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Zusammenfassung

Die Vision von Schnittstellen zwischen Mensch und Maschine, die auf der Ge-
hirnaktivitdt des Benutzers basieren, inspiriert Forscher und Science-Fiction
Autoren gleichermaflen. Seit mehr als 15 Jahren wird international inten-
siv an Gehirn-Computer Schnittstellen (Brain-Computer Interfaces, BCIs)
geforscht. BCIs werden zunehmend in klinischen Anwendungen eingesetzt,
z.B. zur Kommunikation fiir Locked-in Patienten oder bei der Rehabilitation
nach einem Schlaganfall. Als Benutzerschnittstellen fiir gesunde Personen
finden BClIs vorwiegend in der Unterhaltungselektronik erste Anwendungen.
Trotz zahlreicher Fortschritte in der BCI Forschung und vielfiltiger poten-
tieller Anwendungen fiir BCIs, unterliegen gehirnaktivitétsbasierte Schnitt-
stellen immer noch groflen Einschriankungen beziiglich ihrer praktischen An-
wendbarkeit. Aktuelle BCIs haben in der Regel lange Kalibierungsphasen
und ermoglichen nur einen sehr geringen Informationsdurchsatz von weni-
gen Bits pro Sekunde. Thre Zuverléssigkeit ist, aufgrund des kleinen Signal-
Rausch-Abstands von Gehirnaktivitdtsmustern und aufgrund von Nichtsta-
tionaritéten der Signale, gering. Dariiber hinaus sind die aktuell verwendeten
Interaktionsparadigmen, die beispielsweise auf externen visuellen Stimuli ba-
sieren, oft unnatiirlich und unflexibel. Um diesen Problemen entgegen zu tre-
ten, werden in dieser Dissertation wichtige Beitrage zur Mustererkennungs-
Komponente, der zentralen Komponente eines modernen BClIs, entwickelt.
Die Hauptergebnisse der Arbeit lassen sich wie folgt zusammenfassen:

Zentrale Zielkriterien fiir die Mustererkennung von BCls

Um die Mustererkennung fiir BCIs systematisch weiterzuentwickeln, formu-
lieren wir die Hypothese, dass drei zentrale Zielkriterien, DISCRIMINATIVE,
ComPACT und ROBUST fiir die Mustererkennung von BClIs notwendige Be-
dingungen darstellen (Kapitel 3):

e DISCRIMINATIVE: Identifikation von Gehirnaktivitats-Mustern, die die
Unterscheidung von verschiedenen mentalen Aktivitdten und Benutzer-
zusténden erlauben.
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e CoMPACT: Kompakte Modellierung relevanter Aspekte von Gehirnak-
tivitdts-Mustern in interpretierbaren und generalisierenden Strukturen.

e ROBUST: Robustheit gegeniiber Signal-Variabilitdten in Gehirnakti-
vitétssignalen, die nicht durch das BCI Paradigma moduliert werden.

Wir untersuchen diese drei Zielkriterien hinsichtlich der besonderen Rele-
vanz fiir BCIs und setzen sie in Bezug zu fundamentalen Prinzipien aus
der Maschinellen Lerntheorie. Wéahrend die Prinzipien DISCRIMINATIVE und
CoMPACT in der Mustererkennung weitreichend bekannt sind, wird unse-
rem Wissen nach hier zum ersten Mal die Notwendigkeit der drei Zielkri-
terien DISCRIMINATIVE, COMPACT und ROBUST, sowie ihre wechselseitige
Abhéngigkeit, die eine gemeinsame Optimierung impliziert, analysiert.

Entwicklung eines generischen Rahmenwerks fiir die Mustererken-
nung von BClIs

Ein zentraler Beitrag dieser Dissertation besteht in der Entwicklung eines
BCI Optimierungs-Rahmenwerks (DCR Framework), das die drei oben ge-
nannten Zielkriterien fiir die Musterkerkennung zum ersten Mal in einem ge-
meinsamen Optimierungsalgorithmus vereint (Kapitel 4). Dazu werden die
drei Zielkriterien in einem konvexen Optimierungsproblem durch eine Least-
Squares Regression mit ¢;-Norm und Sum-of-Norms Regularisierungen for-
malisiert. Zur Losung dieses Problems wurde ein effizienter Optimierungs-
algorithmus entwickelt, der auf der Alternating Direction Method of Multi-
pliers basiert. Dabei nutzt das DCR Framework generische, hochdimensionale
Merkmale im Zeit- und Frequenzbereich und bietet die innovative Funktio-
nalitdt, Richtungen im Merkmalsraum zu definieren, gegeniiber denen die
gelernten Modelle invariant und somit robuster gegeniiber Einfliissen von Si-
gnalvariabilitdten werden.

Wir evaluieren das DCR Framework durch acht unterschiedliche BCI Da-
tensitze mit EEG, {NIRS und ECoG Signalen und zwei synthetisch generier-
ten Datensétzen (Kapitel 5 und 6). Dabei zeigen wir, dass die Erkennungsleis-
tung der vorgeschlagenen Methoden dem neusten Stand der Forschung ent-
sprechen und zahlreiche, aktuelle, alternative Methoden iibertreffen. Die Aus-
wertungen beinhalten mehrere, 6ffentlich verfiighare Benchmark-Datensétze,
wie beispielsweise den Datensatz der BCI Challenge @ NER2015. In die-
sem Wettbewerb wurden 260 Systeme miteinander verglichen. Unsere Einrei-
chung, die auf dem DCR Framework basiert, konnte das sechstbeste Ergebnis
erzielen und gewann den zweiten Preis bei der internationalen IEEE Neural
Engineering Konferenz 2015. Eine stringente mathematische Umsetzung der
drei Zielkriterien im DCR Framework ermdoglicht es, das DCR Framework auf
eine Vielzahl verschiedener BCI Erkennungsprobleme mit sehr unterschied-
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lichen Signalcharakteristiken ohne grundlegende Anpassungen anzuwenden.
Diese Flexibilitdat deutet darauf hin, dass der generische Ansatz der drei Ziel-
kriterien nicht nur notwendige, sondern auch hinreichende Bedingungen fiir
eine Vielzahl von BCI Mustererkennungsproblemen darstellt.

Erkennungssysteme fiir innovative BCI Paradigmen

Ein weiterer Hauptbeitrag dieser Dissertation sind zwei Studien, anhand de-
rer wir zeigen, wie die drei Zielkriterien bei der Entwicklung von Erkennungs-
systemen fiir neue BCI Paradigmen erfolgreich umgesetzt werden kénnen fiir
die es bisher keine etablierten Abfolgen von Mustererkennungsschritten gibt.
Dabei erfordern die beiden BCI Paradigmen keinen Lernaufwand auf der Sei-
te des Benutzers, stattdessen wird die spontan entstehende Gehirnaktivitét
des Benutzers analysiert und interpretiert. Wir gehen auf die EEG-basierte
Erkennung mentaler Belastungszustéinde (Workload-Erkennung) und die Er-
kennung von Lauteinheiten bei kontinuierlich gesprochener Sprache, anhand
invasiv gemessener ECoG-Signale ein.

In der Workload-Studie konnte durch die Anpassung des Systems an die er-
kannte Workload-Intensitét eine bessere Leistungen der Benutzer in den zu
bearbeitenden Primér- und Sekundér-Aufgaben erzielt werden, und die Er-
gebnisse der Selbstauskunft der Benutzer zeigen signifikante Vorteile durch
die Workload-Adaption. Dariiber hinaus konnten wir mit dem DCR Frame-
work Verbesserungen der Erkennungsleistung gegeniiber unserem bisherigen
System zeigen. Mit dem zweiten BCI Paradigma tragen wir zu dem sich
aktuell schnell entwickelnden Forschungsbereich der Erkennung von Sprache,
anhand invasiv gemessener Hirnaktivitét bei. Dabei zeigen wir ein erstes Sys-
tem zur Erkennung von Vokalen wahrend kontinuierlich artikulierter Sprache
auf Basis von Elektrokortikographie (ECoG) Signalen. Die gelernten Modelle
erlauben neben der Erkennung eine detaillierte Analyse der am Sprachprozess
beteiligten Gehirnregionen und ihrer Interaktionen.
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CHAPTER 1

Introduction

This chapter provides general foundations for this dissertation.
It introduces the basic concepts of modern Brain-Computer In-
terfaces (BCIs), including the relationship between BCI applica-
tions, BCI paradigms, and brain activity patterns. The chapter
gives an overview on the state-of-the-art and current challenges
in BCI research. It ends with a summary of the objectives of this
dissertation.

1.1 Brain-Computer Interfacing

The vision of mind-reading machines and the control of machines by pure
thought has stimulated the fantasy of both, researchers and science fiction
authors for many decades. Brain-Computer Interfaces (BCIs) measure and
interpret the users’ brain activity with the goal to derive information about
his or her intentions and mental states. They provide a communication chan-
nel that enables Human-Machine Interaction by only using signals emitted
by the users’ brain.

The primary goal of this dissertation is to advance pattern recognition of
BCIs on the basis of three core objectives that we introduce and discuss
in chapter 3 in detail. In this chapter, we lay the basic foundations and
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introduce briefly what the current state of BCI research is and which role
pattern recognition plays for BCIs.

1.1.1  Brain-Computer Interface Research

Jacques J. Vidal [Vidal, 1973, Wolpaw and Wolpaw, 2011] coined the term
“Brain-Computer Interface” in the early 1970s at University of California
Los Angeles. Thereafter, few pioneering papers followed in the 1970s and
1980s. BCI research started to gain more and more attention in the late
1990s as recording technology, signal processing and computational power
had advanced. Since the millennium, one can see a linear increase in the
number of published research articles.

Figure 1.1 shows the number of scientific articles listed by Google Scholar
for the search terms' “Brain-Computer Interface” and “Brain-Machine In-
terface” over time since the 1970s.

Number of BCI Papers

(Google ScholarJan 2015)
6000
5000

4000

2000
1000

O — I,-

Q‘—) Q") 0‘) Q . Qf\/ O)
@@@§§@§% O

3000 : |
\9 '\,"’

B "Brain-Computer Interface" H "Brain-Machine Interface"

Figure 1.1 — Number of BCI papers since 1970 according to Google Scholar
using search terms “Brain-Computer Interface” and “Brain-Machine Inter-
faces” (as of January 2015).

!Both search terms are synonymously used in literature. Throughout this work, we use
“Brain-Computer Interface”.
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Today, BCI research is a highly interdisciplinary field that spans a wide range
of different areas of science and engineering, including Neuroscience, Cogni-
tive Psychology, Medicine, Human Factors, Statistics, Signal Processing, and
Machine Learning.

While Brain-Computer Interfaces is a young and highly active research dis-
cipline that is rapidly evolving and pursued by numerous labs all over the
world?, BCI researchers have not yet agreed on common standards and a
common terminology. For example, there are different opinions on what a
”Brain-Computer Interface” actually is and what it is not (see next section).
Currently, there are efforts towards a roadmap for future BCI research, such
as the initiative to form a BCI community that has started at the BCI Meet-
ing 2013 [Huggins et al., 2014] and the Brain/Neural Computer Interaction
Horizon 2020 project [Brunner et al., 2015].

1.1.2  Definition of Brain-Computer Interfaces

The BCI research community has not agreed on a single common definition
of the term Brain-Computer Interface [Brunner et al., 2015]. Several authors
have proposed definitions that all share similar ideas but have a sightly dif-
ferent focus (see e.g. [Graimann et al., 2010] for a collection of definitions).
One of the most frequently employed definition is the one by Wolpaw et
al. [Wolpaw and Wolpaw, 2011], who define a BCI as

Definition: BCI [Wolpaw and Wolpaw, 2011]

A system that measures Central Nervous System (CNS) activity and
converts it into artificial output that replaces, restores, enhances, sup-
plements, or improves natural CNS output and thereby changes the
ongoing interactions between the CNS and its external or internal en-
vironment.

Throughout this thesis, we employ our own, more general BCI definition:
Definition: BCT

Brain-Computer Interfaces are Human-Machine interaction systems
whose operation depends on the single-trial analysis and interpretation
of their users’ brain activity signals.

2BCI research can still be seen as a comparably small field. For example, Google
Scholar lists about 50000 papers per year for the search term “Computer Vision” in the
last 5 years.
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While the definition by Wolpaw et al. is centered around applications in
relationship to CNS activity, our definition decouples the applications of a
BCI from those that are typically performed by the CNS3. Furthermore, it
emphasizes the focus of this dissertation on pattern recognition from brain
activity signals of few seconds length (single-trials) as the central component
of a BCI.

1.1.3 Components and Structure of a Brain-
Computer Interface

The components of a modern BCI form a feedback loop that is also known as
the ”Brain-Computer Interface Cycle” [van Gerven et al., 2009]. Figure 1.2
illustrates an adapted version of this cycle (based on [Wolpaw et al., 2002,
van Gerven et al., 2009], and others). It consists of the four main parts BCI
user, brain signal acquisition, pattern recognition, and BCI program:

Pattern
/ Recognition \

Brain Signal BCI
Acquisition Program

Feedback /
Stimulation

User states
and cognition

Figure 1.2 — BCI cycle (feedback loop) including the user, brain sig-
nal acquisition, pattern recognition and BCI program. Figure inspired by
[Wolpaw et al., 2002, van Gerven et al., 2009].

3The central nervous system consists of the brain and the spinal cord. All BCIs dis-
cussed in this dissertation are brain activity based, therefore we refer to ”brain activity”
instead of ”CNS activity” throughout this thesis.
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BCI Users

Signals emitted by the BCI users’ neural processes are the fundamental source
of information for the BCI. These neural processes are intentionally controlled
by the BCI users, for example by performing certain mental tasks, or corre-
spond to their unintentionally occurring brain activity patterns.

In this thesis we target human BCI users, however the concepts and meth-
ods discussed in this thesis may, in principle, be applied in non-human BClIs,
such as animal studies with primates or rodents.

Clinical patients have traditionally been a target user group of BCI research
[Wolpaw et al., 2002]. For example, BCIs have been developed to provide
means of communication and control to patients suffering from spinal cord
injury and severe motor degenerative diseases. Specifically, BCIs were de-
signed to support amyotrophic lateral sclerosis (ALS) patients, who in the
final stages of the disease suffer from a nearly complete loss of muscle control,
which is often referred to as locked-in syndrome?.

In the last few years, healthy users have gained increasing attention in BCI
research [Allison et al., 2007]. The direct measurement of neural signals
that are related to the user’s mental processes can be a valuable source of
information for a wide range of intelligent systems that adapt their cur-
rent state to the user [Frey et al., 2013]. This is, in particular relevant,
as BCIs can infer information about the user, such as covert user states
[Zander and Jatzev, 2009], that cannot easily be derived by audio, video and
other biophysiological sensors.

More background on physiological foundations of human brain activity sig-
nals and their use in BCIs is discussed in section 2.1.1.

Brain Signal Acquisition

Brain signal acquisition systems for BCIs consist of sensors and amplifiers
to measure electrophysiological or metabolic activity emitted by the neu-
ral processes of the BCI users. One can distinguish between invasive and
non-invasive brain signal acquisition. In non-invasive measurements, sensors
are extracraneal, i.e. placed outside the head, such as electrodes attached to
the scalp for Electroencephalography (EEG). Invasive measurements require

4The term ”locked-in syndrome” is not only used for subject conditions with an ab-
sence of all voluntary movements. For example, [Laureys et al., 2005] defined a condition
with intact abilities to perform vertical eye movements and blinks as ”classical locked-in
syndrome”.
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neurosurgery to place sensors intracraneally, i.e. placed inside the head on
top of the cortex (epidural or subdural recordings by Electrocorticography,
ECoQG), or microarrays placed within the cortical tissue (local field potentials
(LFPs) or single cell recordings). Because of the high health risks involved in
neurosurgery, most BCI research uses non-invasive measurements, while in-
vasive BCI experiments with human users are only conducted within clinical
interventions.

Sensors are typically placed at multiple locations distributed over specific
cortical areas or over the whole scalp (e.g. according to the international
10/20 system [Homan et al., 1987]). The brain signal acquisition systems
amplify and digitize the signals into a digital multivariate time series for
further processing. A selection of different types of sensor modalities is avail-
able to acquire brain activity signals for BCIs of which EEG is the most
frequently used modality. EEG performs a direct measurement of the elec-
trical potentials that origin in the synaptic activity of the BCI users’ neural
processes. Figure 1.3 shows a BCI user wearing an EEG-cap (Brain Products
actiCap, 16 channels) during a BCI experiment. In addition to direct mea-
surement of signals produced by the neural processes, correlates of neural
activity can be used as brain activity signals. For example, functional Near-
Infrared Spectroscopy (fNIRS) uses optical measurements to acquire relative
changes of cerebral blood oxygenation that is generally associated with brain
activity (Blood-Oxygen Level Dependent, BOLD effect [Ogawa et al., 1990]).
Magnetoencephalography (MEG) and functional magnetic resonance imag-
ing (fMRI) are less frequently used for BCIs, as they require a high technical
effort, have high operation cost, require special facility, and strongly restrict
users in their movements.

More background on brain signal acquisition and, in particular, on Electroen-
cephalography (EEG), functional Near-Infrared Spectroscopy (fNIRS), and
Electrocorticography (ECoG), can be found in section 2.1.2.

Pattern Recognition

The pattern recognition component is the central component of a BCI. In
this dissertation, we refer to pattern recognition as the term for all signal
processing and machine learning operations involved to transform digital
brain activity signals into a recognition output. This output corresponds to
a machine interpretable estimate of the class or intensity of a user state or
mental task condition represented as a discrete or continuous variable.
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Figure 1.3 — A BCI user wearing an EEG-cap (Brain Products actiCap,
16 channels) during a BCI experiment, in which visual feedback is provided
on the screen by the BCI program according to the Eriksen flanker task
[Eriksen, 1995].

Pattern recognition in early BCIs was rather straight-forward and relied
strongly on the fact that people can learn to modulate their brain ac-
tivity patterns, in particular, as the feedback in the BCI cycle supports
learning (i.e. operant conditioning [Rockstroh et al., 1984, Birbaumer, 2006,
Skinner, 1938]).  After intensive user training, the recorded brain sig-
nals can operate a BCI Program by using a simple static rule-based
translation of the measured signals as control commands. Advanced
signal processing and machine learning for BCIs substantially ease the
effort of mnovice BCI wusers to operate a BCI and shift learning ef-
fort towards automatic pattern recognition methods [Miiller et al., 2004,
Vidaurre et al., 2011, Kindermans et al., 2014a]. Modern BCIs usually have
a calibration phase that takes less than an hour instead of up to several
months of user training. Moreover, pattern recognition methods enable to
analyze the naturally occurring brain activity patterns that are not specifi-
cally intended to operate the BCI.

Common pattern recognition approaches for BCIs are described in sec-
tion 2.2. In chapter 3, we introduce and discuss three core objectives to
advance pattern recognition of BCIs. These objectives lead to a new pat-
tern recognition framework for BCIs (DCR Framework) that is described in
chapter 4 in detail and evaluated for multiple BCI problems in chapters 5
and 6.
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BCI Program

The BCI program is the component of a BCI that processes the information
about the recognized brain activity patterns to affect the operation of a
computer application or an embedded device. For example, a BCI program
can transform the pattern recognition output into a control command for an
artificial device, such as a neuroprosthesis, or it can move a cursor on the
computer screen in a certain direction according to the recognized class.

In addition to that, the BCI program often shows or triggers a feedback re-
sponse to the user, such as a visual output on the screen or the movement
of a mechanical device. The perception and associated cognition processes
to such a feedback event influence the user’s brain activity patterns and, in
turn, provide the basis for the measurements of the brain signal acquisition
system, which closes the BCI cycle.

During the calibration phase of a BCI, often predefined stimuli are presented
to the user, such as instructions to perform a specific mental task. Addition-
ally, a certain class of BClIs, called dependent BClIs, relies on the users’ overt
attention towards sensory stimulation by external sources that are controlled
by the BCI program (see e.g. Oddball paradigm in the next section).

Systems that measure and derive information about the users’ brain activity
but do not close the loop by providing feedback to the user are sometimes
called cognitive monitoring systems. Furthermore, interfaces with the pri-
mary purpose to present feedback on measured brain activity to the user are
sometimes called neurofeedback systems. The techniques and methods used
in cognitive monitoring systems, neurofeedback systems and BClIs do, in gen-
eral, not differ. Consequently, we use only the term BCI for all such systems
throughout this dissertation, which is in agreement with our definition in
section 1.1.2.

The following section 1.1.4 gives more examples and details on current BCI
applications and corresponding BCI paradigms.

1.1.4 BCI Applications, BCI Paradigms and Brain
Activity Patterns

BCI is an umbrella term that encompasses a variety of different applica-
tions. Each of these BCI applications employs certain BCI paradigms that
are known to modulate characteristic brain activity patterns (figure 1.4). The
terms " BCI application”, "BCI paradigm”, and ”brain activity pattern” are
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not precisely defined in BCI literature [Brunner et al., 2015], therefore the
following sections provide definitions for the usage of these terms within this
dissertation and list multiple examples.

BCI Application employ—>| 8l L modulate—» B"a:;t‘t\::":"ty

Figure 1.4 — Summary of the structural relationship between BCI applica-
tions, BCI paradigms and brain activity patterns.

BCI Applications

Researchers have proposed and implemented a wide range of different BCI
applications. Traditionally, research effort has been put into communi-
cation systems for locked-in patients [Farwell and Donchin, 1988], control
of prostheses [Miiller-Putz et al., 2005, Hochberg et al., 2012], wheelchairs
[Galan et al., 2008], or computer applications [Bensch et al., 2007]. More
recently, stroke rehabilitation [Daly and Wolpaw, 2008, Ang et al., 2010]
gained a lot of attention in the BCI research community. Additional ap-
plications that may become increasingly relevant in the near future are
games and virtual reality applications [Nijholt et al., 2009, Bos et al., 2010],
ergonomics or usability testing [Hirshfield et al., 2009, Frey et al., 2013], user
state monitoring of drivers and pilots [Lin et al., 2005], education and tu-
toring systems, rehabilitation for attention deficit hyperactivity disorder
patients [Lim et al., 2010], functional electrical stimulation for bowel and
bladder control [Peckham and Knutson, 2005], approaches to make Human-
Machine Interaction more natural and empathic [Heger et al., 2011a], rapid
media tagging [Parra et al., 2008, Wang et al., 2009], security and surveil-
lance applications [Miiller et al., 2008, Hild et al., 2014].

Few BCI applications, like the P300 speller [Farwell and Donchin, 1988],
have even been translated into clinical practice [Wolpaw and Wolpaw, 2011].
Furthermore, BCIs have reached the consumer market with brain games that
are commercially available [Zhang et al., 2010].

In sum, there is a large and growing body of very different BCI applications.
A primary limiting factor for the development of new BCI applications is the
reliable recognition of the BCI paradigms they employ.
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BCI Paradigms and Corresponding Brain Activity Patterns

The term 7”BCI paradigm” is regularly used in BCI literature
(e.g.  [Obermaier et al., 2003, Schalk et al., 2004, Neuper et al., 2003,
Babiloni et al., 2007, Guger et al., 2009, Fazli et al., 2012]) but is not
clearly defined. We refer to "BCI paradigms” throughout this thesis as

Definition: BCI paradigm

The experimental task or mental state of the user that modulates cer-
tain brain activity patterns to operate the BCI.

In this definition, BCI paradigms are closely related to ”brain activity pat-
terns” to which we refer to as
Definition: Brain activity patterns

The characteristic properties of the neural processes that are modulated
by the BCI paradigm and elicit measurable changes in parts of the brain
activity signals.

Only a few BCI paradigms are regularly employed in BCI research. The most
frequently employed categories of BCI paradigms are:

e Cognitive tasks: Cognitive tasks are mental tasks which users per-
form to generate certain brain activity patterns. Motor Imagery
[Pfurtscheller and Neuper, 1997], i.e. the imagined movements of body
parts (hands, feet, etc.), is the most commonly used cognitive task
in BCI research. Other tasks that have repeatedly been employed for
BClIs are mental arithmetics [Anderson et al., 1995], mental rotation,
or working memory tasks, such as the n-back task [Kirchner, 1958].

e User states: In comparison to cognitive tasks, cognitive or affective
user states occur passively as part of the current mental condition of
the user, i.e. they are often unrelated to a specific event and are not
intentionally performed by the user. A typical example for user states
are affective states that are typically induced in lab experiments using
positive and negative emotional stimuli (see [Miihl et al., 2014a] for
review). Other user states that have been used for BCIs are workload,
vigilance and fatigue, selective attention to auditive and visual stimuli,
and the perception of erroneous events, such as an unexpected feedback
because of recognition errors (see [Frey et al., 2013] for review).

e Oddball paradigm: In the oddball paradigm, a sequence of repetitive
(usually auditive or visual) stimuli is presented to the user, which
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is interrupted by different rare stimuli, so-called oddballs (e.g. 20%
of stimuli). The perception of an oddball stimulus generates a P300
event-related potential (ERP) that can be measured, e.g. by EEG and
MEG. A BCI user can perform binary selections for communication
and control by shifting his or her attention to or away from differ-
ent oddball stimuli. For example, this paradigm is used in the matrix
speller [Donchin and Coles, 1988], in which the user can shift his or
her attention to different letters that are aligned in a grid and light up
repeatedly.

e Perception of fast repetitive stimuli: The perception of fast periodic
(usually visual) stimuli triggers a corresponding response in associated
cortical areas. Typical stimuli are flashing light sources (e.g. LEDs or
phase-reversing checkerboxes [Allison et al., 2008]). The user can select
different options of the BCI by switching his or her focus of attention to
one of multiple stimuli sources that have distinct stimulation sequences
or stimulation frequencies. A particular stimuli source and, therefore a
particular option for the BCI, can be detected from the brain response
sequence that corresponds to the stimulation sequence.

