratio is necessary, since
this scheme essentially represents a mixture of strictly ordered proposals (i.e., proposals
within a set) and random proposals (i.e., whether a proposal set or another proposal
such as a topological proposal is applied is determined randomly). Both strategies are
valid approaches and have been discussed in the original introduction of the MH algo-
rithm [47].

As an alternative strategy, we could jointly propose new values for all parameters
(e.g., ~ri) in a proposal set. However, with a number of parameters in the order of 100
or 1000, tuning of such a joint proposal (towards a target OAP of 25%, see Sect. 3.1.4)
would result in extremely modest proposals along with inefficient sampling of the pa-
rameter space. Notice, that with several branch lengths parameters ~vi (i.e., for the same
branch bi, we expect a different number of substitutions in different partitions), NR
optimization as employed by the NR-based Γ proposal (as well as the hybrid proposals,

107

5 Massively Parallel Bayesian Inference

see Sect. 4.2) is particularly communication intensive. Here, ExaBayes adapts the
implementation in the PLL [see 112] that allows to optimize several parameters with
only one communication per NR iteration for all parameters. The maximum number
of Allreduce operations is thus determined by the branch length parameter that takes
longest to converge.

Evaluation

For the evaluation of the aforementioned strategies, we sub-sampled D5e6 to obtain a
200 taxon alignment with 1,000 partitions of 1,000 bp. For various run settings, we ran
a single chain employing 4 computing nodes (4 AMD Opteron processors with 12 cores)
on a cluster using a total of 192 cores per run.

When proposal sets are used, a generation that evaluates the entire alignment is
very expensive (w.r.t. to computational cost) compared to a generation in the original
scheme, where only one partition is evaluated. Thus, we normalized runtime by the
total number of proposals executed in one run. Notice that, while generations are not
comparable among runs where proposal sets are or are not applied, the proportion of a
proposal relative to the total number of proposals evaluated remains the same whether
it is executed in a set or individually.

In Fig. 5.10, we examine normalized runtimes for run settings where we either use
CDD or MPS data distribution combined with proposal sets enabled or disabled and
relative to the case where none of the two novel techniques are enabled. The left hand
side of Fig. 5.10 shows runs for the more common case where branch lengths ~vi are
linked across all partitions. In the usual proposal mixture (employed in MrBayes and
ExaBayes as of version 1.2.1), proposals on topology and branch lengths are assigned a
high weight, since convergence is hard to achieve on these parameters. Thus, when using
linked branch lengths, proposal sets are only applied in 6.67% of all generations. This
explains, why in Fig. 5.10, the MPS distribution scheme improves runtime, although
likelihood evaluations for single-partition proposals are executed sequentially. When
both of our techniques are enabled, we achieve a speedup of 21.7 or in other words, we
can compute more than 21× more proposals in the same time.

Combining the proposal sets with MPS distribution has an even higher impact on
normalized runtime, when branch lengths are unlinked across partitions (i.e., each gene
has distinct branch lengths). Here, the combination of both techniques achieves a rel-
ative speedup of 87.0×. In this case, proposal sets are used for all but the topological
parameters (which account for 44.4% of generations). In contrast to the case with linked
branch lengths, ExaBayes even becomes slower when MPS distribution is enabled, but
proposal sets are disabled. When repeating this experiment for more CPU-cores, we
expect performance to further deteriorate.

108

5.3 Load Balancing
re

l.
sp

ee
du

p
/ p

ro
po

sa
l

1

2

5

10

20

50

100

CDD MPS

linked BLs unlinked BLs

original
proposal sets

CDD MPS
Figure 5.10: Performance on highly partitioned datasets: Speedup of per-proposal runtime for

configurations relative to per-proposal runtime where neither the MPS algorithm nor proposal
sets are employed. Left: branch lengths are linked across all partitions, right: branch lengths
are unlinked across all partitions.

109

5 Massively Parallel Bayesian Inference

5.3.2 Improved Data-to-Processor Assignment

Algorithm

While in ExaBayes-1.2.1, the manual choice of the data distribution algorithm (i.e,
MPS or CDD) is a minor inconvenience for users, pathological examples can be con-
structed where neither of the two data distribution algorithms achieves “good” perfor-
mance. Intuitively, if we split up just some partitions among PEs, we will obtain a more
balanced distribution scheme, while PEs will have to perform some additional precompu-
tations (i.e., eigenvector/eigenvalue decompositions and exponentiation of the transition
rate matrix Q). If we allow partitions to be only partially assigned to PEs, we obtain
the following bicriterion problem for optimizing load balance:

1. distribute alignment patterns such that every PE has the “same” number of pat-
terns (difference between minimum and maximum number of patterns assigned
should be ≤ 1) and

2. assign partitions (partially) to PEs, such that the maximum number of partitions
(partially) assigned to a PE is minimal.

An optimal solution for this problem is NP-hard, yet a linearithmic-time approxi-
mation exists [60]. We refer to this algorithm as the divisible load balancing (DLB)
algorithm. The approximation yields a solution such that the optimal solution assigns
at most one partition less to the PE that has the most partitions assigned. In the fol-
lowing, we briefly describe the version of the algorithm implemented in ExaBayes and
ExaML: First, we sort partitions in descending order of their number of patterns. Then,
we assign entire partitions to PEs until no further partitions can be assigned without
violating the first property of the criterion (close to equal number of patterns). After
step 2, we divide processes into a queue A of PEs with the least number of partitions
and a queue of PEs B that already have one partition more assigned to them than PEs
in A. In the final step, we partially assign partitions to PEs and (i) try to fill up PEs
that already have one partition more (i.e., we dequeue from queue B), (ii) then try to
finalize a PE that has fewer partitions or (iii) only partially assign a partition to a PE
that has less partitions.

Evaluation

We performed a runtime evaluation on a real-world alignment that is a subset of a
large-scale supermatrix of insect sequences [77]. The alignment comprises 144 species
and 38,400 AA characters. We used the alignment to create 10 distinct datasets with
an increasing number of partitions. For each dataset, we determined partition lengths
at random, while the number of partitions in a datasets was fixed to 24, 36, 48, 72,
96, 144, 192, 288, 384, and 768 respectively. For generating n partition lengths, we
drew n random numbers x1, . . . , xn from an exponential distribution exp(1) + 0.1. For
a partition p, the value of xp/

∑
i=1..n xi then specifies the proportion of characters that

belong to partition p. A constant 0.1 is added to the random numbers in order to avoid

110

5.3 Load Balancing

#partitions

tim
e[

se
c]

256

1024

4096

16384

32 64 128 256 512

ex
ab

ay
es

24
ex

am
l

32 64 128 256 512

256

1024

4096

16384

48

DLB CDD MPS

Figure 5.11: Runtime performance (y-axis) of three different algorithms for data distribution for
increasing number of partitions. Top: Runtimes of ExaML using either 24 or 48 processes.
Bottom: Runtimes of ExaBayes using either 24 or 48 processes.

that partition lengths become unrealistically small, since the exponential distribution
strongly favors small values. Thus, partition lengths are distributed uniformly on the
logarithmic scale.

The DLB algorithm is implemented in ExaBayes as of version 1.3 and in ExaML
as of version 2.0. In ExaML we performed a typical tree search and in ExaBayes, we
ran a chain under default MCMC parameters (as of version 1.2.1) for 104 generations.
We executed both codes using either 24 or 48 processes on a cluster of Intel Sandy
Bridge nodes (2 × 6 cores per node). Thus, a total of 2 nodes was needed for runs with
24 processes and 4 nodes were needed for runs with 48 processes (with accompanying
higher inter-node communication costs). On the left-hand side of Fig. 5.11, runtimes for
whole-partition distribution with less than 48 partitions are omitted, since here runtimes
are identical to executing the run with 24 processes.

As depicted in Fig. 5.11, the new heuristic continuously executes at least as fast as
the most favorable result of the two previous data distribution strategies with only one
exception. Compared to CDD, the heuristic is 3.5× faster for 24 processes and up to
5.9× faster for 48 processes. Using the heuristic, ExaML needs up to 3.6× less time
than with the MPS scheme for 24 processes and for 48 processes the runtime can be

111

5 Massively Parallel Bayesian Inference

improved by a factor of up to 3.9×. For large numbers of partitions, the runtime of
the MPS scheme converges against the runtime of the new heuristic. However, if the
same run is executed with more processes (i.e., 48 instead of 24), this break-even point
is substantially shifted towards a higher number of partitions.

The runtime results verify that CDD performs on acceptable levels for many processes
and few partitions. The MPS method performs equally well as the DLB heuristic with
few processes and many partitions. Both figures show, that there is a region where
neither of the previous strategies perform acceptably compared to the new heuristic and
that this performance gap widens with an increasing number of processes.

Finally, employing the DLB heuristic, ExaML executes twice as fast with 48 processes
than with 24 processes and thus exhibits an optimum scaling factor of about 2.07 in all
cases. For comparison, under CDD, scaling factors ranged from 1.24 to 1.75 and under
MPS, scaling factors ranged from 1.00 (i.e., no parallel runtime improvement) to 2.04.

For ExaBayes, the comparison among the three data distribution algorithms is less
straight-forward. This is because for runtimes of MPS and CDD,we employed ExaBay-
es version 1.2.1, whereas for the DLB algorithm, ExaBayes version 1.4.1 was used.
Because of updates in the PLL and several substantial code modifications (including
bug fixes), later versions of ExaBayes generally run faster (not considering the runtime
gain achieved by DLB). For instance, along with the implementation of DLB, the I/O
overhead at start-up could be reduced. Thus, each PE computes the assignment and
subsequently only reads the portion of a preprocessed binary alignment that was assigned
to it by DLB. Still, in ExaBayes, we observe a similar runtime behavior for the data
distribution algorithms (see bottom of Fig. 5.11) as for ExaML. Analogously, there
exists a range of partition schemes for which neither MPS nor CDD perform optimally.
Specifically, the runtime penalty for CDD increases more rapidly in ExaBayes for a
growing number of partitions than in ExaML. Even for the DLB data distribution,
datasets with more partitions require more runtime. A likely cause for this is that Exa-
Bayes has a constant proportion of AA matrix proposals, while in ExaML the initially
specified matrix is kept fixed. For ExaBayes, we also obtain efficient relative speed-up
values between 1.63 and 2.67 (comparing runs with 24 and 48 processes).

5.4 Memory Reduction Techniques

Memory Requirements

For the recursive evaluation of the likelihood of a tree, memory requirements are largely
dominated by CPVs that represent the conditional probability of a subtree. For n species,
(n−2) arrays have to be kept in memory, such that after the first evaluation subsequent
evaluations can be rapidly computed by reusing existing sub-tree CPVs, which have
not been invalidated by the proposal. Specifically, for proposals on branch lengths or
topologies, we can typically reuse the major part of CPVs. For an alignment with
m characters, we require r · k ·m double-precision floating values, where r is the number
of discrete categories of the Γ distribution (fixed to 4 in ExaBayes, see Sect. 2.6.3) and
k is the number of states of the data type (2 for binary, 4 for DNA and 20 for AA data).

112

5.4 Memory Reduction Techniques

In phylogenetic BI, it is common to employ an additional set of CPVs as backup: thus,
if a proposal is rejected, the CPVs for the previous state can be restored. When we apply
MC3 with c chains, we need one distinct set of arrays for each chain, since PEs evaluating
the chains often only compute a few generations for all chains assigned to them. If p
coupled chains are executed in parallel, an additional backup set of likelihood arrays is
needed for each parallel coupled chain. If multiple independent runs are computed, we
can switch between independent runs at reasonable intervals (e.g., after 500 generations)
and do not have to keep CPVs in memory for efficient computation, and just recompute
them instead. However, if we execute R independent runs in parallel, then the memory
requirements increase accordingly by a factor of R. For a double-precision floating point
value with 8 bytes, we can thus compute memory requirements as

mem(A) =

par. runs︷︸︸︷
R ·(c︸︷︷︸

#chains

+

par. chains︷︸︸︷
p) · (n− 2)︸ ︷︷ ︸

inner nodes

·
#patterns︷︸︸︷
m · r︸︷︷︸

#cat in Γ

·
#states︷︸︸︷
k ·8 bytes.

As a realistic example, consider a 200 taxon DNA alignment with 1,000 alignment
patterns. If we execute 4 independent runs in parallel and use MC3 with 4 chains (while
2 coupled chains are executed in parallel), the CPVs consume 608.256 mega byte (MB).

Memory Saving Techniques

ExaBayes offers two orthogonal memory saving strategies. Firstly, ExaBayes uses
an alternative implementation of the PLF (provided by the PLL) that employs SEVs to
omit the evaluation of characters in subtrees that entirely consist of undetermined or gap
characters [56]. The SEV-technique reduces the length of several likelihood arrays pro-
portional to the amount of missing data. Secondly, ExaBayes allows to trade memory
for runtime by reducing the number of CPVs that are backed up between proposals. In
case of rejection, CPVs for which no backup array exists are recomputed, thus increasing
runtime. Given a number of taxa n, ExaBayes offers three settings:

1. Do not backup arrays that are computed from two external nodes in the tree. This
saves between 2 (comb-like tree) and (n− 3) arrays (balanced binary tree).

2. Only backup arrays that are computed from two inner nodes in the tree. Saves
between dn2 e (balanced binary tree) and (n− 3) arrays (comb-like tree).

3. Recompute all arrays (saves n− 3 arrays, regardless of tree topology).

Because of precomputations, CPVs are fastest to compute when both subtrees are
external nodes (see Sect. 2.6.2 for details). In contrast, CPVs where both subtrees are
inner nodes are most expensive to compute. Thus, in strategy (1), we only recompute
CPVs that are fast to compute and strategy (3) is the only mode, where particularly
expensive CPVs have to be recomputed.

113

5 Massively Parallel Bayesian Inference

Evaluation

Fig. 5.13 illustrates the combination of both techniques (i.e., SEVs and recomputation)
to achieve an effective reduction in memory requirements of more than 60% for a dataset
with 1,908 species and 1,424 DNA characters (proportion of missing data: 58.38%). For
the illustration of a memory versus runtime trade-off (see Fig. 5.12), the sequential
version of ExaBayes was used. We ran one chain for 10,000 generations for datasets in
Tab. 4.1. Using strategy (1), we can reduce the memory requirements by more than 10%
at the expense of about 5% additional runtime. For strategies (2) and (3), measurements
for datasets are divided into two groups: for one group strategy (2) decreases memory
requirements to 70%-80% (resp., 60%-70% for strategy (3)) of the original requirements
while the induced additional runtime barely exceeds 30% for strategy (2) (resp., ≈45% for
strategy (3)). The division is due to the fact that, many of the datasets are comparably
small (i.e., single gene and few taxa see Tab. 4.1). Thus, they have small requirements
to begin with and constant overhead (as illustrated in Fig. 5.13) induces a large part
of the overall memory consumption. We conclude that, our recomputation strategies
represent a flexible way to save up to 50% of memory at the expense of a slow-down of
less than 1.5×.

