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ABSTRACT

Intelligent assistants are ubiquitous and will grow in importance.
Apple’s well-known assistant Siri uses Active Ontologies to
process user input and to model the provided functionalities.
Supporting new features requires extending the ontologies or
even building new ones. The question is no longer “How to
build an intelligent assistant?” but “How to do it efficiently?”

We propose EASIER, an approach to automate building and
extending Active Ontologies. EASIER identifies new services
automatically and classifies unseen service providers with a
clustering-based approach. It proposes ontology elements for
new service categories and service providers respectively to ease
ontology building.

We evaluate EASIER with 292 form-based web services
and two different clustering algorithms from Weka, DBScan
and spectral clustering. DBScan achieves a I score of 51%
in a ten-fold cross validation but is outperformed by spectral
clustering, which achieves a F score of even 70%.

Keywords: Natural Language Understanding, Ontology Build-
ing, Clustering, Web Mining, Service Discovery.

1. INTRODUCTION

Intelligent assistants such as Siri are more popular than ever.
In the beginning, they seemed to be toys solely designed to
attract technophile customers. But as their capabilities and
performance grew, more and more users use their intelligent
assistants seriously to perform everyday tasks. But progress
came with a price: The underlying logic, Active Ontologies
(AOs) in the case of Siri [1f], is hand-crafted for every single
function. Natural language processing (NLP) — as well as natural
language understanding (NLU) — is encoded within the AO’s
concepts. Tuning the NLU functionality is difficult.
Conceptually, there is one distinct AO for every service that
an intelligent assistant offers. The ontology models the data
necessary for the service and further optional details that the user
can give. In addition, the concepts within the ontology contain
code that is executed whenever the user interacts with the
assistant. The code and its execution make the ontologies active.
But AOs do not provide services by themselves. They only

capture the user’s intent and forward their commands to other
software components to execute them. Because of that, they
can be seen as user interfaces for a service oriented architecture
(SOA). Adding a new service provider (SP) is easy, as long
as it provides a functionality already modeled in an AO. If the
SP provides something different, a new AO must be designed
to model the mandatory (and optional) input data. As NLP is
part of the AO, modeling the input data is not enough. One
also has to encode the conditions and actions that process the
natural language input in the newly created AO. In short, the
implementation of new functionality is labor intensive.

We propose EASIER, a framework that simplifies integrating
new functionality in Active Ontologies. EASIER defines a pro-
cess for identifying new SPs for existing AOs and for creating
new AOs for unseen services. Also, EASIER can make use
of services offered as web (HTML) forms, as many services
that target end-users do not provide standardized web services.
Web forms are very popular because they are easy to use.
Web users with average experience usually have less problems
in formulating form-based queries compared to formulating
queries in structured languages (e.g., SQL). The wide distri-
bution of web forms makes them a perfect target for automated
service integration. Other service types, such as XML-RPC and
SOAP web services, can easily be integrated into EASIER using
specialized communication interfaces.

This paper details the overall approach of EASIER and
explains how we identify new services, add them to existing
service categories, and how we identify new service categories
automatically. The structure of this paper is as follows. Section 2]
reviews related work. Then we explain how intelligent assistants
are built using AOs and discuss the challenges. Sections 4] and [j]
explain our approach and present an evaluation of the first
steps, namely identifying services, building service categories,
and deriving AOs from category descriptions. Then we discuss
future work and conclude the paper.

2. RELATED WORK

EASIER needs to automatically derive ontologies from service
descriptions. It builds upon results from different research areas.
The first part of this section presents approaches for querying
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databases and forms with natural language. Then we present
approaches for extracting ontologies from (web) forms. The
third part presents different approaches for clustering (web)
services.

Querying Databases

Interacting with web forms is similar to querying databases.
Research in natural language interfaces to database systems
(NLIDB) has a long history. Androutsopoulos et al. [2] give
an introduction to NLIDB and present some of the linguistic
problems they encountered. Pazos R. et al. [3] review the state
of the art.

Meng [4]] presents an NL interface for retrieving information
from web forms. Words and phrases often have multiple mean-
ings; therefore, it can be hard to determine which form field
to fill the given information in. To solve this problem, he uses
n-gram statistics to examine the words’ contexts. If his system
does not reach a proper conclusion, it asks the user. EASIER
faces a similar problem when analyzing a user’s input.

Alvarez et al. present DeepBot, a hidden web crawler, that
interacts with web forms [5]]. DeepBot automatically identifies
forms and learns to execute queries on them. It needs a set
of form attributes (i.e. field names) and a set of queries (i.e.
attribute-value pairs). Also it calculates a probability for a given
form that indicates how relevant the form is for a specific
domain.