Details about the brain activity patterns and the signal properties that are
modulated by these BCI paradigms are described in section 2.1.3.

Figure 1.5 illustrates examples for the relation of applications, paradigms and
patterns. It shows BClIs for communication and control with different brain
activity patterns employing motor imagery, P300 speller or fast repetitive
stimuli. Furthermore the figure illustrates adaptive human-machine interac-
tion using workload recognition that can be assessed using the BOLD effect,
brain rhythms, or event-related potentials.

1.1.5  State-of-the-Art and Challenges

In the previous section we have outlined diverse BCI applications for clinical
and non-clinical use. However, brain-based user interfaces are still not widely
used outside research labs. Currently, only less then 10 locked-in patients
use BCIs regularly [Wolpaw and Wolpaw, 2011]. For healthy users, there are
only a few commercially available BCIs on the consumer market, mainly for
entertainment purpose [Zhang et al., 2010].

The following limitations of state-of-the-art BCIs are among the most impor-
tant obstacles for a wider applicability and user acceptance of BCls: (1) cur-
rent BCIs require inconvenient setups, (2) their information throughput is
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Figure 1.5 — Examples for the relation of BCI applications, paradigms and
brain activity patterns. Lines connect BCI applications, paradigms and pat-
terns to illustrate their relation for communication and control with different
brain activity patterns employing motor imagery, P300 speller or fast repeti-
tive stimuli. Furthermore the figure illustrates adaptive human-machine inter-
action using workload recognition that can be assessed using the BOLD effect,
brain rhythms, or event-related potentials.

low in comparison to conventional user interfaces, (3) the recognition is un-
reliable, especially under not completely controlled conditions, and (4) many
established BCI paradigms are not natural and not intuitive for BCI users.

Inconvenient Setups

Currently, BCIs are strongly restricted in their practical applicability. BCIs
usually cannot be used right away, but require calibration that can take up
to an hour. A calibration data collection has to be performed prior to each
BCI session and the data cannot be reused for other sessions or other users,
because of strong inter-session and inter-person variabilities of brain activity
signals (section 2.1.3).

Traditional brain signal acquisition devices, such as EEG caps, are obtrusive
as they require conductive gel that the users have to wash out of their hair
after each BCI session. Furthermore, the conductive gel cannot easily be
applied by the user himself or herself. Head-sets with dry electrodes and
fNIRS optodes can be uncomfortable to wear, since they often impose a high
pressure to achieve a good contact between sensor and scalp.
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Additionally, many BCIs force the users to limit their natural movements
to maintain a high signal quality. For example many BCIs do not operate
properly when the user moves his or her eyes, when muscles are activated,
or while he or she is speaking (see section 2.1.3).

Low Information Throughput

One of the most limiting factors of BClIs is their low information through-
put. BCIs usually discriminate a small number of discrete classes of brain
states and require signal segments (trials) of several seconds length to derive
a recognition estimate. Therefore, the fastest non-invasive BCIs have infor-
mation throughput usually below 2 bits/s [Spiiler et al., 2012]. Such a low
throughput prevents real-time control of complex systems and reduces the
speed of communication devices to a level which is outperformed by nearly
all conventional input modalities, by far.

Unreliable Recognition

In addition to low recognition accuracies, BCIs often cannot maintain persis-
tent recognition rates over time. Brain activity signals are inherently char-
acterized by artifacts and non-stationarities that can lead to a strong decline
of recognition performance. Typically, only a few minutes of calibration data
are available to train the BCI, which makes it challenging to learn robust
pattern recognition models. Additional data from other recording sessions
or different users cannot be used, in general, because of the strong inter-
person and inter-session variabilities (section 2.1.3). The unreliable recogni-
tion becomes even more evident when BCIs are supposed to be used outside
of controlled laboratory conditions.

Unnatural and Non-Intuitive BCI Paradigms

Most BCIs employ one of few well-studied BCI paradigms that have been
outlined in section 1.1.4. These BCI paradigms are based on neuroscien-
tific effects known to generate certain brain activity patterns that can be
measured reliably in most users with a fair signal-to-noise ratio. However,
the interaction protocols that the corresponding BCI applications impose
are unnatural and non-intuitive for many users. Especially, BCI paradigms
that require significant user learning or depend on external stimulation (de-
pendent BCIs), such as blinking or flickering lights, appear inconvenient in
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comparison to alternative modalities for Human-Machine Interaction, such
as mouse, keyboard, speech, or gestures.

Approaching the Challenges by Pattern Recognition

The pattern recognition component, which plays a central role in a
BCI, can significantly contribute to counteract the limitations discussed
above. An important branch of research on pattern recognition methods
for BCIs is concerned with methods that reduce the calibration time of
BCIs. For example, transfer learning techniques have been proposed that
enable to use calibration data from previously recorded sessions of the
user or different users (see e.g. [Krauledat et al., 2008, Heger et al., 2013,
Kindermans et al., 2014b] and section 4.2). Since the 1990s, numerous in-
cremental advances in pattern recognition methods have contributed to the
continuous increase in recognition rates for BCIs. Furthermore, to in-
crease information throughput, pattern recognition methods enabled the
single-trial recognition of brain activity signal segments of few seconds
length and increased the number of different classes that can be discrimi-
nated [Wolpaw and Wolpaw, 2011]. Techniques that reduce the impact of
artifacts (e.g. [Romero et al., 2008]) and more recently non-stationarities
(e.g. [Samek et al., 2012]), such as linear subspace transformations and
adaptive classification, are currently developed to increase the reliability
of BCI pattern recognition. Developments in data analysis methods en-
abled to investigate brain activity patterns and have discovered novel BCI
paradigms, such as monitoring of certain covert task-specific user states
(e.g. [Reissland and Zander, 2009]). These efforts have significantly con-
tributed to the field of BCI research, however they usually focus on isolated
aspects of the four challenges described in the previous paragraphs. In this
dissertation we approach each of the four challenges by systematically ad-
vancing generic methods for BCI pattern recognition as outlined in the next
section.

1.2 Thesis Objectives

The goal of this thesis is to systematically advance pattern recognition for
BClIs in order to yield BCIs with shorter setup times, higher information
throughput, more reliable recognition and enable more natural and intuitive
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BCI paradigms. To achieve this goal we pursue the following objectives in
this dissertation:

1.2.1  Identifying Core Objectives of Pattern Recog-
nition for BCls

A major limiting factor for pattern recognition of BClIs is that there is no
systematic theory on how the pattern recognition component of BCIs should
be realized. Therefore, the first objective of this thesis is to identify core
aspects that are necessary conditions for the pattern recognition component
of a BCI. Thus, we formulate the following hypothesis for this dissertation:

For pattern recognition in BCIs it is necessary to implement and balance three
core objectives:

e DISCRIMINATIVE: Identification of brain activity patterns, that en-
able to discriminate between different classes or intensities of a BCI
paradigm

e CoMPACT: Compact modeling of relevant aspects of brain activity pat-
terns in generalizing structures

e ROBUST: Robustness against signal variabilities in brain activity sig-
nals that are not modulated by the BCI paradigm

To provide evidence for this hypothesis, we highlight the relevance of each of
these aspects for BCIs and relate each of them to objectives of methods that
are already used in the pattern recognition component of BCIs, furthermore,
we show that the three objectives are indeed necessity conditions by relating
each of them to essential principles of pattern recognition.

1.2.2  Generic Framework for Single-Trial Recogni-
tion based on Joint Optimization

The second objective of this thesis is to create a BCI recognition frame-
work that jointly optimizes the three identified pattern recognition objectives
DiSCRIMINATIVE, COMPACT, and ROBUST in a principled and generic way,
which we call the DCR Framework. For the first time, this challenge has been
approached by formulating the three components as a convex optimization
problem, which we solve using a new algorithm based on the Alternating
Direction Method of Multipliers [Boyd et al., 2011].



16 Introduction

We evaluate our framework using different brain activity signals (EEG,
fNIRS, and ECoG). We show the great flexibility and state-of-the art per-
formance for different established and novel BCI paradigms with various
signal patterns with different characteristics, such as the recognition of oscil-
latory signals, event-related potentials, and hemodynamic activity. In addi-
tion to that, the successful evaluations using the principled approach of the
DCR Framework show empirically that the three objectives DISCRIMINA-
TIVE, COMPACT, and ROBUST are a sufficient set of conditions for a variety
of tasks in BCI pattern recognition.

1.2.3 Novel BCI Paradigms

Improvements in the three pattern recognition objectives are especially rele-
vant for recognizing new BCI paradigms that do not follow well-known neuro-
physiological effects but modulate brain activity patterns in a complex way.
Therefore, the third objective of this thesis is to introduce two innovative sys-
tems to recognize BCI paradigms that have not been proposed in this form
before. In these systems, the naturally occurring brain activity patterns are
analyzed automatically and, particularly, no learning by the user is required
prior to operate the BCI. For each of the BCIs, we highlight the particular
aspects of how the above mentioned objectives DISCRIMINATIVE, COMPACT,
and ROBUST are implemented.

Specifically, we discuss a novel self-paced BCI for EEG-based workload adap-
tive human-machine interaction, in which we could show significant ben-
efits for the users by adapting an information presentation system to the
recognized workload. Furthermore, we analyze ECoG-based Brain-to-Text
vowel classification with non-stationarity reduction, which is a significant
improvement for our recently introduced system to decode continuously spo-
ken speech from ECoG signals.

1.3 Structure of this Thesis

Figure 1.6 summarizes the structure of this thesis. The first two chapters
introduce the central aspects of pattern recognition based BCIs and provide
the necessary foundations on brain activity signals. In chapter 3, we intro-
duce and discuss the three core objectives of pattern recognition for BClIs
and provide evidence for each of them by relating them to BCIs and to prin-
ciples of pattern recognition (thesis objective 1.2.1). Furthermore, we discuss
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Figure 1.6 — Structure of this thesis

their interdependence. Chapter 4 describes in depth the DCR Framework,
a general framework for single-trial recognition based on the joint optimiza-
tion of the three objectives of pattern recognition for BCIs (thesis objective
1.2.2). Chapter 5 provides detailed evaluations of the DCR Framework, using
multiple different BCI problems and synthetic data. Two studies on novel
BCI paradigms are introduced in chapter 6 (thesis objective 1.2.3). Chap-
ter 7 summarizes the main results and contributions of this dissertation and
proposes directions for future research.

Parts of this dissertation have been published in international journals and
conference proceedings. A list of own publications can be found in Ap-
pendix ?7.






CHAPTER 2

Background

The first part of this chapter gives an introduction into the neu-
rophysiological background of brain activity signals and different
techniques for brain signal acquisition. The second part covers
general aspects of single-trial recognition of brain activity patterns
in a modern BCI system.

2.1 Brain Activity Signals

The human brain is a highly complex information processing system that
drives most functions of the human body and higher cognitive abilities, in-
cluding thinking and acting. Although the functionality of specific areas and
the principles on how information is encoded, processed and distributed are
still not completely understood, it is generally accepted that brain function
is based on electrical and chemical processes, which operate as an inter-
connected information processing system based on nervous cells (neurons).
The neural processes and correlates thereof can (partly) be measured and
exploited as brain signals for brain-computer interfacing.
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2.1.1 Neural Information Transfer

A comprehensive introduction into the neurophysiological foundations of
brain activity are beyond the scope of this dissertation.  Here, we
only give a short summary of the most relevant aspects. The inter-
ested reader may consult [Kandel et al., 2000, Zschocke and Hansen, 2011,
Wolpaw and Wolpaw, 2011].

Neurons in the brain are comparably simple but highly interconnected units
of information processing. The information transport in the neuronal net-
work is based on neurons firing in response to electrical or chemical excitation.
If the excitations of a neuron exceed a certain threshold, an action poten-
tial (spike) in form of a brief local current is released. It propagates along
the axon to the synapse where neurotransmitters are released. The result-
ing movement of positive and negative ions (Na+, K+, Cl-) cause changes in
the membrane conductance that lead to inhibitory or excitatory effects in the
postsynaptic neuron, called excitatory and inhibitory postsynaptic potentials
(EPSP and IPSP). These potentials can contribute to generate a succeed-
ing action potential in the postsynaptic target cell, i.e. connected neuron or
muscle cell.

The neural information transfer, described above, is accompanied by subse-
quent changes in the cerebral blood flow, which is commonly called neurovas-
cular coupling. The neural processes require energy in the form of adenosine
triphosphate, which is synthesized primarily from glucose and oxygen. The
cerebral blood flow supplies the neural cells with both of these substrates.
Consequently, neural activity increases cerebral blood flow and causes lo-
cal changes in the level of blood-oxygenation. The brain signal acquisition
modalities fNIRS and fMRI rely on these neurovascular effects (see next sec-
tion).

2.1.2  Brain Signal Acquisition

In the following we briefly describe the background and characteristics of the
brain acquisition modalities that have been used in the experiments of this
thesis (chapters 5 and 6), namely Electroencephalography (EEG), functional
Near-Infrared Spectroscopy (fNIRS) and Electrocorticography (ECoG).
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Electroencephalography (EEG)

The summed activity of postsynaptic potentials (EPSP and IPSP, see sec-
tion 2.1.1) of large populations of neurons! generate local (extracellular) field
potentials (LFPs). Field potentials of large populations of neurons that are
time-synchronously active and spatially aligned in parallel within a cortical
area can generate an open dipole field that is strong enough to be measured
non-invasively at the scalp. Electroencephalography (EEG) is the direct mea-
surement of the variations of these summed cortical field potentials using
electrodes attached to the scalp.

EEG is the most frequently used modality for brain signal acquisition for
BClIs because it is comparably affordable, mobile, and delivers signals with a
high temporal resolution. Traditionally, EEG is recorded using electrode caps
with 16-256 electrodes attached according to standardized locations of the
extended 10-20 system [Oostenveld and Praamstra, 2001]. In BCI research,
EEG is usually measured using difference amplification with respect to a
reference position®. Usually, electrode gel (conductive gel) is used to increase
the conductivity between the electrodes and the scalp. In the last few years,
dry electrode EEG systems are becoming increasingly popular, but EEG
recordings with conductive gel are still standard as they provide the highest
signal quality. Non-pathological EEG potentials vary between +100uV on
the scalp relative to the reference voltage. Since this activity is rather weak
the EEG is sensitive to artifacts (see section 2.1.3).

Figure 2.1 shows a 5 second segment of a 16 channel EEG of a healthy and
awake person in time domain.

Functional Near-Infrared Spectroscopy (fNIRS)

Functional Near-Infrared Spectroscopy (fNIRS) measures changes of oxy-
genation in regional cerebral blood flow. According to the blood oxygen
level dependent (BOLD) effect, oxygenated (HbO;) and deoxygenated (HOR)
hemoglobin are functional indicators for brain activity. An increase of neural
activity in a cortical area is accompanied with an increase in the consumption
of oxygen (cf. section 2.1.1) which causes a rising ratio of HbOy and HbR in

In [Makeig et al., 2012] the number of cortical neurons is estimated to be twenty bil-
lion, of which the activity sources underlying the EEG can span several square centimeters
of the cortical surface.

2Signals recorded using such a reference derivation can be rereferenced to bipolar signal
derivation or common average reference in the signal processing stage of the BCI.
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Figure 2.1 - Example of EEG signals (5 seconds, 16 channels)

that specific area (neurovascular coupling). Continuous wave fNIRS exploits
the fact that HbO, and HbR have different absorption characteristics for light
in the near-infrared spectrum. While near-infrared light (700-900 nm) pen-
etrates easily through biological tissue, it is absorbed by hemoglobin in the
cortex, light sources can send near-infrared light through the scull and light
detector optodes measure the intensity of the scattered light at nearby lo-
cations. Using the modified Beer-Lambert Law [Sassaroli and Fantini, 2004]
changes in the cerebral blood oxygenation, and thereby brain activity, can
be estimated from the changes in light intensities.

fNIRS is an emerging optical brain imaging modality gaining rising attention
in the BCI community. In contrast to functional magnet resonance imag-
ing (fMRI), which also measures BOLD responses, fNIRS is non-invasive, is
comparably cheap, portable and does not confine the subjects. In contrast
to EEG, fNIRS is not susceptible to electrical artifacts from environmental
and physiological sources. Furthermore, no conductive gel needs to be used.
Also, frontal fNIRS recordings, where measurements are not obstructed by
hair, have very short setup times (about one minute). The major disadvan-
tage of fNIRS is its low temporal resolution (section 2.1.2).

fNIRS is usually assessed by multiple sensors that are located at position de-
fined by the BCI researcher depending on the BCI paradigm. Light emitting
optodes and sensors optodes are attached to the scalp in usually 2-4 cm in-
teroptode distance. Measurement positions are located roughly in the middle
between emitter and sensor in a depth of half the interoptode distance.
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Figure 2.2 shows an example of a 120 seconds segment of a oxygenated (blue)
and deoxygenated (green) hemoglobin changes in time-domain measured by
8 channels of fNIRS. The data have been measured from a healthy person
during resting and the performance of a working memory task. Oscillations in
measured HbO signals that correspond to cardiac activity (frequency around
1 Hz). Slow increases of HbO and decreases of HbR activity can be associated
with hemodynamic responses (e.g. starting at second 75 in figure 2.2). More
details on fNIRS signal characteristics can be found in section 2.1.3.
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Figure 2.2 — Example of an fNIRS signal segment (120 seconds). The fig-
ure shows unfiltered signals in time-domain of 8 channels. For each channel
oxygenated (blue) and deoxygenated (green) hemoglobin changes are shown.

Electrocorticography (ECoG)

Electrocorticography (ECoG) measures electrical brain activity similar to
EEG but uses electrode grids that are placed directly on the surface of the
cortex. Therefore, the characteristics of ECoG signals are similar to those
of EEG. However, non-invasive signals usually contain strong artifacts and
are filtered by brain tissues, skull and scalp, which leads to volume conduc-
tion and low signal-to-noise ratio (see section 2.1.2). ECoG signals have less
artifacts, a higher spatial resolution and high frequency activity (e.g. high
gamma broadband 70-170 Hz) can be measured that is associated with local-
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ized activity of functional processing (cf. section 2.1.3). ECoG grids usually
consist of 8x1 or 8 x8 electrodes, more recently, high-density grids with more
than 128 electrodes, wireless transmitters and non-contact power supply have
been developed. The location of the grids is generally determined by the clin-
ical needs of the patients. ECoG grids are usually implanted only for few
days to 1-2 weeks [Wolpaw and Wolpaw, 2011, chapter 15] and are removed
after the clinical intervention without damaging cortical structures.

Figure 2.3 shows an example of an implanted subdural ECoG grid placed
over the left fronto-parietal and temporal lobes.

Figure 2.3 — Example of an implanted subdural ECoG grid placed over the
left fronto-parietal and temporal lobes. [Wang et al., 2012]

BCI research based on invasive recordings, such as ECoG, is becoming
increasingly popular as impressive applications have been demonstrated
(e.g. [Hochberg et al., 2012, Herff et al., 2015]). Because of the high risks
involved in neurosurgery, invasive BCI experiments with humans are not
conducted with healthy users. ECoG recordings for BCI research most fre-
quently come from epilepsy patients who had to undergo neurosurgery be-
cause of their disease and have agreed to participate in research studies within
the time of their clinical interventions.

Microelectrode Arrays

Microarrays are another invasive brain signal acquisition modality. They are
most widely used in animal research and rarely used for BCIs with human
users, because of the high health risks involved in implanting wires that
penetrate the cortical tissue. Microarrays can record the electrical activity
of single neurons (spikes) or small groups of neurons and therefore allow for
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a very high resolutions in time and space. They can usually only record
activity of a small part of the brain where the array is located.

Temporal and Spatial Resolution of Brain Signal Acquisition
Modalities

The temporal and spatial resolution that can be reached by a certain brain
signal acquisition modality is an important design factor in the development
of a BCL. In general, electrical brain activity measurements (EEG, ECoG,
MEG, Microarrays) have a high temporal resolution, whereas measurements
based on cerebral blood oxygenation (fNIRS, fMRI) have a low temporal
resolution. The spatial resolution of non-invasive electrical measurements
(EEG, MEG) is usually low because of volume conduction effects, i.e. due
to conductivity, each sensor measures the superposition of the activity of
multiple neural sources. Therefore, signals measured at different locations
can be highly correlated and represent a mixture of different activity sources
that may only be partly located directly below the sensors. It is important to
keep in mind that the brain activity signal usually used in BCI research can
only reflect the cortical activity of large neural populations. The activity in
most parts of the brain, in particular subcortical regions, can not be measured

directly by EEG, ECoG, and fNIRS.

In sum, the brain signal acquisition modalities discussed in the previous
section have in common that their temporal and spatial resolution can be
magnitudes larger than the actual neural processes in the brain. Therefore,
their signals can only roughly capture and represent the information about
the processes that occur in the brain in response to BCI paradigms.

Figure 2.4 summarizes temporal and spatial resolution of different brain ac-
quisition modalities.

Modern Brain Signal Acquisition Devices

In the last few years, miniaturized and mobile EEG and fNIRS sensor de-
vices have become available (e.g. [Filipe et al., 2011, Debener et al., 2012]).
Additionally, there are first devices designed for the consumer market
(e.g. [Badcock et al., 2013]). In contrast to traditional hardware they have
shorter setup times, can easily be self-attached and are designed to be un-
obtrusive and comfortable to wear. However, the signal quality is often not
as good as the one of clinical or research hardware. Besides professional and
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Figure 2.4 — Temporal and spatial resolution of different brain acquisition
modalities. Smaller values correspond to higher resolutions (figure based on
[Wolpaw and Wolpaw, 2011]).

consumer brain acquisition devises, open designs have been published that
come with the complete instructions on how to build a brain acquisition de-
vice on your own, including circuit designs, and part lists. For example, the
openEEG project [Griffiths et al., 2003] has developed several open hard-
ware EEG devices. Recently, we developed a modular open fNIRS design
at the Cognitive Systems Lab that is available by the openNIRS project?
[von Lithmann, 2014]. Figure 2.5 shows the design of our openNIRS proto-

type.

2.1.3 Characteristics of Brain Activity Patterns
Information in Brain Activity Patterns

As defined in section 1.1.4, brain activity patterns are characteristic prop-
erties of the neural processes that are modulated by a BCI paradigm. In-
formation contained in such brain activity patterns are primarily encoded in
the temporal, frequency, and spatial characteristics of the multivariate brain
activity signals.

3www.opennirs.org
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NIR Light
Emitter

Figure 2.5 — The openNIRS prototype developed at the Cognitive Systems
Lab [von Lihmann, 2014].

e Time: Information encoded in the amplitudes of the time series repre-
sent activity of specific neural populations over time. Timings of the
brain activity signals are, in particular, relevant if they occur in re-

sponse to an event (event-related), for example in stimulus dependent
BClIs.

e Frequency: Bursts of the activity of neural populations and the repet-
itive interaction between neural populations in different brain areas
can generate oscillatory signal parts and brain rhythms. Changes in
the frequency characteristics of brain activity signals primarily occur
if the activations of large neural populations synchronize or desynchro-
nize (called event-related (de)synchronization ERD/ERS, whereby the
event can e.g. be the execution of a cognitive task).

e Space: A general neuroscientific principle is that the brain is organized
in functional regions. Therefore, the locations of brain activity sources
and the pathways between specific brain areas, i.e. their connectome,
are a major source of information on brain activity patterns.

Brain Activity Patterns used in BClIs

The following list summarizes the brain activity patterns that are mod-
ulated by different BCI paradigms, including those introduced in section
1.1.4. Event-related potentials (in particular P300 potentials) and neural
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oscillations (in particular sensorimotor rhythms) are traditionally the most
frequently used brain activity patterns in BCI research.

FEvent-related potentials (ERPs): ERPs correspond to the brain’s electrical
response shortly after an event. Events are typically external auditory, visual,
or tactile sensory stimuli, but can also be internal stimuli (e.g. associated
with the execution of a motor action, cognitive activity, or psychophysiolog-
ical events). ERP correspond to the activity of large populations of neurons
that are involved in the brain’s perceptive and cognitive processes.

ERPs are commonly acquired by electrical brain activity measurements, such
as EEG and MEG. The Oddball paradigm is usually applied to elicit P300
ERPs. Cognitive tasks and user states are known to modulate components
of ERPs that may be used for BClIs.

Signal Properties: ERPs are usually analyzed in time-domain in a signal
interval shortly before or after the corresponding event. The ERP complex
that can be observed in response to such events consists of multiple positive
and negative signal variations (waves), called ERP components. Figure 2.6
shows a prototypical ERP complex. In general, this waveform can not easily
be observed in single-trial signals by visual inspection because of the noisi-
ness of the signals. The most important parameters of ERP components are
their peak amplitude (in ¢V, often normalized to the amplitude of the signal
in an interval shortly before the event), their peak latency (in ms), and the
location of strongest activity (spatial focus).