5.5 Large-Scale Bayesian Inference

In the following, we describe BI from a whole genome DNA alignment that has been simu-
lated using INDELible [38]. The alignment comprises 200 species and 100,000,000 char-
acters and consists of 100 equally long partitions (in analogy to a chromosome parti-
tioning scheme). Each partition was simulated to evolve according to a unique random
GTR matrix along the same randomly chosen phylogenetic tree. The five free substi-
tution rates were drawn uniformly form the interval [0.1, 1.9] for each of the 100 GTR
matrices. Stationary frequencies were drawn uniformly from a Dirichlet distribution
D(1, 1, 1, 1). All in all, for constructing the alignment, 1, 000 individual alignments with
100, 000 characters each, were simulated using INDELible. Of these 1,000 alignments,
10 always share the same underlying GTR matrix and stationary frequencies that have
been used for simulation. The 1, 000 individual alignments were then concatenated. The
tree used for simulation is depicted in Fig. 5.14. The phylogenetic tree has a clock-like
shape (i.e., the sum of branch lengths from the biological root to each taxon is similar).
Branch lengths in this tree range from 4.74482 · 10−4 to 3.16679 · 10−1.

For the analysis, 4 independent runs were started from MP starting trees and 2 in-
dependent runs from random starting trees. For the analysis, we linked branch lengths
across all partitions for all runs, otherwise default parameters as of ExaBayes ver-
sion 1.2.1 apply. The concatenated alignment file requires 21 GB disk space and the
RAM requirements for CPVs exceed 4.61 TB. We executed analyses at the Leibniz Su-
percomputing Centre (LRZ) using the SuperMUC system. Thus, at the SuperMUC
we need a minimum of 193 computing nodes (each with 16 CPU-cores and 24 GB of
accessible main memory) to conduct a single run because of the immense underlying
memory requirements. We used 4, 096 CPU cores for runs starting from MP starting

114

5.5 Large-Scale Bayesian Inference

relative memory requirements [%]

ad
di

tio
na

l r
un

tim
e

[%
]

0

10

20

30

40

50 60 70 80 90

●

● ●●●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

● strat−1
strat−2
strat−3

Figure 5.12: Memory/runtime trade-off for different recomputation strategies (not using the
SEV technique). Memory consumption (x-axis) and additional runtime (y-axis) are presented
relative to respective values for a run without recomputation.

115

5 Massively Parallel Bayesian Inference

memory allocation strategy

m
em

or
y

co
ns

um
pt

io
n

[M
iB

]

0

100

200

300

400

500

600

0 1 2 3

no−sev

0 1 2 3

sev

constant used backup

Figure 5.13: Absolute memory consumption for 1 chain running on a dataset with 1,908 taxa
and 1,424 DNA characters (gap proportion: 58.38%) using the SEV-technique (sev) or stan-
dard implementation of the likelihood function (no-sev). Numbers on the x-axis correspond
to the id of memory saving strategies explained in Sect. 5.4, whereas 0 indicates that no
CPVs have been recomputed. Each measurement also indicates the proportion of memory
used for likelihood computations, employed for backup arrays or constant memory overhead.

116

5.5 Large-Scale Bayesian Inference

0.04

Figure 5.14: Topology of the phylogenetic tree (comprising 200 species in total) that was used
for simulation of the whole-genome dataset.

trees and 8, 192 cores for runs using randomized starting trees. Given the CPU bud-
get limitations, we chose to run chains for 100,000 generations and extracted a sample
from chains every 500 generations. Subsets of this alignment with 10, 000 and 1, 000, 000
characters were run under the same conditions. Despite the low number of generations,
clade posterior probabilities for chains that were started with a parsimony tree quickly
converged against the simulated topology. The ASDSF of the two chains starting in a
random tree is critically high at the end of the simulation, because of the substantially
extended burn-in phase. Thus, while we did not achieve topological convergence, after
≈60,000 generations, the two chains started with random trees reached the same correct
tree (that was also used for simulating the alignment). This indicates that convergence
of the 4 other chains was not biased by using a MP starting tree. Furthermore, we
observe that using a MP tree here instead of a random tree for initialization increases
the burn-in length by a factor of 3.

In order to obtain good estimates of branch length distributions, we ran two addi-
tional chains for each dataset (104, 106 and 108 characters) using default parameters of
ExaBayes version 1.4.1 (i.e., using the NR-based Γ proposal) and using an increased
sampling frequency (extracting samples after increments of 100 generations). Fig. 5.15
showcases distributions of branch length samples extracted for 4 distinct representative
splits across the three datasets. As expected, with increasing amount of data, the branch
length samples become more accurate. While for the datasets with 104 and 106 bp the
true branch length typically is within the credible interval of the samples, we observe
a consistent tendency on the 108 bp dataset to overestimate branch lengths. Thus, our
experiment constitutes the first observation of the long tree problem [19] (i.e., the ten-
dency of BI to overestimate branch lengths) on large-scale datasets. Here, the extent of
the problem is not hidden within the credible interval. Compound Dirichlet priors on
branch lengths have been proposed [91] as a solution. Using this prior, branch length
estimates inferred via BI became closer to the ML estimate [129].

117

5 Massively Parallel Bayesian Inference

#characters

br
an

ch
 le

ng
th

0.006

0.007

0.008

0.009

0.010

0.011

10,000 1,000,000 100,000,000

#characters
br

an
ch

 le
ng

th

0.004

0.006

0.008

0.010

10,000 1,000,000 100,000,000

#characters

br
an

ch
 le

ng
th

0.001

0.002

0.003

0.004

10,000 1,000,000 100,000,000

#characters

br
an

ch
 le

ng
th

0.140

0.145

0.150

0.155

0.160

0.165

10,000 1,000,000 100,000,000

Figure 5.15: Distributions of branch length samples (y-axis) from chains run on the whole-
genome alignment and two truncated versions. Each Figure corresponds to a distinct split
in the tree used for simulation. Alignment size is increased in steps of 2 orders of magnitude
(x-axis). Branch lengths in the tree used for simulation of the alignment in red.

118

5.5 Large-Scale Bayesian Inference

branch length mean

co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n

5e−04

0.001

0.005

0.01

0.05

0.1

0.5

1

5e
−0

4
0.

00
1
0.

00
2
0.

00
5
0.

01
0.

02
0.

05 0.
1

0.
2

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●
●

●
●●●

●

●

●

●

●

●●

●●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●●

●
●

●●

●

●●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●●

●
●

●
●

●

●

●

●
●

●

●
●

●●
●

●

● ●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●●

●

●
●

●
●●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●
●●

●●

●●

●

●

●

●

●

●
●

●
●

●
●●●

●

●

●

●

●
●

●●

●
●

●

●

●●

●
●

●

●

●
●

●●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●
●●

●

● ●

●●
●●

●

10,000

5e
−0

4

0.
00

1
0.

00
2
0.

00
5
0.

01
0.

02
0.

05
0.

1
0.

2

●
●

●

●

●

●

●
●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●●
●

●●
●●

●●●

●
●

●

●

●
●

●●
●●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

● ●

●

●

●

●●

●●
●

●●
●

●

●
●

●

●
●

●

●●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●

●

●
●
●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●●●●
●●

●

●

●●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●

●●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

● ●

●

●●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●

●●
●

●

●

●

●

●

●

●

● ●

●

● ●

●●

●
●

●
●

●

●●
●

●

●

●

●

●
●●

●
●●

●

●●

●
●●

●●

●
●●

●

●

●

1,000,000

5e
−0

4
0.

00
1
0.

00
2
0.

00
5
0.

01
0.

02
0.

05 0.
1

0.
2

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●●●

●●
●●

●●●

●

●
●

●
●

●●
●●

●

●

●

● ●

●

●●

●

●

●
● ●

●

●

●

●●

●●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●●●●

●

● ●
●

●

●

●
●●

●

●●
●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
● ●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●●●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●●
●

●

●
●

●

●
●

●
●

● ●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●●●
●

●

●

● ●

●

●●

●
●
●

●

●

●

●●

●

●

●

●

●
●
●

●●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●●●

●
●●

●●

●

●

●

●●

●

100,000,000

Figure 5.16: Mean and CV of branch length samples for the simulated whole genome dataset
and its two truncated variants.

Although 104 characters can be considered an informative alignment, many branch
length credible intervals span a wide range. For 104 characters, 4 branch length posteriors
clearly have the shape of an exponential distribution (i.e., CV > 0.9) which indicates
that the alignment lacks phylogenetic signal to support the split (see Sect. 4.1). An
exponential-like branch length posterior (with a CV of 0.96) has a particularly large
credible interval: 90% of the posterior probability are between branch lengths of 5.06 ·
10−5 and 2.17 · 10−3. Such a high degree of branch length uncertainty does not allow
for accurate statements about branch lengths. In contrast, on the alignment with 106

characters, the branch length posterior with the highest-CV has a 90% probability range
between branch lengths 1.16 ·10−5 and 2.18 ·10−4. For 108 characters, the corresponding
worst-case 90% probability range is in the much narrower interval [1.77·10−3, 6.54·10−3].
Fig. 5.16 provides an overview of the CV relative to the sampling mean. For each

split in the three datasets, we extracted the respective statistics after discarding a burn-
in of 25% of samples. Fig. 5.16 corroborates our observation on a global scale that more
data can lead to more narrow branch length credible intervals. Furthermore, it shows
that as we increase the amount of data in steps of two orders of magnitude, the overall
CVs of branch length posteriors decrease in increments of one order of magnitude. In
particular, with 108 characters, even specifically short branch length posteriors assume a

119

5 Massively Parallel Bayesian Inference

narrow-ranged Γ-like distribution (i.e., their CV is orders of magnitude smaller than 1),
which indicates that the alignment contains enough phylogenetic signal to resolve rapid
ancient speciation events. If we consider the CV as an indicator for the degree of branch
length uncertainty, then we can conclude that with 108 characters we have substantially
more confidence in our estimate of the shortest branch lengths than we had in the longest
branch lengths for posteriors that were inferred from the alignment with 104 characters.

Because of the clear signal provided by the large amount of data, no Metropolis-
coupling is necessary. While ExaBayes does not constrain the size of the analysis to be
conducted, we discuss the SuperMUC as an example of the limits imposed by modern
super-computers on dataset size. Given the simulated alignment, a configuration that
trades a maximum amount of runtime against memory and given the 9,216 computing
nodes available at the SuperMUC (where usually only 2,048 nodes are available for
a single job), Metropolis-coupling with 95 chains is theoretically feasible, if all coupled
chains are executed in parallel. A dataset, that is merely one order of magnitude larger
(i.e, 2,000 taxa or 1,000,000,000 characters), would allow for only 9 coupled chains if
conducted on the entire SuperMUC computer.

5.6 Summary

In this Chapter, we initially discussed the sequential software design of ExaBayes for
phylogenetic BI and subsequently described the design of the parallelization approach
that allows ExaBayes to conduct phylogenetic BI on massively parallel machines. We
evaluated the sequential runtime efficiency of ExaBayes by comparing it to analogous
runs with MrBayes. On DNA datasets, the AVX-version of ExaBayes was consis-
tently faster than MrBayes, while MrBayes (using its native PLF implementation)
performed better than ExaBayes on AA data. Generally, for our test runs MrBayes
is slower, if compiled with Beagle. We demonstrated, that the SEV approach provided
by the PLL decreases runtimes for several instances.

In ExaBayes, phylogenetic BI is parallelized at run-level, chain-level and data-level.
ExaBayes offers a constrained form of hybrid parallelization, that is, we can start
processes on several computing nodes which in turn start threads for intra-node level
parallelism. As a means to this end, threads that use two types of message queues
emulate communication functionality that is provided by MPI at the processes level.
Since we could not proof runtime advantages experimentally for the hybrid approach, the
major advantage of this scheme is that it provides thread parallelism on systems where
no MPI implementation is available. We analyzed the efficiency of data-level parallelism
and could demonstrate a maximum parallel speedup of > 2, 300× and validated that for
appropriate datasets ExaBayes scales up to 32,768 processes. For the parallelization
of coupled chains, we introduced a non-blocking algorithm for parallel MC3. The non-
blocking implementation increased the scaling efficiency of ExaBayes by up to 10%
(which corresponds to an effective runtime improvement of 18.6%).
ExaBayes allows for parallel phylogenetic BI from highly partitioned datasets. We

introduced proposal sets that propose new values for several partitions simultaneously

120

5.6 Summary

without the need to modify the Hastings-ratio (which would deteriorate the acceptance
rates of the respective proposals). We evaluated proposal sets in the context of two data
distribution algorithms and observed a runtime improvement of 21.7× when branch
lengths were linked across partitions and 87.0×, when branch lengths were unlinked
across partitions. Finally, we showed that the implementation of the DLB algorithm in
conjunction with proposal sets yields runtimes that are consistently at least as good as
the optimal runtime under any of the two previously employed data distribution schemes.

We discussed the utilization of two orthogonal strategies to reduce the memory re-
quirements of CPVs in ExaBayes. While using the likelihood evaluation functions that
employ SEVs was straight-forward, we adapted a flexible recomputation approach for BI
that had previously been used in ML inference. We observed that, we can often reduce
memory requirements by more than 10% at the expense of less than 10% additional run-
time. On large alignments and using maximum recomputation, we reduce the memory
requirements by almost 50%, while the runtime increases by less than 1.5×.

Finally, we simulated a genome-sized alignment in order to conduct phylogenetic BI
on the largest dataset in terms of memory footprint that has ever been analyzed using
this method (comprising 108 alignment patterns). We compared the inference to results
that were obtained from sub-sampled alignments comprising 104, respectively 106 pat-
terns. While we could not correctly resolve the tree with the smallest alignment, the
intermediate alignment yielded highly supported phylogenetic relationships for all except
one inner branch. On the full genome-sized alignment, we recovered all branches of the
tree that was used for simulation with 100% PP. Furthermore, we examined how the
accuracy of Bayesian branch length estimates improves as the amount of data increases.
We found that in our setting, increasing the input alignment by two orders of magnitude
decreased phylogenetic uncertainty by roughly one order of magnitude.

121

6 Identification of Rogue Taxa in Tree Sets

This Chapter exclusively contains original contributions by Andre Aberer, if not
explicitly stated otherwise. Parts of this Chapter are derived from the following
peer-reviewed publication:

1. AJ Aberer, D Krompass, and A Stamatakis. “Pruning rogue taxa im-
proves phylogenetic accuracy: an efficient algorithm and webservice”. In:
Systematic biology 62.1 (2013), pp. 162–166

Contributions: All contributions by Andre Aberer, except an initial draft of the
web service that was provided by Denis Krompaß (see Sect. 6.5).

This Chapter describes an algorithm that allows to compute improved consensus trees
from tree sets when the quality of consensus trees is deteriorated by the presence of
rogue taxa (i.e., a form of noise that renders certain taxa unstable in a set of trees).
The algorithm (called RogueNaRok algorithm) allows us to identify rogue taxa in
tree sets and outperforms previous algorithms with respect to the quality of the results
and runtimes. Thus, the RogueNaRok algorithm is particularly suited for large-scale
datasets with respect to the number of trees and the number of taxa.

In Sect. 6.1, we define what consensus trees are and explain the rogue taxon problem.
Subsequently, we briefly describe related algorithms (see Sect. 6.2). In Sect. 6.3, we
at first give a detailed description of the general RogueNaRok algorithm. Then, we
introduce an approximation parameter and a refinement that substantially reduce the
computational burden of the implementation. In Sect. 6.4, we describe the experimental
setup evaluating the runtime and the accuracy of rogue taxon analyses compared to
related algorithms. Furthermore, we conduct extensive simulation experiments in order
to verify that the removal of rogue taxa (as identified by RogueNaRok) yields tree
sets that are closer to the correct trees that have been used for simulating the datasets.
Finally, in Sect. 6.5, we describe the functionality of an associated webservice that
implements an extended work-bench for rogue taxon analyses.

