
Dynamic Decision-making in Continuous Partially
Observable Domains: A Novel Method and its

Application for Autonomous Driving

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

der Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Sebastian Brechtel

aus Germersheim

Tag der mündlichen Prüfung: 6. Juli 2015

Erster Gutachter: Prof. Dr.-Ing. Rüdiger Dillmann

Zweiter Gutachter: Prof. Dr. Wolfram Burgard

This document is licensed under the Creative Commons Attribution 3.0 DE License

(CC BY 3.0 DE): http://creativecommons.org/licenses/by/3.0/de/

Abstract

Decision-making is a crucial challenge on the way to autonomous systems, including

robots and self-driving vehicles. In real-life tasks, dynamics play a critical role and

the ability to anticipate and assess future consequences is essential for making robust

decisions. However, this is aggravated by two factors: uncertainty and the continuous

nature of the environment. Uncertainty arises because information is limited. The de-

velopment of situations is stochastic and can only be partially observed. Uncertainty

also characterizes the task of autonomous driving in traffic. The behavior of human

drivers can only be predicted with uncertainty. Further, most aspects of situations re-

main hidden because, for example, the view is blocked. Even with good visibility, the

precise state of the environment is never known due to inevitable measurement er-

rors. Decision makers are forced to reason about possible developments as well as

their own ability to acquire knowledge about these developments. The already high

complexity of this task is further increased for continuous space problems, where ev-

ery situation potentially develops in an infinite number of ways. Additionally, from

the viewpoint of the decision maker, every situation can manifest in an infinite num-

ber of measurements. Partially observable Markov decision processes (POMDPs) are

a principled mathematical framework for modeling sequential decision problems un-

der uncertainty. However, due to their complexity, no sufficient methods for solving

complex, high-dimensional continuous POMDPs such as driving in traffic exist.

In this work, we advance the state-of-the-art in artificial intelligence and machine

learning by developing a novel, general method for solving continuous POMDPs ap-

proximately. In contrast to previous work, we do not impose fundamental prior re-

strictions on the POMDP’s models. Instead, we find adaptive approximations by inte-

grating value-directed machine learning into continuous Monte Carlo value iteration.

This way, we simultaneously solve the POMDP and learn a problem-specific, discrete

representation for the policy. In addition, we contribute to research in robotics and

autonomous driving with a general approach to decision-making for self-driving ve-

hicles. We model the driving problem as a continuous POMDP and solve it with the

presented method. Previous approaches either simplify the problem, for instance, by

neglecting uncertainties, or are restricted to specific tasks, such as highway driving.

Although our approach is not limited to a certain task, it anticipates uncertainties and

complex situation developments, including cooperative interaction between drivers.

i

Zusammenfassung

Die Fähigkeit in der realen Welt Entscheidungen zu treffen ist essentiell für alle Ar-

ten von autonomen Systemen, jedoch gleichzeitig höchst komplex. Für eine ratio-

nal begründete Entscheidungsfindung in dynamischen Systemen müssen die Konse-

quenzen von Handlungen antizipiert und abgewogen werden. Dies wird dadurch er-

schwert, dass sich Entwicklungen nur mit Unsicherheit vorhersagen lassen und gleich-

zeitig nie vollständig und exakt wahrgenommen werden können. Diese Eigenschaften

sind auch für den Straßenverkehr prägend: Die Intentionen anderer Verkehrsteilneh-

mer können nicht direkt wahrgenommen und daher ihre Verhalten nicht genau prä-

diziert werden. Aus dieser Unsicherheit resultiert eine enorme Vielfalt an möglichen

Situationsverläufen. Gleichzeitig erfassen Sensoren immer nur Bruchteile der Umge-

bung, da zum Beispiel Häuser die Sicht verdecken. Selbst wenn ein anderes Fahrzeug

direkt wahrnehmbar ist, unterliegt jede Messung Fehlern. Um dennoch sichere Ent-

scheidungen treffen zu können, muss diese Unkenntnis des genauen Zustandes der

Welt explizit behandelt werden. Dazu gehört nicht nur die Vorhersage von Situations-

verläufen, sondern auch das Antizipieren, ob und wie genau zukünftige Situationen

wahrgenommen werden können. Die Komplexität der Entscheidungsfindung erhöht

sich dadurch noch zusätzlich. Hinzu kommt, dass die reale Welt kontinuierlich ist. Da-

durch kann sich jede Situation potenziell auf unendlich viele Arten weiterentwickeln.

Der Raum der Wahrscheinlichkeitsverteilungen über dem kontinuierlichen Zustands-

raum, welcher unsichere Situationen beschreibt, ist sogar unendlich-dimensional.

Naives, erschöpfendes Planen wird damit unmöglich und es müssen sinnvolle Verein-

fachungen des Problems gefunden werden.

Partially Observable Markov Decision Processes (POMDP) bieten ein allgemeines,

mathematisch fundiertes Rahmenwerk, um sequentielle Entscheidungsprobleme mit

Unsicherheiten in der Prädiktion sowie in der Wahrnehmung zu modellieren. Dis-

krete POMDP von mittlerer Größe können heute bereits approximativ gelöst werden.

Autonomes Fahren ist jedoch, wie die meisten realen Probleme, ein Prozess im kon-

tinuierlichen Raum. Für hoch-dimensionale oder gar kontinuierliche POMDP, wie

das autonome Fahren, existieren bisher keine ausreichenden Lösungsverfahren. Wie

für die meisten Probleme existiert auch keine allgemeingültige, ausreichend niedrig-

dimensionale Diskretisierung des Problems. Wie geeignet eine Diskretisierung für

ein Entscheidungsproblem ist, hängt dabei von der genauen zugrundeliegenden Pro-

iii

blemstellung ab und kann je nach Situation variieren. Menschen können in solchen

Systemen nur agieren, indem sie beim Planen Heuristiken anwenden, vereinfachen

und problemspezifisch abstrahieren.

Wissenschaftlicher Beitrag Zwei Beiträge dieser Arbeit können hervorgehoben wer-

den. Zum einen wird in der vorliegenden Arbeit eine neuartige, allgemeine Methode

zum effizienten approximativen Lösen von kontinuierlichen POMDP mittels Value Ite-

ration entwickelt und umgesetzt. Die zentrale Grundidee des Verfahrens ist, dass nur

Zusammenhänge repräsentiert werden müssen, welche sich während der Planung als

relevant für die Lösung des Problems erweisen. Ähnlich wie der Mensch kann die Pla-

nung so von unwichtigen Details abstrahieren und die Berechnung vereinfachen. Um

diese Idee zu realisieren, wird eine problemspezifische diskrete Repräsentation des

kontinuierlichen Raumes automatisch, als Teil des Planungsprozesses, gelernt. Hierfür

wurde das Lernen einer effizienten, diskreten Repräsentation in ein kontinuierliches

Bellman α-Funktions-Backup integriert.

Die beiden grundlegenden Fortschritte dieser Methode gegenüber bisherigen Ver-

fahren sind, dass die Repräsentation nicht a priori festgelegt wird und dass als Kri-

terium für den nicht-parametrischen Lernprozess der Value, also die in der Zukunft

zu erwartende Belohnung, verwendet wird. Die Repräsentation wird demnach mit

dem Ziel gelernt, die Lösung des gegebenen Problems möglichst optimal darzustellen

und nicht, wie in bisherigen Ansätzen, alle Situationen. In der experimentellen Eva-

luation konnten mit diesem problemspezifischen, nicht-parametrischen Lernen 12-

dimensionale kontinuierliche Räume in realistischen Problemstellungen auf weniger

als 1000 diskrete Zustände reduziert werden.

Der zweite Beitrag dieser Arbeit ist ein allgemeiner Ansatz für die Entscheidungs-

findung von autonomen Fahrzeugen. In diesem Ansatz wird die Entscheidungsfin-

dung für autonomes Fahren als kontinuierlicher POMDP modelliert und automatisch

mithilfe der entwickelten Methode gelöst. Bisherige Arbeiten zur Entscheidungsfin-

dung für kognitive Automobile vereinfachen die zugrundeliegende Problemstellung,

indem sie beispielsweise Unsicherheiten ignorieren oder den eigentlich kontinuier-

lichen Verkehrsraum a priori diskretisieren. In dieser Arbeit wird gezeigt, dass gängi-

ge Vereinfachungen nicht für alle möglichen Situationen und Szenarien geeignet sind

und sogar gefährliche Konsequenzen haben können. Alternative Ansätze beschränken

sich auf Teilprobleme des autonomen Fahrens, wie zum Beispiel Autobahnfahren oder

verleihen dem Fahrzeug durch manuell erstellte Regelsätze Autonomie. Dieser Her-

angehensweise sind durch die hohe Situationsvielfalt und Problemkomplexität ins-

besondere von innerstädtischem Fahren jedoch Grenzen gesetzt. Vorausschauendes

Fahren erfordert begründetes Handeln auch in unbekannten Situationen. Aus diesem

iv

Grund ist ein generischer Ansatz zu bevorzugen, der nur ein fixes Ziel und fixe Modelle

benötigt, um für jede individuelle Situation selbsttätig eine Lösung abzuleiten.

In dieser Arbeit wird daher das Konzept verfolgt, das Problem zunächst als kontinu-

ierlichen POMDP zu formulieren, ohne dabei die Räume und Modelle grundlegend zu

vereinfachen oder zu beschränken. Eine Vereinfachung des Problems erfolgt anschlie-

ßend automatisch und adaptiv für das spezielle Verkehrsszenario durch das Repräsen-

tationslernen des entwickelten POMDP Lösungsverfahrens. Dadurch können kom-

plexe Sachverhalte wie Unsicherheiten und partielle Beobachtbarkeit durch Sichtver-

deckung, die Interaktion von Verkehrsteilnehmern untereinander und auch ihre Re-

aktionen auf Aktionen des autonomen Fahrzeugs dargestellt werden. Außerdem kann

Hintergrundwissen, wie zum Beispiel Straßenkarten, integriert werden. Die Evaluation

in mehreren Verkehrsszenarien zeigt, dass dieser Ansatz nicht auf bestimmte Fahrsze-

narien beschränkt ist.

Im Folgenden sind die wissenschaftlichen Beiträge der Arbeit zur Forschung in den

Bereichen Künstliche Intelligenz, Maschinelles Lernen und Robotik aufgelistet und ge-

gliedert:

1. Neuartige Methode zum effizienten Lösen von kontinuierlichen POMDP.

a) Point-Based Monte Carlo Value Iteration (PBVI) ohne grundsätzliche Be-

schränkung der Räume und Modelle.

b) Bellman α-Funktions-Backup, welches temporales Schließen mit dem Ler-

nen einer geeigneten Raumrepräsentation verbindet.

c) Automatische Abstraktion und Generalisierung der Planung im kontinuier-

lichen Raum.

d) Effiziente Implementierung der Methodik, die in der Lage ist, hoch-

dimensionale, realistische Probleme zu lösen und in Experimenten schnel-

ler bessere Entscheidungsstrategien erzeugt als existierende Verfahren.

2. Allgemeiner Ansatz für die taktische Entscheidungsfindung von autonomen

Fahrzeugen.

a) Repräsentation von Entscheidungsproblemen im Straßenverkehr als kon-

tinuerlichen POMDP.

b) Durchgehend probabilistische Formulierung.

c) Anwendung der kontinuierlichen Lösungsmethodik für autonomes Fahren

in Kreuzungs- und Einfädelsituationen mit nicht-trivialen Sichtverdeckun-

gen.

v

Danksagung

Zunächst möchte ich Professor Rüdiger Dillmann für seine Betreuung sowie die jah-

relange gute Zusammenarbeit danken. Er lehrte mich wichtige Grundlagen zur guten

Mitarbeiterführung, zum selbständigen wissenschaftlichen Arbeiten und nicht zuletzt

gewährte er mir die nötige Freieit zu forschen. Ich bedanke mich bei Professor Wolfram

Burgard für sein großes Interesse und seine herausfordernden Gedanken und Fragen

zu meiner Arbeit. Ich bedanke mich außerdem für die inspirierenden und lehrreichen

Gespräche und Diskussionen mit den Professoren am KIT im Vorfeld meiner Arbeit.

Genannt seien hier unter anderem Marius Zöllner, Hannes Hartenstein, Jürgen Beye-

rer und Ralf Reussner. Diese Arbeit wäre nicht möglich gewesen ohne das Engagement

meiner Studenten und ohne meine Kollegen am Humanoids and Intelligence Systems

Lab. Ein ganz besondereres Danke geht an meinen Kollegen und guten Freund Tobi-

as Gindele. Ohne seinen außergewöhnlichen Optimismus, Motivation, Neugier und

Fachkenntnisse wäre meine Arbeit sicherlich nicht die, die sie heute ist. Ich danke ihm

für lehrreiche Zusammenarbeit und schöne gemeinsame Zeit. Hervorheben möchte

ich zudem Rainer Jäkel, Pascal Meißner, Sven Schmidt-Rohr, Alexander Kasper, Ste-

fan Ulbrich sowie Joachim Schröder. Ein großes Dankeschön auch an Christine Brand,

Diana Kreidler und Isabelle Wappler für ihre Unterstützung in allen bürokratischen

und vor allem menschlichen Fragen. Ich danke Professor Tamim Asfour und Peter

Steinhaus für ihre selbstlose Unterstützung auch in schwierigen Zeiten.

Ich danke meinen Studienkollegen und Freunden Florian Faion, Sebastian Wirkert,

Andreas Geiger und Christian Hirsch. Unsere allwöchentliche “Mittwochsrunde” war

immer eine Quelle von Ablenkung, Entspannung, aber auch Inspiration.

Ich danke meinen Eltern Ingrid und Willi, die immer ihr Möglichstes getan haben,

um mich bei der Verwirklichung meiner Träume und Entwicklung meiner Fähigkeiten

zu fördern. Danke auch an meinen Bruder Tobias, den ich immer und in allen Lebens-

fragen an meiner Seite weiß. Ich danke meiner Tochter Nova Auguste, die mich in der

kurzen Zeit, in der sie da ist, schon so viel über das Leben und die Lebensfreude gelehrt

hat.

Ich widme diese Arbeit meiner Lebenspartnerin Sarah Helen Kächele. Du hast die

besondere Fähigkeit, mir neue Blickwinkel auf die Welt zu eröffnen, die vieles in einem

anderen Licht erscheinen lassen. Damit ergänzt Du mich. Danke für unsere wunder-

bare gemeinsame Zeit.

vii

Contents

1 Introduction 1

1.1 Thesis Statement . 5

1.2 Problem Statement . 5

1.2.1 General Decision-making . 5

1.2.2 Tactical Decision-making for Autonomous Driving 6

1.3 Concept and Contributions . 8

1.4 Document Outline . 10

2 Related Work on Decision Making for Driving 13

2.1 Tactical Decision-making . 14

2.1.1 Manual Decision Programming . 15

2.1.2 Utility- or Value-based Decision-making . 18

2.2 Related Research Topics . 25

2.2.1 Perception . 25

2.2.2 Object Tracking . 25

2.2.3 Situation Interpretation and Prediction . 26

2.2.4 Motion Planning and Vehicle Control . 28

2.2.5 Cooperative Driving . 29

2.2.6 Robot Navigation . 29

2.3 Discussion of Related Work . 30

2.3.1 Common Simplifications to Reduce Complexity 30

2.3.2 Conclusion . 33

3 Background on (Partially Observable) Markov Decision Processes 37

3.1 Definitions and Preliminaries . 38

3.1.1 Markov Decision Process (MDP) . 38

3.1.2 Partially Observable Markov Decision Process (POMDP) 39

3.1.3 POMDP Formulated as a Belief State MDP . 42

3.2 Solving Decision Processes . 43

3.2.1 History of Related Work . 43

3.2.2 Complexity of Solving MDPs and POMDPs . 44

3.3 Value Iteration for MDPs . 46

ix

Contents

3.4 Value Iteration for POMDPs . 46

3.4.1 Policy Tree . 47

3.4.2 Value Function Representation with α-vectors . 48

3.4.3 Belief State Value Iteration for POMDPs . 49

3.4.4 Exact Value Iteration for POMDPs Using α-vector Backups 52

3.4.5 α-vector Domination . 53

3.5 Approximate Point-based Value Iteration for POMDPs 54

3.5.1 Point-based α-vector Backup . 55

3.5.2 Difficulty of Approximating POMDPs . 60

3.6 POMDP Applications . 61

3.7 Conclusion . 63

4 Continuous Partially Observable Markov Decision Processes 65

4.1 Preliminaries on Continuous POMDPs . 66

4.1.1 Continuous-state POMDPs . 66

4.1.2 Continuous-observation POMDPs . 67

4.1.3 Continuous-action POMDPs . 68

4.2 Related Work on Solving Continuous POMDPs . 68

4.2.1 Stochastic Optimal Control . 69

4.2.2 Parameteric Representations for General Continuous POMDPs 70

4.2.3 α-function Bellman Backup with Gradient Information 71

4.2.4 Policy Graph Representation and Policy Search 72

4.2.5 Value-directed Space Representation . 72

4.3 Continuous Value Iteration . 73

4.3.1 Continuous Belief-state Bellman Backup . 75

4.3.2 Continuous α-function Representation and Bellman Backup 75

4.3.3 Point-based α-function Bellman Backup . 77

4.4 Requirements for the Developed Method for Continuous POMDPs 80

4.5 Conclusion . 83

5 Continuous Value Iteration with Representation Learning 85

5.1 Conceptual Overview . 87

5.2 Monte Carlo (MC) POMDP Simulation and Bellman Backup 88

5.2.1 Drawing Sample Sets . 90

5.2.2 MC Belief Prediction . 93

5.2.3 MC Belief Value Backup . 94

5.2.4 Point-based MC α-function Backup . 95

5.2.5 Avoiding Sampling Redundancy . 98

5.2.6 Continuous Observation Spaces . 99

x

Contents

5.3 Discrete Representation of Continuous Space . 100

5.3.1 Definition of a discrete representation . 100

5.3.2 Assumptions and Discrete Backup Derivation . 101

5.3.3 Discretization of Particle-based Beliefs . 105

5.3.4 Discrete Evaluation of α-functions . 106

5.4 Iterative Representation Learning . 107

5.4.1 Iterative Approach . 108

5.4.2 State Space Partitioning . 109

5.4.3 Decision Tree-based Partitioning . 110

5.4.4 Relationship to Decision Tree Learning for Predictive Modeling 113

5.4.5 Loss Function for Representation Learning . 114

5.4.6 Decision Tree Learning and α-function Discretization 115

5.4.7 Test Generation and Expanding the Decision Tree 116

5.5 Algorithmic Realization and Program Flow . 117

5.5.1 Lower and Upper Bound . 117

5.5.2 Belief Space Exploration . 118

5.5.3 Correction of Value Generalizations and Approximation Errors 119

5.5.4 Solver Main Loop . 122

5.6 Summary and Conclusion . 123

6 Decision-making for Autonomous Driving by Solving Continuous POMDPs 125

6.1 MDP and POMDP Spaces and Models for Driving . 126

6.1.1 State Space . 126

6.1.2 Observation Space . 128

6.1.3 Action Space . 128

6.1.4 Transition Model . 129

6.1.5 Observation Model . 134

6.1.6 Reward Function . 136

6.2 Generating Driving Policies by Solving the (PO)MDP . 137

6.2.1 Discrete MDP Value Iteration with State Space Growing 138

6.2.2 Continuous POMDP with Representation Learning 141

6.3 Conclusion . 143

7 Evaluation 145

7.1 Continuous POMDP Evaluation . 145

7.1.1 Comparison with Existing Methods—1D Corridor Problem 146

7.1.2 Convergence analysis—2D Corridor Problem . 149

7.1.3 Higher Dimensional Problems—8D Obstacle Avoidance 149

7.1.4 Non-linear Models—8D Obstacle Avoidance with Circular Motion 151

xi

Contents

7.2 MDP-based Highway Driving . 152

7.2.1 Empirical Testing . 152

7.2.2 Policy Analysis . 153

7.2.3 Space Representation in Decision Processes . 155

7.3 POMDP Decision-Making for Urban Driving . 157

7.3.1 Influence of Partial Observability—Intersection with Blocked View 159

7.3.2 Anticipation of Interaction—Zipper Merge . 162

7.3.3 State Space Representation—Merging into Moving Traffic with Limited

Perception . 164

7.4 Conclusion . 169

8 Discussion and Conclusion 171

8.1 Review of Thesis Statement . 171

8.2 Summary of Contributions . 173

8.3 Limitations, Applications, and Outlook . 176

8.3.1 Continuous POMDPs . 176

8.3.2 Tactical Decision-making for Driving . 177

8.4 Conclusion . 179

A Appendix 181

A.1 Alternative Reward Function Definition �r (s , a , s ′) . 181

A.2 Global α-function Representation . 182

A.3 Upper Bound Approximation . 183

Acronyms 185

Glossary 187

List of Figures 189

List of Algorithms 193

Bibliography 211

xii

Chapter 1

Introduction

Driving a vehicle in traffic requires the cognitive ability to constantly make the right

decisions even in complex situations. However, this task is made difficult because the

drivers’ knowledge about the environment and its development are uncertain: the be-

havior of other road users cannot be predicted with certainty and their intentions are

hidden to the decision maker. Even the physical state of the world can only be per-

ceived inaccurately and the majority of the environment remains completely hidden.

The complexity induced by these uncertainties is even aggravated by the fact that the

traffic state is continuous and high-dimensional. In conclusion, an infinite number of

possible developments have to be taken into account and even representing a single

situation can require infinite resources.

Motivation

The scenario in Figure 1.1 illustrates the inherent challenges of decision-making. The

first image shows an intersection scene from the driver’s perspective. His goal is to

turn right and merge onto the road. However, the line of sight to the incoming cars

is blocked by a house and a parked truck. He can only gather some information by

peaking through the gap between them.

In order to make safe decisions in this situation, the positions, orientations, and ve-

locities of the incoming cars have to be estimated from noisy measurements and their

potential motion has to be predicted. Eventually, the future effects of driving actions

have to be assessed, even if the cars are hidden for some time.

In fact, there is even more to it in this scene. In the first place, it is essential to stop

early to get a good view on the traffic. Making such a decision requires awareness of

one’s own ignorance. Ultimately, a decision maker must anticipate what he can see,

what he cannot see and what the consequences of knowing and not knowing might be.

In this thesis, a method is presented that is capable of autonomous decision-making

with partial information. The scenario in Figure 1.1 will be revisited and we show that

the new method is able to automatically generate a safe driving policy.

1

Chapter 1 Introduction

(a) Driver’s perspective.

(b) Birdseye view with lines of sight.
Map Data [City of Karlsruhe].

(c) Perspective from other side of the road.

Figure 1.1: Urban traffic scenario from different points of view. The blue line indicates the driv-
ing goal, the red and yellow lines the incoming traffic.

Dynamic Decision-making Under Uncertainty

Decision-making is the cognitive process of choosing between several alternatives in

order to achieve goals. The real world is usually dynamic so that future developments

have to be considered. The development of the world in turn depends on future de-

cisions. Thus, the result of decision-making must not only be a single, static decision.

It is a policy that determines the present and all future decisions even for unexpected

developments. Decision-making in real life settings is usually aggravated by uncer-

tainties arising through the stochastic dynamics of the environment and incomplete

information about the state of the world. Probability theory provides a mathematically

sound basis to model these uncertainties. However, often the state of the world must

be described with (infinitely many) continuous values because there is no generally

sufficient symbolic representation. In consequence, exact planning is infeasible. Hu-

man planners presumably apply heuristics and other forms of simplification to find

solutions that satisfy the given goal criteria [Botvinick and Toussaint, 2012]. Inspired

by the human ability to generalize thoughts and decisions, the main goal of this the-

sis is to combine the ideas of learning and planning in order to automatically find a

simplified representation that is suited for the specific decision problem. The derived

2

general method can be utilized for various applications including decision-making in

traffic.

Dynamic Decision-making for Autonomous Driving

The road-traffic domain in general and especially the task of autonomous driving is

a very good example for decision-making under uncertainty. The idea of self-driving

cars has been around since the invention of motor vehicles in the late 19th century.

Progress in research suggests that what has been an utopian vision for almost a cen-

tury is on the verge of becoming reality. Currently, universities, public research insti-

tutes, car manufacturers and even the search engine giant Google are putting consider-

able efforts into researching the technology (see Figure 1.2). For safe driving, decision-

making is one of the key capabilities. Despite traffic regulations, road markings, etc.,

traffic still is a real-world and mainly uncontrolled environment. The arising uncer-

tainties and the sheer variety of possible situations render decision-making in traffic

very difficult.

Driving is a highly dynamic process. For good driving decisions, possible outcomes

have to be anticipated and assessed. In order to avoid drawing the wrong conclusions,

it is very important to consider that behaviors of road users are complex and highly

coupled. Drivers make space, give way or simply brake (e.g., if a another car is block-

ing their lane). In this process, two main sources of uncertainty have to be considered:

the first source stems from the behavior of other road users. Their reactions are to

some extent rational and predictable, but their precise behavior remains stochastic

and cannot be predicted with absolute certainty. The reason for the second source

of uncertainty is that most parts of the environment are unknown. The intentions of

other road users are always hidden to sensors and can only be estimated over time

from measurable aspects, such as their poses or velocities. However, even physical

properties usually cannot be perceived, for example because objects block the view of

the sensors. When they are visible to the sensors, the observation of road users still un-

derlies significant noise. Because of these uncertainties, the long-term consequences

of driving decisions are not definite and driving can never be absolutely safe. Unfor-

tunately, quite the contrary is the case. Even the best decision can only minimize the

probability for accidents while still reaching the driving destination.

For rational decision-making in the domain of driving, not only potential develop-

ments of the world have to be predicted. The development of the decision maker’s

state of information and the process of his information gathering has to be anticipated

as well. Because of the arising combinatorial complexity, manually modeling of deci-

sions, for example, with rule-based systems, is difficult and error-prone. The number

of situations that have to be distinguished is exceedingly high. Often, situations only

3

Chapter 1 Introduction

(a) CoCar by [FZI]. (b) INTELLIGENT DRIVE by
[Mercedes-Benz]. 1.1

(c) Self-driving car by
[Google]. 1.2

Figure 1.2: Prototypes for autonomous driving.

differ in nuances and still require different reactions. Also, it is very difficult for human

experts to assess probabilities objectively and draw the right conclusions for decision-

making [Hogarth, 1975]. This is even intensified for sequential decision processes. In

this case, human experts would have to deal with chains of conditional probability

distributions.

Continuous Partially Observable Markov Decision Process (POMDP)

Based on probability theory, POMDPs provide a principled and powerful framework

for modeling sequential decision problems under uncertainties [Sondik, 1971; Kael-

bling et al., 1998]. In POMDPs, the decision maker estimates the state of the world

by making observations. Formulating the decision problem as a POMDP, enables

to judge and compare policies objectively. Advances in research made it possible to

solve discrete POMDPs of medium complexity in reasonable time. However, driving,

like most other real-world applications, has continuous and thus uncountably infinite

state and observation spaces. As a consequence, the belief space that represents the

knowledge about the state is not only high- but infinite-dimensional and known ap-

proaches for discrete state POMDPs are not directly applicable. A common approach

is transforming the continuous POMDP to a discrete POMDP. Finding a suitable dis-

cretization, however, is very difficult, as the quality of a representation varies heavily

depending on the specific task. Naive approaches to discretization, such as dividing

the space into equidistant regions fail for more complex and higher dimensional de-

cision tasks due to the curse of dimensionality. The resulting discrete space represen-

tation is, in some places, too coarse to model the necessary detail. In other places it is

too fine for planning with limited computational capacities. Current research on con-

tinuous POMDPs intends to eliminate the restriction to discrete spaces. The prospect

of being able to efficiently plan with complex continuous and uncertain decision pro-

cesses is very promising. It would open a much wider field of application, including

1.1Copyright Daimler AG. All Rights Reserved.
1.2Google and the Google logo are registered trademarks of Google Inc., used with permission.

4

1.1 Thesis Statement

robotics, health care and operations research. However, due to the exceedingly high

complexity, solving continuous POMDPs certainly is a challenge. In addition, one of

the main operations, when solving POMDPs, is computing continuous integrals which

do not have a closed-form solution, in general.

1.1 Thesis Statement

For decision-making in real-life environments, not only given information,

but also the lack of such must be considered. Approximate planning in

dynamic, continuous and partially observable environments can be made

feasible, if inductive learning is incorporated to realize the cognitive abil-

ities of generalizing thoughts and putting selective attention on relevant

information.

To support this statement, we propose a value iteration method for continuous

POMDPs that implements the stated cognitive abilities. We evaluate this method for

synthetic tasks as well as realistic traffic scenarios, where safe decisions can only be

derived, if uncertainties are considered.

1.2 Problem Statement

This thesis is concerned with the general task of making rational decisions under the

constraint that only uncertain and incomplete knowledge about the situation can be

obtained. It focuses on planning for dynamic decision processes where an agent acts

in a continuous environment in order to maximize a real-valued, predefined optimiza-

tion criterion over time. Special emphasis is put on the task of tactical decision-making

for autonomous driving.

1.2.1 General Decision-making

The following information is given to the decision maker:

Spaces: It is assumed that the known spaces are sufficient to solve the decision

process. This includes the state space representing situations and the observa-

tion space representing the measurements the agent can make with his sensors.

Both spaces can be either of discrete, continuous, or hybrid nature. In this work,

the term situation denotes the agent’s knowledge about the state of the world.

This knowledge can be given in form of a probability distribution over the state

5

Chapter 1 Introduction

space called belief.1.3 The action space is a discrete set of decision choices that

the agent can select from.

Models: We assume that sufficient knowledge about the decision process is given

in form of models that are put as conditional distributions. The agent knows the

capabilities and limitations of his sensors through the observation model. He

also has knowledge about the uncertain world dynamics and the influence he

has on it by choosing an action encoded in the transition model.

Reward: The reward function implicitly defines the goal of decision-making by

assigning rewards to states. As the decision process is probabilistic, the future

development and consequently the future reward cannot be determined with

certainty. The goal of the optimization is therefore to maximize the expected

reward over the future states (called the value).

Initial belief: Knowledge about the current situation is given by the initial belief.

This initial distribution is the starting point for planning.

The result of the decision-making system is a policy and a value. The policy tells the

agent which action to choose in the initial and the possible following situations. The

value is the reward that he can expect when executing the policy. Such a decision prob-

lem can be represented as continuous POMDP. Finding a policy then equals solving

the POMDP.

1.2.2 Tactical Decision-making for Autonomous Driving

For autonomous driving, the decision process can be specified. In Figure 1.3 a typical

hierarchical system architecture for an autonomous car is sketched. It resembles the

basic structure of a rational agent [Russell and Norvig, 1995] that interacts with the

world.

The main input to tactical decision-making is the current situation, a belief-

distribution over object poses and velocities. Information for the situation is gathered

by sensors (e.g., from odometry, and GPS for internal states and cameras or LIDAR-

sensors for external states). The perception system extracts abstract observations,

such as poses and velocities of objects, from these physical measurements. State es-

timation and interpretation extracts the situation: it solves the data association prob-

lem, fuses observations over time (e.g., multitarget tracking with Bayesian filtering)

and sets them into relation with the traffic context (e.g., with lanes). Additionally to

the situation, the agent has background knowledge about the environment, such as

1.3The belief is sufficient because we assume the Markov-property to hold. Alternatively, a situation can
be given by the history of observations and actions.

6

1.2 Problem Statement

Figure 1.3: Embedding of decision-making into the system architecture of an autonomous car.
Arrows illustrate the flow of information. Dashed lines indicate feedback loops over
time.

road maps and maps with static environmental objects that can block the view of the

sensors. The background knowledge also includes models for sensors and driver’s be-

haviors. The mission determines the goal of decision-making, similar to a turn-by-turn

navigation system giving directions.

The decision-making system selects high-level actions with a duration of 1 to 3 s,

such as accelerate or change lane. These actions parametrize the action execution, a

lower-level control system that eventually influences the development of the world

by setting the steering angle and operating the accelerator pedal or the brake. This

lower-level control system can also consist of several layers, such as motion planning

and trajectory-following control. It operates with shorter reaction times (< 100 ms) to

enable reactive maneuvers, such as emergency braking.

The task of tactical decision-making for autonomous driving is of special interest for

this work for two reasons. On the one hand, decision-making for driving represents a

big challenge because the traffic environment exhibits most properties that make se-

7

Chapter 1 Introduction

quential decision-making so difficult. It is continuous, partially observable, highly dy-

namic, and the dynamics are complex and indeterministic due to human interaction.

On the other hand, traffic regulations and the underlying road geometry and topology

induce some degree of structure to the problem. This restricts the number of possible

situation developments so that there is a realistic chance of solving the problem. To

our knowledge, no general approach to this problem has been proposed to date that

satisfies the requirements of self-driving cars. Solutions that neglect these properties

might create sufficient results for many, if not most driving situations. But they do not

pose a generally safe solution. In situations where these properties are predominant

they will fail. Hand-build solutions can consider these properties. However, the sheer

complexity of the task makes it impossible to predefine a reaction in every situation.

In unseen situations, this approach lacks the cognitive ability to generalize to new sit-

uations.

We define the following requirements for the resulting behavior policies, from which

we draw conclusions for the concept of this thesis:

Driving Goal: The policy should pursue multiple driving goals and find an ap-

propriate trade-off, if these are in conflict. It should lead the vehicle safely to its

destination and thereby respect secondary aspects, such as efficiency and com-

fort.

Anticipation: Decision-making should be able to predict possible developments

several timesteps ahead into the future, assess their impact and probability and,

finally, draw objective conclusions about the current decision. Special focus

needs to be put on the anticipation of mutual interactions of road users and also

their reactions to actions of the self-driving vehicle.

Information Awareness: The policy should account for its own ignorance re-

garding the current and future states.

Information Gain: The policy should actively and intentionally acquire infor-

mation, if this information is important for future decision-making.

Generality: The decision-making approach should be able to generalize to dif-

ferent situations without severe manual modification.

1.3 Concept and Contributions

Today, the usual approach for tactical decision-making for autonomous driving is

modeling decision policies manually. In contrast to this, we propose an automatic

8

1.3 Concept and Contributions

optimization approach based on models for the traffic dynamics and the way the au-

tonomous car can perceive it. Together with a reward function they define a decision

process that can be solved automatically to obtain a policy. We argue, that defining or

learning the task is easier and yields superior policies than manually defining the opti-

mal solution for every situation. Another important difference to most existing works,

is that we offer an end-to-end probabilistic formulation of driving. From the obser-

vations of the environment through the prediction of other drivers to the results of

applied control actions, we utilize probability theory as unifying language to account

for uncertainties on all levels of abstraction.

The concept of this thesis is to model decision-making problems as continuous

POMDPs and then solve them automatically. To be able to consider complex transi-

tion and observation models with interaction and background knowledge, we model

the POMDP in form of a dynamic Bayesian network (DBN). As a main contribution, a

general method for approximately solving POMDPs with continuous state and obser-

vation spaces is presented. It realizes the idea to simultaneously solve a continuous

POMDP and learn an efficient, discrete state space representation for every particu-

lar POMDP problem. A novel value iteration step is presented that integrates induc-

tive learning of an efficient discrete representation into an Monte Carlo (MC) Bellman

[Bellman, 1957a] backup. From a mathematical view-point, this allows computation

of the continuous integrals but the integration of learning also enables two human

abilities: to focus on relevant details and to generalize sparse planning results over

the infinite space. The presented continuous POMDP solver yields superior perfor-

mance compared to previous methods. It allows to solve higher-dimensional contin-

uous POMDPs without inducing principle restrictions for the models of the POMDP

(e.g., linear transition models). Due to this capability, it can be used for many other

applications besides driving.

For the application of decision-making on a tactical abstraction level for au-

tonomous driving, we present a general continuous POMDP, which meets all the re-

quirements defined in Section 1.2.1. By solving this POMDP formulation for a specific

situation, decisions can be derived automatically, without manual intervention.

This thesis contributes to research in robotics, machine learning and artificial intel-

ligence as follows:

1. Novel method for solving continuous POMDPs efficiently.

a) Point-based value iteration (PBVI) without restrictions of spaces or models.

b) Bellman α-function backup that integrates representation learning and

temporal inference.

9

Chapter 1 Introduction

c) Automatic abstraction and generalization of planning results over the con-

tinuous space.

d) Efficient implementation of the method that is able to solve high-

dimensional POMDPs and shows state-of-the-art exceeding performance

in experiments.

2. Approach to tactical decision-making for driving.

a) General representation of driving as a decision process.

b) End-to-end probabilistic formulation.

c) Evaluation of autonomous intersection handling and merging with non-

trivial occlusions.

1.4 Document Outline

This document is structured as follows. First, we give an overview of related work in the

context of decision-making for autonomous driving in Chapter 2. In Chapter 3, we give

a detailed introduction to decision-making under uncertainty with dynamic decision

processes, namely MDPs and POMDPs. We discuss the complexity of solving discrete

(PO)MDPs and present ideas and methods, in particular, approximate value iteration

for POMDPs. The background provided in this chapter is helpful for understanding

the method for continuous POMDPs that is developed in this work. While in Chapter 3

only discrete-space problems are considered, in Chapter 4, we generalize the discrete

problem to continuous state and observation spaces and discuss the consequences for

the difficulty of the problem. In this chapter, preliminaries and details are given that

are the basis of the novel algorithm for solving continuous POMDPs that we develop

in this work.

Chapter 5 describes the main contribution of this work. It presents the following

contents: MC algorithms for continuous-belief prediction and continuous value iter-

ation, integrating a discrete representation of the continuous space for efficient com-

putation of the continuous integrals, and machine learning a problem-specific repre-

sentation of the continuous value function.

In Chapter 6, the second contribution, a general approach for decision-making for

autonomous driving is developed. Therefore, we express the driving task as continu-

ous decision process. By solving the decision process, uncertainty-aware policies can

be generated. We explain how the decision process can be solved automatically with

discrete MDP value iteration or the novel method for continuous POMDPs.

In Chapter 7, we evaluate this line of action by solving automated highway driving

using the discrete MDP and urban driving scenarios with the presented continuous

10

1.4 Document Outline

POMDP. Further, the continuous POMDP is analyzed and compared with state-of-the-

art methods.

Notation We begin every chapter with a brief outline of its contents and how it inte-

grates into the document. Further, we give a detailed outline of the structure of the

chapter and conclude every chapter with a discussion of the insights. Text passages

with a special meaning are highlighted:

Text passages that make design decisions explicit are highlighted by a green bar on

the left (like this text passage).

Conclusions are highlighted with a blue bar on the left (like this text passage).

Throughout the document, we often use the name ego vehicle for the self-driving

car. In illustrations of traffic scenarios, it can be differentiated from other vehicles by

the circular shaped sensor on the rooftop (see for example Figure 1.1b).

11

Chapter 2

Related Work on Decision Making for Driving

This chapter gives an overview of approaches to decision-making and re-

lated tasks in the context of autonomous driving. The qualities and lim-

itations of existing methods are discussed, assessed, and conclusions are

drawn. A detailed introduction of general decision processes is given in

the next chapter.

Tactical decision-making for autonomous driving creates a policy (or a plan) that se-

lects high-level driving actions in every situation with the main goal to navigate the

autonomous vehicle safely to its destination (see Section 1.2.2). Approaches to this

task can be distinguished by the following criteria:

• Policy generation: Are decisions programmed by hand or are they generated

automatically (e.g., through learning or planning)?

• Utility: Does the decision-making have a notion of utility or value that assesses

how well a decision satisfies the goals of driving? Is it based on heuristics or de-

rived from models?

• Consideration of dynamics: Does the decision-making consider the dynamic

development of situations and can it predict them? Does it consider non-linear

models, interaction, and cooperation between traffic participants and the self-

driving vehicle? Are vehicles assumed to be independent from each other?

• Consideration of uncertainty: Are uncertainties in the dynamics and partial

observability considered at all? To which extent are they simplified? Common

simplifications are assuming a worst case scenario or conservatively estimating

probabilities. Often, probabilities are restricted, e.g., to uni-modal distributions.

• Information basis and representation: Which aspects of situations are consid-

ered for decision-making and how are they represented internally? For example,

discrete (often symbolic) and continuous representations can be differentiated.

• Generality: Is the approach limited to certain tasks or driving scenarios, such as

highway driving, or can it generalize to new situations and scenarios?

13

Chapter 2 Related Work on Decision Making for Driving

Chapter Overview In Section 2.1, we start with a short history of research in au-

tonomous driving in the light of tactical decision-making and discuss the current state-

of-the-art. Then, in Section 2.2, a brief outline of other related problems is given. In

Section 2.3, we conclude with a discussion and assessment of the presented methods

and draw conclusions for the approach developed in this work.

2.1 Tactical Decision-making

Already back in the 90ies, impressive results were achieved with autonomously driving

prototypes even in real traffic. Dickmanns et al. built a prototype vehicle VaMoRs that

was capable of rudimentary autonomous highway driving with manual interventions

[Dickmanns et al., 1994]. The purely reactive system ALVINN used Neuronal Nets to

directly train a control using camera images as input [Pomerleau, 1991]. This system

was originally designed for military purposes and basically realized road following in

unstructured terrain [Pomerleau, 1994]. At that time, the research focus of these pro-

totypes was on the architecture, control, vision, and practical integration rather than

decision-making. However, the importance and difficulty of decision-making for driv-

ing was recognized early. Forbes et al. developed a general approach considering dy-

namic uncertainties as well as partial observability for the BATmobile project [Forbes

et al., 1995] that led the way for many of the current decision-making systems.

In 2004 and 2005, the two DARPA Grand Challenges brought autonomous driving

back into the focus of the public and research [Buehler et al., 2007]. Being funded by the

Defense Advanced Research Projects Agency (DARPA), the focus was put on military

applications and driving in off-road and unstructured terrain, such as deserts, where

decision-making plays a minor role.

Decision-making became more important in the succeeding DARPA Urban Chal-

lenge in 2007 [Buehler et al., 2009], which moved the focus from unstructured to urban

environments. In contrast to the previous competitions, the vehicles had to navigate

safely in an environment with other traffic and obey traffic regulations. They faced

complex tasks such as merging into moving traffic. However, compared to real-life

traffic and, in particular, inner city traffic, decision-making was significantly facilitated

and uncertainties could be mostly neglected or simplified: no objects blocked the visi-

bility, e.g., at intersections, and the other drivers, being instructed professional drivers,

behaved relatively predictably. Further, road users other than cars, such as pedestrians

or cyclists, were neglected and the types of situations were limited. In consequence,

no general solution to the problem was required and hand-coded models sufficed.

Although the results of the Urban Challenge indicated that urban autonomous driv-

ing is feasible, real-life traffic is much more complex and requires more sophisticated

decision-making methodologies.

14

2.1 Tactical Decision-making

obstacle_passed

dangerous_object_appeared

DriveOnOppositeLane

dangerous_object_appeared

ChangeBackFromOppositeLaneChangeToLeftOppositeLane

dangerous_object_appeared

LaneChangeRecover

safe_state_reached

AbortLaneChange

recover_path_planned

dangerous_object_appeared

dangerous_object_appeared

[left_opposite_lane_free]

LaneChangePrepare

[left_lane_free]

[right_lane_free]change_point_reached

left_opposite_lane_reached

ChangeToLeftLane

ChangeToRightLane

LaneChange

Figure 2.1: Sub-state of AnnieWAY ’s state machine for lane changes [Gindele et al., 2008].

Current research in decision-making for cars mostly focuses on finding more general

and robust solutions to sub-problems, such as merging into traffic or highway driv-

ing. Especially automated highway and freeway driving are popular topics, presum-

ably due to their, compared to urban driving, manageable complexity. Thus, there is

a high chance that this functionality is ready for series production in the next years.

The long-term goal, however, is fully autonomous driving in all situations. Impor-

tant projects today include the Google Self-Driving Car, the PROUD project by VisLab

around Alberto Broggi that conducted experiments in Italy, and INTELLIGENT DRIVE

by Mercedes Benz that autonomously drove the historic Bertha Benz route [Ziegler

et al., 2014b].

2.1.1 Manual Decision Programming

The presumably most common approach to decision-making, today, is to model re-

actions to situations by hand. In the Urban Challenge, finite-state machines emerged

as the preferred representation for interpreting situations and making decisions in the

same framework [Kammel et al., 2008; Bacha et al., 2008; Miller et al., 2008; Bohren

et al., 2008; Montemerlo et al., 2008; Urmson et al., 2008]. Being well understood and

tested, they posed a good solution for the limited number of scenarios in the Urban

Challenge, especially in view of the limited development period. One example is the

hierarchical state machine used by Team AnnieWAY [Gindele et al., 2008]. In their for-

mulation, states represent driving behaviors and transitions are triggered by manually

modeled conditions. In Figure 2.1, the sub-state that executes lane changes is shown.

Substantial differences of the state machines can be found in the specific implemen-

tations for traffic scenarios. For example, BOSS, the winner of the Urban Challenge,

performs several checks based on manually defined metrics [Urmson et al., 2008]. For

merging into a lane, first, a yield polygon is constructed to determine relevant cars (see

Figure 2.2a). Then, the time of arrival is estimated as basis for detecting yield clearance.

15

Chapter 2 Related Work on Decision Making for Driving

(a) Yield polygon construction (BOSS) [Baker and Dolan, 2008].
©2008 IEEE

(b) Lane change feasibility
[Ardelt et al., 2012].
©2012 IEEE

Figure 2.2: Examples of manually modeled metrics for merging and highway-driving.

Uncertainties are treated in a rudimentary way by assuming worst case velocities for

the arrival estimation. To handle the case that the sensors lose the other car momen-

tarily, BOSS requires the yield window to be constantly open for 1 s. Another example is

team Junior that uses a threshold test, based on velocity and proximity, to find critical

zones where the vehicle has to wait [Montemerlo et al., 2008].

Apart from the Urban Challenge, manual programming is still frequently applied,

for example, in [Ardelt et al., 2012], for generating automated lane change decisions for

freeway driving. Therefore, they manually model criteria based on longitudinal pre-

dictions of the other vehicles. Figure 2.2b shows a scenario where the criterion states

that no lane changes are feasible. Interaction between drivers is considered to a small

extent, for example, by assuming that the incoming driver on the fast lane would react

on a lane change to the left by braking. Similarly, uncertain dynamics are treated by

defining worst case scenarios. Another example is presented in [Girault, 2004]. They

propose a finite state machine to switch between different control laws for tasks such

as entering a highway, merging, or yielding.

Manual programming is a very efficient way to create acceptable policies for sim-

pler scenarios with limited complexity. Additionally, the methods are easily under-

standable and, for small problems, traceability of the software is very good. It can be

doubted, however, that the fully manual approach scales to general autonomous driv-

ing in urban scenarios. With this approach, individual tasks such as following a leading

16

2.1 Tactical Decision-making

(a) Constraints for incoming vehicle in different time-spans from t = 0 to 4.

(b) Merge scenario and 1D projection. (c) Constraint for merge.

Figure 2.3: Spatiotemporal constraints for incoming traffic and for merging
[Ziegler et al., 2014b]. ©2014 IEEE

vehicle or merging into traffic, but also variations of these tasks need tailored solutions.

Due to the number of possible situations and the difficulty to treat situations with sev-

eral road users and complex uncertainties manually, the programmed models become

too complex and the advantages (simplicity, traceability, etc.) get lost.

Structuring the program flow with manually implemented architectures Nevertheless,

manual programming poses a sensible option to manage resources and structure the

program flow. For instance, planning can then be used to eventually make decisions

in the specific situation. Schröder et al. propose a biologically-motivated process to

switch driving behaviors based on motivations (e.g., road following, speed control and

collision avoidance). While the behavior network is build by hand, the final driving is

conducted by the vehicle control. Therefore, several concurrent behaviors are fused

using a driving corridor that is handed over to the vehicle control. In a later work, dy-

namic risk maps that discretize the continuous state into a grid are proposed as repre-

sentation for fusing behaviors [Schröder, 2009].

For mastering the Bertha Benz route, Ziegler et al. realized a similar idea using a hier-

archical, concurrent state machine architecture to generate spatiotemporal (i.e., time

and space) constraints [Ziegler et al., 2014b] (see Figure 2.3 for illustration). When,

for example, conducting a yield and merge maneuver at the same time (similar to our

initial example scenario in Figure 1.1), the concurrent states for yield and merge simul-

taneously generate constraints by assuming worst case behaviors for each. What we

call tactical decision-making is skipped in their approach and these constraints are di-

17

Chapter 2 Related Work on Decision Making for Driving

(a) DAMN curvature
voting for Caroline
[Rauskolb et al., 2008].

(b) Decision network (DN) for lane change decisions
[Schubert, 2012]. ©2012 IEEE

(c) Table with heuristic utility function definitions for 6 actions and 11 attributes (i.e., objectives)
[Furda and Vlacic, 2011]. ©2011 IEEE

Figure 2.4: Voting-based (2.4a) and utility-based decision approaches (2.4b and 2.4c).

rectly given to a subsequent trajectory planning module. However, uncertainties and,

in particular, partial observability cannot be taken into account correctly by the pro-

posed trajectory planning. In fact, to our knowledge, no current method exists that is

capable of planning with partial observability and uncertain dynamics on the abstrac-

tion level of trajectory planning or even continuous vehicle control. Consequently, a

scenario with constraint visibility, such as the one we presented in the introduction,

cannot be solved by the approaches proposed in [Schröder, 2009] and [Ziegler et al.,

2014b].

2.1.2 Utility- or Value-based Decision-making

In difference to the methods in the previous section, where decisions are encoded

directly by hand, in utility-/value-based methods the decisions are determined indi-

rectly by selecting the action that best satisfies a criterion. The precise notion of this

criterion differs between approaches, but they all share the same basic idea: the cri-

terion quantifies the expected success of executing an action in a situation with re-

spect to a defined goal. The goal for driving typically is a combination of safety, target-

reaching, efficiency, traffic rule compliance, and comfort. It is important to under-

18

2.1 Tactical Decision-making

stand that for dynamic decision making, possible future consequences of actions have

to be taken into account, in order to determine the criterion. For example in Markov

decision processes (MDPs), the value is formally defined as the sum of rewards that is

expected to be received in the future (see Section 3.1.1 for details). In contrast to the

value, the reward (i.e., negative cost) is immediately received and only constitutes how

well the a situation currently satisfies the goals (e.g., if the self-driving vehicle is at this

very moment involved in a collision). Note that the terms value and utility usually are

synonymously used, depending on the area of research.