ERPs are modulated by different BCI paradigms. The most frequently ones
used in EEG-based BClIs are:

P300 (or P3): A positive deflection approximately 300ms after oddball
stimuli (see 1.1.4). According to the Context-Updating Model hypothesis
[Donchin and Coles, 1988, Debener et al., 2005, Polich, 2007], a mental up-
date causes the P300 component and its amplitude reflects the degree to
which the event was consistent with a current mental model of the context.
Error potentials: Error potentials consist of a frontal negative component
(Ne/ERN, error-related negativity) and a later centro-parietal positive com-
ponent (Pe, error-related positivity). They are caused by evaluation of an
error event, i.e. when the user detects that an outcome is different from what
is expected. Error events can, for example, be mistakes of the user or the
machine. Error potentials can occur in response to the observation of an
error, in response to errors in an interaction, or in response to a feedback
event.

Neural Oscillations: Brain rhythms and oscillatory activity can be ob-
served on different levels of neural processing, for example in large neural
populations (e.g. measurable by EEG) or in single cell activity. Multiple
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Figure 2.6 — Prototypical ERP complex (waveform of ERP components).
Positive (P) and negative (N) components are numbered consecutively. The
third positive component P3 is the P300 component. Note that negative volt-
ages are plotted upwards (based on [Wikimedia Commons, 2008]).

different brain rhythms and oscillatory activity can be observed in spon-
taneous brain activity, i.e. fluctuations in brain activity that are not re-
lated to a certain event or cognitive task. Omne of the most well known
rhythms is the a-rhythm that occurs if a person relaxes with closed eyes
[Niedermeyer and da Silva, 2005].

Signal Properties: The EEG is traditionally divided into frequency bands*
0 (<4 Hz), 0 (4-7 Hz), o (8-13 Hz), 5 (15-30 Hz), and v (>30 Hz). User
states and cognitive tasks can modulate the energy in these frequency bands
and sub-bands thereof. For example, executed and imagined movements of
body parts (motor execution and motor imagery) lead to an inhibition of sen-
sorimotor rhythms. Specifically, oscillatory activity in the p (7-12 Hz) and
B (18-25 Hz) frequency bands is reduced predominantly near the primary
motor cortex [Pfurtscheller and Neuper, 1997]. These characteristic signal
changes are generally associated with a desynchronization of neural popu-
lations associated with motor processes (event related (de)synchronization,
ERD/ERS). In ECoG signals, activity in the high ~ frequency broadband
(70-170 Hz) is generally associated with specific information about cortical
functional processes [Crone et al., 2006, Roland et al., 2010]. Other cogni-
tive tasks and user states that modulate neural oscillatory patterns include
workload, vigilance, and affective states.

Hemodynamics and Blood-Ozygen Level Dependent (BOLD): Neural activity
is generally associated with brain metabolic activity, which includes oxygen
consumption of active neural cells (section 2.1.1, neurovascular coupling).

4The exact bounds of the frequency bands vary between users and are specified differ-
ently by different researchers (e.g. [Anokhin and Vogel, 1996]).
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Therefore, changes in cerebral blood oxygenation are functional indicators
for brain activity. Hemodynamics and the BOLD effect can be observed
during many cognitive tasks, user states, and the perception of fast repetitive
stimuli using fNIRS and fMRI.

Signal Properties: Figure 2.7 shows a prototypical hemodynamic response
as measured by fNIRS (filtered and averaged activity over multiple trials).
HbO, levels in a cortical area rise with brain activity and peek approximately
5 to 10 seconds after the beginning of activation, HbR levels fall in the same
intervals.
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Figure 2.7 — Prototypical hemodynamic response measured by fNIRS. The
red solid line corresponds to oxygenated hemoglobin concentrations (HbO,),
the solid blue line corresponds to deoxygenated hemoglobin (HbR) in response
to cortical activity induced by mental arithmetics. The dashed lines corre-
spond to HbO and HbR during relaxation phases. Signals of 30 times mental
arithmetics or relaxation for 10 seconds (vertical line) have been frequency
filtered (0.01-0.6 Hz) and averaged. The figure also shows the relaxation time
after the 10 seconds of mental arithmetics where the activity returns to base-
line [Herff et al., 2013b]

Steady-state evoked potentials: Steady-state (usually visual) evoked poten-
tials correspond to the brains’ response to the BCI paradigm 'perception of
fast repetitive stimuli’ (section 1.1.4). Evoked potentials can be acquired
using electrical brain activity measurements, such as EEG and MEG.

Signal Properties: Activity patterns corresponding to the stimulation se-
quence can be observed at cortical areas of perceptive processing. For exam-
ple the visual perception of repetitive stimuli, such as flickering lights causes
corresponding activity patterns at occipital areas related to visual processing.
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If the user attends one of multiple flickering light sources with different flick-
ering frequencies, the attended source can be identified by analyzing peaks
(and their harmonics) in the frequency spectrum at the occipital regions
[Wolpaw and Wolpaw, 2011, chapter 14].

Slow cortical potentials: Slow cortical potentials are associated with a gen-
eral increase and decrease cortical activation that can be used to control a
BCI (e.g. thought translation device (TTD) [Kiibler et al., 1999]). Users can
learn to modulate slow cortical potentials by feedback training using different
cognitive tasks [Hinterberger et al., 2004].

Signal Properties: Slow cortical potentials are characterized by direct cur-
rent shifts (DC shifts) of the EEG signal and activity changes in the ¢ fre-
quency band at large areas of the scalp with highest amplitudes around the
vertex (position Cz in the international 10/20 system).

Variabilities in Brain Activity Signals

Noise in brain activity signals is primarily caused by the fact that brain signal
acquisition modalities cannot capture the neural processes in detail because
of their temporal and spatial resolution (see section 2.1.2). In addition to this
general measurement noise, brain activity signals are inherently characterized
by strong inter-person, inter-session, and intra-session variabilities.

A primary reason for the person specificity (inter-person variabilities) of
brain activity signals is that different persons have different anatomies of
their brains and skulls. Furthermore, there are variations in the functional
organization of the brains due to neuroplasticity (learning). Inter-session
variabilities can have technical reasons, such as inexact sensor reposition-
ing or differences in environmental noise. Non-stationarities (next section),
that include changes of psychological factors, can change between session.
Additionally, different strategies in performing mental activities contribute
to differences in the signal characteristics of brain activity patterns between
persons and sessions.

In addition to these variabilities, artifacts and non-stationarities have a major
influence on the signal-to-noise ratio of the acquired signals. They can be
regarded as intra-session or trial-to-trial variabilities.
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Artifacts and Non-Stationarities

We define artifacts in brain activity signals throughout this dissertation as
Definition: Artifacts

Signal parts that do not origin in the neural activity of the brain.

In general, artifacts are specific to the brain signal acquisition modality. Here,
we briefly discuss artifacts in EEG and fNIRS. ECoG signals are less prone
to artifacts, but have similar signal characteristics as EEG signals, including
the same types of artifacts. For all modalities used for BClIs, the amplitudes
of artifacts in brain signals can be magnitudes higher than the amplitudes of
neural activity.

One can distinguish between biological artifacts that are produced by the
user’s organism and technical artifacts that origin in the technical devices
directly or indirectly involved in the measurement of brain activity signals.

Biological artifacts in EEG signals, include ocular (electrooculography, EOG)
artifacts, i.e. artifacts from eye movements and blinks. One can recognize
EOG artifacts in the measured signals by visual inspection because of their
large amplitudes in low frequencies that are predominantly present at the
frontal electrodes. EOG artifacts are primarily caused by the movement of
the retinal or cornea-retinal dipole and the eyelids [Croft and Barry, 2000].
The electrical potentials induced by active muscle cells (electromyography,
EMG) have a strong influence on a wide frequency range of the EEG
signal, with peak energy between 20 and 30 Hz [Goncharova et al., 2003,
Heger et al., 2011b]. Movements of the tongue, for example while speaking,
cause glossokinetic artifacts. Similar to EOG, they are induced as the tongue
has the physiological properties of a dipole and they are characterized by large
amplitudes in low frequencies [Vanhatalo et al., 2003]. Other biological EEG
artifacts come from cardiac activity (around 1-2 Hz) and sweating (below 0.1
Hz).

Technical artifacts in the EEG are induced by AC power lines (50 or 60
Hz), electromagnetic fields from external technical devices (e.g. fMRI), elec-
trostatic chargings (e.g. office chair), movements of electrodes and cables,
changes of electrode conductivity, and contact loss of electrodes.

Biological artifacts in fNIRS signals are primarily caused by cardiovascular
activity, such as heart beats (primarily around 1-2 Hz) and slow waves
(e.g. Mayer Waves, below 0.1 Hz), and changes of cardiac activation (around
1-2 Hz), breathing (below 0.5 Hz), and differences in blood pressure due to
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changes in head orientation [Matthews et al., 2008, Cooper et al., 2012].
Technical artifacts in the fNIRS include spikes caused by optode movements
and changes in environmental lighting conditions.

Throughout this dissertation we define non-stationarities as

Definition: Non-stationarities

Changes of the statistical distribution of brain activity signals over time
that do not correspond to the characteristic signal properties modulated
by the BCI paradigm.

Usually researchers discriminate between artifacts and non-stationarities as
they occur on different time scales. Artifacts are usually permanent or short-
time effects, while non-stationarities are gradual changes that usually last for
longer periods of time. Thus, after some time, brain activity patterns are
rarely identically distributed to the ones observed during the initial calibra-
tion. Non-stationarities can have psychological or technical origin.

Technical reasons include physical properties of sensor acquisition changing
over time, such as conductivity changes because of drying electrode gel.
Psychological variables are concurrent neural processes that are not caused
by the BCI paradigm, including changes in user states, such as vigilance,
fatigue, emotions, mood, getting bored, neural plasticity, i.e. learning of the
user, or a switch of task strategy.

2.2 Pattern Recognition for BClIs

2.2.1  Single-Trial Recognition

BCI experiments usually consist of multiple repetitions of the user generating
brain activity signals that correspond to different classes or intensities of a
BCI paradigm. The individual signal segments are commonly called trials.
For example, a typical calibration session of a motor imagery BCI consists of
EEG recordings of around 100 trials (2-3 seconds per trial) that correspond
to the users’ imagined movement of the left and right hand in randomized
order.

There are two different protocols for single-trial recognition of
BClIs, wusually called synchronous and self-paced (or asynchronous)
[Wolpaw and Wolpaw, 2011, chapter 10]. The majority of current BCIs
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are so-called synchronous BCIs. With a synchronous BCI the user can
only interact with the system at periods of time that are imposed by the
system (trials). The system indicates by stimuli when a trial starts and
user’s brain activity patterns are evaluated. In contrast, in self-paced BClIs
(or synonymously asynchronous BCIs), the user determines the points of
time of the interaction. The self-paced interaction scheme is more natural
and flexible, however it is more challenging for pattern recognition, as the
point of time and the duration of relevant brain activity are unknown to
the system. Therefore, stimulus locked evaluations, e.g. to evaluate ERPs,
can usually not be performed. Furthermore, brain activity during periods
of time in which the user does not intend to interact with the BCI can,
in general, be very diverse and highly non-stationary, which makes their
modeling challenging.

Many of the signal properties that characterize brain activity patterns (sec-
tion 2.1.3) cannot easily be identified by visual inspection of the time series
signals, even when performed by experts. In classical neurophysiological
research, insights are obtained by averaging multiple trials of the same con-
dition to infer an average model that reveals general signal properties of this
condition. Averaging over a large number of trials significantly improves
the signal-to-noise ratio of the brain activity signals (c.f. signal variabilities,
section 2.1.3). However, this processing approach is not applicable for BCIs
when they need to operate in real-time.

BCI research usually requires single-trial recognition, i.e. to derive an esti-
mate for the current mental state or intention of the user from brain activity
signals corresponding to a short segment of time. This is challenging and
thus advanced machine learning techniques need to be applied to cope with
the signal variabilities.

2.2.2  Pattern Recognition for BClIs - General Aspects

The pattern recognition component is the central component of a BCI (sec-
tion 1.1.3). In general, pattern recognition is “concerned with the automatic
discovery of regularities in data through the use of computer algorithms”
[Bishop et al., 2006]. In this dissertation, we refer to the term 'pattern recog-
nition’ for all operations involved to transform measured digital brain activity
signals into a discrete or continuous recognition output that corresponds to
a class or intensity of a BCI paradigm.
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Linear methods are widely used for pattern recognition in BCI research.
Comparative evaluations have shown that linear methods often outper-
form non-linear methods in different BCI tasks (e.g. [Miiller et al., 2003,
Garrett et al., 2003]). Furthermore, as brain activity signals can be re-
garded as the superposition, i.e. a linear mixture, of multiple cortical ac-
tivity sources, linear processing can be regarded a suitable approach. There
is a large repertoire of linear pattern recognition methods that leverage the
strong theoretical background of linear algebra. Linear methods are com-
putationally efficient, understandable and interpretable. Furthermore, they
can approximate many complex real-world processes adequately, are usually
robust against outliers, and are often more stable than non-linear methods
[Lotte et al., 2007].

Pattern recognition is often decomposed into three stages: signal pre-
processing, feature extraction, and machine learning. In the signal pre-
processing stage, the recorded signals are conditioned, for example, by filter-
ing outliers and artifacts. The feature extraction stage extracts and selects
relevant aspects of brain activity signals in time, frequency, and space that
correspond to characteristics of the brain activity patterns modulated by the
BCI paradigm (section 2.1.3). The resulting representations that are used to
derive the class or intensity of a BCI paradigm are commonly called features.
In the machine learning stage, statistical models are learned from calibration
data that allow the recognition of unseen features from brain activity signals.
Figure 2.8 summarizes the structural relationship between pattern recogni-
tion, brain activity signals, brain activity patterns, and the BCI paradigm
(cf. section 1.1.4).

The next two sections discuss pattern recognition methods for BCIs in more
detail. It should be noted that the transitions between the classical three
stages of pattern recognition (signal pre-processing, feature extraction, and
machine learning) are blurred and become even less relevant with modern
pattern recognition techniques, which will be discussed in more detail in the
context of the pattern recognition objective DISCRIMINATIVE (sections 3.2.1
and 3.3.1).

2.2.3 Signal Processing and Feature Extraction
Methods

The main goal of signal processing and feature extraction in a BCI is to make
the information contained in the data that should be recognized accessible
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Figure 2.8 — Structural relationship between brain activity signals, pattern
recognition, brain activity patterns, and the BCI paradigm.

from the raw brain activity signals. It is generally assumed, that brain ac-
tivity patterns have spatial, temporal and spectral characteristics that are
modulated by a BCI paradigm. Signal pre-processing and feature extraction
can be regarded as the application of a series of filters to represent relevant
signal parts (for review see [Wolpaw and Wolpaw, 2011], chapter 7).

Artifact Filtering

Eye movement artifacts can be subtracted from EEG signals using additional
Electrooculography (EOG) recordings and weights calculated by regression
analysis (EOG regression [Schlogl et al., 2007]). Furthermore, blind source
separation methods are regularly used to remove artifacts from brain
activity signals. Independent component analysis (ICA) can decompose the
multivariate signals into statistical independent components. Components
that correspond to artifact activity can be identified from their temporal,
spectral, and spatial signal characteristics. When the inverse transform is
applied, without considering the artifact components, cleaned signals can
be reconstructed [Jung et al., 2000]. Additionally, wavelet-based methods
have successfully been used to remove movement artifacts in fNIRS data
[Molavi and Dumont, 2012].

Methods to remove non-stationarities have become a hot topic in
BCI research.  For example, the stationary subspace analysis (SSA)
[von Biinau et al., 2009] decomposes multivariate brain activity signal into
a stationary and a non-stationary subspace, such that the brain activity



2.2 Pattern Recognition for BCls 37

signals can be projected into the stationary subspace.

In general, artifacts and non-stationarities can be filtered out from brain
activity signals by frequency filters (next paragraph) if their frequency
characteristics do not overlap with those relevant for the brain activity
patterns.

More information on artifact reduction methods is provided in the review
papers [Jung et al., 2000, Croft and Barry, 2000, Goncharova et al., 2003,
Fatourechi et al., 2007, Matthews et al.; 2008, Cooper et al., 2012,
Molavi and Dumont, 2012] and in the context of the pattern recogni-
tion objective ROBUST (sections 3.2.3 and 3.3.3).

Filtering in Time, Frequency, and Space

e Temporal filtering

The selection of relevant time windows within a trial can be used to
isolate relevant time periods, e.g. ERPs components. Additionally,
temporal filtering can remove irrelevant signal segments, for example at
the beginning of the trial where no activity is present due to the reaction
time of the user. Another temporal filtering technique is downsampling,
which is regularly performed to reduce the amount of data that has to
be processed and to remove high-frequency signal variations.

e Frequency filtering
The removal and isolation of signal parts corresponding to specific fre-
quency bands is performed by finite impulse response filters (FIR) and
infinite impulse response filters (IIR), i.e. high-pass, low-pass, band-
pass, and notch filters. They are commonly applied to brain activity
signals to filter undesired activity (e.g. artifacts) or isolate oscillatory
activity in specific frequency bands of interest.

e Spatial filtering

Spatial filters are transformations of the multivariate brain activity
signals in the dimension that corresponds to different sensors (different
recording locations). Spatial filtering includes to select a subgroup of
sensors that, for example corresponds to a particular cortical area.
Other well-known spatial filters are the common average reference,
which subtracts the average of all other channels from each channel
and surface Laplacians, which subtract the average of its immediate
neighbors from each channel.

Furthermore, linear transformations can be regarded as spatial filters,
i.e. transformations of the form ¥ = WX, where Y € R are
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the spatially filtered signals, W € R%*¢ is the spatial filter matrix
consisting of a spatial filters and X € R®*! are the unfiltered brain
activity signals with ¢ channels and [ samples. Therefore, for example,
unsupervised signal compression methods, such as principle component
analysis (PCA), can also be regarded as spatial filters.

Common Spatial Patterns (CSPs) [Koles, 1991,
Blankertz et al., 2008b] and their variants are among the most
frequently applied algorithms in BCI research. They are primarily
used with event-related (de)synchronization in oscillatory activity, such
as for motor imagery classification (section 2.1.3). The fundamental
idea of CSPs is to learn spatial filters that are designed to optimally
discriminate between two classes according to their variance, i.e. the
variance of the CSP filtered signal is large for class 1 while it is small
for class 2 or vice versa. A CSP filter w* is defined by maximizing
the ratio between the covariances of the two classes >; and X, of the
transformed data:

w' Y w

w" = argmax — ,
w o w!' Yew

subject to w' (3 + Sg)w = 1

A matrix of CSP filters W € R®*¢ can be calculated by common di-
agonalization of >; and >, for example by solving the generalized
eigenvalue problem

WISW =W (2, + S)W.

CSP filters correspond to columns in W. Usually the most discrimi-
native CSP filters (first and last columns in W) are used for feature
extraction.

The weights of linear spatial filters can be visualized in topograph-
ical plots. Figure 2.9 shows four CSP filters that have been calcu-
lated to discriminate motor imagery of the left hand and both feet in
[Heger et al., 2013]. Characteristic dipoles can be recognized in senso-
rimotor regions.

Feature Extraction Methods

After artifact removal and filtering the signals in time, frequency, and space,
a variety of different features can be calculated and represented in a feature
vector for each trial:
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Figure 2.9 — Topographical scalp maps of four CSP filters trained to dis-
criminate two classes of motor imagery (left hand versus both feet) from the
experiment [Heger et al., 2013].

Time-domain feature extraction algorithms include the calculation of
first and second order statistics, such as mean amplitudes and covariance
matrices.

For oscillatory patterns, frequency features can be extracted using fast
Fourier transform, Hilbert transforms, multitaper approaches, Welch’s
periodigram method, wavelet analysis, or autoregressive models.

Features that exploit more specialized knowledge of the signals include
the slope of a hemodynamic response (e.g. [Herff et al., 2013a]), Hjorth
parameters [Hjorth, 1970], or the spectral power in different frequency bands
and ratios thereof for vigilance detection [Berka et al., 2007].

Inverse solution-based, connectivity-based features [Heger et al., 2014c]
and feature from chaos theoretical measures have been pro-
posed but are less frequently used for BCIs, they include
phase  synchronization  [Gysels and Celka, 2004], spectral  coher-
ence, fractal dimension [Kulish et al., 2006] or Hurst exponents
[Phothisonothai and Nakagawa, 2007].

To reduce the number of extracted features, automatic feature selection and
compression methods can be used. Usually, separability and dependence
measures, such as Fisher scores, correlation coefficients, and mutual infor-
mation are most commonly applied. Additionally, wrapper approaches, such
as sequential forward and backward selection or genetic algorithms have been
applied (see [Bashashati et al., 2007, Tangermann, 2007] for review).

2.2.4  Machine Learning Methods

The goal of machine learning algorithms is to identify structures in the set
of feature vectors extracted from calibration data that enable to recognize
unseen feature vectors and infer the corresponding classes or intensities of
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the BCI paradigm. In general, one can distinguish classification algorithms,
that assign a discrete, categorical class label to each feature vector, and
regression algorithms that assign a continuous variable to each feature vector
[Bishop et al., 2006]. Class labels usually represent a type of mental activity
the BCI user has performed, whereas continuous variables usually correspond
to an intensity or a probability score of a mental activity.

In BCI research, there is traditionally more effort on the feature extraction
stage, to filter relevant activity and represent informative features, than on
the machine learning stage. Many standard machine learning techniques have
been applied to BCI problems, among which Linear Discriminant Analysis
(LDA) and Support Vector Machines (SVMs) are most widely used. De-
tails about common machine learning algorithms can be found in numerous
very good text books [Mitchell, 1997, Duda et al., 2001, Bishop et al., 2006,
Hastie et al., 2009]. In their review article, Lotte et al. [Lotte et al., 2007]
present a taxonomy of classifiers and discuss the most frequently ones used
in the context of BClIs.



CHAPTER 3

Core Objectives of Pattern
Recognition for BCls

This chapter introduces three core objectives for pattern recog-
nition in BCIls. We define each of the objectives, highlight their
particular relevance to BCIs and relate each of them to principles
of pattern recognition. Finally, we investigate the interdependence
of the three objectives and conclude that all three objectives need
to be implemented and balanced for successful pattern recognition

for BCls.

In the previous chapter, we have seen that in the pattern recognition com-
ponent of a BCI, raw brain activity signals are typically filtered in time,
frequency, and space, relevant features are extracted and learning algorithms
are applied to recognize different classes or intensities of a BCI paradigm.
This way, processing chains have been developed as best-practices for few
established BCI paradigms, such as CSP-based motor imagery classification
[Blankertz et al., 2008b] or classification of the event-related potentials dur-
ing the Oddball paradigm [Blankertz et al., 2011] (see also section 1.1.4).

A major part of research on pattern recognition for BCIs is concerned with
advancing the individual methods in these pattern recognition chains and
with adopting new methods to improve the recognition results. Another
important research direction of pattern recognition for BClIs is to explore new
BCI paradigms. As a young discipline, BCI research offers the opportunity of
a large number of unexplored paradigms that can potentially be employed to
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create innovative BCls. For such paradigms, it is, in general, not clear which
patterns in the signal are discriminative, how features can be extracted, and
whether they can be recognized in single-trials. Furthermore, if the results
of a recognition system are not well above chance level, it is unclear whether
the pattern recognition chain is unsuitable or the BCI paradigm cannot be
recognized®.

BCIs are a very challenging field for pattern recognition
(e.g. [Nicolas-Alonso and Gomez-Gil, 2012]) and currently, there is no
systematic theory on how pattern recognition components for BCIs should
be developed. Therefore, it would particularly be advantageous to have a
pattern recognition framework for BCIs that imposes minimal prior assump-
tions on the BCI paradigm and is known to be successful for recognizing
many different BCI paradigms and many different brain activity signals.

In the following, we develop a very principled approach and analyze what the
critical building blocks for successful pattern recognition for BCIs are. For
this purpose, we identify three core objectives of pattern recognition methods
(called DISCRIMINATIVE, COMPACT, and ROBUST) that are necessary con-
ditions of pattern recognition for BCIs. In the next chapter we will see that
a principled implementation of the three objectives using convex optimiza-
tion leads to a new generic framework for BCI pattern recognition, which
we call the DCR Framework. With the successful evaluations of the DCR
Framework for multiple different BCI paradigms and brain activity signals,
we provide empirical evidence that these three objectives are a sufficient set
of conditions for BCI pattern recognition (chapters 5 and 6).

3.1 Definitions

In the following, we hypothesize that the three objectives DISCRIMINATIVE,
CompPACT, and ROBUST are necessary conditions for BCI pattern recogni-
tion. We motivate why each of the objective is relevant for BCIs and which
methods are used in current BCIs to implement the three objectives (section
3.2). To provide evidence that the three objectives are indeed necessity
conditions, we relate each of them to principles of pattern recognition and
show that if one of the objectives is not implemented, pattern recognition
cannot be successful (section 3.3). Furthermore, we will see that the
objectives depend on each other (section 3.4), which motivates that they

!Significant differences in statistical analyzes of the features do in general not imply
that different classes or intensities of the BCI paradigm can be recognized in single-trials.
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should be optimized jointly.

Hypothesis: Three Core Objectives are Necessary Conditions

For pattern recognition in BCIs it is necessary to implement and bal-
ance three core objectives:

e DISCRIMINATIVE: Discriminative brain activity patterns,

e CoMPACT: Compact modeling, and

e ROBUST: Robustness against signal variabilities.

