KIT | KIT-Bibliothek | Impressum | Datenschutz

Probing the geometry of the Laughlin state

Johri, S.; Papic, Z.; Schmitteckert, P. 1; Bhatt, R. N.; Haldane, F. D. M.
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

It has recently been pointed out that phases of matter with intrinsic topological order, like the fractional quantum Hall states, have an extra dynamical degree of freedom that corresponds to quantum geometry. Here we perform extensive numerical studies of the geometric degree of freedom for the simplest example of fractional quantum Hall states—the filling $\nu =1/3$ Laughlin state. We perturb the system by a smooth, spatially dependent metric deformation and measure the response of the Hall fluid, finding it to be proportional to the Gaussian curvature of the metric. Further, we generalize the concept of coherent states to formulate the bulk off-diagonal long range order for the Laughlin state, and compute the deformations of the metric in the vicinity of the edge of the system. We introduce a 'pair amplitude' operator and show that it can be used to numerically determine the intrinsic metric of the Laughlin state. These various probes are applied to several experimentally relevant settings that can expose the quantum geometry of the Laughlin state, in particular to systems with mass anisotropy and in the presence of an electric field gradient.


Volltext §
DOI: 10.5445/IR/1000054533
Originalveröffentlichung
DOI: 10.1088/1367-2630/18/2/025011
Scopus
Zitationen: 34
Web of Science
Zitationen: 32
Dimensions
Zitationen: 38
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2016
Sprache Englisch
Identifikator ISSN: 1367-2630
urn:nbn:de:swb:90-545333
KITopen-ID: 1000054533
HGF-Programm 43.21.02 (POF III, LK 01) Quantum Properties of Nanostructures
Erschienen in New Journal of Physics
Verlag Institute of Physics Publishing Ltd (IOP Publishing Ltd)
Band 18
Heft 2
Seiten 025011
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page