First, we present approaches that manually model the utility. Then, we present ap-

proaches that derive the utility automatically by learning or planning. We lay special

focus on how partial observability can be taken into account.

Manual Utility Definition

The distributed voting-based behavior architecture (DAMN) used by team Caroline

was an exception to the otherwise dominating state machines in the Urban Challenge

[Rauskolb et al., 2008]. The DAMN architecture [Rosenblatt, 1997] shares many similar-

ities with utility-based decision-making. For a discrete number of steering angles and

speeds, the resulting driving arc is computed and evaluated against behaviors, such as

avoid obstacles, follow way points, or stay on roadway to collect votes (see Figure 2.4a).

The votes are weighted and the steering angle and speed that generated the driving arc

with the highest score is selected. For handling more complex situations, such as stop

lines, the original DAMN architecture is extended with interrupts.

In [Furda and Vlacic, 2011; Furda, 2010], a multiple criteria-based approach is pre-

sented. They propose to, first, determine feasible maneuvers using Petri nets and then

select the best maneuver based on multiple criteria decision-making (MCDM). In their

examples, they name 11 MCDM attributes, e.g., keep distance to front vehicle, keep dis-

tance to left boundary, or drive around obstacles, to define the driving objectives. They

create a table that determines the utility for all driving actions with respect to all these

attributes (see Figure 2.4c). Then, a one-shot decision is made by the MCDM that bal-

ances the utilities. They argue that multiple potentially conflicting objectives need to

be considered for driving. However, eventually, they restrain to a weighted sum for

combining the multiple criteria.

Schubert presents a utility-based approach that is able to consider partial ob-

servability [Schubert, 2012]. He proposes decision networks (DNs), an extension to

Bayesian networks (BNs), for building a probabilistic model of the decision problem

(see Figure 2.4b). The utility is manually defined in a large table for every possible

combination of situations and decisions. This approach is able to consider partial ob-

servability, but unlike partially observable Markov decision processes (POMDPs) it is

19

Chapter 2 Related Work on Decision Making for Driving

Time Slice 0 Time Slice 1
Back
Speed
Diff

Back
Speed
Diff

Back
Close,
Fast

Xdot

Front
Close,
Slow

Front
Clear

Front
Speed
Diff

Back
Clear

Stopped
Time

Left
Clear

Right
Clear

Xpos

Ypos

Ydot

Front
Clear

Front
Speed
Diff

Back
Clear

Left
Clear

Right
Clear

Lateral
Action

Engine
Status

Sensor
Valid

Xpos

Xdot

Ypos

Ydot

Turn
Signal

Left
Clear

Right
Clear

Lateral
Action

Engine
Status

Sensor
Valid

Xpos

Xdot

Ypos

Ydot

Turn
Signal

Stopped
Time

Fwd
Action

Fwd
Action

(a) Dynamic probabilistic network for situation
prediction [Forbes et al., 1995].

(b) Features and regions of in-
terest [Ulbrich and Maurer,
2013]. ©2013 IEEE

Figure 2.5: Approaches for lane change decisions considering uncertainty.

not able to consider the development of situations over time. To be able to model the

prediction of traffic, the DN model would have to be extended to a dynamic decision

network (DDN).

It can be doubted that the general approach of modeling the decision criterion by

hand scales to more complex scenarios exhibiting uncertainties. With this approach,

in total, |actions| × |situations| values have to be set. For every of these values, the

probability and consequences of all relevant future developments must be assessed by

a human expert. It is more promising to derive the utility or value yielded by actions

in situations automatically from an immediate reward (i.e., cost, goal, etc.). Next, we

present approaches to this based on planning and learning.

Model Predictive Control

A frequently applied method for one- and multi-lane highway driving that directly

works in the continuous space is model predictive control (MPC). MPC sets the current

control by anticipating future events using a model of the dynamics. MPC originally is

a control method with continuous action space. However, it can be extended with dis-

20

2.1 Tactical Decision-making

crete lane-change actions for decision-making. In [Nilsson and Sjoberg, 2013], driving

on two-lane one way roads is realized using MPC with a mixed integer program formu-

lation. For the prediction, other road users are assumed to hold their velocity and to

keep lanes. A similar approach for, in theory, arbitrary numbers of lanes is proposed

in [Bahram et al., 2014]. While still assuming constant velocities for other vehicles,

they use non-linear MPC to incorporate a prediction of other driver’s lane changes.

These approaches are to some extent capable of managing disturbances in the system,

but predictions are in general assumed to be accurate and the state to be observable.

Therefore, with this approach, uncertainties cannot be treated correctly. Further, pre-

sumably to keep complexity manageable, only a single time step of prediction is con-

sidered, which prohibits planning of several successive actions.

Reinforcement Learning

More sophisticated driving behaviors can be achieved by learning policies from expe-

rience. An early approach by Forbes et al. is based on a dynamic probabilistic network,

which essentially resembles a dynamic Bayesian network (DBN), for predicting high-

way traffic [Forbes et al., 1995]. The proposed network is shown in Figure 2.5a. It uses

symbolic states to encode, for example, if the left or the front of the vehicle is clear

or occupied. The symbolic states are assumed to be directly measured. Due to the

rough discretization of the state space, only rudimentary predictions can be made with

this model. Forbes et al. propose three decision-making approaches using this prob-

abilistic model as basis: manual decision rules encoded in a decision-tree, lookahead

planning by extending the network to a DDN, and reinforcement learning for the full

POMDP. Although Forbes et al. found that avoiding manual programming and consid-

ering partial observability improves results, their proposed approaches were ahead of

their time. Sufficient methods and computers for solving the full POMDP or utilizing

a more detailed state space did not exist. However, many of the presented ideas are

adopted by today’s approaches.

Ngai et al. present model-free reinforcement learning of overtaking decisions for

freeway driving [Ngai and Yung, 2007, 2011]. They learn Q-values for different driv-

ing goals, such as target seeking and collision avoidance. For the latter, interaction

between road users is considered by double action Q-Learning (DAQL). For decision-

selection, they combine the (DA)Q-values for the different goals using a weighted sum.

Besides the inability to consider partial observability, this quite general approach has

some practical flaws: e.g., for Q-learning the (originally continuous) input of the rein-

forcement needs to be discretized and the weights for the combining the goals are set

according to a manually defined table. Further, many aspects that should in our opin-

ion be automatically derived (e.g., what is a safe following distance), are incorporated

21

Chapter 2 Related Work on Decision Making for Driving

into the reward functions. Unfortunately, this reduces the generality of the approach

and requires more manual programming and parameter tuning.

When learning from demonstrations, not even the immediate reward needs to be

specified by an expert. Kuderer et al. propose learning the cost function for highway

driving from demonstration [Kuderer et al., 2015]. They employ inverse reinforcement

learning to capture individual driving-styles, based on features. These include accel-

erations, velocities, lane curvature, relative lane position, and the distance to a leading

vehicle. With the learned models, trajectories can be generated for autonomous driv-

ing by optimizing the learned cost function. Therefore, other vehicles are predicted

assuming that they hold velocities and lane. This method is not meant for making driv-

ing decisions. However, for example, a lane change can be executed with this method

by generating trajectories with respect to the desired lane.

Planning with Partial Observability

A few approaches have been proposed that consider partial observability for planning.

However, due to the excessive complexity, usually the problem is significantly simpli-

fied.

Ulbrich et al. show how a POMDP with a discrete state space can be used to make

lane change decisions [Ulbrich and Maurer, 2013]. They use a small set of only 8 man-

ually defined states to describe highway situations. The 8 states are composed of 3

symbolic binary states: lane change possible, lane change beneficial, and lane change

in progress. To observe these abstract states, Ulbrich et al. model a complex signal pro-

cessing based on the velocities and distances of vehicles in the three regions of inter-

est shown in Figure 2.5b, rear left (RL), front left (FL) and front ego (FE). The matrices

defining the transition model and observation model were defined manually. While

this approach keeps the complexity of solving the POMDP manageable, the tailored

representation restricts the application to highway lane change decisions. Due to the

very limited state space representation, the capabilities of the resulting policies are

limited even for this application. More complex dynamics or information gain, e.g.,

necessary when trucks disturb visibility of other vehicles, cannot be considered in this

POMDP.

Wei et al. [Wei et al., 2011] propose QMDP-based planning for single-lane driving

that is able to take into account transition uncertainties and, to a limited extend, par-

tial observability. In this approach, a continuous state space is considered that is com-

posed of the distance to the lead vehicle and its velocity as well as the velocity, acceler-

ation, and jerk of the autonomous vehicle. Monte Carlo (MC) sampling is applied for

computing cost functions and for integrating over the continuous state space in order

to compute the expected cost. They show that considering uncertainty in the behav-

22

2.1 Tactical Decision-making

(a) Ramp scenario
[Wei et al., 2011].
©2011 IEEE

(b) Pedestrian crossing
[Bandyopadhyay et al., 2013a].
With permission of Springer.

Figure 2.6: Examples of planning with partial observability.

ior of the leading vehicle as well as limitations of the perception improves robustness.

The QMDP model assumes that the current state is only partially observable, but in the

next time step, the state of the world will be be fully observable. QMDPs have a signifi-

cantly reduced complexity compared to the full POMDP. However, they underestimate

the limitations of the sensors. Further, the state space in this approach is restricted to

single-lane driving and only dynamics in direction of driving are considered. Despite

that, the authors realize good results in a ramp-scenario, where other cars on a pri-

ority lane merge into the lane of the ego vehicle while the visibility is obstructed by

obstacles (see Figure 2.6a). However, to realize this, manual programming is required

such as switching the reasoning algorithm depending on a predefined clear point and

merge point, or determining worst cases for the other car’s initial distribution.

Bai et al. solve an intersection-like scenario with a single other vehicle that is ob-

served with partial observability by considering a full POMDP [Bai et al., 2014]. Their

model is not really usable for driving. Instead, it should be viewed as a showcase for

the POMDP solver developed by Bai et al.. Velocities and inertia were not considered

in their example and, thus, the state space of the problem is relatively low-dimensional

compared to real-life driving.

Bandyopadhyay et al. suggest that for navigation tasks the intentions of other road

users should be considered [Bandyopadhyay et al., 2013a]. They present a mixed ob-

servable Markov decision process (MOMDP) approach where other road users’ inten-

tions are hidden variables. It is tested for a pedestrian crossing as shown in Figure 2.6b.

Additionally, due to the computational complexity, multiple pedestrians are treated as

independent entities. To reduce the complexity of the problem, the decision maker

only reacts to a single pedestrian, which is selected using a manually defined safety

metric. In [Bandyopadhyay et al., 2013b], the same approach is tested in an inter-

section example with a single other car whose driver’s intentions are assumed to be

hidden. To be able to apply their model, they first discretize the continuous vehicle

positions and velocities in 2.5 m and 1 m/s steps. To compensate for the coarse dis-

23

Chapter 2 Related Work on Decision Making for Driving

(a) Self-driving car with LIDAR [Google].2.1 (b) CoCar’s sensors [FZI].

(c) LIDAR-based detection and tracking
[Moosmann, 2013].

(d) Occupancy map from stereo-cameras
[Geiger, 2013].

(e) Camera-based detection and predic-
tion [Geiger, 2013].

Figure 2.7: Sensors and perception.

cretization, they are forced to assume higher transition uncertainty (see the conclusion

for more information on this problem). This aside, their approach has two crucial is-

sues. First, the physical state of other road users is assumed to be fully observable

during planning. Thus, it performs suboptimal under measurement noise and can

completely fail, when the view is blocked. The second issue is that it only considers

one road user at a time. However, a safe policy for all examples can only be computed,

when multiple road users are considered (see our discussion of the related work in

Section 2.3 for an example).

2.1Google and the Google logo are registered trademarks of Google Inc., used with permission.

24

2.2 Related Research Topics

2.2 Related Research Topics

In this section, we briefly outline the components that are necessary to realize self-

driving vehicles and also related domains. As can be seen in Figure 1.3 of our introduc-

tion, decision-making requires all of these components, either as input or to execute

the selected actions.

2.2.1 Perception

Various sensors are used for this task ranging from radar, trough (stereo) cameras to

laser scanners with 360° field of view (see Figure 2.7). Several aspects of the environ-

ment are of interest, including self-localization (e.g., [Grisetti et al., 2007]), other road

users and objects (e.g., [Moosmann, 2013]), and infrastructure such as traffic signs

(e.g., [Nienhüser, 2014]) or the geometry and topography of intersections (e.g., [Geiger,

2013]).

2.2.2 Object Tracking

The perceived information can be processed in multiple ways. The most common is to

track all potentially relevant objects in the environment (i.e., estimate their state over

time). Usually, state estimation is solved by iteratively integrating observations and

predictions of the state in a probabilistic framework, for instance, a Bayes Filter [Thrun

et al., 2005]. For tracking multiple targets, the information which object generated

which measurement is crucial. This problem is commonly known as data-association

(see [Bar-Shalom, 2000]).

Alternatively to representing every objects’ state, a grid-based discretization of the

space can be used that classifies every cell into occupied or not-occupied [Elfes, 1989;

Thrun, 2002]. For occupancy grids, the object detection and data-association are fa-

cilitated. Simple measurement models can be found for every type of sensor, which

enables robust and conservative estimation of the free-space for navigation tasks (see,

e.g., Figure 2.7d). A sophisticated variant of this idea is a Bayesian occupancy filter

(BOF) that has a probabilistic representation of occupancy and can be extended with

velocities [Coue et al., 2006; Tay et al., 2008]. Usually, the grid-cells are measured and

predicted independently. Due to this and the missing object notion of these systems,

they are less suited for long term predictions than object-based systems.

We showed in a collaborative work that prediction accuracy is significantly im-

proved, when the cells are not assumed to be fully independent and context infor-

mation, such as map data is integrated [Gindele et al., 2009]. In [Brechtel et al., 2009],

multiple interacting models are proposed so that the type of the object which causes

25

Chapter 2 Related Work on Decision Making for Driving

Figure 2.8: Bayesian occupancy grid with multiple models. Occupancy classified as vehicles
are indicated in blue, other objects in red [Brechtel et al., 2009].

the occupancy can be estimated. This way, different motion models, e.g., for pedes-

trians and cars, can be applied, which further improves the quality of the prediction.

Using approximate inference, the computational complexity is still practically feasible

[Brechtel et al., 2010]. Interestingly, a representation similar to occupancy grids is of-

ten used for decision-making, even though with a much reduced grid resolution that

covers only a few regions around the vehicle and is often aligned to lanes (e.g., [Forbes

et al., 1995; Brechtel et al., 2011; Ulbrich and Maurer, 2013]). For many applications,

however, information about the object entities is vital.

2.2.3 Situation Interpretation and Prediction

Sophisticated vehicle tracking methods utilize map data to improve prediction (e.g.,

[Petrich et al., 2013; Alin et al., 2013]). In most cases for object tracking it suffices to

assume that road users are independent of each other. However, for decision-making

and planning, not only the current state of the environment must be estimated. Accu-

rate long-term predictions are necessary that can only be achieved when interpreting

situations and taking into account road users’ contexts and estimating their intentions

over time.

Multiple related approaches have been proposed to find out drivers’ intentions, e.g.,

for behavior estimation [Zhang and Rössler, 2009; Kasper et al., 2011], lane prediction

[Lefèvre et al., 2011], and plan recognition [Bui, 2003]. Semantic, ontology-based rep-

resentations of traffic situations can alleviate situation analysis [Kohlhaas et al., 2014;

Ulbrich et al., 2014].

26

2.2 Related Research Topics

Action level

Observation

Route level

Goal level

X

ΠA

ΠR

ΠG

TG

TR

CL CXCR

Context

st
ra

te
gi

ca
l
le

v
el

s
ta

ct
ic

a
l
le

v
el

Z

(a) Hierarchical DBN model. (b) Prediction in intersection scenario.

Figure 2.9: General method for interpreting and predicting traffic situations [Gindele, 2014].

Probabilistic framework for estimation and prediction In [Schamm, 2014], interpreta-

tion of situations based on object-oriented probabilistic relational models (OPRML) is

presented that puts road users into relation. However, dynamics are not considered.

In [Dagli et al., 2003], a dynamic probabilistic network is proposed for inferring and

predicting motivations and goals of drivers in highway scenarios. Interaction between

vehicles is considered by taking the time gap to the nearest neighbor of the estimated

vehicle into account.

In a collaborative work with Gindele et al., we developed a hierarchical dynamic

Bayesian network (DBN) representation of traffic situations and their development

over time [Gindele et al., 2010]. The goal of the approach is to predict behaviors of road

users as accurately as possible. The basic idea is to take the perspective of road users,

in order to comprehend and estimate their goals, plans and actions (see Figure 2.9a).

Therefore, information and models from the abstraction level of measurable physical

states to abstract road users’ goals are integrated, in a single probabilistic framework.

Mutual relationships between road users are considered as well as relations over time.

On the lowest level, physical driving models are employed.

In contrast to physical models, the behavior models that predict which control a

driver applies given a certain context, are very difficult to model by hand. Therefore,

in [Gindele et al., 2013], we present a method to learn them from noisy and incomplete

observations of traffic scenes. In Figure 2.9b, an example of the method’s capabilities

27

Chapter 2 Related Work on Decision Making for Driving

(a) Two episodes of planning in a spa-
tiotemporal latice search graph [Mc-
Naughton et al., 2011]. ©2011 IEEE

(b) Considering uncertainty in the dynamics
using linear-quadratic Gaussian (LQG).
Results with low and high variance.
[Xu et al., 2014]. ©2014 IEEE

(c) Locally optimal motion planning. Car drives from the left to the right [Ziegler et al., 2014a].
©2014 IEEE

Figure 2.10: Motion planning.

is shown. The first image shows two cars approaching an intersection and their pre-

dicted position in 6 s. The second image shows the trajectory prediction for several

time steps in a later situation. The system concluded in this scenario that car 1 has the

goal to make a left turn, as it slowed down slightly and there is a second car that has

priority. For this reasons, other options such as, turning right or going straight were

discarded over time. The illustration shows that such abstract conclusions manifest in

(potentially multi-modal) predictions of the continuous trajectory of the vehicles.

This method is very general and not limited to certain scenarios. Further, it can be

the basis for numerous autonomous driving tasks (see [Gindele et al., 2015]). It pro-

vides the foundation for estimation, interpretation and, most importantly, prediction

for the decision-making approach presented in this thesis.

2.2.4 Motion Planning and Vehicle Control

The high-level actions selected by the decision-making, usually are realized by lower-

level modules that generate the continuous control signals for steering and accelera-

tion. These systems must work with an higher update rate and in the continuous state

space, in order to react quickly and precisely on sudden unexpected developments,

for instance, by avoiding obstacles or emergency braking. Typically, motion planning

is used to find eligible trajectories under consideration of traffic and dynamics of the

autonomous vehicle (e.g., trajectory planning [Werling et al., 2010; Ziegler et al., 2014a;

McNaughton et al., 2011], or model-free reinforcement learning [Kuderer et al., 2015]).

28

2.2 Related Research Topics

In a few approaches uncertainties are considered (e.g., with LQG [Xu et al., 2014]). Ex-

amples are displayed in Figure 2.10. Stable continuous controls for the actuators are

then generated by a trajectory control system (e.g., MPC [Werling et al., 2011]). An ad-

ditional safety verification for the planned trajectory can be interposed between these

two levels (e.g., [Althoff and Dolan, 2014]). Alternative realizations of the vehicle con-

trol waive trajectory planning and directly create control actions (e.g., model-free re-

inforcement learning of steering control for holding lanes [Riedmiller et al., 2007]).

2.2.5 Cooperative Driving

In the future, vehicles probably will be connected with each other and the infrastruc-

ture. For all of the tasks we presented above, cooperative solutions exists. The in the

following presented decision-making related examples all assume a central unit that

controls all involved vehicles. Cooperative decision-making based on fuzzy logic is

proposed in [Raimondi and Melluso, 2008]. In [Schwarting and Pascheka, 2014], an

approach to cooperative highway driving is presented that is based on behavior pre-

diction. It anticipates conflicts between vehicles and a recursively resolves them. In

[Frese and Beyerer, 2011], different motion planning algorithms (elastic bands, tree

search, mixed-integer linear programming, and a priority-based approach) are com-

pared for cooperative collision avoidance.

2.2.6 Robot Navigation

The task of navigating autonomous robots in environments shared with humans ex-

hibits many similarities with autonomous vehicle operation and, thus, methods are

to some degree interchangeable. Similar to driving, estimating and predicting the in-

tentions and behaviors of humans is a central part of this task [Kuderer et al., 2012;

Bandyopadhyay et al., 2013a; Kretzschmar et al., 2014]. In both tasks, partial observ-

ability plays a crucial role and, due to the continuous space, complexity poses a prob-

lem. In [Foka and Trahanias, 2007; Theocharous, 2002], therefore hierarchical POMDP

models were developed to make computations feasible. Stochastic optimal control is

proposed (e.g., in [Van Den Berg et al., 2012]) for robot motion planning with uncer-

tainty and even continuous POMDP methods were developed with robot navigation

in mind (e.g., [Roy et al., 2005]). More information on this topic is given in Section 4.2.

Despite their similarities, robot navigation also differs in many ways from navigat-

ing an autonomous car in traffic. On the one hand, the motion of vehicles is usually

guided by lanes and traffic regulations apply. Further, the motion of vehicles is signifi-

cantly restricted by their kinematics. On the other hand, dynamics are more important

for driving, which again complicates the problem. Also, safety is a bigger issue, be-

29

Chapter 2 Related Work on Decision Making for Driving

cause errors and collisions are much more fatal due to the higher speeds and masses

involved.

2.3 Discussion of Related Work

Tactical decision-making, today, emerges as one of the remaining challenges for au-

tonomous driving. The possible reasons for this are manifold. The first reason

is that decision-making is located at the highest-level of the processing chain. A

decision-making system can only be utilized, tested, and demonstrated, if all other

skills on lower abstraction levels are realized sufficiently. To make safe decisions,

well-functioning sensors and perception of the environment, self-localization, precise

maps, tracking and prediction of road users, and interpretation of situations are re-

quired. To execute the decisions, motion-planning, vehicle-control, and actuators are

required.

The second reason that we identified is that for long-term decision-making, ulti-

mately, all information that the vehicle can obtain potentially has to be considered.

Additionally, the number of possible situations and developments that a car can ex-

hibit is very high. This is aggravated by the uncertainties in the process. In specific

situations or scenarios, however, only a small subset of the information is relevant.

Many scenarios, such as highway driving or special junction scenarios without uncer-

tainties (as the DARPA Urban Challenge indicated), can be sufficiently covered in a

sweeping way with manually programmed systems. For general decision-making in

all situations, however, oversimplifying the task is potentially dangerous.

We discuss frequently applied simplifications and their consequences. Then, we

draw conclusions for our approach and put it into relation to the state-of-the-art.

2.3.1 Common Simplifications to Reduce Complexity

The full tactical decision problem for driving with uncertainties can be modeled as a

continuous partially observable Markov decision process (POMDP). However, due to

the daunting complexity of continuous POMDPs (see Chapter 3), multiple simplifica-

tions of the decision problem for driving have been proposed in the literature. These

apparently work in many situations. However, they fail in other scenarios or types of

situations. This renders them unsuitable for the general autonomous driving task. We

give examples of these simplifications that have counter-intuitive and non-trivial con-

sequences. We further elaborate on the topic in Section 6.1.4, where we draw conse-

quences for the models utilized in our approach.

30

2.3 Discussion of Related Work

(a) Initial situation with
reachable set prediction.

(b) First development. (c) Second development.

Figure 2.11: Common simplifications of uncertainty and potential consequences.
Map Data [City of Karlsruhe].

Simplifications of Uncertainty

The most frequently neglected property is the uncertainty in both, the prediction and

the perception. It is relatively obvious that underestimating or not considering un-

certainty at all, e.g., by only taking into account the most likely assumption, is dan-

gerous. Underestimating uncertainty means disregarding potential developments—

against better knowledge. Interestingly, overestimating uncertainties is potentially

dangerous, too.

Worst case assumption In nearly every manual approach and many planning ap-

proaches, worst case scenarios are defined. However, despite the fact that in complex

situations no single unique worst case scenario can be identified, another problem

arises: if the policy is optimized only for the worst case scenario, it can fail for normal

scenarios.

Conservative estimate An often applied simplification to counteract this, is estimat-

ing probabilities conservatively. For example, Althoff et al. realize this by analyzing, if

road segments are reachable for road users from an initial situation [Althoff and Dolan,

2014]. Reachable sets determine all possibly occupied road sections for every time step,

similar to the Bayesian occupancy filter (BOF) presented before. These reachable sets

are then used for verifying the safety of planned trajectories. Similarly, many motion

31

Chapter 2 Related Work on Decision Making for Driving

planning systems use safety margins that are larger than the real vehicle structure to

improve robustness against measurement noise. Additionally, gradually increasing

safety margins when checking collisions farther away in the future can improve ro-

bustness against uncertain predictions (see, e.g., [Werling et al., 2011]).

Formally, both simplifications are equivalent to assuming an unobservable Markov

decision process (UMDP)2.2 model and, in addition, considering all possible states.

Therefore, every state with probability higher than zero is assumed to be true. Un-

observable Markov decision processes (UMDPs) describe a blind agent that cannot

gather any information in the future [Hauskrecht, 2000]. Thus, they drastically under-

estimate the perception capabilities of the agent. The big advantage of UMDPs is that

they, compared to POMDPs, only marginally increase the complexity of the planning

problem. The reason for this is that UMDPs basically consider a POMDP with a single

observation that provides no information. Consequently, there is only a single possible

future development of the world under a fixed behavior policy (see Figure 3.5 for fur-

ther illustration). Further, in combination with the zero threshold for the probability,

they create a lower bound (i.e., conservative) estimate on the value. If a trajectory (or a

policy) is safe with respect to a conservative reachability estimate, it can be guaranteed

that it is really safe.

But how can a conservative estimate result in dangerous decisions? The answer is

simple: finding the best (or even any safe) policy can be prevented because the cost

of safe decisions is overestimated. An example is shown in Figure 2.11a, where the red

self-driving car approaches a slower blue car. The set that is reachable by the blue car

after some seconds is indicated by the blue area. When planning with the reachable

set, the only viable option is to brake hard. However, as both displayed developments

show, this is not necessary. In all cases, the red car would have noticed what the driver

in the blue car does and could react, e.g., with a lane change. Another example is merg-

ing onto a highway with an initially blocked view on the traffic. Under the assumption

that all reachable states for the other vehicles are true, a planning algorithm would in-

fer that merging is impossible. The self-driving vehicle could slow down and enter the

ramp with dangerously low speed or even stop. Human drivers, however, know that

they will be able to see the traffic after having reached the ramp.

Simplification of the Representation of the Problem

Besides simplifying uncertainties, the originally continuous space is one of the main

reasons for the complexity of decision-making (see Chapter 4) and, thus, often sim-

plified. A common approach is defining symbolic states (e.g., [Forbes et al., 1995]) or

naive discretizing of the state space (e.g., [Brechtel et al., 2011; Ngai and Yung, 2011]).

2.2A detailed introduction to decision processes is given in Chapter 3.

32

2.3 Discussion of Related Work

(a) Too coarse discretization of a
two-lane road.

(b) Policies when considering only a single
road user or both.
Map Data [City of Karlsruhe].

Figure 2.12: Frequently applied simplifications of the state space.

Often parts of the solution are implicitly integrated into the states. This limits the qual-

ity of the achievable policy (e.g., [Ulbrich and Maurer, 2013]). The level of detail of the

discrete space is often even insufficient for making simple predictions, as we visual-

ized in Figure 2.12a. The example shows the continuous motion of a car from time

step t = 1 to 4. However, as its velocity is too short and the time step too long, using

the discrete state space, the car is predicted to not leave its initial state (highlighted

in red). Solutions to this problem are either increasing the resolution and with it the

complexity of the problem or overestimating the uncertainty (e.g., [Bandyopadhyay

et al., 2013a]), which decreases the quality of the solution and can also negatively af-

fect the difficulty of the problem when using approximate methods (see Section 3.5.2

for details).

Another aspect is that the state space grows exponentially with the number of con-

sidered road users. An obvious simplification is to create a policy for all of them inde-

pendently and then combine the policy (e.g., [Bandyopadhyay et al., 2013a]). However,

the example in Figure 2.12b shows that a safe policy when considering all road users

often is not even part of the policies created for a subset of road users. In the example,

holding lane (policy 1) is safe with with respect to the blue vehicle and changing lane

(policy 2) is safe with respect to the yellow vehicle. In reality, both policies will guide

the vehicle into a collision. Stopping (policy 3) is the best solution for this situation,

but can only be found when considering both cars.

2.3.2 Conclusion

In Table 2.1, we assess the presented state-of-the-art algorithms and rate their general-

ity (that is, if the approach is limited to certain scenarios or if it can generalize to new,

before unseen situations). Some existing approaches for decision-making, such as

33

Chapter 2 Related Work on Decision Making for Driving

Predictiona
Partial

observabilitya Space

lin
ea

r

no
n-

lin
ea

r
in

te
ra

ct
io

n
pr

ob
ab

ili
st

ic
si

m
pl

ifi
ed

ar
bi

tr
ar

y

ut
ili

ty
/v

al
ue

di
sc

re
te

co
nt

in
uo

us
ge

ne
ra

lit
y

Manual programming,
e.g., [Urmson et al., 2008] 5 5 5 5 5 5 5 3 5 (−−)

Utility-based,
e.g., [Schubert, 2012] 5 5 5 5 (3) (3) 3 5 3 (−)

Model-free Learning,
e.g., [Ngai and Yung, 2011] (3)b (3)b (3)b (3)b 5 5 3 3 (3) (+)

Model predictive control,
e.g., [Bahram et al., 2014] 3c (3)c 3c 5c 5 5 3 (3) 3 (−)

Trajectory Planning,
e.g., [Ziegler et al., 2014b] 3 3 3 5 5 5 3 3 3 (++)

QMDP
[Wei et al., 2011] 3 3 3 3 3 5 3 5 (3)d (−)

Discrete MDP
(our approach)

3 3 3 3 5 5 3 3 5 (++)

Continuous POMDP
(our approach)

3 3 3 3 3 3 3 3 3 (+ + +)

"(3)" means that the feature is not supported in a native way but can be integrated.
a Manual uncertainty handling, e.g., worst case definition, is not accounted for.
b Implicit prediction.
c Prediction is limited to a single time step into the future.
d Tailored for merging and highly simplified.

Table 2.1: Comparison of exemplary approaches for tactical decision-making for driving.

[Ziegler et al., 2014b], are already highly developed. Nevertheless, none of the reviewed

approaches is able to solve problems that exhibit non-trivial visibility and stochas-

tic, non-linear interaction between road users. The reason for this is quite simple:

today, no sufficient methods exist to solve higher-dimensional continuous decision

processes with these uncertainties. All presented approaches apply critical simplifica-

tions to the original decision-making problem in order to make computation feasible.

As a consequence, none of the presented approaches could find a safe policy in the

intersection scenario presented in our motivation in Figure 1.1.

Not being able to solve only a single situation or even a class of situations is enough

to render an approach inappropriate for autonomous driving. For fully autonomous

driving, a general approach is necessary that is capable of solving any situation that

the car might face.

In this thesis, we develop a novel methodological solution that can be applied to the

full problem: a continuous POMDP. The developed method adaptively applies sim-

plifications suitable for the specific problem, instead of imposing fundamental prior

restrictions to the decision process. We build a general model for driving problems

34

2.3 Discussion of Related Work

and apply the presented method for solving this model automatically. This approach

generalizes to unseen situations by planning and learning and is less constrained than

any previously proposed approach.

35

Chapter 3

Background on (Partially Observable) Markov
Decision Processes

In this chapter, the basics of dynamic decision-making under uncertainties

for discrete state, observation, and action spaces are covered. This chapter

helps to understand the complexity of the task as well as the motivations,

ideas, and methods behind the novel approach developed in Chapter 5.

A discrete time Markov decision process (MDP) models the sequential decision pro-

cess of an agent acting in a dynamic environment with uncertain dynamics [Howard,

1960; Bellman, 1957b]. MDPs can be viewed as an extension of Markov chains to an

optimization problem: adding actions enables the agent to influence the process. Re-

wards (or costs) define an optimization criterion. Figure 3.1 shows the interaction of an

MDP agent with its environment. Drake introduced partially observable Markov de-

cision processes (POMDPs), where in addition to the uncertain dynamics of an MDP

the state of the world is only partially observed through a noisy channel [Drake, 1962].

Traditionally, decision processes are restricted to discrete spaces.

Figure 3.1: Interaction of an MDP agent with the world.

Chapter Overview In Section 3.1, we provide preliminaries and thereby establish the

notations used in this work. The second part of this chapter (Section 3.2) is concerned

with methods for solving decision processes. We lay the focus on discovering the ori-

gins of the complexity of solving POMDPs and on state of the art methods to coun-

teract excessive complexity. The methods that are directly used in the later chapters

37

Chapter 3 Background on (Partially Observable) Markov Decision Processes

Figure 3.2: MDP as dynamic decision network (DDN) with random variable S for the state. The
action A can be set by the decision maker and the reward R is a deterministic func-
tion.

are MDP value iteration in Section 3.3 and point-basedα-vector value iteration in Sec-

tion 3.5.1. In Section 3.6, interesting applications are explained to give an impression

of the abilities and the versatility of POMDPs in practice.

3.1 Definitions and Preliminaries

We first introduce MDPs and POMDPs. Then, we explain how a POMDP can be cast

as a belief state MDP.

3.1.1 Markov Decision Process (MDP)

A discounted MDP with infinite horizon is specified by the tuple

(S,A, T , r, s0,γ) . (3.1.1)

In the following, these elements will be explained. In case of discrete MDPs, S denotes

the set of discrete states

s ∈ S. (3.1.2)

The world is assumed to always be in exactly one of these states and the agent knows

this true state at any point in time. In robotics tasks, the state usually comprehends

the agent’s intrinsic state as well as his environment. A is the set of actions. The agent

can partly control the process by deciding for one action

a ∈A. (3.1.3)

MDPs are stochastic dynamic processes that fulfill the Markov property of order one.

Hence, the next state s ′ := st+1 at time step t + 1 only depends on the current state

s := st and the current action a . States are temporally related through the transition

model T , which is a conditional probability mass function. In Figure 3.2, this relation

is depicted as DDN, a dynamic Bayesian network (DBN) extended with rewards and

38

3.1 Definitions and Preliminaries

actions. T describes the probability that the world evolves from state s to s ′, when the

agent chooses action a ∈A following

T (s ′, a , s) = p (s ′|s , a) = p (st+1|st , a) . (3.1.4)

The agent can only influence the evolution of the world and not fully control it. A real-

valued reward function

r : S×A→R . (3.1.5)

implicitly defines the goal of the decision process. It basically states how ‘desirable’ a

state-action pair is for the agent

A policy π : S → A defines the behavior of the agent by mapping every state s ∈ S
to an action. The aim of the MDP optimization is to find an optimal policy π∗ that

maximizes the value Vπ for an initial state s0 so that

π∗ = arg max
π

Vπ(s0) . (3.1.6)

The value under a policy π is defined as expected future reward when executing the

policy by

Vπ(s0) = E

� ∞
∑

t=0

γt r (st ,π(st))

�

. (3.1.7)

Due to the discount γ ∈ [0, 1), the value is finite and the decision problem well-defined.

Instead of introducing a discount factor, a limited time horizon could be used.

In this work, only discounted decision processes are discussed. Assuming a limited

horizon can introduce discontinuities in the value function over time for infinite

horizon problems such as driving.

3.1.2 Partially Observable Markov Decision Process (POMDP)

A discounted infinite horizon POMDP is an extension of an MDP to partial observabil-

ity. See Figure 3.3 for a representation of a POMDP as DDN (i.e., a DBN extended with

rewards and actions). A POMDP is represented by the tuple

(S,A,O, T ,Ω, r, b0,γ). (3.1.8)

In contrast to MDPs, the state in POMDPs is a latent (or hidden) variable that has to be

estimated using inference. Like in hidden Markov models, the agent can only perceive

39

Chapter 3 Background on (Partially Observable) Markov Decision Processes

Figure 3.3: POMDP as DDN with random variable S for the state and O for the observation.
The action A can be set by the decision maker and the reward R is a deterministic
function.

the state partially through indirect observations of the world. In addition to the MDP’s

states s and actions a , the observations o are introduced with

o ∈O . (3.1.9)

The agent can infer about the state s by making observations o following the observa-

tion model Ω. It defines the probability for making an observation o when the system

reaches a state s by

Ω(o , s ′) = p (o |s ′) := p (o |st+1) . (3.1.10)

In contrast to MDPs, the agent does in general not know the state of the world exactly.

Instead, he has to consider the whole history of actions and observations. Alterna-

tively, he can obtain an estimate of the state by temporal fusion of the recent action

and observation with his prior knowledge about the state. The embedding of this state

estimation process is outlined in Figure 3.4. The estimate that the agent obtains in

this process is given in form of a probability distribution over the states and denoted

as belief. The belief space B contains all n-dimensional probability distributions over

a state space S with n discrete states so that

b ∈B , b :S→R≥0 , and
∑

s∈S
b (s) = 1 . (3.1.11)

Figure 3.5 sketches the possible course of beliefs. Analogously to Bayesian filtering, the

belief can be updated using the transition and observation model. The posterior belief

40

3.1 Definitions and Preliminaries

Figure 3.4: Interaction of a POMDP agent with the world. Arrows with dashed lines indicate
feedback loops over time.

b ′b ,a ,o can be computed from the current belief b . The belief propagation3.1 depends

on the action a that the agent chooses and the observation o he makes by

b ′b ,a ,o (s
′) =

p (o |s ′)
p (o |b , a)

∑

s∈S
p (s ′|s , a)b (s) . (3.1.12)

Like in MDPs, the goal for the agent’s policy π is to maximize the value V . However,

because the agent never knows the state of the world, values and policies cannot be

defined on the state as in MDPs. For POMDPs the past history of actions and observa-

tions has to be considered. However, as for MDPs, the Markov property applies so that

the belief holds sufficient information about the history of actions and observations to

plan optimally [Astrom, 1969; Bertsekas, 2007]. Consequently, it is sensible to define

the values and policies on the belief space B, i.e.,

V :B→R, and π∗ :B→A . (3.1.13)

The basic reward is, as in MDPs, defined on the state space and not on the belief space

because only the true underlying state should be rewarded/penalized and not the ’be-

lieved’ state. The expected immediate reward for a belief b when conducting action a

is

E [r (s , a)] =
∑

s∈S
b (s)r (s , a). (3.1.14)

The agent aims to find an optimal policy π∗ : B→A that maximizes the value and act

accordingly. The value is defined as the expected sum of rewards for future beliefs bt ,

discounted by γ ∈ [0, 1), when starting in an initial belief b0 and following the policy π

Vπ(b0) = E

� ∞
∑

t=0

γt r (st ,π(bt))

�

. (3.1.15)

3.1In this thesis, the term belief propagation denotes the transition from one belief to the next. This is
not to be confused with the message passing algorithm for inference in graphical models.

41

Chapter 3 Background on (Partially Observable) Markov Decision Processes

...
...
...

...

...

...

...
...

...

...
...

...
...

...

...

...

...

...

Figure 3.5: Possible belief developments in a POMDP starting in the initial belief b0 with three
actions a and three distinct observations o . Two POMDP histories (red and blue) of
length h are highlighted.

For optimal decision making, when being in belief b , the potential follow up beliefs

for the different actions and observations for all future time steps have to be assessed.

See Figure 3.5 for an impression of the complexity of possible developments.

3.1.3 POMDP Formulated as a Belief State MDP

On the one hand, POMDPs are generalizations of MDPs. On the other hand, any

POMDP can be cast as an MDP with a continuous state space that represents the be-

liefs of the POMDP. Solving this belief state MDP (or information-state MDP) solves

the original POMDP. This means that the task of solving POMDPs is highly related to

solving (continuous) MDPs and insights and methods for MDPs can be transferred to

some degree.

We indicate the belief state MDP transition model and reward function by (·)b to

differentiate them from the original POMDP or MDP. The transition model pb (b ′|b , a)

in a belief state MDP is derived from the POMDP following the belief propagation in

Equation 3.1.12. The probability of the transition from a belief state b to the next belief

state b ′b ,a ,o (s
′) is given by the probability of observing o in b so that

pb (b
′
b ,a ,o |b , a) = p (o |b , a) . (3.1.16)

The reward model of the belief state MDP is defined as expected immediate reward 3.2

rb (b , a) :B→R, with rb (b , a) =
∑

s∈S
b (s)r (s , a) . (3.1.17)

3.2 This reward definition might appear elusive because the agent is rewarded for believing to be in states
with high rewards. Because the belief update in Equation 3.1.12 is a passive process, however, he
cannot deliberately decide to believe something that is untrue.

42

3.2 Solving Decision Processes

3.2 Solving Decision Processes

The objective of solving a (PO)MDP is to find an optimal policy π∗ which maximizes

the expectation for the reward sum over the future time steps. The value Vπ is the basis

to assess and compare policies π. If the optimal value is known, a policy that yields

this value can be easily derived. Vice versa, the value that a policy yields can also be

quite easily computed. The problem of solving a (PO)MDP thus can be reduced to

either finding an optimal policy or finding the optimal value. Recall that POMDPs and

MDPs are directly related by the idea of belief state MDPs. We use "(PO)MDP", when

referring to both problems.

3.2.1 History of Related Work

Solutions to optimizing (PO)MDPs can be found in different areas of research. If the

models of the (PO)MDP 3.3 and the reward function are known, a policy can be found by

planning. This procedure mainly has its origin in the area of operations research with

groundbreaking work by Sondik et al. [Smallwood and Sondik, 1973; Sondik, 1971]. In

case that the models are not fully known a priori they can be learned while the agent

interacts with the environment and receives rewards. This procedure mainly has its

origin in the area of reinforcement learning [Sutton and Barto, 1998]. Rather than just

imitating the reactions of an agent, reinforcement learning aims to explore the struc-

ture of the problem through experience.

Nevertheless, it is difficult to draw a clear line between planning and reinforcement

learning. Approaches from both areas typically follow the idea of dynamic program-

ming [Bellman, 1957a] and apply (PO)MDP models. Research in both areas is very

much inspired by each other. As a consequence, the methods are hard to distinguish:

they often combine both ideas. The two most popular ways of utilizing the idea of dy-

namic programming for planning MDPs and POMDPs are policy iteration and value

iteration (see, e.g., [Sondik, 1971; Puterman, 1994; Hansen, 1998]).

Policy iteration (or policy search) searches directly in a restricted class of controllers.

With every iteration the policy for the complete temporal horizon is updated. In finite-

state MDPs, a linear system needs to be solved to first evaluate a fixed policy and then

improve it. In policy iteration the policy needs to be represented explicitly. While in

MDPs this can be simply accomplished by decision lists, for POMDPs often finite state

controllers are used as representation [Hansen, 1998; Poupart and Boutilier, 2003]. An-

other option is to apply gradient ascent for searching the policy space for locally op-

timal solutions [Meuleau et al., 1999; Bartlett and Baxter, 2001]. Contrary to policy

iteration, value iteration improves the value function in every iteration, by planning

3.3The transition model T for MDPs and, additionally, the observation model Ω for POMDPs.

43

Chapter 3 Background on (Partially Observable) Markov Decision Processes

one time step into the future. The policy is then eventually derived from the optimal

value. In value iteration, instead of the policy the value needs to be represented. In

MDPs, this can be done using a simple vector over the state space. In POMDPs, the

property that the value function is piecewise-linear and convex (PWLC) over the belief

space allows to represent it as a finite set of vectors over the state space.

3.2.2 Complexity of Solving MDPs and POMDPs

Despite their close relationship, solving a POMDP is considerably more difficult than

solving the corresponding MDP. While discrete-state MDPs can be solved in polyno-

mial time, solving discrete POMDPs exactly is provably intractable [Papadimitriou and

Tsitsiklis, 1987]. The problem of solving the most general case of discrete POMDPs is

even undecidable as shown in [Madani et al., 1999]. In [Littman, 1996], it is proven

that the general infinite horizon, stochastic POMDP problem for boolean rewards is

EXPTIME-hard. The solving time is exponential for an infinite number of instances.

Some other simplifications of POMDPs, including deterministic transition and obser-

vation, completely unobservable Markov decision processes (UMDPs) and POMDPs

with a limited time horizon, or combinations of these, can be less complex to solve

than the general case. It is out of the scope of this thesis to give a more detailed com-

plexity analysis. Instead, we summarize important results from the literature and ex-

plain and outline the reasons why POMDPs are so hard to solve. Understanding com-

plexity is the most important preliminary for creating efficient methods.

In POMDPs, not only the initial state is uncertain. There are possible uncertainties in

the information about the underlying states in all time steps of the process. This prop-

erty is the main origin of the high complexity. Structural properties that can be found

and exploited in many MDPs are typically destroyed for the corresponding POMDP by

these uncertainties about the current state [Monahan, 1982]. Two intuitive challenges

when solving POMDPs can be identified: the curse of dimensionality [Kaelbling et al.,

1998] and the curse of history [Pineau et al., 2003].

Curse of Dimensionality

A POMDP with |S| states can be converted to a belief state MDP (see Section 3.1.3). An

MDP solver can then be applied to solve the POMDP, but the solver must reason about

an |S|-dimensional continuous belief space B ∈R|S|.
The belief space scales exponentially with the number of states in the problem. The

meaning of this can be easily seen in a practical example from the domain of drivers as-

sistance systems: when, for instance, considering just the velocity and the distance of

the car driving in front of us with just 10 discrete states per dimension for an adaptive

44

3.2 Solving Decision Processes

cruise control (ACC), already a (10×10) = 100-dimensional belief has to be considered.

Naively iterating all thinkable belief states in a belief state MDP is virtually impossi-

ble because there might be an uncountably infinite number of them [Kaelbling et al.,

1998]. Using a naive approximation approach, such as discretizing the belief space

scale with again just 10 steps, results in the astronomic number of 10100 belief states.

As the complexity of solving an MDP is polynomial in the number of states, this naive

discretization approach is practically infeasible. At the same time, even if this belief

state MDP could be solved, numerous and potentially critical approximation errors

are introduced because the discretization could be insufficient for the problem.

Curse of History

For optimal decision making in a partially observable environment an agent must con-

sider not only the current observation, but also the history of past actions and observa-

tions. A POMDP agent can in every time step decide between |A| actions. He then per-

ceives the results of his decisions by making one of |O| observations (see Section 3.1.2).

Every sequence of actions and observations encodes a history that needs to be mapped

to the optimal decision. A single history can encode a decision rule. It tells the agent

which action to chose in the specific situation with this history. The combination of

several histories can encode a policy.

The possible number of histories is exponential in the length t of the history:

(|A| × |O|)t . For exhaustive planning, every single history has to be considered and

assessed. For finite horizons the number of histories is also finite. In infinite horizon

problems, the possible number of histories is infinite, but can at least be enumerated

(in contrast to the uncountably infinite number of possible beliefs). For illustration,

recall the example in Figure 3.5 with three actions and three observations.

The curse of history and the curse of dimensionality are coupled to some extend: if the

dimensionality of a problem is very high, there is more room for histories to develop

differently. However, in real world problems, often this is not the case. Sometimes

there is a small number of histories that only covers tiny fragments of a large or even

continuous state space. In driving, e.g., physical limitations, constrain the motion of

road users from one time step to the next. Further, the perception of the state through

the sensors and as a result, the number of distinct observations is limited. Because of

this, the number of relevant belief states and policies is highly limited, too. The method

for POMDPs with continuous state spaces that we present in this thesis exploits this

property in several ways to make computation practically feasible.

45

Chapter 3 Background on (Partially Observable) Markov Decision Processes

3.3 Value Iteration for MDPs

Value iteration algorithms compute a sequence of value functions starting from an ini-

tial value function. Therefore Bellman backups steps are repeated until convergence

[Bellman, 1957b]. In MDPs, the value for all states s needs to be computed. Basically,

the value function V n−1 at iteration step n −1 for the possible future states s ′ is prop-

agated back in time in order to obtain the new nth step value function3.4 V n

V 0(s) = r (s , a) (3.3.1)

V n (s) =max
a∈A

V n
a (s) (3.3.2)

V n
a (s) = r (s , a) +γ

∑

s ′∈S
p (s ′|a , s)V n−1(s ′) . (3.3.3)

If the backup step is repeated for every state, the value function converges monoton-

ically to the optimal value V ∗ after a finite number of iterations [Bertsekas, 1987]. In

discrete MDPs, the value can be efficiently represented by a single vector over s . The

running time for each iteration is O (|A||S|2). The value iteration backup is a contrac-

tion. Every time it is executed the value function converges to the optimal value func-

tion. Value iteration converges in polynomial time, depending on the (fixed) discount

γ [Littman et al., 1995]. If no optimal solution is needed, value iteration can be stopped

early. An approximate solution is called ε-optimal, if

∀s ∈ S : |V ∗(s)−V n+1(s)| ≤ ε . (3.3.4)

This condition can be ensured (and value iteration stopped), if the Bellman residual

[Williams and Baird, 1993] is

max
s∈S
|V n (s)−V n+1(s)| ≤ ε

1−γ
2γ

. (3.3.5)

The policy πn in the nth iteration is easily derived from the value function by

πn (s) = arg max
a∈A

V n
a (s) . (3.3.6)

Using this equation, also the optimal policyπ∗ can be obtained from the optimal value

function in V ∗.

3.4 Value Iteration for POMDPs

As stated before, the problem of finding the optimal value for a general infinite hori-

zon POMDPs is uncomputable. Nevertheless, it can be approximated to an arbitrarily

small ε by a finite (but sufficiently long) horizon POMDP [Sawaki, 1978; Sondik, 1978].

3.4In reinforcement learning literature, V n
a is frequently denoted Q-function, Q n

a .

46

3.4 Value Iteration for POMDPs

Figure 3.6: Policy tree of length t . The nodes A denote which actions should be taken. The
edges denote the observations (or outcomes) o1, . . . , ok of the actions (inspired by
[Kaelbling et al., 1998]).