The objectives DISCRIMINATIVE, COMPACT, and ROBUST in this hypothesis
are defined as follows:

Definition: Discriminative brain activity patterns

DISCRIMINATIVE: The identification and modeling of representations
of brain activity patterns that enable to disciminate between different
classes or intensities of a BCI paradigm.

Definition: Compact modeling

ComMpPACT: The implementation of relevant aspects of discriminative
brain activity patterns in generalizing structures with restricted com-
plexity:.

Definition: Robustness against signal variabilities

RoBusT: The implementation of discriminative brain activity patterns
that is invariant and stable against those variabilites in brain activity
signals that are not modulated by the BCI paradigm.

Figure 3.1 illustrates the three objectives DISCRIMINATIVE, COMPACT, and
RoOBUST that form the pattern recognition component of a BCI (cf. figure
2.8). The arrangement of the three objectives is meant to indicates that the
objectives depend on each other and the influence of the objectives has to be
balanced, such that there is no bias towards one or two of the objectives, as
will be discussed in section 3.4.

3.2 Goals and Relevance for BClIs

In this section, we describe each of the three objectives DISCRIMINATIVE,
CompACT, and ROBUST, that have been introduced in the previous section.
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Pattern Recognition

Discriminative

Brain Activity
Patterns
Brain Activity ("\ Robustness Recognition
Signals /- against Signal Estimate
Compact Variabilities
Modeling

Figure 3.1 — The three core objectives DISCRIMINATIVE, COMPACT, and
RoBUST.

We motivate their relevance for BCI pattern recognition and outline methods
that are typically used to implement them.

3.2.1 Discriminative Brain Activity Patterns

The primary goal of a BCI is to discriminate different brain activity patterns
that are modulated by a BCI paradigm and distinguish them from brain
activity that is not related to the BCI paradigm. Therefore, DISCRIMINA-
TIVE corresponds to the identification of different classes or different inten-
sities of a BCI paradigm from brain activity patterns, i.e. to identify and
represent relevant information of brain activity patterns, and to learn dis-
criminative aspects of these representations. This enables the BCI program
to use information about differences in states or intentions of the user for the
purpose of the BCI application (section 1.1.3).

It is a common approach of pattern recognition to extract informative fea-
tures and model their discriminative aspects by learning algorithms. How-
ever, the identification and representation of relevant information is especially
important to BCIs, as the brain activity signals reflect the activity that is
generated during the communication of the neural structures in the brain at
a very coarse level (section 2.1.2). Therefore, the information is, in general,
not directly accessible, i.e. the class or intensity of a BCI paradigm can usu-
ally not be inferred from the raw brain activity signals directly due to their
low signal-to-noise-ratio (see section 2.1.2 temporal and spatial resolution).
Furthermore, it is difficult to model the disciminative aspects of brain ac-
tivity patterns by expert knowledge (e.g. neuroscientific insights), because
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there are strong differences between different persons and sessions (section
2.1.3). Usually, brain activity signals cannot easily be interpreted by visual
inspection, therefore, it is often difficult to make sure that the data quality
is high. The recorded data is labeled based on task instructions and it is
generally assumed that the user actually performs the task properly. This
way, a significant amount of mislabeled data can usually be expected (label
noise). In [Miiller et al., 2008] the authors concluded that for BCI pattern
recognition “the signal-to-noise ratio is highly unfavorable, in fact, it typi-
cally is even ill-defined what signal and, respectively, what noise are”.

In summary, DISCRIMINATIVE corresponds to those aspects of pattern recog-
nition for BCIs that represent the characteristics of the brain activity patterns
in a way that is accessible to learning algorithms and the modeling of the
particular discriminative aspects from these representations.

Methods for Discriminative Brain Activity Patterns

As described in section 2.2.3, a variety of different feature extraction algo-
rithms have been used in BCI research that calculate representations of the
information in brain activity signals in the form of feature vectors. Further-
more, section 2.2.4 discussed the typical machine learning approaches for
BCIs that learn models of these representations and allow to discriminate
between different classes or intensities of a BCI paradigm.

3.2.2 Compact Modeling

Calibration data acquisition is time consuming and fatiguing for the users and
due to inter-session and inter-person variabilities, calibration data is usually
recorded directly before the BCI can be used. Therefore, pattern recognition
for BCIs has to deal with very small amounts of calibration data (typically
few minutes). More precisely, there is a low number of calibration instances
compared to a large amount of potential features [Miiller et al., 2004], which
is a challenge for the generalization abilities of learning algorithms (see also
section 3.3.1).

Extracting a small number of features based on expert knowledge is often
difficult, as signals are usually recorded by many sensors and brain activity
patterns are subject to variabilities in time, frequency, and location. There-
fore, an approach to overcome this problem is to extract a variety of potential
features and apply compact modeling techniques to restrict the complexity
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of their representation, for example, by identifying a subset of informative
features. This often increases recognition performance as it avoids the induc-
tive bias that comes from the assumptions made by the different operations.
Furthermore, it is difficult to optimize the parameters of multiple operations
in the pattern recognition component of a BCI as they usually depend on
each other (e.g. [Farquhar and Hill, 2013]).

In neuroscience and BCI research, scientists are particularly interested in
finding the neural substrate associated with particular brain functions. Com-
pact modeling techniques are important to identify the most relevant struc-
tures in the high-dimensional representations of brain activity patterns to
make the learned models more interpretable. This is, in particular, relevant
to BCIs as models should be validated to make sure that they rely on neu-
rophysiologically plausible properties of brain activity patterns and not on
artifacts.

Methods for Compact Modeling

In a traditional BCI processing pipeline, compact modeling is performed
by only extracting a small number of discriminative features (hand-tuned),
i.e. knowledge-based selection of informative time periods, frequency bands
and sensor locations. Additionally, automatic feature selection and feature
compression algorithms can be applied as filter steps. In recent years, im-
plicit feature selection by sparse modeling techniques, such as sparsity in-
ducing regularizations, have become popular in machine learning and have
also been applied to BCI for feature extraction and learning algorithms
(e.g. [Lotte and Guan, 2011]). For example, ¢;-norm regularization, such
as in Lasso regression [Tibshirani, 1996] is a central technique in multi-
ple fields of machine learning, including sparse coding, dictionary learning,
and compressive sensing. A regularized machine learning algorithm that is
regularly used in BCI research and has shown to be suitable for multiple
BCI problems is shrinkage Linear Discriminant Analysis (shrinkage LDA)
[Friedman, 1989, Schéfer and Strimmer, 2005].

3.2.3 Robustness against Signal Variabilities

Brain activity signals are inherently subject to strong inter-subject, inter-
session, and inter-trial variabilites caused by subjective differences, non-
stationarities, and artifacts (see section 2.1.3). For example, artifacts often
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overlap in their time, frequency and spatial characteristics with the actual
brain activity patterns and can have significantly more energy than the brain
activity signal parts. Therefore, they are a typical source of recognition er-
rors and pattern recognition for BCIs should be invariant and stable against
such variabilities. More precisely, strong changes in the signals should not
effect the recognition output strongly (invariance against artifacts) and small
changes in the signals should lead to small changes in recognition output (sta-
bility [Bousquet and Elisseeff, 2002]). The problem of signal variabilities be-
comes even more evident for the development of BCls for not completely con-
trolled laboratory conditions. Therefore, real-world BCI applications based
on brain activity information and not on (task correlated) artifacts, may not
be realized without approaches that carefully implement ROBUST.

Methods for Robustness against Signal Variabilities

In strongly restricted laboratory experiments, users can be instructed
such that artifacts remain at a minimum level and recording conditions
can be chosen to minimize non-stationarities. In such cases, the in-
fluences of signal variabilities may be ignored. In not completely con-
trolled environments, signal pre-processing methods (section 2.2.3) need
to be applied to reduce artifacts and to increase robustness against
non-stationarities. =~ Methods that increase the robustness against sig-
nal variabilities can also be integrated in spatial filtering and ma-
chine learning methods, such as extensions of the common spatial pat-
terns algorithm presented in section 2.2.3 (e.g. [Wang and Zheng, 2008,
Kang et al., 2009]). Additionally, adaptation techniques for learning algo-
rithms [Vidaurre et al., 2006, Sugiyama and Kawanabe, 2012] and second-
order baselining [Reuderink et al., 2011] have been proposed that adjust their
models continuously over time to counteract non-stationarities.

Furthermore, data space adaptation methods [Arvaneh et al., 2013,
Arvaneh et al., 2014] and multi-task or transfer learning techniques
[Pan and Yang, 2010] (see also section 4.2) are required to reduce the im-
pact of inter-session and inter-person variabilities (e.g. [Lotte et al., 2009,
Heger et al., 2013]), as naive approaches of combining brain activity signals
from different persons and sessions (pooling of data sets) are usually not
successful.
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3.3 Relationship to Pattern Recognition
Principles

In this section, we relate each of the three objectives to fundamental prin-
ciples of pattern recognition to show that they are essential for a successful
recognition (sections 3.3.1-3.3.3). As a consequence, the three objectives
are necessary conditions for BCI pattern recognition, i.e. DISCRIMINATIVE,
CoMPACT, and ROBUST are a set of objectives that has to be implemented
for successful pattern recognition for BCIs (section 3.3.4).

3.3.1 Discriminative Brain Activity Patterns

The objective DISCRIMINATIVE is concerned with the identification and mod-
eling of representations of brain activity patterns. From a learning theoret-
ical perspective DISCRIMINATIVE finds an informative mapping from rep-
resentations of the information contained in the brain activity signals to
a discriminative target space following the principles of statistical learn-
ing theory (e.g. Vapnik-Chervonenkis (VC) theory [Vapnik, 2000] or proba-
bly approximately correct (PAC) learning [Valiant, 1984]). Specifically, this
modeling is performed by supervised machine learning methods that ap-
ply empirical risk minimization [Von Luxburg and Schoélkopf, 2008], i.e. they
learn a mapping f that minimizes the error indicated by a loss function
L on n training instances (X;, Y;),...,(X,,Y,) with features X; and la-
bels Y; corresponding to different classes or intensities of the BCI paradigm:
f=arg ming 2 3" | L(X;, Y], f(X;)). The features X; are extracted to re-
duce irrelevant or redundant signal parts and provide access to latent infor-
mation contained in the raw brain activity signals, e.g. with the help of inte-
grating domain knowledge. The feature extraction can support the learning
algorithm to find a suitable mapping f that models the characteristic prop-
erties of the actual recognition problem given a (small) sample of training
data.

The two aspects ’identification’ and 'modeling’ of discriminative represen-
tations are subsumed by one objective (DISCRIMINATIVE), as they are in-
herently connected to each other [Bishop et al., 2006]. A machine learning
algorithm can, in principle, learn feature representations automatically, if
they are extracted only from information given in the data, i.e. without in-
cluding additional expert or domain knowledge.

Note, in this context, the term DISCRIMINATIVE does not primarily corre-
spond to discriminative classification. We refer in DISCRIMINATIVE to dis-
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criminative and generative learning algorithms that perform classification or
TegTession.

3.3.2 Compact Modeling

The Bias-Variance Tradeoff [Hastie et al., 2009] is a well-known machine
learning principle on the complexity of a learned model in relation to its gen-
eralization abilities and the amount of training data available. In this context,
bias corresponds to a systematic error of the learning algorithm due to ineffec-
tively modeling the dependency between the features and the target variable.
Variance denotes the sensitivity towards modeling small fluctuations of the
training data. There is a tradeoff between bias and variance, which can be
illustrated by decomposing the least-squares problem into the sum of three
terms: bias, variance and an irreducible error (e.g. [Bishop et al., 2006]). On
the one hand, high bias and low variance models may fail to fit the underlying
distribution of the data accurately and tend to underfit, i.e. no matter how
much data is available there will be a general error. On the other hand, low
bias and high variance models can learn spurious patterns or idiosyncratic
properties of the specific training data set and are generally susceptible to
overfitting, i.e. they do not generalize well to unseen data.

The generalization error can be inferred from the difference between the
recognition error on the training data and the recognition error on an unseen
test data set. Minimizing the training error can increase the test error, if the
complexity of the learning algorithm is high. The VC' dimension (for Vapnik-
Chervonenkis dimension [Vapnik, 2000]) gives a probabilistic upper bound
for the test error given the training error and training sample size. This is
related to the Curse of Dimensionality problem [Bellman and Dreyfus, 1962]
that states that the volume of a vector space increases exponentially with the
number of dimensions. According to this principle, the number of training in-
stances should be large compared to the number of dimensions, i.e. features,
in the feature space, otherwise the learned models have low generalization
abilities. However, this relationship strongly depends on the learning al-
gorithm used. In particular, the complexity of the model (function class),
rather than the number of dimensions, has to be low for successful learn-
ing [Vapnik, 2000]. Recent examples in the context of sparse modeling have
shown that learning can be highly successful, even if the number of features
is much larger than the number of training instances. For example, under
appropriate assumptions sparse modeling approaches can handle a number
of irrelevant features that is exponential in the number of training instances

[Zhao and Yu, 2006, Wainwright, 2009, Bach and Obozinski, 2010].



50 Core Objectives of Pattern Recognition for BCls

In sum, compact modeling techniques have to be applied in pattern recogni-
tion for BCIs to model the relationship between the training features and the
target variables exactly and to have good generalization abilities on unseen
data.

3.3.3 Robustness against Signal Variabilities

Usually, pattern recognition methods rely on the assumption that there
exists an unknown joint probability distribution P(X,Y’) of the feature
vectors X and corresponding class labels or intensities Y, from which
the calibration features and corresponding classes or intensities (X;,Y;)
are independently sampled (independent and identically distributed, iid.).
In general, supervised machine learning algorithms assume that the dis-
tribution of the features does mot change over time (e.g. PAC-learning
[Valiant, 1984, Russell and Norvig, 2009]). This assumption is violated due
to the non-stationary nature of brain activity signals. For example, the
distribution of features during calibration of the BCI and the distribution
during the operation of the BCI may not be identically distributed, which
is a major problem for the supervised machine learning methods commonly
used [Miiller et al., 2008].

In addition to the principles of computational learning theory outlined in
the previous paragraph, ROBUST is related to the stability of a learning
algorithm [Bousquet and Elisseeff, 2002]. When using a stable learning al-
gorithm, small changes in the composition of the calibration data have little
impact on the learned models and therefore the recognition output.

3.3.4 The Objectives are Necessary Conditions

In the previous sections, we have described the relationship of the three
objectives to principles of pattern recognition. If these principles, are not
respected, pattern recognition is, in general, not successful: If DISCRIMI-
NATIVE is not implemented, informative structures are not identified and
modeled and remain hidden in the brain activity signals with very unfavor-
able signal-to-noise ratio. Thus, the classes or intensities of a BCI paradigm
cannot be discriminated. If COMPACT is not implemented with the typically
small data sets and the large amount of potential features in BCI research,
high variance models are calculated by the learning algorithm and overfitting
occurs that can strongly degrade recognition performance. If ROBUST is not
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implemented, recognition is not successful, because the distribution of brain
activity patterns changes over time, between recording sessions and different
users. Furthermore, there is a high risk that the recognition is based on task
related artifacts rather than on brain activity patterns.

3.4 Interdependence of the Objectives

The three core objectives DISCRIMINATIVE, COMPACT, and ROBUST are
not independent of each other. Changes in the BCI’s pattern recognition
component with regard to one objective usually influence the effects of the
other objectives. Therefore, it is important to balance the impact of the three
objectives such that there is no bias towards one or two of the objectives.

In this section we outline the interdependence of all three core objectives, for
both directions of each pairwise interdependence. We describe that empha-
sizing or neglecting one objective influences the other objective and may lead
to essential problems in pattern recognition, i.e. low recognition performance.

Table 3.1 summarizes the interdependencies, i.e. how a bias towards imple-
mentation of one objective influences the others.

Discriminative and Compact

A bias towards implementing DISCRIMINATIVE influences COMPACT,
as high variance models are susceptible to overfitting [Vapnik, 2000,
Von Luxburg and Schélkopf, 2008]. For example, extracting a very large
number of features that may generate a variety of discriminative information
(high model complexity), however the information cannot be represented well
by a machine learning model that has to be trained from a small number of
training instances.

Neglecting ~ DISCRIMINATIVE  influences COMPACT as it leads
to underfitting, i.e. large bias and low variance [Vapnik, 2000,
Von Luxburg and Scholkopf, 2008].  For example, a single feature may
not represent different classes of a BCI paradigm well and therefore cannot
discriminate it precisely.
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Table 3.1 — Summary of interdependencies of the three pattern recognition
core objectives. A bias towards implementing the objectives (columns) influ-
ences the objectives (rows) as described in the corresponding cell. The symbol
“=" indicates a consequence, “t” and “|” indicate an increase and decrease,
respectively.

Discriminative and Robust

Implementing DISCRIMINATIVE but neglecting ROBUST leads to recognition
errors caused by signal variabilities, such as artifacts and non-stationarities.
Additionally, discriminative activity may not be modeled by the machine
learning algorithms as it might be hidden by such non-informative variabil-
ities. Neglecting ROBUST can also lead to learning of artifacts patterns in-
stead of brain activity patterns, which implies that the user controls the BCI
by generating systematic artifact instead of brain activity patterns.

Neglecting DISCRIMINATIVE influences ROBUST as it can lead to an increas-
ing invariance against relevant non-stationarities of the brain activity pat-
terns that are modulated by the BCI paradigm. For example, this prob-
lem is discussed in [Samek et al., 2014] in the context of early selection ap-
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proaches to filter out non-stationarities, such as the stationary subspace anal-
ysis [von Biinau et al., 2009].

Compact and Robust

Neglecting or implementing COMPACT influences ROBUST as compact mod-
els have been found to improve generalization abilities and robustness char-
acteristics (e.g. [Lotte and Guan, 2011] using regularized models for person
transfer). On the other hand strongly COMPACT models can be less stable
[Bousquet and Elisseeff, 2002]. For example, a sparse model that only uses
the information of a single EEG electrode over motor cortex can be more
robust against variabilities from eye movement artifacts (higher invariance),
but can also be less robust in the case of electrode failure (lower stability).
Furthermore, neglecting or implementing ROBUST influences COMPACT as
robust models either ignore feature space parts that contain signal variabili-
ties and can, therefore, be modeled more compact (lower variance), or have to
model signal variabilities explicitly and are, therefore, less compact (higher
variance).

3.5 Discussion

In this chapter, we introduced three core objectives for pattern recognition
in BCIs, which we call DISCRIMINATIVE, COMPACT, and ROBUST (sections
3.2.1-3.2.3). We motivated their relevance for BCI pattern recognition and
outlined typical methods that are applied for the purpose of one of the three
objective in BCI research. Each of these objective can be related to essential
pattern recognition principles (sections 3.3.1-3.3.3), which provides theoret-
ical evidence for the hypothesis (section 3.1) that the three objectives are
necessary conditions for BCI pattern recognition.

The first two objectives DISCRIMINATIVE, and COMPACT are related to
well known and generally accepted principles of machine learning theory
and practice. They are most widely known by effects that might occur
if they are not implemented adequately, such as overfitting and underfit-
ting, and have also been discussed in BCI literature (e.g. [Miiller et al., 2004,
Lotte et al., 2007]). The third objective also corresponds to a known prin-
ciple in learning theory (namely iid. sampling) but is usually implemented
independently from the other objectives in BCls.
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Pattern recognition methods that implement one or two of the three objec-
tives are well-known. However, it is not established that the ROBUST ob-
jective should be implemented and balanced together with the DISCRIMINA-
TIVE and COMPACT objectives that realize the bias-variance tradeoff. More
recently, non-stationarity reduction has been implemented in combination
with the objective DISCRIMINATIVE in the context of the Common Spatial
Patterns algorithm for BCIs [Blankertz et al., 2007, Samek et al., 2014], but
all three objectives have not been implemented jointly. Therefore, we also
discussed the interdependencies of the three objectives in this chapter. To
the best of our knowledge, it is the first time that the interdependence of
these objectives have been formulated. Consequently, the three core objec-
tives should be optimized in a joint optimization which leads to the DCR
Framework that is discussed in the next chapter.

Note that the intention of this chapter was to identify core objectives of exist-
ing pattern recognition methods that are necessary conditions for successful
BCI pattern recognition and not to introduce new methods. The innovation
we provide is to outline the particular relevance of the interplay of all the
three objectives for BCI pattern recognition in the form of the triad Dis-
CRIMINATIVE, COMPACT, and ROBUST, which is not commonly known in
BCI research.



CHAPTER 4

The DCR Framework

This chapter introduces the DCR Framework, a generic pattern
recognition framework for BCIs that jointly optimizes the three
objectives DISCRIMINATIVE, COMPACT, and ROBUST discussed
in the previous chapter. We formulate the problem of jointly op-
timizing the three objectives in a principled way and provide its
theoretical background. Furthermore, we present an efficient op-
timization algorithm for the framework based on the Alternating
Direction Method of Multipliers.

According to the hypothesis that we formulated and discussed in chapter 3,
pattern recognition for BCIs has to implement the three objectives DISCRIM-
INATIVE, COMPACT, and ROBUST. Furthermore, we have discussed that the
three objectives are inherently interdependent (section 3.4). Therefore, each
objective should be implemented in the pattern recognition component of a
BCI with respect to the other objectives.

With the DCR Framework, we present a new generic framework for BCI
pattern recognition, in which the three objectives are formulated as three
terms of a convex objective function. To the best of our knowledge, no other
BCI pattern recognition framework has been proposed before that performs
a joint optimization of the three objectives. The framework is based on the
idea to minimize efforts for pre-processing and feature extraction and let the
learning algorithm be responsible to find relevant and robust information
about the BCI paradigm. Therefore, we extract a large number of simple
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features from the brain activity signals in time-domain or frequency-domain
without performing spatial filtering and feature selection. The optimiza-
tion problem to learn models for the recognition framework can be solved
efficiently using the Alternating Direction Method of Multipliers (ADMM)
[Boyd et al., 2011], an approach that has regained popularity for large-scale,
distributed optimization in recent years. We present a new ADMM-based al-
gorithm to perform the joint optimization that has not been proposed before.
The models learned by the algorithm are linear transformations that can be
visualized and are interpretable for experts. Our evaluations (chapters 5 and
6) show that the DCR Framework achieves competitive performance for mul-
tiple BCI paradigms and different brain activity patterns. To the best of our
knowledge no other BCI pattern recognition framework has been evaluated
with as many different types of brain signals and BCI paradigms before.

In summary, the goals of the DCR Framework are:
e Joint optimization of DISCRIMINATIVE, COMPACT, and ROBUST

e Unified approach combining isolated operations in BCI pattern recogni-
tion with little prior assumptions (i.e. no specialized feature extraction,
but generic high-dimensional features)

e Efficient optimization algorithm based on ADMM
e Interpretable Models

e Generic framework applicable to multiple BCI paradigms and brain
activity signals with competitive performance

In this chapter, we first formulate and discuss the objective function for joint
optimization (sections 4.1.1 and 4.1.2), including the use of high-dimensional
feature spaces and the concept of so-called robustness directions (sections
4.1.3 and 4.1.4). Section 4.2 discusses related work on optimization-based
pattern recognition for BCIs and section 4.3 provides basic foundations on
the Alternating Direction Method of Multipliers (ADMM). We present the
ADMM-based algorithm for joint optimization in section 4.4. We discuss
extensions of the algorithm for hyperparameter estimation, multi-class clas-
sification, and visualization in section 4.5. Finally, a discussion of the goals
of the DCR Framework listed above, its limitations and a summary of con-
tributions can be found in section 4.6. Figure 4.1 summarizes the structural
relationship of the different components of the DCR Framework, including
the section numbers where they are discussed.
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Figure 4.1 — Structural relationship of the components of the DCR Frame-
work. The corresponding section numbers are shown in brackets.

4.1 Problem Formulation

4.1.1  Objective Function

The optimization problem of the DCR Framework is defined by the following
unconstrained objective function [Heger et al., 2015], which consists of one
additive term for each of the three objectives: DISCRIMINATIVE f(x) us-
ing a least-squares regression based term to represent the relationship of
input features and target values, COMPACT g(x) a sparsity inducing ¢;-
norm regularization term that performs an implicit feature selection, and
ROBUST h(x) a sum-of-norms based regularization term that corresponds to
a flexible method to include directions in the feature spaces to which the
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learned model is invariant and therefore robust against variabilities in these
directions (robustness directions, see next section and section 4.1.4).

minimize f(x)+ g(z) + h(x), (4.1)
where f(z) = A2 -y,
g(z) = Al

h(z) = VZ Hd; . x”2

The vector x € R™ is the model to be learned, the matrix A € R™*" consists
of m feature vectors extracted from the brain activity signals of the calibra-
tion trials to which an additional 1 was added to cover additive biases (aug-
mented feature vectors), m is the number of trials, n is the augmented feature
vector length. The target vector y € R™ represents the target values for each
trial, e.g. indicating the ground truth class labels of each trial. The scalar
factors A € R, and v € R, determine the influence of the COMPACT and Ro-
BUST terms and are estimated by cross-validation on the training data (see
section 4.5.1). The vector 2’ € R™! corresponds to the first n dimensions of
vector z to avoid that the additive bias offset is removed by the implicit fea-
ture selection of the ¢;-norm regularization. The vectors d € R™ correspond
to the robustness directions in the DCR Framework (next section).

After optimization, a solution z* of the optimization problem (4.1) can be
used to predict the target value y of an unseen feature vector a by

§=a'z" (4.2)

Alternatively, for a classification problem, a binary classification result g
instead of a regression result can be obtained by

= sgn(a'z* — 1), (4.3)

<>

where 7 is a decision offset (as discussed in the next section).