6.1 Introduction

6.1.1 Consensus Trees And Support

An important task in phylogenetic analysis is to assess to which degree inferred phyloge-
netic relationships are supported by the underlying data. In BI, PPs of splits are often
referred to as “Bayesian support”. As outlined in Sect. 2.6.4, a bootstrap analysis (that

123

6 Identification of Rogue Taxa in Tree Sets

yields several bootstrap trees) is the preferred way of obtaining support in a ML or MP
framework. Irrespective of the phylogenetic inference method used, support values are
generally extracted from a set of trees T = {T1, . . . , Tm} (see Fig. 6.1a), where m is
the total number of trees.

A consensus tree summarizes the information in a tree set T in a single tree. The
consensus tree only contains those branches (i.e., bipartitions) that occur more often
in T than a predefined threshold t. Inner branches (i.e., non-trivial bipartitions) are
labeled by their frequency in T . The degree of resolution (i.e., the number of inner
branches) in a consensus tree is then determined by the chosen consensus threshold. In
contrast to binary phylogenetic trees, we allow for nodes with a degree > 3 in consensus
trees. Thus, for trees with n taxa, the number of branches in a consensus tree ranges
between n and (2 · n− 3). In the worst case, there are no consensus bipartitions at all.
In such a case the consensus tree is a trivial star tree (see Fig. 6.1b). As explained in
Sect. 2.3, we can represent each inner branch bi of a tree that divides (if removed) the
set of taxa into the sets T and T (where |T | > 1 and |T | > 1) as a non-trivial bipartition
Bi = (T | T). Just as we can represent a single tree as a set of bipartitions, a tree set T
is equivalent to a bipartition profile (B, σ). B is the set of all unique bipartitions that
occur in T and σ : B → 2T is a function that maps each bipartition Bi to the subset of
trees in which it occurs.

The consensus tree for a given bipartition profile (B, σ) is then defined as Ct(B) =
{B ∈ B, s.t.

∣∣σ(B)
∣∣ > t}, where t is the frequency threshold. The threshold t ranges

between m
2 , which is referred to as the majority-rule consensus (MRC), and m − 1,

which we call a strict consensus (SC) tree [reviewed in 20]. For a given threshold, we can
construct a tree that contains the respective consensus bipartitions by iteratively adding
inner nodes and additional branches to a star tree. Note that, for this algorithm we can
not choose the threshold below m

2 , since there is no guarantee that two bipartitions with
a frequency < m

2 can occur in the same tree (i.e., we say they are not compatible). Two
bipartitions B1 = (b1 | b1) and B2 = (b2 | b2) are called compatible, if

(b1 ∩ b2 = ∅) ∨ (b1 ∩ b2 = ∅) ∨ (b1 ∩ b2 = ∅) ∨ (b1 ∩ b2 = ∅).

In order to nonetheless include bipartitions with frequency ≤ m
2 , we can greedily

refine a MRC tree. We sort bipartitions in descending order of their frequency and then
check for one bipartition at a time, if it is compatible with the current set of consensus
bipartitions. If the bipartition is compatible, we add it to the set of consensus bipartitions
and the next most frequent bipartition is tested for compatibility. The algorithm for the
greedily refined majority-rule consensus (GMRC) tree is a heuristic. The search for a
tree with maximum resolution (i.e., maximizing the number of consensus bipartitions)
is NP-hard [88].

Note that, specifically in the Bayesian context, the type of consensus tree described
here can not be considered the mean (resp., median) of a posterior distribution of
trees [13]. In other words, a consensus tree with respect to the tree parameter is not
the equivalent of a median or mean of a continuous distribution. Instead, it represents
a straight-forward summary statistic of bipartition frequencies.

124

6.1 Introduction

a

b

c

d

e

R

S

a

b

c

d

e

S

R

a

b

c

d

e

R

S

a

b

c d

e

R

S

a

b

c

d

e

S

75% 75%

a

b

c

d

e

100% 100%

a

b

c

d

e

S R

a)

b)

c) d)

Figure 6.1: Example illustrating the impact of rogue taxa on the consensus of trees. Panel a)
depicts a tree set comprising 4 unique trees with 7 taxa. Inner branches that can be recovered
are highlighted in gray. A MRC or SC tree computed from this tree set is non-informative
as shown in panel b). Pruning of taxon R results in a more informative MRC tree (see panel
c)). As depicted in d), we obtain the most informative tree when we prune the set {S,R}.

125

6 Identification of Rogue Taxa in Tree Sets

As an alternative to computing a consensus tree, we can use the bipartition frequency
information in T for assessing to which degree the branches in a single tree (e.g., a ML
or MP tree) are supported by T . In other words, we use the tree set to draw support
onto a reference tree (e.g., the best-known ML or MP tree).

6.1.2 Problem Description: Rogue Taxa

The resolution (i.e., number of bipartitions) in a consensus tree and the branch support
on the best-known tree can be substantially deteriorated by rogue taxa [the term rogue
taxon was introduced in 126]. Rogue taxa assume varying and often contradictory
positions in the tree set. The rogue phenomenon is usually attributed to ambiguous or
insufficient phylogenetic signal [99]. Consider the trees in Fig. 6.1a: here taxa S and
R appear as closest relatives to various other taxa in the tree. Thus, the MRC and SC
are uninformative (see Fig. 6.1b). A GMRC tree (not shown) would consist of three
bipartitions with 50% support, namely (cS |abdeR), (ab |cedRS) and (abcS |edR), as well
as a bipartition with 25% (de | abcSR). While this GMRC is well-resolved, the presence
of rogue taxa substantially reduces the overall confidence in evolutionary relationships
(i.e., inner branches).

Determining the “correct” position of a rogue in a phylogenetic tree is tedious [101]
and therefore rogues, once identified, are mostly simply excluded (pruned). If we prune
for instance R from the example tree set, the MRC tree contains two bipartitions with
75% (see Fig. 6.1c), while the SC is still unresolved. If in addition to R, we also prune S,
we obtain an even more informative tree (see Fig. 6.1d) for the MRC as well the SC
tree. That is, in Fig. 6.1d two bipartitions are recovered that are present in all induced
subtrees that do not contain R and S.

For evaluating the informativeness of a consensus tree with support values drawn onto
inner branches, we need to consider three components: (i) the number of taxa n in the
tree, (ii) the resolution of the consensus tree (i.e., the number of inner branches in the
tree) and (iii) the support values for inner branches. Given a bipartition profile (B, σ)
and a set of bipartitions B′ (either consensus bipartitions or bipartitions extracted from
a reference tree), we can compute the informativeness of B′ as

general RBIC(B′, σ;α,Ct) =

∑
b∈B′
|σ(b)|
m + α · n

(n− 3) + α · n
, (6.1)

where m is the number of trees in T that induce B (i.e., that underlie the bipartition
profile). We refer to Eq. 6.1 as generalized relative bipartition information criterion
(RBIC). The generalized RBIC incorporates the number of taxa on the one hand as
well as the average support of all consensus bipartitions. Factor α is a weight factor
(with α > 0) that accounts for the influence of either criterion on the overall score.
We can replace the average frequency with the total number of consensus bipartitions∣∣B′∣∣. If we do so and set α := 1, then we obtain the relative information content
(RIC) [85]. If we prune taxa from trees, then the RIC will only increase, if we obtain an
additional consensus bipartition for each taxon that is pruned. In the following, we will

126

6.2 Related Algorithms

focus on the case, where α := 0, that is, we want to optimize the accumulated support
with respect to a consensus tree method Ct without considering the number of taxa
that we have to prune. We refer to this optimality criterion simply as RBIC. In other
words, the RBIC indicates what percentage of support a consensus tree (extracted from
a bipartition profile (B′, σ) under Ct) has, when compared to a fully resolved consensus
tree with maximum support given no taxa have been pruned. Thus, the RBIC of a
profile extracted from Fig. 6.1a increases from 0% (Fig. 6.1b) over 37.5% (when R is
pruned in Fig. 6.1c) to 50% (when {R,S} is pruned in Fig. 6.1d).

We call a set of taxa that we intend to prune from the trees underlying a bipartition
profile a drop set. The task of criterion-based rogue taxon identification is to compute
an optimal dropset dopt, that maximizes the optimality criterion (e.g., RBIC or RIC) for
the given set of input trees. A consensus tree that is optimal with respect to the above
optimality criteria is called a maximum-information subtree consensus (MISC) [85].

Thus, the MISC is a pruned consensus tree that is more informative than the ini-
tial consensus tree. Also, the MISC constitutes a compromise between a conventional
consensus tree and an alternative to the consensus known as the maximum agreement
subtree (MAST) [10]. The MAST is the largest fully resolved tree that occurs in all trees
of set T . In practice, the MAST typically only comprises an impractical small number
of taxa.

6.2 Related Algorithms

The rogue taxon problem was shown to be NP-hard [25] and a super-polynomial inte-
ger linear programming (ILP) algorithm for an exact solution is available. In practice,
stability measures based on triplet frequencies [119] or node distances [74] have been
applied [117, 118, 29, 106] to identify rogues. Yet, it could be shown that two algo-
rithms that strive to optimize either the RIC or the RBIC substantially outperform the
aforementioned measures for rogue identification [3].

The bipartition merging algorithm (BMA) is an efficient method for approximating
the expected increase of resolution in the consensus tree when rogues are pruned [85].
Initially, the algorithm extracts the bipartition profile from the tree set T . Then, the
BMA computes dropsets of taxa that induce a merger of two bipartitions (if pruned).
For each possible pair of bipartitions that are not in the set of consensus bipartitions, we
check whether merging the pair (by pruning the dropset) would give rise to a consensus
bipartition. Thus, the BMA approximates the number of new consensus bipartitions
that will appear, once a dropset is pruned. Subsequently, we compute the dropset that
is optimal with respect to its optimality criterion (i.e., the RIC) and permanently remove
this set from the set of taxa. Then, the algorithm updates the bipartition profile (i.e.,
extracts it anew) and starts another iteration. That is, it tries to determine a dropset
that improves the RIC of the consensus tree that will be computed from the updated
bipartition profile.

The following aspects have a deleterious effect on the accuracy and runtime perfor-
mance of the BMA:

127

6 Identification of Rogue Taxa in Tree Sets

1. the algorithm is greedy (i.e., we possibly prune locally optimal dropsets in early
iterations and thus globally fail to determine the optimal solution),

2. we only know approximately, how many new consensus bipartitions will emerge, af-
ter pruning a dropset (e.g., pruning the dropset may result in an existing consensus
bipartition becoming trivial),

3. we repeatedly compute dropsets for pairs of non-consensus bipartitions in each
iteration (although dropset information could be reused, if modified accordingly),

4. if there are several dropsets that improve the resolution of a consensus tree, we do
not necessarily prune the set that yields the best improvement in support,

5. we also assess large dropsets that are unlikely to improve the number of consensus
bipartitions (e.g., if we prune 30% of all taxa, there is a high chance, that this has
a negative impact on existing consensus bipartitions, i.e., they will vanish).

The single-taxon algorithm (STA) [3] is an alternative to the BMA, that uses the
RBIC instead of the RIC as an optimality criterion and thereby addresses issue (4). The
STA determines the exact impact on the RBIC score, if we prune a single taxon from the
tree set at a time. It thus overcomes issue (2) and to some degree issue (5). Naturally,
the restriction to a dropset size of 1 prohibits the algorithm from solving hard instances
of the rogue taxon problem, where several taxa have to be pruned simultaneously to
improve the optimality score. Specifically for the MRC and GMRC, the STA performs
well and also outperforms previously used methods, such as node distance and stability
measures.

6.3 RogueNaRok algorithm

6.3.1 Algorithm Description

For our novel algorithm (called RogueNaRok), we use a graph-based formulation of the
criterion-based rogue identification problem and design an algorithm, that can determine
exactly how the bipartition profile changes (and therefore the resulting consensus tree),
when a specific dropset is pruned from the underlying trees. Bipartitions that are stored
in a bipartition profile can change in two ways when taxa are pruned:

1. a bipartition Bi = (bi | bi) vanishes, because it degenerates into a trivial (non-
informative) bipartition (i.e., (|bi| < 2) ∨ (|bi| < 2)),

2. a set of bipartitions {Bi, . . . , Bj} merges into a new bipartition B′ with support
σ(B′) = σ(Bi) ∪ . . . ∪ σ(Bj).

Note that, when a consensus bipartition vanishes (i.e., the consensus tree has a branch
less), this is detrimental for the optimality of the resulting consensus tree. Thus, case (2)
can either increase or decrease the optimality score, depending on the respective support
of B′ and Bi, . . . , Bj .

128

6.3 RogueNaRok algorithm

For each pair of bipartitions (Bi, Bj) there exist two dropsets d = bi∆bj and d = bi∆bj
that induce a merging of the bipartition pair, where a∆b is the symmetric set difference
(a ∪ b) \ (a ∩ b). Dropsets d and d are called minimal when the following property
holds: If we remove any taxon from d or d, then bipartitions Bi and Bj do not merge.
Bipartitions B and the minimal dropsets d / d for each pair in B2 can be represented as a
merger graph G of possible merging events (e.g., see Fig. 6.2). In G, each bipartition is
represented by a node and every possible pair of nodes is connected by two directed edges
(labeled by d and d). The edge indicates that the respective bipartition pair merges,
when d (resp. d) is pruned.

Algorithm 2 maps all minimal dropsets to induced optimality change

Input: a set of bipartitions B
Output: optimality change sd for each minimal dropset d
1: function createCombineScoreDropsets(B)
2: D ← {d | ∃(Bi, Bj) ∈ B2, (bi∆bj = d) ∨ (bi∆bj = d)} . I. compute dropsets
3: for all d ∈ D do
4: ε[d]← {(Bi, Bj) ∈ B2 | (bi∆bj = d) ∨ (bi∆bj = d)}
5: end for
6: for all d ∈ D do . II. compute partial graphs
7: ε∗[d]← {(Bi, Bj) ∈ B2 | (Bi, Bj) ∈ ε[d′] ∧ d′ ⊆ d}
8: χ[d]← connectedComponents(ε∗[d])
9: end for

10: for all d ∈ D do . III. evaluate dropsets
11: sd ← calculateOptimalityChange(d, χ,B)
12: end for
13: end function

Based on the merger graph G, we can now formulate Alg. 2 that iterates over all
possible minimal dropsets and determines the optimality score of the resulting consensus
tree induced by pruning each dropset (one at a time) from the underlying trees. The
algorithm consists of three phases: In phase I, we determine all minimal dropsets and
create a mapping ε, that maps each dropset d to edges of the merger graph G that
are labeled by d. In phase II, for each dropset d, we detect all edges in G that are
either labeled by d or a subset of dropset d to create ε∗. We have to extend ε to ε∗,
since pruning a set of taxa S also induces a merger between all bipartitions that would
merge, if merely a subset of S is pruned. Each non-singleton connected component (i.e.,
comprising at least 2 nodes) in the graph Gd induced by the node set B and the edge
list ε∗[d] describes a set of bipartitions {Bi, . . . , Bj} that will merge into a single novel
bipartition B′ if d is pruned. Fig. 6.2 illustrates the merger graph for the example
tree set in Fig. 6.1a (edges with drop sets larger than 3 are omitted) and highlights
the connected components of the induced merger graph G{R,S}. In G{R,S}, we find two
connected components, each of which can be merged into a new consensus bipartition.