The idea of value iteration for POMDPs intuitively utilizes that the number of histories

is finite for finite horizons. As a consequence, finite value function representations

exist.

First, we introduce policy trees to illustrate the Bellman recursion for POMDPs.

Then, α-vectors are introduced, which pose a finite representation of value functions

in POMDPs. With these preliminaries, POMDP value iteration can be derived by con-

verting the POMDP to a belief state MDP and then applying MDP value iteration. We

proof the linearity of the Bellman backup operator, which enables α-vector backups

with gradient information. Finally, approximations for exact POMDP value iteration

are presented with a focus on point-based algorithms. These are the basis for our con-

tinuous POMDP method.

3.4.1 Policy Tree

Reactions to action and observation histories can be represented by a policy tree

[Littman, 1996]. The policy tree represents a full t -step behavior with a plan that de-

terministically tells the agent with which action to react to received observations (see

Figure 3.6 for an illustration). In many ways, policy trees are equivalent to decision

trees3.5. Note that a policy tree does not encode a POMDP policy because it can only

encode a single plan. Encoding a policy requires several different plans that the agent

can chose from, depending on his belief.

3.5Here, we refer to the term as it is usually used in decision-making: a graph to model decisions and
their possible consequences.

47

Chapter 3 Background on (Partially Observable) Markov Decision Processes

On the one hand, the policy tree representation is not very efficient and for this rea-

son not necessarily directly used to implement POMDP solvers.3.6 On the other hand,

it intuitively implies the recursive formulation of POMDPs as well as an effective value

function representation that is used by many dynamic programming approaches: ev-

ery policy tree induces an α-vector. Thus, policy trees give an intuitive understanding

of α-vectors, which will be formally introduced in the next section.

Let s be the true initial state of an agent. If this agent behaves according to the policy

tree PT for a time t , he can expect receiving the valueα(s). This value can be computed

by recursively descending the policy tree

αPT(s) = r (s , a)
︸ ︷︷ ︸

current reward

+γ
∑

s ′∈S
p (s ′|s , a)

∑

o∈O
p (o |s ′)αPT(o)(s

′)

︸ ︷︷ ︸

expected future reward

, (3.4.1)

where the choice of a is given by the policy tree PT. The future values αPT(o)(s ′) for the

next states s ′ are determined by the subtrees PT(o) that are conditioned by the received

observation o .

As the true state s is not known but estimated in form of a belief b (s), the t -step value

for an initial belief b0, as defined in Equation 3.1.15, is of interest. Since the value is the

expectation of the world’s states, it can be derived from the states’ valuesαPT(s) for any

belief b as follows

VPT(b) =
∑

s∈S
b (s)αPT(s) . (3.4.2)

3.4.2 Value Function Representation with α-vectors

The belief and the value function can be interpreted as belief and α-vectors respec-

tively so that this value definition can be rewritten to a more compact form

b =







b (s1)
...

b (s|S|)






, αPT =







α(s1)
...

α(s|S|)






, and VPT(b) = 〈b ,αPT〉d , (3.4.3)

where 〈·, ·〉d is the discrete expectation operator that equals a dot product. Intuitively,

every α-vector represents the values that can be expected when following a policy tree

PT . The values αPT(s) predict the value that can be expected for every state when fol-

lowing this policy tree.

The above equations show that the value function VPT, which is induced by a policy

tree PT, is linear in b . For optimal behavior, it is necessary to follow different policy

3.6A forest of policy trees can be transformed to a finite state controller (also denoted policy graph or plan
graph). They pose a compact policy representation that is frequently used for policy search methods
(see,e.g., [Kaelbling et al., 1998; Hansen, 1998]).

48

3.4 Value Iteration for POMDPs

trees/plans depending on the current belief. The optimal value function Vt for a belief

b for the horizon t can be expressed as the best of all policy trees PT

Vt (b) =max
PT

VPT(b) . (3.4.4)

If the horizon t is finite, the number of possible policy trees is finite, too. For this

reason, Vt can only consist of a finite number of (linear) facets. Combining Equa-

tion 3.4.2 and 3.4.4, we can represent value functions with finite horizons using a set

Γ = {α1,α2, . . .} of α-vectors

V (b) =max
α∈Γ

∑

s∈S
b (s)α(s) (3.4.3)= max

α∈Γ
〈b ,α〉d (3.4.5)

The policy trees PT are no longer necessary. They are fully replaced by α-vectors that

store the value that PT could receive.As a result, the t -step value function forms a

piecewise-linear and convex (PWLC) Simplex. Figure 3.7 shows an example of such

a function for a two-dimensional belief space. The convexity can be intuitively justi-

fied. Beliefs on the extremes of the simplex mean that the agent knows for sure that he

is in the according state. In these beliefs he can opt for directly maximizing the reward.

In contrast to that, the belief bu , exactly in the middle between the extreme-states, is a

uniform distribution: here, the agent first has to obtain the knowledge which state the

world is in. This lack of information leads to a lower value. In some cases, it might be

not even worth gathering the information. However, having more knowledge always

pays out or in other words: information is always worth something. A proper trade-

off between acquiring information and exploiting information to receive rewards can

only be found when considering the full POMDP.

Resulting from the curse of history, the theoretical number of policy trees and thus

the number of facets describing the value function can become very high. It is doubly

exponential in the horizon. Let t be the length of the horizon, then the number of pol-

icy trees is |A|
|O|t −1
|O|−1 [Littman, 1996]. In practice, however, only a few of these theoretical

policy trees and with them α-vectors have an impact on the optimal policy.

3.4.3 Belief State Value Iteration for POMDPs

As described in Section 3.1.3, a POMDP can be cast as belief state MDP. The optimal

policy for this belief state MDP is also optimal for the original POMDP. However, be-

cause the belief state space is continuous rather than discrete, the MDP cannot be

solved directly. We derive value iteration for POMDPs from value iteration for the be-

lief state MDP. The resulting POMDP backup is a linear operator, which justifies using

α-vectors as finite representation.

49

Chapter 3 Background on (Partially Observable) Markov Decision Processes

Figure 3.7: Value function V in a state space with two states s1 and s2. V is defined as maximum
of the set of α-vectors Γ = {α1,α2,α3}. For the belief bu , α2 yields the best value.

The nth Bellman backup of the value function for the belief state b can be computed

based on the n −1th value function V n−1

V 0(b) = rb (b , a) (3.4.6)

V n (b) =max
a∈A

V n
a (b) (3.4.7)

V n
a (b) = rb (b , a) +γ

∑

b ′∈B

pb (b
′|b , a) V n−1(b ′) , (3.4.8)

where rb and pb are the belief state MDP reward and transition functions, respectively

(see Section 3.1.3).

The next belief b ′ is fully conditioned by the action a , observation o and the current

belief b following Equation 3.1.12. Thus, we denote it b ′b ,a ,o . As b ′b ,a ,o is conditioned by

o , the sum over the next beliefs b ′ can be replaced by the sum over the observations o .

Additionally, the conditional probability of the next belief pb (b ′|b , a) can be replaced

with the conditional probability of the next observation p (o |b , a).

Following Equation 3.4.5, the n − 1th step value function is PWLC and represented

by vectors α in the set Γ n−1. For the value computation of the next belief V n−1(b ′b ,a ,o),

we select the αn−1
b ,a ,o which yields the best value for this belief

V n−1(b ′b ,a ,o) =
∑

s ′∈S
b ′b ,a ,oα

n−1
b ,a ,o =

b ′b ,a ,o ,αn−1
b ,a ,o

�

d
, (3.4.9)

where αn−1
b ,a ,o :=arg max

α∈Γ n−1

b ′b ,a ,o ,α
�

d
. (3.4.10)

50

3.4 Value Iteration for POMDPs

The belief state MDP backup in Equation 3.4.8 for action a can be rewritten using the

POMDP reward r (s , a), transition p (s ′|s , a) and observation functions p (o |s ′), instead

of the belief state MDPs reward rb (b , a) and transition function pb (b ′|b , a):

V n
a (b) =rb (b , a) +γ

∑

o∈O
p (o |b , a)V n−1(b ′b ,a ,o) (3.4.11)

(3.4.9)= rb (b , a) +γ
∑

o∈O
p (o |b , a)

∑

s ′∈S
b ′b ,a ,o (s

′)αn−1
b ,a ,o (s

′) (3.4.12)

(3.1.12)= rb (b , a) +γ
∑

o∈O

∑

s ′∈S
�����p (o |b , a)

p (o |s ′)

�����p (o |b , a)
αn−1

b ,a ,o (s
′)
∑

s∈S
p (s ′|s , a)b (s) (3.4.13)

(3.1.17)=
∑

s∈S

�

r (s , a) +γ
∑

o∈O

∑

s ′∈S
p (o |s ′)p (s ′|s , a) αn−1

b ,a ,o (s
′)

�

︸ ︷︷ ︸

:=αn
b ,a (s)

b (s) . (3.4.14)

It turns out that the value function after the Bellman backup remains convex. The

backup result V n
a is represented by a set of linear combinations αn

b ,a of n − 1th step

vectors αn−1
b ,a ,o ∈ Γ

n−1 by

V n (b) =max
a∈A

V n
a (b) =max

a∈A

b ,αn
b ,a

�

d
. (3.4.15)

Consequently, if the value function in the previous step n −1 is PWLC, this property is

maintained for the value function in the nth step (for the original proof see [Sondik,

1971]). Note that the belief-propagation in Equation 3.1.12 is not linear because of

the marginalization denominator p (o |b , a). This denominator is canceled out in the

POMDP backup as the expectation over all observations o is computed. For this rea-

son, the backup is independent from the current belief (aside from selecting the next

α-vectors). This gives rise to performing α-vector backup as described in the next sec-

tion.

Analogously to MDPs, using the above backup computation, a policy can be derived

that yields the nth value function’s results following

πn (b) = arg max
a∈A

V n
a (b) . (3.4.16)

However, direct application of this value iteration scheme is impossible. The belief

state space is continuous and thus of uncountably infinite size. Naively iterating all

belief states is thus not an option (see Section 3.2.2). Various methods exist that ap-

proximate the belief space by discretization. The backup in Equation 3.4.11 is then

only performed in the finite set of belief points . The values of the beliefs that are not

part of this set can be obtained following an interpolation-extrapolation rule.

Different schemes have been proposed for belief point selection. Fixed regular grids

as proposed in [Lovejoy, 1991a] suffer directly from the exponential growth of the belief

51

Chapter 3 Background on (Partially Observable) Markov Decision Processes

space with its dimensionality. Some procedures exploit that for many problems the

most important beliefs are the extremes of the belief simplex where the agent is certain

to be in one of the states. Non-regular grid approximations using these extreme points

with additional belief points have been proposed that can be, e.g., gained by forward

simulation [Hauskrecht, 2000] or by adding intermediate points [Brafman, 1997]. With

this procedure ε-optimality can be achieved [Bonet, 2002]. However, the belief space

must be sampled very thoroughly, which is why this general approach is vulnerable

to the curse of dimensionality. The next section shows, how the special properties of

belief state MDPs can be exploited to generate value functions for the complete belief

space using gradient information.

3.4.4 Exact Value Iteration for POMDPs Using α-vector Backups

In contrast to the infinite number of belief states, there is only a finite set of possible

policy trees, i.e., derived α-vectors, for finite horizon problems. Thus, the nth step

value function can be represented as a finite set Γ n of α-vectors (see Equation 3.4.5).

This idea, in combination with the important discovery that the value iteration

backup is a linear operator, gives rise to α-vector backups. In contrast to belief state

Bellman backups, which only compute values for one out of an infinite number of be-

lief states, α-vector backups define a value function over the complete belief simplex.

To obtain an nth step α-vector for action a ∈A the backup has to be computed for

all states s ∈ S following

αn
a (s) = r (s , a) +γ

∑

o∈O

∑

s ′∈S
αn−1(s ′)p (o |s ′)p (s ′|s , a), with αn−1 ∈ Γ n−1 . (3.4.17)

Unlike the direct belief state backup in Section 3.4.3, this computation covers the

whole belief space and not just a single point in the belief space. Instead, all choices of

αn−1 ∈ Γ n−1 could dominate in one of all possible next beliefs. To obtain a full backup

that eventually approximates an exact solution arbitrarily closely, α-vector backups

with all combinations of observations and α-vectors in Γ n−1 for all actions a ∈A have

to be computed. If all createdα-vectors from all combinations form Γ n , the value func-

tion is provably improved (if it has not already been optimal before). However, with this

naive approach the number of α-vectors increases exponentially with the size of the

observation set |O| in every iteration |Γ n |= |A||Γ n−1||O|.

52

3.4 Value Iteration for POMDPs

Figure 3.8: α-domination: α1 dominates α2 because it is superior over the whole belief space.
Hence, α2 can be safely neglected for the optimal policy.

3.4.5 α-vector Domination

Usually only a small subset of α-vectors is important for the solution. This parsimo-

nious set dominates the otherα-vectors (see Figure 3.8). A vectorα1 dominates another

vector α2, if it yields superior values for every point in the belief space according to

∀b ∈B : 〈b ,α1〉d ≥ 〈b ,α2〉d . (3.4.18)

Dominated α-vectors do not carry useful information for the optimal value. There is

no situation (or belief), in which they should be selected, if the best behavior is wanted.

Dominance can be checked by executing a linear program.

Many exact value iteration methods aim to find a parsimonious set. Some methods

are based on the idea of pruning the dominated α-vectors like Monahan’s algorithm

[Monahan, 1982] and Lark’s Filtering [White III, 1991]. “Incremental pruning” is more

effective because it discards vectors earlier [Zhang and Liu, 1996, 1997; Cassandra et al.,

1997]. Similarly, Sondik’s original “One-Pass”-Algorithm [Sondik, 1971; Smallwood and

Sondik, 1973] and the “Witness”-Algorithm [Littman et al., 1996; Kaelbling et al., 1998]

aim to directly build a parsimonious set.

Despite all this research effort, exact value iteration in POMDPs is only feasible for

tiny problems (e.g., the two state “Tiger”-problem from [Cassandra et al., 1994]). Value

iteration proceeds in many ways similar to a breadth-first search in the belief state

space [Pineau et al., 2003]. For this reason, performing exactα-vector backups directly

runs into the curse of history. Even using the best exact algorithms, only POMDPs with

very few states and/or short horizons can be exactly solved in reasonable time. This

renders the exact approach unusable for practical problems and limits its applications

to rather academic toy problems. Next, we elaborate on more practical approximate

methods.

53

Chapter 3 Background on (Partially Observable) Markov Decision Processes

Figure 3.9: Point-based backup in beliefs b1, b2 and b3 without and with α-vector backup.

3.5 Approximate Point-based Value Iteration for POMDPs

The computational infeasibility of exact solutions inhibited the practical application

of POMDP models for many years, even though partial observability is very relevant

for real-world applications. Theoretically, POMDPs promise huge improvements over

current methods and approximate POMDP policies suffice for most applications. In

fact, even rough approximations are usually superior to solutions that ignore uncer-

tainty and partial observability.

At the end of the 20th century, POMDPs with up to a few dozens of states could be

solved exactly. The rapid development of approximate solvers in the last decade, now

allows tackling POMDPs with thousands of states. This performance boost suddenly

rendered POMDPs applicable for many tasks. The development was mainly driven by

the insights about the origin of the theoretical complexity of solving POMDPs. Most

approximation algorithms tackle either the curse of dimensionality, the curse of history,

or both.

The idea of performing backups only at a number of points in the belief space in-

stead of the whole simplex is supposedly the one that recently had the biggest success

(see [Shani et al., 2013] or [Smith and Simmons, 2012] for an overview). The general

approach is based on exact value iteration with α-function backups presented in Sec-

tion 3.4.4. The exact approach creates new α-vectors for all combinations of actions,

observations, and old α-vectors in every iteration. For this reason it falls victim to the

curse of history. In contrast to this, a point-based backup only creates one newα-vector

for the belief point it was executed in. This procedure does not only allow polynomial-

time backups instead of the exponential-time exact backups, but more importantly

avoids the exponential growth of the α-vector set.

Figure 3.9 shows a comparison of point-based α-vector backups with belief state

backups. Without the gradient information of α-vectors, the results cannot be directly

generalized to other beliefs. We illustrate, exemplary for the belief be , how the point-

54

3.5 Approximate Point-based Value Iteration for POMDPs

Figure 3.10: Point-based value iteration (PBVI) flow diagram.

based value VPB can be obtained from the set of α-vectors for any belief. The value

yielded by a belief state Bellman backup (indicated by the green color) might be higher

than the point-based approximation. However, the values for the belief points of the

backup (in this case b1, b2 and b3) are always exactly as good as the nth belief state

backup in the beliefs.

3.5.1 Point-based α-vector Backup

Every α-vector backup is performed in a belief point b . Intuitively, the computation

aims to improve the behavior in this belief. In most cases, this belief is somehow rep-

resentative for many other beliefs. The α-vector created in belief point b , thus, also

contains important information for other beliefs.

The α-vector backup in the belief point b only differs from the exact one in Equa-

tion 3.4.17 in the choice of the αn−1

αn
b ,a (s) = r (s , a) +γ

∑

o∈O

∑

s ′∈S
p (o |s ′)αn−1

b ,a ,o (s
′)p (s ′|s , a) , (3.5.1)

with αn−1
b ,a ,o = arg max

α

b ′b ,a ,o ,α
�

d
.

In the point-based backup, the vectors αn−1
b ,a ,o are chosen to be those α-vectors that

dominate the successor beliefs b ′b ,a ,o of the belief point b (see the belief propagation

in Equation 3.1.12). The point-basedα-vector backup could be derived from the belief

state backup of b by separately computing the values for all states in b following the

last part of the conversion in Equation 3.4.11. The createdα-vector optimizes the result

for the belief point it is executed in.

Evaluating the newα-vector for b yields the same value as the n−1th value function

so that

αn−1
b ,a ,o , b

�

d
=V n−1

a (b) . (3.5.2)

where αn−1
b ,a ,o is the gradient of the value function V n−1 in the point b . Figure 3.10

sketches the point-based α-vector recursion. The old α-vector set Γ n−1 is used to

55

Chapter 3 Background on (Partially Observable) Markov Decision Processes

(a) Initial belief. (b) State physically not reachable.

(c) Belief not reachable because the view of
the other vehicle is blocked.

(d) Belief not reachable because the view of
the other vehicle is good.

Figure 3.11: Illustration of reachability on the state and the belief level.
Map Data [City of Karlsruhe].

evaluate the α-values for the predicted beliefs. The Bellman Backup creates a new

α-function that is added to Γ and increments its version from n −1→ n .

Early algorithms using this idea aimed at solving the POMDP exactly [Sondik, 1971;

Cheng, 1988; Zhang and Zhang, 2001] and still fell victim to the complexity. It turned

out that point-based α-vector backups are a good basis for approximate methods be-

cause they also backup the gradient of the value and still make statements for the com-

plete belief space. This is also the reason why all these algorithms are anytime capa-

ble, meaning that they can provide a valid (if not optimal) solution for any belief at any

point of computation.

Belief Point Selection

For the choice of belief points, similar approaches as for belief state value iteration

without gradient information have been proposed, including fixed grids [Lovejoy,

1991a,b] and forward simulation [Hauskrecht, 2000]. In more recent work, a large

number of heuristics is proposed to obtain a representative set of beliefs that improves

efficiency. We identified the following concepts.

Reachability: The beliefs in the set should be reachable from the initial belief. This

includes the reachability on a state level: many states are (e.g., physically) not reach-

able from a previous state. Beliefs where the probability for such states is greater zero

can be neglected. An example is the state in Figure 3.11b that could in principle be

56

3.5 Approximate Point-based Value Iteration for POMDPs

Figure 3.12: Belief space and subspaces. The reachable belief space can be explored by forward
simulation from the initial belief. The optimally reachable belief space contains
only beliefs that can be reached when executing the optimal policy.

reached, but not from the initial belief. The reachability on belief-level additionally

includes that some information can or cannot be obtained. The belief in Figure 3.11c

is not reachable because the exact pose of the hidden car cannot be known. In contrast

to this, in Figure 3.11d, the other car is not hidden and thus, the knowledge about the

other car’s pose cannot be that uncertain. The reachable subset of the belief can be

constructed by forward simulation, starting at the initial belief (see Figure 3.12).

Optimality: All beliefs in the set should reflect trajectories of optimal solutions. Beliefs

that are part of non-optimal solutions are only reachable under suboptimal policies.

When executing the optimal policy, they are irrelevant.

Information Gain: To avoid redundant computations, belief points should add as

much information as possible about the value and consequently about the policy. For-

mally, beliefs do not add new information, if they create the same α-vectors. Intu-

itively, beliefs that are far away from each other and represent different situations add

more information. If beliefs are close, often their α-vectors will be similar. Note that

this is only a heuristic and not necessarily true. Sometimes similar beliefs can lead to

different behaviors (e.g., at the point where the policy of a car changes from merge onto

the lane to brake and wait for the next gap).

Information Propagation: As illustrated in Figure 3.13, α-vectors propagate the infor-

mation of the Bellman backup over the belief space. As α-vectors contain the gradient

of the value, they can in theory contribute to the value of any belief in the belief space,

no matter how distant the belief is. However, the backup operation in the belief that

57

Chapter 3 Background on (Partially Observable) Markov Decision Processes

Figure 3.13: Propagation of information in a POMDP. Theα-vector created in belief bm unlikely
directly contributes to the policy in b0 (path A). In contrast to this, it definitely

has influence on the backup of its predecessor belief bl (path B).

is directly reachable from the previous belief definitely contributes to its value. This

discovery can improve the efficiency of value iteration by performing backups in the

right order.

State-of-the-art Point-based Algorithms

The PBVI [Pineau et al., 2003] algorithm was the first to guarantee convergence un-

der certain conditions. To obtain a representative set of belief points, it uses forward

simulation in combination with a heuristic that aims to select those beliefs that are

most distant from the existing set in every step. Because distance in the belief space

often does not translate into information gain, a modified version of PBVI has been

proposed that chooses the belief that maximizes the gain of value [Pineau et al., 2006].

The PERSEUS algorithm [Porta et al., 2006; Spaan and Vlassis, 2005] creates a reach-

able belief set using random simulation. Instead of filtering this set itself, it only per-

forms backups in a subset of these belief points in every step. This imposes another

way to reduce the growth of the α-vector set Γ .

The heuristic search value iteration (HSVI) [Smith and Simmons, 2004] relies on the

idea of goal-directed forward simulation. Additionally, in difference to previous meth-

ods, the beliefs are not just seen as an unordered set. The perhaps most important

innovation of HSVI is that it utilizes that the backup order can be very important for

the speed of the convergence. HSVI maintains the history of explored beliefs in a belief

tree that is related to the idea of policy trees (see Figure 3.6). Other than in policy trees,

in belief trees, nodes are not labeled with actions but with the belief that the agent

would have in that node. All choices of actions are available in the belief tree (see Fig-

ure 3.14) so that they pose an efficient way to store the history of explored beliefs. HSVI

performs a depth-first exploration that samples deeply into the belief tree following a

heuristic. After this deep-sampling step, backups are performed in the reverse order,

starting from the most future belief and ending in the initial belief. This way, the effect

of the discoveries in the future beliefs can be pointedly propagated back to the beliefs

58

3.5 Approximate Point-based Value Iteration for POMDPs

Figure 3.14: Time step 0 and 1 of a belief tree. The nodes are labeled with the beliefs.

that they are interesting for, thereby avoiding redundant computations. HSVI main-

tains a lower as well as an upper bound of the value to implement this heuristic and to

obtain an estimate for the precision of the current policy. The most promising paths

are explored first by greedily sampling the action a which currently has the highest up-

per bound value. This heuristic can assure convergence because if the current upper

bound was too loose and promised too high values, it will eventually decrease, once it is

explored. The exploration heuristic of HSVI chooses the observation that promises the

highest information gain. Therefore, the excess uncertainty is introduced. It quantifies

the remaining uncertainty in the value function estimate. It is defined using the differ-

ence of the upper and lower value bound in the belief. The heuristic chooses the belief

with the highest excess uncertainty. It is clear that this heuristics assures convergence

as the uncertainty in a belief can only decrease once explored. The excess uncertainty

also poses a good termination criteria. If it is small, either because the belief is too far

in the future or because it has been sufficiently explored, further exploration of this

path can be stopped.

Due to the huge success of this method, a large number of modifications of the orig-

inal HSVI have been proposed. We will briefly present the most important of them.

FSVI [Shani et al., 2007] guided the exploration using an MDP. HSVI2 improved the

performance by using tighter bounds for the initialization, avoiding the calculation of

linear programs and making better use of sparsity [Smith and Simmons, 2012]. In or-

der to exploit sparse beliefs more efficiently, they proposed to neglectα-vectors for the

computation of the value of a belief, if there are non-zero probability states in the be-

lief that have not been covered by the sparse backup which created the α-vector. This

59

Chapter 3 Background on (Partially Observable) Markov Decision Processes

was realized by masking the α-vectors. SARSOP aims to find tighter approximations

of the optimal belief space by value prediction through learning as well as pruning

beliefs that have been found to be suboptimal [Kurniawati et al., 2008]. The GapMin-

algorithm [Poupart et al., 2011] replaced the sawtooth upper bound representation and

update. Additionally, it replaced the depth-first search with a prioritized breadth-first

search in order to find tighter upper bounds. The PGVI (packing-guided value iter-

ation) [Zhang et al., 2014] uses the idea of the covering number (see next section) to

alleviate the curse of history.

3.5.2 Difficulty of Approximating POMDPs

The presented POMDP solvers that are based on the idea of point-based value iteration

are among the fastest existing methods for discrete spaces today. Every solver has ad-

vantages and disadvantages that prevail depending on the given problem. The size of

the history and the dimensionality are intuitive sources of the complexity of POMDPs.

However, when approximating POMDPs with algorithms that tackle exactly these two

problems, they become overshadowed by other challenges. It turns out that the un-

derlying complexity of a problem is inadequately represented just by the dimension of

the belief space or the size of history. The dimensionality, for instance, can just be a

result of a poor representation of the problem.

Uncertainty plays a dominating role for the underlying complexity of POMDPs.

However, the influence of uncertainty is far from being uni-dimensional. On the one

hand, uncertainty results in higher entropy beliefs, which makes them considerably

more inefficient to approximate with MC methods. Additionally, uncertain transition

probabilities can result in a higher number of future observations that has to be con-

sidered. On the other hand, uncertainty can in some cases also simplify computation.

If, for example, the observation of the situation is very uncertain, only a small number

of next beliefs with low entropy has to be considered. In the extreme case of a UMDP

with a blind agent only a single next belief exists. This significantly reduces complex-

ity. Absolute certainty about the state simplifies the problem up to an MDP. If only

some variables are completely observable a factored representation can be build as in

mixed observable Markov decision processs (MOMDPs) [Ong et al., 2010, 2009]). Cer-

tainty that some states are not true, leads to sparse beliefs. This property can also be

computationally exploited.

The practical complexity stemming from the history is also more difficult to discover

than just numbering the combinatorial possibilities. Despite the fact that only a small

subset of all histories might be relevant for the solution (analogously to the idea of

the optimally reachable belief space), especially the influence on the performance of

dynamic programming is difficult to quantify. Some problems have a long horizon and

60

3.6 POMDP Applications

(a) Collision avoidance
[Temizer et al., 2010].

(b) Search and Rescue [Waharte and Trigoni,
2010]. ©2010 IEEE

Figure 3.15: POMDPs for unmanned air vehicles.

a large theoretical history, but if the agent often faces the same or similar situations the

relevant history can be much smaller. If beliefs recur, DP approaches can reuse the

results. Algorithms performing α-vector backups can even benefit from beliefs that

are similar in terms of their future value in the states. One extreme case is induced by

the terminal state that is introduced in Section 6.1. It states that the decision process

is over: the agent is trapped in the terminal state.

In [Hsu et al., 2007] the coverage of the belief space is proposed as metric that is able

to comprise some of the properties that make POMDPs difficult to solve. But it is still

difficult to discover the underlying complexity of a POMDP and which approximation

method is best for a given problem. Finally, it is important to state that the real com-

plexity is usually much lower than the theoretical complexity. This is the only reason

why large discrete POMDPs and especially continuous POMDPs, which this thesis is

mainly interested in, can be solved at all.

3.6 POMDP Applications

POMDPs pose a very general formulation of sequential decision problems. For this

reason, applications are very wide spread. POMDPs are always useful, if a sequence

of decisions is wanted rather than a single decision and if major uncertainties are in-

volved in the process. We briefly introduce interesting examples to give an impression

for which kind of application considering partial observability comes in handy.

Originally, the topics that researchers had in mind when developing POMDPs were

mainly industrial applications. Early research was concerned with machine mainte-

nance [Smallwood and Sondik, 1973; White III, 1991]. The idea is to decrease cost for

repair, replacement, inspection or loss of production by optimizing maintenance us-

ing a POMDP. Therefore, the state of a machine (or an abstract unit) is modeled as

61

Chapter 3 Background on (Partially Observable) Markov Decision Processes

(a) Simulated grasping.C. Observation, reward, and transition

1B

1A

1C

2C

3 4

5 6

2A

2F

2J

2E

2I

2K

2B 2D

2G 2H

(b) State space abstraction for POMDP models.

Figure 3.16: Robot grasping with a POMDP policy [Hsiao et al., 2007]. ©2007 IEEE

hidden variable. The wide-spread potential of POMDPs was discovered early (see [Cas-

sandra, 1998] for an overview). Fields of application include autonomous robots, busi-

ness, health-care, operations-research, social applications, and military applications.

Human-Computer Interaction POMDPs are very useful when interacting with hu-

mans. A typical example are dialog systems and especially spoken dialog systems

[Young et al., 2013; Williams and Young, 2007; Young, 2006]. The latter are becoming

more and more important, for example to reduce costs in call-centers. More recently,

speech interfaces, such as Apple’s “Siri” and Google’s “OK, Google”, are becoming the

prevalent communication mode with mobile devices, cars, and other technologies.

However, there is always a high detection error-rate and uncertainty what the user re-

ally said and meant. This problem can be tackled with POMDPs by modeling the users

intent as hidden variable so that it can be estimated and pointedly found out.

Another application of POMDPs are systems that assist people with dementia to

perform important actions like hand-washing, while at the same time annoying them

as little as possible [Boger et al., 2005; Hoey et al., 2007]. For education, the use of

POMDPs tutoring systems have been proposed that aim to find optimal teaching ac-

tions for individual student models [Rafferty et al., 2011; Folsom-Kovarik et al., 2010].

In this context, the learning progress is modeled as hidden variable.

Information Gain The capability of implicitly performing information gain, if neces-

sary, is important for many applications. Finding a good trade-off between informa-

tion gain and its cost becomes especially important in medical diagnostics and treat-

ment. Medical systems that combine diagnosis and treatment planning and schedul-

ing have been proposed [Hauskrecht and Fraser, 1998a,b]. The underlying disease of

62

3.7 Conclusion

a patient is only partially observable through diagnostic and investigative actions. Ad-

ditionally, it can be derived from the patients reaction to treatments. For this reason,

diagnostics is a highly dynamic process and the cost for gaining information (e.g., by

performing a treatment with side effects) can be severe. In [Ayer et al., 2012], an ap-

proach to apply POMDPs to design a mammography screening is presented, depend-

ing on the personal risk characteristics of women. This way, costs for mammograms

as well as false-positives can be reduced.

Autonomous Robots Despite these interesting applications, autonomous robots are

one of the main applications of POMDPs. Robots that navigate in the real world of-

ten suffer from incomplete and noisy perception. This is also true for flying robots.

POMDPs have been proposed for collision avoidance for unmanned aircraft [Temizer

et al., 2010; Bai et al., 2011] (see Figure 3.15a). The information gain capability is very

useful for “search and rescue” tasks. In [Roy et al., 2006], a POMDP approach for find-

ing and escorting people efficiently in health-care facilities is presented. [Waharte and

Trigoni, 2010] found that POMDPs have high potential for supporting rescue opera-

tions with unmanned air vehicles (see Figure 3.15b for illustration). In [Hsiao et al.,

2007] an POMDP approach for grasping under uncertainty is proposed. To handle the

complexity, an abstract symbolic state space is build that separates the state into sev-

eral regions for observations, rewards and transitions (see Figure 3.16).

3.7 Conclusion

In this chapter, we introduced decision processes and presented methods for solving

MDPs and POMDPs with discrete spaces. We identified the size of the history and the

continuity of the belief space as the main origins of complexity and presented methods

to counteract.

A short selection of applications has been presented that gives an impression of the

humongous variety of thinkable applications for POMDPs. Nevertheless, due to their

complexity, they have, in practice, only been applied to a few special problems. To-

day, applications are still restricted to tasks where a small, representative state space

can be hand-build or automatically derived prior to solving the POMDP. Especially for

autonomous robots that navigate in the real-world this is usually not possible.

One of the main motivations of this work is to open POMDPs to a wider field of ap-

plications. In the next chapter a method for solving continuous POMDPs is developed.

The ability to solve POMDPs with continuous spaces is essential to get rid of the man-

ual step of pre-tailoring a discrete representation, which prevents using POMDPs in

many fields of application, today.

63

Chapter 4

Continuous Partially Observable Markov Decision
Processes

The methodological foundations of the method for continuous POMDPs

in Chapter 5 are established in this section. We introduce continuous

POMDPs, elaborate on the differences to discrete POMDPs, both, formal

and practical and discuss related work. We derive requirements and draw

conclusions for the method developed in this thesis.

In Section 3.2, we presented research from the last 50 years that eventually led to

methods that can approximate relatively large discrete POMDPs with up to thousands

of states. This methodical breakthrough enabled the application of POMDPs in a num-

ber of domains. The real world is of continuous rather than discrete nature, though.

In general, this has severe consequences on the difficulty of solving a POMDP.

The usual approach to apply POMDPs for real-world problems is to build a discrete

representation that is suitable for the specific task. Such hand-build representations

are mostly symbolic and based on human language. Frequently, existing models that

have been used before for the problem (e.g., deterministic state charts) are adapted.

If quantities become important, developers often resort to naive discretization, for ex-

ample, with equidistant grids. This procedure is in many ways suboptimal. It is costly

because it involves experts that model the state space. It is also prone to errors because

finding a good representation is not trivial. The representation must be able to express

all relevant correlations between states, temporal as well as spatial. Even for the same

application, the quality of one and the same representation varies depending on the

precise current situation. At the same time it has to be compact enough so that the

POMDP can be solved in reasonable time. After all, a predefined discrete representa-

tion will most certainly yield inferior policies as it cannot represent every important

detail.

For problems like driving, which are more naturally modeled in their original, con-

tinuous space, using a hand-build representation is by no means the best solution.

Solving the continuous POMDP directly is potentially superior. However, consider-

ing continuous spaces takes the already utterly difficult problem of solving discrete

POMDPs to a whole new level.

65

Chapter 4 Continuous Partially Observable Markov Decision Processes

Chapter Overview We first introduce continuous POMDPs and point out the differ-

ences to discrete POMDPs in Section 4.1. Then, in Section 4.2, we provide an insight

into the wide spectrum of work that is concerned with or related to solving continu-

ous POMDPs, and draw conclusions from their results. In Section 4.3, we then explain

point-based value iteration with gradient information for continuous POMDPs in de-

tail, as this is the basis for the novel method presented Chapter 5.

4.1 Preliminaries on Continuous POMDPs

Analogously to the definition of a discrete POMDP in Section 3.1.2, continuous

POMDPs are defined as tuple

(S,A,O, T ,Ω, r, b0,γ) . (4.1.1)

However, instead of assuming discrete states s ∈ S, observations o ∈ O, and actions

a ∈A, continuous POMDPs are based on continuous random variables.

In discrete POMDPs, the transition model T (s ′, s , a) = p (s ′|s , a), observation model

Ω(o , s ′) = p (o |s ′) and reward function r (s , a) can be efficiently represented by matrices

and vectors, respectively. In continuous POMDPs, the conditional probability densi-

ties and the reward function are usually represented by parametrized functionals.

A POMDP is usually denoted continuous, if at least one of the sets S, O, and A is

continuous. In the following, we introduce different versions of continuous POMDPs

and assess their capabilities of representing tasks as well as the difficulties that they

induce to solving the POMDP.

4.1.1 Continuous-state POMDPs

In contrast to discrete-state POMDPs, in continuous-state POMDPs, the world is mod-

eled by an infinite number of N -dimensional states rather than a finite number of

states4.1

s ∈ S⊆RN . (4.1.2)

The sums in the definitions for discrete POMDPs in Section 3.1.2 are replaced with

integrals. The continuous belief is a probability distribution defined on the continuous

space with

b : S→R≥0 and

∫

s∈S
b (s) ds = 1 . (4.1.3)

4.1The continuous state space can be extended by discrete states. However, this case is w.l.o.g. covered
by the given definition.

66

4.1 Preliminaries on Continuous POMDPs

Figure 4.1: Sketch of one time step in a POMDP. The state space is 1D continuous. There are
two discrete actions and two observations.

To propagate the belief under the action a and the observation o , the integral over the

states s at the previous time step needs to be computed (compare with the discrete

belief propagation in Equation 3.1.12)

b ′b ,a ,o (s
′) =

p (o |s ′)
p (o |b , a)

∫

s∈S
p (s ′|s , a)b (s)ds . (4.1.4)

The sketch in Figure 4.1 illustrates one time step of the development of a 1D

continuous-state POMDP example. The belief b shows that initially the state is only

known with variance. The two actions are move left and move right. As usual in real-

world systems, the prediction after executing these actions adds uncertainty. The con-

tinuous next beliefs b ′b ,a ,o are the posterior distributions after updating with the obser-

vation o . The two observations in this example are o1 (approximately at position sx)

and o2 (approximately not at sx).

4.1.2 Continuous-observation POMDPs

In some cases, it can be sufficient to combine continuous-states with discrete obser-

vations. For instance, static sensor measurements can be described by a finite mea-

67

Chapter 4 Continuous Partially Observable Markov Decision Processes

surement space. Practical examples are measurements from a proximity sensor (the

object is near a fixed position) or from a light barrier (the object is somewhere on a fixed

line in the continuous state space).

In many dynamic environments such as driving, however, the state (e.g., positions,

orientations and velocities) is directly measured. Sometimes, indirect measurements

of the state space are obtained. A well-known example are indirect position estimates

that are obtained from measurements from multiple distance sensors that can be tri-

angulated. Similar to the state space, naive-discretization of the observation space can

induce significant errors and inefficiency. Thus, for most continuous-state systems, it

is sensible to consider continuous observations. Let M be their dimension, then4.2

o ∈O⊆RM . (4.1.5)

Having an infinite number of observations aggravates the curse of history: for exhaus-

tive planning, an agent has to take an infinite number of observations into account in

every planning step. Additionally, to calculate the expectation over all observations,

an integral has to be computed instead of a discrete sum over the finite set of observa-

tions.

4.1.3 Continuous-action POMDPs

For some tasks, the action space has to be assumed continuous

a ∈A⊆RL . (4.1.6)

This is especially relevant for low-level tasks, where stable and precise control is the

goal. While continuous actions greatly add to the generality of the POMDP, they also

add to the complexity: in every step the agent has to take into account an infinite num-

ber of control-actions.

4.2 Related Work on Solving Continuous POMDPs

If the state space is continuous, the belief space is not only high- but infinite-

dimensional. For this reason, known approaches for discrete state POMDPs cannot be

applied directly. To solve POMDPs, expected values over the continuous state space

need to be calculated. In continuous POMDPs, these are defined by continuous inte-

grals, for which, in general, no closed form exists. Most research on solving continuous

POMDPs aims at finding a finite representation of either the policy or the value func-

tion. In general, what makes a good representation is not known a priori and naive

4.2The continuous observation space can be extended by discrete states. However, this case is w.l.o.g.
covered by the given definition.

68

4.2 Related Work on Solving Continuous POMDPs

(a) Ignoring partial observability. (b) Considering partial observability.

Figure 4.2: Stochastic optimal control using iterative application of LQG in a 2D scenario
[Van Den Berg et al., 2012].

approaches, such as equidistant discretization of the space, are not feasible for prob-

lems with higher-dimensional continuous state spaces.

Related work on solving continuous POMDPs stems from different areas of research.

We briefly introduce and assess a selection of methods.

4.2.1 Stochastic Optimal Control

A vast amount of related research stems from the area of stochastic optimal con-

trol. Most control approaches are derived from the basic linear-quadratic Gaussian

(LQG) formulation [Bertsekas, 2007]. LQG can be extended with noise as shown in

[Todorov and Li, 2005]. However, in this approach, it remains limited to linear systems

with quadratic cost functions, purely additive white Gaussian noise on the motion

model, and full observability. Further developments consider uncertain perception,

but simplify the POMDP significantly by neglecting obstacles or assuming maximum-

likelihood observations (e.g., [Platt Jr et al., 2010; Erez and Smart, 2010]). Recent at-

tempts to overcome the latter limitation, for instance, combine algorithms from mo-

tion planning like rapidly-exploring random trees (RRTs) with stochastic optimal con-

trol [Bry and Roy, 2011]. Another interesting approach from this area executes approx-

imate value iteration along a trajectory through belief space to find a local optimum

[Van Den Berg et al., 2012]). As illustrated in the example in Figure 4.2 in a car-like

scenario, stochastic optimal control is well-suited for low-level control tasks where all

spaces are continuous and the temporal update rate is high. If the agent in the fig-

ure moves to the lighter areas, it can self-localize with higher precision. The example

shows that considering partial observability enables the agent to understand that he

can cross the passage more safely, if he first moves to the light area to localize himself

with higher certainty.

Stochastic optimal control approaches usually use quadratic approximations of the

value and linearizations of the belief dynamics. Hence, they cannot be safely be ap-

69

Chapter 4 Continuous Partially Observable Markov Decision Processes

(a) Original particle distribution. (b) E-PCA compression using 6 bases.

Figure 4.3: Learned belief space representation of a person’s 2D position in a person finding
task [Roy et al., 2005].

plied in POMDPs with, e.g., multimodal beliefs, complex non-linear dynamics or com-

plex reward functions. These are all properties of the higher-level tactical decision-

making problem discussed in this thesis. Due to the severe simplification of the

POMDP, complex behaviors of other road users or non-trivial limitations of the per-

ception of the autonomous car could not be handled by stochastic control.

4.2.2 Parameteric Representations for General Continuous POMDPs

More general approaches aim to solve the full POMDP. Frequently, sufficient statistics

are applied for belief representation. E.g., in [Indelman et al., 2014], the transition and

observation model are linearized such that any predicted belief is always represented

by a single Gaussian. Similarly, the parametric POMDP method [Brooks et al., 2006]

uses Gaussian-distributions to parametrize beliefs. The result is a belief propagation

similar to that of an extended Kalman filter (EKF). The authors argue that this choice of

representation is reasonable because it has been successfully applied in many tracking

tasks. They observe, however, that parametric POMDP policies often fail when there

are sharp discontinuities in the value function, for example, at the edges of obstacles.

Moreover, even if using more suitable parametric representations, this approach has

a crucial shortcoming: the value function is hardly PWLC in the parameter-space. For

this reason, the algorithm cannot make use of the value function gradient, for example,

through α-function Bellman backups.

A parametric representation that is more suitable for the problem can be found by

analyzing the specific problem. The approach presented in [Roy and Gordon, 2002;

Roy et al., 2005] learns a low-dimensional subspace of the belief space from sampled

data. It minimizes the Kullback-Leibler (KL) divergence between the sampled data and

an exponential family representation by applying Exponential family principle com-

ponent analysis E-(PCA). Figure 4.3 shows the quality of the compressed belief repre-

sentation. Similarly, in [Zhou et al., 2010] it is proposed to learn a density projection

that minimizes the KL divergence to simulated belief samples. Following this idea, the

structure in the belief space can be found and a significant compression can be ob-

70

4.2 Related Work on Solving Continuous POMDPs

tained. However, the learned transformation in both approaches is highly non-linear.

This breaks convexity of the value function, which prohibits α-function backups that

use gradient information. Additionally, the learned transformations might be good

representations of the belief space, but they are not necessarily suitable for represent-

ing the policy and the value function. The compressions are learned before solving the

POMDP, based on simulated data points. As we show in the next chapter, it is not pos-

sible to find an optimal belief space representation before having the POMDP solved.

In the Monte Carlo (MC) POMDP approach [Thrun, 2000], beliefs are represented

by particle sets (analogously to sequential Monte Carlo methods). A belief state value

backup is derived using importance sampling. On the one hand, this allows to ap-

proximately represent arbitrary beliefs. On the other hand, it is difficult to general-

ize the sample-based value results to other beliefs—a basic requirement for dynamic

programming. In MC POMDP a value approximator for a belief based on k -nearest

belief neighbors is proposed. To compute the distance between sample-based beliefs,

these are first converted to continuous densities using Gaussian kernels. Then KL di-

vergence is used to determine the ‘distance’ between beliefs. The value of a belief is

then approximated by averaging the value of the k -nearest beliefs. In our opinion this

straight forward solution hardly scales to more complex problems due to the follow-

ing reasons. The computational effort for determining the belief-distances (one of the

most frequently repeated operations of the algorithm) can become excessive. Also, the

approach does not allow for utilizing value function gradient information. Further,

this value function approximation requires specifying many parameters, such as the

number of relevant neighbors k , the maximum distance for neighbors, and the Gaus-

sian kernels which have significant influence on the performance. If, e.g., the kernels

are chosen too small, the performance of dynamic programming deteriorates. If they

are too big, conflicting contradicting value-estimates for beliefs can be the result. In

practice, different kernels could be optimal for different regions of the same POMDP.

4.2.3 α-function Bellman Backup with Gradient Information

The above methods are not able to exploit gradient information using α-backups. In

theory, however, there is no barrier for continuous POMDP value iteration algorithms

withα-function backups. The value function in continuous POMDPs is convex and for

the special case of discrete observations and actions also PWLC, as is proven in [Porta

et al., 2006]. They also show that the continuous POMDP Bellman recursion is a con-

traction. As a consequence, α-functions are the continuous equivalent of α-vectors.

In [Porta et al., 2005], α-function backup is realized using Gaussian mixture models

(GMM) as belief and α-function representation. As alternative belief representation,

particle sets are proposed in [Porta et al., 2006]. A significant limitation of this choice

71

Chapter 4 Continuous Partially Observable Markov Decision Processes

is that the GMM representation of the α-functions only poses an exact representation,

if all models in the POMDP are also Gaussian-based. Further, the number of compo-

nents in the GMM representation of theα-functions grows exponentially in every value

iteration step. Thus, the need for a condensation of the components that shrinks their

number arises. Component condensation is not only computationally expensive. It

inevitably induces errors that can lead to a degradation of the value function.

4.2.4 Policy Graph Representation and Policy Search

Finite state controllers or policy graphs, as often used in discrete policy search, pose

an alternative policy representation, which does not rely on an explicit representation

of beliefs or value functions. Policy graphs are closely related to policy trees (see Sec-

tion 3.2). Analogously to policy trees, nodes denote actions and arcs observations, but

policy graphs allow cycles and express policies rather than plans. In [Bai et al., 2010],

a combination of Monte Carlo sampling and policy graphs is used (in a similar man-

ner as in [Kurniawati et al., 2008]) to perform continuous value iteration. However,

policy graphs cannot represent infinite observation spaces. In [Bai et al., 2014; Bai,

2014] a classification-based solution to this problem is proposed, but it induces ap-

proximation errors. Further, this approach heavily relies on simulating the POMDP.

A GPU-based variant is presented in [Lee and Kim, 2013] to exploit the parallelism of

the backup. Notwithstanding these improvements, the algorithm performs redundant

computations because it has to simulate polices to compute values. As a consequence,

scalability is an issue for longer horizon problems or POMDPs with computationally

expensive models.

Some policy search methods are able to cope with continuous spaces. Examples are

PEGASUS [Ng and Jordan, 2000], which simulates belief trajectories, and stochastic

gradient ascent-based approaches, such as [Bartlett and Baxter, 2001]. However, they

are restricted to particular classes of policies, rely on excessive simulation and are often

prone to local optima.

4.2.5 Value-directed Space Representation

Research in MDPs shows the importance of state abstraction in decision problems

[Munos and Moore, 1999, 2002]. In Figure 4.4, an illustration of an MDP value function

for a continuous 2D problem is given. Frontiers which require to be represented are

displayed. The results show that for MDPs, areas in the state space where action or

value changes happen are especially important. In [Munos and Moore, 2002], splitting

the state space similar to a k -d tree is proposed to obtain a variable resolution grid that

expresses the borders precisely, but does not waste much processing power on repre-

72

4.3 Continuous Value Iteration

Figure 4.4: Car-on-a-hill MDP value function with policy and value borders
[Munos and Moore, 1999].

senting uninteresting areas. This way, they were able to improve the performance of

dynamic programming significantly compared to regular grids. Unfortunately, this ap-

proach is not capable of considering partial observability nor does it provide a scalable

integration into value iteration. Nevertheless, the discovery that some areas are impor-

tant when solving MDPs and others are not and the important role of the value does

also hold for POMDPs and establishes a basis for finding efficient representations.

According to [Poupart and Boutilier, 2002], a representation of the state space of a

POMDP is called lossless, if it preserves enough information to select the optimal pol-

icy. This is the criterion that must be upheld when finding a compression of the state

space. In [Smith et al., 2007], an approach to finding conditionally irrelevant variables

by analyzing the POMDP models is presented. However, for many problems this ap-

proach is too conservative. Additionally, it relies on a factored representation where no

significant dependencies between the uncertain variables are allowed. Another option

for state space reduction is proposed in [Feng and Hansen, 2004]: in discrete POMDPs,

states with the same value can be aggregated without influencing the policy (similar

to the results for MDPs in [Munos and Moore, 2002]). Because the belief is defined

on the state domain, this leads to a problem specific compression of the belief space

that is refined during the solving process. Solver performance can be significantly im-

proved by utilizing these ideas, but the discrete space approaches cannot be applied

to POMDPs with continuous (and thus uncountably infinite) state spaces directly.

4.3 Continuous Value Iteration

In this section, we will briefly introduce and derive the properties that we utilize anal-

ogously to discrete value iteration, described in section Section 3.4.