4.1.2 Rationale of the Formulated Problem

The DISCRIMINATIVE-term in the optimization problem (4.1) estimates a
least-squares regression model x. This model is a linear transform that
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can be regarded as a spatio-temporal filter directly including the prediction
of the target y. It has the advantage that it can be used for regression,
but also for binary classification, when the target values in y are chosen
appropriately and the sign function is applied. In the case of classification,
prior knowledge of the distribution of the different classes can be incorpo-
rated in a flexible way by setting the target values in y for the first class to
Uy = %, and for the second class to - = —™= where n; and n_
are the numbers of training instances for the first class and second class,
respectively. The corresponding decision offset is set to 7 = g, + %(g]_ —Ty)-
This choice of y makes the least-squares formulation equivalent to Linear
Discriminant Analysis (LDA, more details on this relationship can be found
in [Duda et al., 2001], chapter 5.8.2).

Besides least-squares regression, other loss functions can be im-
plemented in the DCR Framework, such as logistic regression
[Hosmer and Lemeshow, 2000]. However, we decided for linear regres-
sion because of the flexibility to use it for both, regression and classification
problems and its equivalence in the classification case to LDA, which
is among the most successful classification algorithms for BCIs (see
e.g. [Lotte et al., 2007], section 2.2.4).

The COMPACT-term in the optimization problem (4.1) is an /¢;-norm
regularization, which is well-known for its sparsity inducing properties
[Tibshirani, 1996]. Increasing the weight A\ € R, for the COMPACT-term
(see equation 4.1) causes the number of zero coefficients in x to increase,
which corresponds to an implicit feature selection due to the sparsity of the
model. Therefore, selecting an appropriate value for A\ allows for an optimal
bias-variance trade-off.

Besides the /¢;-norm regularization, other regularization terms to re-
strict the model complexity are possible, such as Tikhonov regu-
larization [Hoerl and Kennard, 1970], dual spectral norm regularization
[Fazel et al., 2001], and others (see e.g. [Hurley and Rickard, 2009] for re-
view). We decided for the ¢;-norm, as it outperformed alternative regular-
ization approaches for BCI problems (e.g. [Heger et al., 2014b]). Further-
more, it has been shown for /;-norm regularization that effective models can
be learned, if the number of features is much larger than the number of in-
stances [Zhao and Yu, 2006, Wainwright, 2009, Bach and Obozinski, 2010],
which enables the DCR Framework to be used with high-dimensional features
(cf. section 4.1.3). Using sparse models is computationally efficient. Addi-
tionally, in comparison with many alternative feature selection approaches to
implement the COMPACT-objective (cf. section 2.2.3), sparsity inducing reg-
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ularization does not analyze features independently (as in greedy selection)
but takes their redundancy and relevance for the learned model into account.

The robustness direction vectors d; are an innovative and generic approach
to integrate the objective ROBUST in the framework. They can be regarded
as K directions in the feature space that can be chosen and whose influence is
minimized in the joint optimization. Therefore, they enable to learn models
that are invariant towards variabilities in these directions. To the best of our
knowledge, a method to include feature space directions to which the learned
models are invariant has not been proposed for other pattern recognition
approaches before.

The two terms for DISCRIMINATIVE and COMPACT are commonly known
from the Lasso [Tibshirani, 1996]. The three terms for DISCRIMINA-
TIVE, COMPACT, and ROBUST may remind the reader of the elastic net
[Zou and Hastie, 2005], which adds a ridge regularization (also called ¢-
norm penalty, Tikhonov regularization, or equivalent to Frobenius norm
penalty) to the Lasso. Yet, instead of a ridge regularization, the opti-
mization problem (4.1) includes a sum-of-norms regularization term for Ro-
BUST (not squared), which is similar to the recently published sparse group
Lasso [Simon et al., 2013]. However, in ROBUST the sum-of-norms term is
not a penalty on x, but on d} z, i.e. the robustness directions projected by
x. Therefore, the sum-of-norms regularization in ROBUST induces sparsity
on the robustness directions. This means, it reduces the influence of the
robustness directions to the model and performs an automatic selection of a
subset of robustness directions to which the learned model is invariant. This
is similar to the effect of group sparsity on the estimated model in group
Lasso.

The intensity of the influence of the ROBUST term can be determined by
choosing v € R, (see equation 4.1). As x can be interpreted in a classifica-
tion task as the orthogonal vector of the separating hyperplane, more weight
on the robustness term, causes x to become more and more orthogonal to the
robustness directions dy, i.e. the separating hyperplane becomes increasingly
parallel to the robustness directions. Therefore, the classification is increas-
ingly invariant to variabilities in the direction of robustness directions. Note
that the separating hyperplane corresponding to & can be orthogonal to mul-
tiple or all robustness directions (i.e. dj z = 0,Vk), if the nullspace! of the
matrix consisting of all robustness directions has rank less than the number
of dimensions n in the feature space.

!The nullspace of a matrix M is defined as Null(M) = {v € R"|M - v = 0}.
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The optimization problem (4.1) is an unconstrained convex prob-
lem as all operations in the objective function preserve convexity
[Boyd and Vandenberghe, 2004]. The Alternating Direction Method of Mul-
tipliers (ADMM) [Boyd et al., 2011] that can exploit the structure of the
problem to solve the optimization efficiently. We present an algorithm
and a detailed discussion for the DCR Framework in sections 4.3 and 4.4.
Note that several standard solving approaches, such as gradient descent and
(Quasi-)Newton approaches cannot be applied, since the ¢;-norm, which is
important to implement the implicit feature selection for the COMPACT ob-
jective, is non-differentiable or they are not computationally efficient, espe-
cially for high-dimensional features (e.g. subgradient approaches).

4.1.3 High-Dimensional Feature Spaces

The DCR Framework is a generic recognizer for classification and regression
problems that can be used with various kinds of features. However, it is in
particular suitable to be used with generic high-dimensional feature spaces
(see section 3.3.2, number of irrelevant features), which is in line with the
approach to shift the burden of modeling relevant information of brain activ-
ity patterns from feature extraction to the learning algorithm stage (section
3.2.2).

As discussed in section 2.1.3, brain activity patterns encode information
in time, frequency, and space. In BCI research typically learned spatial
filters are applied to integrate spatial information in the extracted fea-
tures [Blankertz et al., 2008b, Nicolas-Alonso and Gomez-Gil, 2012]. How-
ever, relevant spatial structures can be learned automatically in the joint
optimization of the DCR Framework and applying spatial filters is not nec-
essary.

Therefore, depending on the characteristics of the BCI paradigm, one or both
of the following elementary features should be used with the DCR Frame-
work:

e Time-domain features: Downsampled raw signals from each channel,
and /or

e Frequency-domain features: Logarithmic Power Spectral Density esti-
mates, for example calculated by Welch’s method [Welch, 1967].

These features are extracted for each trail from the signals of each channel
and vectorized to form a high-dimensional feature vector.
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Downsampling of the raw time-domain signals can often be applied without
loosing information, as brain activity signals are typically recorded using sam-
pling rates that exceed the dynamics of the brain activity signals by multiple
times. For example, modern EEG? acquisition devices can record signals at
a sampling rate of 1 kHz, but the relevant dynamics of ERP components are
usually below 20 Hz. Downsampling can decrease the number of dimensions
tremendously, for example for a trial of ERP data with 32 channels and 1
second length, sampled at a rate of 1 kHz consists of 32000 samples, whereas
it has 1280 dimensions if the data is downsampled to 40 Hz sampling rate.
Downsampling may not be necessary to identify and learn appropriate mod-
els by the DCR Framework, but removes high frequency noise and can speed
up computational time.

Frequency information usually cannot be learned directly form the raw time-
domain data and should be extracted using one of the available approaches
(section 2.2.3). Welch’s methods is especially relevant for noisy data and
has been found useful for many BCI problems (e.g. [Heger et al., 2011a,
Heger et al., 2015]).  Applying the logarithm to power spectral den-
sity estimates has been found to improve recognition performance as it
makes the spectral features follow an approximately Gaussian distribution
[Gasser et al., 1982].

The features discussed above are not commonly used for typical BCI pattern
recognition tasks. The primary reason may be that they create very high-
dimensional feature spaces that cannot be used with traditional learning al-
gorithms and they require sparse methods for efficient processing. However,
we found that generic high-dimensional features can outperform alternative
approaches and can be applied to very different BCI problems and brain ac-
tivity signals with different characteristics (see evaluations in chapters 5 and
6). Furthermore, they can be regarded as generic features as their extraction
requires only a minimum of expert and domain knowledge and they are not
specialized to a specific BCI paradigm.

4.1.4 Robustness Directions

As introduced in section 4.1.2, the robustness directions dj, in equation (4.1)
are an innovative and generic approach to learn models with the DCR Frame-
work that are invariant towards variabilities in the defined directions.

2A similar oversampling can be present in fNIRS recordings, depending on the acqui-
sition hardware and recording settings.
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Robustness direction can be chosen to reduce the impact of different kinds of
variabilites. For example, they can be applied to perform supervised (session
or person) transfer with the DCR Framework: Let uj be the mean vector
of the feature vectors of class k extracted from the calibration data (source
data set) and pf be the set of feature vectors extracted from the transfer
data (target data set). Then, the robustness directions dj can be set to the
differences between the calibration data means and the transfer means:

di = i — iy, VK €C, (4.4)

where C is the set of class indices. Analogue to this supervised transfer, an
unsupervised transfer can be performed, if class labels are not available. In
this case, a robustness direction can simply be set to the difference between
the means of both data sets.

To remove non-stationarities (changes of the features over time, see section
2.1.3), the calibration data feature vectors of each class ¢ are split chrono-
logically into blocks B, of equal size. The robustness directions d; can be
set to the difference between global mean feature vector p. of class ¢ in the
calibration data and the mean vector j’. of the i-th block in B,:

dp = p1o — i, Yk =(i,¢) € ({1,...,]B|} x C). (4.5)

Analog to the person or session transfer, this can also be calculated in an
unsupervised fashion, if class labels are not available.

In addition to person transfer, session transfer, and robustness against non-
stationarities, other ROBUST-schemes may be realized by designing appro-
priate robustness directions, such as robustness against influences that are
determined by expert knowledge or by influences from the experimental de-
sign.

4.2 Related Work on Optimization-based
Pattern Recognition Frameworks for
BClIs

Optimization Approaches

Many problems in pattern recognition, signal processing, machine learning,
statistics and related fields can be formulated as optimization problems.
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Since the 1950s intensive research led to the development of standardized
techniques to solve different classes of convex optimization problems, such as
linear programs, quadratic programs, second-order cone programs, semidef-
inite programs, and others (see [Boyd and Vandenberghe, 2004] for review).
Solutions to these problems can be calculated by generic solvers, for exam-
ple Glmnet (using a coordinate descent algorithm, [Friedman et al., 2010]),
L-BFGS (using a quasi Newton approach, [Liu and Nocedal, 1989]), SDPT3
(using an interior-point method, [Toh et al., 1999]), and DAL (using an aug-
mented Lagrangian approach, [Tomioka and Sugiyama, 2009]).

In comparison to these solvers, the Alternating Direction Method of Multi-
pliers is a framework to implement optimization algorithms for many convex
problems in a principled way that can be highly customized. ADMM is,
in particular, suitable for our problem (4.1) as the objective function can
be decomposed into two terms that can be solved extremely efficiently by
exploiting the structure of the sub-problems (see section 4.4).

Unified Discriminative Frameworks for BClIs

A central concept of the DCR Framework is that the operations for pre-
processing, feature extraction and classification in the pattern recogni-
tion component of a BCI are not regarded as isolated processes (see also
section 3.2.2). In line with this basic idea [Tomioka and Miiller, 2010,
Mak et al., 2011, Makeig et al., 2012, Heger et al., 2014b], a few frameworks
have been developed that unify multiple of the pattern recognition opera-
tions of a BCI:

Li and Guan [Li and Guan, 2006] proposed an extended expectation-
maximization algorithm that iteratively updates the parameters of a Bayes
classifier and common-spatial patterns filters.

Tomioka and Miiller [Tomioka and Miiller, 2010] proposed a regular-
ized discriminative BCI framework. They used first-order or second-
order features that are classified using a logistic regression predic-
tor function and evaluated different regularization methods. Kothe et
al. [Kothe and Makeig, 2013] followed the basic ideas of their approach and
integrated BCI pipelines based on the Dual Augmented Lagrangian optimiza-
tion algorithm [Tomioka and Sugiyama, 2009] into BCILAB, a plugin of the
widespread EEG processing toolbox EEGLAB [Delorme et al., 2011].
Christoforou et al. [Christoforou et al., 2010] developed the second-order bi-
linear discriminant analysis. It uses a bilinear model that includes spatial
and temporal filtering of first and second order features. The authors formu-
lated a non-convex (bi-convex) problem based on a logistic regression that
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is solved separately for spatial and spectral filters by a coordinate descent
algorithm that requires careful initialization.

Barachant et al. [Barachant et al., 2012] proposed a generic approach for BCI
recognition based on Riemannian geometry. They perform the classification
directly on the manifold of covariance matrices using Riemannian distances
in the space of symmetric positive-definite matrices.

Recently, Santana et al. [Santana et al., 2014] proposed to jointly optimize
temporal filtering, spatiotemporal projection and classification using a Deep
Neural Network (DNN). They were able to train the DNN with small amounts
of data by initialization of the individual layers using a CSP-based processing
pipeline. After initialization the network was optimized using error backprop-
agation.

In comparison to our DCR Framework, these approaches integrate the Di1s-
CRIMINATIVE and the COMPACT objectives but do not include mechanisms
to implement the ROBUST objective, such as the robustness directions.

Recently, Samek et al. [Samek et al., 2014] proposed the divergence Common
Spatial Patterns framework, in which CSPs are formulated as optimization
problems based on the Kullback-Leibler divergence or beta divergence. Di-
vergence CSPs have shown competitive performance to several previously
published CSP variants, which are more robust against non-stationarities,
perform session transfer or person transfer.

In comparison to our DCR Framework, divergence CSPs combine the Dis-
CRIMINATIVE and ROBUST objectives in one joint optimization. However,
they do not optimize COMPACT and do not include classification within their
approach.

Transfer and multi-task learning

In the last few years, learning schemes, commonly called transfer learning and
multi-task learning, gained increasing attention in machine learning research.
The basic idea of multi-task learning is to learn a general model that can be
applied to several related problems, whereas the goal of transfer learning is
to exploit knowledge from a target domain or problem to improve learning
for this domain or problem. Pan and Yang [Pan and Yang, 2010] provided a
thorough survey on the substantial body of machine learning literature that
has been published on transfer learning. Many of the approaches are based
on advanced machine learning techniques, that have not been applied to
BCI problems or other real-world problems. Multi-task and transfer learning
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methods in BCI research are primarily suitable to overcome the session and
person variabilites which can reduce calibration times for BClIs.

Alamgir el al. [Alamgir et al., 2009] proposed a framework using Bayesian
multi-task learning. They formulated a problem based on a logistic regres-
sion loss function that can be solved by coordinate descent. The problem
is non-convex and can therefore, in general, only be optimized to a local
optimal solution and not efficiently to a global optimum. They showed im-
provements in classification performance for person transfer learning of a
motor imagery task using two electrodes at sensorimotor locations. Their
method also improved classification in a setting with slightly different exper-
imental setups. Another Bayesian multi-task learning system was developed
by Kang et al. [Kang and Choi, 2011], who used it with a common spatial
patterns based feature extraction.

Krauledat et al. [Krauledat et al., 2008] proposed a so-called zero-training
approach, which identified prototypical spatial filters in multiple previously
recorded sessions of a user using a clustering approach. The prototype filters
have good generalization abilities and can allow BCI use directly after a very
short recalibration time for bias adaptation. However, a large number of
sessions of the user have to be available before he or she can benefit from the
zero training approach.

Falzi et al. [Fazli et al., 2009] used an ensemble learning based approach to
create a subject-independent BCI. They constructed subject-dependent clas-
sifiers for different frequency bands and sparsely combined their outputs us-
ing quadratic regression with ¢; norm penalty regularization. They could
achieve results comparable to subject-dependent reference methods using a
bias-correction that was applied as an offline post-processing step.

Tu and Sun [Tu and Sun, 2012] presented a framework for subject-to-subject
transfer on feature extraction and classification level. They extracted gener-
alizing and subject-specific filters banks from a set of candidate filters gener-
ated using extreme energy ratio features by solving optimization problems.
They employed a two level ensemble learning strategy. In the first level, they
generated learners for both filter banks and combined both learners in the
second level. Evaluations showed a successful subject-to-subject transfer.

These session and person multi-task or transfer learning approaches relate
to aspects of the objective ROBUST. However, they are not unified discrim-
inative frameworks that perform a joint optimization. Usually, they consist
of multiple isolated operations that are not jointly optimized, such as spe-
cialized BCI features that are independently extracted. Furthermore, these
general learning frameworks usually cannot handle intra-session variablilites,
such as modeling invariances against non-stationarities. In contrast, the DCR
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Framework has a great flexibility by designing robustness directions to imple-
ment ROBUST. This feature enables to perform transfer learning, multi-task
learning, robustness against non-stationarities, and other schemes.

4.3 Alternating Direction Method of Mul-
tipliers

The Alternating Direction Method of Multipliers (ADMM) is a framework
for solving large-scale distributed optimization problems. It recently gained
popularity as it has shown very competitive performance for many large-scale
problems in signal processing, machine learning and related areas. Boyd et
al. detail about designing ADMM algorithms in their excellent review article
[Boyd et al., 2011] and present some generic design patterns that we applied
in our optimization algorithm.

4.3.1 General Form of ADMM Problems

The basic problem formulation for ADMM is given by

minimize fi(x) + fa(2), (4.6)
subject to Mz + Nz = c,

with variables x € R™ and z € R"™ and convex functions fi(x), fa(2),
matrices M € RP*™ N € RP*™ and ¢ € RP.

This formulation is a general formulation for linear equality-constrained con-
vex optimization problems with the optimization variable split in two parts
xr € R™ and z € R™, and the objective function split in two corresponding

parts fi(z) and fa(z).

To solve the ADMM optimization problem (4.6) it is expressed in augmented
Lagrangian form:

Ly(x,2,7) = fi(x)+ fa(2) 47 (Mz+Nz—c)+(p/2) | Mz + Nz — c|5. (4.7)

The augmented Lagrangian form is based on the Lagrangian form of problem
(4.6). Tt only adds the additive term (p/2) |[Mz + Nz — c||5. This augmen-
tation improves the robustness of a (sub)gradient ascent strongly and ensures
convergence under less strict conditions, such as f; and f do not have to
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be finite or strictly convex [Boyd et al., 2011]. As the augmentation term
represents the equality constraint of the optimization problem and vanishes
if this constraint is satisfied, the choice of the augmented Lagrangian param-
eter p € R, does not change the optimization. Nonetheless, it can effect the
convergence speed of the optimization algorithm (see dynamic p-updating,
section 4.4.5).

The variable v in equation (4.7) is the dual variable or Lagrange multiplier.
For simplicity of notation, the dual variable 7 is often scaled by the reciprocal
value of p, i.e. the scaled dual variable u is defined by u = % -7v. We will use
this notation in the following sections.

The dual problem of the augmented Lagrangian (4.7) is given by

maximize inf, . L,(z, z,7), (4.8)
Y
subject to v > 0.
Assuming strong duality (see e.g. Slater’s condition
[Borwein and Lewis, 2010]), any solution of the dual function

inf, . L,(z,2,7) is a lower bound of the primal optimization problem.
Therefore, by maximizing the dual function (equation 4.8), an optimal
solution of the optimization problem (4.6) can be calculated, which is a
concave optimization problem.

4.3.2 Iterative Variable Updating

ADMM solves the problem (4.6) by iteratively calculating updates of the
variables z, z, and u of the augmented Lagrangian (4.7). In each iteration
these updates optimize the variables x, z, and u, respectively, while the other
variables are held fixed.

The optimal value 2% in the (k+1)-th iteration is calculated by the z-update
"t = argmin f(z) + (p/2) |Mz + N2" — c+ ukH; :

The optimal value 2**1 in the (k+1)-th iteration is calculated by the z-update
A = argmin fo(2) + (p/2) HMka +Nz—c+ ukHz :

The dual variable ~ is updated as in dual (sub)gradient ascent
[Boyd et al., 2011] using a step size equal to the augmented Lagrangian pa-
rameter p

f)/kJrl _ fyk + p(Mkarl + Nzk+1 _ C).
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Therefore, the value u**1 of the scaled dual variable in the (k+1)-th iteration
is calculated by the u-update

Pt = uF + MaFT 4 N

4.3.3 Convergence and Stopping Criteria

The updates described in the previous section are iteratively calculated until
a stopping criterion is reached. The convergence of ADMM can be proven un-
der mild assumptions, in general, it is necessary and sufficient that an optimal
solution is primal and dual feasible (see section 3.3 of [Boyd et al., 2011]),
i.e. the primal and dual residuals converge to zero norm. In the (k + 1)-th
iteration, one can calculate the primal residual by r*+1 = MzFtl 4+ N2F+1 —¢
corresponding to the equality constraint of problem (4.6) and the dual resid-
ual corresponding to the dual feasible condition by s*+1 = pM T N (2#T1 — 2).

The stopping criteria of the iterative algorithm are determined by bounds on
the suboptimality of the current point. Following [Boyd et al., 2011}, we stop
iterating if the primal and dual residuals are below bounds €’ and e%% that
are determined by small absolute and relative tolerances, i.e. HskHQ < eprt
and ||r¥||, < ™. In addition to these criteria, the algorithm usually stops
after a given maximum number of iterations.

In theory it can be shown that it can take a large number of iteration until
ADMM converges to high accuracy. The convergence rate of ADMM is still
subject to current research. In [He and Yuan, 2012] a sublinear convergence
rate of O(1/k), where k is the number of iterations, has been shown for
non-distributed computation, [Shi et al., 2014] showed linear convergence for
more general and distributed cases. However, in practice ADMM converges
comparably fast for many problems and a reasonably accuracy can be reached
computationally very efficiently. For the BCI problems discussed in this
thesis, it converges usually in less than 100 iterations. Furthermore, the
calculations in each iteration are often very fast, e.g. if the problem structure
can be exploited. Therefore, for our problems an optimal solution can be
calculated in few seconds or less using a standard desktop computer.
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4.4 Joint Optimization using the Alternat-
ing Direction Method of Multipliers

We can formulate our optimization problem (4.1) according to the standard
ADMM form (4.6) by setting

fi(z) = f(z) + h(z), (4.9)
fa(z) = g(2),
M=1,
N =—-1,
c=0,

where [ is the identity matrix.

The settings for fi(z) and fi(z) define, that DISCRIMINATIVE and Ro-
BUST are optimized during the z-updates and COMPACT is optimized during
the z-update. The settings for M, N, and ¢ define an equality constrained
that enforces = and z to be identical.

Setting the variables in this way allows to exploit structures in the objec-
tive function, which enables a very efficient calculation: The DISCRIMINA-
TIVE and the ROBUST term can be combined as both terms are convex
quadratic and differentiable. Therefore, an optimal solution of this part of
the optimization can be found by calculating the derivative and setting it to
zero (see next section). Note, that this is only possible as ADMM allows to
isolate this part of the problem. Furthermore, isolating the COMPACT term
into the function f5(z), enables to calculate the optimal solution for this
part by soft-thresholding [Daubechies et al., 2004], which is a very elegant
and fast proximal gradient method [Combettes and Wajs, 2005] (see section
4.4.2).

As mentioned above, the optimization problem (4.1) can be solved in ADMM
form by iteratively calculating the following 2-, 2-, and u-updates until the
stopping criterion is reached:
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4.4.1 z-Update

The z-update can be calculated by

AR argmmin f(@) + )+ (p/2) ||z — 2F 4w

K
= argmin A~z —yly+v ) [|df - all, + (0/2) o -
k=1

which has a closed form solution that can be obtained by calculating the
derivative® with respect to x and setting the result to zero:

K
V(A -z —yl2+ 0> |l 2], + (4.10)

k=1
p/2 “x—zk+uk“2 =0 <=

1
—A A k+1 k+1
9 ( +VZ||dek+1||2 kL +

(/)@ = 4 ub) =0 =

1 K dr
ZAT Akt S S W e |
AT A D e

(/2L = ATy — (p/2)(F +u¥) =0 =

ATAwZ s kHH it (p/2) D) = ATy — (p/2)(FF +df)  (4.11)

The equation above can be interpreted as a linear system of equations of the
form

DzFtt = ¢, (4.12)

with D € R™"™ and ¢ € R™. Solving this equation, for example by Gauss
elimination or algorithms that exploit the sparsity of the problem, yields the
value for x in iteration k + 1.

3The calculated gradient has been validated using empirical gradient checking, i.e. we
estimated the slope a large series of random points (difference of the function value to
the function values plus a small constant for each dimension) and compared it to the
calculated partial derivatives, which results in a small accumulated error.
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4.4.2  z-Update
The z-update can be calculated using a closed form solution:

At = argming(z) + (p/2) |2 — 2 + ukHz
: 2
— argmin Azl + (p/2) [+ — 2+ o
= Sy, (2" + ), (4.13)

where S, is the componentwise soft-thresholding function [Boyd et al., 2011]
defined by

a; — K 1a; > K

a; +Kk a; < —K.