WISE-Integrator creates a single interface for several related
web forms [6]. It extracts labels and controls from the forms
including their visual representation (i.e. the HTML layout),
meta data, and semantic information derived from the labels.
Then it uses a two-step clustering technique to pair identical
elements of different web forms. WISE-Integrator also maps
form-specific field names to global field names that are used in
the integrated form.

Ontology Extraction

An et al. proposed an approach to map web forms to ontologies
[7]. They use machine learning to discover the mappings but
the ontologies must exist beforehand. EASIER must first create
the ontologies but extending the set of service providers for a
given ontology yields a similar problem.

OntoBuilder extracts ontologies from web forms and merges
ontologies from similar forms. Automatic ontology matching
supports merging ontologies. OntoBuilder considers the con-
cepts’ data types, their value constraints, the ordering within
forms, and syntactic features (e.g. form labels). Fields with
similar meanings are also identified using the forms’ layouts
(8]

Similar to ontology merging is ontology matching. It deals
with finding semantically related entities in different ontologies.
EASIER matches equivalent fields from different forms during
clustering. Otero-Cerdeira et al. provide a literature review of the
area of ontology matching [9]] and Shvaiko provides an extensive
list of publications [[10].

Berlanga et al. present a method for semi-automatically build-
ing ontologies from forms [[11]. Their tool FAETON extracts
a logical model from a form’s components, i.e. its labels and
text input fields, their visual and geometric features (e.g. font
size or color), and the component’s type information. Domain
ontologies and thesauri are used to annotate textual sections
and control labels. The logical model and the annotated form
elements are combined to build the ontology.

Special Food
Need Wi-Fi?

Destination

Time of Departure

O Mandatory Node O Optional Node —> Relationship

Fig. 1. An ontology modeling the input data for the flight booking
domain. Optional information is not needed to book a flight.

Service Clustering

EASIER identifies service categories and new SPs for these cate-
gories by clustering. The following paragraphs present different
approaches to clustering and give examples of their applications
on web services and business processes.

Liang et al. take a two-tier clustering approach with k-
means and bisecting k-means to cluster web services into
categories [12]. They derive features for clustering from the
WSDL descriptions and other meta data of the web services
and take the categories from the UNSPSC taxonomy.

Reddy and Damodaram semantically cluster services of a
SOA [13]]. They use DBScan, a density-based clustering algo-
rithm, to cluster the services based on the service descriptions.
They pre-process the descriptions to remove stop words, to
perform stemming, and to resolve synonyms; too general words
are removed as well. The clusters are then used to semantically
search for services instead of a keyword-based search.

Zhang et al. demonstrate how one can use spectral clustering
to detect similar functionality in service-oriented architectures
[14]. They build a call graph from interaction log files and derive
a similarity matrix from the graph. Then a principal component
analysis (PCA) is used to reduce the dimensionality of the
matrix. Finally, k-means is used to build clusters. Reducing the
dimensionality is necessary in our approach as well but the PCA
creates new dimensions as linear combinations of existing ones,
which can be hard to interpret. Furthermore, EASIER cannot use
a PCA because the services’ components are used in the AO
for extracting single parameters from natural language input.

Jung et al. use hierarchical clustering to identify similar
business processes [15]. A business process contains a number
of activities, which are encoded as vectors. Then they compute
the pairwise similarity between the activity vectors and use
a weighted sum to determine the similarity of two processes.
The clustering iteratively merges the two most similar clusters
starting from single-element clusters until all elements are
merged. With hierarchical clustering, one can choose the number
of clusters a-posteriori.

3. SYSTEM OVERVIEW

This section explains AOs in detail and provides an overview
of the EASIER Active Server architecture.

Active Ontologies by Example

Guzzoni introduced AOs for natural language understanding
[16]l, [17]]. They proved to be especially useful for implement-
ing intelligent assistants [I]. AOs model domain knowledge
and combine that knowledge with an execution environment.
Real world entities are represented as concepts, which can
be connected by relationships. Information is stored as facts



(i.e. logical predicates) in a global fact store. Figure [T] shows
an example AO for the flight booking domain. The ontology
models the information needed to make a booking: as shown,
a place of origin, a destination, a departure time, and a travel
class are mandatory for a booking. Yet, deciding whether one
wants Wi-Fi or special food is optional.