73

Chapter 4 Continuous Partially Observable Markov Decision Processes

Figure 4.5: Example of a continuous 1D belief and a reward function.

We focus on value iteration for several reasons apart from the fact that approximate

discrete value iteration algorithms have been very successful in the past. The first is

that finds a globally optimal policy and can be implemented as an anytime algorithm.

Its calculations are directly based on the value, which is good criterion for finding a

low-dimensional discrete representation of the continuous state space. As we show in

Chapter 5, the idea of representation learning can be naturally embedded into value

iteration. While considering continuous instead of discrete spaces in general adds to

the complexity of the POMDP, it can also be beneficial: the continuous space naturally

implies an inductive bias for learning the value. Further, many important properties

found for belief state MDPs with discrete state spaces can be transferred to continuous

value iteration.

The domain of the value function V as well as the policy π in continuous-state

POMDPs is the infinite-dimensional continuous belief space B so that

V :B×A→R and π :B×A→A . (4.3.1)

The reward for a belief b is defined as expectation over the reward for the states

rb (b , a) =

∫

s∈S

b (s)r (s , a) ds . (4.3.2)

74

4.3 Continuous Value Iteration

(a) Best n −1th α-function for belief b1. (b) Best n −1th α-function for belief b2.

(c) Set of α-functions representing V n−1.

Figure 4.6: Representation of a continuous value function using a set of α-functions.

4.3.1 Continuous Belief-state Bellman Backup

The nth Bellman recursion for POMDPs with continuous state, action, and observa-

tion space is given by the following belief state MDP backup

V 0(b) = rb (b , a) (4.3.3)

V n (b) = sup
a∈A

V n
a (b) (4.3.4)

with V n
a (b) = rb (b , a) +γ

∫

o∈O

pb (o |b , a) V n−1(b ′b ,a ,o) do , (4.3.5)

where b ′b ,a ,o is the next belief, if action a is executed and o is observed (see the belief

propagation in Equation 4.1.4). The belief state reward rb and transition pb are defined

analogously to the discrete belief state MDP in Section 3.1.3. The initial value function

V 0 is simply defined as the expected immediate reward that is directly received in the

belief b . To compute V n in the recursion, the n − 1th step values V n−1 for the next

beliefs b ′b ,a ,o have to be obtained. Notice that in difference to the discrete action case,

as the action space in general can be an infinite continuum, the maximum over the set

of actions has to be replaced with a supremum.

4.3.2 Continuous α-function Representation and Bellman Backup

It is very difficult to represent the value function directly because its domain is the

infinite-dimensional belief space. Analogously to α-vectors in discrete POMDPs, the

75

Chapter 4 Continuous Partially Observable Markov Decision Processes

n−1th value function is assumed to be expressed by a set Γ n−1 ofα-functions that have

the finite-dimensional, continuous state space as domain.

Analogously to the discrete expectation operator 〈·, ·〉d , which essentially is a dot-

product, we introduce the continuous expectation operator 〈·, ·〉 to improve readability

x , y
�

=

∫

s∈S

x (s)y (s) ds , where x , y : S→R . (4.3.6)

The n−1th continuous value function V n−1 in any belief b is expressed as the supre-

mum of the set Γ n−1 of continuous α-functions by

V n−1(b) = sup
α∈Γ n−1

∫

s∈S

b (s)α(s) ds= sup
α∈Γ n−1

〈b ,α〉 , where α : S→R . (4.3.7)

Figure 4.6 shows an illustration of the α-function representation in a 1D continuous

example. Recall that, intuitively, the α-value at a state s ∈ S represents the future re-

ward that can be expected in this state when following the plan represented by the

α-function. In belief b1 of Figure 4.6, the agent knows the state of the world rela-

tively certainly. Hence, he can exploit this knowledge to receive high values. The α-

function α1 ∈ Γ n−1 dominating in this belief reflects this: it predicts high values in the

area around the position of the belief b1. In belief b2, the agent has quite uncertain

knowledge about the state. Thus, it is better, if he resorts to a more conservative α2,

until he obtained enough information. Although there is a chance that he receives the

high value ofα1, in the expectation, the risk is too high. The thirdα-function,α3 ∈ Γ n−1,

reflects a plan that yields high values when being in the left corner of the state space.

However, neither b1 nor b2 have high probability to be there.

With this representation, the n−1th value for the next belief V n−1(b ′b ,a ,o) of the value

iteration Bellman backup in Equation 4.3.5 can be obtained by finding the α-function

αn−1
b ,a ,o that yields the highest value for the next belief

αn−1
b ,a ,o = arg sup

α∈Γ n−1

b ′b ,a ,o ,α
�

and V n−1(b ′b ,a ,o) =

b ′b ,a ,o ,αn−1
b ,a ,o

�

. (4.3.8)

76

4.3 Continuous Value Iteration

Notice in the above definition that V n−1 is defined as supremum of linear functions

and thus convex. We can now rewrite the continuous nth step Bellman belief state

backup in the belief b for action a

V n
a (b) = rb (b , a) +γ

∫

o∈O

b ′b ,a ,o ,αn−1
b ,a ,o

�

p (o |b , a) do (4.3.9)

=

∫

s∈S



r (s , a) +γ

∫

s ′∈S

p (s ′|s , a)

∫

o∈O

p (o |s ′)αn−1
b ,a ,o (s

′) do ds ′





︸ ︷︷ ︸

=αn
b ,a (s)

b (s) ds (4.3.10)

It can be seen that the continuous value iteration backup is linear. New nth step α-

functions αn
b ,a are constructed as sums of linear transformations of the n −1th step α-

functionsαn−1
b ,a ,o . The notationαb ,a accounts for the belief point b which theα-function

is created in and the used action a .

The updated value function V n for a belief b is convex and given as supremum of

these new α-functions

V n (b) = sup
a∈A

V n
a (b) = sup

a∈A

b ,αn
b ,a

�

. (4.3.11)

For POMDPs with discrete action and observation spaces, and with finite horizon the

value function is PWLC, as shown in [Porta et al., 2006]. In this case, the number of

α-functions is finite and V n can be exhaustively represented as finite set Γ n . Hence,

V n is piecewise-linear. Analogously to the discrete case presented in Section 3.4.4, this

proof enables exact value iteration.

Further, Porta et al. show that if all equations are well-defined, the continuous

POMDP backup is a contraction [Porta et al., 2006]. Thus, it converges to a single fixed

point: the optimal value function. The backup is also isotonic. Both properties to-

gether ensure that the continuous Bellman recursion converges monotonically. The

isotonic property also gives rise to maintaining and updating a lower bound on the

value function. It assures that a backup step always increases a lower bound. The

same is shown for the belief state backup, when executed for an upper bound. Thus,

backupping a bound maintains its bound property.

These results show that it is perfectly legal to represent continuous value functions

by a set ofα-functions Γ and perform value iteration using continuousα-function Bell-

man backups.

4.3.3 Point-based α-function Bellman Backup

Because of the size of the infinite-dimensional belief space, it is sensible to perform

point-based backups only in those belief points that probably are (or will be) of in-

77

Chapter 4 Continuous Partially Observable Markov Decision Processes

terest. This way, the growth of the set Γ of α-functions can be slowed down and con-

trolled. Notice that this is the kind of continuous value iteration that we realized in the

presented POMDP solver.

In contrast to exact value iteration, we only create a single α-function αn
b ,a for every

belief point b that we backup. To be sure to improve the value for the belief point b ,

the backup is computed for the action a that yields the highest value4.3

∀al ∈A : V n
al
(b)≤V n

a (b) . (4.3.12)

The nth α-function is generated based on the n − 1th value representation Γ n−1. Be-

sides the immediate choice of action in b , additionally, the choice of αn−1
b ,a ,o needs to

reflect the values yielded by the best plan known in the n−1th step policy for the belief

b ′b ,a ,o . Due to the linearity of the backup, yielding the highest values for b is equivalent

to choosing thoseα-functionsαn−1
b ,a ,o from Γ n−1 for the backup that yield the best values

for the beliefs reached from b , that is,

αn−1
b ,a ,o = arg sup

α∈Γ n−1

b ′b ,a ,o ,α
�

, (4.3.13)

where b ′b ,a ,o are the next beliefs that are reached, if the agent, starting in belief b , exe-

cutes action a and observes o (see Equation 4.1.4).

The nth stepα-function Bellman backup in the belief point b when executing action

a is then defined by

αn
b ,a (s) = r (s , a) +γ

∫

s ′∈S

p (s ′|s , a)

∫

o∈O

p (o |s ′)αn−1
b ,a ,o (s

′) do ds ′ . (4.3.14)

Finally, to obtain the full nth step value function representation Γ n , we extend Γ n−1

with the α-function created in the belief b ∈B by

Γ n = Γ n−1 ∪αn
b ,am

. (4.3.15)

Figure 4.7 outlines these steps of a continuous point-based α-backup.

Repeatedly applying this backup operation ensures convergence of continuous

value iteration. In discrete POMDPs, computing the α-vector backup is unproblem-

atic, as it is defined by sums over finite spaces. In continuous POMDPs, theα-function

backup defined in Equation (4.3.14) involves the computation of integrals over the

continuous state space. In general, these integrals can only be solved approximately.

When using a sampling-based MC approximation for the Bellman backup, the α-

functions are only computed for a small subset of the state space. Naive application of

MC backup will not yield valid results, since it is infinitely unlikely that the samples of

4.3If several actions yield the same value, the choice of action can be randomized.

78

4.3 Continuous Value Iteration

Figure 4.7: nth step continuous point-based α-function backup. The left part (highlighted
green) shows the prediction of the belief point b and the selection of the best n−1th
step α-functions for the belief. The right part (highlighted red) illustrates the Bell-
man backup of these α-functions. At the end of the backup, Γ n−1 is extended with a
new α-function from the action that yields the highest values in b .

79

Chapter 4 Continuous Partially Observable Markov Decision Processes

Figure 4.8: Sample-based representation of belief and α-function: direct α-backup is prohib-
ited.

the belief overlap with the samples that represent αn−1
b ,a ,o . An example of this is shown

in Figure 4.8 4.4.

A closed form for Equation (4.3.14) can only be found for some special or restricted

problems. If, for example, all models in the POMDP are linear combinations of Gaus-

sians, the α-functions can also be represented as a linear combinations of Gaussians

[Porta et al., 2006]. In this special case, theα-function backup can be computed exactly.

Unfortunately, even with this severe simplification, approximations are required. The

number of components grows exponentially in every value iteration step. To keep the

number of components limited, Porta et al. propose an additional condensation algo-

rithm that modifies the α-functions after the backup. This condensation step can in-

troduce significant errors into the otherwise exact computations. These results shows

that, in practice, even for restricted POMDP problems, approximations are inevitable.

4.4 Requirements for the Developed Method for Continuous POMDPs

We derive requirements for the continuous POMDP solver developed in this thesis.

Therefore, we summarize our insights from the state-of-the-art in the light of tactical

decision-making for autonomous driving (see Section 1.2.2).

Requirement 1: Do not impose severe prior restrictions on belief distributions and

value functions The belief and value representation is in general not trivial. Even if

simplifications, such as predefined statistics, are suitable for tracking tasks, they usu-

ally lack expressiveness for decision-making. In Figure 4.9, we show an illustrative ex-

ample with sharp borders in the state space and multimodality. The unimodal model

is the basis for most stochastic optimal control approaches (see LQG in Section 4.2).

However, it is neither well-suited for tracking nor tactical decision-making in traffic. It

predicts the highest likelihood around position 4: directly into the obstacle between

4.4Computing a distance in the belief-space (e.g., KL divergence, as proposed by Thrun et al. [Thrun,
2000]), only works for belief-backups. It fails for α-backups.

80

4.4 Requirements for the Developed Method for Continuous POMDPs

0.0

0.2

0.4

0.6

0 2 4 6

(a) Prediction of vehicle position.
Map Data [City of Karlsruhe].

0.0

0.2

0.4

0.6

0 2 4 6
(b) Lateral projection of the position prediction.

A unimodal Gaussian approximation is indi-
cated green, a bimodal GMM blue. Grey ar-
eas indicate the end of the road.

Figure 4.9: Predefined statistics for decision policies in a driving scenario. The black samples
are drawn from the true distribution.

the roads. The bimodal distribution gives a better estimate in terms of KL divergence

of the belief. However, as the red areas indicate, it cannot represent the sharp edges of

the true distribution that are induced by obstacles or the end of the road. Hence, it is

also inappropriate for representing the value function,.

Requirement 2: Do not constrain the POMDP model in way that the world dynamics

can not be captured sufficently For long-term, decision-making on a tactical level, be-

lief dynamics are often complex. Interaction between road users needs to be covered

as well as complex perception, e.g., when road users are hidden behind other objects.

The prediction, observation and reward model should not be limited to, for example,

a linear or quadratic form. Note that this and the first requirement are highly coupled.

Requirement 3: Discrete action space As a an exception to the otherwise uncon-

strained models, we do not require the action space to be continuous. Our analysis

of related work suggests that, in practice, continuous control imposes severe restric-

tions on the models, value function and belief representations and the choice of al-

gorithms. In our opinion, a finite set of intelligent macro actions suffices for tactical

decision-making in the context of driving. By using intelligent control mechanisms

that execute maneuvers and automatically react on the context, the set of actions can

be be kept relatively small. For instance, a lane change is a difficult control maneuver

that depends on the current context, e.g., the curvature of the road, width of the lane

and possibly involved obstacles. It can be executed in infinitely many slightly different

81

Chapter 4 Continuous Partially Observable Markov Decision Processes

ways. For deciding whether to execute this maneuver or another, these nuances can

be neglected. It can be assumed that an underlying control mechanism will execute

the lane change appropriately. In our opinion, the computational disadvantages of

continuous actions prevail for our application.

Requirement 4: Perform simultaneous planning of the POMDP and learning of a

state space representation. Finding a good representation and solving the POMDP

are related problems An optimal and goal-directed representation of a problem cannot

be learned prior to solving the POMDP. The task itself implies what is an efficient and

at the same time sufficient representation. Only if the optimal policy is known, an

optimal representation for it can be found. Vice versa, the optimal policy can only be

computed if its representation suffices and is compact enough.

Requirement 5: Preserve PWLC property and applyα-function backups Generaliza-

tion over the belief space is beneficial. The performance gains by making use of the

value functions gradient through α-functions are tremendous because this enables to

generalize value functions over the belief space in a mathematically sound way.

Requirement 6: Apply machine learning to efficiently represent and generalize the

value function over the state space. The continuity of the state space can be exploited.

In contrast to discrete state spaces, continuous state spaces often naturally imply dis-

tance metrics. This gives rise to machine learning by assuming an inductive bias. Note

that previous approaches, using, e.g., sufficient statistics are implicitly based on a sim-

ilar bias.

Requirement 7: Exploit locality of the belief space as well as sparseness of beliefs

Only subspaces are of interest for the optimal policy. In practice, it is sufficient and

necessary to sample a subset of the infinite-dimensional belief space. Further, only a

small subset of the infinite state set usually is of interest for solving the POMDP. As a

consequence, beliefs and α-functions can be represented sparsely.

Requirement 8: Search for a globally optimal policy An optimal POMDP policy is of-

ten fundamentally different to the solution yielded when ignoring uncertainty This is

easily shown using the introducing example in Figure 1.1. The optimal POMDP pol-

icy is to stop in front of the intersection first, to gain information about the gap. This

policy would never be the result of an algorithm that assumes full observability be-

cause it could always avoid the obstacle without having to stop. Generating policies

using a deterministic planner and then selecting one of them by evaluating them with

the POMDP is, thus, not an option. Finding a locally optimal policy from this starting

point (e.g., using gradient-descent) is also suboptimal.

82

4.5 Conclusion

4.5 Conclusion

In order to meet these requirements, we propose a general value iteration approach

that iteratively combines temporal reasoning (planning) with inductive reasoning

(learning) to simultaneously find a globally optimal policy and a suitable discrete state

space representation. We focus on continuous-state, continuous-observation and

discrete-action POMDPs.

Other than imposing discrete actions, we do not fundamentally constrain the spaces

or models of the POMDP a priori. This way, the underlying POMDP is general enough

to suffice in most applications, including traffic. However, as related work shows, even

in the rare cases where a closed form for the Bellman backup exists, for the sake of com-

putational feasibility, approximations are inevitable. Every form of approximation can

prevent value iteration from converging to the optimal result. In practice, a diverging

value function leads to nonsense policies that can lead to dangerous behaviors.

We conclude that approximations are necessary, but must be applied carefully and

should keep the error in the value function as small as possible. The quality of the

value function representation poses an objective mathematical criterion for the con-

sequences of approximation errors.

We propose two approximations to realize these requirements: First, we propose

MC belief propagation and an MCα-function Bellman backup using importance sam-

pling. This choice constrains the underlying models as little as possible. Further, we

can control the focus of computation through the biased distribution that the samples

are drawn from. Secondly, to close the gap between the sample-based belief repre-

sentation and the sample-based α-representation (recall Figure 4.8), we learn a dis-

crete state space representation that aims to accurately represent the value function.

By assuming an inductive bias based on proximity we can utilize inductive machine

learning to generalize the value function over the state space.

83

Chapter 5

Continuous Value Iteration with Representation
Learning

We develop a novel method for solving continuous POMDPs. The central

idea is to focus computations on relevant information. Therefore, learn-

ing a good, problem-specific state space representation is integrated into

continuous value iteration with α-function Bellman backups.

In discrete POMDPs the dimensionality of the belief space equals the size of the state

space. This is the origin of the curse of dimensionality. In continuous POMDPs, this

problem is even aggravated: planning takes place in a belief-space with uncountably

infinite dimensions. While at first sight this property appears to render continuous

POMDPs absolutely infeasible, we showed in previous chapters that the underlying

decision problem often is much simpler than its representation suggests. This can be

exploited by smarter algorithms. Littman concluded in 1996 [Littman, 1996]:

“As the complexity results [. . .] show, POMDPs are simply too difficult to

solve. However, they are also too important to ignore. Perhaps a resolution

of this difficulty will come when researchers begin to explore applications

of POMDPs to important real-world problems.”

Littman referred to discrete POMDPs and he was proven right by recent approximation

methods. His statement is in our opinion also true for continuous POMDPs. It is not

impossible to solve continuous POMDPs approximately, but computations need to be

concentrated on aspects which are relevant to the specific decision problem.

Basic Ideas The method we present in this chapter is inspired by the task of decision-

making for autonomous driving. Results from an early approach, which relied on

equidistant space discretization (see Section 7.2.3) indicated that the underlying pat-

terns of a policy can be automatically learned. In this way, an efficient discrete rep-

resentation, specific to every POMDP, can be derived from the original continuous

representation.

The presented method solves continuous-state POMDPs efficiently without theo-

retically constraining the process model, observation model or the reward function.

85

Chapter 5 Continuous Value Iteration with Representation Learning

Figure 5.1: Flow diagram for point-based value iteration with representation learning. The re-
cursion simultaneously updates the value function representation Γd from version
n −1→ n and the discrete state space representation θ from m→m +1.

To achieve this, an efficient representation of the POMDP credentials and especially

of the value function and the policy has to be found. What makes a good representa-

tion depends on the specific POMDP that has to be solved. It can vary fundamentally,

if the models or the situation (e.g., given by the initial belief), vary. Although being

inspired by the autonomous driving scenario, the method presented in this chapter is

general and can be applied to many other applications with similar properties.

Our approach clearly sets itself apart from previous work by not imposing a math-

ematical representation of the state space prior to solving it. In fact, finding a repre-

sentation and finding a policy cannot be viewed as separate problems. The presented

algorithm iteratively learns a space representation that is suited for representing the

policy that solves the given POMDP. Further, using this representation, local results

can be generalized via inductive learning. The basis of this representation learning

process is the insight that in contrast to non-metric discrete spaces, the continuous

state space naturally implies an inductive bias: spatial proximity in the state space

usually translates to similar expected values. Hence, we are able to apply machine

learning for finding an efficient, but at the same time sufficient, representation of the

state space. Difference in value serves as mathematically sound criteria for relevance.

Figure 5.1 sketches our point-based value iteration (PBVI) recursion with represen-

tation learning. Analogously to the normal point-based α-function recursion in Fig-

ure 3.10, the backup in every step creates a new function αn . Also, the backup compu-

tation uses the functionsαn−1
b ,a ,o from the old set Γ n−1 that dominate the predicted beliefs

in the observations o . In difference to the normal backup, intermediate steps for learn-

ing and using the discrete representation θ are added. To evaluate the n −1th version

α-functions for computing the backup, the predicted beliefs b ′ are first discretized to

86

5.1 Conceptual Overview

the vector β ′. When the Bellman backup is finished, a learning step converts the new

α-function to the discrete αn
d and at the same time updates the representation θ from

m→m +1. The set Γd does not hold continuous domain α-functions, but their vector

representations αd .

Note that parts of the POMDP method in this chapter are presented in [Brechtel et al.,

2013], however, in significantly less detail.

5.1 Conceptual Overview

The method is divided into modules. For each module, we formulate the underlying

ideas and derive a mathematical framework. Then, we discuss possible implementa-

tions and propose an efficient algorithmic realization. To make clear dependencies

and the sequence of execution, pseudocode for the algorithms is given.

MC POMDP Simulation and Bellman Backup: Two main abilities for planning in

POMDPs are to anticipate the situation by predicting beliefs and to assess likely out-

comes by Bellman backups. In continuous POMDPs, there is in general no closed form

for both tasks. In Section 5.2, we propose MC algorithms to approximate them arbitrar-

ily close, regardless of the underlying models. By avoiding redundancy in these com-

putations, we ensure computational efficiency. These MC simulations can be viewed

as the backbone of planning because they provide the connection between two time

steps.

Discrete Representation of Continuous Space: The MC algorithms can compute Bell-

man backups and approximate the resulting continuous α-functions for any state

s ∈ S. However, α-functions can only be computed for a finite set of samples, (i.e.,

the α-function approximation remains undefined for an infinite number of states

s ∈ S). To overcome this gap and enable efficient dynamic programming, the sparse

α-functions (i.e., samples in s with valuesα(s)) must be generalized over the complete

state space.

Since the continuous beliefs as well as the continuous α-functions are defined on

the same continuous state space, we propose a low-dimensional, discrete state space

representation for beliefs as well as α-functions. In Section 5.3, we put this idea into a

general theoretical concept and derive the mathematical framework that is necessary

to carry out Bellman backups.

Iterative Representation Learning: To find a low-dimensional, discrete representa-

tion, we apply machine learning (see Section 5.4). Low-dimensional representations

of the continuous state space have been proposed in previous works (see Section 4.2).

These differ mainly in two aspects from our representation learning approach: they

aim to represent the beliefs as accurately as possible and fix the representation prior

to solving the POMDP. In contrast to this, we aim to learn a representation that mini-

87

Chapter 5 Continuous Value Iteration with Representation Learning

mizes the error of the value function representation. This line of action accepts a lossy

compression of beliefs, but aims at lossless compression of the value and the policy.

The value function, however, is not known before the POMDP is solved. Instead of

using an a priori fixed representation, we propose to apply inductive machine learn-

ing iteratively to refine the representation as part of value iteration. We propose an

iterative refinement approach that can be seamlessly integrated into value iteration,

allowing the representation to constantly adapt to new knowledge from the planning.

Lastly, we propose an implementation of this idea using decision trees and top-down-

induction.

Algorithmic Realization and Program Flow: Finally, in Section 5.5, we put the compo-

nents together. A deep-sampling algorithm for exploring the belief space and carrying

out the α-function backups to propagate the information of the backups efficiently is

provided in Section 5.5.2. A concept for treating approximation errors is introduced

in Section 5.5.3: utilizing the monotonicity of α-function backups, we formulate a cri-

terion to detect overly optimistic generalizations and propose an algorithm to correct

errors. The detailed interaction of the components is presented in Section 5.5.4.

Notation In the following, we highlight sample-based approximations of an exact

computation (·) by (̃·) (e.g., for a belief b̃). Samples that are part of approximations

are indicated by (̂·) (e.g., ŝ for samples from the state space).

Also, we use the indexes ŝi , ŝ j , ôk = 1, . . . ,Q to denote the samples in approximations.

To improve readability, the number of indexes is w.l.o.g. fixed to Q for the approxima-

tions. It is possible to use different sizes of particle sets without noteworthy changes

to the equations or algorithms. Sets of current state samples ŝ are denoted I, sets of

next state samples ŝ ′ are denoted J and sets of observation samples ô are denotedK.

In algorithmic descriptions with pseudocode, coefficients of stored vectors are ad-

dressed by [·]. For example, the i th coefficient of the vector v is v [i].

5.2 Monte Carlo (MC) POMDP Simulation and Bellman Backup

In general, there is no closed form of the integral in the continuous belief prediction

problem in Equation 4.1.4 that is the basis of of planning in a POMDP. In order to

evaluate the likelihood of the next state b ′(s ′), a continuous integral over the previous

states s ∈ S needs to be solved. This part of the belief prediction equals the problem

of sequentially estimating a systems state, often referred to as recursive Bayesian esti-

mation or Bayes filter. Sequential Monte Carlo (SMC) methods are a well-known tech-

nique for Bayesian filtering with arbitrary transition and observation models [Doucet

et al., 2001]. SMC methods approximate the estimation problem numerically by iter-

atively applying importance sampling (IS). The basic idea behind is to use a finite set

88

5.2 Monte Carlo (MC) POMDP Simulation and Bellman Backup

of weighted samples to evaluate the continuous integral. Samples with their accord-

ing weights are usually denoted particles. In contrast to, e.g., Kalman filtering, which

requires linear models and uni-modal distributions, SMC methods are not limited to

models and distributions with certain properties [MacKay, 2003]. Their capabilities

come at the price of higher computational effort and suboptimal solutions, especially

when dealing with density functions with high variance. For highly non-linear or even

multi-modal transition and observation models, however, the general applicability of

SMC methods outweigh their disadvantages.

Planning in POMDPs involves not only the prediction of the agents belief. Addition-

ally to the filtering problem, the expected future consequences of actions have to be

assessed and quantified. Therefore the expectation over histories has to be computed.

Executing the continuous belief state value function backup in Equation 4.3.9 requires

solving continuous integrals over the current states s , the next states s ′ and all obser-

vations o . The continuousα-function backup in Equation 4.3.14 lacks the integral over

the currents states s . However, to evaluate an α-function for a belief, the expectation

over all s ∈ S has to be computed, too. Similarly to Bayesian filtering, IS can be applied

to approximate the integrals in the Bellman backup. This has been proposed in previ-

ous work for approximating belief state backups [Thrun, 2000] andα-function backups

[Bai et al., 2010].

The task of predicting the successor beliefs b ′b ,a ,o of a belief b and performing point-

based value iteration Bellman backups in b are highly related. In fact, for both tasks it

is important to base the computation on samples that approximate b and b ′b ,a ,o accu-

rately.

We apply MC approximations to simulate and assess the behavior of the world.

Three specific tasks can be identified: belief propagation5.1, belief state Bellman

backups, and α-function Bellman backups. In difference to previous approaches, we

exploit that these three tasks are highly related. To avoid redundant sampling from or

evaluation of conditional distributions, we propose using a shared sample set for all

three tasks. Intelligent application of IS enables us to weight and recombine the sam-

ples in different ways, depending on the task. The sample set can be interpreted as a

temporary discretization of the continuous space.

To improve clarity of presentation, the MC value and α-function Bellman backups

are derived for a reward function r (s , a). See Appendix A.1 for the modifications when

using a reward function�r (s , a , s ′), which additionally depends on the next state s ′.

5.1In this thesis the term belief propagation denotes the transition from one belief to the next and is not
to be confused with the message passing algorithm for performing inference on graphical models.

89

Chapter 5 Continuous Value Iteration with Representation Learning

Next, we explain, how the sample sets for the approximations are generated.

5.2.1 Drawing Sample Sets

A sample set Ib , with b serving as proposal (i.e., biased) distribution, is drawn for every

belief b where point-based backups are performed in. As b is initially given as a set of

particles, this essentially is a resampling to avoid degradation of the particle set. The

procedure is known from the sequential importance resampling (SIR) algorithm for

particle filtering. The samples ŝ in the set Ib ⊂ S are sampled from the current belief b

such that

ŝ ∼ b (s) . (5.2.1)

The current belief b is then approximated by a mixture of Dirac deltas δ with uniform

weights

b̃ (s) =
1

|Ib |

∑

ŝ∈Ib

δ(s − ŝ) . (5.2.2)

The current belief b is independent from the action a . This is not true for its predic-

tion. For this reason the two sample sets Jb ,a and Kb ,a , representing the prediction

and observation, respectively, are conditioned by the belief b and the action a . The

set Jb ,a ⊂ S approximates the prediction of the state when conducting action a in the

belief b so that

ŝ ′ ∼ p (s ′|b , a) =

∫

s∈S

p (s ′|s , a)b (s) ds . (5.2.3)

The set ô ∈ Kb ,a ⊂ O approximates how likely an observations o is perceived after

conducting action a in belief b so that

ô ∼ p (o |b , a) =

∫

s ′∈S

p (o |s ′)p (s ′|b , a) ds ′ =

∫

s ′∈S

p (o |s ′)
∫

s∈S

p (s ′|s , a)b (s) ds ds ′ . (5.2.4)

For a belief b , Algorithm 1 obtains a total of Q samples of s and Q × |A| samples of

s ′ and o .5.2

In Figure 5.2a a visualization of the procedure is given. First, ŝ is drawn from

b (s). Then, for every a , ŝ is predicted and ŝ ′ is drawn from the predicted distribution

p (s ′|ŝ , a). Finally, the observation ô of the next state sample ŝ ′ is drawn from p (o |ŝ ′).
The usual procedure for MC approximating α-function backup α(s) is to sample a

new set of ŝ ′ for every ŝ . This procedure can entail serious computing effort: e.g., the

5.2It can be easily modified to obtain different numbers of samples for the sets.

90

5.2 Monte Carlo (MC) POMDP Simulation and Bellman Backup

Algorithm 1 Forward sampling.

1: function DRAW SAMPLES(b)
2: Ib ←;,∀a ∈A : Jb ,a ,Kb ,a ←;
3: for Q times do
4: ŝ ← DRAW FROM(b (s))
5: Ib ← Ib ∪ ŝ
6: for all a ∈A do
7: ŝ ′← DRAW FROM(p (s ′|ŝ , a)) . Sample p(s’|b,a)
8: Jb ,a ← Jb ,a ∪ ŝ ′

9: ô ← DRAW FROM(p (o |ŝ ′)) . Sample p(o|b,a)
10: Kb ,a ←Kb ,a ∪ ô
11: end for
12: end for
13: store Ib ,Jb ,a ,Kb ,a

14: end function

total number of created ŝ is |A| ×Q 2. However, for every α(ŝ) computation, only Q

samples are used.

By associating the particles of the current belief ŝ ∈ Ib with all predicted samples

ŝ ′ ∈ Jb ,a and the observation samples ô ∈Kb ,a , the influence of every sample ŝ of the

original belief b on the value V (b) can be determined. The resulting value of all sam-

ples is the basis for all value computations. Compared to the usual procedure, we also

use Q samples ŝ ′ for approximating the Bellman α-function backup α(ŝ), but require

only |A| ×Q samples in total.

The motivation behind this is that state samples that are close in the state space are

in practice often predicted and observed similarly. In Figure 5.2b, an example of this

is given. The two state samples ŝ1 and ŝ2 are close in the state space. In the example,

due to their proximity, their predicted probabilities p (s ′|ŝ1, a) and p (s ′|ŝ2, a) overlap to

a great extend. For this reason, the precision can be improved, if not only the sample

ŝ ′1 (stemming from ŝ1) but also ŝ ′2 (from ŝ2) are used to approximate the value in ŝ1 .

For the given reasons, cross-combining the particle sets is usually computationally

beneficial.5.3 Especially in POMDPs, reusing the observation particles makes sense.

While for state estimation only a single observation has to be considered, a POMDP

planner has to consider all possible observations(or at least a sufficient subset). In

practice, often several observation samples are close to each other.

To utilize the sample sets for the three different tasks, belief propagation, belief state

Bellman backups, andα-function Bellman backups, importance sampling can be em-

5.3 In some cases, the particle recombination can have computational disadvantages: e.g., when the pre-
dicted and observed densities have little or no overlap. However, this can be alleviated by exploiting
sparseness of the transition model in the implementation.

91

Chapter 5 Continuous Value Iteration with Representation Learning

(a) Forward sampling. (b) Overlapping predicted
distributions.

Figure 5.2: MC sampling and sample recombination.

ployed to correct their bias. The basis for the importance weights are the conditional

density functions of the transition and the observation for all combinations of samples

∀a ∈A, ŝ ∈ Ib , ŝ ′ ∈ Jb ,a : p (ŝ ′|ŝ , a) , and ∀a ∈A, ŝ ′ ∈ Jb ,a , ô ∈Kb ,a : p (ô |ŝ) ,

and the reward function for all state samples ∀a ∈A, ŝ ∈ Ib : r (ŝ , a).

Computing these weights can be expensive, if the POMDP has a complex reward

function, transition models, and observation models (e.g., simulating human behav-

iors or complex physics). In the literature, mostly POMDP examples with simple mod-

els (e.g., linear with additive Gaussian distributed noise) are used. The computational

cost for simulating the POMDP are for this reason often underestimated as being very

low. However, in reality, high-level decision-making can require more complex mod-

els. In our realization of the driving task in Chapter 6, several time steps of (highly

non-linear) interaction of multiple road users with each other and the road network

have to be computed for evaluating a single transition probability p (ŝ ′|ŝ , a). For such

92

5.2 Monte Carlo (MC) POMDP Simulation and Bellman Backup

POMDPs, minimizing redundant evaluation of, or sampling from these conditional

probabilities can be well worth the effort.

5.2.2 MC Belief Prediction

To plan in a POMDP, it is essential to foresee what could happen. Thus, the future

course of beliefs must be predicted. This can be separated into two questions: What is

the distribution of the next belief b ′b ,a ,o (s
′) and how likely is it to get there.

The former question resembles one step of sequential Bayesian filtering. Having

a particle-based belief representation it equals particle filtering. We use the sample

sets Ib , Jb ,a , and Kb ,a similarly to SMC. The samples ŝ ′ ∈ Jb ,a serve as basis for the

approximation of the next beliefs b ′b ,a ,o . Because they are drawn from the proposal

distribution p (s ′|b , a), they have to be weighted with the likelihood p (o |s ′) to account

for the observation.

The normalized importance weights w (ŝ ′)
b ,a ,o of the sample in ŝ ′ ∈ Jb ,a for the belief

posterior estimate after observation o are given by

w (ŝ ′)
b ,a ,o =

w̄ (ŝ ′)
b ,a ,o

∑

j∈Jb ,a

w̄ (j)
b ,a ,o

, where w̄ (ŝ ′)
b ,a ,o = p (o |ŝ ′) . (5.2.5)

The resulting belief is approximated by a mixture of Dirac deltas δ. We write

b̃ ′b ,a ,o (s
′) =

∑

ŝ ′∈Jb ,a

w (ŝ ′)
b ,a ,oδ(s

′− ŝ ′) . (5.2.6)

Executing action a in the current belief b , the posterior belief b ′b ,a ,o is now approxi-

mated by the samples ŝ ′ ∈ Jb ,a weighted with w (ŝ ′)
b ,a ,o . The accuracy of this approxima-

tion is arbitrarily improved, when the number of samples Q goes to infinity.

While this approximates the posterior belief distribution for any observation o , it

does not tell us how probable this belief distribution is. The second part of the belief

prediction is to predict what are possible next beliefs and how probable they are. Since

p (b ′b ,a ,o |b , a) is given by p (o |b , a), every sample ô ∈Kb ,a conditions a posterior belief

b ′b ,a ,ô . The belief tree can thus be expanded simply by computing the next beliefs b ′b ,a ,ô

for all samples ô ∈Kb ,a as sketched in Algorithm 2.

This kind of belief prediction resembles particle filtering with SIR. In difference to

the normal filtering problem, however, not only a single observation o is taken into

account. Instead a belief tree with all sampled observations ô and according beliefs

b ′b ,a ,ô is constructed.

In [Porta et al., 2006], belief simulation for POMDP planning using an auxiliary par-

ticle filter [Pitt and Shephard, 1999] is proposed. In our approach, we restrain to the

simpler SIR. Auxiliary particle filtering takes the observation likelihood into account

93

Chapter 5 Continuous Value Iteration with Representation Learning

Algorithm 2 Belief tree construction.

Require: Ib ,Jb ,a ,Kb ,a . See Algorithm 1
1: function EXPAND BELIEF TREE(b , TB) . add next beliefs b̃ ′b ,a ,ô for b to belief tree TB
2: for all a ∈A do
3: for all ô ∈Kb ,a do
4: b̃ ′b ,a ,ô ← CREATE BELIEF(b , a , ô) . following Equation 5.2.6

5: TB← APPEND BELIEF TREE(TB, b̃ ′b ,a ,ô)
6: end for
7: end forreturn TB
8: end function

during resampling. It is useful, if the sampled particles do not fit the observation well.

This can be the case, if the observation is far off the prediction (i.e., the prior p (s ′|s , a)

only has a small overlap with the posterior b ′b ,a ,o (s
′)). Another problem in SIR occurs,

if the observation model is very certain and the prediction model very uncertain. The

likelihood then is very peaked and only a small set of particles is in the significant sup-

port of the likelihood. These shortcomings pose no problem, if the observations are

simulated (as is the case in POMDP planning).

Our approach exploits that in SIR, the next states ŝ ′ ∈ Jb ,a used to represent b ′b ,a ,ô

are independent from the observations ô ∈ Kb ,a and thus can be shared between all

next beliefs b ′b ,a ,o . This choice allows to increase the number of samples without de-

teriorating the computational performance of the POMDP backup too much. To be

able to use more samples outweighs the potentially better convergence properties of

auxiliary particle filtering.

5.2.3 MC Belief Value Backup

Since all samples in Ib , Jb ,a and Kb ,a are originally drawn from the belief b , they are

a good basis to calculate the Bellman backup for b . We can also make use of the pre-

viously computed posterior beliefs b ′b ,a ,ô . These are conditioned by the observation

samples ô ∈Kb ,a , which are also biased towards the belief b . For this reason, the be-

lief state value backup is computationally inexpensive (evaluation of the next beliefs’

values left aside).

The immediate reward is defined as expected reward for b (see Equation 4.3.2). It

can be approximated simply by summing all rewards for the particles in Ib , since these

are sampled from b .5.4 The future value is computed by iterating over the sampled ob-

servations ô and summing the future values for the beliefs V n−1(b ′b ,a ,ô). Again, due to

the correct biasing of the samples ô ∈Kb ,a , they can be directly used without applying

weights.

5.4See Appendix A.1 for�r (s , a , s ′)

94

5.2 Monte Carlo (MC) POMDP Simulation and Bellman Backup

Algorithm 3 Value function backup in a belief point.

Require: samples Ib ,Jb ,a ,Kb ,a . see Algorithm 1
1: function MC BELIEF VALUE BACKUP(b ,Γ n−1

d) . approximate Bellman value backup
for belief b

2: for all a ∈A do
3: COMPUTE BELIEF VALUES(b , a ,Γ n−1

d) . get Vαd
[b ′b ,a ,ô] (see Algorithm 6)

4: Ṽ n
a (b)← 0

5: for all ŝ ∈ Ib do
6: V n

a (b)+← r (ŝ , a) . immediate reward
7: end for
8: for all ô ∈Kb ,a do . iterate beliefs
9: Ṽ n

a (b)+← γmaxαd∈Γ n−1
d

Vαd
[b ′b ,a ,ô] . future value

10: end for
11: store Ṽ n

a (b)
12: end for
13: Ṽ n (b)←maxa∈AV n

a (b)
14: return Ṽ n (b)
15: end function

The nth value backup approximation of the exact backup in Equation 4.3.2 for the

belief b results to

Ṽ n (b) =max
a∈A

Ṽ n
a (b) , (5.2.7)

with Ṽ n
a (b) =

�

∑

ŝ∈I

r (ŝ , a)

�

+γ
∑

ô∈Kb ,a

V n−1(b ′b ,a ,ô (k)) . (5.2.8)

At this point, we assume that we can compute the continuous value function for the

next beliefs V n−1(b ′b ,a ,ô). In Section 5.3, we propose using a learned discrete represen-

tation for this. In Algorithm 3 the detailed MC backup procedure is shown.

5.2.4 Point-based MC α-function Backup

Additionally to the belief value backup, we perform point-based α-function backups

to determine the value gradient for the whole belief space.

Every α-function backup maintains or improves a lower bound and the policy rep-

resented by it for all beliefs. The choice of action and future α-functions (plans), how-

ever, optimizes the value in the belief point b that it is executed in. See Section 4.3.3 for

details. The challenge, when performing continuous α-function backups, is to com-

pute the new αn
b ,a (s) from the n − 1th step αn−1

b ,a ,o functions following Equation 4.3.14.

This computation involves integration over the continuous future states s ′ ∈ S and ob-

servations o ∈ O. Intuitively spoken, the α-function backup assesses the influence a

95

Chapter 5 Continuous Value Iteration with Representation Learning

state s has on the expected future rewards. In theory, it must be computed for all states

in S. Recall the exact definition of the point-based α-function backup

αn
b ,a (s) = r (s , a) +γ

∫

s ′∈S

p (s ′|s , a)

∫

o∈O

p (o |s ′) αn−1
b ,a ,o (s

′) do ds ′ , (5.2.9)

with αn−1
b ,a ,o = arg sup

α∈Γ n−1

b ′b ,a ,o ,α
�

.

As we perform point-based α-function backups, we first need to select the best

α-functions for the next beliefs b ′b ,a ,ô from the n−1thα-function set Γ n−1. Because the

integral over the observations is approximated with the samples ô , we only need to

find α-functions for the beliefs b̃ ′b ,a ,ô conditioned by these sampled observations. The

beliefs b ′b ,a ,ô are given from the belief prediction (see Section 5.2.2) in form of particle-

based beliefs b̃ ′b ,a ,o and the best α-functions αn−1
b ,a ,ô are given by

αn−1
b ,a ,ô = arg max

α∈Γ n−1

b̃ ′b ,a ,ô ,α
�

. (5.2.10)

Due to the sifting property of Dirac deltas, the expectation computation reduces to a

sum

b̃ ′b ,a ,ô ,α
�

=

∫

s ′∈S

b̃ ′b ,a ,ô (s
′)α(s ′) ds ′ (5.2.11)

(5.2.6)=

∫

s ′∈S

∑

ŝ ′∈Jb ,a

w (ŝ ′)
b ,a ,ôδ(s

′− ŝ ′)α(s ′) ds ′ (5.2.12)

=
∑

ŝ ′∈Jb ,a

w (ŝ ′)
b ,a ,ô

∫

s ′∈S

δ(s ′− ŝ ′)α(s ′) ds ′ (5.2.13)

=
∑

ŝ ′∈Jb ,a

w (ŝ ′)
b ,a ,ô α(s

′) . (5.2.14)

Here, we assume that α ∈ Γ n−1 is defined for all s ∈ S. This is realized by learning a

discrete representation that generalizes the sparse sample-based computations (see

Section 5.3).

The same sample sets Ib , Jb ,a , and Kb ,a (see Algorithm 2) can also be used for the

MC α-function backup. We evaluate the new α-function only for the samples ŝ ∈ Ib .

Hence, the new α̃n
b ,a function is only defined at these points ŝ in the state space. The

integral over the future states is approximated using ŝ ′ ∈ Jb ,a . Finally, the integral over

the observation space is evaluated using ô ∈ Kb ,a . In difference to the belief value

backup, this computation is independent from b . Thus, this time we need to compen-

sate that the samples are biased towards b . Therfore, we employ IS with the following

importance weights.

96

5.2 Monte Carlo (MC) POMDP Simulation and Bellman Backup

We need to compensate that the samples ŝ ′ in Jb ,a do not directly reflect the proba-

bility of the next state p (s ′|s , a) coming from s . Instead, they are biased towards b . In

the limit, the biased distribution is

ŝ ′∼p (s ′|b , a) (5.2.3)=

∫

s∈S

p (s ′|s , a)b (s) ds . (5.2.15)

Knowing the sample set ŝ ∈ Ib used to generate ŝ ′, the real biased distribution can be

determined more precisely by

p̃ (s ′|b , a) =
∑

ŝ∈I

p (s ′|ŝ , a) b (ŝ) . (5.2.16)

We obtain the importance weight u (ŝ
′←ŝ)

b ,a by dividing the target distribution by the bi-

ased distribution so that

u (ŝ
′←ŝ)

b ,a ∼
p (ŝ ′|ŝ , a)
p̃ (ŝ ′|b , a)

. (5.2.17)

When using the sampled observations for approximating the expectation over all pos-

terior beliefs, we also need to compensate their bias. In the limit, it is given by

ô ∼p (o |b , a) (5.2.4)=

∫

s ′∈S

p (o |s ′)
∫

s∈S

p (s ′|s , a)b (s) ds ds ′ . (5.2.18)

Knowing the sampling procedure and the samples sets the real biased distribution is

determined by

p̃ (o |b , a) =
∑

ŝ ′∈Jb ,a

p (o |ŝ ′)
∑

ŝ∈I

p (ŝ ′|ŝ , a) b (ŝ) (5.2.16)=
∑

ŝ ′∈Jb ,a

p (o |ŝ ′) p̃ (ŝ ′|b , a) . (5.2.19)

The weight v (ô←ŝ ′)
b ,a results to 5.5

v (ô←ŝ ′)
b ,a ∼

p (ô |ŝ ′)
p̃ (ô |b , a)

. (5.2.20)

Analogously to Equation 5.2.5, the weights vb ,a and ub ,a need to be normalized so that
∑

ô∈Kb ,a

v (ô←ŝ)
b ,a = 1 and

∑

ŝ ′∈Jb ,a

u (ŝ
′←ŝ)

b ,a = 1 . (5.2.21)

Finally, having these weights to correct the sampling bias, we can formulate the MC

α-function backup approximation of Equation 5.2.9.

5.5It might be difficult to comprehend for the reader that the bias p̃ (s ′|b , a) actually appears twice, in
vb ,a and ub ,a . This is due to the fact that not only the selection of the beliefs (given by ô) but also the
samples ŝ ′ that represent these beliefs have this bias.

97

Chapter 5 Continuous Value Iteration with Representation Learning

Algorithm 4 Point-based Monte Carlo α-function Bellman backup.

1: function MC ALPHA BACKUP(b , a ,Γ n−1
d ,I,J,K)

. compute α for all ŝ ∈ I, for a , and point-based in b with samples J,K
2: COMPUTE BELIEF VALUES(b , a ,Γ n−1

d)
. get αn−1

d ,a ,ô [ŝ
′] and Vαd

[b ′b ,a ,ô] (see Algorithm 6)
3: for all ŝ ∈ I do
4: α̃n

b ,a [ŝ]← r (s , a)
5: for all ô ∈K do . iterate next beliefs
6: αn−1

d ,a ,ô ← arg max Vαd
[b̃ ′b ,a ,ô] . select best alpha for next belief

7: for all ŝ ′ ∈ J do
8: α̃n

b ,a [ŝ]+← γ u (ŝ
′←ŝ)

b ,a v (ô←ŝ ′)
b ,a αn−1

d ,a ,ô [ŝ
′]

9: end for
10: end for
11: end for
12: return α̃n

b ,a . nth step continuous α-function approximation
13: end function

The reward function r (s , a) can be evaluated for any s and a without applying any

form of approximation 5.6. The nth α-function value α̃n
b ,a when executing action a for

a state s is given by

α̃n
b ,a (s) = r (s , a) +γ

∑

ŝ ′∈Jb ,a

u (ŝ
′←ŝ)

b ,a

∑

ô∈Kb ,a

v (ô←ŝ ′)
b ,a αn−1

b ,a ,ô (ŝ
′) . (5.2.22)

With this equation, we can approximately evaluate α̃n
b ,a for any state sample in ŝ ∈ Ib .

This sample-based approximation of α is in the following represented using the set of

tuples

�

ŝ , ᾱIb (ŝ)
�

: ŝ ∈ Ib
	

so that ᾱIb (s) =

¨

α̃n
b ,a if s ∈ Ib

undefined otherwise .
(5.2.23)

This is sufficient to compute the Bellman recursion and, in theory, also sufficient to ap-

proximately solve the POMDP. However, in practice, the α-function recursion would

have to be fully unrolled because the sample representation of the system prohibits di-

rect application of dynamic programming (in this context, recall Figure 4.8 of the pre-

vious chapter). In the following sections, we show how machine learning can bridge

this gap.

5.2.5 Avoiding Sampling Redundancy

Redundancy can have negative influence on the efficiency of the presented MC algo-

rithms. For example, when performing resampling of particle-based beliefs, there is

a chance that two current state samples are drawn which are equal: ŝ1 = ŝ2. Also next

5.6See Appendix A.1 for�r (s , a , s ′)

98

5.2 Monte Carlo (MC) POMDP Simulation and Bellman Backup

states can be equal, if the process model joins states ŝ ′1 = ŝ ′2. The problem gets even

more evident for POMDPs with discrete observations. Due to the finite number of dis-

crete observations, there is a high chance, that the two equal observation samples are

drawn ô1 = ô2.

Iterating the (equal) samples separately during value iteration slows down compu-

tation significantly. This problem can be mitigated by constructing distinct sample

sets. The importance weights then must be adapted because the biased distribution

is effectively changed. When, for example, R equal observations are merged to one

observation om , the corresponding weights must be multiplied by R . For instance for

Equation 5.2.5, we yield a modified likelihood weight

w̄ (ŝ ′)
b ,a ,o = p (om |ŝ ′)R . (5.2.24)

5.2.6 Continuous Observation Spaces

When dealing with continuous observations, another performance problem arises. In

contrast to domains with discrete observation space, there can be an infinite num-

ber of continuous observations. We cover this by sampling a finite set of continuous

observations ô ∈ K during the MC belief prediction. The number of (distinct) obser-

vations ô and corresponding beliefs b ′b ,a ,ô that has to be sampled for good results can

be very high, however. This can affect performance of the MC α-function backup in

Equation 5.2.22 because an excessive number of best α-functions αb ,a ,ô for the next

beliefs has to be processed.