In this equation, the subscript ¢ denotes the i-th element of the vector.
The soft-thresholding function can be derived from the subgradient formu-
lation and is the proximal operator of the ¢;-norm [Daubechies et al., 2004,
Parikh and Boyd, 2013]. Its calculation is very simple and computationally
extremely efficient.

4.4.3 wu-Update

The wu-update, i.e. the update of the scaled dual variable, can directly be
calculated by
uk+1 — uk + xk+1 _ Zk-‘rl' (415)

This calculation is a simple sum of vectors and, therefore, very efficient.

4.4.4 ADMM Algorithm for Jointly Optimizing Dis-
criminative, Compact, and Robust

The following algorithm shows the pseudocode of the ADMM-based algo-
rithm for joint optimization of DISCRIMINATIVE, COMPACT, and ROBUST in
the DCR Framework:

The input to the algorithm is a matrix composed of the calibration features
A, the vector of target values for the regression or classification problem
y (cf. section 4.1.2), and the robustness directions dj (section 4.1.4). The
hyperparameters A and v are estimated by cross-validation on the calibration
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Input: A: matrix of calibration feature, y: vector of target values,
dy: robustness directions,
A: COMPACT-term weight, v: ROBUST-term weight
Result: z: solution of the optimization
x40, 20, u<+ 0;
p 1
while not convergence criteria met (section 4.3.3) do
z-update (equation 4.11 or equation 4.17 - section 4.4.5);
z-update (equation 4.13);
u-update (equation 4.15);
dynamic p-update (section 4.4.5);
end

Algorithm 1: ADMM-based algorithm for joint optimization in the
DCR Framework.

data as described in section 4.5.1. The initial values of z, z and u can be set
to zero, p is initialized by 1.

In each iteration, the z-update, the z-update and the w-update are per-
formed. Furthermore, the augmented Lagrangian parameter p is updated to
increase convergence speed (see next section). The iterations are performed
until the convergence criteria are met. The (global) optimal solution of the
optimization problem is the output of the algorithm, which corresponds to
the variable z after the last iteration.

4.4.5 Improving Memory Consumption and Compu-
tational Time

Optimizing the z-update for High-Dimensional of Features

To use the algorithm presented above for the BCI problems we intend to
solve, it is essential to optimize calculations for the case that the number of
dimensions in the feature space is much larger than the number of training
instances (n > m). Calculating the matrix D in equation (4.12) (left hand
side of equation (4.11)) can have extensive memory requirements and can
be computationally expensive as D is an n-dimensional square matrix (in
many practical examples, the number of features n can well exceed 10000,
as discussed in section 4.1.3). One can exploit the structure of the problem,
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i.e. the fact that the rank of the m-by-n-matrix A cannot be larger than
m. The Woodbury matrix identity [Woodbury, 1950, Higham, 2002] can be
applied to equation (4.11), which makes the calculation efficient.

Equation (4.11) can be rewritten as

A
1 AT d dre dy k+1 T ki k
5([ VT s, " Va1, . +(p/2)1)z" = A y—(p/2)(2"+u").
di
Substituting
T d d
QR = [A V\\djxlc1+1|\2 “'VHdIT(a:2(+1||2 )
R = [AT dy---dg]',
results in

CQR+ (p/2)1) = ATy — (p/2)(* + o) (4.16)

Applying the Woodbury matrix identity to equation (4.16) can speed up
calculations and memory consumption tremendously. Therefore, we calculate
the z-update by solving the following linear system:

1 1 1
(1" = QU™+ JRQ)H = —RATy + pl* ), (4.17)

where I' is the [-by-/ identity matrix. This transformation achieves a speedup
in comparison to equation (4.11) as no matrix calculations have to be per-
formed using n X n matrices.

Additional speedups can be achieved by caching constant terms. Further-
more, naive approaches to solve the linear system of equations (4.17) should
be avoided, such as those using matrix inversion. Instead, a solution should
be calculated exploiting the sparsity of the problem.

Dynamic p-update

To accelerate convergence, we use a dynamic p-updating, which is a well-
known extension for ADMM. Specifically, we applied the following updating
heuristic (as suggested in [Boyd et al., 2011})):
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20 ||, > 104,
. (4.18)
5o < [[sMl, > 10|

27

i.e. we doubled p, if the norm of the primal residual exceeds 10 times the
norm of the dual residual, and set p to its half, if the norm of the dual
residual exceeds 10 times the norm of the primal residual.

4.5 Extensions of the Joint Optimization al-
gorithm

4.5.1 Model selection

The optimization problem (4.1) has two free parameters, A and v, that have
to be chosen appropriately to balance the influence of the DISCRIMINATIVE,
CoMmPACT, and ROBUST-terms. Grid search using a range of different param-
eters for A and v can be applied to find an optimal parameter configuration
for the given data set. This procedure is very common for hyperparameter
estimation, for example, it is commonly used in support vector machines
(e.g. [Lin et al., 2003]). For each parameter configuration, the recognition
performance is estimated by cross-validation on the training data and the
best performing values are selected for A and v.

Figure 4.2 shows an example of such a cross-validation grid search taken
from the evaluation in section 5.3. The classification accuracies for each
cross-validation on the training data are shown as a heat map.

One can see that the recognition accuracy depends on the appropriate choice
of both parameters, i.e. it requires all three term for DISCRIMINATIVE, COM-
PACT, and ROBUST to achieve an optimal performance. Particularly, the
optimal performance cannot be achieved if either A or v are set to 0. In
this example, an optimal choice for the two parameters increases the per-
formance from 55% (DISCRIMINATIVE-term only, A = 0 and v = 0) to 85%
(e.g. A =0.0399 and v = 0.067).
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Figure 4.2 — Example for the estimation of optimal parameters for A and v by
grid search. The figure shows the heat map of the cross-validation accuracies
for different choices of the parameters.

4.5.2 Multi-Class Classification

The common one-vs-rest and one-vs-one classification strategies can be used
to apply the DCR Framework to multi-class (multinominal) classification
problems.

The one-vs-rest strategy trains one classifier for each class that discriminates
the class from all other classes. It predicts the class with the highest con-
fidence score, whereby the predicted target value without applying the sign
function can be used as confidence score, i.e. = a'z* — 7 (cf. last paragraph
of section 4.1.1).

The one-vs-one strategy trains |C| - (|C| — 1)/2 classifiers to discriminate
between each pair of classes, where |C| is the number of classes. It predicts
the class with the highest score using a majority voting of the classification
results.
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4.5.3 Interpretability and Visualization

The objective function of the DCR Framework is a principled mathematical
formulation that can be directly related to the three core objectives Dis-
CRIMINATIVE, COMPACT, and ROBUST. The solution by convex optimiza-
tion leads to a global optimum, i.e. the learned model z reflects an optimal
representation of the data that can be used to draw conclusions about the
characteristic signals patterns of the BCI paradigm.

A learned linear model x can be visualized, which allows to interpret what
has been learned. For example, this can be used to validate that the model
has learned neural patterns and is not based on artifacts. Furthermore, it
can give insights into relevant structures in the brain activity data, which is
in particular relevant for the development of recognition systems for novel
BCI paradigms and to use BCI as a research tool for cognitive neuroscience.

The model x can be considered as a backward model, in which each value
is a weight for the corresponding value in the feature vector that indicates
how this feature contributes to the prediction of a target value. However,
these backward model weights cannot be directly interpreted to determine
the origin of neural processes in time, frequency, or space.

Haufe et al. [Haufe et al., 2014] recently proposed the following method to
convert a linear backward model z into a forward model w (generative
model), which allows neurophysiologcial interpretation of the weight vector:

w=Y4-1-5,, (4.19)

where >4 is the covariance matrix of the zero mean feature matrix A and
YA, is the covariance matrix of the predicted features.

The linear forward and backward models can be visualized as each coefficient
in the model = can be related to a particular sensor location and time offset
or frequency bin. Thus, for time-domain features, the spatial distribution
can be plotted over time using multiple topographical maps. For frequency
features, the spatial distribution for multiple specific frequency bands can be
visualized.

Figure 4.3 shows an example of forward models from an fNIRS experiment
using time-domain signals. Models for 8 channels oxygenated hemoglobin
(HbR) and deoxygenated hemoglobin (HbO) of two users (S1 and S2) are
shown. One can clearly see from the HbO models that recognition is based
on the difference between the first 20 and the second 20 seconds of the trial,
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which is a reasonable model to classify the increase of a typical hemodynamic
response (cf. figure 2.7 section 2.1.3).
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Figure 4.3 — fNIRS forward models of 8 channels oxygenated hemoglobin
(HbR) and deoxygenated hemoglobin (HbO) of two users S1 and S2.

Figure 4.4 shows an example of a series of topographical scalp maps?* of a
backward model (lower row) and the corresponding forward model (upper
row). The models correspond to the classification of motor imagery EEG for
the user AV in the data set BCI3IVa that was recorded using 118 channels
(see section 5.1.1). The model is shown for 6 different frequencies bands
(model coefficients corresponding to a frequency band have been averaged).
The forward model plots clearly show activity at motor regions particularly
in the frequency bands 8-12 Hz and 20-24 Hz, which corresponds to the typ-
ical neuroscientific findings (cf. event-related (de)synchronization in motor
imagery, section 2.1.3). In contrast to the forward models, the backward
models contain activity that should not be interpreted as motor imagery
related brain activity. For example, in the frequency band 12-16 Hz the
backward model shows activity at frontal medial and left temporal regions
that are not present in the corresponding topographical plot for the forward
model.

4.6 Contributions and Discussion

The DCR Framework is a new BCI pattern recognition framework for joint
optimization of the three core objectives DISCRIMINATIVE, COMPACT, and
RoBusT. It follows a strictly principled approach to implement DISCRIM-
INATIVE, COMPACT, and ROBUST by joint optimization of the three ob-

4Plots indicate the spatial distribution of the activity over the scalp as viewed from top
(depicted nose indicates frontal direction).
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Figure 4.4 — Example of topographical scalp maps showing forward and
backward models learned by the DCR Framework for EEG motor imagery
classification.

jectives that are formulated as three terms in the objective function (equa-
tion (4.1)). In particular, this joint optimization enables a unified approach
that combines multiple, typically isolated, processing steps for pattern recog-
nition. For example, no specialized operations for spatiotemporal filtering,
feature extraction, feature selection and classification are performed. Instead,
generic high-dimensional features are extracted, which impose minimal prior
assumptions on the BCI paradigm and require a minimum of expert and
domain knowledge. Additionally, the automatic estimation of all parameters
avoids inductive biases and can increase recognition performance compared
to specialized BCI processing chains.

The learned linear models of the DCR Framework are interpretable and visu-
alizing the models allows to verify what has been learned (previous section),
which is a major advantage in comparison to other advanced pattern recogni-
tion approaches. They can give insights into relevant structures in the data,
which is in particular relevant for the development of recognition systems for
novel BCI paradigms.

To the best of our knowledge, no other BCI recognition framework optimizes
the three objectives jointly. Furthermore, an optimization that includes a
direct learning of both, regression or classification problems, and a flexible
design for implementing the ROBUST objective, in supervised (i.e inductive)
and unsupervised (i.e transductive) settings, has not been proposed before.

We presented an algorithm based on ADMM that allows for a computation-
ally efficient calculation of the joint optimization. For all evaluations in this
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thesis, the optimization can be performed on a desktop computer within few
seconds. The algorithm presented here is a centralized algorithm, although a
major advantages of ADMM is that large-scale problems can be optimized in
distributed and decentralized settings (e.g. cluster computing). However, the
amount of data in BCI research is currently very limited and, in practice,
the major computational effort of using the DCR Framework comes from
the grid search for model selection, which is trivial to calculate in parallel
in a distributed setting as these calculations are independent. Nonetheless,
the proposed optimization algorithm can easily be modified for distributed
calculation, which may become relevant if the typical amount of data in BCI
research will grow in the future.

To the best of our knowledge, it is the first time that ADMM has been applied
to create a unified framework for BCI pattern recognition.

In BCI research, different BCI paradigms (section 1.1.4) are, typically, pro-
cessed with dedicated pattern recognition approaches. The DCR Frame-
work is designed to be a flexible and generic framework applicable to various
BCI paradigms and brain activity signals with competitive performance.

To the best of our knowledge, no other generic framework for BCI pattern
recognition has been evaluated with different BCI paradigms and different
brain activity signals, which we will show in section 5 and chapter 6. The
evaluations of the DCR Framework illustrate its advanced performance for
many different BCI paradigms. Thereby, the DCR Framework follows a prin-
cipled approach to translate the three objectives directly into a mathematical
formulation that can be solved by joint convex optimization for very generic
high-dimensional features. This suggests that, in addition to being necessary
conditions (section 3.3.4), the objectives DISCRIMINATIVE, COMPACT, and
ROBUST can be regarded a sufficient set of conditions for pattern recognition
of a variety of BCI problems.

Limitations

In comparison to typical advanced pattern recognition systems, such as deep
neural networks, multi-kernel learning, and others, the DCR Framework can
only learn linear transformations, i.e. non-linear structures in the features
may not be optimally modeled. However, one should keep in mind that
linear models have been the most successful methods for BCI pattern recog-
nition (see section 2.2.2 for advantages of linear operations). The primary
reasons for the design decision to use linear models are the efficient calcu-
lation of optimal transformations, the interpretability of linear models and
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high recognition performance for various BCI problems, especially when us-
ing high-dimensional features.

The proposed algorithm is computationally very efficient for practical prob-
lems. However, if the z-update (equation 4.17) is implemented using a naive,
dense Gauss elimination, the optimization algorithm has a computational
worst-case complexity of O(kn?), where k is the number of iterations and n
is the number of dimensions in the feature space. Nonetheless, due to the
sparsity of the problem, the z-update can usually be calculated very fast,
if efficient solvers and the speedups discussed in section 4.4.5 are applied.
Usually, the algorithm converges in less than 100 iterations.

The robustness directions in the DCR Framework are a flexible way to guide
the optimization towards learning models that are invariant against vari-
abilities in these directions in the feature space. However, the robustness
directions may not allow to learn invariances towards all kinds of artifacts
and variabilities that may occur in brain activity signals. Robustness direc-
tions, such as those typically used for transfer learning or to learn invariances
against non-stationarities as discussed in section 4.1.4, ignore the variances
and higher order statistics of the variabilities. Therefore, multiple robustness
directions are needed to be defined to be able to learn invariance against
variabilites that correspond to changes of the feature distribution, including
changes in mean and variances. Nonetheless, in the evaluations (chapters 5
and 6) we could show that, in practice, the transfer directions significantly
increase performance for subject-transfer learning, session-transfer learning,
and reduction of non-stationarities for different BCI problems and different
brain activity signals. To the best of our knowledge, no algorithm has been
proposed before in transfer learning, multi-task learning, or BCI literature,
where robustness directions (or alike) can be defined to improve the robust-
ness against signal variabilities of the learned models.






CHAPTER 5

Evaluation of the DCR Framework

In this chapter we evaluate the DCR Frameworkusing data.
First, we isolate the DISCRIMINATIVE and COMPACT terms and
analyze these two aspects of the DCR Framework using two dif-
ferent BCI problems. Then, we illustrate the characteristics of the
RoBuUST-term using synthetic data. Finally, we evaluate the joint
optimization of DISCRIMINATIVE, COMPACT and ROBUST with
the DCR Framework in two different BCI tasks.

In this chapter, we first investigate the two terms for DISCRIMINATIVE and
CoMmPACT of the DCR Framework, i.e. f(z) and g(x) in equation (4.1), to
show that they can produce state-of-the-art performance for typical EEG and
fNIRS data sets. Specifically, we set the weight for the ROBUST term to zero
(v = 0), evaluate two different publicly available benchmark data sets and
compare the performance of the DCR Framework with results of multiple al-
ternative state-of-the-art BCI pattern recognition approaches that do not in-
tegrate specific pattern recognition mechanisms for ROBUST. Note, that eval-
uating f(x) and g(z) only, does not contradict the hypothesis that the three
objectives are necessary conditions for pattern recognition in BClIs, as the
implementation of f(x) and g(x) also includes some robustness against signal
variabilities, because of the interdependence of DISCRIMINATIVE, COMPACT,
and RoBUST. Furthermore, the analyzed data sets are recorded under con-
trolled conditions and contain rather clean signals.
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Second, we investigate the influences of the ROBUST-term, i.e. h(z) in equa-
tion (4.1), in more detail using synthetic data. We show the effects of different
values of the parameter v on the separating hyperplane in two different clas-
sification tasks. In the first task, we set the robustness directions according
to a simulated shift in the data distribution. In the second task, we use the
robustness directions to learn models that are invariant against the activity
of non-stationary sources in the data.

Third, we evaluate the complete DCR Framework using two different BCI
data sets to show its advanced performance for person transfer. The first
data set is a comparably large data set that consists of motor imagery data
of 106 users. The second data set corresponds to an error potentials (event-
related potentials) recognition task that was used in the BCI Challenge at
the IEEE Neural Engineering conference 2015. In this competition the DCR
Framework achieved a price winning performance (see section 5.4.4).

5.1 Evaluating the DCR Framework using
DISCRIMINATIVE and COMPACT

We first evaluate the DCR Framework using generic high dimensional fea-
tures (section 4.1.3), for two different BCI problems and compare it with com-
mon state-of-the-art BCI pattern recognition methods. In these evaluations,
we want to highlight that the DCR Framework yields competitive recognition
performance out-of-the-box for very different BCI paradigms without using
specific optimizations.

5.1.1 Motor Imagery Classification

In the first evaluation, we perform motor imagery classification, which is one
of the most frequently investigated BCI paradigms and a classical benchmark
in BCI research.

Related Approaches

There is a substantial body of BCI literature on motor imagery classification.
Most frequently, EEG-based BCIs apply the Common Spatial Patterns (CSP)
algorithm or one of its numerous variants (see section 2.2.3). It is usually
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applied to raw signals filtered using a frequency broadband, such as 8-30 Hz,
to calculate a small number of discriminative spatial filters. Commonly, the
variances are calculated from the CSP filtered signals and the logarithm is
applied to Gaussianize the features. This way, CSPs extract a small set of
specialized features for motor imagery classification.

One of the most successful CSP variants that was the winning approach for
multiple tasks in BCT Competition IV [Tangermann et al., 2012] is the Filter-
Bank Common Spatial Patterns (FBCSP) algorithm [Ang et al., 2008]. It
applies a filter bank of, usually 4 Hz wide bandpass filters between 4 and 32
Hz (4-8 Hz, 8-12 Hz, ..., 28-32 Hz), to the raw data. The basic CSP algo-
rithm is applied to each of the frequency filtered signals and the most discrim-
inative spatial filters (e.g. the 2 first and 2 last columns of the CSP transfor-
mation matrix per class) are used to transform the data. The spatial filters
that have the highest mutual information between the corresponding loga-
rithmic variance features and the class labels are selected using kernel density
estimation based mutual information feature selection [Ang et al., 2008].

The combination of CSP-based features and classification by Linear Discrim-
inant Analysis (LDA) can be seen as the standard approach for EEG-based
motor imagery recognition. LDA finds a linear transformation that minimizes
the ratio of within-class scatter and between-class scatter of the calibration
features. The LDA transformation can be calculated by the generalized eigen-
value analysis of the two scatter matrices [Duda et al., 2001].

If only small amounts of calibration data are available, shrinkage LDA
[Schéfer and Strimmer, 2005] can be applied instead of the vanilla LDA,
which implements the COMPACT objective. It employs Ledoit and
Wolf’s method for regularized empirical covariance matrix estimation
[Ledoit and Wolf, 2004] to improve the estimates of the scatter matrices for
high dimensional features, when only small amounts of data are available.
The Ledoit-Wolf covariance estimator interpolates the sample covariance
matrix with a unity matrix, whereby an asymptotically optimal interpo-
lation weight is analytically determined. This generates an invertible, well-
conditioned and more accurate estimate than the sample covariance matrix.

As CSPs are pattern recognition methods that are learned from training data,
they should implement the COMPACT objective, in addition to the regulariza-
tion of the classifier. There are different variants of regularized Common Spa-
tial Patterns (rCSPs), a comparison can be found in [Lotte and Guan, 2011].
In the following evaluation we used rCSPs with diagonal loading. In this
approach, the empirical covariances involved in the CSP calculation are lin-
early interpolated with a unity matrix, where the regularization parameter,
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i.e. the weighting of the unity matrix, is estimated using cross-validation (see
[Lotte and Guan, 2011]).

Besides CSP-based methods, high-dimensional spectral features (HDspec)
can be used for motor imagery classification. They are not commonly used
in literature but are well suited for the DCR Framework. In the evalua-
tions below, they are extracted in 1 Hz wide frequency bands using Welch’s
method, as described in section 4.1.3.

Data Corpus: BCI Competition III data set IVa (BCI3IVa)

In this evaluation, we use one of the most frequently employed bench-
mark data sets in BCI research for motor imagery classification. It
was published! as data set IVa for the BCI Competition IIT (BCI3IVa)
[Blankertz et al., 2008a].

BCI3IVa contains EEG data of five users, which performed two classes of
motor imagery: imagined right hand and right foot movements. For each
trial in the experiment, a visual cue was shown for 3.5 seconds on the screen
to indicate which class of motor imagery the user should perform. Between
the trials there were pauses of random length between 1.75 and 2.25 seconds.
Figure 5.1 illustrates the timings for a trial.

Visual Cue

Time in sec

Figure 5.1 — Timings of a trial in BCI3IVa.

A different number of calibration and test trials is available for each user,
which is shown in table 5.1. This way, a particular challenge of BCI3IVa is
that there is only a little amount of calibration data available. The data set
contains signals recorded using 118 channels downsampled to 100 Hz.

BCI3IVa consists of quite clean motor imagery data of trained BCI users.
Therefore, additional specific ROBUST methods are not mandatory to obtain
very good recognition results. For the DISCRIMINATIVE and COMPACT ob-
jectives we evaluate the different approaches outlined in the previous section.

Thttp://www.bbci.de/competition/iii/desc_IVa.html
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User | # calibration trials # test trials
AA 168 112
AL 224 56
AV 84 196
AW 56 224
AY 28 252

Table 5.1 — Number of trials for calibration and testing for each of the five
users in BCI3IVa.

Because of the low number of calibration trials and high number of channels
the COMPACT objective is particularly relevant for this data set.

Evaluation of BCI3IVa

In this evaluation, we discriminate between the two different classes of
motor imagery in BCI3IVa. We compare the performance of generic
high-dimensional spectral features (HDspec, as proposed for the DCR
Framework in section 4.1.3) and Common Spatial Patterns based features,
i.e. vanilla CSPs and FBCSPs (section 2.2.3).

The feature extraction approaches have been applied with parameter set-
tings that typically achieve high recognition performance as follows. HD-
spec features correspond to 3304 features? in this experiment, whereas the
8 most discriminative CSP-based features were used and for FBCSP-based
features the 22 most discriminative features were selected (see below). We
compare classification by LDA based approaches with classification by the
DCR Framework using only the DISCRIMINATIVE and COMPACT terms. For
CSP and LDA we also evaluate regularized variants, called rCSP and sLDA,
respectively.

We evaluate the following seven approaches that include well-established
baseline approaches and approaches that are expected to achieve state-of-
the-art performance in BCI3IVa (cf. section 5.1.1): We evaluate Linear Dis-
criminant Analysis classification of features extracted by the Common Spa-
tial Patterns algorithm (LDA-CSP). Furthermore, we evaluate the regular-
ized variant of this approach, i.e. shrinkage Linear Discriminant Analysis
classification of features extracted by regularized Common Spatial Patterns

2Corresponding to 28 frequency bands and 118 channels
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based features (sLDA-rCSP). Moreover, we evaluate shrinkage Linear Dis-
criminant Analysis classification of features extracted by the filter-bank Com-
mon Spatial Patterns algorithm using regularized CSPs (sLDA-rFBCSP). In
addition to CSP-based features, we evaluate Linear Discriminant Analysis
classification and high-dimensional spectral features (LDA-HDspec). Addi-
tionally, we evaluate shrinkage Linear Discriminant Analysis Classification
and generic high-dimensional spectral features (sLDA-HDspec). Finally, we
apply the DCR Framework to high-dimensional spectral features (DCFram-
HDspec) and compare it to regularized Common Spatial Patterns based fea-
tures (DCFram-rCSP).

Results and Discussion

Table 5.2 lists the feature extraction and classification approaches for com-
parison and summarizes how the objectives DISCRIMINATIVE and COM-
PACT are implemented. It also shows the number of features extracted
(DISCRIMINATIVE column) and number of features modeled for the CoM-
PACT approaches.

Table 5.3 shows the recognition accuracies of the different methods for each
of the five users in BCI3IVa and figure 5.2 summarizes the results averaged
over the five users.

Accuracy [%]
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Figure 5.2 — Recognition results for BCI3IVa averaged over the five users.
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E & | classification  features
— O
< n LDA 8 CSP based Shrinkage Diagonal loading
E 8 classification  features
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LDA Automatic frequency | Shrinkage, Individual filter
| cDB classification  band selection, Mutual information calculations with
E 8 7-8 =56 CSP based selection diagonal loading
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<Qlﬁ Q% classification  generic spectral
s features

. 8 | LDA 3304 dimensional, Shrinkage n/a
g Q% generic spectral classification
= features
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% & generic spectral model weights
el features

, Least-squares £1-norm regularized | optimization with n/a

é g | classification 3304 dimensional on avg. 540 active
% Q% generic spectral model weights
AT features

Table 5.2 — Overview over the different features extraction and classifica-

tion approaches for BCI3IVa.