Finally, in phase III, we calculate the optimality change sd induced by removing each
minimal dropset d (calculateOptimalityChange in Alg. 2). As mentioned, we

129

6 Identification of Rogue Taxa in Tree Sets

(abRS|cde)

(abR|cdeS)

(ab|cdeRS)

(abcRS|de)

RS

S R

(abcR|deS)

(abcS|deR)

RSS
R

(aR|bcdeS)

(acdeR|bS)

(abdeR|cS) (abceS|dR)(acdeS|bR)

(abcdR|eS)

(abcdS|eR)

ddeb

cd

ea

aR

Figure 6.2: Merger graph for bipartitions of all trees depicted in Fig. 6.1a and for a maximum
dropset size of 2. Two connected components are highlighted in dark gray. When {R,S} is
pruned, the components merge into two new consensus bipartitions.

use the RBIC as the optimality criterion for this step. Using resolution-based optimality
(e.g., the RIC) instead is straight-forward. The bipartitions of each connected component
c = {Bi, . . . , Bj} ∈ χ[d] merge into a bipartition B′, if d is pruned. Let

δ(a, t) =

{
a, if a > t;
0, otherwise;

(6.2)

where t is the consensus threshold. Then the optimality change sd of d is

sd =
∑
c∈χ[d]


sgain(c)︷ ︸︸ ︷

δ(
∣∣σ(B′)

∣∣ , t)−
sloss(c)︷ ︸︸ ︷∑

Bk∈{Bi,...,Bj}

δ(
∣∣σ(Bk)

∣∣ , t)
−

svan(d)︷ ︸︸ ︷∑
Bl∈Bcons′

∣∣σ(Bl)
∣∣, (6.3)

where sgain(c) is the support attained by the new bipartition B′ and sloss(c) the support
lost by merging the bipartitions, respectively. The term svan(d) accounts for consensus
bipartitions (Bcons′) that degenerate into trivial bipartitions and will not occur in any
connected component.
createCombineScoreDropsets computes the exact optimality score change for

each minimal dropset. We can use this algorithm to repeatedly determine the best
dropset (i.e., with the most support recovered per taxon pruned) and then update the
bipartition profile accordingly, until no further optimality score improvement can be
achieved. The algorithm is of polynomial time complexity in the number of bipartitions
|B|, since all phases are polynomial (including the search for connected components [54]).
Note that, this algorithm still represents a greedy approximation to the globally optimal
MISC problem. This is because of the term svan in the dropset evaluation. For the
terms sloss and sgain, the merger graph implies that two dropsets d1 and d2 will either
not influence each other’s difference sgain − sloss, or, that there exists a dropset d1 ∪ d2

that will be evaluated at some point. The term svan however, needs to be evaluated for
all possible combinations of minimal dropsets 2D.

Phase III of the algorithm can be modified to also optimize the bootstrap support of
bipartitions that are drawn onto a reference tree (e.g., the best-known ML tree). Note
that, if bipartitions {Bi, . . . , Bj} merge into B′, then B′ forms part of the reference tree,

130

6.3 RogueNaRok algorithm

if at least one bipartition in {Bi, . . . , Bj} occurs in the reference tree. Furthermore,
we can also use the merger information in χ[d] for the optimization of support in a
GMRC tree. This is computationally expensive (see [20]), since we have to compute a
GMRC tree for each possible minimal dropset d from a bipartition profile that has been
transformed according to χ[d].

6.3.2 Approximation via Dropset Size

There are 2 · |B|2 edges in the merger graph G. As explained previously, we have to
search for all subsets of a dropset to create ε∗, such that we are able to determine
the exact state of merger graph after pruning a dropset. This subsequent search for
sub-dropsets has quadratic time requirements. Thus, the general algorithm described
in Sect. 6.3.1 quickly becomes prohibitive on large real-world datasets. For example,
consider that in the worst case 1,000 trees with 1,000 taxa can contain almost 1, 000, 000
distinct bipartitions. Problematic real-world datasets of this size usually contain between
50,000 and 100,000 distinct bipartitions. Many edges in the merger graph are labeled by
excessively large dropsets. For instance, if for two bipartitions Bi and Bj their dropset

d = bi∆bj is of size |d| = 1, then the inverse dropset d has size |d| = n−1, where n is the
number of taxa. This in fact means, that it is impossible for this dropset d to recover a
bipartition.

Previous experiments on real datasets [3] showed that, the BMA prunes single-taxon
dropsets in ≈ 90% of its iterations. Thus, we approximate and parametrize Alg. 2 by
only computing the exact optimality score change for minimal dropsets of sizes ≤ l. To
implement this we need to modify line 2 in Alg. 2 as follows:

D ← {d | ∃(Bi, Bj) ∈ B2,
(

(bi∆bj = d) ∨ (bi∆bj = d)
)
∧ |d| ≤ l}. (6.4)

If we only compute dropsets of size l := 1, at most two bipartitions will merge into a
new bipartition at a time. This follows from the triangle inequality that holds for the
lower-cardinality dropset of a set of bipartitions {Bi, . . . , Bj} (which define a metric in
the space of bipartitions [85]). As a consequence, for l := 1, we can omit the expensive
phase II of Alg. 2 in which we search for all subsets of a dropset. Thus,

l := 1 ⇒ ∀d ∈ D : χ[d] = ε[d]. (6.5)

The approximation via a drop set size parameter l offers the potential for a substantial
optimization at implementation level. Firstly, we can represent a bipartition as a bit
vector (e.g., an array of type uint64 t) and normalize bit vectors, such that the bit
vector represents the smaller partition (i.e., we have always at most as many bits set as
bits that are unset). After sorting, this normalization allows us to compute all dropsets
of size l quickly, as shown in the following. Then, we create a hash table h : N→ 2B that
maps the size of the smaller partition bi of a bipartition Bi to the respective bipartitions
with this property. Thus, the complementary partition bi by default is at most as large
as bi. We can use the hash table h to substantially reduce the space of bipartition pairs
that we have to compare in order to obtain all drop sets ε. If there exists a minimal

131

6 Identification of Rogue Taxa in Tree Sets

dropset d (of size l) between bipartitions Bi = (bi | bi) and Bj = (bj | bj) with |bi| <
∣∣bj∣∣,

then (|bi| + d =
∣∣bj∣∣) ∨ (|bi| + d =

∣∣bj∣∣). Thus, for obtaining drop sets of size ≤ l for

bipartition Bi = (bi | bi), we only have to compare partition bi against{
p |
(
B ∈ h[|bi|+ a]

)
∧
(
B = (p | p)

)
∧
(
|p| ≤ |p|

)
∧ (a ≤ l)

}
⋃  p |

(
B ∈ h[|bi|+ a]

)
∧
(
B = (p | p)

)
∧
(
|p| ≤ |p| ∧ a ≤ l

)
∧

(⌈
|bi|+|bi|

2

⌉
≤ |bi|+ a

) .

In simple terms for determining all dropsets of size l for Bi, it mostly suffices to compare
the smaller partition bi of Bi against the smaller partitions of any bipartition Bj , where
the size of the smaller partition

∣∣bj∣∣ is |bi| + l. The hash table provides rapid access
to the bipartitions with the respective partition sizes. For bipartitions Bi that have a
similar number of taxa in either partition, we have to compute dropset bi∆bj as well as
bi∆bj (see the second term in the above formula). In comparison, the BMA computes 2
dropsets from all pairs of bipartitions in B2.

6.3.3 Updating Instead of Recomputing the Merger Graph

Every iteration of Alg. 2 starts with the computation of minimal dropsets that define
the edges in the merger graph. Thus, after selecting and removing a dropset d in the
preceding iteration and transforming the bipartition profile as indicated by χ[d], we
essentially need to recompute the edges of the merger graph from scratch. However,
many of the recomputed edges will be identical to the edges of the merger graph in the
previous iteration. Let d = bi∆bj : if both bipartitions Bi and Bj did not merge with any
other bipartition in the previous iteration and no taxa of the respective bipartitions bi
and bj have been pruned, then the edge (Bi, Bj) ∈ ε[d] remains unchanged. This means
that in phase I of Alg. 2, we only need to exhaustively compute all edges of the merger
graph in the very first iteration. In subsequent iterations, we can simply update/modify
the merger graph as needed. Also, if an edge has not changed between iterations, we do
not need to recompute sgain and sloss for the respective merging event. While we still
have to compute svan, this modification nonetheless substantially accelerates phase III.

6.4 Evaluation

6.4.1 Runtime Improvements

We executed the RogueNaRok algorithm (RNR), the STA, and the BMA (implemented
in RAxML) on collections of bootstrap trees from 25 real-world MSAs (see Tab. 6.1).
All tree sets contain 1,000 trees. The number of taxa ranges between 24 and 7,764. Run-
time measurements were performed on 48-core AMD Magny-Cours nodes and averaged
over 4 runs. Missing data points represent runs with excessive execution times that were
interrupted.

132

6.4 Evaluation
ru

nt
im

e
[s

ec
]

1/32

1

32

1024

32768

1048576

32 1024 32768

BMA
RNR−1
RNR−2
STA

Figure 6.3: Runtimes for the STA, BMA and RNR algorithm with maximum dropset size l := 1
and l := 2. The x-axis refers to the initial number of bipartitions |B| for a bootstrap tree
collection. Runtimes are depicted for MRC as consensus threshold (SC similar).

#taxa #bip #bp

24 49 14,190
125 175 29,149
141 5,491 7,036
143 10,897 1,535
148 1,720 4,101
150 4,183 1,269
218 7,931 2,294
350 28,506 4,451
354 36,274 460
404 18,885 13,158
500 14,497 1,398
628 24,630 1,228
714 19,907 1,241

#taxa #bip #bp

885 245,118 623
994 20,869 5,533

1,288 43,474 1,200
1,481 130,976 1,241
1,512 100,049 1,577
1,604 81,808 1,276
1,908 98,053 1,424
2,000 156,133 1,251
2,308 45,022 1,224
2,554 115,159 1,232
6,718 336,864 1,122

7,764x 560,887 851

Table 6.1: Datasets that were examined for rogue taxa. The column #bip identifies the number
of unique bipartitions in a bipartition profile extracted from 1,000 bootstrap trees.

133

6 Identification of Rogue Taxa in Tree Sets

Fig. 6.3 depicts the sequential execution times for the three algorithms. We executed
the RNR algorithm for maximum dropset sizes of l := 1 and l := 2 (denoted as RNR-1
and RNR-2). For all, except the smallest datasets, RNR-1 is significantly faster than
STA while yielding qualitatively identical results. Overall, we observe an average runtime
improvement between two and three orders of magnitude. In the case with 2,308 taxa
and 1,000 trees containing 45,022 distinct bipartitions, the RNR-1 algorithm is over 3,640
times faster than the STA. As indicated in Sect. 6.3, the largest fraction of the speed
improvement in RogueNaRok can be attributed to successive merger graph updates
(instead of full recomputations) between iterations. For instance, in the first iteration of
the data set with 2,000 taxa, RNR-1 spends 137 sec in step 1 to compute the edges (and
thereby the minimal dropsets) of the merger graph. In subsequent iterations, updating
the merger graph takes between 0.05 and 10 sec (mean: 1.2 sec).

When choosing a larger value for l, the identification of edges induced by sub-dropsets
for the quadratically growing number of possible dropsets starts dominating runtimes.
Nevertheless, RNR-2 is —in most cases— still significantly faster than STA (see Fig. 6.3).
At the same time more complex rogue taxon constellations are identified. While RNR-2
is considerably slower than the BMA, RNR-1 achieves runtimes that are comparable to
the BMA. However, the RNR algorithm can typically identify at least 10 times more
potential rogues than the BMA. In terms of runtime per identified rogue, RNR-1 is faster
than the BMA in all but two cases.

6.4.2 Qualitative Improvement

Here, we evaluate how various input parameters of the RNR algorithm affect and improve
the support in SC and MRC trees and compare this improvement to consensus trees that
are produced after pruning rogues as suggested by the BMA. In general, comparisons
to the BMA are difficult, since the BMA optimality criterion penalizes dropsets as a
function of the number of taxa that are pruned. We thus adapted BMA (referred to as
BMA-mod) to assess how a less conservative criterion for approximating support gain
improves resolution. To achieve this, we changed the BMA scoring scheme for dropsets,
such that it prunes dropsets with the highest per-taxon resolution improvement. Since
the inherent approximation errors of the BMA-mod increase rapidly with the number of
iterations, we also computed the exact overall support in the consensus tree after each
BMA iteration (which substantially increases runtimes). In our analysis, we only consider
that intermediate result of BMA which yields the highest overall support with respect
to the exact evaluation based on the consensus trees for each iteration. A qualitative
comparison of RNR with STA is not required, since RNR and STA can be modified such
that RNR-1 and STA yield exactly identical results.
Fig. 6.4.a and Fig. 6.4.b depict the RBIC improvements obtained by the BMA,

BMA-mod, and the RNR algorithm (with dropset sizes l ∈ [1, 3]). Overall, BMA-mod
recovers substantially more support than the default BMA. For MRC trees, RNR-1
performs consistently and substantially better than the BMA and BMA-mod. While
RNR-1 still performs better than BMA for SC trees (see Fig. 6.4.b), we have to chose
l > 1 to outperform BMA-mod. This is in agreement with previous observations [3], that

134

6.4 Evaluation

is, BMA is more accurate when a SC threshold is used. On the other hand, when using a
MRC threshold, RNR may yield less optimal results for l := 3 compared to l := 2. Here,
RNR-3 performs worse, because two dropsets of size 2 pruned in subsequent iterations
may yield a higher overall per taxon RBIC improvement than a single larger dropset of
size 3. If the larger dropset is optimal for an iteration, it will be pruned by RNR-3 (unlike
RNR-2 which does not evaluate this dropset). Thereby, the possibility of achieving the
same effect as pruning the two dropsets of size 2 can be lost. RNR-4 is capable of
finding the optimal solution in such a scenario, however the general problem of local
optima remains (e.g. RNR-4 may prune a dropset of size 4 instead of two dropsets of
size 3). Finally, the inferior performance of RNR-3 suggests that for the MRC threshold,
dropsets of size 3 (or larger) are rarely necessary or they do not noticeably increase the
RBIC of a consensus tree.

6.4.3 Effect on Phylogenetic Accuracy

In this Section, we describe simulation experiments that were conducted for assessing to
which extent pruning rogues can increase phylogenetic accuracy. Initially, we describe,
how datasets were simulated. Then, we show that removing rogue taxa as suggested by
RogueNaRok for two typical use cases yields trees that are topologically closer to the
true (simulated) tree.

Simulation of Datasets

We used INDELible [38] to simulate DNA sequences for 100, 200, or 500 taxa with
initial sequence lengths of 100, 500, or 1.000 bp (with resulting number of bp in the
final alignment ∈ [100, 31.161]). Four different sets of GTR parameters were estimated
from real-world datasets (see Tab. 6.1). For the insertion-deletion process, we set the
power law shape parameter to 1.5, the maximum insertion/deletion length to 5 and
the insertion/deletion rate to 10−3 and 10−4. Up to 5 datasets were generated for
each combination of these parameters. INDELible simulates sequences using a birth-
death process and also outputs the underlying clock-like tree on which the sequences are
based. Subsequently, the generated DNA sequences were aligned using Muscle [30].
For each alignment generated thereby, we conducted 20 tree searches and inferred a
set of 200 bootstrap trees under the per-site rate (PSR) approximation [see 107] of the
GTR+Γ model with RAxML [109]. We simulated and analyzed a total of 400 datasets.
Thus, for each simulated dataset a RAxML-based ML tree, 200 bootstrap trees, and
the tree used by INDELible to simulate the evolutionary process (referred to as true
tree in the following) was created.