AOs process natural language bottom-up: Incoming utter-
ances are added to the fact store and processed by the leaf nodes.
Every concept has a set of rules that are automatically evaluated
when information is added to the fact store. An evaluation
engine regularly checks the fact store for newly inserted or
updated facts. If the facts have changed since the previous check,
a new evaluation cycle begins. In an evaluation cycle, all rules
are checked. The rules consist of one or more conditions and
an action; if the conditions are satisfied, the respective node
fires and the actions are executed. Unification (FOL) is used to
identify facts, which match the conditions. Conditions of the
leaf nodes’ rules check the incoming utterances for specific
information; e.g., the “destination” node seeks for airports or
city names. The action part of the rule then forwards the ac-
quired information along the relationships using communication
pipes. Thus, relationships do not only model the structure of the
domain knowledge but also the data flow in the AO. A leaf can
fire multiple times in a single evaluation cycle if the relationship
permits multiple messages. Also, actions can add facts to the
fact store.

Inner nodes receive the messages from their children and
then decide to send new messages to their parents. If the root
node receives messages from all of its mandatory children, the
desired task can be executed (i.e. calling an external service,
creating new facts, etc.). When information is missing (e.g., a
parent node receives messages from all but one of its mandatory
children), the node can decide to ask the user.

As the natural language input can be generated by an auto-
matic speech recognizer, the information does not need to be
accurate. Therefore the messages from one node to its parents
can contain additional information such as a confidence; the
parent node then has to decide whether the confidence is high
enough or whether the message should be discarded.

EASIER Active Server Architecture

The EASIER Active Server is a runtime environment for AOs
and consists of the following components (cf. Figure [2): It has
one evaluation engine and one fact store. Therefore, all AOs on
one server have access to the same information.

Every task is modeled in one rask Adﬂ The task AOs only
gather the needed information and use service providers to
fulfill the tasks. To decouple task AOs and SPs, the task AOs
only need to know the service category. A special AO, the
broker, forwards the requests to one or more service providers.
A service category can include multiple service providers with
the same functionality, e.g. two flight booking services. Also,
connection handling, request submission and result processing
is transparently handled by the broker. It uses the server’s
communication interface to contact the services.

If a dialog with the user is necessary, the task AOs rely on an
other special purpose AO, the dialog manager (DM in Figure[2).
The dialog manager uses the dialog interface to interact with
the user. Task AOs do not need to know how to handle user
interaction. To trigger user interaction, task AOs simply insert

! For the sake of simplicity, we assume that every task is modeled in
a different task AO. Merging two similar task AOs is indeed possible
and can be beneficial when the similar information is needed.
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Fig. 2. The EASIER Active Server architecture, inspired by [[17]. AOs
use facts to communicate with each other. Special AOs, the dialog
manager and the broker respectively, handle interaction with the user
and service providers.

facts into the fact store to indicate that mandatory or optional
information is missing or could be specified respectively.

Active Ontology Building Blocks

AOs contain leaf nodes and non-terminal nodes. Leaf nodes
process input and send the extracted information to their parents.
They can contain any user-defined rule but there are special
leaves with the following predefined functionalities:

o Vocabulary list leaves compare incoming tokens with a
user-defined list of words.

o Prefix and postfix leaves consider several tokens follow-
ing/preceding one or more keywords.

o Regular expression leaves use a regular expression to iden-
tify well-formed tokens, e.g. ZIP codes or email addresses.

o Specialized leaves or groups, e.g. date and time leaves to
identify exact dates and to determine relative dates such
as “tomorrow” or “now”.

Inner nodes can as well contain any user-defined rule but

usually one of the following nodes is used:

o Gather nodes aggregate incoming information and report
to their parents.

o Select nodes pick one of their child nodes’ messages and
forward it to their parents. Usually, they select the message
with the highest confidence.

Usually the root node of an AO is a gather node that collects

all information from its child nodes and triggers a command.

4. APPROACH

Today, intelligent assistants use pre-selected web services to
fulfill user queries. However, a considerable amount of informa-
tion is only accessible through form interfaces. Harnessing web
forms as information resources for intelligent assistants would
increase usability.

Manual construction of AOs is very time consuming. A new
AO must be created every time when one extends the system
with a new service category. This is currently done manually
and is labor-intensive. At the moment, automatic connection of
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Fig. 3. Mapping forms to Active Ontologies. Commons fields are
merged in the ontology; optional nodes represent form-specific fields.