W

stands for no particular method applied,

and “n/a” denotes compact modeling techniques are not applicable for the
extraction of HDspec features.
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Method \ User | AA | AL | AV | AW | AY || Mean (std)

LDA-CSP 741 | 100 | 526 | 61.6 | 91.3 | 75.9 (19.8)
sLDA-rCSP 78.6 | 100 | 69.9 | 95.5 | 79 84.6 (12.6)
sLDA-rFBCSP 80.4 | 100 | 62.8 | 80.4 | 65.9 || 77.9 (14.77)
LDA-HDspec 50 7.1 | 46.4 | 48.2 | 53.6 51.1 (4.3)

sLDA-HDspec 74.1 | 100 | 69.9 | 79 | 51.6 || 74.9 (17.4)

DCFrmw-rCSP | 75.0 | 100 | 70.4 | 67.4 | 90.5 || 80.7 (14.0)
DCFrmw-HDspec | 78.6 | 100 | 74.5 | 93.3 | 82.1 || 85.7 (10.6)

Table 5.3 — Comparison of different pattern recognition methods for the five
users of BCI3IVa. The results are shown in percent accuracy.

As expected, the results for all of the CSP-based approaches show that they
can effectively discriminate between the two motor imagery classes. A more
detailed investigation shows that LDA-CSP suffers from the small amount
of calibration data as it does not implement appropriate mechanisms for the
COMPACT objective. In contrast, rLDA-sCSP, the corresponding approach
that particularly implements the COMPACT objective, outperforms the
not regularized approach by 12.7% relative (8.7% absolute). Regularized
FBCSPs were calculated with 2 to 56 features® selected by the mutual
information feature selection. The best performance was achieved with 22
features. Surprisingly, the rFBCSP based approach did only perform slightly
better than the vanilla CSP in this evaluation, although regularized CSPs
were used and the approach automatically identifies relevant frequency
bands, however the feature selection may overfit in the presence of little
data.

The devastating effect of neglecting the COMPACT objective can be seen
in the approach LDA-HDspec, where recognition accuracies drop to 51.1%
which corresponds to chance level performance for each user. This can be
attributed to the fact that the (not regularized) LDA overfits when it is
applied to the 3304-dimensional features.

One can clearly see that the regularized approaches using the high dimen-
sional spectral features (sSLDA-HDspec, DCFrmw-HDspec) have competitive
performance to the CSP-based approaches. This is particularly interesting as
a major body of EEG-based motor imagery BCI literature uses CSP-based
features (section 2.2.3).

The DCR Framework (DCFrmw-HDspec) shows superior perfor-

37 frequency bands with 8 filters each
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mance in comparison to all other methods in this evaluation. Ad-
ditionally, it outperforms® numerous other published approaches
that have been evaluated using BCI3IVa, such all results reported
in  [Lotte and Guan, 2011,  Arvaneh et al., 2011,  Samek et al., 2012,
Zhang et al., 2013, Santana et al., 2014, Brandl et al., 2015] and many
others. The results achieved in this evaluation would correspond to the
third best results in BCI competition III [Blankertz et al., 2008a]. Thereby,
one should keep in mind that the submissions for the BCI competition can
be regarded as highly optimized for BCI3IVa. For example, the competition
winner used different feature sets for the different users in the data set,
whereas we just applied the basic DCR Framework here and did not perform
any specific optimizations for the data set or individual users and did not
use a system combination to increase the performance.

5.1.2 fNIRS n-back Classification

After the evaluation of the DCR Framework using motor imagery EEG data,
we investigate the classification of fNIRS data, which have fundamentally dif-
ferent signal characteristics than EEG signals. For this evaluation we classify
different levels of workload induced by the n-back task [Kirchner, 1958], as
described below.

Related Approaches

Workload has been studied by multiple BCI researchers using the n-back task.
In these studies, predominantly EEG was used to measure brain activity
(e.g. [Berka et al., 2007, Heger et al., 2010c, Brouwer et al., 2012]). Work-
load induced by the n-back task has been investigated with fNIRS measures
[Ayaz et al., 2007, Ayaz et al., 2012] but their analyses are limited to prop-
erties of averaged hemodynamic responses and they did not perform recog-
nition.

fNIRS BClIs are an emerging field of research but single-trial studies are
still rare compared to EEG-based BCIs. In [Herff et al., 2013a], we showed
for the first time that fNIRS can be used to discriminate between different

4Tt should be noted that a rigorous comparison of the results with those published in
other papers is often not possible and not common in BCI literature, as the signal process-
ing is usually not exactly identical, which can have a strong impact on the performance.
Nonetheless, the DCR Framework achieves a very good performance for BCI3IVa that we
expect to outperform currently published state-of-the-art results.
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workload levels of the n-back task by single-trial recognition (n € {1,2,3}).
We investigated signals measured from the prefrontal cortex to quantify the
users’ workload using binary classification tasks and the three class problem
of discriminating between 1-back, 2-back, and 3-back. The hemodynamic
responses are consistent enough to classify all of these tasks on a single-trial
basis with classification accuracies significantly above chance level.

For single-trial recognition of fNIRS signals, there is currently no stan-
dard feature extraction method. Commonly, features are calculated from
the oxygenated (HbO) and de-oxygenated (HbR) hemoglobin concentration
changes to represent informative properties of cerebral hemodynamics. Typ-
ically, simple statistical properties of the time-domain signal amplitudes,
such as mean, variance, kurtosis, skewness or laterality have been calculated
as features [Tai and Chau, 2009, Moghimi et al., 2012, Herff et al., 2013a,
Heger et al., 2014a]. An effective feature extraction method for fNIRS sin-
gle trial analysis is the slope calculated by fitting a line to the measured
HbO and HbR signals of a hemodynamic response. If the slopes of all chan-
nels (HbO and HbR) are concatenated into feature vectors, the number of
features in a feature vector corresponds to twice the number of measure-
ment locations, which is a strong knowledge-based reduction of the recorded
signal data of each trial. In [Heger et al., 2014b], we showed that high-
dimensional raw time-domain amplitude signals (HDfeat) can improve fNIRS
recognition results when combined with regularized least-squares classifica-
tion (COMPACT).

Recently, Bauernfeind et al. [Bauernfeind et al., 2014] compared different
classifiers for fNIRS BCls. Their evaluation included classifiers that are
well established in BCI research, such as Support Vector Machines and dif-
ferent Linear and Quadratic Discriminant Analysis based classifiers. They
recommended using shrinkage LDA (sLDA) because of its simplicity, small
computational costs and good recognition performance.

Data Corpus: fNIRS n-back (NBACK)

In this evaluation, we use the fNIRS n-back data corpus (NBACK) that has
been made available by the Cognitive Systems Lab [Herff et al., 2013a].

The data corpus consists of recordings of 10 users (4 female, 6 male) with
a mean age of 22 years. None of the participants had taken part in an n-
back study before to ensure that no training effects are present. The data
were recorded by an Oxymon Mk IIT continuous wave fNRIS system (Artinis
medical systems, Netherlands) using a sampling rate of 25 Hz. Optodes were
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located at a distance of 3.5 cm measuring activity of the prefrontal cortex as
shown in figure 5.3. Using this montage, the data set consists of 8 channels
with oxygenated (HbO) and deoxygenated (HbR) hemoglobin concentration
signals (16 time series).

velcro straps - )
CHa CH2 CH5 CH7
CH3 CH1 CHé CH8
@/ Tx )
Right eye Left eye

Figure 5.3 — Optode placement in NBACK. Transmitter optodes are
marked as Tx, while Rx indicates receiver optode positions. Figure from
[Herff et al., 2013a]

The n-back task requires the user to continuously memorize the last n of a
series of rapidly presented letters (stimuli). If a stimulus appears that has
been presented exactly n stimuli before, the user should react by a button
press. Increasing n increases the memory effort and the task difficulty for
the user. During the experiment n was varied between 1, 2 and 3, which
corresponds to an easy, a demanding and a very challenging task, respectively.

A trial consisted of 5 seconds for instruction, informing the user about the
next task (1-, 2- or 3-back in pseudorandomized order), followed by 22 stimuli
presented on the screen every 2 seconds for 0.5 seconds (followed by a blank
screen) within each trial. Subsequently, a cross was displayed for 15 seconds
to ensure that hemoglobin levels returned to baseline. Signals of the first 20
seconds after the instructions of each trial were used in this evaluation.

Analog to section 5.1.1, NBACK has been recorded using a strongly con-
trolled experimental setup and only small amounts of artifacts and non-
stationarities are contained in the data. Therefore, we do not model robust-
ness directions here and concentrate on the objectives DISCRIMINATIVE and
CoMPACT. The joint optimization of all three objectives will be evaluated
in sections 5.3 and 5.4.
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Evaluation of NBACK

In this evaluation, we analyze the three binary problems of discriminating
between the three n-back conditions, i.e. n € {1,2,3} using 10-fold cross-
validation.

Similar to the evaluation of BCI3IVa in section 5.1.1, we compare generic
high dimensional features with specialized features. More precisely, we clas-
sify high-dimensional time-domain raw signal amplitudes as described in sec-
tion 4.1.3 (HDfeat) and specialized fNIRS features based on the slope of the
hemodynamic response (Slope). We employ LDA based classifiers or the DCR
Framework, with only using the DISCRIMINATIVE and COMPACT terms in
equation (4.1) (DCFrmuw).

We evaluate the following five approaches: As a basic approach we use Linear
Discriminant Analysis classification of features based on the signals’ slopes
(LDA-Slope), which can still be regarded as a current state-of-the-art ap-
proach for fNIRS based BClIs (section 5.1.2). In addition to slope features,
we evaluate generic high-dimensional time-domain features using Linear Dis-
criminant Analysis classification (LDA-HDfeat) and shrinkage Linear Dis-
criminant Analysis classification (sLDA-HDfeat), which uses the HDspec
features that we have proposed in [Heger et al., 2014b]. Furthermore, we
apply the DCR Framework with DISCRIMINATIVE and COMPACT only, to
evaluate slope features (DCFram-Slope), and using generic high-dimensional
time-domain features (DCFram-HDfeat).

Results and Discussion

Table 5.4 lists the evaluated feature extraction and classification approaches
for comparison and summarizes how the objectives DISCRIMINATIVE and
COMPACT are implemented. It also shows the number of features extracted
(DISCRIMINATIVE column) and number of features modeled for the CoM-
PACT approaches.

Table 5.5 shows the average recognition accuracies of the five different meth-
ods for each of the three binary classification tasks (1-back vs. 2-back (1-2),
1-back vs. 3-back (1-3), 2-back vs. 3-back (2-3)). A star indicates classi-
fication results that are significantly above chance level (one sided, paired
Wilcoxon signed rank tests on the results of the 10 users, p < 0.05). One
can see that only the results of the DCR Framework are significantly above
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Table 5.4 — Overview over the different features extraction and classification
approaches to evaluate NBACK. “-” stands for no particular method applied,
and “n/a” denotes compact modeling techniques are not applicable for the
extraction of high-dimensional time domain features.

Approach \ Task | 1-2 1-3 2-3 Mean
LDA-Slope 56.5 (14.5) | 64.5% (11.2) | 56.0 (12.0) | 59.0
LDA-HDfeat 55.8% (7.8) | 54.5* (6.1) | 47.5 (10.1) | 52.6
sLDA-HDfeat 53.5 (14.4) | 66.5* (8.9) | 61.8* (14.2) | 60.6
DCFrmw-Slope 60.5* (13.3) | 63.3* (10.6) | 60.3* (5.6) | 61.3
DCFrmw-HDfeat | 59.0% (12.0) | 67.5% (8.3) | 58.8* (9.4) | 61.8

Table 5.5 — Comparison of different pattern recognition approaches for the
three different binary classification tasks of NBACK and the mean over the
results of all tasks for each method. The results are shown in percent accuracy,
standard deviations across users are shown in parentheses.
results that are significantly above chance level (one-sided Wilcoxon signed

rank tests, p < 0.05).

Stars indicate
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Figure 5.4 — Accuracies of 10-fold cross-validations of the three binary clas-
sification tasks for the different pattern recognition approaches. FEach bar
corresponds to the result of one of the 10 users.
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chance level for each of the three classification tasks. Figure 5.4 shows the
individual results for the 10 users for each of the three tasks.

For all approaches besides LDA-HDfeat, the classification of 1-3 performs
best, which is expected as the largest difference in workload among the bi-
nary classification tasks can be assumed. The baseline approach LDA-Slope
does only perform well for classifying the task 1-3 and cannot achieve re-
sults significantly above chance level for the other two tasks. Similar to the
evaluation in section 5.1.1, not regularized LDA achieved the overall lowest
results for classifying high-dimensional features (LDA-HDfeat) which can be
attributed to overfitting. Using shrinkage LDA (sLDA-HDfeat) shows strong
performance gains for the tasks 1-3 and 2-3.

The evaluations using the DCR Framework with only the DISCRIMINA-
TIVE and COMPACT terms (DCFrmuw-Slope, DCFrmw-HDfeat) show the best
recognition accuracy averaged over all three tasks, i.e. 61.3% and 61.8%,
respectively. One can clearly see that the regularized approaches using
high-dimensional spectral features (HDspec) have competitive performance
in comparison to the Slope-based approaches.

The DCR Framework (DCFrmw-HDfeat) shows a superior performance (av-
eraged results) in comparison to the alternative methods in this evaluation,
however, pairwise Wilcoxon tests show no significant differences between the
different approaches (apart from LDA-HDfeat, which performs significantly
worse than all other approaches).

5.2 Evaluation of ROBUST using Synthetic
Data

After the evaluation of the DCR Framework using only the DISCRIMINA-
TIVE and COMPACT terms, we investigate the ROBUST term in this section.
The robustness directions of the DCR Framework are a new pattern recog-
nition concept to implement the ROBUST objectiv, therefore, we perform
isolated analyzes for ROBUST in this section. Variabilities in real brain activ-
ity signals, such as non-stationarities, are usually difficult to analyze. Using
synthetic data enables to illustrate the effects of the robustness directions in
a controlled setting, i.e. on data that are created with variabilities according
to a certain well-defined model. We illustrate the concept of RoBUST for
transfer learning (section 5.2.1) and for the reduction of non-stationarities
5.2.2). Evaluations of the DCR Framework using real brain activity signals
are discussed in sections 5.3 and 5.4.
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5.2.1 Robustness against Data Shift

Signal variabilities across users and recording sessions can cause a mean shift
of the features, as discussed in section 2.1.3.

In this example we illustrate the concept of the robustness directions and how
they make the DCR Framework robust against such variabilities. We use
synthetic toy data to simulate the problem that calibration data to train the
BCI is given from one person or session (training data) and the BCI should
be applied to another target person or session where the data distribution has
changed. From the target domain, we have few data available to calculate
the robustness directions (transfer data). In contrast to real data that is
high-dimensional, we generate synthetic 2-dimensional data that can easily
be visualized to illustrate the behavior of the DCR Framework.

Synthetic Data Generation

We sampled two classes of synthetic training features from normal distribu-
tions. For the first class, features were drawn from A/([10 10]T ,I) and for
the second class, features were drawn from A/([20 10]T , 1), where N (m, )
is the multivariate normal distribution with mean m and covariance matrix
Y and I € R?*? is the unity matrix. The transfer data were sampled from
a normal distribution with shifted mean, i.e. from A/([20 QO}T ,I) for class

one and from A ([30 20] " 1) for class two.

Evaluation

The robustness directions were chosen as the differences between the training

means 4, and the transfer means pf for each class k, as described in section
4.1.4:

D= {uj—m | keC},
where C = {1, 2} is the set of class indices.

Figure 5.5 shows the synthetic features and the different separating hyper-
planes® learned by the DCR Framework when increasing the weight for the
RoBUST-term v linearly between 0 and 1.

One can see that the separating hyperplane increasingly turns towards the

°The model z in equation (4.1) corresponds to the normal vector of the separating
hyperplane.
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Figure 5.5 — Synthetic features and the different separating hyperplanes (red)
when increasing the weight for the ROBUST-term v linearly. Crosses indicate
features of class 1 and circles indicate features of class 2. Training data are
shown in green, transfer data in blue. The lightblue dotted lines indicate the
transfer directions.

direction parallel to the defined robustness directions (vectors between the
training and transfer data). Setting ¥ = 1 in this example results in a
separating hyperplane that is parallel to the defined robustness directions,
i.e. the sum-of-norms in the ROBUST-term in equation (4.1) becomes zero.
Therefore, setting higher values for v does not change the separating hyper-
plane. The recognition accuracies of the transfer data using the classifiers
trained with different values for v gradually increases from 0% to 100% in
this example. This means that without the ROBUST-term shifted test data
that are distributed as the transfer data cannot be classified correctly at all,
while setting the appropriate weight for the robustness direction makes the
learned model invariant towards the data shift, which results in a perfect
classification.

In this evaluation we generated 2-dimensional random data to be able to
visualize the data and illustrate the influence of the robustness directions.
Note that the concept of robustness directions in the DCR Framework can
be more powerful in high-dimensional feature spaces, where a separating
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hyperplane can be parallel to multiple directions in the feature space, as
outlined in the last paragraph of section 4.1.2.

5.2.2 Robustness against Non-Stationarities

Signal variabilities in brain activity signals occur often within a recording
session due to the non-stationary nature of activity sources that contribute
to the measured brain activity signals, as discussed in section 2.1.3.

In this evaluation we illustrate the robustness against signal variabilities
caused by non-stationarities using synthetic toy data. We simulate the prob-
lem that the calibration and test data are subject to changing distributions
over time (non-stationarities) and show that the DCR Framework can im-
prove the classification of unseen test data due to its ROBUST-term.

The synthetic data is generated according to a simplified model of the EEG.
This way, we can analyze the behavior of the DCR Framework under con-
trolled conditions and show that the DCR Framework can improve the ro-
bustness against the non-stationarities that our model generates.

Synthetic Data Generation

The idea behind the data generation is that the measured signals are a linear
mixture of multiple activity sources. These sources can either be stationary
and encode the actual information that should be recognized, or can be non-
stationary and non-informative, i.e. they contain random variabilities that
change over time. This corresponds to a simplified model of the physiology
underlying the EEG, which is a mixture of informative and non-informative
cortical activity sources that are mixed due to volume conduction effects
(section 2.1.2).

We generated a data set that consists of 400 trials, of which the first 100
trials were used for training and the remaining 300 for testing. Each trial
consists of 500 samples.

We generated three stationary sources X7 € R3*%% and 29 non-stationary
sources X}' € R?9%%00 that were linearly mixed in each trial:

Xi

s [

}, vt € {1,...,400},
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where M € R32*32 is the mixing matrix with entries randomly chosen from a
uniform distribution between -0.5 and 0.5 and columns normalized to one. A
total number of 32 sources has been used here, as this corresponds to a typical
number of channels in EEG data. Thereby, using three stationary sources
generates data with strong non-stationarities that are roughly comparable
with EEG data and recognition rates are similar to those typical achieved in
BClIs. Similar effects can be shown with different numbers of stationary and
non-stationary sources.

To generate trials of two different classes, the variances of the stationary
sources for each trial were randomly sampled from a normal distribution with
zero mean and two different variances that were randomly switched between
trials. In this evaluation, we chose AV/(0,0.3) and NV (0,4) to generate different
variances (the choice of values is not critical here as long as the variances are
sufficiently different). For each block of 10 consecutive trials, the variances
for the non-stationary sources were randomly sampled from A(0, 1) and the
sign of the log-variance of 50% percent of randomly chosen non-stationary
sources was flipped to generate strong changes of the variance that correspond
to non-stationarities. For each trial, a diagonal matrix was composed from
the sampled variances and mixed by M. A covariance matrix for each trial
was generated by the outer product of the mixed variance matrices. The
signals of each trial X, € R32*5% were sampled form a multivariate normal
distribution with zero mean and the generated covariance matrix.

Figure 5.6 shows the first 35 trials of the generated synthetic signals. In the
first row above the 32 signal time series, the corresponding labels are shown
encoded as a time series (green).

Evaluation

For each of the generated trials X; we extracted the variance of each channel
(row in X;) and concatenated them into feature vectors. We trained the
DCR Framework using the 100 training trials and predicted the test trials.
To calculate the set of robustness directions D, blocks of 5 consecutive trials
of the same class ¢ were extracted from the training data and the set B, was
calculated containing the mean feature vectors of each block. The robustness
directions were set to the differences between the mean vectors ' of each
block and the average of all block mean vectors in B..:

) 1 ) .
D={ - — I peB., cecC
B > | p c

Wi EB.
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Figure 5.6 — The first 35 trials of the generated synthetic time-domain data.

Figure shows 32 channels of generated data and corresponding labels encoded
as time series (green).
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With this setup, we evaluated the performance of classifying the test data
using different values for the weight of the ROBUST-term v. The weight
for the CoMPACT-term A\ was chosen by hand to achieve an adequate bias-
variance tradeoff, i.e. high recognition rates for both, training and test data.

Increasing the weight for the ROBUST term v linearly from 0 to 30
steadily increases the recognition performance of the test data from 70%
to 84.3%, which can be attributed to the increasing robustness against non-
stationarities. Analogue to the evaluation in the previous section, setting
v > 30 results in a separating hyperplane that is parallel to all defined ro-
bustness directions and gives identical results.

Visualizing high-dimensional data is not trivial, as information is generally
lost. For example, visualizing the data and their separating hyperplane in an
arbitrary two-dimensional subspace may not indicate that the classes are well
separated. Therefore, we chose the basis K of a two-dimensional subspace
to include the mean of the three directions of most variance determined by
principal component analysis (PCA) as the first basis vector and the normal
vector of the separating hyperplane calculated by the DCR Framework as
the second basis vector. This ensures that the discriminative aspects of the
separating hyperplane are visible in the two-dimensional subspace.

The projection of a point x € R? in the subspace spanned by K can be
projected into the high-dimensional space by

Proj(z) = Kz,

where the two basis vectors are the column vectors of K € R32%2,

The corresponding orthogonal projection of the data to the subspace can be
performed by
Projg(z) = (K"K) 'Kz,

This can, for example be seen as

Projg(Proj(z)) = (K'K)'K'"Proj(z)
(K"K (K"K)x

= X.

Figure 5.7 shows six plots of the test data and the separating hyperplane
trained when increasing v linearly from 0 to 30. The plots show the 32
dimensional data projected onto the 2-dimensional subspace as described
above. One can see that with increasing v, the data are better separated
by the hyperplane and recognition accuracies increase from 70% to 84.3%.
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This shows that non-stationarities generated by our physiologically motivated
model can successfully be reduced by the DCR Framework, i.e. the non-
stationarities fall in a subspace that is spanned by the robustness directions
that describe the variabilites of the features of each class over time.

5.3 Evaluation of Motor Imagery with User
Transfer

After the evaluations of the individual parts of the DCR Framework, i.e. D1s-
CRIMINATIVE and COMPACT in section 5.1 and ROBUST in section 5.2, we
evaluate the complete DCR Framework using the joint optimization of Dis-
CRIMINATIVE, COMPACT and ROBUST in this section. We analyze the clas-
sical motor imagery BCI paradigm as in section 5.1.1, but this time in a
transfer learning setting to show the full potential of the DCR Framework.
The idea of this evaluation is to analyze the situation where there is only
little calibration data available from a BCI user (cf. section 1.1.5, inconve-
nient setups), but a database of different users can be employed to learn
user-independent effects of the recognition problem.

More introductory details and related work regarding motor imagery classi-
fication has been discussed in sections 1.1.4 and 5.1.1.

Parts of this section have been published in [Heger et al., 2015].

5.3.1 Description of the Data Corpus

For this evaluation we employed the EEG Motor Movement/Imagery
Dataset that is freely available from PhysioNet® [Goldberger et al., 2000,
Schalk et al., 2004]. The data set consists of EEG recordings of 109 dif-
ferent users. We selected the runs 6, 10, and 14 of the recording sessions,
where users performed two classes of motor imagery: moving both fists ver-
sus moving both feet. This way, the data set consists of 45 trials per user.
The data of four users has not been used in the following evaluations as their
recordings contain fewer trials.

We split the data set for our evaluations into three parts (Figure 5.8): The
first 50 users were used only for transfer learning, i.e. a disjoint set of users
that are not used for training or testing. Each of the remaining recordings

Swww.physionet.org/physiobank/database/eegmmidb/
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Figure 5.7 — Synthetic data and separating hyperplane of the reduction of
variabilities from non-stationarities projected to a 2-dimensional subspace.
The recognition accuracies for varying v linearly between 0 and 30 increase
steadily from 70% to 84.3%.
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were split into the first 20 trials for training (10 trials per class) and the
remaining trials were used for testing.

1| Transfer |

£ 50[Transfer |

=N Training Testing |

LR Training Testing |

1 20 45
Trials

Figure 5.8 — Partitioning of the data corpus into three sets: transfer set
(users 1-50), training set (first 20 trials of users 51-105) and test set (trials
21-45 of users 51-105).

5.3.2 Motor Imagery Recognition System

We used the DCR Framework to discriminate between the two different
classes of motor imagery. Our recognition system was designed as follows:

Pre-processing: We extracted trials from the EEG signals between 0.5 and
4 seconds after each stimulus and re-referenced the data to common average
reference. We removed signal offsets and linear trends from each trial and
decorrelated the signals by applying a whitening transform. The whitening
transform was calculated using a Ledoit-Wolf robust covariance estimator
[Ledoit and Wolf, 2004] on training or transfer data and estimated transfor-
mations were applied to test data. This pre-processing was also used for all
evaluated alternative pattern recognition methods (next section).