Reduced RF-distances of ML trees to the True Tree

Initially, we employed RogueNaRok to identify rogue taxa that have a negative impact
on the bipartition support drawn onto the ML tree of a dataset. For each dataset, we
determined the distance between the ML tree and the true tree before and after rogue
taxon removal. Usually, the absolute RF-distance (see Sect. 2.3) is used for comparing

135

6 Identification of Rogue Taxa in Tree Sets

dataset (ordered by RNR−1)

0

5

10

15

12
5
23

08 24 99
4
19

08 14
1

14
3

50
0

15
0
15

12 62
8
12

88 71
4
25

54 88
5

35
4

35
0

14
8
16

04
14

81 21
8
20

00 40
4 52

MRC
BMA
BMA-mod
RNR-1
RNR-2
RNR-3

Figure 6.4.a: Support improvement (in %) for optimization with a MRC threshold. RNR-l
depicts RNR runs with l ∈ [1, 3], BMA-mod is a less conservative modification of the BMA.

dataset (ordered by RNR−1)

0

5

10

15

12
5

35
4

88
5

15
0

14
8
16

04 40
4 52

19
08 62

8
14

81
25

54 71
4
15

12 99
4
20

00
23

08 14
1

21
8

50
0

35
0
12

88 14
3

SC
BMA
BMA-mod
RNR-1
RNR-2
RNR-3

Figure 6.4.b: Support improvement (in %) for optimization with a SC threshold. RNR-l
depicts RNR runs with l ∈ [1, 3], BMA-mod is a less conservative modification of the BMA.

136

6.4 Evaluation

trees. In order to account for the loss of taxa after pruning, we have to use the relative
RF-distance RFrel here, which is normalized to values between 0.0 (minimum distance)
and 1.0 (maximum distance). Thus, we can define the improvement of relative RF-
distance between the ML tree and the true tree after rogue taxon removal as

∆RFrel = RFrel(ML, true tree)− RFrel(MLpru, pruned true tree), (6.6)

where ML is the initial ML tree and MLpru is the pruned ML tree.
By default, RogueNaRok uses bipartition support values for rogue taxon identifi-

cation (i.e., the RBIC criterion). Therefore, we also considered the relative weighted
Robinson-Foulds-distance (rWRF), a variant of the RF-distance that also takes into ac-
count the bipartition support values on the trees for computing the distance. For the
rWRF-distance, we sum over the branch support values that are unique to either tree
(assuming branches in the true tree have 100% support) and normalize again to relative
values between 0.0 and 1.0. Thus, in analogy to Eq. 6.6, we computed the improvement
of the relative rWRF-distance between the ML and true tree after rogue taxon removal.

For each dataset, we also calculated the respective changes in RF-distances for the
case that we do not prune taxa in an informed way as suggested by RogueNaRok, but
prune a random set of taxa (that were not predicted by RogueNaRok) of equal size
instead. These random prunings are used to obtain the baseline reference changes of the
respective RF-distances for each simulated dataset.
Fig. 6.5 shows the improvement of both topological distance flavors (RF and rWRF)

against the fraction of taxa pruned. We observe a clear trend: pruning rogue taxa
as identified by RogueNaRok reduces both, the relative RF, as well as the rWRF
distances of the ML tree to the true tree. The more rogue taxa a dataset contains
(resp., the higher the overall instability of taxa in the bootstrap trees), the higher the
potential for improving RF-distances by pruning rogue taxa becomes. Our simulations
indicate that, the instability of taxa in bootstrap replicate trees reliably predicts taxa
for which the position in the ML is incorrect. Thus, pruning rogue taxa as identified by
the RogueNaRok algorithm improves phylogenetic accuracy.

The random prunings indicate that, the rWRF-distance and the relative RF-distance
represent an appropriate measure for the task at hand. If only a small fraction of taxa is
pruned, random prunings may yield ML trees that are closer to the true tree. However,
this improvement is always less pronounced than for a set of rogue taxa as identified
by RogueNaRok. For large sets of randomly pruned taxa, there is a clear trend for
the resulting pruned ML tree to become increasingly distant to the true tree. Some
improvements in RF-distances via random prunings are to be expected, since the rogue
taxon set determined by RogueNaRok is only one of many possible sets of taxa that
may increase bipartition support, if pruned.

Improved True Support in Consensus Trees

The primary and alternative use case for the RogueNaRok algorithm is to identify
a set of rogue taxa that improves the overall bipartition support in a consensus tree,

137

6 Identification of Rogue Taxa in Tree Sets

0.00 0.05 0.10 0.15 0.20

−0
.1

0
0.

00
0.

05
0.

10
0.

15
0.

20

fraction of taxa pruned per dataset

Δ
re

la
tiv

e
R

F
to

 tr
ue

 tr
ee

xx

x

xxx xx xx xx xx

x
x

xx xx
x

x
x

xxx x
xx

x
x

x x

x

x x

x
xx xx

x xx

x

x xxxx xxxx

x

xx xxx xxxx

x

x xxxxx

x

x
xxx xx xxxx

x

xx

x

xxxx
xx

x x

x

xxxxxx x

x
x

x

x
x
x
x x xx xx

x
x

x
xx x x

x

x
x xxx

x
x xx

x
x

x x x
x x

x
xx

x xxx
x

xx xx x xxxxx

x

xxxxx xx

x

xxxx xxx xx
x

x xx

x

xx

x

xxxxx

x

xxxx

xx

xx
x

x

xx
xx

xx
x

x x
x

x

xxx xx x
xx

x

x

x
x x

xx xx x x
xxxxxxxxxx xxxxxx x xxxxxxx xxxx

x
xxxxxxx

x

xxxxxxxx xx xxxxxx xx xxxx xx
x

xx xxx x

x
xxx xx xx x x

x

xxxx xx
x

xxxxx
x

x xxx

o
x

RogueNaRok
random pruning

0.00 0.05 0.10 0.15 0.20

−0
.0

5
0.

00
0.

05
0.

10

fraction of taxa pruned per dataset

Δ
re

la
tiv

e
W

R
F

to
 tr

ue
 tr

ee

xx

x

xxx xx xx
xx xx

xx

xx x
x

x

x
x

xxx x
xx

x

x

x x

x

x x

x

x
x

xx

x xx

x

x xx
xx x

x
xx

x

xx xxx xxxx

x
x xxxxx

x

x
xxx xx xxxx

x

xx

x

xxxx x

x

x x

x

xxxxxx x

x

xx

x
x
x
x x xx

xx
x

x
x

xx x
x

x

x
x xxx

x
x x

x

x

x

x x xx
x

x
xx

x x
xx xxx xx x xxxxx

x

x
xxxx xx

x

xxxx xxx xx
x

x xx
x

xx

x

xxxxx

x

xxxx

xx

xx
x

x

x
x

xx
xx

x

x x
x

x

xxx x
x x

xx
x

x

x
x x

x
x xx x

x
xxx

x
xxxxxx xxxxxx x xxxxxxx xxxx

x

xxxxxxx
x

x
xxxxxxx x

x xxxxxx xx xxxx xx
xxx xxx

x

x
xxx xx x

x x x

x

xxxx xx xxxxxx
x

x xxx

o
x

RogueNaRok
random pruning

Figure 6.5: Top: Improvement of relative RF-distance of ML trees to the corresponding true
tree after removal of rogue taxa as suggested by RogueNaRok (black) and after removal of
a random set of taxa of equal size for each dataset (gray). Bottom: analog comparison for
rWRF-distances.

138

6.4 Evaluation

●

●

●

●●
●
●

●●
●

●

●

●●
●

●

●

●

●

●

●
●

●

● ●●
●●●

●

●

●

●

●● ●●●●
●

●●
●

●●
●●

●
●

●
●

●
●

●

●

●

●●

●

●
●●

●

●
●

●

●

●
●

●

●●●●
●●

●

●●
●●

●

●
●●●

●

●

●

●
●

●●

●

●
●

●
●

●

●
●

●●●●
●●

●
●●

●

●

●●●●●●

●

●
● ●

●

●●
●

●●
●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●
● ●

●
●

●

● ●
●

●

●●

●

●

●
●

●●

●
●

●

●

●●

●
●●

●

●

●
●●

●

●

●●

●●

●

●
●●●●●●●

●

●

●●●
●
●

●●

●

●●
●

●●
●

●

●

●

●
●●●

●
●●●

●

●
●●●

●

●●

●

● ●

●
●●

●
●

●
●

●
●

●

●●●

●

●
●

●

●● ●●

●
●

●

●
●●●

●

●
●●

●

●

●
●

●●
●●●● ●

●

●
●●

●

●●
●

●
●

●
●

●
●

●
●●●●●

●

●●●●
●●

●
●●

●

●
●

●

●
●

●●
●●●

●
●●

●●
●●●

●

●
●

●
●
●●●

●●
●●

●

●

●
●
●

●●

●

●
●●

●

●●
●

●

●

● ●
●●

●
●●

●

●

●

●
●

●
●

●●
●●

●

●

●
●

●●
●

●

●

●

●

● ●
●

●
●

●●

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10

−
0.

15
−

0.
05

0.
00

0.
05

0.
10

∆ RBIC in consensus tree

∆
R

B
IC

 o
f s

up
po

rt
 o

n
tr

ue
 tr

ee

x

x
x

x

x
x

xxx
x

x

x

x

x

x

x

x

x
xx

x

x
x

xx

x

x

x
x

xx
xx

x

x

x
x

xx xx
x

xx
x

xx xx

xx

x
x

x
x

x

xx

x
xx

x
x

xx

x

xx

x

x

xxx

x
x

x

x

xx
x

xx

x
x

xx
x

x

x

x

x
xx

x

x xx
x

x

x

x

xxxxx
x

x

xxx

x

xxxx
x

x

x

x

x

x

x x
x

x
x

x

x

x

x

x x

x
xx

x
x

xx

x

x
x

xx

x

x
x

x
x

x
x

x
xxx

x

x

x

x

x
x
x

x

x

x
x

x
xx

x
x
xx

x

x

x

x
xx

x

x
xx

x
x

x

x
x xx
xxx xx

x

x
x

x xx

x

x

x

x x

x
x

x
x

x

x
x

x
x xx

x
xxx

x

xxx
x

xx
x

x

x

x

x
x x
x

x
xx

xxxxx x

x

x x

x

x

x

x

x

x

x

xxx

x
xx

x

x x

x

x
xxx

xx

xx
x

x
x

x

x
x xx
x

x
x

x
x

x

x
x

x

x

xx
xx

x

xxxx xx
x

x
x

x

xxx
xx

x
xx

x
x

x
x

xx
x
xx

x

x

xxxxxx
x

xx

x

xx

xx

x

x
xx

x

x
xx

x

x

x x

x

x

x
x

xx
x

x

xx
x

x

x xx
x

x

x
x

x
x

x

xx

x

xx
x

x

x

x

x

x
xx

x

x

x

o
x

RogueNaRok
random pruning

Figure 6.6: As pruning rogue taxa increases support in consensus trees, the overlap of consen-
sus tree support with the true tree increases proportionally. Analogously, random prunings
decrease support in consensus tree and the overlap with the true tree.

if pruned from the underlying bootstrap trees. In this experiment, we focus on rogue
taxon identification for MRC trees.

A comparison of the RF-distance of a consensus trees to the corresponding true tree
is problematic. Here, low RF-distances may be a consequence of a poorly resolved
consensus tree (which is specifically the case before rogue taxon removal). Therefore,
uninformative consensus trees appear favorable under this measure. Thus, for measuring
the improvement of phylogenetic accuracy for consensus trees, we instead draw bootstrap
support on the true tree before and after pruning rogue taxa. In both cases, we only
consider branches with bipartition support > 50%. Since the MRC tree does not con-
tain bipartitions with support ≤ 50%, this approach describes the overlap/congruence
between the MRC tree and the true tree. In other words, we obtain the true support of
the consensus tree.

The measure for support in the consensus tree we use for this experiment is the RBIC
(i.e., the default optimization criterion of RogueNaRok). We define it as the sum
of support values in a tree (ranging between 0.0 and 1.0) normalized by the maximum
possible support in a fully resolved tree with the initial number of taxa before pruning.
Fig. 6.6 shows that, the true support (as defined here) recovered in the consensus

tree increases proportionally with the support that is added to the consensus tree af-

139

6 Identification of Rogue Taxa in Tree Sets

ter pruning rogue taxa. Inversely, pruning an equal number of random taxa decreases
support values in the consensus and the true support recovered in the consensus tree
also decreases proportionally. We conclude that, pruning rogue taxa as identified by
RogueNaRok yields consensus trees that are closer to the true tree.

Typically, our algorithm identifies rogue taxa that have a strong negative impact on
the overall support during early iterations, while late iterations prune rogue taxa that
only slightly increase support. We may want to stop the algorithm, once the support
gain in the reduced consensus tree drops below a specified threshold. We stopped the
algorithm, as soon as the accumulated support improvement for an iteration was below
30%, 20%, and 10% respectively.
Fig. 6.6 depicts the true support improvement in the consensus tree divided by the

consensus tree support improvement as reported by RogueNaRok. This ratio can
be greater than 1.0, in cases where pruning rogue taxa decreased the RF-distance of
the consensus tree to the true tree. We observe that, the aforementioned ratio of true
support is not significantly influenced by any stopping threshold for the algorithm. This
indicates that, even rogue taxa with weak negative impact on consensus tree support,
increase (although to a lesser extent) the true support, if pruned from bootstrap trees.

6.5 Webservice

As described throughout Sect. 6.3, the RNR algorithm offers a variety of parameters. It
is legitimate to examine several parameter settings in order to extract the desired (resp.,
the maximum amount of) information from a tree set. A practitioner can choose

• among various optimization criteria (i.e., resolution- versus support-based; with
and without penalizing dropset sizes),

• between various consensus thresholds (MRC, SC or GMRC) or can try to maximize
the support drawn onto a reference tree,

• different settings for the approximation parameter l (dropset size),

• to exclude sets of taxa from the rogue taxon analysis (e.g., taxa that are of central
interest for a study will not be considered for pruning).

Specifically, the RBIC requires some user interaction, since under the RBIC Rogue-
NaRok also identifies taxa as rogue that have a very modest impact on support values,
if pruned. Thus, a user may potentially not want to prune all taxa that are identified as
rogues, but only taxa from the initial iterations of the algorithm.
RogueNaRok is implemented in C (including a parallelized version) and is part of

the RogueNaRok software package that also contains implementations of the MAST,
alternative (and less efficient) rogue taxon algorithms (i.e., node distance and stability
measures) as well as a tool for pruning taxa from tree sets. To improve usability, we also
implemented a RogueNaRok webservice.

140

6.6 Summary

The RogueNaRok webservice is implemented using the Ruby on Rails web appli-
cation framework. The framework provides an implementation for the Model-View-
Controller pattern. Within this framework, we implemented the model consisting of
so-called active objects (e.g., a Search object that represents a rogue taxon analysis)
that are mapped to entries in an underlying SQL database. Furthermore, a view must
be defined that specifies the web interface. Finally, controller classes implement the ap-
plication logic that determines how model instances are updated and how views change
for the user after, for instance, executing a rogue taxon analysis.