HTML Form Element Type  Sources for input validation
Radio button v buttons’ values

Check box group \'%& check boxes’ values
Select (single) \'% Options

Multi-Select V* Options

Color picker v Colors

Date or time picker S Date/time detection group

Input (with pattern) R

TABLE I
DERIVATION RULES FOR AO LEAVES FROM FORM FIELDS
(EXCERPT). TYPES: (V)OCABULARY LIST LEAF, (S)PECIALIZED
NODE GROUP, (R)EGULAR EXPRESSION LEAF. (*) MARKS
MULTI-VALUED INPUTS.

RegEx from pattern attribute

(new) Internet services is not possible. One problem is to map
natural language to a form’s fields. Field values can refer to
several fields. Another problem is determining if the input is
valid. Every field expects a certain kind of information. For
many HTML input fields the expectation is not given explicitly.
HTMLS offers new field types and provides validation support.
E.g., for number fields, valid values and ranges can be specified
by using the “number” attribute. Regular expressions can be
defined to check the input fields’ values against using the
“pattern” attribute. Fields can be marked as required.

We propose to automate the creation of AOs. Our approach
comprises the following steps: 1) We identify form-based ser-
vices. We crawl the web for HTML forms and extract them
with meta information. 2) We cluster the identified web forms
to mine service categories using spectral clustering [[18]. We
considered DBScan [19]] as well, but spectral clustering per-
forms much better (cf. [Figure 3). The clustering algorithms use a
combination of the form elements’ types, the frequency of their
occurrence and their semantics to create features. The semantics
can be determined by analyzing the form elements’ labels. Some
form elements can be specified in more detail by attributes
like “name”, “value”, “title” or “placeholder”. The attributes
contain the elements’ semantics and are used for matching fields

from different forms with the same meaning by the clustering
algorithm. We use WordNet [20] to determine the synonyms for
the values to facilitate matching. 3) We automatically construct
AOs for each service category from features that distinguish
clusters. Each feature needed for clustering becomes one leaf
node.

We derived a plan for constructing task AOs from the
identified features. One task AO is created for each service
category. Common features shared by all forms of a service
category are modeled as mandatory nodes. All other features are
optional (see [Figure 1). To make the created ontology active,
it is necessary to determine which node type to use for each
node. The selection of the suitable node type depends on the
form elements. Each node type must be provided with a list of
valid values or pre- and/or postfixes, etc. Some form elements
provide information about valid values or data types. E.g., a
select element contains a list of valid options. EASIER uses this
list to generate a vocabulary list leaf with the provided options.
The “type” attribute of input elements indicates that the input
must be in a certain format, e.g. a “date”, “tel”, etc. EASIER
exploits the type to specify the input verification rules in the
generated leaves, the regular expression pattern is extracted as
well. [Table I summarizes the derivation rules for AO leaves from
HTML form fields. If no input validation hints are given, the
information must be provided by the AO developer.

After creating the task AO representing one service category,
it is registered with the EASIER system. For registering a ser-
vice category, the following information must be provided: the
unique name of the new service category (manually entered), all
mandatory and optional parameters representing the nodes, and
the parameter types e.g. “street”, “telephone number”, etc. SPs
are registered separately using the name of the corresponding
service category, a unique name for service identification and
distinction, and information how to call the service. For form-
based services, the URL (for single form) or URLSs to all forms
(for multi-stepped forms) are stored. For invoking the individual
SPs with the correct parameter names, a mapping of all parame-
ters to the category’s AO must be provided. Such mappings are
needed for each mandatory node of the task AO. shows
the forms of two SPs and the corresponding task AO. Form A
contains a field labeled “From” for filling in a flight’s origin (i.e.
an airport). The name of the corresponding task AO’s node is
“Origin”. In this case, a mapping A.From—Origin is necessary
and stored during the service registration of form A. Information
from optional nodes can be used to further refine the desired
service call.

The broker uses this mapping information to select and
invoke the individual SPs of the respective service category (as
provided by the task AO) with the correct parameters. Three
different invocation modes are supported by the broker: First,
SPs can be invoked sequentially until the first SP returns a result
which can be forwarded to the user. SPs can be invoked in
parallel and one can tell the broker to wait for all SPs to respond
or to return with the first received result: When using parallel-
single mode, all SPs are invoked concurrently but only the first
answer to a request is returned to the user. In parallel-all mode,
the results of all SPs are collected, aggregated, and then returned
to the user.

5. EVALUATION

We started a web crawler with seven URLs, such as Wikipedia’s
list of airlines, and assembled a set of 292 different web forms.
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Fig. 4. In depth analysis of the clustering algorithms.