We prevent this by applying an idea presented in [Hoey and Poupart, 2005] for dis-

crete POMDPs. The linearity of the backup allows to cluster all observations ô that

result in beliefs, which are dominated by the sameα-function in Equation 5.2.10 with-

out affecting the result

Kα =
§

ô : α= arg max
α∈Γ n−1

b̃ ′b ,a ,ô ,α
�

ª

. (5.2.25)

The MC α-function backup can then be rewritten as follows

α̃n
b ,a (s) =r (s , a) +γ

∑

ŝ ′∈Jb ,a

u (ŝ
′←ŝ)

b ,a

∑

α∈Γ n−1

v (Kα←ŝ ′)
b ,a α(ŝ ′) , (5.2.26)

where v (Kα←ŝ ′)
b ,a =

∑

ô∈Kb ,a

v (ô←ŝ ′)
b ,a . (5.2.27)

In comparison to Equation 5.2.22, the sum over the sampled observations was re-

placed by a sum over (usually much fewer) α-functions. The same can be done for

the belief value Bellman backup.

99

Chapter 5 Continuous Value Iteration with Representation Learning

5.3 Discrete Representation of Continuous Space

In Section 5.3.1, we first give a general definition of the discrete representation con-

cept. In Section 5.3.2, we then formulate the central assumption that there exists a

discrete α-function representation and derive a discrete representation of continuous

beliefs. Having a discrete representation of both, beliefs and α-functions, we can per-

form continuous value iteration in the discrete space. The continuous integrals in the

continuous expectation operator can be efficiently computed by evaluating a finite

dot-product, analogously to discrete POMDPs.

These general results can be specified for sample-based representations of continu-

ous distributions and functions: we propose efficient algorithms to discretize particle-

based beliefs (see Section 5.3.3) and sample-based continuous α-functions (see Sec-

tion 5.3.4).

No specific assumptions about the implementation of the representation are made

in this section, yet. However, it is assumed to be known and fix. In the following

sections we elaborate on how the representation can be implemented and iteratively

learned.

5.3.1 Definition of a discrete representation

We define a discrete representation as tuple of a set of discrete statesSd and a function θ

〈Sd ,θ 〉 with θ : S×Sd →R . (5.3.1)

The discrete state set is w.l.o.g. chosen to be a subset of the natural numbers with size

M that numbers the discrete states

sd ∈ Sd ⊂N and Sd = {1, ..., M } . (5.3.2)

The states sd = 1, 2, . . . , M remain abstract numbers until a meaning is assigned to them

in the continuous state space S. Therefore, the function θ links the continuous states

s ∈ S of the continuous POMDP with the discrete state sd ∈ Sd . Note that in contrast

to previous work, the codomain of θ is the real numbers including positive-, negative-

and zero-values.

The mapping between the continuous and discrete states does not have to be

unique. On the one hand, a discrete state can be linked with several continuous states.

Thus, it is allowed that for two continuous states

s1, s2 ∈ S : s1 6= s2 ∧ (θ (sd , s1) 6= 0) ∧ (θ (sd , s2) 6= 0) . (5.3.3)

100

5.3 Discrete Representation of Continuous Space

This is an essential capability for generalization over the continuous space. On the

other hand, a continuous state s can be represented by a combination of discrete states

so that for two discrete states it is allowed that

sd ,1, sd ,2 ∈ Sd : sd ,1 6= sd ,2 ∧ (θ (sd ,1, s) 6= 0) ∧ (θ (sd ,2, s) 6= 0) . (5.3.4)

Next, a more specific meaning in the context of POMDPs will be assigned to θ .

5.3.2 Assumptions and Discrete Backup Derivation

One of the core operations of the Bellman backup in Equation 5.2.9 is the evaluation of

n−1th stepα-functions in order to assess the expected future value. This computation

is involved in the most often repeated computations and thus has major impact on the

performance of value iteration. Additionally, for efficient dynamic programming, α(s)

must be defined for every state s ∈ S. Therefore, the sparsely computed α-function

backups (see Section 5.2.4) must be generalized over the continuous space S.
With these goals in mind, we design the discrete representation. We replace the con-

tinuous expectation operator 〈b ,α〉, which requires integrating over the state space S,
by a finite computation using solely the discrete representation. We show that, if the

discrete computation accurately resembles the continuous expectation operator, con-

vergence of value iteration to the optimal value is provably maintained.

In order to avoid errors in the policy representation, α-functions should be accu-

rately represented using the discrete representation.

Therefore, we assume that the continuous function α is exactly5.7 represented by the

function αd and a representation θ , both defined on the discrete space Sd (see Sec-

tion 5.3.1) so that

α(s) =
∑

sd∈Sd

θ (s , sd)αd (sd) (5.3.5)

with αd : Sd →R . (5.3.6)

Th functionαd can be interpreted as vector. In other words, continuousα-functions in

s ∈ S are represented by a linear combination of M basis functions θ (s , 1), . . . ,θ (s , M)

(i.e., components) weighted by vectors αd (1), . . . ,αd (M).

5.7In later sections, we relax this assumption.

101

Chapter 5 Continuous Value Iteration with Representation Learning

−1.0

−0.5

0.0

0.5

1.0

−20 0 20 40

−1.0

−0.5

0.0

0.5

1.0

−20 0 20 40

Figure 5.3: Continuousα-function (red) represented by three Gaussian distributions sd = 1, 2, 3
(green). The α-vector is αd = (−9, 2, 7)T. The belief b (black) is transformed to the
discrete vector β ≈ (0.0, 0.017, 0.048)T (i.e., there is negligible overlap with sd = 1,
the left part of b is associated with sd = 2, and the center and right part with sd = 3).
The final result of 〈b ,α〉=

β ,αd

�

d
≈ 0.37. Theα-function valuesα(ŝ) (red dots) that

sampled states ŝ (black dots) of the belief b yield are also shown.

To improve readability, we write

α(s) =
∑

sd∈Sd

θsd
(s)αd (sd) (5.3.7)

with θ (s , sd) := θsd
(s) , (5.3.8)

where θsd
explicitly denotes the sd th basis function.

In Figure 5.3 an exemplary α-function represented as a linear combination of Gaus-

sian distributions is shown. Note, however, that the basis functions are not restricted

to distributions. Figure 5.4 demonstrates the flexibility of this representation by using

different types of basis functions to represent an α-function.

102

5.3 Discrete Representation of Continuous Space

−10

0

10

20

30

−20 0 20 40

Figure 5.4: Continuous α-function (red) represented by a quadratic function (sd = 1), a sine
function (sd = 2) and a linear function (sd = 3). The basis functions are indicated
in green and weighted by αd = (−1, 1, 3)T. The continuous belief is transformed to
β ≈ (40.4, 0.1, 20.9)T . The final result of 〈b ,α〉 =

β ,αd

�

d
≈ −216. The α-function

values α(ŝ) (red dots) that the sampled states ŝ (black dots) of the belief b yield are
also shown.

The following Lemma 1 guarantees that the convergence of value iteration is not

affected by the discretization.

Lemma 1. Letαd representα (see Equation 5.3.7). The continuous expectation operator

can be reduced to a dot product of two discrete vectors.

Proof.

〈b ,α〉=
∫

s∈S

b (s)α(s) ds (5.3.9)

(5.3.7)
=

∫

s∈S

∑

sd∈Sd

θsd
(s) b (s) αd (sd) ds (5.3.10)

=
∑

sd∈Sd

αd (sd)

∫

s∈S

θsd
(s)b (s) ds

︸ ︷︷ ︸

:=β (sd)

(5.3.11)

=
∑

sd∈Sd

αd (sd)β (sd) =

β ,αd

�

d
(5.3.12)

We conclude that if the discrete vectorβ is chosen as follows, it poses an efficient dis-

crete representation of the continuous belief b that allows to compute the expectation

103

Chapter 5 Continuous Value Iteration with Representation Learning

operator without loss of accuracy.5.8 The discrete representation β of the continuous

belief b is given by

β : Sd →R and β (sd) =

∫

s∈S

θsd
(s)b (s) ds . (5.3.13)

Lemma 1 is not trivial because, in general, the vector β does not hold enough infor-

mation to reconstruct the original continuous belief without loss. This is intended in

order to neglect solution irrelevant features of the belief.

If the discrete vectors αd and β are precomputed, the continuous integral can be

transformed into a simple discrete dot-product, which can be evaluated efficiently

〈b ,α〉=

β ,αd

�

d
. (5.3.14)

This result indirectly implies that a continuous state s ∈ S is also represented by βs

defined on the discrete space

βs : Sd →R and βs (sd) = θsd
(s) . (5.3.15)

The function βs can be interpreted as a vector representation of the continuous belief.

Then, the α-function value of the state s for the discrete α-function representation αd

can be evaluated by

α(s) =

βs ,αd

�

d
, (5.3.16)

analogously to the discrete dot-product of α-vectors and belief vectors in discrete

POMDPs. With the above, a continuous POMDP policy can be represented by a set

of discrete α-vectors

αd ∈ Γ n
d . (5.3.17)

This discretization can be used to efficiently implement theα-function Bellman recur-

sion. Under the assumptions that the representation of the continuous α-functions is

lossless and the integral that determines β can be computed exactly, convergence of

the Bellman recursion is not violated, as shown in [Porta et al., 2006]. The α-function

recursion then is an isotonic contraction that provably converges to the optimal value.

Finding an efficient representation that realizes Equation 5.3.7 without any or only

small errors is not easy. However, highly related problems have been covered by a vast

amount of research in the area of machine learning. This topic is covered in Section 5.4.

5.8 This result is similar to the result in [Porta et al., 2006]. However, we did not restrict b (s) to a specific
representation. Further, we did not assume the function θ to be normed for s ∈ S (see Figure 5.4 for
an example with such basis functions).

104

5.3 Discrete Representation of Continuous Space

Algorithm 5 Discretization of continuous states and beliefs.

Require: Ib ,Jb ,a ,Kb ,a . see Algorithm 1
Require: Discrete Representation 〈Sd ,θ 〉

1: function DISCRETIZE STATES(b , a)
2: for all ŝ ′ ∈ Jb ,a do
3: store ∀sd :βŝ ′[sd]← θsd

(ŝ ′) . following Equation 5.3.15
4: end for
5: end function
6: function DISCRETIZE BELIEFS(b , a)
7: for all ô ∈Kb ,a do
8: β̃ ′b ,a ,ô ← SPARSE ZERO VECTOR()
9: for all ŝ ′ ∈ Jb ,a do

10: βb̃ ′b ,a ,ô
+←w (ŝ ′)

b ,a ,o · βŝ ′ . discrete sum following Equation 5.3.23
11: end for
12: store β̃ ′b ,a ,ô
13: end for
14: end function

5.3.3 Discretization of Particle-based Beliefs

Due to the MC approach presented in Section 5.2, beliefs (in particular the next be-

liefs b ′) are represented by particles. Let 〈Sd ,θ 〉 be a discrete representation and

b̃ (s) (5.2.6)=
∑

ŝ∈Iw
(ŝ)
b δ(s − ŝ) an arbitrary particle-based belief. The discretization of b̃ (s)

can be carried out using the sifting property of the Dirac deltas

β̃ (sd)
(5.3.13)=

∫

s∈S

θsd
(s)b̃ (s) ds (5.3.18)

=

∫

s∈S

θsd
(s)

∑

ŝ∈Ib

w (ŝ)
b̃
δ(s − ŝ) ds (5.3.19)

=
∑

ŝ∈I

w (ŝ)
b̃

∫

s∈S

θsd
(s)δ(s − ŝ) ds (5.3.20)

=
∑

ŝ∈I

w (ŝ)
b̃
θsd
(ŝ) (5.3.21)

(5.3.15)=
∑

ŝ∈I

w (ŝ)
b βŝ (sd) . (5.3.22)

It is now established that β̃ can be composed as sum of vectors βŝ , which pose a dis-

crete representation of the particle-based continuous belief representation b̃

β̃ =
∑

ŝ∈I

w (ŝ)
b βŝ . (5.3.23)

Consequently, every sampled next state ŝ ′ needs to be discretized exactly once. This

becomes especially beneficial in conjunction with the way our solver executes belief

105

Chapter 5 Continuous Value Iteration with Representation Learning

Algorithm 6 Compute step n −1 α-functions using the discrete representation.

Require: samples Ib ,Jb ,a ,Kb ,a . see Algorithm 1
1: function COMPUTE ALPHA VALUES(b , a ,Γ n−1

d) . compute α(ŝ ′)
2: DISCRETIZE STATES(b , a) . get βŝ ′

3: for all αd ∈ Γ n−1
d do . iterate α-vectors

4: for all ŝ ′ ∈ Jb ,a do
5: store αd [ŝ ′]←

βŝ ′ ,αd

�

d
. following Equation 5.3.16

6: end for
7: end for
8: end function
9: function COMPUTE BELIEF VALUES(b , a ,Γ n−1

d)
10: COMPUTE ALPHA VALUES(b , a ,Γ n−1

d) . get αd [ŝ ′]
11: for all ô ∈Kb ,a do . iterate beliefs
12: for all αd ∈ Γ n−1

d do . iterate α-vectors
13: Vαd

[b̃ ′b ,a ,ô]← 0
14: for all ŝ ′ ∈ Jb ,a do
15: Vαd

[b̃ ′b ,a ,ô]+←αd [ŝ ′]
16: end for
17: store Vαd

[b̃ ′b ,a ,ô]
18: end for
19: end for
20: end function

prediction. All next beliefs b̃ ′b ,a ,ô (see Equation 5.2.6) share the sample sets Jb ,a and are

differentiated just by their weights. This enables us to discretize all next beliefs with

minimal computational cost.

Algorithm 5 shows how to decompose discretization into two steps. First, the states

samples ŝ ′ are discretized independently from their belief-specific weights w (ŝ ′)
b ,a ,o .

Then, the discrete belief representations for all next beliefs β̃ ′b ,a ,ô are constructed in-

dependently from the continuous state samples ŝ ′, using the discrete state represen-

tations βŝ ′ .

5.3.4 Discrete Evaluation of α-functions

To compute a point-based α-function backup for a belief b , the α-function values for

all its sampled successor beliefs b ′b ,a ,ô need to be computed (see the MC α-function

backup in Section 5.2.4). Since the observation spaceO is continuous, the number of

sampled observations ô can be large and the computational effort of a naive approach

immense. Our discretization approach mitigates this bottleneck by discretizing the

state samples ŝ ′ ∈ Jb ,a only a single time. The remaining computations are carried out

in the discrete space.

Algorithm 6 shows how to evaluate theα-functions for the predicted states ŝ ′ and the

next beliefs b̃ ′b ,a ,ô . It uses the discrete representation of the predicted statesβŝ ′ and the

106

5.4 Iterative Representation Learning

discrete αd vector representation. The values Vαd
[b̃ ′b ,a ,ô] and αd [ŝ ′] computed in this

algorithm are a prerequisite for the MC belief backup in Algorithm 3 and α-function

backup in Algorithm 4.

5.4 Iterative Representation Learning

There are several ways to realize the discrete representation in order to make use of the

theoretical results in Section 5.3.2 and the derived algorithms.

Two fundamentally different ways of implementing a representation can be distin-

guished: one way is to find several local representations 〈Sd ,θ 〉α that are unique for

every single α-function. The other way is to use a global representation 〈Sd ,θ 〉 shared

by all α-functions.

We decided for the latter due to the potentially improved computational efficiency.

See Appendix A.2 for a discussion of this topic with a complexity analysis.

First, we define the requirements for the representation:

• We call a discrete representation 〈Sd ,θ 〉 lossless with respect to α, if

∃αd :α(s) (5.3.7)=
∑

sd∈Sd

θsd
(s)αd (sd) . (5.4.1)

For the sake of efficiency, the representation should also be as compact as possible:

• A lossless representation 〈Sd ,θ 〉 of α is optimal, if there exists no lossless repre-

sentation 〈Sd ,θ 〉′ of α using less discrete states.

These definitions can be transferred from plans, expressed by α-functions, to policies,

expressed by sets Γ of α-functions.

• 〈Sd ,θ 〉 is lossless with respect to Γ , if it is lossless with respect to every α ∈ Γ .

• 〈Sd ,θ 〉 is optimal with respect to Γ , if there is no lossless representation 〈Sd ,θ 〉′

of Γ that uses less discrete states.

The ultimate goal is to find a representation for the optimal value function given by Γ ∗.

• We call 〈Sd ,θ 〉∗ an optimal representation of a POMDP, if it is optimal for allα ∈ Γ ∗.

In practice, this goal can only be approximately fulfilled (similar to finding only an ap-

proximately optimal value function). Nevertheless, it is clear, that the discrete repre-

sentation should be compact enough to keep the Bellman backup computations fea-

sible but at the same time introduce as little errors as possible.

107

Chapter 5 Continuous Value Iteration with Representation Learning

Finding a representation 〈Sd ,θ 〉 for the continuous α-functions is a challenging

task (see Equation 5.3.7) . With the presented MC backup algorithm, continuous

α-functions are only evaluated for a finite set of sampled states ŝ (see Equation 5.2.22).

This is the basis for learning the representation.

If the basis functions θsd
of the representation are fixed, finding αd for α can be cast

as a linear regression problem. The main difficulty is to find a suitable set of basis

functions. If the parametric family (e.g., normal distributions) of the basis functions

is fixed, parameters for the basis functions can be found by maximum-likelihood esti-

mation (MLE).

Nevertheless, the α-functions of the optimal value are obviously not known prior to

optimizing the value function. Consequently, the optimal representation cannot be

found a priori. Instead, we propose to incrementally update and refine it during value

iteration to be able to represent new α-functions (i.e., plans).

5.4.1 Iterative Approach

The iterative process of learning an approximately optimal representation 〈Sd ,θ 〉 of

a POMDP requires to constantly update it. Therefore, it must satisfy to represent old

(< n −1th step) and new (nth step) α-functions.

The index m = 1, 2, . . . indicates the version of the representation 〈Sd ,θ 〉m . Every

backup operation creates a new function αn that can imply the necessity for a more

expressive 〈Sd ,θ 〉m+1.

It is important to not invalidate discrete vector representations of continuous

α-functions that have been generated before the representation update.

Therefore, we choose to only add new discrete states sd to Sd and according basis

functions θsd
to θ . We never remove or alter existing basis functions.

Letαm
d be a discrete vector using the representation 〈Sd ,θ 〉m that has M discrete states

and basis functions. The coefficients of the vector αd (sd) of not used functions θsd
are

zero. Therefore, αm
d (sd) = 0 if sd > M . For this reason, the continuous function α(s)

that αd defines through Equation 5.3.7 remains untouched. α(s) in this case is given

by

α(s) (5.3.7)=
∑

sd∈Sd

θsd
(s)αd (sd) =

M
∑

sd=1

θsd
(s)αd (sd) +θM+1 ·0+θM+2 ·0+ (5.4.2)

This concept can be efficiently implemented using sparse vector representations ofαd ,

where every coefficient that is not explicitly set to be non-zero is assumed to be zero.

108

5.4 Iterative Representation Learning

5.4.2 State Space Partitioning

The problem of finding and especially refining a representation of a policy can be sim-

plified by not allowing two discrete states to be associated with one and the same con-

tinuous state. With this restriction, discrete regions in the continuous state space are

explicitly separated. Every continuous state is uniquely mapped to a discrete state.

Such a representation can be incrementally refined by dividing regions into smaller

subregions. This choice has performance advantages because to evaluate a continu-

ousα-function for a state s , only a single state in the discrete vectorαd has to be looked

up.

We let the representation 〈Sd ,θ c 〉 express a partition of the state space.

The representation 〈Sd ,θ c 〉 is determined by a mapping c from continuous states s ∈ S
to discrete states sd ∈ Sd

c : S→ Sd , and θ c
sd
(s) =

¨

1 if c (s) = sd

0 otherwise .
(5.4.3)

The function c induces a partition of the continuous space. In contrast to our general

definition of θ , we have

>s ∈ S, sd ,1 6= sd ,2 : (θ c
sd ,1
(s)> 0) ∧ (θ c

sd ,2
(s)> 0) . (5.4.4)

The goal is to find a mapping c that accurately represents the continuous α-functions

in Γ . This is the case, if all continuous states with different α-function values are

mapped to different discrete states.

• The mapping c implicates a lossless representation θ c of the α-function, if

∀s1, s2 ∈ S :α(s1) 6=α(s2) ⇒ c (s1) 6= c (s2) . (5.4.5)

For computational efficiency, it is preferable to obtain a compact representation using

as little discrete states as possible. An optimal partition θ c realizes the intuitive idea

to differentiate states only, if this differentiation is relevant for the agent’s plan.

• A lossless mapping c defines an optimal representation 〈Sd ,θ c 〉 with respect to

the function α, if

∀s1, s2 ∈ S :α(s1) =α(s2) ⇒ c (s1) = c (s2) . (5.4.6)

Both statements can be easily proven by giving counterexamples.

109

Chapter 5 Continuous Value Iteration with Representation Learning

Figure 5.5: 2Dα-function generalization and conflict resolution. z -axis and colors indicate the
α-function value. The graph shows the generalization of the sample-based contin-
uous α-function induced by its discrete representation αd .

With the restriction to a partition and if 〈Sd ,θ c 〉 is lossless with respect to α, we can

simplify the α-function representation

α(s) (5.3.7)=
∑

sd∈Sd

θ c
sd
(s)αd (sd) =αd (c (s)) . (5.4.7)

The α-function value of every continuous state s now only depends on a single dis-

crete state sd . Vice versa, the discrete representation αd of a continuous α-function is

directly determined by αd (c (s)) =α(s).

Figure 5.5 shows an example of a 2D continuous α-function represented by a par-

tition. The dots indicate the continuous samples α̃(ŝ) that the representation aims to

represent.5.9 In this example, the x2 dimension does not have much influence on the

value. The learned partition accounts for that: the regions are mostly aligned with the

x2-axis. The 2D problem is effectively reduced to a 1D problem.

5.4.3 Decision Tree-based Partitioning

Partitioning can be efficiently implemented using a decision tree.5.10 Discontinuities

in theα-functions (e.g., due to collisions in motion planning tasks) then can be directly

modeled by tests in the inner nodes of the tree.

5.9See Section 5.5.3 for the meaning of the extended α samples.
5.10Here, the data mining or machine learning definition of the term decision tree is used: the tree de-

scribes data and not decisions. This is not to be confused with decision trees used in decision-making.

110

5.4 Iterative Representation Learning

We choose to implement the mapping between discrete and continuous states us-

ing a decision tree.

The tree T consists of tree nodes. These are denoted by their corresponding discrete

state sd ∈ Sd . Every non-leaf node sd implies a test tsd
that maps states s to an outcome

ci that points to the child node

tsd
: S→{c1, c2, . . .} . (5.4.8)

This test can be used to divide a set of states ŝ ∈ I into subsets Ic1
,Ic2

, . . . , one for every

outcome. We constrain the number of outcomes to two (i.e., binary trees).5.11

The tree realizes the iterative representation growing approach explained in Sec-

tion 5.4.1. In this context, the tree nodes can be viewed as basis functions. In order

to create a discrete vector representation β̃ of a particle-based belief b̃ , the tree needs

to be traversed once for every particle of the belief. This discrete representation is valid

for evaluating the values for all older αd : when the tree grows, the previous state rep-

resentations remain in the tree as inner, non-leaf nodes. The set of all leaf nodes of

the tree represents a mapping c that induces a partition. When learning a discrete

α-function representation αd , only leaf nodes are assigned non-zero values.

In Figure 5.6, we give a detailed example of this decision tree-based partitioning. To

determine the discrete representation βs of a continuous state s , one has to descend

from the root to the leaf according to the outcome of the tests in the nodes. The red

arrows in Figure 5.6a indicate this path for an exemplary s

tsd ,1
(s) = c2→ tsd ,3

(s) = c1→ tsd ,4
(s) = c2→ tsd ,9

, (5.4.9)

where c1, c2 are the possible outcomes of the tests. Three partitions are highlighted

in the figure. The initial partition (blue) contains only the root node. The mapping

containing sd ,2, sd ,4, and sd ,5 (green) has intermediate refinement level. The partition

with the highest refinement contains all leaf nodes (yellow).

In Figure 5.6b, we demonstrate how the representation is used to compute contin-

uous α-function values. As all vectors αd use a partition of the continuous space, the

computation always comes down to looking up a single αd (sd) value. Figure 5.7 shows

how an exemplary 2D continuous state space is partitioned by a tree using linear func-

tions for the tests. The set of all leafs poses a partition of the continuous space.

Next, we elaborate on how the decision tree can be learned with the goal to optimally

represent α-functions.

5.11 In combination with the α-function definition for partitions in Equation 5.4.7, this choice is equiv-
alent to representing α-functions with regression trees [Breiman et al., 1984] (i.e., decision trees with
continuous target variable) with constant basis functions.

111

Chapter 5 Continuous Value Iteration with Representation Learning

(a) Decision tree with three different partition versions that are indicated by the connected
colors. The nodes are indexed by discrete states sd . In every node a test is performed to
determine the next child node.

βs =































θ c
sd ,1
(s)

θ c
sd ,2
(s)

θ c
sd ,3
(s)

θ c
sd ,4
(s)

θ c
sd ,5
(s)

θ c
sd ,6
(s)

θ c
sd ,7
(s)

θ c
sd ,8
(s)

θ c
sd ,9
(s)































=



























1
0
1
1
0
0
0
0
1



























, αd ,1 =



























−20
·
·
·
·
·
·
·
·



























, αd ,2 =



























·
−20
·
5
3
·
·
·
·



























, αd ,3 =



























·
·
·
·
4
−3
−5
8

10



























βs ,αd ,1

�

d
= 1 · (−20)

βs ,αd ,2

�

d
= 0 · (−20) +1 ·5+0 ·3

βs ,αd ,3

�

d
= 0 ·4+0 · (−3) +0 · (−5) +0 ·8+1 ·10

(b) Discrete α-vectors defined by partitions. The "·"s denote sparse zeros. αd ,1,αd ,2,αd ,3 were
created with the corresponding partitions. The values α1(s),α2(s), and α3(s) are computed
using the discrete α-vectors and the discrete state representation βs of the continuous
state s .

Figure 5.6: Example of decision tree representation and α-function evaluation.

112

5.4 Iterative Representation Learning

Figure 5.7: 2D example for a partition induced by a decision tree. The continuous state space
S has dimensions sx1

and sx2
. The linear tests tsd

recursively split and refine the
continuous space representation.

5.4.4 Relationship to Decision Tree Learning for Predictive Modeling

Decision tree analysis for data prediction has a long history in data mining and ma-

chine learning. We first give a brief overview of the general problem and methods and

then address the specific problem in this work and identify the differences.

The basic task is to find a model for a training set of data samples with input at-

tributes that predicts the target variable with minimal error. A decision tree can be

used to structure the data: starting from the root node, the tree is descended by ap-

plying tests to the input attributes in every node that determine the child node. The

resulting leaf finally assigns a class to the data sample.5.12 The notion of decision trees

subsumes classification trees with discrete target variables and regression trees with nu-

merical target variables.

Decision trees are usually learned for a training set of input attributes and accord-

ing target variables. In incremental learning the complete training data is not given a

priori, but arrives step by step and the tree must be updated incrementally. Top-down

induction is a well known greedy strategy for learning decision trees. The underlying

idea is, to recursively split the training data according to some heuristic (see [Rokach

and Maimon, 2005] for an overview of existing methods). Famous examples following

this top-down strategy include CART [Breiman et al., 1984], ID3 [Quinlan, 1986], and

C4.5 [Quinlan, 1993]. Several improvements over these basic algorithms have been

proposed. Besides modifications of the splitting heuristics, extensions to the basic top-

down approach mostly aim to reduce overfitting. Examples are pruning the tree [Es-

posito et al., 1997], combining several trees in an ensemble using, for instance, bagging

[Breiman, 1996], boosting [Freund et al., 1999; Schapire, 2003], and various random-

5.12in case of crisp classifiers

113

Chapter 5 Continuous Value Iteration with Representation Learning

ization techniques [Ho, 1998; Dietterich, 2000]. These methods can also be combined.

For example Random Forests [Breiman, 2001] are a well-known and very successful

combination of bagging and randomization.

For the task of representation learning in this work, we use decision trees in a slightly

different manner than usual. In our case, the input attributes are the continuous states

s ∈ S. The target attributes are the α(s) values. The sample-based MC approximation

of the α-function Bellman backup provides the training data. In contrast to the usual

formulation, we aim to find a single tree that expresses several different α-functions

using different coefficients αd . Additionally, in our case, since the training data is gen-

erated incrementally with each backup, the partition should only be refined such that

the representation of previousα-functions is not invalidated. This prohibits direct ap-

plication of more sophisticated decision tree learning algorithms (e.g., pruning). Note

that our application is not prone to classic overfitting because the α-function Bellman

backup is a deterministic function. Small errors that can induce minor overfitting are

mainly introduced by the MC nature of the Bellman backup.

5.4.5 Loss Function for Representation Learning

In general, the assumption that the representation 〈Sd ,θ 〉 is lossless cannot be fulfilled

while at the same time maintaining sensible performance. In practice, a tradeoff be-

tween compactness and accuracy has to be found.

In the optimal case, where θ c is defined by a lossless partition, the discrete

α-function representation αd is directly determined by αd (c (s))
(5.4.7)= α(s). However,

having an approximate representation, we need to define its loss. We chose the vari-

ance (i.e., unbiased mean squared error) as criterion. The variance-based exact loss e

for an approximation αd that uses an approximate representation 〈Sd ,θ c 〉 is given by

e =

∫

s∈S

(α(s)−αd (c (s)))
2 ds . (5.4.10)

We choose the values in the vector αd to be the expected values for the corresponding

partition in order to minimize the loss. The vector αd is defined by

αd (sd) =

∫

s∈S

θ c
sd
(s) α(s) ds

(5.4.3)=

∫

s∈S| c (s)=sd

α(s) ds . (5.4.11)

We recursively partition the tree structure of the representation to adapt to new

α-functions. This basic approach is well-suited for incrementally refining the repre-

sentation.

114

5.4 Iterative Representation Learning

The data basis for the representation learning is a sampled set of states with

α-function values computed using the MC backup (see Equation 5.2.23). In this con-

text, ᾱI is defined using the set of tuples

{〈ŝ , ᾱI(ŝ)〉 : ŝ ∈ I} . (5.4.12)

Additionally, let θ c ,m be the current representation of version m implied by the map-

ping c m . The task of representation learning is to find a vector αd with minimal loss

for the sample-based α-function representation ᾱIb and, if necessary, refine c m in the

step to c m+1. After finding the improved representation, we can directly create the vec-

tor αd using only the leafs of the representation. Algorithm 7 gives an overview of the

procedure.

5.4.6 Decision Tree Learning and α-function Discretization

The refinement of the tree is implemented in the style of top-down-inducers. Starting

with the tree T m that defines the partition c m , the leafs of the tree are splitted in a

greedy fashion, aiming to minimize the expected loss of a discrete representation of α

for the training data ᾱI.

Let c m be a fixed mapping. Then, the discrete vector approximation ᾱd is com-

puted according to Equation 5.4.11 by the finite subset of tuples of state samples I and

α-function values ᾱI by

ᾱd (sd) =
1

|I|

∑

ŝ∈I| c (ŝ)=sd

ᾱI(ŝ) . (5.4.13)

The discrete vector ᾱd represents the α-function with the empirical loss

eI =
1

|I|

∑

ŝ∈I

(ᾱI(ŝ)− ᾱd (c (ŝ)))
2 (5.4.13)=

1

|I|

∑

ŝ∈I

ᾱI(ŝ)−
1

|I|

∑

ŝ ′∈I| c (ŝ ′)=sd

ᾱI(ŝ
′)

!2

. (5.4.14)

Using this criteria, the goodness of a binary test t can be measured using the gain in

accuracy (i.e., reduction of loss)

gI(t) = eI−
� |Ic1

|
|I|

eIc1
+
|Ic2
|

|I|
eIc2

�

, where Ici
= {ŝ ∈ I : t (s) = ci } . (5.4.15)

Tree growing recursively steps down the nodes of the tree, until a leaf is reached. It

then expands the leaf, if the gain excesses a threshold meaning that the split improves

the representation sufficiently. Algorithm 7 explains the procedure in more detail.

115

Chapter 5 Continuous Value Iteration with Representation Learning

Algorithm 7 α-function discretization and tree growing.

1: function DISCRETIZE ALPHA(ᾱI, T) . discretize α to vector ᾱd using decision tree T
2: GROW TREE NODE(sd ,1,I, ᾱI, T) . start in root node sd ,1 of the tree T
3: store T . store refined representation m→m +1
4: ᾱd ← SPARSE ZERO VECTOR()
5: for all sd ∈ T do
6: if IS LEAF(sd) then
7: ᾱd [sd]← 1

|I|
∑

ŝ∈I| c (ŝ)=sd

ᾱI(ŝ) . following (5.4.13)

8: end if
9: end for

10: return ᾱd

11: end function
12: function GROW TREE NODE(sd ,I, ᾱI, T) . grow node sd and modify tree T
13: if IS LEAF(sd) then
14: tsd

← CREATE NEW SPLIT(ᾱI) . temporary new split of node sd

15: Ic1
←
�

ŝ ∈ I : tsd
(s) = c1

	

; Ic2
←
�

ŝ ∈ I : tsd
(s) = c2

	

16: if COMPUTE GAIN(I,Ic1
,Ic2
)< THRESHOLD then . following (5.4.15)

17: return . stop growing
18: else
19: EXPAND TREE(tsd

, T) . attach temporary split to tree
20: end if
21: else . inner node
22: Ic1

←{ŝ ∈ I : t (s) = c1} ; Ic2
←{ŝ ∈ I : t (s) = c2}

23: end if
24: GROW TREE(CHILD(sd , c1),Ic1

, ᾱIc1
, T)

25: GROW TREE(CHILD(sd , c2),Ic2
, ᾱIc2

, T)
26: end function

5.4.7 Test Generation and Expanding the Decision Tree

The most simple tests only consider a single attribute by checking whether the attribute

exceeds a threshold. Such tests on a single attribute are in our application equivalent

to splits with axis-parallel hyperplanes in the continuous state domain s ∈ Rn . Fre-

quently used realizations of this are, for example, k -d trees [Bentley, 1975]. Due to

their performance and the availability of software libraries, these are a good and sim-

ple choice for many applications. However, POMDP policies in practice usually ex-

hibit more complex underlying patterns. A plausible example is the linear correlation

between position and velocity of an object (e.g., a car). More general tests that con-

sider the whole state space as input have to be considered in order to directly express

such relations. If the tests are arbitrary hyperplanes in the attribute space, they create

oblique split functions [Murthy et al., 1994]. It is impossible in continuous attribute

spaces to perform exhaustive search for the best test function. For this reason, we per-

form a search based on random sampling.

116

5.5 Algorithmic Realization and Program Flow

We separate the algorithm for finding appropriate new tests (denoted

CREATE NEW SPLIT in Algorithm 7) for a leaf into two parts: Generating a set of can-

didates and selecting one of them.

1. Generate n candidates by repeating the following procedure n times: Randomly

draw a (randomly sized) subset of state-value pairs from ᾱI. Create the test can-

didate by fitting a hyperplane to the subset using least-squares.

2. Select the candidate that yields the best gain (Equation 5.4.15) for the whole sam-

ple set ᾱI (not the sampled subset).

The first step involves randomization. As only subsets of the training data are used and

the final selection is based on a criterion on the complete training data, the created

splits are still focused on the task of representing the α-function.

5.5 Algorithmic Realization and Program Flow

To realize a POMDP solver with the derivations and algorithms presented in the pre-

vious sections, we have to select belief points where point-based α-function backups

are performed and determine the order of the backups. We propose a heuristic ex-

ploration of the infinite-dimensional belief space. Further, due to their MC nature,

the α-function Bellman backups induce various errors. We analyze this problem and

present an algorithmic solution to it, which discovers and corrects errors.

5.5.1 Lower and Upper Bound

In order to realize relatively sophisticated belief space exploration heuristics and to be

able to detect generalization errors, we hold a lower bound ΓLB on the value as well as an

upper bound ΓUB. Additionally, both bounds together allow to determine the accuracy

of the policy.

Let VΓ be the value defined by a set of α-functions Γ and V ∗ the optimal value func-

tion. A value function approximation is called lower bound ΓLB or upper bound ΓUB,

if

∀b ∈B : VΓLB
(b)≤V ∗(b)≤VΓUB

(b) . (5.5.1)

Due to its PWLC property, the lower bound for the value VLB can be implemented

as set of α-functions that are expressed by discrete vectors αd ∈ ΓLB. It is updated by

adding new vectors αd . These vectors are created by computing a new, sparsely repre-

sentedα-function using the point-basedα-function backup in Section 5.2.4 and, then,

discretizing the α-function using the learning approach in Section 5.4.6. At initializa-

tion time, ΓLB only holds a single vector αd ,0 that must assign the worst possible value

117

Chapter 5 Continuous Value Iteration with Representation Learning

to every continuous state s . The worst possible value is yielded when repeatedly re-

ceiving the minimal reward in the system, discounted by γ. Using a discrete decision

tree representation, as described in Section 5.4.3, αd ,0 can be realized by

αd ,0(sd) =







∞
∑

t=0
γt min

a∈A,s∈S
r (s , a) = 1

1−γ min
a∈A,s∈S

r (s , a) if sd = sd ,1

0 otherwise .
(5.5.2)

The initialization assures ΓLB to be a lower bound. Since Bellman backups are

monotonous, this property is preserved.

The same is true for the upper bound VUB, when properly initialized. In contrast to

the lower bound, the VUB cannot be efficiently represented by a set of α-functions be-

cause value iteration updates do not preserve convexity for upper bounds. For this

reason, we use a grid-based interpolation method with arbitrary (non-regular) grid-

points as proposed in [Hauskrecht, 2000]. A similar approximation has been used be-

fore by [Kurniawati et al., 2008]. Such upper bound approximations are often denoted

sawtooth interpolation due to the look of the resulting value function approximations.

For details see Appendix A.3. The upper bound is initialized by assigning the best pos-

sible value to every belief so that, initially,

∀b ∈B : VUB(b) =
1

1−γ
max

a∈A,s∈S
r (s , a) . (5.5.3)

5.5.2 Belief Space Exploration

Point-based value iteration relies on a representative set of belief points. If the dimen-

sionality of the belief space is high or even infinite, as in continuous-state POMDPs,

sophisticated algorithms for searching the belief space and selecting belief points are

necessary (in Section 3.5 we discussed this topic in detail). In this work, we perform

greedy-guided forward simulation. Therefore, we transfer the deep sampling idea from

HSVI, as proposed for discrete POMDPs in [Kurniawati et al., 2008; Smith and Sim-

mons, 2004], among others, to continuous POMDPs.

Belief sampling starts in the initial belief b0 and iteratively deep samples consecutive

next beliefs until a termination criteria is met. Then, point-based Bellman backups are

performed in inverse order, starting at the belief that lies the farthest in the future. The

backups propagate the value results of the predicted beliefs back to the initial belief.

The next beliefs are conditioned by an action and an observation. The action and the

observation that are selected for sampling are determined using a heuristic. It aims to

find a tradeoff between exploration and exploitation: the search should be eventually

exhaustive but at the same time stay near the (presumed) optimal policy.

118

5.5 Algorithmic Realization and Program Flow

Figure 5.8: α-function generalization in a continuous 1D example.

To sample a next belief starting in b , the action a ∗ with the highest upper bound is

chosen in accordance with the IE-MAX Heuristic from [Kaelbling, 1993] as

a ∗ = arg max
a∈A

V n
UB,a(b) . (5.5.4)

Eventually, this heuristic is successful: either it was the best choice or a backup reveals

the opposite and the upper bound for the choice decreases. After the action is fixed,

an observation o ∗ is selected in order to maximize expected information gain by

o ∗ = arg max
o∈O

p (o |b , a ∗)
�

VUB(b
′
b ,a ,o)−VLB(b

′
b ,a ,o)

�

. (5.5.5)

This heuristic favors next beliefs where the uncertainty about the value (the difference

between the upper and the lower bound) is high. In addition, it favors beliefs that have

high probability. If a belief is unlikely, its value has less impact on the value.

5.5.3 Correction of Value Generalizations and Approximation Errors

It is impossible to perform exact Bellman backups over the (infinite) continuous state

and observation space for general continuous POMDPs. The same holds for the pre-

sented algorithms: they can only approximate exact value iteration. Nevertheless, er-

rors can be detected and corrected.

Two specific sources of errors in the backup can be identified. The first error has its

origin in the MC simulation. MC backup considers a finite subset of the reachable next

states and next observations (see Section 5.2.4). For an exact backup computation of

α(s) any s ′ ∈ S : p (s ′|s)> 0 and any o ∈O : p (o |s ′)> 0 would have to be considered. The

second error stems from the generalization of these (approximated) α-functions. We

are only able to backup the α-function for a finite set of states. To obtain α-function

values for the whole state space, we learn a discrete representation (see Section 5.4).

The α-function values for states that were not sampled have to be predicted by the

119

Chapter 5 Continuous Value Iteration with Representation Learning

learner. When using a finite representation, even the values for the sampled points

cannot be represented exactly, in general.

In Figure 5.8 we demonstrate these errors by an example. First, the MC α-function

backup result for some samples is generalized over the complete state space using a

discrete partition. In the example, insufficient data has been generated in the right

corner of the state space. Additionally, the α-function samples are not represented

well by the discrete representation. Also, the MC backup shows minor discontinuities

at its left and right borders (e.g., at s = 5). This is typical, due to the lack of samples

compared to the center. However, the potential error that is created by generalizing

the high α-value of about 2.4 to the right side of the state space, is much bigger. The

error due to overgeneralization, in practice, dominates the other errors.

Quantifying these errors could attenuate the problem, but it is very difficult to give

tight error bounds without restricting the models of the POMDP. Imagine, for exam-

ple, a reward function with a negative peak. The peak might cover only a small part

of the state space, but if this peak is not sampled, it can induce large errors. Restric-

tions to the reward function (e.g., smoothness, maximum/minimum reward) could be

imposed such that no such negative peaks are allowed. However, this is not sensible,

if the peak has a reason, e.g., because the robot would collide in this area. In theory,

quantifying the errors can be useful. In practice, the usefulness of these results can

be limited because often restrictions to the POMDP have to be imposed that are not

realistic with respect to the underlying real problem. Nevertheless, the approximation

errors cannot be ignored. They can have severe consequences for the resulting pol-

icy and break convergence. In the above example, an overly optimistic policy might

directly drive the agent into the negative peak and into the collision.

In contrast to quantifying the errors, we propose an approach to detect and resolve

them. Therefore, we formulate a criterion to reveal violations of the monotonicity of

the Bellman backup. After identification, these inconsistencies are resolved by extend-

ing the sampled α-function values.

Conflict Detection

Exact value iteration converges monotonically to the optimal value function. Hence,

assuming a sufficient number of samples, the nth step continuous MC belief backup

Ṽ n (bA) defined in Equation 5.2.8, using a discrete lower bound Γ n−1
LB as basis, must be

superior or equal to the expected value yielded directly for a belief bA (and its discrete

representation βA) using any α-function in Γ n−1
LB , i.e.,

∀αd ∈ Γ n−1
LB : V n (bA)≥

βA,αd

�

d
. (5.5.6)

120

5.5 Algorithmic Realization and Program Flow

Figure 5.9: Conflict resolution in a continuous 1D example.

If this property is violated, Γ n−1
d,LB is no lower bound. To assert consistency in the policy,

any conflict generating αd ∈ Γ n−1
LB must be corrected with respect to the accusing belief

bA.

Therefore, we check every new αd vector for conflicts with any of the so far explored

beliefs before adding it to the policy. Additionally, we check, if a newly explored belief

reveals a conflict with any existing αd . We resolve found conflicts as described in the

next section. Algorithm 8 shows the integration into the value iteration program flow.

These checks might appear time consuming at first glance. However, using (sparse)

discrete vectors, the computation of the dot-product can be carried out efficiently.

Conflict Resolution

To correct a conflicting vector αd ,C , we simply extend the finite sampling base of the

α-function approximation. Let bA be the accusing belief for which αd ,C violated Equa-

tion 5.5.6. Additionally, let the vector αd ,C be the result of a point-based backup in the

belief bC following Equation 5.2.22 using the sample sets IbC
,JbC ,a ,andKbC ,a . Origi-

nally, these samples were drawn from bC , as described in Section 5.2.1. By extending

these sample sets with samples representing the accusing belief bA the reason of the

error, the insufficient sample base, is eliminated. The correctedα-functionαd ,C is now

computed using a combination of samples for bC and bA: IbC ∪bA
,JbC ∪bA ,a , andKbC ∪bA ,a .

Note that the backup still is point-based in bC and the choice of future α-functions in

Equation 5.2.10 remains unchanged. Only the accuracy of sampling is improved.

Figure 5.9 resumes the example in Figure 5.8. The black samples on the right repre-

sent the accusing belief bA, for which the generalization of the α-function has proven

to be too optimistic. By extending the sample base of the MC backup and learning an

improved representation, this error is corrected.

Finally, we have all components for the α-function backup with representation

learning and conflict resolution. See Algorithm 8 for the detailed procedure.

121

Chapter 5 Continuous Value Iteration with Representation Learning

Algorithm 8 Value iteration with conflict resolution.

Require: initial samples Ib ,Jb ,a ,Kb ,a . see Algorithm 1
1: function VALUE ITERATION STEP(b , a ,ΓLB, T)
2: for all αd ,C ∈ ΓLB do . αd ,C is result of point-based backup in bC

3: V n (b)←MC BELIEF VALUE BACKUP(b ,ΓLB)
4: if V n (b)<

β ,αd ,C

�

d
then . check for conflict (5.5.6)

5: BACKUP AND RESOLVE(bC , aC ,ΓLB,Ib ,Jb ,a ,Kb ,a , T) . correct αd ,C

6: end if
7: end for
8: BACKUP AND RESOLVE(b , a ,ΓLB,Ib ,Jb ,a ,Kb ,a , T)
9: end function

10: function BACKUP AND RESOLVE(b , a ,ΓLB,I,J,K, T)
11: ᾱI←MC ALPHA BACKUP(bC , a ,ΓLB,I,J,K) . continuous MC α-function backup
12: αd ← DISCRETIZE ALPHA(ᾱI, T) . discretize ᾱI and refine T when necessary
13: for all bA ∈Bexplored do
14: V n (bA)←MC BELIEF VALUE BACKUP(bA,ΓLB)
15: if V n (bA)<

βA,αd

�

d
then . check for conflict (5.5.6)

16: I← I∪ IbA
. extend samples for MC α-backup

17: J← J∪JbA

18: K←K∪KbA

19: goto 11 . start over with extended sample sets
20: end if
21: end for . conflicts solved
22: store ΓLB← UPDATE(ΓLB,αd) . add or overwrite αd ; version (n −1)→ n
23: end function

5.5.4 Solver Main Loop

To solve a POMDP, the developed components have to be executed in the right order.

Algorithm 9 outlines the program flow. First, the representation, the tree of explored

beliefs, as well as the upper and lower bound are initialized. Then, the following se-

quence is executed in a loop until predefined precision is reached: the belief space

search heuristic selects a belief b . If no backups have been performed in b before,

sample sets for the MC algorithms are created. Then, the discretization of the contin-

uous sample sets is updated with the recent version of the representation. The action

yielding the highest value is selected and backups of the upper bound as well as the

lower bound are performed in b .

122

5.6 Summary and Conclusion

Algorithm 9 POMDP solver main loop.

1: function SOLVE(eprecision)
2: T ←

�

sd ,1

	

. initialize tree for representation θ c with root node
3: TB←{b0} . initialize belief tree with explored beliefs
4: ΓLB←

�

αd ,0

	

. initialize lower bound (Section 5.5.1)
5: INIT(VUB) . initialize upper bound (Section 5.5.1)
6: repeat
7: b ← EXPLORE(TB,ΓLB,ΓUB) . deep sample current belief b (Section 5.5.2)
8: if b 6∈ TB then
9: DRAW SAMPLES(b) . draw sample skeleton (Algorithm 1)

10: TB← EXPAND BELIEF TREE(TB, b) . construct next beliefs b̃ ′

(Algorithm 2)
11: end if
12: for all a ∈A do
13: DISCRETIZE STATES(b,a) . discretize ŝ ′ (Algorithm 5)
14: DISCRETIZE BELIEFS(b,a) . discretize b̃ ′ (Algorithm 5)
15: end for . b is now prepared for backups
16: MC BELIEF VALUE BACKUP(b) . backup b see Algorithm 3
17: amax← arg maxa∈A Ṽ n

a (b) . create α only for the best action
18: UPDATE UPPER BOUND(b , amax, VUB, T) . Appendix A.3
19: VALUE ITERATION STEP(b , amax,ΓLB, T) . Algorithm 8
20: until CONVERGENCE

21: end function

5.6 Summary and Conclusion

In this chapter, a method for solving continuous-state and -observation POMDPs with

discrete actions is presented (Contribution 1). We found that solving the POMDP can-

not be decoupled from finding a suited representation of the continuous state space.

By iteratively performing Bellman backups and refining the representation, we solve

the circular dependency between the value function and its representation (Contribu-

tion 1b). We combine point-based MC simulation and α-function backup with ma-

chine learning of a discrete representation. The models of the POMDP are not re-

stricted (Contribution 1a). Further, the learned, discrete representation generalizes

value functions effectively over the continuous state space and predicts values for pre-

viously unseen beliefs (Contribution 1c).

This work sets itself apart from previous approaches mainly in three aspects:

1. It integrates machine learning into value iteration so that the representation can

be updated simultaneously with the value function.

2. It learns a discrete state space representation with the explicit goal to optimally

represent the value function (and not the belief).

123

Chapter 5 Continuous Value Iteration with Representation Learning

3. It learns a non-parametric representation and the family of the basis functions

is, in theory, not restricted.

These three aspects are a novelty in the context of solving continuous POMDPs and

significantly improve performance.

Implementation-wise, we propose a state space representation that is based on de-

cision trees using top-down induction for incremental refinement. On the one hand,

this design choice has several advantages: evaluating α-functions as well as refining

the representation can be done very efficiently in decision trees. Also, when using top-

down learning, the representation refinement is straight forward. On the other hand,

only piecewise-constant α-function approximations are possible and overlapping ba-

sis functions prohibited. This prevents the potentially better generalization that could

be achieved when applying more sophisticated machine learning techniques (e.g., im-

provements by pruning, boosting, or ensembles methods, or fundamentally different

approaches such as deep learning).