In a typical session, the workflow starts with users uploading their data (i.e., a tree set
and optionally a reference tree). In the subsequent work-bench view, users can configure
and launch rogue taxon analyses with all of the aforementioned settings (e.g., dropset
size). For an analysis started by the user, a script is generated and queued in a batch-
queuing system on an underlying compute cluster. When the job has completed, the
model (i.e., active object) is annotated with the results of the rogue taxon analysis. As
a consequence, the view is updated. In the beginning, the result view lists the taxa in
the tree set. For each rogue taxon analysis, we add a column to this list that specifies
the RBIC improvement, if the respective taxon is pruned (given that all taxa of previ-
ous iterations have been pruned). Users can sort the resulting table according to each
column. Cells are color-coded in order to indicate how strongly a rogue taxon affects the
consensus tree. Thus, users can easily identify which taxa appear as rogues for a given
parameter setting or consensus threshold. Given the annotated taxon table, users can
decide upon a set of taxa to prune from the tree set and visualize the resulting consensus
tree (resp., reference tree annotated with support values). We use RogueNaRok and
RAxML to compute a consensus tree and display it in a Java applet using the Ar-
chaeopteryx tree viewer [131]. Archaeopteryx displays all visualizations created
so far as tabs in a separate window. Taxa that have been pruned from the tree set are
colored red in all trees that were created in previous visualization invocations. Thus,
users can locate the position of rogue taxa before pruning in less informative consensus
trees that still contain rogue taxa.

There also exists a Ruby model class for sessions. Thus, users can close their current
session and resume it at a later point in time with a completely restored work-bench
view. This option is particularly practical for time consuming rogue taxon analysis.

6.6 Summary

In this Chapter, we described phylogenetic post-processing algorithms for building con-
sensus trees or drawing support from a tree set onto a reference tree. In particular, we
discussed the rogue taxon problem in which otherwise well-resolved evolutionary rela-
tionships among taxa are obfuscated by a comparably small set of taxa that assume
various topological positions in this tree set. We briefly described related algorithms
(i.e., the BMA and STA) for the identification of rogue taxa, before introducing the
RogueNaRok algorithm.

Similar to the BMA, the RogueNaRok algorithm computes drop sets from non-

141

6 Identification of Rogue Taxa in Tree Sets

consensus bipartitions that have been extracted from the tree set. An essential contri-
bution of RogueNaRok is the usage of a merger graph that describes which bipartitions
can be merged by pruning which minimal dropsets. Using the merger graph, the Rogue-
NaRok algorithm can determine exactly (in contrast to the BMA), how a bipartition
profile changes for a specific dropset. In the RogueNaRok algorithm, we subsequently
evaluate these changes using a flexible optimization criterion. Two ideas improve per-
formance substantially. Firstly, we only compute dropsets up to a certain size. The
categorization of bipartitions according to their partition-sizes allows for an additional
reduction of the otherwise quadratic number of comparisons that is necessary to com-
pute all relevant dropsets. Secondly, we use the merger graph information to maintain
(i.e., update) a bipartition profile instead of extracting it anew in each iteration.

For a diverse set of 24 real-world datasets, we found that RogueNaRok is up to
3, 640× faster than STA, if the dropset size is set to 1. Even with a dropset size of 2,
RogueNaRok still outperforms the STA algorithm. If we account for the fact that
RogueNaRok is substantially more sensitive (w.r.t. the number of rogues identified)
than the BMA, then RogueNaRok is about one order of magnitude faster than the
BMA per identified rogue taxon. We observed that, RogueNaRok (if invoked with
dropset sizes of 2 or 3) consistently outperforms STA and a modified version of the BMA
with respect to result quality. That is, after pruning taxa identified by RogueNaRok,
we obtain more informative consensus trees, or reference trees with support values.
In a large-scale simulation experiment, we demonstrated that pruning rogue taxa (as
identified by RogueNaRok) yields consensus trees and reference trees that are closer
to the “true” tree used for simulating the datasets. We thereby demonstrated that
pruning rogue taxa can increase the phylogenetic accuracy of any phylogenetic inference
method that calculates/yields a tree set.

Finally, we described a webservice for RogueNaRok. The webservice allows users
to execute several rogue taxon searches and provides a convenient summary view of all
conducted searches. Furthermore, users can interactively decide which taxa to prune
and visualize the induced consensus trees / reference trees with support.

142

7 Conclusion and Outlook

With recent developments in phyloinformatics, evolutionary biology starts to shift its fo-
cus from an experiment-driven laboratory discipline towards an increasingly data-driven
approach. Yet, the size of datasets for computational methods often imposes a hard
limit on the feasibility of a study. In this thesis, we focused on large-scale datasets in the
context of Bayesian phylogenetic inference. We developed two software packages (Exa-
Bayes and RogueNaRok) which clear the way for future ambitious analytic projects.
In each problem setting examined in this thesis, we strove to (i) improve the underlying
method or algorithm, (ii) provide highly efficient implementations and (iii) address scal-
ability issues such that problem instances of immense size become solvable given access
to HPC resources.
ExaBayes is a self-contained production-level software package for BI in phyloge-

netics. With respect to functionality and usability, the scope of ExaBayes is limited
compared to popular tools like Beast and MrBayes that have both been developed
by small teams for almost one, respectively two decades by now. However, ExaBay-
es currently is the only Bayesian tool available that has specifically been designed and
optimized for employment on large clusters and super-computers. We demonstrated its
potential by inferring a tree from the largest input alignment to date (requiring more
than 4.6 terabyte of RAM). In particular, we examined what can be expected of con-
fidence intervals when we increase the size of the input alignment by several orders of
magnitude.
ExaBayes has been developed in a comparably short amount of time, because of

simultaneous development of ExaML and the PLL in the Exelixis lab. Specifically,
the usage of the PLL will allow ExaBayes to incorporate future methodological and
technological progress rapidly. For instance, efficient execution of ExaBayes on the
Intel Xeon Phi co-processor [63] is currently only hindered by the insufficient support of
the C++11 standard in Intel’s C++ compiler. The hybrid parallelization in ExaBayes is
encapsulated and can therefore easily be ported to similar Bayesian inference software
that requires a hierarchical three-tier parallelization. In the course of this thesis, the
need to infer phylogenetic trees from genome-sized datasets has evolved from being a
predominantly academic exercise into a real analytical requirement [see 57, 77].

With the introduction of the ppSPR move and the development of the NR-based
Γ proposal for branch lengths, ExaBayes has evolved from its initial state where it
simply relied on modified MrBayes proposals. The unique property of the NR-based
Γ proposal that samples branches de novo could not be used to full capacity in the
hybrid proposals that were discussed here. However, given its efficiency, the NR-based
Γ proposal has the potential of becoming one of the standard proposals for branch length
integration in the future. Furthermore, this de novo proposal may play an essential role

143

7 Conclusion and Outlook

in the design of a more radical class of hybrid proposals. An alternative to elementary
topological operations (i.e., NNI, SPR and TBR) is to erase a randomly chosen set
of adjacent branches from the tree completely. The tree then is decomposed into n
subtrees. The number of topologies that can be constructed from the n subtrees is equal
to the number of different topologies with n taxa (see Eq. 2.2). We then can evaluate
these topologies given a scoring function (as typically employed in guided proposals
such as the ppSPR or the parsSPR) and propose a new topology proportionally to its
score. This would allow to propose topologies that are substantially more diverse than
those that could be proposed by using a single elementary operation. Most likely, no
meaningful mapping of existing branch lengths to branches in the proposed topology
can be determined. Thus, the simultaneous de novo proposal of branch lengths would
become a necessity to such radical proposals. Interestingly, our analyses have shown that
branch lengths in current topological proposals are not the limiting factor to achieving
convergence. Thus, we suspect that the small diversity of topological proposals currently
is the bottleneck that limits BI in phylogenetics.

The NR-based Γ proposal employs a highly accurate approximation of branch length
posteriors. The quality of this approximation raises the question, whether the expensive
numeric integration over branch lengths can be avoided altogether. While no closed form
of the branch length posterior is available, a branch-length-free phylogenetic model is
conceivable that essentially approximates the likelihood or PP for any choice of branch
lengths. A particularly expensive way of implementing this idea would be a discretization
of the approximate branch length posterior into a fixed number of representative branch
lengths (similar to the discretization of the Γ model of among site rate-heterogeneity).
However, more elegant solutions may exist. We expect that a branch-length-free model
would alleviate one of the essential difficulties of phylogenetic inference, that is having
to infer (or optimize) the branch lengths and topology at the same time (regardless of
whether ML or BI is employed).

Finally, the RogueNaRok algorithm has been presented. It outperforms previous
rogue taxon identification algorithms both in terms of runtime as well as in terms of
result quality (i.e., complex rogue taxa scenarios can be identified). Given the runtime
efficiency of RogueNaRok, users typically obtain the results of their analysis instanta-
neously for most common input datasets. This allows for a interactive and exploratory
workflow when using the accompanying web service. An application of RogueNaRok
that goes beyond the original motivation of the algorithm is the construction of con-
straint trees that allow for a more robust phylogenetic inference by reducing the search
space. When poor phylogenetic signal in the alignment obstructs robust phylogenetic
inference, RogueNaRok can be used to identify and prune rogue taxa from bootstrap
trees or trees that have been sampled via BI. Subsequently, the rogue-free consensus tree
can be used as a constraint tree in an attempt to infer more robust phylogenetic trees
(using ML or BI) with rogue taxa included. Alternatively, rogues can be re-inserted into
the phylogeny using the evolutionary placement algorithm (EPA) [15]. The EPA com-
putes likelihood weights for each possible insertion branch of a taxon in a given topology.
Such a procedure allows for making statements about the evolutionary history of rogue
taxa with respect to a stable reference phylogeny.

144

List of Figures

2.1 alignment and phylogenetic tree . 8
2.2 continuous-time Markov chain . 14
2.3 Γ distributions . 19

3.1 logarithmic unnormalized posterior density trace 28
3.2 node slider illustration . 38
3.3 illustration of a Dirichlet proposal . 42
3.4 sampling efficiency for AA GTR matrix 43
3.5 elementary topological moves . 47

4.1 approximation of posterior distributions 55
4.2 observed posterior and log-likelihood curve 56
4.3 typical branch length posteriors . 57
4.4 skewness and CV of branch length posteriors 59
4.5 appropriateness of fitted distributions for proposals 61
4.6 correlation between ϕ′′(vopt) and σ(v) . 63
4.7 fitted exponential distribution versus first derivative of log-posterior density 65
4.8 OAPs for variations of NR-based distribution proposals 67
4.9 comparison of sampling efficiency among branch length proposals 69
4.10 branch length mapping in topological moves 71
4.11 branch length posterior changes in topological moves 74
4.12 convergence behavior of hybrid proposals 76

5.1 simplified top-level view of ExaBayes . 81
5.2 sequential runtime comparison . 86
5.3 illustration of three-level parallelism . 89
5.4 class diagram of parallelization scheme . 93
5.5 parallel speedup of data-level parallelism 98

5.5.a on dataset with 1 · 106 bp . 98
5.5.b on dataset with 5 · 105 bp . 98

5.6 scaling of data-level parallelism on dataset with 5 · 106 bp 100
5.7 comparison between blocking and non-blocking algorithms 103
5.8 chain-level scaling . 106

5.8.a weak scaling comparison between ExaBayes and MrBayes . . . 106
5.8.b scaling efficiency of blocking and non-blocking algorithm 106

5.9 cyclic and per-partition distribution scheme 107
5.10 performance of proposal sets combined with MPS data distribution 109

145

LIST OF FIGURES

5.11 runtime comparison among load balancing algorithms 111
5.12 memory-time trade-off . 115
5.13 memory consumption with and without SEV 116
5.14 simulated tree for whole-genome dataset 117
5.15 distributions of branch lengths depending on dataset size 118
5.16 mean and CV of sampled branch lengths 119

6.1 rogue taxon example . 125
6.2 merger graph . 130
6.3 runtime evaluation . 133
6.4 support improvement in consensus tree . 136

6.4.a for a MRC threshold . 136
6.4.b for a SC threshold . 136

6.5 r(W)RF distance improvements after pruning rogue taxa 138
6.6 improvement of accuracy in consensus trees 139

146

List of Tables

4.1 summary statistics for datasets used in Bayesian analyses 53

5.1 datasets for sequential runtime evaluation 87
5.2 recursive communicator splitting scheme 91

6.1 datasets underlying rogue taxon analysis 133

147

List of Acronyms

AA amino acid

ASDSF average standard deviation of split frequencies

AVX advanced vector extension

BI Bayesian inference

BMA bipartition merging algorithm

bp base pair

CDD cyclic data distribution

CDF cumulative distribution function

CPU central processing unit

CPV conditional probability vector

ctMC continuous-time Markov chain

CV coefficient of variation

DLB divisible load balancing

DNA desoxyribonucleic acid

EAP expected acceptance probability

EPA evolutionary placement algorithm

eSPR extending subtree-pruning and regrafting

ESS effective sample size

eTBR extending tree-bisection and reconnection

GB giga byte

GMRC greedily refined majority-rule consensus

149

List of Acronyms

GTR generalized time-reversible

HPC high-performance computing

I/O input/output

ILP integer linear programming

ILS incomplete lineage sorting

LBA long branch attraction

LRZ Leibniz Supercomputing Centre

MAST maximum agreement subtree

MB mega byte

MC3 Metropolis-coupled MCMC

MCMC Markov chain Monte Carlo

MH Metropolis-Hastings

MISC maximum-information subtree consensus

ML maximum likelihood

MP maximum parsimony

MPI Message Passing Interface

MPS multi-processor scheduling

MRC majority-rule consensus

MSA multiple sequence alignment

MSDSF maximum standard deviation of split frequencies

MT19937 19,937-based Mersenne Twister

NCL Nexus class library

NJ neighbor joining

NNI nearest neighbor interchange

NR Newton-Raphson

NUMA non-uniform memory access

150

List of Acronyms

OAP observed acceptance probability

parsSPR parsimony-guided subtree-pruning and regrafting

PDF probability density function

PE parallel entity

PImpl pointer-to-implementation

PLF phylogenetic likelihood function

PLL phylogenetic likelihood library

PP posterior probability

ppSPR posterior-guided subtree-pruning and regrafting

PRNG pseudo random number generator

PSR per-site rate

PSRF potential scale reduction factor

RAM random access memory

RBIC relative bipartition information criterion

RF Robinson-Foulds

RIC relative information content

rjMCMC reversible jump Markov chain Monte Carlo

RNA ribonucleic acid

RNR RogueNaRok algorithm

rWRF relative weighted Robinson-Foulds-distance

SC strict consensus

sec second

SEV subtree equality vector

SPMC single producer multiple consumer

SPR subtree-pruning and regrafting

SPSC single producer single consumer

151

List of Acronyms

SSE streaming SIMD extensions

STA single-taxon algorithm

STL standard template library

stNNI stochastic nearest neighbor interchange

TBR tree-bisection and reconnection

TOL tree of life

UML unified modeling language

UPGMA unweighted pair group method with arithmetic mean

152

Bibliography

[1] AJ Aberer, K Kobert, and A Stamatakis. “ExaBayes: Massively Parallel Bayesian
Tree Inference for the Whole-Genome Era”. In: Molecular biology and evolution
31.10 (2014), pp. 2553–2556.