We labeled them manually with their service categories. We
evaluate two classifiers using Weka’s implementation of
DBScan and spectral clustering respectively. We perform a ten
fold cross-validation with Weka to determine precision and
recall of the trained classifiers and use 90% for training and
10% for testing.

Before that, we report an in depth evaluation of both clus-
tering algorithms as they must be parameterized. The quality of
clustering can be measured with purity. Its value ranges from 0
to 1, with 1 as optimal value. Purity determines the fraction of
true positives in a cluster aggregated for all produced clusters.
Perfect purity can be easily achieved, e.g. if every service gets its
own cluster. To find a trade-off between the number of clusters
and purity, one can measure the normalized mutual information
(NMI). It measures the purity of clusters but penalizes over-
fitting. NMI ranges from O to 1; it is 1, if every class is predicted
perfectly by the classifier and every class forms one cluster.

shows the metrics for DBScan with different

configurations. DBScan must be given minimum number of
elements in a cluster k € {0, ...,5} and a radius r € (0, 2]. As
one can see, purity and NMI decrease with increasing & for any
given radius. DBScan achieves the best results for r = k& = 1.
The number of clusters with this configuration is quite high, 74,
but the number drops to 15 for k = 2, which is too low. The
best NMI is 0.66 for r = k = 1.

shows the metrics for the spectral clustering
algorithm. Spectral clustering has only one parameter, o, that is
the similarity threshold used for edge pruning. It performs best
with ¢ = 0.66 which results in 30 clusters with 81% purity.
Spectral clustering outperforms DBScan with respect to NMI
by ten percentage points on average.

F1gure S|shows precision and recall of both classifiers for nine
service categories. DBScan achieves a precision of 55% and a
recall of 47% on average. It performs best on login, contact,
and weather information forms. Car rentals and newsletter
subscriptions are similar to flight information and contact forms
respectively. DBScan does not classify such forms properly,
rendering the results for these categories unusable. Spectral
clustering outperforms the precision of DBScan in all but
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Fig. 5. Comparison of DBScan and spectral clustering for the main
service categories.

two categories, login and contact form; recall is better in all
categories. On average, precision is 69% and recall is 70%.

6. CONCLUSION AND FUTURE WORK

We presented EASIER, a framework to build AOs from web
forms automatically. Our preliminary results are promising but
leave room for improvement.

EASIER automatically identifies form-based services and
classifies them using clustering techniques. For each service
category, one AO is created using the derivation rules listed in
The AOs are used for processing natural language and
invoking the corresponding SPs. SPs and service categories are
registered with the EASIER framework. Additional form-based
services can easily be classified in one of the existing categories
and, after registration, invoked by the EASIER Active Server.

Clustering is flexible and we evaluated DBScan and spectral
clustering. The clustering algorithms achieve F} scores of 51%
and 70% respectively but could be further improved. Our bench-
mark contains 292 web forms and will be further expanded.
Future work will investigate if more training data improves
precision and recall significantly or if other clustering techniques
or an entirely different approach are needed.

Both algorithms lack precision and recall if service categories



are too similar (e.g. car rental and flight booking). An inter-
mediate approach could use gazetteer lists mapping company
names to service categories. Also, classifying such services
could benefit from meta data extracted from the corresponding
web page (e.g. headings on the page) and its context (e.g. the
entire Internet presence of a company).

EASIER automatically proposes ontologies for forms or on-
tology fragments for form elements that provide information
about the expected data type and range. For unrestricted input
fields, no ontology nodes can be proposed though. We want to
decrease the manual effort further by drawing from additional
information resources such as an upper ontology.

An active ontology editor could provide support in semi-
automatically creating an AO. The tool could propose appro-
priate AO building blocks for form elements where EASIER
cannot automatically select a mapping. Then the user could be
prompted to select a suitable AO building block and to enter
the form element’s expected data type, range, or list of possible
values.

At the moment, ontology generation does not regard the form
layout. The order of fields or visual grouping of fields could
provide further semantic information. Future work will also
investigate how to obtain and use that information.

From an engineering point of view, there is work left to do.
The EASIER Active Server supports off-line updates only, i.e.
new services (and service categories) cannot be registered at
runtime. We plan to expose the API for service category creation
and service provider registration as a web service.

Before handing over the results to the user, they must be
consolidated and cleaned up. Automating this process is still an
open issue which requires further research.

Harnessing semantic web technologies should improve ser-
vice identification, AO generation, and result extraction. Unfor-
tunately, commercial web sites hardly provide semantic annota-
tions.
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