It is important to understand, however, that the presented concept is not restricted

to our choice of implementation. In Section 5.3, the type of the basis functions are

not restricted. In particular, the proof of Lemma 1 in Section 5.3.2 does not require

any assumptions about the family of the basis functions. The generality of our central

concept leaves much and promising scope for future work.

124

Chapter 6

Decision-making for Autonomous Driving by
Solving Continuous POMDPs

We present the components necessary for modeling safe, goal-directed,

rule compliant, and efficient tactical decision-making as POMDP. By solv-

ing this POMDP, a policy is generated that maps the current situation to

driving actions with the goal to optimize the expectation over future re-

wards.

The goal of tactical decision-making is to select the best high-level action. This action

is then executed by a lower-level control. Decisions are based on preprocessed ob-

servations and background knowledge, such as maps. Recall Figure 1.3 that visualizes

the architecture of the autonomous vehicle and the integration of tactical decision-

making.

To provide a good basis for decisions, the POMDP model needs to realistically re-

semble the dynamics of the traffic environment. The central aspects are other road

users, their behaviors, and if and how well they can be perceived. The immediate re-

ward function defines the driving goal. It evaluates if the driving destination is reached

and if collisions happened. In addition, it assesses how efficient and comfortable the

driving is and if it complies with the traffic legislation.

The POMDP model should be as general as possible. In other words, we seek to

keep the modifications that are necessary when adapting the system to different traffic

scenarios to a minimum. For example, highway driving, lane merging and approach-

ing junctions should be solved using the same underlying general model. We achieve

this objective with hierarchical, continuous-space models that we structure with a dy-

namic Bayesian network (DBN). This way, we can also capture the behavior of the

lower level control algorithm that executes the tactical decisions for the autonomous

car and transforms them to continuous steering and acceleration.

For finding policies by approximating solutions to the continuous POMDP, we pro-

pose two approaches. The first approach omits partial observability and finds policies

using a MDP value iteration with predefined equidistant space discretization rules and

adaptively growing state space. The second approach considers the full POMDP using

125

Chapter 6 Decision-making for Autonomous Driving by Solving Continuous POMDPs

the continuous value iteration method presented in Chapter 5 that learns a discrete

space.

Note that in this chapter, a general model and approach is presented that can be

practically utilized in different ways. In the experimental evaluation in Chapter 7, ex-

emplary realizations of highway and urban driving are shown. In Section 8.3, multiple

applications of the approach in the context of driving and ways to embed it into a real

autonomous car are discussed.

Chapter Overview First, in Section 6.1, the spaces and models of the (PO)MDP6.1 are

presented. We discuss which aspects are essential to obtain good policies and which

can be simplified or neglected. Further, we give some details about possible efficient

implementations. The second part of this chapter in Section 6.2 is concerned with the

solution of this (PO)MDP in order to generate decision policies. This chapter is partly

based on [Brechtel et al., 2011] and [Brechtel et al., 2014].

6.1 MDP and POMDP Spaces and Models for Driving

In this section the spaces and models of the MDP and POMDP are presented. The

spaces S, O and A define the sample space of random variables S for the state of the

world, O for observations, and A for actions. The models define the relationship be-

tween the random variables as conditional probability distributions. Ultimately, they

determine the meaning of states, actions and observations.

In order to obtain a general formulation, the state and observation spaces are con-

tinuous. The following example gives an intuitive understanding why this is more gen-

eral than a symbolic representation: for instance, any position6.2 of a car can be ex-

pressed using two continuous values x1 and x2, regardless of the context the car is in,

or in which area of the world it is. Contrary to this, symbolic states such as in front of

intersection or on left lane highly depend on the current situation.

Note that the observations spaceO and the observation modelΩ are reserved to the

POMDP. As MDPs have no notion of partial observability, they only consist of the state

space S, a transition model T and a reward function R .

6.1.1 State Space

The state space must suffice the requirements of decision-making. Therefore, every

state must hold enough information so that the Markov property can apply and every

state only depends solely on its previous state. As we directly use the continuous state

6.1A continuous POMDP model is presented. However, we often denote it (PO)MDP to indicate that a
continuous MDP can be derived simply by omitting observations.

6.2The elevation can be neglected for most normal driving scenarios.

126

6.1 MDP and POMDP Spaces and Models for Driving

Figure 6.1: State space xi of a single car or ego vehicle xego.

space, a representation similar to those frequently used for state estimation and pre-

diction can be employed. The state of the world basically comprises the geometrical

poses and velocities of all road users. Map information, such as the topology and ge-

ometry of the road network or information about houses or bushes at the side of the

road that can block the view of the car, are assumed static. Static states are part of the

background knowledge of the models and not part of the (dynamic) state space s ∈ S.
The full state of the world s ∈ S either is in an environment state s ∈X, which repre-

sents normal driving situations, or in the terminal state s = sterm so that

S=X∪{sterm} . (6.1.1)

State of the Environment The state of the environment x ∈ X is a vector containing

the state of the controlled (ego) vehicle xego ∈Xobj and the states of all n other objects

(i.e., road users) xi ∈ Xobj. As illustrated in Figure 6.1, the ego vehicle’s state xego as

well as other object’s states xi are represented equally by their global position
�

x1, x2

�

T,

orientationψ, and velocity v so that

x =













xego

x1
...

xn













and xi =











x1

x2

ψ

v











∈Xobj ⊆R4 . (6.1.2)

Terminal State In addition to the state of the environment X that represents normal

driving situations, we introduce a special state that we denote terminal state6.3 sterm.

This is due to the fact that there must be some semantic which models that the plan-

ning problem is over (i.e., there is no future). The world transitions to the terminal

6.3In literature, the terms terminal state, stopping state, and absorbing state are used synonymously.

127

Chapter 6 Decision-making for Autonomous Driving by Solving Continuous POMDPs

state after the ego vehicle crashes or reaches the goal. The agent cannot leave the ter-

minal state and he receives no reward or cost being in it. This is important because it

prevents the planner from drawing wrong conclusions (e.g., by assuming that the goal

reward can be received multiple times or that the goal can be reached after a collision).

Further, it assures that planning can be stopped, when the terminal state is reached,

without affecting the resulting policy (hence the name terminal).

6.1.2 Observation Space

The agent is capable of observing the environment using sensors which are usually

mounted to the ego vehicle. We assume that there are sensors perceiving the intrinsic

state of the ego vehicle xego as well as sensors perceiving external objects xi

o =
�

oego, o1, . . . , on

�

T with oego, o1, . . . , on ∈Oobj. (6.1.3)

Further, we assume that poses and velocities in the state space Xobj are measured di-

rectly. The observation space of an object, thus, is equal to its state space, if the object

is visible to the sensors. We additionally introduce a special observation oinv. It models

that the object is invisible to the sensors due to occlusions or other sensor limitations.

The full observation space

Oobj =Xobj ∪{oinv} . (6.1.4)

6.1.3 Action Space

In every situation, the agent aims to select the best high-level driving maneuver. Exam-

ples of maneuvers are acc-/decelerating, stopping in front of an intersection, following

in a safe distance, or making a lane change. Such maneuvers have a higher level of ab-

straction than continuous acc-, deceleration and steering, which usually are the result

of controllers or motion planning.

We consider a discrete set of actionsA that encode high-level behaviors. The discrete

actions parametrize a continuous control policy for the length of the time step of the

(PO)MDP. This control policy finally sets the continuous control

aego ∈Ac (6.1.5)

with a higher update rate of about 100 ms. It considers the high-level driving target

determined by the discrete action as well as the context of the vehicle. The context

information allows the control policy to follow lanes and react on other road users, if

something unexpected happens in between the (PO)MDP time steps. See the transi-

tion model in Section 6.1.4 for the realization of the model.

128

6.1 MDP and POMDP Spaces and Models for Driving

?

(a) Linear without uncertainty.

?

(b) Linear with uncertainty.

?

(c) Non-linear with map information.

?

(d) With map information and interaction.

Figure 6.2: Transition models with varying accuracy. Map Data [City of Karlsruhe].

6.1.4 Transition Model

The transition model describes the dynamics of the system and the influence of the

chosen actions on the dynamics. In order to account for the uncertainty in the tran-

sition, it is modeled as conditional distribution p (s ′|s , a). This model is mostly about

simulating the behavior of drivers and other road users. Due to human factors, it is the

most complex of the presented POMDP models.

The behavior of road users depends on multiple factors, which need to be mod-

eled in order to obtain realistic predictions. We illustrate the influence of the most

important dependencies in Figure 6.2. The images show a scenario, where the blue

ego vehicle has the goal to enter a traffic circle. Two other cars are involved in this sce-

nario and need to be considered. The first image in Figure 6.2a sketches the results of

a physically inspired model that assumes independent vehicle motion with constant

velocities. This model has obvious flaws. The yellow car is predicted to directly drive

into a green area between two roads. Further, this model is deterministic, which means

that it declares the (absolutely wrong) prediction to be accurate. Despite these severe

shortcomings, constant velocity models are the most frequently used basis for state es-

129

Chapter 6 Decision-making for Autonomous Driving by Solving Continuous POMDPs

timation, today. By adding noise generously, observations can often compensate the

poor predictions so that state estimation can keep track of the objects despite the poor

prediction (see Figure 6.2b). Performance-wise, this simple model has the advantage

that the predicted vehicle motion solely depends on its intrinsic state. Hence, for pre-

dictions with longer time horizons, the variance of the prediction is too high to suffice

for tactical decision-making. Further, as can be seen in the example, the most likely

prediction of the yellow car still is the green area off the road.

Accuracy can be improved by considering the static environment, such as the road

geometry and topography. As illustrated in Figure 6.2c, drivers are guided by lanes.

This additional information helps to reduce the uncertainty of the prediction. The

complexity of the model increases (conditional distributions are non-linear and, e.g.,

due to forks of the road also multimodal). However, the vehicles can still be treated

independently. Despite these improvements, the yellow vehicle in the example is pre-

dicted to collide with the red vehicle. For decision-making, the interaction between

road users is essential. As can be seen in Figure 6.2d, the driver of the yellow car would,

in reality, react to the red vehicle by slowing down.

In summary, it can be stated that the transition model for tactical decision-making

needs to consider the full context. This includes the static context that can be part of

the background knowledge (e.g., maps, traffic signs) as well as dynamic context infor-

mation (e.g., other vehicles’ poses) that is part of the hidden state space and must be

estimated over time from measurements. Uncertainties arising in this process further

complicate the problem.

We propose a hierarchical Bayesian model to realize the transition model. This ap-

proach allows to structure the various factors on different levels of abstraction and

make dependencies explicit. A simplified overview of the DBN transition model is

given in Figure 6.3. The DBN in this work is based on the approach to predicting traffic

situations and modeling interacting driver behaviors presented in [Gindele et al., 2010,

2013, 2015]. The model is extended by adding the ego car, which can be controlled by

the (PO)MDP agent by selecting actions. To get a good simulation of the road users

and their behaviors, a time step shorter than 200 ms is necessary. The time step of the

(PO)MDP is 1.5 s. To successfully embed the DBN, several internal prediction steps are

executed when computing a single step of the (PO)MDP transition model.

It must be emphasized here that the (PO)MDP creates high-level policies with long

prediction horizon (up to 20s in the examples of the evaluation in Section 7.3) and un-

der consideration of many complex aspects and uncertainties. For this reason, reac-

tion times of over a second suffice. For comparison: studies showed that the reaction

time of unalerted human drivers to unexpected events can be commonly assumed to

130

6.1 MDP and POMDP Spaces and Models for Driving

Figure 6.3: Bayesian network (BN) representation of the transition model. The area marked
red models the ego vehicle and the area marked blue the other road users. The re-
lationships between the random variables for the underlying continuous states X i ,
the vehicle controls Ai , vehicle contexts Ci , driver’s plan Pi , and the agents discrete
action A are displayed.

be ca. 1.5 s [Taoka, 1989]. In contrast to this, e.g., a driver’s steering corrections obvi-

ously have to be much quicker.

Driver’s Behavior Accurate prediction of the non-controlled vehicles i ∈ {1, . . . , n} is

essential for decision-making. In this work, we only provide models for car-like ob-

jects. In principle, the presented approach can be applied to any kind of traffic partic-

ipant with slight modifications, including pedestrians and cyclists. In [Brechtel et al.,

2009], we propose a basic prediction model for pedestrians in a similar application.

A human driver’s reaction has several complex dependencies from static as well as

dynamic variables. Our approach is to resemble the internal decision process of every

driver using a hierarchical DBN (see Figure 6.3). On the lowest abstraction level, the

state of the vehicle xi ∈ Xobj (see Equation 6.1.2) is the physical manifestation of his

driving decisions. Despite his potentially complex thoughts, eventually, he can only

control his vehicle by acc-/decelerating and steering. His control ai ∈ AC consists of

the derivations of the velocity and orientation6.4
�

v̇,ψ̇
�

T. The conditional density func-

tion p (x ′i |ai , xi)models the physical vehicle motion when the control ai is applied. To

6.4The yaw rate ψ̇ can be derived from the steering angle when assuming circular motion.

131

Chapter 6 Decision-making for Autonomous Driving by Solving Continuous POMDPs

account for kinematic as well as dynamic constraints, we assume a one-track model

[Braess and Seiffert, 2011]with restricted lateral and longitudinal acceleration.

Predicting the control ai that a driver applies is more complex than the vehicle’s reac-

tions on the control input. First, drivers usually follow the course of the road. To model

this, map information has to be given as background knowledge. Secondly, road users

interact with each other and the ego car and therefore, their reactions depend on the

states of other vehicles. We comprise this information in the situational context Ci of

every road user i with the model p (ci |xego, x1, . . . , xn). The context contains, for exam-

ple, geometric relations of the vehicle i to the road network and to the other road users.

This information about the context is used to estimate the driver’s planned routes Pi .

These denote paths of road segments that he will follow. The planned route in com-

bination with the situational context is sufficient to derive the control that the driver

applies following p (ai |ci , pi). For more details about the prediction of other road users

see [Gindele et al., 2013].

Note that the vehicles’ physical state, their context, planned route and control are all

latent variables that can only be indirectly inferred from measurements over time. As

a consequence, even if all described static and dynamic factors are considered, road

users can never be predicted (or even estimated) with absolute precision. Decision-

making must be able to handle the remaining uncertainty.

Actions and Vehicle Control The physical model assumed for the ego vehicle is basi-

cally the same as for the other road users. As can be seen in Figure 6.3, the difference

is that its control aego ∈AC is not estimated. Instead it is set by a control policy that is

parametrized by the selected discrete action a ∈A.

The model p (aego|a , cego) implements the continuous controller. The controller ba-

sically follows the road and adapts the velocity or changes lanes according to the se-

lected discrete action a . Additionally, the controller has a dependency to the context

of the vehicle to be able to react to other traffic participants (e.g., emergency braking,

if a car driving in front suddenly brakes during the POMDP time cycle).

Termination The termination model is not shown in Figure 6.3, as it is an exception

from the normal prediction. It has to assure that there is no way out of the terminal

state, regardless of the chosen action by

∀a ∈A : p (s ′|sterm, a) =

¨

1 if s ′ = sterm

0 otherwise .
(6.1.6)

With this definition the future becomes irrelevant when being in sterm.

132

6.1 MDP and POMDP Spaces and Models for Driving

(a) Two-Level collision bounds. (b) Continuous collision detection.

Figure 6.4: Efficient hierarchical time-continuous collision detection.

The second important property of the terminal model is that sterm is reached when a

collision between the ego vehicle and another road user happened or when the driving

goal is reached (see the reward function for more details) so that

∀s 6= sterm : p (s ′ = sterm|s , a) =

¨

1 if collision or target area reached

0 otherwise .
(6.1.7)

Collision Detection Collision detection is an important part of this termination

model. It can be be computationally expensive. However, is important to detect col-

lisions continuously. If collisions are only checked at certain points in time, vehicles

with high speeds can tunnel each other.

We apply hierarchical two-level, time-continuous collision detection (CCD)6.5 to

avoid tunneling and assure computational efficiency. We approximate objects using

circular volumes. Figure 6.4a shows the bounding circles for a car. For other objects,

different object dimensions can be assumed. The first level collision check uses the

larger circle surrounding the vehicle (blue). If this check detects potential collisions, all

three smaller circles (red) on the second level are checked against all circles of the other

object. For continuous-time collision detection, linear motion of the collision struc-

tures between the time steps is assumed [Ericson, 2005]. See Figure 6.4b for an exam-

ple, where discrete collision checking would have failed due to tunneling. It sketches

the assumed linear motion of the (second level) circles. When assuming linear mo-

tion between the time steps, detecting a collision between two moving objects can

be simplified to detecting a collision between a static and a dynamic object. There-

fore, the reference frame has to be transformed to be relative to one object (which in

this reference frame is static) [Hahn, 1988]. For collision detection between a static

6.5In the literature, time-continuous methods are frequently denoted “a priori”.

133

Chapter 6 Decision-making for Autonomous Driving by Solving Continuous POMDPs

Figure 6.5: Observation model. Red polygons represent static opaque areas. The yellow car is
visible and measured with normally distributed noise. It casts an area of obstructed
vision. The view on the red car is blocked by a house. Map Data [City of Karlsruhe].

and a dynamic object, time can be neglected. With these simplifications, checking the

collision of two dynamic circles, reduces to one vector addition and a distance check

between a point and a line segment.

6.1.5 Observation Model

The task of the observation model is to represent capabilities of the autonomous car’s

sensors and, even more important, their limitations. Therefore, it models the proba-

bility of making an observation o for a given state of the world s . Note that it is not

necessary to simulate the physical measurement process in detail. Instead, the model

should cover relevant effects of sensor limitations. Two effects of sensor errors can be

distinguished: noise and (in)visibility. We put special emphasis on modeling the latter,

as not seeing an object usually has more severe consequences than the measurement

error when it can be seen. See Figure 6.5 for an example. For decision-making, moving

objects (including the ego vehicle) are particularly relevant.

We assume static parts of the environment, such as roads or houses, to be known

in advance as part of the background knowledge. Recent progress in the area of si-

multaneous localization and mapping (SLAM) (see, e.g., [Grisetti et al., 2010]) make it

possible to automatically create large scale maps of the traffic environment. Today, 3D

maps already exist for many cities in the world (e.g., Google earth with street view). It

can be expected that in the future more cars are equipped with sophisticated sensors

and connected to an online database. If their data is fused, it can be assumed that the

environment maps are sufficiently up to date and accurate for driving.

The measurements of the objects are modeled to be mostly independent from each

other. For simplicity, the basic model assumes identity functions with additive nor-

134

6.1 MDP and POMDP Spaces and Models for Driving

mally distributed noise for all objects. Their covariance matricesΣOi
account for speed

and orientation of the objects.

Self-Localization It can be assumed that pose and velocity of the ego vehicle can

always be measured with small noise, especially when using state-of-the-art SLAM

with additional information from odometry and Differential Global Positioning Sys-

tem (DGPS). The ego vehicle’s state is always visible and measured with the covariance

matrix ΣOego
according to

p (oego|x ′ego, x ′1, . . . , x ′n) = p (oego|x ′ego) =

¨

0 if oego = oinv

N (x ′ego,ΣOego
) otherwise .

(6.1.8)

Visibility of other Road Users For the other road users i , the conditional distribution

p (oi |x ′ego, x ′1, . . . , x ′n)models whether and how accurately they can be seen. In order to

yield information-aware policies, the visibility of objects needs to be modeled. Multi-

ple reasons exist, why a road user can be invisible to the sensors. The angle of view or

the range of the sensors might be limited. These cases can be easily covered by deter-

mining the relative angle and distance. Also, the view can be obstructed by other road

users or environment objects. We detect this by checking, if there is a direct line of sight

to the road user that does not intersect with other objects (see Figure 6.5 for illustra-

tion). For static objects a map with a geometric polygon representation of objects that

can block the view is part of the background knowledge. A polygon representation of

the dynamic objects can be derived from their states and integrated into the polygon

representation of the static environment.

If the state x ′i of an object is invisible (i.e., the line of sight is intersected by the oc-

clusion polygon), we have

p (oi |x ′ego, x ′1, . . . , x ′n) =

¨

1 if oi = oinv

0 else .
(6.1.9)

If the object i is visible from x ′ego, the observation solely depends on x ′i by

p (oi |x ′ego, x ′1, . . . , x ′n) = p (oi |x ′i) =

¨

0 if oi = oinv

N (x ′i ,ΣOi
) otherwise .

(6.1.10)

Note that it can be sensible to adapt the covariance Oi depending on the distance

and orientation to the ego vehicle. This might be particularly interesting when us-

ing stereo-based visual recognition systems, where the measurement errors increases

quadratically with the distance.

135

Chapter 6 Decision-making for Autonomous Driving by Solving Continuous POMDPs

(a) Initial scene. (b) Collision. (c) Goal reached.

Figure 6.6: Reward function when entering a traffic circle. Map Data [City of Karlsruhe].

6.1.6 Reward Function

The reward function combines multiple criteria to a single real value. Primary goals are

to move ahead or, alternatively, reach a target destination as quickly as possible, and at

the same time not to crash into other road users or leave the road. These criteria often

contradict each other as illustrated in Figure 6.6. The goal of the blue car in this sce-

nario is to enter the traffic circle and reach the green target area. However, it must yield

to the yellow car first to avoid crashing. Secondary goals are efficiency (i.e., minimizing

energy consumption), compliance with traffic rules and comfort. Engineering a well-

functioning reward model is straight forward compared to the difficulty of manually

modeling the value function or even policy. Only the immediate situation and not its

future development has to be assessed for the immediate reward.

The real-valued, deterministic reward function �r (s , a , s ′) quantifies these multiple

objectives. It depends on the current state s , the executed action a and the next state

s ′. 6.6 In practice, not all objectives can be fulfilled at the same time. It might be, for in-

stance, necessary to cross a solid white line to avoid a collision. A good policy balances

the potentially contradicting driving objectives. The reward function is composed of

multiple subfunctions, each describing a single driving objective, as follows

�r (s , a , s ′) =



















0 if s = sterm

rcoll(s , a , s ′) if collision happened

rgoal(xego, x ′ego) if target area reached

rrules(xego) + rmove(v) + reff(v̇,ψ̇) otherwise .

(6.1.11)

The reward computation is separated into two parts. In the first part, it is evaluated

whether the ego vehicle collides or not. In this step, information about all road users at

time t as well as t +1 and the chosen action a is necessary to detect potential collisions

(see Section 6.1.4). This is expressed by the collision reward rcoll(s , a , s ′)which returns

a negative reward, if the ego car crashes, and zero otherwise.

6.6See Appendix A.1 for the relation between this alternative reward�r (s , a , s ′) and r (s , a).

136

6.2 Generating Driving Policies by Solving the (PO)MDP

If no collision is detected, in the second part, a reward is computed that solely de-

pends on the current state of the ego vehicle xego =
�

x1, x2,ψ, v
�

T and the chosen con-

trol aego =
�

v̇,ψ̇
�

T. The following driving objectives are considered in the second part:

the goal model rgoal(xego, x ′ego) returns a positive reward, if the car reaches a target area

(e.g., located behind an intersection). Target areas are not limited to positions. They

can also imply goals for the other states, such as a desired speed interval (e.g., if the

goal is to stop). In addition, a reward for moving ahead can be returned that depends

on the velocity by rmove(v). Compliance with traffic rules, such as speed limits or us-

ing the leftmost lane on a highway, are expressed in rrules(xego). Additionally, reff(v̇,ψ̇)

returns costs for acc- and deceleration in order to optimize comfort and efficiency.

The numerical relation of these reward functions can be adapted to obtain a wished

behavior. For example, if rmove is chosen to be relatively high and rrules to be relatively

low, more reckless driving can be the result.

Terminal Reward Again, the terminal state is an exception. The agent never receives

rewards when he is in the terminal state so that

∀a ∈A,∀s ′ ∈ S :�r (sterm, a , s ′) = 0 ⇒ ∀a ∈A : r (sterm, a) = 0 . (6.1.12)

Intuitively, in combination with the termination model, which assures that the termi-

nal state cannot be left, this means that planning can be stopped in the terminal state.

This can be formally asserted: for POMDPs, the continuousα-function backup in Sec-

tion 4.3.14 always yields 0.

Proof.

αn
b ,a (sterm)

(4.3.14)= r (s , a) +γ

∫

s ′∈S

p (s ′|sterm, a)

∫

o∈O

αn−1
b ,a ,o (s

′)p (o |s ′) do ds ′ (6.1.13)

(6.1.6)= r (sterm, a) +γ αn−1
b ,a ,o (sterm) =

∞
∑

t=0

γt r (sterm, a) (6.1.12)= 0 (6.1.14)

Consequently, computations for sterm can be skipped. The same holds for MDPs.

6.2 Generating Driving Policies by Solving the (PO)MDP

In this section, we outline how the (PO)MDP models presented in the previous section

can be used to generate driving polices. Two different approaches are presented: The

first approach is based on a discrete state MDP. To embed the described continuous-

space models into a discrete-state decision process, we perform equidistant, lane-

137

Chapter 6 Decision-making for Autonomous Driving by Solving Continuous POMDPs

aligned discretization. We employ MDP value iteration to solve the resulting discrete-

space problem. To be able to cope with the discrete, but still infinite state space, we

propose a modification to value iteration that allows the state space to adaptively grow

during planning. However, this MDP approach is limited to full observability.

In contrast to this, the second approach directly works on the continuous space and

accounts for partial observability. This is realized using the continuous POMDP solver

presented in Chapter 5. No modifications to the presented continuous POMDP mod-

els are necessary with this approach and they are directly used for the evaluation in the

next chapter. Nevertheless, we present some ideas how the computational efficiency

can be improved.

6.2.1 Discrete MDP Value Iteration with State Space Growing

The most common procedure for creating a discrete MDP representation of a (con-

tinuous) real-world problem is to, first, name all possible states and, then, precom-

pute rewards and transition probabilities for all combinations of states. These can be

stored (e.g., in matrices). Finally, the discrete MDP is solved, for example, with value

iteration or policy iteration. This approach fails for state spaces with infinite or very

large volumes, such as long roads. Discretizing a road of infinite length equidistantly

results in an infinite number of discrete states. Solving the MDP, however, requires

the state space to be finite. For this reason, we link the continuous states presented in

Section 6.1 to discrete states and derive rules to translate continuous to discrete mod-

els. This way, models for any state can be computed on demand, which enables us to

consider only a finite subset of the infinite state space. We grow this subset by adding

states when they are reached during planning.

Discrete State Space

We link the continuous space S, which comprises poses and velocities of road users

(see Section 6.1), with a discrete state space SMDP ⊆N. Formally, we define this relation

by an SMDP-valued random variable IS : S → SMDP. IS maps every continuous state

uniquely to a single discrete state IS (s). Vice versa, every discrete state corresponds

to a set of continuous states I −1
S (sMDP). The discrete states can be thought of as non-

overlapping regions in the continuous space and we assume the continuous states to

be uniformly distributed in their regions. Additionally, for the terminal state, a special

discrete state is introduced.

The regions are aligned along lanes with equally spaced longitudinal and lateral dis-

tances. As illustrated in Figure 6.7, using the road as reference frame creates a repre-

sentation that is to a certain degree invariant to the geometry and, in particular, to the

138

6.2 Generating Driving Policies by Solving the (PO)MDP

ve
lo
ci
ty

Figure 6.7: State space discretization scheme for MDP in different road curvatures.

curvature of the road. The orientation of the vehicles is not part of the discrete state

because it can be assumed to be mostly aligned with the lane. In addition to this pose

description, the velocities of the vehicles are discretized equidistantly.

Discrete Transition Model and Reward Function

With these definitions, we are able to map continuous states to a discrete represen-

tation. However, for computing the MDP, the transition model and reward func-

tion must be defined on the discrete state space. The discrete transition model

p (s ′MDP|sMDP, a) can be derived from the continuous transition model p (s ′|s , a) defined

in Section 6.1 using the random variable IS . The resulting transition probability is de-

fined as the integral of the continuous model over the current states s , corresponding

to the discrete state sMDP, and the next states s ′, corresponding to s ′MDP following 6.7

p (s ′MDP|sMDP, a) =

∫

s∈S| IS (s)=sMDP

∫

s ′∈S| IS (s ′)=s ′MDP

p (s ′|s , a) ds ′ ds . (6.2.1)

These integrals can be numerically approximated. In Figure 6.8 the approximation

process is visualized for a lane change maneuver with only a single vehicle in the state

space. When a discrete state is reached for the first time during planning (see Fig-

ure 6.8a), the transition probabilities are computed. To approximate the transition

probabilities of a current state sMDP, first, continuous states from the according region

are sampled uniformly (see Figure 6.8b for three exemplary samples). These samples

are predicted according to the continuous transition model p (s ′|s , a) (see Figure 6.8c)

and mapped to the according discrete next states s ′MDP. Finally, the probabilities of the

discrete next states s ′MDP given the current discrete state sMDP can be determined simply

by counting the samples (see Figure 6.8d).

An interesting aspect of the discrete transition model is the length of the planning

time step. The requirements for the time step may vary, depending on the chosen ac-

6.7For details on the definitions and derivations, we refer to [Brechtel et al., 2011].

139

Chapter 6 Decision-making for Autonomous Driving by Solving Continuous POMDPs

velocity

ve
lo

ci
ty

(a) Scene and target trajectory.

velocity

ve
lo

ci
ty

(b) Discretization and sampling.
ve

lo
ci
ty

velocity

(c) Transition and new follow-up
states.

velocity

ve
lo

ci
ty

(d) Conditional probability for next
discrete states.

Figure 6.8: State space sampling and transition.

tion. For example, the time necessary to execute a complete lane change is about 1.5 s.

If the time step is too short, the resulting continuous next state can be between two

lanes. This can be accounted for, by increasing the lateral resolution of the discrete

grid. However, this comes at the cost of increased computational effort. Contrary to

the lane change, a quick, hard braking action can endure only 0.1 s and still signifi-

cantly change the state (due to the high applied forces). In this case, a shorter time

step can make sense. The theory of semi-Markov decision process (SMDP) allows for

actions with varying duration [Duff and Bradtke, 1995]. To compute a transition prob-

ability for the POMDP, the underlying DBN is executed several times. Therefore, it is

easy to compute the transition model for different time step durations by changing the

number of times that the DBN is evaluated (see Section 6.1.4). For translating the MDP

to a SMDP, then, only the discount factor has to be adapted.

140

6.2 Generating Driving Policies by Solving the (PO)MDP

Applying MDP Value Iteration

At the beginning of the optimization, the set of discrete states is initialized. Typically,

these are the initial states of the problem (i.e., the current situation). The following

steps are repeated until convergence:

1. Compute and store conditional probabilities p (s ′MDP|sMDP, a) for all new states

sMDP and actions.

2. Apply MDP value iteration as explained in Section 3.3.

3. Add new s ′MDP that were reached in step 1 to the set of discrete states.

In every step, the discrete state space grows one step into the future until the values of

the initial states converges.

The initialization of the discrete states determines whether the policy can be pre-

computed offline or is computed online. If the initialized states cover all possible states

the agent can reach, the policy can be precomputed offline. The policy holds decisions

for all states and just needs to be executed for application. In contrast to this, an online

approach computes the policy when the agent reaches a state. The online computa-

tion finds only the decision for the current state. Thus, the initial state set consists only

of the current state.

Online planning is faster and requires less memory because less outcomes need to

be considered. In practice, however, for such a complex problem as driving that re-

quires quick and real-time reactions, it is still too slow. Pure offline planning is infea-

sible because, in theory, an infinite number of states needs to be considered.

We apply a combination of both: initially, we compute a policy offline for a selection

of states. This policy considers the most probable situation developments, but is by

no means exhaustive. We add currently encountered states to the MDP online (during

driving), analogously to the state space growing algorithm described above. With this

online-offline approach, the policies for new states can be quickly computed as they

benefit from the previous results through dynamic programming.

6.2.2 Continuous POMDP with Representation Learning

In the MDP approach of the previous section, high efforts are necessary to convert

models from the continuous to the discrete space and vice versa. When consider-

ing partial observability with traditional discrete methods, additional modifications

become necessary: despite the reward function and the transition model, the obser-

vation function would have to be discretized, too. This involves finding an adequate

discrete representation of the observation space. The results of our evaluation of the

141

Chapter 6 Decision-making for Autonomous Driving by Solving Continuous POMDPs

discrete MDP approach in Section 7.2 suggest that such an approach does not scale to

complex, urban driving problems.

Contrary to this, when using a continuous solver that directly works in the continu-

ous spaces, the integration of the driving task is much easier. The continuous POMDP

method presented in Chapter 5, for example, does most of the work automatically. It

learns a suitable state space representation, directs the exploration into promising ar-

eas of the belief space and reduces the (potentially infinite) number of observations

when computing the expectation. As a consequence, the spaces and models intro-

duced in Section 6.1 can be directly plugged in.

Simplifications However, a badly chosen continuous space can lead to high compu-

tational cost, even when using an efficient continuous solver. For this reason, it can be

sensible to simplify the representation of the driving problem. It is possible, to reduce

the state space S before inserting it into POMDP value iteration, in order to reduce the

complexity of the continuous POMDP.

When considering a scenario involving the ego vehicle and more than three other

cars, the resulting continuous state space S has dimensionality greater or equal 4 ×
(4+ 1) = 20. Such a high dimensionality, is not only an issue for continuous solvers

because of the enormous complexity (see, e.g., Section 3.2.2 and Chapter 5). Even the

state estimation with sequential Monte Carlo (SMC) is pushed to its limits by this prob-

lem. Most traffic scenarios, however, can be simplified by selecting two other cars that

are relevant, for example because they define a gap that the ego car can merge into.

Also, the representation of positions and poses can be simplified by aligning them to

lanes, similarly to Section 6.2.1. The results of the solver can be improved, not only

by reducing the dimensionality. Research in assisted and autonomous driving came

up with several meaningful indicators for driving safety, for instance, time to collision

(TTC) and headway [Vogel, 2003]. Even though these indicators can be directly derived

from the full state space, they make a meaningful connection between variables. If not

explicitly given, a POMDP solver must first learn these relationships.

For example, TTC is the time until a collision happens under the assumption of con-

stant speeds. It is simply defined by ttc = distance
relative speed . Nevertheless, a solver that does

not have this background knowledge must find these relationships between speed and

distance, first. If such indicators are directly inserted into the POMDP solver, represen-

tation learning in our approach is indirectly facilitated.

Simplifications of the state space improve the performance of a solver, if they im-

prove generalization (e.g., by reducing the dimensionality or by creating smoother

value functions so that the inductive bias applies better). As long as these state space

142

6.3 Conclusion

reductions do not influence the accuracy of the value function representation, the re-

sulting POMDP policy remains unchanged.

For special tasks that are less complex than autonomous driving, such as some

driver’s assistance systems, the state space dimensionality can be reduced even more.

For example for the most simple variant of an adaptive cruise control, the state space

can be reduced to the difference in velocity and distance between the ego and the lead

vehicle. Other vehicles, lateral distances, etc. are not of interest for this task.

On the one hand, these simplifications can enormously speed up computation. On

the other hand, most of them need to be manually applied for different tasks and traf-

fic scenarios, which contradicts the general approach. In this work, we focus on the

general solution to the driving problem. For this reason, in Chapter 7, we evaluate the

policies created by solving the general model without simplifications.

6.3 Conclusion

In this section, we present a model for predicting the development of traffic situations

that is suitable for planning tactical driving decisions (Contribution 2). It comprises

several aspects, including the stochastic behavior of drivers, the interaction between

road users, and partial observability. We propose to simulate these complex relation-

ships in a simplified way rather than providing physically correct models, such that

they suffice for tactical decision-making. The focus is on modeling decision relevant

aspects such as the invisibility of hidden objects.

We formulate the tactical decision problem as a continuous POMDP by extending

this model with driving actions that allow the agent to influence developments and a

reward function that comprises several driving objectives. This continuous POMDP

is directly based on the poses and velocities of the involved road users. Using a hi-

erarchical DBN representation, we integrate abstract aspects like drivers routes with

low-level aspects like car physics in a sound way. This way, we provide an end-to-end

probabilistic formulation of the driving problem (Contribution 2b).

Based on this continuous POMDP model of driving, we present two approaches for

decision-making. The first employs discrete MDP value iteration to generate decision

policies. It discretizes the continuous space with predefined rules and neglects partial

observability. The second approach applies the method developed in Chapter 5 to

directly solve the continuous POMDP and learn a representation. No modification of

the underlying model is needed when applying this method to different scenarios and

situations. We realize both presented approaches and, in the next chapter, evaluate

them for different tasks. Policies for highway driving as well as multiple urban driving

examples, including junctions and merging into moving traffic with blocked view, are

generated using the models presented in this chapter (Contribution 2a).

143

Chapter 7

Evaluation

We evaluate the presented method for solving continuous POMDPs as well

as the proposed approach for tactical-decision making in traffic.

The focus of the evaluation is on real-world applications from the robotics domain.

Starting with synthetic continuous POMDPs, through dynamic obstacle avoidance

and highway driving with full observability, we conclude with urban driving scenar-

ios exhibiting partial observability and interactions between road users. Finally, we

come back to the initial example of our introduction, where the autonomous vehicle

has to merge into moving traffic while its view is partially blocked. The solution of this

task is an unconventional behavior policy.

Chapter Overview First, in Section 7.1, we compare the continuous POMDP method

with existing techniques. We also take a closer look at its convergence properties and

how it performs for obstacle avoidance problems. Then, we move the focus from gen-

eral robotics to driving in traffic. In Section 7.2, we evaluate our general approach

to decision-making in traffic for highway scenarios using value iteration for discrete

MDP. While it can be sensible to assume full observability for highway driving, this is

not true for urban traffic. Lastly, we test the general model for driving in urban en-

vironments by simulated real-world examples exhibited in the city of Karlsruhe. The

continuous POMDP solver presented in this thesis is employed to automatically solve

these scenarios that are complicated due to interaction between and limited visibility

of road users.

7.1 Continuous POMDP Evaluation

In this section, we evaluate the performance of the method presented in Chapter 5

on four continuous POMDP problems. First, we compare its performance to state-of-

the-art methods for a 1D continuous corridor problem from the literature. We extend

the corridor problem with a second dimension, to evaluate the convergence properties

and our solvers ability to reduce the dimensionality of the problem by learning a lower-

dimensional representation. The general ability to solve higher-dimensional, more

145

Chapter 7 Evaluation

Move Left Move Right

Enter Door

(a) Problem introduction.

Right End
Left End

Corridor

Door

−15 −10 −5 0 5 10 15

1.0

0.8

0.6

0.4

0.2

(b) Discrete observation model.

Move Left
Move Right
Enter Door

−15 −10 −5 0 5 10 15

0.2

0.0

−0.2

−0.4

−0.6

−0.8

−1.0

(c) Reward function for the three actions.

Figure 7.1: 1D corridor problem: introduction [Porta et al., 2005]. Reprinted from Porta, J.; Spaan,
M. & Vlassis, N., "Robot planning in partially observable continuous domains," in Robotics:
Science and Systems I, edited by Sebastian Thrun, Gaurav S. Sukhatme, and Stefan Schaal,
©2005 Massachusetts Institute of Technology, published by The MIT Press, page 217.

realistic robotics tasks is tested by a 8D obstacle avoidance problem. Lastly, we modify

this problem by assuming a circular moving obstacle in order to vividly demonstrate

the approach’s ability to solve non-linear models. Some of the results in this section

are based on [Brechtel et al., 2013].

7.1.1 Comparison with Existing Methods—1D Corridor Problem

The first POMDP that we evaluated our solver in models a robot moving in a one-

dimensional corridor limited by walls (see Figure 7.1). The aim of the robot is to open

the right door, while perceiving its own position only uncertainly with a discrete num-

ber of normal distributions. See [Porta et al., 2005] for more details on the POMDP

task.

Our solver was able to clearly exceed the results of state-of-the-art algorithms for

this toy problem. In Figure 7.2, a selection of time steps from a run of the policy cre-

146

7.1 Continuous POMDP Evaluation

t=0, a=move left

t=8, a=move left

t=9, a=move right

t=10, a=move right

t=12, a=move right

t=13, a=enter door

Figure 7.2: 1D corridor problem: policy simulation showing the beliefs (green), the true state
(green vertical line), the best α-function (red) and the expected value for the belief
(red horizontal line) at time steps t = 0, 8, 9, 10, 12, and 13.

147

Chapter 7 Evaluation

Figure 7.3: 1D corridor problem: comparison of the presented IRL (Iterative Representation
Learning)-POMDP with state-of-the-art methods.

ated with the solver presented in this thesis is shown. Initially, the robot position is

very uncertain. The basic policy is to move towards the corners first. Near the corri-

dor walls, the observations are clearer than in the center. However, the full policy is

more complex, as it utilizes the multimodalities that have their origin in the discrete

observations. At t = 8, the belief is tri-modal. In t = 9 the leftmost mode is eliminated.

This did not happen due to measuring the object position. It was discarded because

left end was not measured. This ability to benefit from not measuring something will

become even more evident in later experiments.

For assessing the overall performance of the system, in Figure 7.3, the values yielded

in simulation after different solving times of the presented solver are compared to

MCVI 7.1 from [Bai et al., 2010] and C-POMDP (PERSEUS) from [Porta et al., 2006] us-

ing their open source implementations and parameters. Therefore, we ran 10.000 trials

simulating 100 consecutive time steps. Previous solvers only reach suboptimal aver-

age rewards after reasonable solving time. After 12 h MCVI did not exceed an average

reward of 1.8. In a few seconds our algorithm finds a clearly better policy. The lower

bound converges after 16 min with an average reward of about 2.55. After ca. 33 min

the upper bound converges, too, and the algorithm stops. Note that the upper bound

only validates the result that the lower bound achieves and has no influence on the

resulting policy. This result was achieved despite the smooth nature of the normal dis-

tributions in this example, which are close to a worst case for the proposed piecewise-

constant representation. In contrast to this, the representation in C-POMDP is directly

based on these normal distributions. Still, it cannot achieve the performance of the

presented algorithm.

7.1Release 0.2, 17 May 2012.

148

7.1 Continuous POMDP Evaluation

0

5000

10000

15000

20000

0

250

500

750

1000

Figure 7.4: 2D corridor problem: convergence analysis.

7.1.2 Convergence analysis—2D Corridor Problem

Additionally, we converted the 1D corridor problem into a 2D problem. As this makes

the corridor problem more difficult, it is more suitable to analyze the convergence

properties of the solver. The robot can additionally go up and down. The 12 obser-

vations are products of densities of N (−3, 2), N (3, 2) and N (0, 100) in x1 with the 4

original 1D observations in x0. The reward only depends on x0. Basically, x1 only dis-

tracts the solver and, eventually, the reached value is similar and only slightly lower,

due to the changed probability distribution. However, the combinatorial complexity

of this problem is much higher due to the increased number of observations.

Results of the analysis are given in Figure 7.4. Interestingly, the value bounds are not

monotonic. The upper bound often drops quickly at the beginning and corrects itself

when a conflict detecting belief is explored. For the same reason the simulated value is

at some points below the lower bound. The belief exploration slightly slows down over

time because the backups slow down. This is due to the increasing complexity of the

policy and its representation. The growth of the decision tree (i.e., the discrete repre-

sentation of the α-functions) convergences after some time. It has reached maximum

detail at about 600 nodes. Note that the number of discrete states of the representation

is lower, as only leaf-nodes in the decision tree encode discrete states.

7.1.3 Higher Dimensional Problems—8D Obstacle Avoidance

In the scenario in Figure 7.5, a robot agent and an obstacle move on a 2D plane accord-

ing to a constant velocity model with small white noise. The positions and velocities

of both objects put together result in an 8D joint state space. The observations are

149

Chapter 7 Evaluation

(a) Sketch of the 8D obstacle avoidance problem.

t = 0
a = 1 m/s2

(b) Initial belief.

t = 1
a =−1 m/s2

t = 1
a = 1 m/s2

(c) Alternative actions in t = 1.

t = 2
a =−1 m/s2

t = 2
a = 1 m/s2

(d) Alternative actions in t = 2.

t = 3
a = 1 m/s2

t = 4
a = 1 m/s2

t = 5
a = 1 m/s2

t = 6
a = 1 m/s2

(e) Simulation and dominating α-functions for t = 3 to 6.

Figure 7.5: 8D obstacle avoidance: α-functions for alternative actions. In t = 1 and 2 action
a =−1 m/s2 is chosen. Velocities are indicated with blue arrows.

continuous 8D measurements of the state with additive white noise. For collision de-

tection, the objects have circular shape with a radius of 1 m. Their positions are loosely

bounded by roads. Starting at
�

x , y , vx , vy

�

T =
�

0 m, 0 m, 1 m/s, 0 m/s
�

T the robot has to

cross the intersection without hitting the moving obstacle by accelerating and decel-

erating. The robot receives a reward of +10 for reaching the goal and −10 in case of a

collision. The discount is γ = 0.95. If the obstacle moves past y = 8 m, it is respawned

at y =−8 m, so that it remains a constant threat.

The difficulty of the problem is that the y -position of the obstacle is not known in

advance and the robot’s viewing distance is limited to 4 m. If the robot can see the

obstacle, he can see it with a standard deviation ofσy = 0.32.

The policy found by the solver after 543 s achieves an average score over 5.0 in simu-

lation using 400 particles to represent the beliefs. The final representation of the space

150

7.1 Continuous POMDP Evaluation

t = 1, a =−1 m/s2 t = 2, a =−1 m/s2 t = 3, a = 1 m/s2

t = 4, a = 1 m/s2 t = 5, a = 1 m/s2 t = 6, a = 1 m/s2

t = 8, a = 1 m/s2 t = 10, a = 1 m/s2 t = 12, a = 1 m/s2

Figure 7.6: 8D obstacle avoidance with circular traffic. Velocities are indicated with blue arrows
and state associations with connecting lines.

uses a total of 487 discrete states. A fixed discretization of an 8D space with just four

regions per dimension would already yield 65 536 states. Apparently, the iterative re-

finement discovered an efficient representation. The final policy is encoded by 41 α-

functions describing the behavior shown in Figure 7.5: the robot slowly approaches the

intersection to be able to stop in a safe distance where he can perceive the y -position

of the obstacle. Deceleration has to start several steps before the collision could hap-

pen. Otherwise the robot would not stop in time. In the example in Figure 7.5, the

most important decisions are to decelerate at t = 1 and 2. The α-functions for the

acceleration actions at these time steps show a high probability for low values (black

areas). Then it accelerates instantly or moves back first to pass the obstacle.

7.1.4 Non-linear Models—8D Obstacle Avoidance with Circular Motion

To demonstrate the generality of our approach, we modified this example by assuming

a circular moving obstacle (similar to a car driving in a traffic circle). Figure 7.6 shows

that the obstacle moves in clockwise direction. Initially, the object could be anywhere

151

Chapter 7 Evaluation

on the circle. Note that this belief cannot not be represented well by approaches based

on normal distributions. For our particle-based approach, however, there is not much

difference to the previous example. Similar holds for our discrete representation learn-

ing approach that is not restricted to special families of functions.

The evaluation shows a policy that is similar to the previous example. The ability of

our approach to sort out not-measured obstacle positions can be nicely seen in this

example. At t = 3 the robot already obtained enough knowledge for planning how to

pass the object. At that point in time, it has not yet seen the obstacle. Still, it could

make out a gap that is large enough to fit through only by excluding obstacle states.

The developed solver shows state-of-the-art performance and is capable of solving

higher-dimensional, driving-like continuous POMDPs.

7.2 MDP-based Highway Driving

Highways are one of the few traffic environments where partial observability can be

mostly ignored. For this reason, we tested and analyzed the general driving model from

Chapter 6 using the MDP approach with growing state space presented in Section 6.2.1

for highway scenarios rather than urban driving. In this scenario, the ego vehicle can

choose a lateral action keep/change lane in combination with an acc-/deceleration.

This section is based on the results of [Brechtel et al., 2011].

7.2.1 Empirical Testing

We evaluated the policy of the MDP solver for a typical highway scenario as well as

driving with oncoming traffic in a 3D simulation environment (see Figure 7.7). The

simulation environment allows to realistically evaluate situation developments by ac-

curately simulating sensor data and driving physics. Vehicles other than the ego vehi-

cle were manually driven to guarantee close to natural driving behaviors.

In Figure 7.8 a simulation run for normal highway driving is shown. At t = 1 the road

is blocked. The ego car comes to a full stop in appropriate distance. When the yellow

car drives on, it has enough space to change lane and pass it. Then, it also overtakes

the second slower driving vehicle. At t = 5 it returns to the right lane because a cost is

given for not driving in the rightmost lane.

Driving with oncoming traffic requires a different policy. However, due to the general

formulation, only the driving direction has to be changed in the left lane for generating

this new policy. Figure 7.9 shows an exemplary run of the policy. Until the oncoming

traffic has passed the ego vehicle, it follows the slower car in an appropriate distance

152

7.2 MDP-based Highway Driving

Figure 7.7: 3D simulation of scenarios
in Karlsruhe.
Map Data [City of Karlsruhe].

t = 1

t = 2

t = 3

t = 4

t = 5

Figure 7.8: MDP highway driving: empirical policy
testing with manually controlled traffic.

such that it is able to smoothly and quickly accomplish the subsequent overtaking ma-

neuver.

7.2.2 Policy Analysis

The plots in Figure 7.10 show the MDP policy when there is no oncoming traffic and

just a single vehicle stopping in the right lane. The x-axis of the plot shows the lon-

gitudinal distance between both cars. Positive distance means that the ego vehicle is

behind the other vehicle. The current speed of the ego vehicle can be seen on the y-

axis.