[2] AJ Aberer, D Krompass, and A Stamatakis. “Pruning rogue taxa improves phy-
logenetic accuracy: an efficient algorithm and webservice”. In: Systematic biology
62.1 (2013), pp. 162–166.

[3] AJ Aberer and A Stamatakis. “A simple and accurate method for rogue taxon
identification”. In: Bioinformatics and Biomedicine (BIBM), 2011 IEEE Inter-
national Conference on. IEEE. 2011, pp. 118–122.

[4] AJ Aberer and A Stamatakis. “Rapid forward-in-time simulation at the chro-
mosome and genome level”. In: BMC bioinformatics 14.1 (2013), p. 216.

[5] AJ Aberer, A Stamatakis, and F Ronquist. “An Efficient Independence Sam-
pler for Updating Branches in Bayesian Markov chain Monte Carlo Sampling of
Phylogenetic Trees.” In: Systematic biology 65.1 (2016), pp. 161–176.

[6] N Alachiotis and A Stamatakis. “FPGA acceleration of the phylogenetic parsi-
mony kernel?” In: Field Programmable Logic and Applications (FPL), 2011 In-
ternational Conference on. IEEE. 2011, pp. 417–422.

[7] G Altekar, S Dwarkadas, JP Huelsenbeck, and F Ronquist. “Parallel Metropo-
lis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference.” In:
Bioinformatics (Oxford, England) 20.3 (Feb. 2004), pp. 407–15. issn: 1367-4803.

[8] SF Altschul, W Gish, W Miller, EW Myers, and DJ Lipman. “Basic local align-
ment search tool”. In: Journal of molecular biology 215.3 (1990), pp. 403–410.

[9] GM Amdahl. “Validity of the single processor approach to achieving large scale
computing capabilities”. In: Proceedings of the April 18-20, 1967, spring joint
computer conference. ACM. 1967, pp. 483–485.

[10] A Amir and D Keselman. “Maximum agreement subtree in a set of evolutionary
trees: Metrics and efficient algorithms”. In: SIAM Journal on Computing 26.6
(1997), pp. 1656–1669.

[11] YF Atchadé, GO Roberts, and JS Rosenthal. “Towards optimal scaling of metropolis-
coupled Markov chain Monte Carlo”. In: Statistics and Computing 21.4 (July
2010), pp. 555–568. issn: 0960-3174.

153

Bibliography

[12] DL Ayres, A Darling, DJ Zwickl, P Beerli, MT Holder, PO Lewis, JP Huelsen-
beck, F Ronquist, DL Swofford, MP Cummings, A Rambaut, and Ma Suchard.
“BEAGLE: an application programming interface and high-performance comput-
ing library for statistical phylogenetics.” In: Systematic biology 61.1 (Jan. 2012),
pp. 170–3. issn: 1076-836X.

[13] P Benner, M Bačák, and PY Bourguignon. “Point estimates in phylogenetic re-
constructions”. In: Bioinformatics 30.17 (2014), pp. i534–i540.

[14] DA Benson, I Karsch-Mizrachi, DJ Lipman, J Ostell, BA Rapp, and DL Wheeler.
“GenBank”. In: Nucleic acids research 28.1 (2000), pp. 15–18.

[15] SA Berger, D Krompass, and A Stamatakis. “Performance, accuracy, and web
server for evolutionary placement of short sequence reads under maximum likeli-
hood”. In: Systematic biology 60.3 (2011), p. 291.

[16] SA Berger and A Stamatakis. “Accuracy and performance of single versus dou-
ble precision arithmetics for maximum likelihood phylogeny reconstruction”. In:
Parallel Processing and Applied Mathematics. Springer, 2010, pp. 270–279.

[17] SA Berger and A Stamatakis. “Aligning short reads to reference alignments and
trees”. In: Bioinformatics 27.15 (2011), pp. 2068–2075.

[18] RP Brent. Algorithms for minimization without derivatives. Prentice-Hall, 1973.

[19] JM Brown, SM Hedtke, AR Lemmon, and EM Lemmon. “When trees grow too
long: investigating the causes of highly inaccurate Bayesian branch-length esti-
mates”. In: Systematic Biology 59.2 (2010), pp. 145–161.

[20] D Bryant. “A classification of consensus methods for phylogenetics”. In: Bio-
consensus: DIMACS Working Group Meetings on Bioconsensus: October 25-26,
2000 and October 2-5, 2001, DIMACS Center. Amer Mathematical Society. 2003,
p. 163. isbn: 0821831976.

[21] D Bryant, J Tsang, P Kearney, and M Li. “Computing the quartet distance
between evolutionary trees”. In: Proceedings of the eleventh annual ACM-SIAM
symposium on Discrete algorithms. Society for Industrial and Applied Mathemat-
ics. 2000, pp. 285–286.

[22] B Chor and T Tuller. “Maximum likelihood of evolutionary trees: hardness and
approximation”. In: Bioinformatics 21.suppl 1 (2005), pp. i97–i106.

[23] WS Cleveland and SJ Devlin. “Locally weighted regression: an approach to regres-
sion analysis by local fitting”. In: Journal of the American Statistical Association
83.403 (1988), pp. 596–610.

[24] D Darriba, AJ Aberer, T Flouri, TA Heath, F Izquierdo-Carrasco, and A Sta-
matakis. “Boosting the performance of Bayesian divergence time estimation with
the Phylogenetic Likelihood Library”. In: Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International.
IEEE. 2013, pp. 539–548.

154

Bibliography

[25] A Deepak, J Dong, and D Fernández-Baca. “Identifying rogue taxa through re-
duced consensus: NP-Hardness and exact algorithms”. In: Bioinformatics Re-
search and Applications. Springer, 2012, pp. 87–98.

[26] ML Delignette-Muller, R Pouillot, JB Denis, and C Dutang. fitdistrplus: help to fit
of a parametric distribution to non-censored or censored data. R package version
1.0-2. 2014.

[27] E Dell’Ampio, K Meusemann, NU Szucsich, RS Peters, B Meyer, J Borner, M
Petersen, AJ Aberer, A Stamatakis, MG Walzl, et al. “Decisive Data Sets in Phy-
logenomics: Lessons from Studies on the Phylogenetic Relationships of Primarily
Wingless Insects”. In: Molecular biology and evolution 31.1 (2014), pp. 239–249.

[28] WF Doolittle and E Bapteste. “Pattern pluralism and the Tree of Life hypothe-
sis”. In: Proceedings of the National Academy of Sciences 104.7 (2007), pp. 2043–
2049.

[29] CW Dunn, A Hejnol, DQ Matus, K Pang, WE Browne, SA Smith, E Seaver, GW
Rouse, M Obst, GD Edgecombe, et al. “Broad phylogenomic sampling improves
resolution of the animal tree of life”. In: Nature 452.7188 (2008), pp. 745–749.

[30] RC Edgar. “MUSCLE: multiple sequence alignment with high accuracy and high
throughput”. In: Nucleic acids research 32.5 (2004), pp. 1792–1797.

[31] J Felsenstein. {PHYLIP}(Phylogeny Inference Package) version 3.6 a3. 2002.

[32] J Felsenstein. “Cases in which parsimony or compatibility methods will be posi-
tively misleading”. In: Systematic Biology 27.4 (1978), pp. 401–410.

[33] J Felsenstein. “Confidence limits on phylogenies: an approach using the boot-
strap”. In: Evolution (1985), pp. 783–791.

[34] J Felsenstein. “Evolutionary trees from DNA sequences: a maximum likelihood
approach”. In: Journal of molecular evolution 17.6 (1981), pp. 368–376.

[35] J Felsenstein. Inferring phylogenies. Vol. 2. Sinauer Associates Sunderland, 2004.

[36] J Felsenstein and GA Churchill. “A Hidden Markov Model approach to variation
among sites in rate of evolution.” In: Molecular Biology and Evolution 13.1 (1996),
pp. 93–104.

[37] WM Fitch, E Margoliash, et al. “Construction of phylogenetic trees”. In: Science
155.760 (1967), pp. 279–284.

[38] W Fletcher and Z Yang. “INDELible: a flexible simulator of biological sequence
evolution.” In: Molecular biology and evolution 26.8 (Aug. 2009), pp. 1879–88.
issn: 1537-1719.

[39] T Flouri, F Izquierdo-Carrasco, D Darriba, A Aberer, LT Nguyen, B Minh,
A Von Haeseler, and A Stamatakis. “The phylogenetic likelihood library”. In:
Systematic biology 64.2 (2015), pp. 356–362.

[40] T Flouri, K Kobert, SP Pissis, and A Stamatakis. “An optimal algorithm for
computing all subtree repeats in trees”. In: Combinatorial algorithms. Springer,
2013, pp. 269–282.

155

Bibliography

[41] A Gelman and DB Rubin. “Inference from iterative simulation using multiple
sequences”. In: Statistical science (1992), pp. 457–472.

[42] CJ Geyer. “Markov chain Monte Carlo maximum likelihood”. In: Computing
Science and Statistics: Proceedings of the 23rd Symposium of the Interface. Fairfax
Station VA: Interface Foundation. Keramidas, E.M., 1991, pp. 156–163.

[43] J Giacomoni, T Moseley, and M Vachharajani. “FastForward for efficient pipeline
parallelism: a cache-optimized concurrent lock-free queue”. In: Proceedings of the
13th ACM SIGPLAN Symposium on Principles and practice of parallel program-
ming. ACM. 2008, pp. 43–52.

[44] PE Gill, W Murray, and MH Wright. “Practical optimization”. In: London: Aca-
demic Press 1 (1981).

[45] PJ Green. “Trans-dimensional markov chain monte carlo”. In: Oxford Statistical
Science Series (2003), pp. 179–198.

[46] S Guindon, JF Dufayard, V Lefort, M Anisimova, W Hordijk, and O Gascuel.
“New algorithms and methods to estimate maximum-likelihood phylogenies: as-
sessing the performance of PhyML 3.0”. In: Systematic biology 59.3 (2010), pp. 307–
321.

[47] WK Hastings. “Monte Carlo sampling methods using Markov chains and their
applications”. In: Biometrika 57.1 (1970), pp. 97–109.

[48] J Heled and AJ Drummond. “Bayesian inference of species trees from multilocus
data”. In: Molecular biology and evolution 27.3 (2010), pp. 570–580.

[49] M Herlihy and N Shavit. “The art of multiprocessor programming”. In: PODC.
Vol. 6. 2006, pp. 1–2.

[50] DG Higgins and PM Sharp. “CLUSTAL: a package for performing multiple se-
quence alignment on a microcomputer”. In: Gene 73.1 (1988), pp. 237–244.

[51] A Hobolth, JY Dutheil, J Hawks, MH Schierup, and T Mailund. “Incomplete
lineage sorting patterns among human, chimpanzee, and orangutan suggest recent
orangutan speciation and widespread selection”. In: Genome research 21.3 (2011),
pp. 349–356.

[52] S Höhna and AJ Drummond. “Guided Tree Topology Proposals for Bayesian
Phylogenetic Inference”. In: Systematic Biology 61.1 (2012), pp. 1–11.

[53] MT Holder, PO Lewis, DL Swofford, and B Larget. “Hastings ratio of the LOCAL
proposal used in Bayesian phylogenetics”. In: Systematic biology 54.6 (2005),
pp. 961–965.

[54] J Hopcroft and R Tarjan. “Algorithm 447: Efficient algorithms for graph manip-
ulation”. In: Communications of the ACM 16.6 (1973), pp. 372–378.

[55] JP Huelsenbeck, B Larget, and ME Alfaro. “Bayesian phylogenetic model selec-
tion using reversible jump Markov chain Monte Carlo”. In: Molecular Biology and
Evolution 21.6 (2004), pp. 1123–1133.

156

Bibliography

[56] F Izquierdo-Carrasco, Sa Smith, and A Stamatakis. “Algorithms, data structures,
and numerics for likelihood-based phylogenetic inference of huge trees.” In: BMC
bioinformatics 12.1 (Jan. 2011), p. 470. issn: 1471-2105.

[57] ED Jarvis, S Mirarab, AJ Aberer, B Li, P Houde, C Li, SY Ho, BC Faircloth,
B Nabholz, JT Howard, A Suh, CC Weber, RRd Fonseca, J Li, F Zhang, H Li,
L Zhou, N Narula, L Liu, G Ganapathy, B Boussau, MS Bayzid, V Zavidovych,
S Subramanian, T Gabaldón, S Capella-Gutiérrez, J Huerta-Cepas, B Rekepalli,
K Munch, M Schierup, B Lindow, WC Warren, D Ray, RE Green, MW Bruford,
X Zhan, A Dixon, S Li, N Li, Y Huang, EP Derryberry, MF Bertelsen, FH
Sheldon, RT Brumfield, CV Mello, PV Lovell, M Wirthlin, MPC Schneider, F
Prosdocimi, JA Samaniego, AMV Velazquez, A Alfaro-Núñez, PF Campos, B
Petersen, T Sicheritz-Ponten, A Pas, T Bailey, P Scofield, M Bunce, DM Lambert,
Q Zhou, P Perelman, AC Driskell, B Shapiro, Z Xiong, Y Zeng, S Liu, Z Li, B
Liu, K Wu, J Xiao, X Yinqi, Q Zheng, Y Zhang, H Yang, J Wang, L Smeds, FE
Rheindt, M Braun, J Fjeldsa, L Orlando, FK Barker, KA Jønsson, W Johnson,
KP Koepfli, S O’Brien, D Haussler, OA Ryder, C Rahbek, E Willerslev, GR
Graves, TC Glenn, J McCormack, D Burt, H Ellegren, P Alström, SV Edwards,
A Stamatakis, DP Mindell, J Cracraft, EL Braun, T Warnow, W Jun, MTP
Gilbert, and Ga Zhang. “Whole-genome analyses resolve early branches in the
tree of life of modern birds”. In: Science 346.6215 (2014), pp. 1320–1331.

[58] TH Jukes and CR Cantor. “Evolution of protein molecules”. In: Mammalian
protein metabolism 3 (1969), pp. 21–132.

[59] M Kimura. “A simple method for estimating evolutionary rates of base sub-
stitutions through comparative studies of nucleotide sequences”. In: Journal of
molecular evolution 16.2 (1980), pp. 111–120.

[60] K Kobert, T Flouri, AJ Aberer, and A Stamatakis. “The Divisible Load Bal-
ance Problem and Its Application to Phylogenetic Inference”. In: Algorithms in
Bioinformatics. Springer Berlin Heidelberg, 2014, pp. 204–216.

[61] B Kolaczkowski and JW Thornton. “Effects of branch length uncertainty on
Bayesian posterior probabilities for phylogenetic hypotheses”. In: Molecular biol-
ogy and evolution 24.9 (2007), pp. 2108–2118.

[62] AM Kozlov, AJ Aberer, and A Stamatakis. “ExaML version 3: a tool for phy-
logenomic analyses on supercomputers”. In: Bioinformatics (Oxford, England)
31.15 (Aug. 2015), pp. 2577–2579.

[63] AM Kozlov, C Goll, and A Stamatakis. “Efficient Computation of the Phylo-
genetic Likelihood Function on the Intel MIC Architecture”. In: Parallel & Dis-
tributed Processing Symposium Workshops (IPDPSW), 2014 IEEE International.
IEEE. 2014, pp. 518–527.

[64] C Lakner, P van der Mark, JP Huelsenbeck, B Larget, and F Ronquist. “Effi-
ciency of Markov chain Monte Carlo tree proposals in Bayesian phylogenetics.”
In: Systematic biology 57.1 (Feb. 2008), pp. 86–103. issn: 1063-5157.

157

Bibliography

[65] C Lakner, P Van Der Mark, JP Huelsenbeck, B Larget, and F Ronquist. “Effi-
ciency of Markov chain Monte Carlo tree proposals in Bayesian phylogenetics”.
In: Systematic biology 57.1 (2008), pp. 86–103.

[66] B Larget. “Introduction to Markov chain Monte Carlo methods in molecular
evolution”. In: Statistical methods in molecular evolution. Springer, 2005, pp. 45–
62.

[67] B Larget and DL Simon. “Markov chain Monte Carlo algorithms for the Bayesian
analysis of phylogenetic trees”. In: Molecular Biology and Evolution 16 (1999),
pp. 750–759.

[68] SQ Le and O Gascuel. “An improved general amino acid replacement matrix”.
In: Molecular biology and evolution 25.7 (2008), pp. 1307–1320.

[69] P L’Ecuyer and R Simard. “TestU01: AC library for empirical testing of random
number generators”. In: ACM Transactions on Mathematical Software (TOMS)
33.4 (2007), p. 22.

[70] PO Lewis. “NCL: a C++ class library for interpreting data files in NEXUS for-
mat”. In: Bioinformatics 19.17 (2003), pp. 2330–2331.

[71] A Löytynoja and N Goldman. “Phylogeny-aware gap placement prevents errors
in sequence alignment and evolutionary analysis”. In: Science 320.5883 (2008),
pp. 1632–1635.

[72] M Lynch, R Bürger, D Butcher, and W Gabriel. “The mutational meltdown in
asexual populations”. In: Journal of Heredity 84.5 (1993), pp. 339–344.

[73] DR Maddison, DL Swofford, and WP Maddison. “NEXUS: an extensible file for-
mat for systematic information.” In: Systematic biology 46.4 (Dec. 1997), pp. 590–
621. issn: 1063-5157.

[74] WP Maddison and DR Maddison. Mesquite: a modular system for evolutionary
analysis. Version 3.01. 2014. url: http://mesquiteproject.org.

[75] DC Marshall. “Cryptic failure of partitioned Bayesian phylogenetic analyses: lost
in the land of long trees”. In: Systematic Biology 59.1 (2010), pp. 108–117.

[76] N Metropolis, AW Rosenbluth, MN Rosenbluth, AH Teller, and E Teller. “Equa-
tion of state calculations by fast computing machines”. In: The journal of chemical
physics 21.6 (1953), pp. 1087–1092.

[77] B Misof, S Liu, K Meusemann, RS Peters, A Donath, C Mayer, PB Frandsen,
J Ware, T Flouri, RG Beutel, O Niehuis, M Petersen, F Izquierdo-Carrasco, T
Wappler, J Rust, AJ Aberer, U Aspöck, H Aspöck, D Bartel, A Blanke, S Berger,
A Böhm, TR Buckley, B Calcott, J Chen, F Friedrich, M Fukui, M Fujita, C
Greve, P Grobe, S Gu, Y Huang, LS Jermiin, AY Kawahara, L Krogmann, M
Kubiak, R Lanfear, H Letsch, Y Li, Z Li, J Li, H Lu, R Machida, Y Mashimo, P
Kapli, DD McKenna, G Meng, Y Nakagaki, JLN Heredia, M Ott, Y Ou, G Pass,
L Podsiadlowski, H Pohl, BMv Reumont, K Schütte, K Sekiya, S Shimizu, A
Slipinski, A Stamatakis, W Song, X Su, NU Szucsich, M Tan, X Tan, M Tang, J

158

http://mesquiteproject.org

Bibliography

Tang, G Timelthaler, S Tomizuka, M Trautwein, X Tong, T Uchifune, MG Walzl,
BM Wiegmann, J Wilbrandt, B Wipfler, TK Wong, Q Wu, G Wu, Y Xie, S Yang,
Q Yang, DK Yeates, K Yoshizawa, Q Zhang, R Zhang, W Zhang, Y Zhang, J
Zhao, C Zhou, L Zhou, T Ziesmann, S Zou, Y Li, X Xu, Y Zhang, H Yang, J
Wang, J Wang, KM Kjer, and X Zhou. “Phylogenomics resolves the timing and
pattern of insect evolution”. In: Science 346.6210 (2014), pp. 763–767.

[78] E Mossel and E Vigoda. “Phylogenetic MCMC algorithms are misleading on
mixtures of trees”. In: Science 309.5744 (2005), pp. 2207–2209.

[79] MPI Forum. MPI: A Message-Passing Interface Standard. Version 2.2. available
at: http://www.mpi-forum.org (last access: Oct. 2014). 2014.

[80] MPI Forum. MPI: A Message-Passing Interface Standard. Version 3.0. available
at: http://www.mpi-forum.org (last access: Oct. 2014). 2014.

[81] HJ Muller. “The relation of recombination to mutational advance”. In: Mutation
Research/Fundamental and Molecular Mechanisms of Mutagenesis 1.1 (1964),
pp. 2–9.

[82] SB Needleman and CD Wunsch. “A general method applicable to the search for
similarities in the amino acid sequence of two proteins”. In: Journal of molecular
biology 48.3 (1970), pp. 443–453.

[83] JA Nelder and R Mead. “A simplex method for function minimization”. In: The
computer journal 7.4 (1965), pp. 308–313.

[84] KC Nixon. “The parsimony ratchet, a new method for rapid parsimony analysis”.
In: Cladistics 15.4 (1999), pp. 407–414.

[85] ND Pattengale, AJ Aberer, KM Swenson, A Stamatakis, and BM Moret. “Un-
covering hidden phylogenetic consensus in large data sets”. In: Computational
Biology and Bioinformatics, IEEE/ACM Transactions on 8.4 (2011), pp. 902–
911.

[86] ND Pattengale, M Alipour, OR Bininda-Emonds, BM Moret, and A Stamatakis.
“How many bootstrap replicates are necessary?” In: Research in Computational
Molecular Biology. Springer Berlin Heidelberg, 2009, pp. 184–200.

[87] R Peters, K Meusemann, M Petersen, C Mayer, J Wilbrandt, T Ziesmann, A
Donath, K Kjer, U Aspöck, H Aspöck, AJ Aberer, A Stamatakis, F Friedrich,
F Hünefeld, O Niehuis, R Beutel, and B Misof. “The evolutionary history of
holometabolous insects inferred from transcriptome-based phylogeny and com-
prehensive morphological data”. In: BMC evolutionary biology 14.1 (2014), p. 52.

[88] C Phillips and TJ Warnow. “The asymmetric median tree—a new model for
building consensus trees”. In: Combinatorial Pattern Matching. Springer. 1996,
pp. 234–252.

[89] KM Pickett and CP Randle. “Strange Bayes indeed: uniform topological priors
imply non-uniform clade priors”. In: Molecular phylogenetics and evolution 34.1
(2005), pp. 203–211.

159

http://www.mpi-forum.org
http://www.mpi-forum.org

Bibliography

[90] D Posada and KA Crandall. “Modeltest: testing the model of DNA substitution.”
In: Bioinformatics 14.9 (1998), pp. 817–818.

[91] B Rannala, T Zhu, and Z Yang. “Tail paradox, partial identifiability, and in-
fluential priors in Bayesian branch length inference”. In: Molecular biology and
evolution 29.1 (2012), pp. 325–335.

[92] BD Redelings and MA Suchard. “Joint Bayesian estimation of alignment and
phylogeny”. In: Systematic Biology 54.3 (2005), pp. 401–418.

[93] GO Roberts and JS Rosenthal. “Examples of adaptive MCMC”. In: Journal of
Computational and Graphical Statistics 18.2 (2009), pp. 349–367.

[94] GO Roberts, A Gelman, WR Gilks, et al. “Weak convergence and optimal scaling
of random walk Metropolis algorithms”. In: The annals of applied probability 7.1
(1997), pp. 110–120.

[95] DF Robinson and LR Foulds. “Comparison of phylogenetic trees”. In: Math.
Biosci. 53 (1981), pp. 131–147. issn: 0025-5564.

[96] F Ronquist, B Larget, JP Huelsenbeck, JB Kadane, D Simon, and P van der Mark.
“Comment on” Phylogenetic MCMC Algorithms Are Misleading on Mixtures of
Trees””. In: Science 312.5772 (2006), pp. 367–367.

[97] N Saitou and M Nei. “The neighbor-joining method: a new method for recon-
structing phylogenetic trees.” In: Molecular biology and evolution 4.4 (1987),
pp. 406–425.

[98] JK Salmon, MA Moraes, RO Dror, and DE Shaw. “Parallel random numbers:
as easy as 1, 2, 3”. In: High Performance Computing, Networking, Storage and
Analysis (SC), 2011 International Conference for. IEEE. 2011, pp. 1–12.

[99] MJ Sanderson and HB Shaffer. “Troubleshooting molecular phylogenetic analy-
ses”. In: Annual Review of Ecology and Systematics (2002), pp. 49–72.

[100] D Sankoff. “Minimal mutation trees of sequences”. In: SIAM Journal on Applied
Mathematics 28.1 (1975), pp. 35–42.

[101] A Shafer and JC Hall. “Placing the mountain goat: a total evidence approach to
testing alternative hypotheses”. In: Molecular phylogenetics and evolution 55.1
(2010), pp. 18–25.

[102] DL Simon and B Larget. “Bayesian analysis in molecular biology and evolution
(BAMBE), version 2.03 beta”. In: Department of Mathematics and Computer
Science, Duquesne Univ., Pittsburgh, Pennsylvania (2000).

[103] TF Smith and MS Waterman. “Identification of common molecular subsequences”.
In: Journal of molecular biology 147.1 (1981), pp. 195–197.

[104] PH Sneath and RR Sokal. “Numerical taxonomy”. In: Nature 193.4818 (1962),
pp. 855–860.

[105] PS Soltis, DE Soltis, et al. “Applying the bootstrap in phylogeny reconstruction”.
In: Statistical Science 18.2 (2003), pp. 256–267.

160

Bibliography

[106] EA Sperling, KJ Peterson, and D Pisani. “Phylogenetic-signal dissection of nu-
clear housekeeping genes supports the paraphyly of sponges and the monophyly
of Eumetazoa”. In: Molecular biology and evolution 26.10 (2009), pp. 2261–2274.

[107] A Stamatakis. “Phylogenetic models of rate heterogeneity: a high performance
computing perspective”. In: Parallel and Distributed Processing Symposium, 2006.
IPDPS 2006. 20th International. IEEE. 2006, pp. 8–16.

[108] A Stamatakis. “RAxML Version 8: A tool for Phylogenetic Analysis and Post-
Analysis of Large Phylogenies”. In: Bioinformatics (2014).

[109] A Stamatakis. “RAxML-VI-HPC: maximum likelihood-based phylogenetic anal-
yses with thousands of taxa and mixed models”. In: Bioinformatics 22.21 (2006),
pp. 2688–2690.

[110] A Stamatakis and AJ Aberer. “Novel parallelization schemes for large-scale
likelihood-based phylogenetic inference”. In: Parallel & Distributed Processing
(IPDPS), 2013 IEEE 27th International Symposium on. IEEE. 2013, pp. 1195–
1204.

[111] A Stamatakis, AJ Aberer, C Goll, SA Smith, SA Berger, and F Izquierdo-
Carrasco. “RAxML-Light: a tool for computing terabyte phylogenies”. In: Bioin-
formatics 28.15 (2012), pp. 2064–2066.

[112] A Stamatakis and M Ott. “Load balance in the phylogenetic likelihood kernel”.
In: Parallel Processing, 2009. ICPP’09. International Conference on. IEEE. 2009,
pp. 348–355.

[113] M Steel and D Penny. “Origins of life: Common ancestry put to the test”. In:
Nature 465.7295 (2010), pp. 168–169.

[114] DL Swofford. PAUP*. Phylogenetic analysis using parsimony (* and other meth-
ods). Version 4. 2003.

[115] S Tavaré. “Some probabilistic and statistical problems in the analysis of DNA
sequences”. In: Lect. Math. Life Sci 17 (1986), pp. 57–86.

[116] R Thakur and WD Gropp. “Improving the performance of collective operations in
MPICH”. In: Recent Advances in Parallel Virtual Machine and Message Passing
Interface. Springer, 2003, pp. 257–267.

[117] RC Thomson and HB Shaffer. “Rapid progress on the vertebrate tree of life”. In:
BMC biology 8.1 (2010), p. 19.

[118] RC Thomson and HB Shaffer. “Sparse Supermatrices for Phylogenetic Inference:
Taxonomy, Alignment, Rogue Taxa, and the Phylogeny of Living Turtles”. In:
Systematic Biology 59.1 (2010), pp. 42–58.

[119] JL Thorley and M Wilkinson. “Testing the phylogenetic stability of early tetrapods”.
In: Journal of Theoretical Biology 200.3 (1999), pp. 343–344.

[120] L Tierney. “Markov chains for exploring posterior distributions”. In: the Annals
of Statistics (1994), pp. 1701–1728.

161

Bibliography

[121] WN Venables and BD Ripley. Modern Applied Statistics with S. Fourth. ISBN
0-387-95457-0. New York: Springer, 2002. url: http://www.stats.ox.ac.uk/
pub/MASS4.

[122] LS Vinh and A von Haeseler. “IQPNNI: moving fast through tree space and
stopping in time”. In: Molecular biology and evolution 21.8 (2004), pp. 1565–
1571.

[123] L Wang and T Jiang. “On the complexity of multiple sequence alignment”. In:
Journal of computational biology 1.4 (1994), pp. 337–348.

[124] JD Watson et al. “Molecular biology of the gene.” In: Molecular biology of the
gene. (1970).

[125] C Whidden and FA Matsen. “Quantifying MCMC Exploration of Phylogenetic
Tree Space”. In: Systematic Biology 64.3 (2015), pp. 472–491.

[126] M Wilkinson. “Majority-rule reduced consensus trees and their use in bootstrap-
ping.” In: Mol Biol Evol 13.3 (1996), pp. 437–444.

[127] Z Yang. Computational molecular evolution. Vol. 284. Oxford University Press
Oxford, 2006.

[128] Z Yang. “Maximum likelihood phylogenetic estimation from DNA sequences with
variable rates over sites: approximate methods”. In: Journal of Molecular evolu-
tion 39.3 (1994), pp. 306–314.

[129] C Zhang, B Rannala, and Z Yang. “Robustness of Compound Dirichlet Priors
for Bayesian Inference of Branch Lengths”. In: Systematic Biology 61.5 (2012),
pp. 779–784.

[130] J Zhang and A Stamatakis. “The multi-processor scheduling problem in phylo-
genetics”. In: Parallel and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW), 2012 IEEE 26th International. IEEE. 2012, pp. 691–698.

[131] CM Zmasek and SR Eddy. “ATV: display and manipulation of annotated phylo-
genetic trees”. In: Bioinformatics 17.4 (2001), pp. 383–384.

[132] E Zuckerkandl and L Pauling. Molecular disease, evolution and genetic hetero-
geneity. 1962.

[133] D Zwickl. “Genetic algorithm approaches for the phylogenetic analysis of large
biological sequence datasets under the maximum likelihood criterion”. PhD thesis.
2006.

162

http://www.stats.ox.ac.uk/pub/MASS4
http://www.stats.ox.ac.uk/pub/MASS4