Figure 7.10a and 7.10b show the reaction of the ego vehicle, when driving on the right

lane like the other vehicle. A lateral speed of 2 m/s is equivalent to a lane change to the

left. The car changes lane in a safe distance, which depends on its own speed. At the

same time it reduces acceleration because physical constraints limit accelerating and

applying high longitudinal forces simultaneously. If too close, it makes an emergency

stop without changing the lane to be able to apply more braking forces. An evasive

maneuver is already too risky at that distance. Once the ego vehicle has passed the

other vehicle, it accelerates. In Figure 7.10c, the predicted value (i.e., expected future

153

Chapter 7 Evaluation

Figure 7.9: MDP highway driving: overtaking with oncoming traffic. The ego vehicle is grey.
The trajectories visualizing its decisions are indicated in red [Brechtel et al., 2011].
©2011 IEEE

reward) for these situations is shown. The closer the ego vehicle approaches the other

car, the lower is the value, as there is a chance that the other car suddenly brakes or

changes lane and the ego vehicle cannot react in time. In the black areas, where the

value is close to −1000, accidents are unavoidable. As can be seen in Figure 7.10d, the

car returns to the right lane, when it has reached a safe distance to avoid the cost of

driving in the left lane.

Decisions, such as what an appropriate safe following distance is or when to over-

take and when to stay behind a slower vehicle can be concluded automatically by

solving the decision process.

Influence of Cooperative Interaction The simple example in Figure 7.11 already shows

the necessity of sophisticated models for predicting other drivers. The situation is ba-

sically the same as in the previous example, except that the other vehicle drives with

7 m/s. The safety buffer shrinks compared to the stopping obstacle because there is

more time to brake. While the result in Figure 7.11a was generated using the com-

plex DBN behavior model, in Figure 7.11b, a simpler model was used that is frequently

found in the literature. This model assumes that the other driver just holds lane and

velocity.

In this example, the area with negative distances (when the ego vehicle is behind the

other vehicle) is of special interest. With the complex behavior model, the ego car does

nothing. It expects the other car to react and overtake. Using the simple model, the ego

154

7.2 MDP-based Highway Driving

-100-50050100
0

4

8

12

-2

0

2

(a) Lane change action (in right lane).

-100-50050100
0

4

8

12

-4

0

4

(b) Acceleration action (in right lane).

-1000

-500

0

500

1000

-100-50050100
0

4

8

12

(c) Expected value (in right lane).

-100-50050100
0

4

8

12

-2

0

2

(d) Lane change action (in left lane).

Figure 7.10: MDP highway driving: value and actions when another car stops in the right lane.

car changes to the left lane to avoid the incoming vehicle. In reality this is undoubtedly

dangerous because quickly approaching cars most certainly want to overtake.

Interaction between vehicles must be considered for safe driving policies.

7.2.3 Space Representation in Decision Processes

One of the most important aspects, when modeling tasks as (PO)MDPs is the repre-

sentation of the state space. The consequences of a badly chosen state space are either

huge computational overhead, which renders computation infeasible, or a too coarse

representation of important details, which results in malformed and unsafe policies.

The example of highway driving under the assumption of full observability shows that

even for simpler driving tasks, it is difficult to find a good discrete representation. Tak-

ing the above results of the MDP approach with predefined discretization rules, we

illustrate this issue, the consequences and draw conclusions.

Figure 7.12 shows the value (the expected sum of discounted future rewards), when

driving in the right lane together with a stopping vehicle (compare with Figure 7.10c).

The latitudinal discretization in this example is 6 m. In longitudinal direction, only the

two lanes with width 6 m are differentiated. 4 m/s steps for the velocity of the vehicles

are used.

On the one hand, it is evident that the results could have been improved if a more

detailed discretization had been used. Especially in the area around A , where the

155

Chapter 7 Evaluation

-100-50050100
0

4

8

12

-2

0

2

(a) Complex behavior model.

-100-50050100
0

4

8

12

-2

0

2

(b) Simple free ride behavior.

Figure 7.11: MDP highway driving: lane change actions with and without complex behavior
model when another car is driving in the right lane with 7 m/s.

distance is small and the chance of a collision is quite high, a finer granularity would

have been useful to assure a correct reaction. The aliasing effect in this area is clearly

visible. On the other hand, many states were discriminated although their value and

as a consequence their policy is very similar. For example in area B , where the ego

vehicle is driving away from the standing vehicle, the precise distance is not important.

Due to this inefficient discretization the MDP state space contained several thou-

sands of states. The worst case complexity for the running time of a single MDP value

iteration or policy iteration step is quadratic in the cardinality of the space (recall Sec-

tion 3.3). A discretized space that is better suited to the problem, for example, a linear

combination of the distance and the velocity as sketched in Figure 7.12, would be able

to represent more details and at the same time reduce the cardinality of the space.

The idea behind this discretization is that it only distinguishes states that yield differ-

ent values. The ability to represent more relevant details improves the quality of the

resulting policy and consequently yields higher average rewards.

Partial observability even increases this complexity to a point where it is practically

impossible to solve driving problems, if an unsuitable representation is used (see Sec-

tion 3.2.2 for the reasons). What constitutes a suitable or good representation, how-

ever, differs very much depending on the underlying problem and situation. If, for in-

stance, one-lane driving is considered and the other vehicle approaches quickly from

behind, negative distances (area B) need to be differentiated, too. In this case, the

other vehicle cannot change lane. Another example are changes in the behavior mod-

els: if the uncertainty in the acceleration that drivers apply is increased, the safe fol-

lowing distances also increase. Consequently, a discrete state space must represent

decisions in greater distances. Any difference in the models or the initial situation of

the (PO)MDP possibly entails a different optimal representation.

An optimal representation is a property of every special decision process and situa-

tion, just like the policy and the value function are. Variations in the value function

are an appropriate indicator for determining relevance.

156

7.3 POMDP Decision-Making for Urban Driving

-1000

-500

0

500

1000

-100-50050100
0

4

8

12

-1000

-500

0

500

1000

-100-50050100
0

4

8

12

Figure 7.12: MDP value when approaching a standing vehicle (both vehicles in the right lane).

The method we develop in Chapter 5 exploits this insight by iteratively learning a suit-

able representation for the problem from the value functions.

7.3 POMDP Decision-Making for Urban Driving

In this section, we evaluate the POMDP driving policies in different urban scenarios.

To assure the practical significance of these examples, all scenarios are taken from real-

life traffic situations in Karlsruhe. We selected scenarios where simpler approaches

would fail.

The driving policies are generated by solving the general continuous POMDP model

for driving proposed in Chapter 6 using the novel method presented in Chapter 5. The

same state, action, and observation space, transition and observation models, and re-

ward function were used for all examples. To generate driving policies for new situ-

ations, only the initial belief b0 (i.e., distribution encoding the knowledge about the

other road users and the ego vehicle), the driving goal and static background knowl-

edge about the current environment (i.e., map data) have to be given.

To illustrate the resulting policies, we give examples of different developments for

every scenario. Additionally, we provide evaluations that throw light on interesting

aspects, such as the influence of partial observability or how the low-dimensional state

space representation, which is learned by the POMDP method, looks like.

Notation In order to visualize the developments over time, we plot the agent’s belief

at different time steps. See, for example, Figure 7.14 for an intersection scenario or

Figure 7.20 for a full run from the initial belief to the time step where the agent reaches

the goal. Usually, we display only a selection of beliefs at interesting time steps. The

initial belief is given by the plots at time step t = 0. We directly plot the particles of

the beliefs: arrows visualize the orientation and the speed, dots the rear-axle position,

and the vehicle silhouette its extensions. The true state is highlighted by the car i labels.

car 0 is the ego vehicle. Remember that the POMDP agent does not know the true state.

It is just given for illustrative purpose. Lines of sight show whether an object is visible

157

Chapter 7 Evaluation

Figure 7.13: Intersection scenario with blocked view: introduc-
tion. Map Data [City of Karlsruhe].

to the ego vehicle (green) or not (red). Additionally, the association of the car’s states

can be seen from these connecting lines.

Model Parameters If not mentioned otherwise, the following parameters for the

POMDP model are used. The timestep is 1.5 s. The initial beliefs are uniformly dis-

tributed in all dimensions. The agent can choose to accelerate or decelerate with 1 m/s2

or hold speed.

In the transition model, we assume additive white noise for the acceleration applied

by other drivers. Noise is also added to the position of the vehicle, lateral and longitu-

dinal to the vehicles driving direction. Both, the noise in the velocity and the position,

are scaled with the velocity and normally distributed.

If a car is visible, the variance of the position observation in both dimensions is

ΣO = 1 m2. The velocity and the orientation are assumed to be hidden to the sensors.

They have to be inferred through Bayesian filtering.

A reward of 5 is given, if car 0 reaches the goal area and a negative reward of −1

else. If the ego vehicle collides at any point in time, it receives a negative reward of

−10 and the run is terminated so that no positive rewards can be received afterward.

Additionally, to achieve efficient and comfortable driving, a small negative reward is

given for braking because kinetic energy is lost.

158

7.3 POMDP Decision-Making for Urban Driving

7.3.1 Influence of Partial Observability—Intersection with Blocked View

The first example is a typical urban intersection that shows how crucial partial observ-

ability is for driving. In Figure 7.13 the situation is shown. The self-driving vehicle (red

vehicle) wants to cross the intersection, but big parts of the environment are hidden

behind a building and parking cars. However, the covered areas are very important

because the ego vehicle must yield to cars coming from the right which can be initially

hidden. We compare policies that were created considering this partial observability

(Case a) and neglecting it (Case b).

In Case a (see Figure 7.14), two simulated runs are shown. Initially, at t = 0 of both

simulation runs, the position of the other vehicle car 1 is not known.7.2 The basic strat-

egy of the POMDP is to stop in front of the intersection until the ego vehicle can see

enough to safely cross it. In Simulation 1, this takes 6 time steps or 6× 1.5 s = 9 s (see

Figure 7.14b). Note how the probability mass above car 1 has disappeared. The reason

for this is that the system is not only able to directly measure car 1, if it can see it. It

also excludes states where car 1 would have been visible, but has not been measured.

After car 1 has passed, the ego vehicle crosses the intersection.

In Simulation 2, car 1 can be seen early at t = 3, so that the ego vehicle does not

have to fully stop and the goal is reached earlier. Another difficulty arises from the

fact that car 1 can either take a right turn or go straight, as Figure 7.14f shows. In this

situation the consequences of this uncertainty in the transition model are minor for

the decision-making. However, this is not necessarily the case for other situations so

that the POMDP solver first has to find out that it can be neglected, here.

Case b in Figure 7.15 illustrates the influence of partial observability on decision-

making. We assumed that the view is not blocked, but otherwise exactly the same

scenario as before.7.3 Then, the high number of possible developments of the previ-

ous case reduces mainly to two: the crossing can be passed before car 1 (see Simula-

tion 1) or the ego vehicle has to slow down and wait for car 1 to pass (see Simulation 2).

In Figure 7.15e these two developments are clearly visible. After integrating the next

measurement of the vehicle, the mode in the estimate that car 1 takes a right turn is

discarded.

See Figure 7.16 for an illustration of the yielded values in both cases for a total of 1000

simulations. There is a much greater variety of developments due to the higher uncer-

tainty, in Case a , where visibility is limited. In Case b , the two situation developments

are clearly visible resulting in the two peaks at value 5.7 and 6.5. This complexity re-

duction in Case b extremely simplifies solving the problem: the POMDP solver needs

7.2Note that in the visualization the particles of the predicted beliefs are shown before integrating any
measurements.

7.3We still assumed that the transition and observation model are uncertain.

159

Chapter 7 Evaluation

(a) Simulation 1,t = 0

(b) Simulation 1,t = 6

(c) Simulation 1,t = 11

(d) Simulation 2,t = 0

(e) Simulation 2,t = 3

(f) Simulation 2,t = 6

Figure 7.14: Intersection Case a : two policy simulations with parking cars and a building that
blocks the view.

160

7.3 POMDP Decision-Making for Urban Driving

(a) Simulation 1,t = 2

(b) Simulation 1,t = 3

(c) Simulation 1,t = 4

(d) Simulation 2,t = 0

(e) Simulation 2,t = 3

(f) Simulation 2,t = 8

Figure 7.15: Intersection Case b : two policy simulations without blocked view with different
initial beliefs.

161

Chapter 7 Evaluation

0.00

0.25

0.50

0.75

1.00

4 5 6 7

Figure 7.16: Intersection scenario: frequency of values (summed discounted rewards over the
full simulation run) yielded by the POMDP policies for Case a (red) with and
Case b (blue) without blocked view for 1000 runs in (see Figure 7.14 and 7.15,
respectively).

Figure 7.17: Zipper merge: scenario introduction. In-car and birds-eye view.
Map Data [City of Karlsruhe].

< 10 s to fully precompute the policy compared to ca. 5 min for Case a . However, the

policy to come to a full stop first, is not even part of the solution of Case b and, thus,

direct application of the policy generated assuming good visibility for the case with

blocked view is dangerous.

Neglecting partial observability against better judgment results in unsafe driving.

7.3.2 Anticipation of Interaction—Zipper Merge

Road users constantly interact, be it when changing lanes, giving way, or just keeping

distance to a leading vehicle without crashing into it. In Figure 7.17 a scenario is dis-

played where the zipper method (also called late-merge) has to be applied. Two lanes

merge into one and the cars have to take alternating turns at the lane reduction point.

In the specific situation, the ego vehicle (red car on the left lane) should merge be-

tween the other two cars (car 1 in blue and car 2 in yellow). However, the blue car 1 is

162

7.3 POMDP Decision-Making for Urban Driving

(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 3 (e) t = 4 (f) t = 5 (g) t = 6

Figure 7.18: Zipper merge: policy simulation from t = 0 to 6. Connecting lines were omitted to
improve readability.

approaching quickly and the gap would be too small when assuming constant veloci-

ties and no interaction between the cars.

Figure 7.18 shows that the POMDP policy accelerates and merges after car 1 and

before car 2, despite the small gap size and the uncertainty in the behavior prediction.

This can be seen more clearly in Figure 7.19, where the development of the x2-positions

and the absolute speeds of all three vehicles are depicted.7.4 The reason for this is that

car 2 reacts on car 0 and decelerates to give way.

The continuous POMDP approach is able to foresee this interaction, while at the

same time balancing the risk arising through the uncertainties. If, initially, the gap

between car 1 and car 2 is smaller than in the presented example, it waits because the

risk that car 2 does not give way outweighs the benefits of not stopping.

Interactions between road users are a natural part of driving. They must be antici-

pated for making good decisions.

7.4At t = 0 to 2 the positions of car 0 and car 1 overlap. However, there is no collision because they are
on different lanes before they reach the lane reduction point.

163

Chapter 7 Evaluation

−25

0

25

0 2 4 6 8

2

3

4

5

0 2 4 6 8

Figure 7.19: Zipper merge: position in x2 dimension and absolute velocities. Dots indicate the
particles of the beliefs and lines the true state. The lane reduction point at x2 = 0 m
is labeled with xmerge.

7.3.3 State Space Representation—Merging into Moving Traffic with Limited

Perception

Finally, we evaluate our approach for the introductory example given in Figure 1.1

that serves as motivation for this thesis. This scenario combines all challenges of

sequential-decision making under uncertainty. The self-driving car has to control its

velocity to merge safely into a gap between two other cars that have priority. An un-

conventional policy is necessary to solve this task safely, because a truck masks the

view on the scene in a non-trivial way. Note that this scenario has been presented in

less detail in [Brechtel et al., 2014]. In this section, we put the focus on how our con-

tinuous POMDP method is able to solve such a complex scenario an shed some light

on its internal state space representation.

Policy Analysis Figure 7.20 displays all time steps of an exemplary simulation run

that demonstrates the process of observing and estimating the state of the world. The

policy resembles the optimal behavior that we described in the introduction. The ini-

tial true state shows that there is a relatively big gap between car 1 and car 2. The

POMDP policy makes the self-driving vehicle stop first at a position where it can see

through the gap between the building and the truck, until it has gained enough infor-

mation about the gap. At t = 7 (10.5 s) it begins to accelerate. It is not able to see car 1

at this point in time. Yet, it can be certain that the gap is big enough: it would have

seen car 1, otherwise. This example shows the ability and importance of the POMDP

to also utilize and plan with evidence of absence.

164

7.3 POMDP Decision-Making for Urban Driving

t=
0

t=
1

t=
2

t=
3

t=
4

t=
5

t=
6

t=
7

t=
8

t=
9

t=
10

t=
11

Fi
gu

re
7.

20
:T

ra
ffi

c
m

er
gi

n
g:

p
o

lic
y

si
m

u
la

ti
o

n
fr

o
m

ti
m

e
st

ep
t
=

0
to

11
.

165

Chapter 7 Evaluation

Figure 7.21: Traffic merging: policy simulation at t = 0, 7 and 13.

The most difficult part for the POMDP solver in this example is to assess the risk due

to the uncertainty of the other cars motion. Note the increase in uncertainty in the

estimate of car 2 at t = 6, 7, and 8 and of car 1 in t = 8, 9 and 10, where the cars are

hidden behind the truck. In this first example the gap size is big enough to assure that

it is still sufficient when the car enters the lane. However, in the next example this is

not case.

In the example in Figure 7.21, the true initial state shows a gap of about 25 m, which

is sufficient for the car to fit in. However, the POMDP policy decides in t = 7 to not

merge and wait for the next gap instead. The last time step shows that this is a good

decision: because of the stochastic driving of the other cars, the gap shrunk to a size of

about 10 m at t = 10. Merging would have been quite dangerous, the other cars could

change their speed unnoticed by the ego vehicle.

166

7.3 POMDP Decision-Making for Urban Driving

−7.5

−5.0

−2.5

0.0

2.5

10 20 30 40 50

0.01

0.02

Figure 7.22: Traffic merging: relationship between the initial gap size of a simulation trial and
the yielded values (summed discounted reward).

The influences of partial observability are not trivial. Thus, they cannot be covered

in a sweeping way for every situation with predefined rules.

Overall Performance To assess the overall performance of the precomputed POMDP

policy, we repeated 1000 simulations with different initial true states sampled from

the initial belief. In Figure 7.22 the frequency of the yielded values and the true size

of the gap at the beginning of the simulation are plotted. If the car collides during the

simulation, it receives a negative value of about −6. The precise value depends on the

time when it hit the other vehicle because of the discounting. If it reaches the goal

area, it yields a value of about 1.3. If it has to wait for the next gap, it receives about

−1.8 because it only has costs. As the development of the situation is uncertain, these

values can be interpreted as a joint frequency distribution over the value and the initial

gap size.

It can be seen that the policy chooses to merge into gaps that are bigger than ca. 25 m

and waits if they are smaller. There are varying results for the gap size around 25 m. The

different decisions have their reason in the stochastic development of the situation.

Nuances can make the difference whether the self-driving car can accelerate quickly

enough in the particular situation. Ultimately, the full joint distribution of positions

and velocities of the cars must be taken into account. Nevertheless, the plot also shows

a few collisions. Due to the uncertainty in the behavior of other drivers, any policy can

only minimize the probability for accidents, but never prevent them.

Simple, static rules, for example, depending on the size of the gap, are not suffi-

cient. The full situation and its development must be considered.

167

Chapter 7 Evaluation

(a) POMDP state: gap is too small to merge.

(b) POMDP state: gap is sufficient for merging into.

Figure 7.23: Traffic merging: POMDP state representation. Both plots show multiple continu-
ous 12D states that are mapped to the same discrete POMDP state and thus not
differentiated during planning.

Space Representation To represent the 12-dimensional combined space of all three

cars efficiently for this specific problem, the POMDP solver learned a decision tree with

442 leafs. Every leaf encodes one discrete POMDP state. To reduce the complexity

of the planning space in this drastic manner, multiple continuous states have to be

summarized to a single discrete state. Figure 7.23 shows two discrete states of the final

policy. In both graphics, several continuous samples of the 12D states are shown that

are mapped to the same POMDP state. The state in Figure 7.23a subsumes several

12D states where the gap is not big enough to merge safely. From the decision-making

point of view, distinguishing those is not valuable because the final outcome of those

situations is the same: if the ego car does not stop, it will most likely receive a cost for a

collision. The state in Figure 7.23b contains continuous states where accelerating will

probably be successful. They can only be interpreted correctly with the connecting

lines that show which car configurations form one joint continuous state. Note that

168

7.4 Conclusion

2
5

10

20

30

50

75

100

125

150

0.1 0.5 1.0 2.0 3.0 4.0 5.0 10.0

Figure 7.24: Traffic merging: histogram that visualizes the large spectrum of the size of the
learned discrete POMDP states.

some continuous states that are merged to the same discrete POMDP state are quite

far away from each other in the euclidean 12D space.

The histogram in Figure 7.24 shows how big the learned discrete states are. There-

fore, we collected over 3.8 million continuous state samples from 1000 simulations.

These samples cover many reachable and relevant states in the problem. Then we dis-

cretized them to the POMDP representation and plotted the percentage of these states

that are mapped to the same discrete POMDP state. The histogram shows that most

discrete states represent small areas, meaning that only a few continuous states are

covered by the discrete state. These states usually model situations were the decision

is a very close call and a high resolution is required. However, about 58 % of the sam-

pled particles were mapped to only 20 discrete POMDP states. These results indicate

that the discrete states are very small at some positions to represent details. At other

positions, they aggregate many situations that do not have to be distinguished.

The ability to find a suitable problem representation of the continuous space for

the specific POMDP allows the presented method to abstract form the continuous

state space and, ultimately, makes computation practically feasible.

7.4 Conclusion

The evaluation of the novel continuous POMDP method shows that it outperforms ex-

isting methods (Contribution 1d). It is capable of solving relatively high-dimensional

169

Chapter 7 Evaluation

obstacle avoidance tasks with dynamics and does not have problems with non-linear

POMDP models. Further, it shows that our general approach to decision-making is

suitable for highway as well as urban driving (Contribution 2c). Essentially, the same

POMDP models were used for all evaluated driving tasks. The practical relevance of

the experiments is assured by choosing real-world examples exhibited in the city of

Karlsruhe.

The evaluation supports our thesis statement: in the traffic scenarios that we se-

lected for evaluation, safe and efficient driving can only be achieved, if partial observ-

ability, interaction between road users, and uncertainties in the dynamics are taken

into account. The highway as well as the zipper merge scenario demonstrate the im-

portance of anticipating interaction. The junction and the final merging scenario show

that considering partial observability is absolutely vital. We found that the resulting

POMDP policies for these situations are very different. These results strongly suggest

that predefined rules are not sufficient because the consequences from uncertainties

can be manifold and need to be treated individually. In other words, they are an in-

herent part of the decision problem and must not be dealt with in a sweeping way

or decomposed from the rest of the problem. By the example of the MDP policy for

highway driving that was generated using an equidistant discretization, we showed

the importance of a well-chosen state space representation. We illustrated the idea to

use variations in the value as an indicator for relevance-based discrimination of con-

tinuous state space regions. The analyses of the proposed value iteration method in-

dicate that learning a low-dimensional discrete state space can effectively reduce the

problems (practical) complexity. In all examples, it reduces the up to 12D continu-

ous state space to just a few hundred discrete states that are relevant for the specific

task. Problem-specific, iterative representation learning allows to focus computations

on relevant information and to generalize sparse planning results over the continu-

ous state space. A surprising side-effect of the throughout Bayesian model is that our

method shows the general ability to actively take into account and plan with evidence

of absence [Copi, 2008, p. 95]. For example, in the 1D corridor problem (Figure 7.1), it

dismisses the hypothesis that the robot is at the left end of the corridor, which improves

the time that the robot needs to find the right door. How important this capability is,

becomes even more evident in the obstacle avoidance and driving examples. For ex-

ample, it makes merging in Figure 7.20 possible: seeing that there is no car is sufficient

to safely merge. It could be argued that the continuous POMDP method found the

concept of free space on its own.

170

Chapter 8

Discussion and Conclusion

In this work, we developed a novel, general method for solving continuous POMDPs

based on learning an efficient, discrete, problem-specific representation of the con-

tinuous space. This document provides a detailed description of the motivations,

the methodological background, the basic ideas, the formal derivation, and the im-

plementation of the novel method. We also presented a general approach to tactical

decision-making in traffic under uncertainty. Therefore, we modeled safe, efficient

and goal-oriented driving in traffic as a continuous POMDP. We presented a hierar-

chical probabilistic model that anticipates developments of traffic situations as well

as the acquisition of information by the self-driving car through observations .

In the evaluation, we successfully applied the developed continuous POMDP

method to this model for decision-making in various realistic urban driving scenar-

ios in the city of Karlsruhe. These scenarios were aggravated by non-negligible limita-

tions of the perception, uncertain dynamics, and interactions between road users. The

solved scenarios also included the motivating example with partially blocked visibility

presented in Chapter 1. To the best of our knowledge, today, no existing general ap-

proach can make optimal decisions in this or comparable driving scenarios. A reason

for this is that there is no method for decision-making in continuous-domain POMDPs

that suffices for driving or tasks with similar properties.

By presenting a novel continuous POMDP method together with a general approach

for decision-making for driving, this work contributes to research in artificial intelli-

gence and machine learning as well as robotics and autonomous driving.

Chapter Overview We first review the thesis statement in the light of our results.

Then, we summarize the technical and methodical advances compared to existing re-

search. Finally, we discuss limitations and future work, and close with a conclusion.

8.1 Review of Thesis Statement

The thesis statement in Section 1.1 comprises two main messages that are discussed

in the following.

171

Chapter 8 Discussion and Conclusion

Uncertainty must be considered for decision-making in real-life tasks

We presented multiple driving scenarios where considering uncertainties is imper-

ative for safe decision-making. In the traffic domain, significant uncertainties stem

from the stochastic behavior of other drivers and their constant interaction with each

other and the self-driving vehicle. Even worse, the perception of the environment

through sensors is very limited. Intentions of other drivers cannot be observed and

relevant objects can only be measured with errors. Especially in urban driving, an-

other factor adds to the complexity of decision-making: relevant objects are often

completely hidden to the sensors because the line of sight is blocked.

Our experiments in Section 7.3 underline the crucial and complex impact of un-

certainties. As expected, visibility issues such as a blocked view on other road users

have the most significant influence on decisions. The most illustrative example we

presented is the merging scenario from the introduction in Chapter 1. In this exam-

ple, the car needs to stop several meters before the crossing. This rather unconven-

tional behavior would not be part of any policy that does not consider uncertainty in

sufficient detail.

Small variances in the measurement or the prediction often only result in slightly

modified policies such as increasing the safe following distance. However, this is not

the case, in general. The merging examples revealed that uncertainty can, for example,

make it unsafe to merge into a gap that would be sufficiently big under the assumption

of precise models and full information.

To our surprise, another aspect of information gathering showed to be extremely im-

portant for both, the synthetic problems and the driving tasks: the ability to conclude

from and plan with evidence of absence. Especially the merging and obstacle avoid-

ance examples make clear that observing the absence of an object is often of greater

value than observing the object itself. In the merging examples, not observing vehicles

is equivalent to observing a gap. The presented method is capable of drawing this con-

clusion because we did not impose prior restrictions to the models (e.g., by assuming

linear models or normal distributions).

In the light of these results, the initial thesis statement does not only hold. It should

be extended: uncertainties must be considered with sufficient detail and complexity.

Existing approaches to decision-making for driving, however, oversimplify the prob-

lem. This is not necessary, as the second part of the thesis statement shows.

172

8.2 Summary of Contributions

Decision-making can be made practically feasible by implementing the cognitive

abilities to generalize thoughts and put selective attention on relevant information

The motivation behind simplifying the decision-making problem is clear: the full com-

plexity of the problem cannot be handled by existing methods for solving continuous

POMDPs (or comparable models). This problem, in theory, is even undecidable.

The second message of the thesis statement is that planning in continuous domains

with uncertainties, despite their theoretical complexity, can be practically feasible.

Humans are capable of planning and making safe decisions in such situations, sup-

posedly by abstracting and focusing their attention on relevant information. This way,

humans find a suitable simplification for every specific task. We argue that similar

abstraction capabilities can be methodically realized to make approximately solving

continuous POMDPs feasible.

A fundamental basis for inference and planning is the representation of the world.

However, a generally ideal representation does not exist because it is very specific to

the considered task. In this thesis, we proposed inductive learning for finding an ef-

ficient, low-dimensional discrete representation for the specific problem. Using this

representation basis, computation automatically focuses on relevant features and the

results are generalized over the complete continuous state space.

The policies generated with the presented continuous POMDP method showed that

our approach is capable of planning the agent’s complex process of information gath-

ering through sensor measurements. In all evaluated examples, the up to 12D contin-

uous state spaces was compressed to less than 1000 discrete states. To put that num-

ber into relation: differentiating only 4 discrete regions for every of the 12 dimensions

results in a total of over 16.7 million states. A more detailed look into the learned, dis-

crete representation showed that it clusters continuous states with similar meaning

and consequences with respect to the policy. The clustered states are not necessarily

close in the Euclidean space. It could be argued that this goal-oriented compression

is a form of automatic conceptual abstraction.

8.2 Summary of Contributions

This work’s contributions to the state-of-the-art are twofold (see Section 1.3). The first

contribution is a novel, general method for solving continuous POMDPs that mainly

contributes to research in machine learning and artificial intelligence. The second

contribution is a general approach for tactical decision-making in traffic that is based

on decision processes. This approach contributes to research in robotics, and au-

tonomous as well as assisted driving.

173

Chapter 8 Discussion and Conclusion

Contribution 1: Novel method for efficiently solving continuous POMDPs

In Chapter 5, we present a general method for continuous-state, continuous-

observation and discrete-action POMDPs. The main innovation of the method is that

it finds a problem-specific, efficient, discrete representation of the continuous state

space.

1a) Point-based value iteration (PBVI) without restrictions of spaces or models The

requirements that we derived in Section 4.4 with the driving task in mind indicated

that, at best, the POMDP’s models should not be restricted, a priori. In particular, a

method suited for autonomous driving must be able to consider multi-modality and

non-linearity. Approximations and simplifications should be applied carefully and

with respect to every particular task and situation.

We realized this by applying importance sampling for a Monte Carlo (MC) contin-

uous belief prediction and Bellman backups (see Section 5.2). In order to generalize

value functions over the continuous space for efficient dynamic programming, a non-

parametric basis function representation of both, the policy and situations is learned.

Previous approaches fix the representation prior to solving the POMDP or restrict the

family of the basis functions (e.g., to Gaussian distributions).

1b) Bellman α-function backup that integrates representation learning and temporal

inference The basic idea behind the approach is that the value is a suitable indica-

tor for state space abstraction in decision problems. The results of our research on

MDP-based highway driving in Section 7.2.3 suggested that a suitable representation

can be learned automatically and showed that, in practical problems, enormous im-

provements over naive discretization approaches can be expected. In Section 5.3, we

formulated this idea by establishing a theoretical framework for integrating discrete

representations into continuous POMDPs.

To compute the optimal value function, the continuous α-functions need to be rep-

resented well. Vice versa, to find a good representation, an (approximately) optimal

value function needs to be known. We resolved this circular dependency by integrat-

ing learning a representation into continuous value iteration withα-function Bellman

backups. The representation is iteratively learned with the objective to optimally rep-

resent the value function (and with it the policy) well. Previous methods aimed at rep-

resenting the belief distributions well, which is suboptimal for decision-making.

1c) Automatic abstraction and generalization of planning results over the continuous

space Representation learning is presented in Section 5.4. It directly minimizes the

174

8.2 Summary of Contributions

loss in the representation of continuousα-function Bellman backups and thereby gen-

eralizes them over the continuous state space. For this reason, transforming continu-

ous beliefs to the discrete representation, can be viewed as extracting policy-relevant

features.

We implemented this mechanism using a partition of the continuous space that is

represented by decision trees which are incrementally learned in a nonparametric way.

This way, the detail and complexity of the representation adapts to the problem.

1d) Efficient implementation of the method that is able to solve high-dimensional

POMDPs and shows state-of-the-art exceeding performance in experiments This im-

plementation outperforms existing solvers on the evaluated examples, it is capable of

solving higher-dimensional continuous problems (see Section 7.1), and it solved up to

12D continuous complex real-life driving tasks (see Section 7.3).

Contribution 2: Approach to tactical decision-making for driving

Our analysis of the state-of-the-art in decision-making for autonomous driving in

Chapter 2 showed that most existing approaches critically simplify the task. Either

they ignore uncertainty or do not consider it in sufficient detail. Alternatively, they

provide solutions for restricted sub-problems, such as highway driving.

The basic idea behind our approach presented in Chapter 6 is that formulating the

goals of driving is much simpler than formulating the right reactions to the huge vari-

ety of different situations which a car can encounter in traffic.

2a) General representation of driving as a decision process In Section 6.1, we pre-

sented models that represent traffic scenarios and their developments sufficiently

well for tactical decision-making in traffic. Because we model the task as continuous

POMDP that utilizes background knowledge (e.g., from maps), the models are very

general and applicable to many different driving scenarios. By solving this POMDP

with the presented method, policies can be created that are mathematically grounded

through anticipating the development of the world. As the presented method for solv-

ing continuous POMDPs adaptively discretizes the state space with respect to the cur-

rent situation and specifically for the current task, no potentially insufficient and inef-

ficient a priori discretization is required.

2b) End-to-end probabilistic formulation The models are encoded in a dynamic

Bayesian network (DBN) in order to structure dependencies hierarchically and to pro-

vide a throughout probabilistic approach on all levels of abstraction. This way, com-

plex relationships, including interactions between road users, are realistically mod-

175

Chapter 8 Discussion and Conclusion

eled. We put special emphasis on modeling partial observability arising through the

limited visibility of objects. This has several advantages. For example, actions with

the purpose to gain decision-relevant information are naturally integrated into plan-

ning. Additionally, solving the POMDP generates an action policy for the current and

possible future situations because possible developments are already considered in

the policy. Thus, in difference to deterministic planning approaches, no replanning in

every step is necessary.

2c) Evaluation of autonomous intersection handling and merging with non-trivial occlu-

sions The evaluation showed that safe driving decisions can be derived for various

different traffic scenarios by solving the general continuous POMDP with the method

in Chapter 5 or the simpler MDP approach in Section 6.2.1. Among other aspects, the

tested scenarios differ in the road topology and geometry, the number, pose, and ve-

locity of the involved vehicles, and the visibility conditions. Higher-speed highway

driving with full observability (see Section 7.2) as well as urban driving with partial

observability (see Section 7.3) are successfully tested. Despite the fundamentally dif-

ferent scenarios, the same general model is used for all examples.

8.3 Limitations, Applications, and Outlook

In this section, we name and assess the limitations of the developed continuous

POMDP method and the approach to tactical decision-making for driving and pro-

pose potential solutions.

8.3.1 Continuous POMDPs

The general problem of solving continuous POMDPs is too complex to be solved effi-

ciently for all possible tasks by the same algorithm. Complexity makes approximations

indispensable. However, it depends on the specific problem which kind and which

extent of approximation can be tolerated. By iteratively learning a suited representa-

tion, we made a step towards problem-adaptive approximation. Other than assuming

a discrete action space, we did not make limiting prior assumptions. However, in order

to solve more complex problems (e.g., with higher dimensions, or a longer planning

horizon) the performance has to be further improved. We identified multiple starting

points for improvements.

Our implementation, using partitions represented by decision trees, restricts the

representation and holds back the potential of learning. We would be interested to

see the potential of generalization when applying more sophisticated algorithms to

our general approach of iterative value-directed representation learning. Promising

176

8.3 Limitations, Applications, and Outlook

developments in this context can be found, for instance, in the area of deep learning

[Bengio, 2009].

The MC approach that we apply to approximate the continuous belief pre-

diction and α-function backup has disadvantages for some types of distribu-

tions (e.g., very noisy distributions) and, typically, yields only approximate results.

Rao–Blackwellization might pose a solution to this problem by exploiting the structure

of the DBN. It has shown significant improvements for the related tasks of sequential

Monte Carlo (SMC) filtering [Doucet et al., 2000] and simultaneous localization and

mapping (SLAM) [Grisetti et al., 2007]). Another promising research direction is to ex-

tend our approach to hierarchical POMDP planning instead of solving the flat POMDP

(see, e.g., [Pineau et al., 2002; Theocharous, 2002; Foka and Trahanias, 2007]).

We also think that the efficient and sufficient exploration of the infinite-dimensional

belief space still is an open question. Exploration determines the belief points where

backups are performed. In this work, we transferred heuristics from discrete point-

based POMDP methods to the continuous space, but there is room for improvements

in this important question. A related question is how the number of α-functions can

be kept small. Solutions for discrete spaces exist (e.g., by pruning the set), but directly

applying them to the continuous problem does not promise success.

For some of the open questions, solutions can be found in other areas of research.

Optimal control, for instance, is concerned with continuous action spaces and could

be a source of inspiration for approaching this problem in POMDPs. Making the step

from discrete to continuous POMDPs, the borders between decision-making, motion

planning and optimal control diminish. We think that in the future, research in these

areas will further benefit from each other.

Although we evaluated the method only in the context of robotics and driving, it is

generally applicable to any kind of continuous POMDP. As continuous POMDPs are

among the most general models for dynamic decision making under uncertainties and

we did not assume further restrictions, many more applications, e.g., for operations

research, medical diagnostics and treatment, health-care, and machine maintenance,

are thinkable.

8.3.2 Tactical Decision-making for Driving

Decision-making is one of the most important challenges that has to be solved for au-

tonomous driving to become a reality. In this work, a novel approach to this task is

presented and evaluated that relies on optimization and learning rather than manual

programming. For this reasons, our approach can master a greater variety of driving

situations than previous approaches.

177

Chapter 8 Discussion and Conclusion

However, for integrating this approach into self-driving cars, further research is

needed. For the experiments, we solved the scenarios offline and then executed the

precomputed policy. A precomputed policy provides decisions for all different devel-

opments of the situation and also generalizes to variations of the initial situation. Con-

trary to plans obtained by deterministic planning, the policy does not have to be re-

calculated in every step because it anticipates uncertainty. For realizing continuous

driving, our approach can be applied in different ways. The most general way is to

find a general driving policy applicable to all situations. It could be improved during

driving, using an approach similar to the presented offline-online learning for MDPs

or reinforcement learning. However, it is unclear how well the method scales to such

a huge problem and probably further hierarchization or simplification is needed. For

example, only the scenarios exhibited on a planned navigational route could be pre-

computed. Alternatively, special driving tasks could be completely covered using rel-

ative state representations (similar to the presented MDP highway driving approach).

Further, the presented implementation of the model should be viewed as a proto-

type to demonstrate the potential of the approach. It is not comprehensive. For exam-

ple, the provided models are limited to car-like vehicles and do not yet integrate other

road users, such as pedestrians and cyclists. Further improvements through more re-

alistic models can be achieved, when integrating behavior models learned from ob-

servations as proposed in [Gindele et al., 2015].

Additionally, developments move towards vehicles which are connected with the in-

frastructure and each other. Communication can be added as another measurement

channel into the presented model to reduce uncertainties and improve results. Es-

pecially interesting results can be expected, if autonomous cars communicate their

intentions in addition to their current state. This information can be integrated into

our model by adding a measurement for the road users’s planned route. Cooperation

between road users is not restricted to sharing information. Cooperative planning for

decision-making could be realized with a centralized POMDP solver with combined

actions and rewards for all controllable road users.

Besides fully autonomous driving, the model can be easily modified for advanced

driver assistance systems. Therefore, behaviors and intentions of the ego vehicle’s

driver can be modeled with conditional distributions. Assistance actions, like showing

warning messages, would indirectly influence the ego vehicle through the driver.

Due to the very general representation of the driving problem as hierarchical DBN

and because the continuous POMDP models are not restricted, these aspects can be

easily integrated into the proposed model.

178

8.4 Conclusion

8.4 Conclusion

Due to the exceeding complexity, especially for continuous-state real-life tasks, it is

still a common opinion among researchers that decision-making under uncertainty

is practically infeasible. However, it is neither necessary nor sensible to categorically

restrain to simplifications, such as omitting or simplifying partial observability. Uncer-

tainties are just too important for most applications to ignore them. Making robust de-

cisions despite not knowing the exact state of the world or its development over time is

a key ability for all kinds of autonomous systems, be it physical systems such as robots

or virtual systems such as dialog systems. For example, planning actions with the pur-

pose of gaining relevant information is a natural part of problem solving. Humans are

so used to act under the severe lack of information that they often forget about it.

Indeed, planning under uncertainty without approximations, is not only computa-

tionally infeasible: the problem is even provably unsolvable. However, restricting the

models or spaces, for example, by discretizing the continuous space prior to solving

the problem is the wrong answer to this problem. This line of action can impair the re-

sulting decisions to a non-tolerable extent with potentially dangerous consequences.

We showed in this thesis that continuous POMDPs can be efficiently approximately

solved when implementing the ability to make abstractions in order to focus compu-

tations on relevant aspects.

We did not stop at developing a theoretical method but developed a concept for uti-

lizing it in practice for one of today’s most important research topics: autonomous

driving. Self-driving vehicles promise to revolutionize personal transport and logistics.

Great improvements in all areas of autonomous driving, such as environment percep-

tion and interpretation, self-localization, mapping, navigation, and control, are made

by researchers all over the world. In our opinion, decision-making more and more

emerges as one of the main remaining technical challenges.

We showed that applying the developed continuous POMDP solver to a general traf-

fic model can offer a solution to this problem. The application of continuous POMDPs,

however, is not restricted to this particular task. On the contrary, the general approach

and method developed in this thesis can be used for various applications from all con-

ceivable domains.

179

Appendix A

A.1 Alternative Reward Function Definition �r (s , a , s ′)

For some POMDP applications it is sensible to add a dependency to the next state s ′

to the reward (e.g., to account for collisions between time steps). To obtain the re-

ward notation r (s , a) used throughout this thesis from the alternative reward function

�r (s , a , s ′), the dependency to the next state s ′ can be ruled out by

r (s , a) =

∫

s ′∈S

�r (s , a , s ′)p (s ′|s , a) ds ′ . (A.1.1)

Theα-function backup in Equation 4.3.14 remains untouched by the reward definition

in Equation A.1.1. It can be rewritten as follows

αn
b ,a (s)

(4.3.14)= r (s , a) +γ

∫

s ′∈S

p (s ′|s , a)

∫

o∈O

αn−1
b ,a ,o (s

′)p (o |s ′) do ds ′ (A.1.2)

(A.1.1)=

∫

s ′∈S

�r (s , a , s ′)p (s ′|s , a) ds ′+γ

∫

s ′∈S

p (s ′|s , a)

∫

o∈O

αn−1
b ,a ,o (s

′)p (o |s ′) do ds ′ (A.1.3)

=

∫

s ′∈S

p (s ′|s , a)



�r (s , a , s ′) +γ

∫

o∈O

αn−1
b ,a ,o (s

′)p (o |s ′) do



 ds ′ . (A.1.4)

For the MC approximations in Section 5.2, �r (ŝ , a , ŝ ′) needs to be computed for every

combination of ŝ ∈ Ib , ŝ ′ ∈ Jb ,a and actions a ∈ A. Due to the biasing of Jb ,a towards

p (s ′|b , a), the reward for the belief can be simply approximated by the sum

r̃b (b̃ , a) =
∑

ŝ∈Ib

∑

ŝ ′∈Jb ,a

�r (ŝ , a , ŝ ′) . (A.1.5)

To obtain the approximated results of r (ŝ , a) for the α-function backup, the bias must

be compensated. This can be accomplished with the weights u (ŝ
′←ŝ)

b ,a from Equa-

tion 5.2.17 so that

r̃ (ŝ , a) =
∑

ŝ ′∈Jb ,a

�r (ŝ , a , ŝ ′)u (ŝ
′←ŝ)

b ,a . (A.1.6)

181

Appendix A

The reward computation can be integrated into the MCα-function backup from Equa-

tion 5.2.22, analogously to Equation A.1.2. The backup with the alternative reward re-

sults to

α̃n
b ,a (s) =

∑

ŝ ′∈Jb ,a

u (ŝ
′←ŝ)

b ,a

�r (ŝ , a , ŝ ′) +γ
∑

ô∈Kb ,a

v (ô←ŝ ′)
b ,a αn−1

b ,a ,ô (ŝ
′)

!

. (A.1.7)

A.2 Global α-function Representation

To evaluate all α-functions in a set Γ for a belief b when using local representations

〈Sd ,θ 〉α, a discrete representation of b for every α-function must be obtained. There-

fore, the integral of the discretization in Equation 5.3.13 must be computed for every

basis function of every α-function representation. For particle-based beliefs with Q

samples, θsd
(s) has to be computed

Q |Γ | |Sd ,α| (A.2.1)

times. Especially if the continuous state space is high-dimensional and the

α-functions are quite complex, this is expensive. Compared to this, the computational

effort of the discrete dot products that have to be evaluated after the discretization can

be neglected.

We noticed that manyα-functions share an underlying structure. The reason for this

simply is that they all have the same domain: the continuous state space. Additionally,

they depend on the same models for reward and prediction. For example, states where

the agent has a collision with an obstacle yield low values for any α-function. States

where the agent reaches the goal of the POMDP yield high values for any α-function.

Such a high/low value area can spread over the state space with every Bellman backup.

We utilize this finding by applying a single global representation for every

α-function. Computation of the value yielded by all α in a belief b then only requires

the belief b to be transformed to the (global) discrete representation βb once. θ has to

be computed

Q |Sd | (A.2.2)

times.

Redundant or recurring patterns in the α-functions can be detected and exploited

early, at the time when the representation is created. In other words: we allow the

learning algorithm to share components but this is not mandatory. In the worst case,

182

A.3 Upper Bound Approximation

if there is absolutely no redundancy in theα-functions and no components are shared,

the number of components in the global state set is

|Sd |= |Γ | |Sd ,α| (A.2.3)

and the performance is on a par with the local representation.

An overhead for the discrete dot-product computation is created, however. The

computational cost of the dot-product is the cost of |Sd |multiplications. It is negligi-

ble compared to the θ computations and most of the multiplications can even be pre-

vented, when using a sparse representation for the vector βb . In practice, when com-

ponents can be shared between α-functions, the local representation is much smaller

and significant performance gains can be expected.

A.3 Upper Bound Approximation

VUB is represented by a set of belief-value pairs (BVP) and their values

b (p), V (p)
�

, ac-

companied by values for the extreme points s ∈ S of the belief simplex VS : S→R . The

upper bound approximation for a belief b is obtained by finding the BVP that yields

the minimal interpolation value VUB(b) =minp Vp (b)with

Vp (b) = 〈VS, b 〉−
�

VS, b (p)
�

−V (p)
�

min
s∈S| b (p)(s)>0

b (s)
b (p)(s)

. (A.3.1)

As the interpolation only considers the dimension with minimal overlap with the in-

terpolation belief, it is a conservative upper bound approximation. This computation

can be effectively carried out in the discrete space Sd by

Vp (b) =

VSd
,βb

�

d
−
�

VSd
,βb (p)

�

d
−V (p)

�

min
sd∈Sd | βb (p) (sd)>0

βb (sd)
βb (p)(sd)

. (A.3.2)

The precondition for this computation in order to actually resemble the continuous

interpolation is that θ accurately represents beliefs. Note that this dissents from the

loss in the α-function representations. Ultimate accuracy of the upper bound, how-

ever, is not crucial because it is used only for belief space exploration. In most cases,

it suffices for this task. The remaining cases can be covered by adding randomness to

the exploration.

183

Appendix A

To update the upper bound, BVPs are added, when a belief is explored or traversed.

BVPs are created through MC belief state Bellman backup in Equation 5.2.8 with the

next beliefs’ values determined by the upper bound interpolation

Ṽ n
UB(b) =max

a∈A
Ṽ n

a ,UB(b) (A.3.3)

Ṽ n
a ,UB(b) =

�

∑

ŝ∈I

r (ŝ , a)

�

+γ
∑

ô∈Kb ,a

Ṽ n−1
UB (b

′
b ,a ,ô) . (A.3.4)

The extreme or corner points VSd
can be efficiently updated by a fast informed bounds

(FIB) update (see [Hauskrecht, 2000]).

184

Acronyms

BN Bayesian network.

BOF Bayesian occupancy filter.

DBN dynamic Bayesian network.

DDN dynamic decision network.

DN decision network.

DP dynamic programming.

GMM Gaussian mixture model.

HSVI heuristic search value iteration.

IS importance sampling.

KL divergence Kullback–Leibler divergence.

LQG linear-quadratic Gaussian.

MC Monte Carlo.

MDP Markov decision process.

MOMDP mixed observable Markov decision process.

MPC model predictive control.

PBVI point-based value iteration.

POMDP partially observable Markov decision process.

PWLC piecewise-linear and convex.

QMDP POMDP approximation with Q-functions.

185

Acronyms

RL reinforcement learning.

SIR sequential importance resampling.

SLAM simultaneous localization and mapping.

SMC sequential Monte Carlo.

UMDP unobservable Markov decision process.

186

Glossary

belief Probability distribution over the state space. Representation of situations.

Bellman backup Propagating the value (and gradient in case of α-backups) back in

time in order to assess future consequences of actions.

decision-making Cognitive process of selecting one of several actions in order to op-

timize criteria or fulfill a goal.

discrete representation Discrete set of parameters that expresses a (potentially con-

tinuous) function. In this work, the term is mostly used for state space represen-

tations.

ego vehicle The vehicle that is under control of the agent.

inductive learning Learning a generalization from specific examples.

planning The cognitive process of finding the optimal policy by predicting develop-

ments of situations in order to assess consequences of actions.

policy Determines the action for every situation. The optimal policy yields the best

possible value.

rational agent Autonomous entity which perceives the state of the world through ob-

servations and influences its development over time through actions.

reward Immediate return for the agent when reaching a good state. Opposite of cost.

situation Information that an agent has about the state of the world to base his deci-

sions on.

state Condition of variables at a certain point in time describing aspects of the agent’s

environment.

value Expectation of sum over future rewards. Maximizing the value is the goal of

decision-making.

187

List of Figures

1.1 Urban traffic scenario from different points of view. 2

1.2 Prototypes for autonomous driving. 4

1.3 Embedding of decision-making into the system architecture of an au-

tonomous car. 7

2.1 Sub-state of AnnieWAY ’s state machine for lane changes. 15

2.2 Examples of manually modeled metrics for merging and highway-driving. 16

2.3 Spatiotemporal constraints for incoming traffic and for merging. 17

2.4 Voting-based and utility-based decision approaches. 18

2.5 Approaches for lane change decisions considering uncertainty. 20

2.6 Examples of planning with partial observability. 23

2.7 Sensors and perception. 24

2.8 Bayesian occupancy grid with multiple models. 26

2.9 General method for interpreting and predicting traffic situations. 27

2.10 Motion planning. 28

2.11 Common simplifications of uncertainty and potential consequences. . . 31

2.12 Frequently applied simplifications of the state space. 33

3.1 Interaction of an MDP agent with the world. 37

3.2 MDP as DDN. 38

3.3 POMDP model as DDN. 40

3.4 Interaction of a POMDP agent with the world. 41

3.5 Possible belief developments in a POMDP. 42

3.6 Policy tree. 47

3.7 Value function V in discrete 2D example. 50

3.8 α-domination. 53

3.9 Point-based backup. 54

3.10 PBVI flow diagram. 55

3.11 Illustration of reachability on the state and the belief level. 56

3.12 Belief space and subspaces. 57

3.13 Propagation of information in a POMDP. 58

3.14 Belief tree. 59

189

List of Figures

3.15 POMDPs for unmanned air vehicles. 61

3.16 Robot grasping with a POMDP policy. 62

4.1 One time step in a continuous POMDP. 67

4.2 Stochastic optimal control using iterative application of LQG in a 2D

scenario. 69

4.3 Learned belief space representation of a person’s 2D position in a person

finding task. 70

4.4 Car-on-a-hill MDP value function with policy and value borders. 73

4.5 Example of a continuous 1D belief and a reward function. 74

4.6 Representation of a continuous value function using a set of α-functions. 75

4.7 Detailed procedure of a continuous point-based α-function backup. . . 79

4.8 Sample-based representation of belief andα-function: directα-backup

is prohibited. 80

4.9 Predefined statistics for decision policies in a driving scenario. 81

5.1 Flow diagram for point-based value iteration with representation learn-

ing. 86

5.2 MC sampling and sample recombination. 92

5.3 Discrete Gaussian-based representation of continuous α-function. . . . 102

5.4 Discrete representation of continuous α-function based on arbitrary

functions. 103

5.5 2D α-function generalization and conflict resolution. 110

5.6 Example of decision tree representation and α-function evaluation. . . 112

5.7 2D example of a partition induced by a decision tree. 113

5.8 α-function generalization in a continuous 1D example. 119

5.9 Conflict resolution in a continuous 1D example. 121

6.1 State space xi of a single car or ego vehicle xego. 127

6.2 Transition models with varying accuracy. 129

6.3 BN representation of the transition model. 131

6.4 Efficient hierarchical time-continuous collision detection. 133

6.5 Observation model. 134

6.6 Reward function when entering a traffic circle. 136

6.7 State space discretization scheme for MDP in different road curvatures. 139

6.8 State space sampling and transition. 140

7.1 1D corridor problem: introduction. 146

7.2 1D corridor problem: policy simulation. 147

190

List of Figures

7.3 1D corridor problem: comparison of the presented IRL (Iterative Rep-

resentation Learning)-POMDP with state-of-the-art methods. 148

7.4 2D corridor problem: convergence analysis. 149

7.5 8D obstacle avoidance: α-functions for alternative actions. 150

7.6 8D obstacle avoidance with circular traffic. 151

7.7 3D simulation of scenarios in Karlsruhe. 153

7.8 MDP highway driving: empirical policy testing with manually con-

trolled traffic. 153

7.9 MDP highway driving: overtaking with oncoming traffic. 154

7.10 MDP highway driving: value and actions when another car stops in the

right lane. 155

7.11 MDP highway driving: lane change actions with and without complex

behavior model when another car is driving in the right lane. 156

7.12 MDP value when approaching a standing vehicle. 157

7.13 Intersection scenario with blocked view: introduction. 158

7.14 Intersection Case a : two policy simulations with parking cars and a

building that blocks the view. 160

7.15 Intersection Case b : two policy simulations without blocked view with

different initial beliefs. 161

7.16 Intersection scenario: frequency of values. 162

7.17 Zipper merge: scenario introduction. In-car and birds-eye view. 162

7.18 Zipper merge: policy simulation from t = 0 to 6. 163

7.19 Zipper merge: position in x2 dimension and absolute velocities. 164

7.20 Traffic merging: policy simulation from time step t = 0 to 11. 165

7.21 Traffic merging: policy simulation at t = 0, 7 and 13. 166

7.22 Traffic merging: relationship between the initial gap size of a simulation

trial and the yielded values (summed discounted reward). 167

7.23 Traffic merging: POMDP state representation. 168

7.24 Traffic merging: histogram that visualizes the large spectrum of the size

of the learned discrete POMDP states. 169

191

List of Algorithms

1 Forward sampling. 91

2 Belief tree construction. 94

3 Value function backup in a belief point. 95

4 Point-based Monte Carlo α-function Bellman backup. 98

5 Discretization of continuous states and beliefs. 105

6 Compute step n −1 α-functions using the discrete representation. 106

7 α-function discretization and tree growing. 116

8 Value iteration with conflict resolution. 122

9 POMDP solver main loop. 123

193

Bibliography

Alin, A., Fritsch, J., and Butz, M. V. Improved Tracking and Behavior Anticipation by

Combining Street Map Information with Bayesian-Filtering. In Proceedings of the

IEEE International Conference on Intelligent Transportation Systems, pages 2235–

2242, 2013.

Althoff, M. and Dolan, J. Online Verification of Automated Road Vehicles Using Reach-

ability Analysis. IEEE Transactions on Robotics, 30(4):903–918, 2014.

Ardelt, M., Coester, C., and Kaempchen, N. Highly Automated Driving on Freeways

in Real Traffic Using a Probabilistic Framework. IEEE Transactions on Intelligent

Transportation Systems, 13(4):1576–1585, 2012.

Astrom, K. Optimal Control of Markov Processes with Incomplete State Information

II. The Convexity of the Lossfunction. Journal of Mathematical Analysis and Appli-

cations, 26(2):403–406, 1969.

Ayer, T., Alagoz, O., and Stout, N. K. OR Forum-A POMPD Approach to Personalize

Mammography Screening Decisions. Operations Research, 60(5):1019–1034, 2012.

Bacha, A., Bauman, C., Faruque, R., Fleming, M., Terwelp, C., Reinholtz, C., Hong, D.,

Wicks, A., Alberi, T., Anderson, D., , Cacciola, S., Currier, P., , Dalton, A., Farmer, J.,

Hurdus, J., Kimmel, S., King, P., Taylor, A., Covern, D. V., and Webster, M. Odin: Team

VictorTango’s Entry in the DARPA Urban Challenge. Journal of Field Robotics, 25(8):

467–492, 2008.

Bahram, M., Wolf, A., Aeberhard, M., and Wollherr, D. A Prediction-based Reactive

Driving Strategy for Highly Automated Driving Function on Freeways. In Proceedings

of the IEEE Intelligent Vehicles Symposium, pages 400–406, 2014.

Bai, H., Hsu, D., Lee, W., and V.A., N. Monte Carlo Value Iteration for Continuous-

state POMDPs. In Proceedings of the Workshop on the Algorithmic Foundations of

Robotics, pages 175–191, 2010.

Bai, H. Continuous POMDPs for Robotic Tasks. PhD thesis, National University of Sin-

gapore, 2014.

195

Bibliography

Bai, H., Hsu, D., Kochenderfer, M. J., and Lee, W. S. Unmanned Aircraft Collision Avoid-

ance Using Continuous-state POMDPs. In Proceedings of the Robotics: Science and

Systems Conference, 2011.

Bai, H., Hsu, D., and Lee, W. S. Integrated Perception and Planning in the Continuous

Space: A POMDP Approach. The International Journal of Robotics Research, 33(9):

1288–1302, 2014.

Baker, C. R. and Dolan, J. M. Traffic Interaction in the Urban Challenge: Putting Boss

on its Best Behavior. In Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 1752–1758, 2008.

Bandyopadhyay, T., Jie, C. Z., Hsu, D., Ang Jr, M. H., Rus, D., and Frazzoli, E. Intention-

aware Pedestrian Avoidance. In Proceedings of the International Symposium on Ex-

perimental Robotics, pages 963–977. Springer, 2013a.

Bandyopadhyay, T., Won, K. S., Frazzoli, E., Hsu, D., Lee, W. S., and Rus, D. Intention-

aware Motion Planning. In Proceedings of the Workshop on the Algorithmic Founda-

tions of Robotics, pages 475–491. Springer, 2013b.

Bar-Shalom, Y. Multitarget-multisensor Tracking: Applications and Advances. Volume

III. Norwood, MA: Artech House, 2000.

Bartlett, P. L. and Baxter, J. Infinite-horizon Policy-gradient Estimation. Journal of

Artificial Intelligence Research 15, pages 319–350, 2001.

Bellman, R. Dynamic Programming. Princeton University Press, 1957a.

Bellman, R. A Markovian Decision Process. Journal of Applied Mathematics and Me-

chanics, 6:679–684, 1957b.

Bengio, Y. Learning Deep Architectures for AI. Foundations and Trends® in Machine

Learning, 2(1):1–127, 2009.

Bentley, J. L. Multidimensional Binary Search Trees Used for Associative Searching.

Communications of the ACM, 18(9):509–517, 1975.

Bertsekas, D. Dynamic Programming: Deterministic and Stochastic Models. Prentice-

Hall, Englewood Cliffs, NJ., 1987.

Bertsekas, D. Dynamic Programming and Optimal Control, volume 2. Athena Scien-

tific, 2007.

196

Bibliography

Boger, J., Poupart, P., Hoey, J., Boutilier, C., Fernie, G., and Mihailidis, A. A Decision-

theoretic Approach to Task Assistance for Persons with Dementia. In Proceedings of

the International Joint Conference on Artificial Intelligence, pages 1293–1299, 2005.

Bohren, J., Foote, T., Keller, J., Kushleyev, A., Lee, D., Stewart, A., Vernaza, P., Derenick,

J., Spletzer, J., and Satterfield, B. Little Ben: The Ben Franklin Racing Team’s Entry in

the 2007 DARPA Urban Challenge. Journal of Field Robotics, 25(9):598–614, 2008.

Bonet, B. An ε-optimal Grid-based Algorithm for Partially Observable Markov Deci-

sion Processes. In Proceedings of the International Conference on Machine Learning,

pages 51–58, 2002.

Botvinick, M. and Toussaint, M. Planning as Inference. Trends in Cognitive Sciences,

16(10):485–488, 2012.

Braess, H.-H. and Seiffert, U. Vieweg Handbuch Kraftfahrzeugtechnik. Springer-Verlag,

2011.

Brafman, R. I. A Heuristic Variable Grid Solution Method for POMDPs. In Proceed-

ings of the AAAI Conference on Innovative Applications of Artificial Intelligence, pages

727–733, 1997.

Brechtel, S., Gindele, T., Vogelgesang, J., and Dillmann, R. Probabilistisches Belegth-

eitsfilter zur Schätzung dynamischer Umgebungen unter Verwendung multipler Be-

wegungsmodelle. In Proceedings of the Fachgespräch Autonome Mobile Systeme,

pages 49–56, Karlsruhe, 2009.

Brechtel, S., Gindele, T., and Dillmann, R. Recursive Importance Sampling for Effi-

cient Grid-based Occupancy Filtering in Dynamic Environments. In Proceedings of

the IEEE International Conference on Robotics and Automation, pages 3932–3938,

Anchorage, AL, USA, 2010.

Brechtel, S., Gindele, T., and Dillmann, R. Probabilistic MDP-behavior Planning for

Cars. In Proceedings of the IEEE International Conference on Intelligent Transporta-

tion Systems, pages 1537–1542, Washington DC, USA, 2011.

Brechtel, S., Gindele, T., et al. Solving Continuous POMDPs: Value Iteration with In-

cremental Learning of an Efficient Space Representation. In Proceedings of the In-

ternational Conference on Machine Learning, pages 370–378, 2013.

Brechtel, S., Gindele, T., and Dillmann, R. Probabilistic Decision-making under Un-

certainty for Autonomous Driving Using Continuous POMDPs. In Proceedings of the

IEEE International Conference on Intelligent Transportation Systems, pages 392–399,

Qingdao, China, 2014.

197

Bibliography

Breiman, L. Bagging Predictors. Machine learning, 24(2):123–140, 1996.

Breiman, L. Random Forests. Machine learning, 45(1):5–32, 2001.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. Classification and Regression

Trees. CRC Press, 1984.

Brooks, A., Makarenko, A., Williams, S., and Durrant-Whyte, H. Parametric POMDPs

for Planning in Continuous State Spaces. Robotics and Autonomous Systems, 54(11):

887–897, 2006.

Bry, A. and Roy, N. Rapidly-exploring Random Belief Trees for Motion Planning under

Uncertainty. In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 723–730, 2011.

Buehler, M., Iagnemma, K., and Singh, S. The 2005 DARPA Grand Challenge. Springer

Tracts in Advanced Robotics, 36(5):1–43, 2007.

Buehler, M., Iagnemma, K., and Singh, S. The DARPA Urban Challenge: Autonomous

Vehicles in City Traffic, volume 56. Springer, 2009.

Bui, H. H. A General Model for Online Probabilistic Plan Recognition. In Proceedings of

the International Joint Conference on Artificial Intelligence, volume 18, pages 1309–

1318, 2003.

Cassandra, A., Littman, M. L., and Zhang, N. L. Incremental Pruning: A Simple, Fast,

Exact Method for Partially Observable Markov Decision Processes. In Proceedings of

the Conference on Uncertainty in Artificial Intelligence, pages 54–61. Morgan Kauf-

mann Publishers Inc., 1997.

Cassandra, A. R. A Survey of POMDP Applications. In Proceedings of the Working Notes

of AAAI 1998 Fall Symposium on Planning with Partially Observable Markov Decision

Processes, pages 17–24, 1998.

Cassandra, A. R., Kaelbling, L. P., and Littman, M. L. Acting Optimally in Partially Ob-

servable Stochastic Domains. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 94, pages 1023–1028, 1994.

Cheng, H.-T. Algorithms for Partially Observable Markov Decision Processes. 1988.

City of Karlsruhe. Basis of Map Data for Illustrations: @ Stadt Karlsruhe.

Copi, I. M. Introduction to Logic. Number 49. Pearson/Prentice Hall, 2008.

198

Bibliography

Coue, C., Pradalier, C., Laugier, C., Fraichard, T., and Bessiere, P. Bayesian Occupancy

Filtering for Multitarget Tracking: An Automotive Application. The International

Journal of Robotics Research, 25(1):19, 2006.

Dagli, I., Brost, M., and Breuel, G. Action Recognition and Prediction for Driver Assis-

tance Systems Using Dynamic Belief Networks. Lecture Notes in Computer Science,

pages 179–194, 2003.

Dickmanns, E., Behringer, R., Dickmanns, D., Hildebrandt, T., Maurer, M., Thomanek,

F., and Schiehlen, J. The Seeing Passenger Car ’VaMoRs-P’. In Proceedings of the IEEE

Intelligent Vehicles Symposium, pages 68–73, 1994.

Dietterich, T. G. An Experimental Comparison of Three Methods for Constructing En-

sembles of Decision Trees: Bagging, Boosting, and Randomization. Machine Learn-

ing, 40(2):139–157, 2000.

Doucet, A., De Freitas, N., and Gordon, N. Sequential Monte Carlo Methods in Practice.

Springer, 2001.

Doucet, A., De Freitas, N., Murphy, K., and Russell, S. Rao-blackwellised Particle Filter-

ing for Dynamic Bayesian Networks. In Proceedings of the Conference on Uncertainty

in Artificial Intelligence, pages 176–183. Morgan Kaufmann Publishers Inc., 2000.

Drake, A. W. Observation of a Markov Process through a Noisy Channel. PhD thesis,

Massachusetts Institute of Technology, 1962.

Duff, S. J. and Bradtke, M. O. Reinforcement Learning Methods for Continuous-time

Markov Decision Problems. In Proceedings of the Neural Information Processing Sys-

tems Conference, volume 7, page 393, 1995.

Elfes, A. Using Occupancy Grids for Mobile Robot Perception and Navigation. Com-

puter, 22(6):46–57, 1989.

Erez, T. and Smart, W. D. A Scalable Method for Solving High-dimensional Continuous

POMDPs Using Local Approximation. In Proceedings of the Conference on Uncer-

tainty in Artificial Intelligence, 2010.

Ericson, C. Real-time Collision Detection. Morgan Kaufmann Series in Interactive 3D

Technology. Elsevier, Amsterdam, 2005.

Esposito, F., Malerba, D., Semeraro, G., and Kay, J. A Comparative Analysis of Meth-

ods for Pruning Decision Trees. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 19(5):476–491, 1997.

199

Bibliography

Feng, Z. and Hansen, E. An Approach to State Aggregation for POMDPs. In Proceedings

of the Workshop on Learning and Planning in Markov Processes, pages 7–12, 2004.

Foka, A. and Trahanias, P. Real-time Hierarchical POMDPs for Autonomous Robot Nav-

igation. Robotics and Autonomous Systems, 55(7):561–571, 2007.

Folsom-Kovarik, J. T., Sukthankar, G., Schatz, S. L., and Nicholson, D. M. Scalable

POMDPs for Diagnosis and Planning in Intelligent Tutoring Systems. In Proceedings

of the AAAI Fall Symposium: Proactive Assistant Agents, 2010.

Forbes, J., Huang, T., Kanazawa, K., and Russell, S. The Batmobile: Towards a Bayesian

Automated Taxi. In Proceedings of the International Joint Conference on Artificial

Intelligence, volume 14, pages 1878–1885, Montreal, Quebec Canada, 1995.

Frese, C. and Beyerer, J. A Comparison of Motion Planning Algorithms for Cooperative

Collision Avoidance of Multiple Cognitive Automobiles. In Proceedings of the IEEE

Intelligent Vehicles Symposium, pages 1156–1162, 2011.

Freund, Y., Schapire, R., and Abe, N. A Short Introduction to Boosting. Journal of

Japanese Society for Artificial Intelligence, 14(771–780):1612, 1999.

Furda, A. and Vlacic, L. Enabling Safe Autonomous Driving in Real-world City Traffic

Using Multiple Criteria Decision Making. IEEE Intelligent Transportation Systems

Magazine, 3(1):4–17, 2011.

Furda, A. Real-time Decision Making by Driverless City Vehicles: A Discrete Event Driven

Approach. PhD thesis, Griffith University, 2010.

FZI Forschungszentrum Informatik (Research Center for Information Technology).

CoCar—The Instrumented Cognitive Car. URL www.fzi.de/en/research/

projekt-details/cocar/. Last accessed April 14, 2015.

Geiger, A. Probabilistic Models for 3D Urban Scene Understanding from Movable Plat-

forms. PhD thesis, Karlsruher Institute of Technology (KIT), Karlsruhe, 2013.

Gindele, T., Jagszent, D., Pitzer, B., and Dillmann, R. Design of the Planner of Team

AnnieWAY’s Autonomous Vehicle Used in the DARPA Urban Challenge 2007. In Pro-

ceedings of the IEEE Intelligent Vehicles Symposium, pages 1131–1136, 2008.

Gindele, T. Learning Behavior Models for Interpreting and Predicting Traffic Situations.

PhD thesis, Karlsruher Institute of Technology (KIT), 2014.

Gindele, T., Brechtel, S., Schröder, J., and Dillmann, R. Bayesian Occupancy Grid Filter

for Dynamic Environments Using Prior Map Knowledge. In Proceedings of the IEEE

Intelligent Vehicles Symposium, pages 669–676, Xi’an, China, 2009.

200

www.fzi.de/en/research/projekt-details/cocar/
www.fzi.de/en/research/projekt-details/cocar/

Bibliography

Gindele, T., Brechtel, S., and Dillmann, R. A Probabilistic Model for Estimating Driver

Behaviors and Vehicle Trajectories in Traffic Environments. In Proceedings of the

IEEE International Conference on Intelligent Transportation Systems, pages 1625–

1631, Madeira, Portugal, 2010.

Gindele, T., Brechtel, S., and Dillmann, R. Learning Context Sensitive Behavior Models

from Observations for Predicting Traffic Situations. In Proceedings of the IEEE Inter-

national Conference on Intelligent Transportation Systems, pages 1764–1771, 2013.

Gindele, T., Brechtel, S., and Dillmann, R. Learning Driver Behavior Models from Traf-

fic Observations for Decision Making and Planning. Intelligent Transporation Sys-

tems Magazine Special Issue on ITSC 2013, 7(1):69–79, 2015.

Girault, A. A Hybrid Controller for Autonomous Vehicles Driving on Automated High-

ways. Transportation Research Part C: Emerging Technologies, 12(6):421–452, 2004.

Google. Self-Driving Car Project. URL plus.google.com/

+GoogleSelfDrivingCars. Last accessed April 14, 2015.

Grisetti, G., Stachniss, C., and Burgard, W. Improved Techniques for Grid Mapping

with Rao-blackwellized Particle Filters. IEEE Transactions on Robotics, 23(1):34–46,

2007.

Grisetti, G., Kummerle, R., Stachniss, C., and Burgard, W. A Tutorial on Graph-based

SLAM. IEEE Intelligent Transportation Systems Magazine, 2(4):31–43, 2010.

Hahn, J. K. Realistic Animation of Rigid Bodies. In Proceedings of the ACM SIGGRAPH

Computer Graphics, volume 22, pages 299–308, 1988.

Hansen, E. A. Solving POMDPs by Searching in Policy Space. In Proceedings of the

Conference on Uncertainty in Artificial Intelligence, UAI’98, pages 211–219, San Fran-

cisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

Hauskrecht, M. Value-function Approximations for Partially Observable Markov Deci-

sion Processes. Journal of Artificial Intelligence Research, 13(1):33–94, 2000.

Hauskrecht, M. and Fraser, H. Modeling Treatment of Ischemic Heart Disease with Par-

tially Observable Markov Decision Processes. In Proceedings of the American Medical

Informatics Association Symposium, page 538, 1998a.

Hauskrecht, M. and Fraser, H. Planning Medical Therapy Using Partially Observable

Markov Decision Processes. In Proceedings of the International Workshop on Prin-

ciples of Diagnosis, pages 182–189, 1998b.

201

plus.google.com/+GoogleSelfDrivingCars
plus.google.com/+GoogleSelfDrivingCars

Bibliography

Ho, T. K. The Random Subspace Method for Constructing Decision Forests. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(8):832–844, 1998.

Hoey, J. and Poupart, P. Solving POMDPs with Continuous or Large Discrete Observa-

tion Spaces. In Proceedings of the International Joint Conference on Artificial Intelli-

gence, page 1332, 2005.

Hoey, J., von Bertoldi, A., Poupart, P., and Mihailidis, A. Assisting Persons with Demen-

tia during Handwashing Using a Partially Observable Markov Decision Process. In

Proceedings of the International Conference on Vision Systems, Bielefeld, Germany,

2007.

Hogarth, R. M. Cognitive Processes and the Assessment of Subjective Probability Dis-

tributions. Journal of the American Statistical Association, 70(350):271–289, 1975.

Howard, R. Dynamic Programming and Markov Processes. The MIT Press, 1960.

Hsiao, K., Kaelbling, L. P., and Lozano-Perez, T. Grasping POMDPs. In Proceedings

of the IEEE International Conference on Robotics and Automation, pages 4685–4692,

2007.

Hsu, D., Lee, W. S., and Rong, N. What Makes some POMDP Problems Easy to Ap-

proximate? In Proceedings of the Neural Information Processing Systems Conference,

pages 689–696, 2007.

Indelman, V., Carlone, L., and Dellaert, F. Planning under Uncertainty in the Con-

tinuous Domain: A Generalized Belief Space Approach. In Proceedings of the IEEE

International Conference on Robotics and Automation, pages 6763–6770, 2014.

Kaelbling, L. P. Learning in Embedded Systems. MIT Press, 1993.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. Planning and Acting in Partially

Observable Stochastic Domains. Artificial Intelligence, 101(1):99–134, 1998.

Kammel, S., Ziegler, J., Pitzer, B., Werling, M., Gindele, T., Jagzent, D., Schröder, J., Thuy,

M., Goebl, M., von Hundelshausen, F., Pink, O., Frese, C., and Stiller, C. Team An-

nieWAY’s Autonomous System for the DARPA Urban Challenge 2007. International

Journal of Field Robotics Research, 2008.

Kasper, D., Weidl, G., Dang, T., Breuel, G., Tamke, A., and Rosenstiel, W. Object-

oriented Bayesian Networks for Detection of Lane Change Maneuvers. In Proceed-

ings of the IEEE Intelligent Vehicles Symposium, pages 673–678, 2011.

202

Bibliography

Kohlhaas, R., Bittner, T., Schamm, T., and Zollner, J. Semantic State Space for High-level

Maneuver Planning in Structured Traffic Scenes. In Proceedings of the IEEE Interna-

tional Conference on Intelligent Transportation Systems, pages 1060–1065, 2014.

Kretzschmar, H., Kuderer, M., and Burgard, W. Learning to Predict Trajectories of Co-

operatively Navigating Agents. In Proceedings of the IEEE International Conference

on Robotics and Automation, pages 4015–4020, 2014.

Kuderer, M., Kretzschmar, H., Sprunk, C., and Burgard, W. Feature-based Prediction

of Trajectories for Socially Compliant Navigation. In Proceedings of the Robotics:

Science and Systems Conference, 2012.

Kuderer, M., Gulati, S., and Burgard, W. Learning Driving Styles for Autonomous Ve-

hicles from Demonstration. In Proceedings of the IEEE International Conference on

Robotics and Automation, Seattle, USA, 2015.

Kurniawati, H., Hsu, D., and Lee, W. SARSOP: Efficient Point-based POMDP Planning

by Approximating Optimally Reachable Belief Spaces. In Proceedings of the Robotics:

Science and Systems Conference, Zürich, Switzerland, 2008.

Lee, T. and Kim, Y. J. GPU-based Motion Planning under Uncertainties Using POMDP.

In Proceedings of the IEEE International Conference on Robotics and Automation,

pages 4576–4581, 2013.

Lefèvre, S., Ibanez-Guzman, J., and Laugier, C. Context-based Estimation of Driver In-

tent at Road Intersections. In Proceedings of the IEEE Symposium on Computational

Intelligence in Vehicles and Transportation Systems, 2011.

Littman, M. L., Dean, T. L., and Kaelbling, L. P. On the Complexity of Solving Markov

Decision Problems. In Proceedings of the Conference on Uncertainty in Artificial In-

telligence, pages 394–402. Morgan Kaufmann Publishers Inc., 1995.

Littman, M. L., Cassandra, A. R., and Kaelbling, L. P. Efficient Dynamic-programming

Updates in Partially Observable Markov Decision Processes. Technical report, 1996.

Littman, M. L. Algorithms for Sequential Decision Making. PhD thesis, Brown Univer-

sity, 1996.

Lovejoy, W. S. Computationally Feasible Bounds for Partially Observed Markov Deci-

sion Processes. Operations Research, 39(1):162–175, 1991a.

Lovejoy, W. S. A Survey of Algorithmic Methods for Partially Observed Markov Decision

Processes. Annals of Operations Research, 28(1):47–65, 1991b.

203

Bibliography

MacKay, D. Information Theory, Inference and Learning Algorithms. Cambridge Uni-

versity Press, 2003.

Madani, O., Hanks, S., and Condon, A. On the Undecidability of Probabilistic Plan-

ning and Infinite-horizon Partially Observable Markov Decision Problems. In Pro-

ceedings of the AAAI Conference on Innovative Applications of Artificial Intelligence,

pages 541–548, 1999.

McNaughton, M., Urmson, C., Dolan, J. M., and Lee, J.-W. Motion Planning for Au-

tonomous Driving with a Conformal Spatiotemporal Lattice. In Proceedings of the

IEEE International Conference on Robotics and Automation, pages 4889–4895, 2011.

Mercedes-Benz. Mercedes-Benz, S-Class S 500 INTELLIGENT DRIVE. URL http:

//media.daimler.com. Photo number: 13C857_10, Last accessed April 14, 2015.

Meuleau, N., Kim, K.-E., Kaelbling, L. P., and Cassandra, A. R. Solving POMDPs by

Searching the Space of Finite Policies. In Proceedings of the Conference on Uncer-

tainty in Artificial Intelligence, pages 417–426. Morgan Kaufmann Publishers Inc.,

1999.

Miller, I., Campbell, M., Huttenlocher, D., Kline, F.-R., Nathan, A., Lupashin, S., Catlin,

J., Schimpf, B., Moran, P., Zych, N., Garcia, E., Kurdziel, M., and Fujishima, H. Team

Cornell’s Skynet: Robust Perception and Planning in an Urban Environment. Journal

of Field Robotics, 25(8):493–527, 2008.

Monahan, G. E. State of the Art—A Survey of Partially Observable Markov Decision

Processes: Theory, Models, and Algorithms. Management Science, 28(1):1–16, 1982.

Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger, S., Haehnel,

D., Hilden, T., Hoffmann, G., Huhnke, B., et al. Junior: The Stanford Entry in the

Urban Challenge. Journal of Field Robotics, 25(9):569–597, 2008.

Moosmann, F. Interlacing Self-Localization, Moving Object Tracking and Mapping for

3D Range Sensors. PhD thesis, Karlsruher Institute of Technology (KIT), 2013.

Munos, R. and Moore, A. Variable Resolution Discretization in Optimal Control. Ma-

chine Learning, 49(2):291–323, 2002.

Munos, R. and Moore, A. W. Variable Resolution Discretization for High-accuracy So-

lutions of Optimal Control Problems. In Proceedings of the International Joint Con-

ference on Artificial Intelligence, page 256, 1999.

Murthy, S. K., Kasif, S., and Salzberg, S. A System for Induction of Oblique Decision

Trees. Journal of Artificial Intelligence Research, 1994.

204

http://media.daimler.com
http://media.daimler.com

Bibliography

Ng, A. Y. and Jordan, M. PEGASUS: A Policy Search Method for Large MDPs and

POMDPs. In Proceedings of the Conference on Uncertainty in Artificial Intelligence,

pages 406–415. Morgan Kaufmann Publishers Inc., 2000.

Ngai, D. C. K. and Yung, N. H. C. A Multiple-goal Reinforcement Learning Method

for Complex Vehicle Overtaking Maneuvers. IEEE Transactions on Intelligent Trans-

portation Systems, 12(2):509–522, 2011.

Ngai, D. C. and Yung, N. H. Automated Vehicle Overtaking Based on a Multiple-goal

Reinforcement Learning Framework. In Proceedings of the IEEE International Con-

ference on Intelligent Transportation Systems, pages 818–823, 2007.

Nienhüser, D. Kontextsensitive Erkennung und Interpretation fahrrelevanter statischer

Verkehrselemente. PhD thesis, Karlsruher Institute of Technology (KIT), 2014.

Nilsson, J. and Sjoberg, J. Strategic Decision Making for Automated Driving on Two-

lane, One Way Roads Using Model Predictive Control. In Proceedings of the IEEE

Intelligent Vehicles Symposium, pages 1253–1258, 2013.

Ong, S. C., Hsu, D., Lee, W. S., and Kurniawati, H. Partially Observable Markov De-

cision Process (POMDP) Technologies for Sign Language Based Human-computer

Interaction. Universal Access in Human-Computer Interaction. Applications and Ser-

vices, 5616(4):577–586, 2009.

Ong, S. C., Png, S. W., Hsu, D., and Lee, W. S. Planning under Uncertainty for Robotic

Tasks with Mixed Observability. The International Journal of Robotics Research, 29

(8):1053–1068, 2010.

Papadimitriou, C. H. and Tsitsiklis, J. N. The Complexity of Markov Decision Processes.

Mathematics of Operations Research, 12(3):441–450, 1987.

Petrich, D., Dang, T., Kasper, D., Breuel, G., and Stiller, C. Map-based Long Term Mo-

tion Prediction for Vehicles in Traffic Environments. In Proceedings of the IEEE Inter-

national Conference on Intelligent Transportation Systems, pages 2166–2172, 2013.

Pineau, J., Gordon, G., and Thrun, S. Point-based Value Iteration: An Anytime Algo-

rithm for POMDPs. In Proceedings of the International Joint Conference on Artificial

Intelligence, volume 18, pages 1025–1032, Acapulco, Mexico, 2003.

Pineau, J., Gordon, G., and Thrun, S. Policy-contingent Abstraction for Robust Robot

Control. In Proceedings of the Conference on Uncertainty in Artificial Intelligence,

pages 477–484. Morgan Kaufmann Publishers Inc., 2002.

205

Bibliography

Pineau, J., Gordon, G. J., and Thrun, S. Anytime Point-Based Approximations for Large

POMDPs. Journal of Artificial Intelligence Research, 27:335–380, 2006.

Pitt, M. K. and Shephard, N. Filtering via Simulation: Auxiliary Particle Filters. Journal

of the American Statistical Association, 94(446):590–599, 1999.

Platt Jr, R., Tedrake, R., Kaelbling, L., and Lozano-Perez, T. Belief Space Planning As-

suming Maximum Likelihood Observations. In Proceedings of the Robotics: Science

and Systems Conference, Zaragoza, Spain, 2010.

Pomerleau, D. Defense and Civilian Applications of the ALVINN Robot Driving System.

In Proceedings of the Government Microcircuit Applications Conference, pages 358–

362, 1994.

Pomerleau, D. A. Efficient Training of Artificial Neural Networks for Autonomous Nav-

igation. Neural Computation, 3(1):88–97, 1991.

Porta, J., Spaan, M., and Vlassis, N. Robot Planning in Partially Observable Continuous

Domains. In Proceedings of the Robotics: Science and Systems Conference, volume 1,

page 217. The MIT Press, 2005.

Porta, J., Vlassis, N., Spaan, M., and Poupart, P. Point-based Value Iteration for Contin-

uous POMDPs. The Journal of Machine Learning Research, 7:2329–2367, 2006.

Poupart, P. and Boutilier, C. Value-directed Compression of POMDPs. In Proceedings of

the Neural Information Processing Systems Conference, volume 15, pages 1547–1554,

2002.

Poupart, P., Kim, K., and Kim, D. Closing the Gap: Improved Bounds on Optimal

POMDP Solutions. In Proceedings of the International Conference on Automated

Planning and Scheduling, 2011.

Poupart, P. and Boutilier, C. Bounded Finite State Controllers. In Proceedings of the

Neural Information Processing Systems Conference, pages 823–830, 2003.

Puterman, M. Markov Decision Processes: Discrete Stochastic Dynamic Programming.

John Wiley & Sons, Inc. New York, NY, USA, 1994.

Quinlan, J. R. Induction of Decision Trees. Machine Learning, 1(1):81–106, 1986.

Quinlan, J. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

Rafferty, A. N., Brunskill, E., Griffiths, T. L., and Shafto, P. Faster Teaching by POMDP

Planning. In Proceedings of the Artificial Intelligence in Education, pages 280–287.

Springer, 2011.

206

Bibliography

Raimondi, F. M. and Melluso, M. Fuzzy Motion Control Strategy for Cooperation of

Multiple Automated Vehicles with Passengers Comfort. Automatica, 44(11):2804–

2816, 2008.

Rauskolb, F. W., Berger, K., Lipski, C., Magnor, M., Cornelsen, K., Effertz, J., Form, T.,

Graefe, F., Ohl, S., Schumacher, W., et al. Caroline: An Autonomously Driving Vehicle

for Urban Environments. Journal of Field Robotics, 25(9):674–724, 2008.

Riedmiller, M., Montemerlo, M., and Dahlkamp, H. Learning to Drive a Real Car in 20

Minutes. In Proceedings of the IEEE Frontiers in the Convergence of Bioscience and

Information Technologies, pages 645–650, 2007.

Rokach, L. and Maimon, O. Top-down Induction of Decision Trees Classifiers—A Sur-

vey. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and

Reviews, 35(4):476–487, 2005.

Rosenblatt, J. K. DAMN: A Distributed Architecture for Mobile Navigation. Journal of

Experimental & Theoretical Artificial Intelligence, 9(2–3):339–360, 1997.

Roy, N. and Gordon, G. Exponential Family PCA for Belief Compression in POMDPs.

In Proceedings of the Neural Information Processing Systems Conference, volume 15,

pages 1635–1642, 2002.

Roy, N., Gordon, G., and Thrun, S. Finding Approximate POMDP Solutions through

Belief Compression. Journal of Artificial Intelligence Research, 23:1–40, 2005.

Roy, N., Gordon, G., and Thrun, S. Planning under Uncertainty for Reliable Health Care

Robotics. In Proceedings of the Field and Service Robotics, pages 417–426. Springer,

2006.

Russell, S. and Norvig, P. Artificial Intelligence: A Modern Approach, volume 25.

Prentice-Hall, Englewood Cliffs, NJ., 1995.

Sawaki, K. Optimal Control for Partially Observable Markov Decision Processes over

an Infinite Horizon. Journal of the Operations Research Society of Japan, 21:1–16,

1978.

Schamm, T. Modellbasierter Ansatz zur probabilistischen Interpretation von Fahrsitu-

ationen. PhD thesis, Karlsruher Institute of Technology (KIT), 2014.

Schapire, R. E. The Boosting Approach to Machine Learning: An Overview. In Proceed-

ings of the Nonlinear Estimation and Classification, pages 149–171. Springer, 2003.

207

Bibliography

Schröder, J. Adaptive Verhaltensentscheidung und Bahnplanung für kognitive Auto-

mobile. PhD thesis, Karlsruher Institute of Technology (KIT), Karlsruhe, 2009.

Schubert, R. Evaluating the Utility of Driving: Toward Automated Decision Making

under Uncertainty. IEEE Transactions on Intelligent Transportation Systems, 13(1):

354–364, 2012.

Schwarting, W. and Pascheka, P. Recursive Conflict Resolution for Cooperative Mo-

tion Planning in Dynamic Highway Traffic. In Proceedings of the IEEE International

Conference on Intelligent Transportation Systems, pages 1039–1044, 2014.

Shani, G., Brafman, R. I., and Shimony, S. E. Forward Search Value Iteration for

POMDPs. In Proceedings of the International Joint Conference on Artificial Intelli-

gence, pages 2619–2624, 2007.

Shani, G., Pineau, J., and Kaplow, R. A Survey of Point-based POMDP Solvers. Au-

tonomous Agents and Multi-agent Systems, 27(1):1–51, 2013.

Smallwood, R. and Sondik, E. The Optimal Control of Partially Observable Markov

Processes over a Finite Horizon. Operations Research, pages 1071–1088, 1973.

Smith, T. and Simmons, R. Heuristic Search Value Iteration for POMDPs. In Proceedings

of the Uncertainty in Artificial Intelligence, pages 520–527, 2004.

Smith, T. and Simmons, R. Point-based POMDP Algorithms: Improved Analysis and

Implementation. In Proceedings of the Conference on Uncertainty in Artificial Intel-

ligence, 2012.

Smith, T., Thompson, D. R., and Wettergreen, D. Generating Exponentially Smaller

POMDP Models Using Conditionally Irrelevant Variable Abstraction. In Proceedings

of the International Conference on Automated Planning and Scheduling, pages 304–

311, 2007.

Sondik, E. J. The Optimal Control of Partially Observable Markov Processes over the

Infinite Horizon: Discounted Costs. Operations Research, 26(2):282–304, 1978.

Sondik, E. The Optimal Control of Partially Observable Markov Decision Processes.

PhD thesis, Stanford University, 1971.

Spaan, M. and Vlassis, N. Perseus: Randomized Point-based Value Iteration for

POMDPs. Journal of Artificial Intelligence Research, 24(1):195–220, 2005.

Sutton, R. and Barto, A. Reinforcement Learning: An Introduction. The MIT Press, 1998.

208

Bibliography

Taoka, G. T. Brake Reaction Times of Unalerted Drivers. Journal of Transportation of

the Institute of Transportation Engineers, 59(3):19–21, 1989.

Tay, M., Mekhnacha, K., Chen, C., and Yguel, M. An Efficient Formulation of the

Bayesian Occupation Filter for Target Tracking in Dynamic Environments. Inter-

national Journal of Vehicle Autonomous Systems, 6(1):155–171, 2008.

Temizer, S., Kochenderfer, M. J., Kaelbling, L. P., Lozano-Pérez, T., and Kuchar, J. K.

Collision Avoidance for Unmanned Aircraft Using Markov Decision Processes. In

Proceedings of the AIAA Guidance, Navigation, and Control Conference, Toronto,

Canada, 2010.

Theocharous, G. Hierarchical Learning and Planning in Partially Observable Markov

Decision Processes. PhD thesis, Michigan State University, 2002.

Thrun, S. Monte Carlo POMDPs. In Proceedings of the Neural Information Processing

Systems Conference, pages 1064–1070, 2000.

Thrun, S. Robotic Mapping: A Survey. Exploring Artificial Intelligence in the New Mil-

lennium, 2002.

Thrun, S., Burgard, W., and Fox, D. Probabilistic Robotics (Intelligent Robotics and Au-

tonomous Agents). MIT Press, Cambridge, Massachusetts, USA, 2005.

Todorov, E. and Li, W. A Generalized Iterative LQG Method for Locally-optimal Feed-

back Control of Constrained Nonlinear Stochastic Systems. In Proceedings of the

American Control Conference, pages 300–306, 2005.

Ulbrich, S. and Maurer, M. Probabilistic Online POMDP Decision Making for Lane

Changes in Fully Automated Driving. In Proceedings of the IEEE International Con-

ference on Intelligent Transportation Systems, pages 2063–2070, 2013.

Ulbrich, S., Nothdurft, T., Maurer, M., and Hecker, P. Graph-based Context Represen-

tation, Environment Modeling and Information Aggregation for Automated Driving.

In Proceedings of the IEEE Intelligent Vehicles Symposium, pages 541–547, 2014.

Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M., Dolan, J., Duggins,

D., Galatali, T., Geyer, C., et al. Autonomous Driving in Urban Environments: Boss

and the Urban Challenge. Journal of Field Robotics, 25(8):425–466, 2008.

Van Den Berg, J., Patil, S., and Alterovitz, R. Motion Planning under Uncertainty Using

Iterative Local Optimization in Belief Space. The International Journal of Robotics

Research, 31(11):1263–1278, 2012.

209

Bibliography

Vogel, K. A Comparison of Headway and Time to Collision as Safety Indicators. Acci-

dent Analysis & Prevention, 35(3):427–433, 2003.

Waharte, S. and Trigoni, N. Supporting Search and Rescue Operations with UAVs.

In Proceedings of the International Conference on Emerging Security Technologies,

pages 142–147, 2010.

Wei, J., Dolan, J. M., Snider, J. M., and Litkouhi, B. A Point-based MDP for Robust

Single-lane Autonomous Driving Behavior under Uncertainties. In Proceedings of

the IEEE International Conference on Robotics and Automation, pages 2586–2592,

2011.

Werling, M., Ziegler, J., Kammel, S., and Thrun, S. Optimal Trajectory Generation for

Dynamic Street Scenarios in a Frenet Frame. In Proceedings of the IEEE International

Conference on Robotics and Automation, pages 987–993, 2010.

Werling, M., Kammel, S., Ziegler, J., and Gröll, L. Optimal Trajectories for Time-critical

Street Scenarios Using Discretized Terminal Manifolds. The International Journal of

Robotics Research, pages 346–359, 2011.

White III, C. C. A Survey of Solution Techniques for the Partially Observed Markov

Decision Process. Annals of Operations Research, 32(1):215–230, 1991.

Williams, J. D. and Young, S. Partially Observable Markov Decision Processes for Spo-

ken Dialog Systems. Computer Speech & Language, 21(2):393–422, 2007.

Williams, R. J. and Baird, L. C. Tight Performance Bounds on Greedy Policies Based on

Imperfect Value Functions. Technical report, 1993.

Xu, W., Pan, J., Wei, J., and Dolan, J. M. Motion Planning under Uncertainty for on-

road Autonomous Driving. In Proceedings of the IEEE International Conference on

Robotics and Automation, pages 2507–2512, 2014.

Young, S. Using POMDPs for Dialog Management. In Proceedings of the IEEE Spoken

Language Technology Workshop, pages 8–13, 2006.

Young, S., Gasic, M., Thomson, B., and Williams, J. D. POMPD-based Statistical Spoken

Dialog Systems: A Review. Proceedings of the IEEE, 101(5):1160–1179, 2013.

Zhang, J. and Rössler, B. Situation Analysis and Adaptive Risk Assessment for Intersec-

tion Safety Systems in Advanced Assisted Driving. In Proceedings of the Fachgespräch

Autonome Mobile Systeme, pages 249–258, 2009.

210

Bibliography

Zhang, N. L. and Liu, W. Planning in Stochastic Domains: Problem Characteristics

and Approximation. Technical report, The Hong Kong University of Science and

Technology, 1996.

Zhang, N. L. and Zhang, W. Speeding Up the Convergence of Value Iteration in Partially

Observable Markov Decision Processes. Journal of Artificial Intelligence Research,

14:29–51, 2001.

Zhang, N. L. and Liu, W. A Model Approximation Scheme for Planning in Partially

Observable Stochastic Domains. Journal of Artificial Intelligence Research, 7:199–

230, 1997.

Zhang, Z., Hsu, D., and Lee, W. S. Covering Number for Efficient Heuristic-based

POMDP Planning. In Proceedings of the International Conference on Machine Learn-

ing, pages 28–36, 2014.

Zhou, E., Fu, M., and Marcus, S. Solving Continuous-state POMDPs via Density Pro-

jection. Transactions on Automatic Control, 55(5):1101–1116, 2010.

Ziegler, Bender, P., Dang, T., and Stiller, C. Trajectory Planning for Bertha — A Lo-

cal, Continuous Method. In Proceedings of the IEEE Intelligent Vehicles Symposium,

pages 450–457, 2014a.

Ziegler, J., Bender, P., Schreiber, M., Lategahn, H., Strauss, T., Stiller, C., Dang, T.,

Franke, U., Appenrodt, N., Keller, C., et al. Making Bertha Drive? An Autonomous

Journey on a Historic Route. IEEE Intelligent Transportation Systems Magazine, 6(2):

8–20, 2014b.

211

	Introduction
	Thesis Statement
	Problem Statement
	General Decision-making
	Tactical Decision-making for Autonomous Driving

	Concept and Contributions
	Document Outline

	Related Work on Decision Making for Driving
	Tactical Decision-making
	Manual Decision Programming
	Utility- or Value-based Decision-making

	Related Research Topics
	Perception
	Object Tracking
	Situation Interpretation and Prediction
	Motion Planning and Vehicle Control
	Cooperative Driving
	Robot Navigation

	Discussion of Related Work
	Common Simplifications to Reduce Complexity
	Conclusion

	Background on (Partially Observable) Markov Decision Processes
	Definitions and Preliminaries
	mdpMarkov Decision Process (MDP)
	pomdpPartially Observable Markov Decision Process (POMDP)
	pomdp Formulated as a Belief State mdp

	Solving Decision Processes
	History of Related Work
	Complexity of Solving MDPs and POMDPs

	Value Iteration for MDPs
	Value Iteration for POMDPs
	Policy Tree
	Value Function Representation with -vectors
	Belief State Value Iteration for POMDPs
	Exact Value Iteration for POMDPs Using -vector Backups
	-vector Domination

	Approximate Point-based Value Iteration for POMDPs
	Point-based -vector Backup
	Difficulty of Approximating pomdps

	POMDP Applications
	Conclusion

	Continuous Partially Observable Markov Decision Processes
	Preliminaries on Continuous POMDPs
	Continuous-state pomdps
	Continuous-observation pomdps
	Continuous-action pomdps

	Related Work on Solving Continuous POMDPs
	Stochastic Optimal Control
	Parameteric Representations for General Continuous pomdps
	-function Bellman Backup with Gradient Information
	Policy Graph Representation and Policy Search
	Value-directed Space Representation

	Continuous Value Iteration
	Continuous Belief-state Bellman Backup
	Continuous -function Representation and Bellman Backup
	Point-based -function Bellman Backup

	Requirements for the Developed Method for Continuous POMDPs
	Conclusion

	Continuous Value Iteration with Representation Learning
	Conceptual Overview
	Monte Carlo (MC) POMDP Simulation and Bellman Backup
	Drawing Sample Sets
	mc Belief Prediction
	mc Belief Value Backup
	Point-based MC -function Backup
	Avoiding Sampling Redundancy
	Continuous Observation Spaces

	Discrete Representation of Continuous Space
	Definition of a discrete representation
	Assumptions and Discrete Backup Derivation
	Discretization of Particle-based Beliefs
	Discrete Evaluation of -functions

	Iterative Representation Learning
	Iterative Approach
	State Space Partitioning
	Decision Tree-based Partitioning
	Relationship to Decision Tree Learning for Predictive Modeling
	Loss Function for Representation Learning
	Decision Tree Learning and -function Discretization
	Test Generation and Expanding the Decision Tree

	Algorithmic Realization and Program Flow
	Lower and Upper Bound
	Belief Space Exploration
	Correction of Value Generalizations and Approximation Errors
	Solver Main Loop

	Summary and Conclusion

	Decision-making for Autonomous Driving by Solving Continuous POMDPs
	MDP and POMDP Spaces and Models for Driving
	State Space
	Observation Space
	Action Space
	Transition Model
	Observation Model
	Reward Function

	Generating Driving Policies by Solving the (PO)MDP
	Discrete MDP Value Iteration with State Space Growing
	Continuous POMDP with Representation Learning

	Conclusion

	Evaluation
	Continuous POMDP Evaluation
	Comparison with Existing Methods—1D Corridor Problem
	Convergence analysis—2D Corridor Problem
	Higher Dimensional Problems—8D Obstacle Avoidance
	Non-linear Models—8D Obstacle Avoidance with Circular Motion

	MDP-based Highway Driving
	Empirical Testing
	Policy Analysis
	Space Representation in Decision Processes

	POMDP Decision-Making for Urban Driving
	Influence of Partial Observability—Intersection with Blocked View
	Anticipation of Interaction—Zipper Merge
	State Space Representation—Merging into Moving Traffic with Limited Perception

	Conclusion

	Discussion and Conclusion
	Review of Thesis Statement
	Summary of Contributions
	Limitations, Applications, and Outlook
	Continuous POMDPs
	Tactical Decision-making for Driving

	Conclusion

	Appendix
	Alternative Reward Function Definition (s, a, s')
	Global -function Representation
	Upper Bound Approximation

	Acronyms
	Glossary
	List of Figures
	List of Algorithms
	Bibliography