DISCRIMINATIVE: For each trial and each of the 64 channels, we calculated
high-dimensional power spectral density features using Welch’s method (HD-
spec). We selected the frequency bins in the range between 8-30 Hz and
stacked them into a 1408-dimensional feature vector’. We selected this fre-
quency range for comparability with CSP-based approaches, although wider
frequency bands showed similar and even better performance with the DCR
Framework.

RoBusT: To perform user transfer with our framework, the transfer direc-
tions dj were set to the difference between the transfer mean and the training

"Corresponding to 64 channels and 22 frequency bins each.
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mean:

dk:uk—,u, Vk€{1,750}

where p;, is the mean of the features from user &k in the transfer set and p is
the mean of the training features from the current user.

We trained the DCR Framework for each of the test users with the features
of the 20 training trails (matrix A, section 4.1.1). The hyperparameters A
and v were estimated by cross-validation on the training data (section 4.5.1).

5.3.3 Alternative Pattern Recognition Approaches

We compared the results of the DCR Framework (in the following called
'DCRFrmw (user transfer)’) to the following four alternative BCI pattern
recognition pipelines:

rCSP+sLDA (regularized Common Spatial Patterns with diagonal loading
[Lotte and Guan, 2011] in combination with a shrinkage Linear Discriminant
Analysis (LDA) classifier [Lotte et al., 2007]): This pattern recognition ap-
proach can be regarded as the standard approach for motor imagery classi-
fication when little training data is available (as discussed in section 5.1.1).
The CSP filters and the classifier were trained using only the 20 training
trials of each user and the transfer data was not used in this setup. Reg-
ularization weights for the CSPs were estimated by 5-fold cross-validation
on the training data. The six most discriminative CSP filters were applied
to the pre-processed and frequency filtered EEG signals (8-30 Hz) and loga-
rithmic variance features were extracted. For shrinkage LDA, the analytical
estimator [Ledoit and Wolf, 2004] for the shrinkage parameter was used.

divCSP-AS+sLDA (divergence CSPs® for across subject learning): This re-
cently proposed state-of-the-art method has shown competitive performance
for many BCI problems including user transfer [Samek et al., 2014]. Train-
ing data were used for the divCSP term and the transfer sessions were used
for the divCSP-AS regularization term. Parameter settings were applied as
suggested in [Samek et al., 2014], i.e. it was configured for 6 spatial filters,
deflation mode, and estimation of the regularization parameter by cross-

validation. Pre-processing, feature extraction and classification were per-
formed as for rCSP+sLDA.

8The implementation that is provided by its authors at www.divergence-methods.org
has been used.
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HDspec+sLDA (high-dimensional frequency features classified by shrinkage
LDA): HDspec features were extracted as described in the previous section
and classified by shrinkage LDA. This pattern recognition approach does also
not use the transfer data but only learns from the 20 training trials of each
user.

DCFrmw (no transfer) (DCR Framework with only the DISCRIMINATIVE and
RoBUST-terms): To evaluate the effects of ROBUST and to show that the
DCR Framework effectively performs person transfer, this pipeline calculates
the baseline results without user transfer, i.e. setting v = 0.

5.3.4 Evaluations and Results

Mean (std.) | Median
rCSP+sLDA 66.4 (16.5) 64.0
divCSP-AS+sLDA 67.1 (13.9) | 64.0
HDspec+sLDA 74.1 (15.0) 72.0
DCFrmw (no transfer) 73.9 (15.2) 72.0
DCRFrmw (user transfer) | 75.6 (15.3) 76.0

Table 5.6 — Recognition accuracies in percent of the DCR Framework with
(DCR-Frmw) and without (DC-Frmw) user transfer in comparison to alterna-
tive approaches.

Table 5.6 shows the recognition accuracies for the different approaches aver-
aged across the 55 test users and the corresponding median recognition rates.
All results are significantly better than chance level performance (one-sided
Wilcoxon signed rank tests p < 1075). The data set includes high and low
performers. Therefore, the results of the individual users range from chance
level to perfect classification for each approach and standard deviations are
typically high (e.g. [Allison and Neuper, 2010]).

HDspec+sLDA performed significantly better than the rCSP+sLDA pipeline
(one-sided, paired Wilcoxon signed rank test p < 107%). This shows that
HD frequency features in combination with compact modeling can outper-
form state-of-the-art CSP-based methods. The mean recognition rate of
HDspec+sLDA is even slightly better in mean than the result of our opti-
mization framework without user transfer (DCFrmw no transfer), but these
results are not significant (p > 0.12).



5.3 Evaluation of Motor Imagery with User Transfer

109

DCRFrmw (user transfer)

DCRFrmw (user transfer)

1 o 0 O
o
o o 000
0.9 o o
00 o
0.8 00
o 000
o o
0.7 o 00,0
o o
06} 0
o ©
05t °
o
0.4
0.4 0.6 0.8
rCSP+sLDA
1 000
o
o 00 00
0.9 590
o o
08 o 0
O 000
o
0.7 0000,/ ©
o 0
06l © o
00Z0
05 ©
o
0.4
0.4 0.6 0.8

divCSP-AS+sLDA

DCRFrmw (user transfer)

DCRFrmw (user transfer)

[e)e)
0.9 o O
[e)e) O
0.8 @)
00O
o0
071 o 0Z00
O O O
0.6 O O
(e)©) [e)e)
0.5
O
04
04 0.6 0.8
HDspec+sLDA
1 o)
o,/ 0
@]
0.9 [e)e)
0.8 @)
O 0O O
O
0.7 O 00LgO
o 0gO
0.6 [0)e) O
000
0.5
0.4
0.4 0.6 0.8

DCFrmw (no transfer)

Figure 5.9 — Scatter plots of the recognition accuracies of the 55 test users
for the proposed approach (DCRFrmw user transfer) in comparison with reg-
ularized CSPs classified by shrinkage LDA (rCSP+sLDA), HDspec features
classified by shrinkage LDA (HDspec+sLDA), divergence Common Spatial
Patterns with across user learning (divCSP-AS+sLDA), and our optimization
framework without user transfer (DCRFrmw no transfer).

divCSP-AS, which has achieved a very good performance in multiple other
tasks [Samek et al., 2014], shows rather weak performance in our evaluation.
This can be explained by the small amount of calibration data and neglecting
the COMPACT objective.

The DCR Framework achieved a successful user transfer with an increase in
median performance by 4% absolutely in comparison to both DCFrmw no
transfer and HDspec+sLDA. Particularly, the results of our framework with
user transfer (DCRFrmw user transfer) are significantly better than without
user transfer (DCFrmw no transfer) (p < 0.02).
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Figure 5.9 summarizes the performance of DCRFrmw user transfer in com-
parison with the four alternative approaches using scatter plots. Each point
corresponds to the recognition performance of one user. If a point is lo-
cated above the diagonal, the proposed approach DCRFrmw user transfer
outperforms the approach shown at the x-axis.

Figure 5.10 shows the topographical plots of the weights of the model learned
by DCRFrmw user transfer averaged across users for the frequency bands
8-13 Hz, 14-19 Hz and 20-25 Hz (averaged across channels) and the corre-
sponding forward model (see section 4.5.3). The most influential discrimina-
tive regions are at sensorimotor areas, fairly localized at areas corresponding
to hand and feet motor imagery. One can see that the resulting models are
not strongly affected by eye or muscle artifacts.

Figure 5.11 show the corresponding weights of the forward model according
to their frequency distribution (averaged over users and sensorimotor chan-
nels C3 and C4). One can clearly see that the most influential frequencies
are in the p-band (around 10 Hz) and the §-band (around 22 Hz), which is in
agreement with the well-known neurophysiological effects of motor imagery
[Pfurtscheller and Neuper, 1997].
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Figure 5.10 — Topographical plots of the forward models (top row) and weight
vectors (bottom row) averaged across users and for the frequency bands 8-13
Hz, 14-19 Hz and 20-25 Hz.

This evaluation shows that the DCR Framework can outperform current BCI
pattern recognition methods in a typical BCI setting. In particular, HDspec
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Figure 5.11 — Frequency distribution of forward model weights averaged
across all users and sensorimoter areas (channels C3 and C4).

features showed superior performance to CSP-based features and the DCR
Framework successfully performed user transfer, which lead to an increase in
median performance by 4% above the best of the state-of-the-art alternative
approaches.

5.4 Recognition of Error Potentials with
User Transfer

In this section, we present our system for detecting error potentials in the
BCI Challenge that was organized as part of the 7th International IEEE
EMBS Neural Engineering Conference 2015. Our prize-winning recognition
approach is based on the DCR Framework and uses a combination of different
types of features, including time-domain, frequency-domain and meta-data
features, and a post-processing step to account for different types of trials in
the experiment.
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5.4.1 Related Work

In the last few years, multiple BCI research groups pursued the recognition of
error potentials (ErrPs). ErrPs are event-related potentials that are evoked
by errors due to mistakes of the user [Falkenstein et al., 2000] or erroneous
behavior of an operated system. Detecting ErrPs can be interesting for var-
ious intelligent applications, such as systems that proactively correct errors,
for example by reprompting the user. A typical interaction ErrP occurs in
a window of about 150 ms to 600 ms after a stimulus, with its most pro-
nounced components being a negative peak around 250 ms and a positive
peak around 350 ms [Ferrez and del R Millan, 2008]. Note that these laten-
cies can differ from those of error-related negativity ERPs triggered without
external feedback.

Schalk et al. [Schalk et al., 2000] were among the first that investigated error
potentials in the context of BCIs. In their study, four users performed a mo-
tor imagery based cursor control task. The authors characterized differences
in grand averages of data following successful and unsuccessful trials.

Ferrez et al. [Ferrez and del R Millan, 2008] classified ErrPs from EEG data
recorded during the operation of a simulated BCI for spatial control with a
predefined error rate of 20%. Using temporal features they achieve classifi-
cation accuracies of up to 82% and were able to maintain this accuracy for
multiple sessions of the same user recorded at different days.

Spiiler et al. [Spiiler et al., 2012] used the detection of error-related poten-
tials for online adaptation of the classifier in a code-modulated visual evoked
potentials BCI. With this system they achieved an average information trans-
fer rate of 144 bit/min, which was the highest bitrate reported so far for a
non-invasive BCIL.

In [Putze et al., 2013] we showed that classification accuracies for ErrP recog-
nition can be improved using user-adapted classifiers which are trained using
selected data from other users in addition to the user-specific calibration data.
In [Putze et al., 2015] we integrated a self-correction using ErrP recognition
in an online gesture interface, which significantly improved its recognition
accuracy. The ErrP recognition provided lower costs and higher user accep-
tance than a manual correction.

Margaux et al. [Margaux et al., 2012] used ErrP recognition during the on-
line operation of an P300 speller BCI to compensate for recognition errors
if an ErrP was detected using the second best guess. They found that this
automatic correction yielded a higher bit rate than a respelling strategy. The
dataset they used is the basis for the evaluation below.
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5.4.2  Description of the BCI Challenge @NER15 and
its Data Corpus

The objective of the BCI Challenge at IEEE EMBS Neural Engineering Con-
ference 2015 was to recognize error potentials in response to feedback events
that occurred during usage of a P300-Speller [Donchin and Coles, 1988]. The
data provided for the competition consist of 56 channel EEG recordings and
one EOG channel sampled at 100 Hz. A training data sets (16 users) was
provided together with the ground-truth labels and a testing data set without
ground-truth labels (10 users). The ground-truth labels contain the binary
information whether a trial contains a spelling error or not, i.e. whether an
ErrP can be expected in the data or not. For the competition only the signal
data, timings of the feedback events and ground-truth labels for the training
data were provided, i.e. no information of the P300 spelling or the spelled
words were available. As a particular challenge, the group of users in train-
ing was disjoint from the group of users in the test set and thus demanding
user-transfer for the classification of test data. For each user, 5 sessions
with a total number of 240 trials were provided. In the data set there are
two different kinds of trials: a slow mode of the P300 speller, which is a
less error-prone condition (each letter was flashed 8 times) and a fast mode,
which is a more error-prone condition (each letter was flashed 4 times). After
the last flash of a trial, the recognized letter was displayed in the middle of
the screen in large font (feedback event). Figure? 5.12 shows the interface
of the P300-speller used in the experiment during a feedback event. More
details on the data set can be found in [Margaux et al., 2012].

The competition lasted for 97 days and had more than 260 competing teams.
During the competition, three submissions per day could be uploaded to the
competition platform at kaggle.com. The performance of the submission was
immediately evaluated on 20% of the test data (2 test users) and a prelimi-
nary ranking (called public leaderboard) of all competing teams was updated
and provided online. The performance criterion was the area under the re-
ceiver operating characteristic curve (AUC). AUC is a reasonable criterion for
ErrP recognition for applications that tradeoff true-positive rate and false-
positive rate (i.e. sensitivity and specificity).

After the competition ended, the performance was evaluated on the complete
test data and the final ranking was calculated (called private leaderboard).

9The image was extracted from the video at the competition website
https://www.kaggle.com/c/inria-bci-challenge
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Figure 5.12 — Interface of the P300-speller used in the experiment during a
feedback event.

5.4.3 Error Potentials Recognition System

We trained the DCR Framework to discriminate between trials that contain
ErrPs and trials that do not contain ErrPs. Our recognition system was
designed as follows:

Pre-processing: We pre-processed the provided EEG signals (without the
EOG channel) using bandpass filters (1-30 Hz) to remove trends and high
frequency noise. Then we down-sampled the data by a factor of 10 and
applied a whitening transform to decorrelate the signals.

DISCRIMINATIVE: We combined time-domain amplitudes (0-800ms) of each
channel, power spectral density features (i.e. HDspec features with 1 Hz
wide bins, Welch’s method) of each channel, and meta-data features (session
numbers and delay to previous trial) into a 1570 dimensional feature vector
and normalized the features to unit power.

We intentionally did not include the data leakage information in our system!©.
For recognition we used the least-squares regression that is part of the DCR
Framework to predict a real-valued output score that indicates whether a

10A data leakage has been detected during the competition that allowed to infer infor-
mation about the labels of the 5th session of each user. Using this information can strongly
increase recognition performance, however this is not available in realistic conditions.
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trial contains an ErrP or not. Target values for the regression were chosen
as described in section 4.1.2.

ComPACT: The ¢;-norm regularization that is part of the DCR Frame-
work was used to control for model complexity.

RoBUST: Unsupervised transfer learning was used by the sum-of-norms reg-
ularization of the DCR Framework. The transfer directions d; have been
chosen as the differences between the mean feature vectors py (all sessions
of the user combined) of each of the 16 training users T and each of the 10
testing users T'e:

dk:dij:,ui—uj, VkGTrXTe,

where x denotes the Cartesian product and Tr = {s41, ..., St16}, and Te =
{Ste1s - - -, Ste10} are the sets of training and test users. This way, 160 transfer
direction vectors were calculated.

Priorshift: In a post-processing step, we adjusted the predictions of sessions
1-4 for each user to integrate prior knowledge about the different types of
copy spelling conditions (fast and slow mode trials). We identified long trials
by the time to the previous feedback event and added a small constant to
the prediction output. The fifth session was not corrected as it contains only
short mode trials.

5.4.4 Evaluation and Results

We used 4-fold cross-validations on the training data with splitting on user
bounds to estimate the parameters, such as regularization weights, priorshift
and filter characteristics. This evaluation scheme takes the user transfer char-
acteristics of the data set into account and avoids biases to the preliminary
ranking (public leaderboard).

We evaluated our system using leave-one-person-out cross-validations on the
training data. Figure 5.13 shows the recognition results of the person-wise
cross-validation of (1) the proposed system without the ROBUST-term (DC-
Frmw) and without priorshift correction, (2) the proposed system without
the ROBUST-term but with the priorshift correction, i.e. post-processing to
account for the different prior probabilities for ErrPs in the different spelling
conditions (DC-Frmw priorshift), (3) the proposed system with the complete
DCR Framework (with DISCRIMINATIVE, COMPACT, and ROBUST terms)
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without priorshift (DCR-Frmw) and (4) the DCR Framework with priorshift
(DCR-~Frmw priorshift).

Our final system (DCR-Frmw priorshift) could achieve an area under the
ROC curve (AUC) of 0.761 in this evaluation. Figure 5.14 shows the results
(DCR-Frmw priorshift) individually for the 16 users.

Average AUC Person-wise Cross-Validation
0,765

0,760

0,755
0,750
0,745
0,740 I
0,735

DC-Frmw DC-Frmw DCR-Frmw  DCR-Frmw
piorshift priorshift

Figure 5.13 — Person-wise cross-validation results of the proposed system
without and with RoBUST-term (DC-Frmw, DCR-Frmw) and without and
with priorshift correction.

In the preliminary ranking on a subset of the test data (public leaderboard),
our system achieved an AUC of 0.81124, whereby this can be regarded a
biased estimate of the final evaluation results on all data, as the score is
only based on two test users (20% of test data) and strong inter-individual
performance differences can be expected (also indicated by figure 5.14).

The described system achieved an area under the ROC curve (AUC) of 0.7457
in the final competition ranking on the full data set at kaggle.com (private
leaderboard score). This corresponds to the 6th best performance of 260
teams (top 3%) and was awarded the second prize winner at the 7th IEEE
EMBS Conference on Neural Engineering. To be eligible for a prize it was
required to present the system used for the submission at the IEEE Neural
Engineering Conference.

Figure 5.15 shows the top 10 of the final competition ranking of 260 teams.
The details about most of the competing systems have not officially been
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Figure 5.14 — Results of DCR-Frmw priorshift for each user using person-wise
cross-validation on the training data. Dotted horizontal line shows average
AUC accorss all users.

published. It should be noted that the there had been a data leakage that
made it possible to infer information about the true labels of the 5th session
of each subject. The top four competitors have stated in the competition
forum that they exploited the leaked data to improve their system. We in-
tentionally omitted this information as it is not available in realistic BCI
settings. Discussions in the competition forum further indicate that other
teams could successfully improve their recognition results by extracting fea-
tures from multiple time lags, furthermore, multi-stage classification and
ensemble learning methods may help to improve the recognition results.

The BCI Challenge QNER 2015 was an international competition at
kaggle.com that attracted both, members of the BCI community and pattern
recognition experts. Our successful submission validates the state-of-the-art
performance of the DCR Framework.
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¢ Arank Team Name *in the money Score © Entries Last Submission UTC (sest - Last Submission)
the overfitting avengers «* * 0.8722 32
2 phalaris * 085669 44
"7 H20.ai +* * 0.81850 30
- 2 barrack_d(NER) 0.76921 110
5 53 Jose M. 0.74790 3
'8 CSL (NER) 0.74570 27
7 4  Daniel Yoo 0.73175 6
R Vivien 0.7232 38
3 khyh 072304 56
R clustifier 0.71651 70

Figure 5.15 — Final ranking of the BCI Challenge QNER 2015. Figure shows
the top-ten results of 260 teams.



CHAPTER 6

Novel BCl Paradigms

This chapter introduces two recognition systems for novel BCI
paradigms that apply the principles and methods discussed in this
dissertation. First, we evaluate the EEG-based workload recogni-
tion during the interaction with an adaptive interaction system.
The second evaluation is the recognition of vowels during con-
tinuous speech from brain activity signals invasively measured by

ECoG.

The objectives DISCRIMINATIVE, COMPACT, and ROBUST are, in particular,
relevant for the development of new BCIs that employ novel BCI paradigms.
Such BCI paradigms may not be particularly designed to modulate brain
activity patterns following well-known neurophysiological effects that can
easily be measured, but modulate brain activity patterns in a complex way.
Therefore, little may be known about the discriminative patterns and no
specialized feature extraction methods exist that can be used to recognize
different classes or intensities of the BCI paradigm in single-trials.

In this chapter we analyze two systems to recognize BCI paradigms that
have not been proposed in this form before. They are especially relevant as
they automatically analyze spontaneously generated brain activity patterns,
i.e. the systems analyze the complex patterns in naturally occurring brain
activity and do not require any learning by the user to operate the BCI.

The first evaluation is a closed-loop online system for EEG-based workload
recognition that we analyze in an experiment where users interact with a
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simulated interaction system during single and dual task situations. The
evaluations in previous chapters have been performed in typical BCI labo-
ratory environments, i.e. the have been performed with standardized tasks
and signals were recorded under strongly controlled conditions. In contrast,
the experiments in this chapter are not completely controlled to simulate a
real-world interaction. This way, the measured signals are generally affected
by various strong artifacts. In addition, the occurring brain activity patterns
consist of task specific workload related activity. In the evaluation we apply
the DCR Framework for the recognition of low and high workload states
in a self-paced fashion (asynchronous BCI) and show that it has superior
performance than our previous system based on support vector machines.

The second evaluation in this chapter is based on the decoding of the cortical
activity during speech, which is a novel BCI paradigm that we call Brain-
to-Text [Herff et al., 2015]. In comparison to the evaluations that have been
presented in the previous chapters, this evaluation uses invasive brain activity
signals, i.e. subdural electrocorticography (ECoG) recordings. The brain
activity patterns that underlie the neural processes of speech are still not
completely understood. In this evaluation we apply the DCR Framework for
the classification of vowels during continuous speech and show that it has
superior performance than our baseline system based on Kullback-Leibler
based feature selection and Gaussian classification.

This chapter provides additional evaluations to show that the DCR Frame-
work can successfully be applied to the recognition of new BCI paradigms
for which no specialized feature extraction methods or benchmark data sets
exist. In both evaluations, we highlight the particular aspects of how Dis-
CRIMINATIVE, COMPACT, and ROBUST are implemented and show that the
DCR Framework outperforms previous systems.

6.1 EEG-based Workload during BCI adap-
tive Human-Machine Interaction

In contrast to human-human interaction, where the theory of mind plays
a major role (e.g. [Carruthers and Smith, 1996]), machines are widely un-
aware of the mental states of their users. The development of user-
centered technology is addressed by researchers in different disciplines
(e.g. [Picard, 2000, Fong et al., 2003, Schultz et al., 2013]). In BCI research,
passive BCIs [Zander and Kothe, 2011] approach this issue by analyzing the
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brain activity signals of the users and recognizing their mental states (in the
following referred to as “user states”, cf. 1.1.4). This additional information
source can be used to adapt intelligent systems to the current situation of
the user for an improved human-machine interaction.

Workload is a valuable paradigm for passive BCIs as multiple applications
may strongly benefit from the ability to adapt automatically to a detected
workload level of their users. For example, the level of workload of air traffic
control operators could be monitored and kept at an appropriate level by
balancing the task load to maintain an optimal efficiency and safety. In-
telligent assistants, such as robots that interact with humans could adapt
their behavior according to the user’s workload, for example to identify the
right points of time to take the initiative for actions in collaborative work to
increase productivity.

In this section we discuss a workload recognition system for the real-time
adaptation of intelligent human-machine interface systems. In our evalua-
tion we adapt the dialog behavior of a simulated humanoid robot such that
it better suits high or low workload states of the user. The system is an
asynchronous BCI (section 2.2) that recognizes short segments of EEG data
and continuously estimates the current workload level of its user in real-time.

6.1.1 Related Work

Starting in the 1960s, there is a line of research on biophysiological measuring
and modeling of workload (see e.g. [Kramer, 1990, Brookings et al., 1996,
De Waard and Studiecentrum, 1996] for review). Mental workload of a
person is regularly defined as the usage of multiple mental resources that
have limited capacity during the performance of a task (e.g. [Moray, 1979,
Wickens, 2008]). Workload is therefore dependent on the availability of dif-
ferent mental resources that are consumed by multiple different cognitive
processes, such as attention, memory retrieval, planning, and many others.
Therefore, workload can be seen as a rather general concept that involves
very different brain processes. From a neural perspective, workload includes
different brain activity patterns that are related to the activity of different
resources and their interaction over time while performing a particular task.
Thus, workload can be seen as a task and user specific concept that may in-
clude complex dynamics in brain activity patterns, especially when complex
tasks are involved.
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Multiple researchers have analyzed EEG features that correlate with work-
load.  Oscillatory activity within multiple frequency bands have been
identified as workload correlates. For example, an increase of frontal 6
(4-8 Hz) activity and a decrease of parietal o (8-13 Hz) activity have
been proposed as measures of workload (e.g. [Gundel and Wilson, 1992,
Klimesch et al., 1993, Gevins and Smith, 2003]). However, also other fre-
quency ranges, such as [ activity and spectral power ratios, such as
B/(a+8), have been proposed as workload measures ([Brookings et al., 1996,
Berka et al., 2004, Holm et al., 2009, Walter et al., 2013]). The inconsisten-
cies among researchers, may be caused by subjective differences and the dif-
ferent aspects and resources involved in the tasks that have been investigated.
Therefore, many current workload recognizers use features based on spectral
power within a wide frequency range, such as 4-30 Hz [Berka et al.; 2004,
Heger et al., 2010c, Kothe and Makeig, 2011, Miihl et al., 2014b].

Spectral power based workload recognition systems have been ap-
plied in different experiments, including standardized cognitive tasks
[Gevins and Smith, 2003, Heger et al., 2010c, Brouwer et al., 2012,
Walter et al., 2013], simulated and real driving [Kohlmorgen et al., 2007,
Jarvis et al., 2011], and operator monitoring [Berka et al., 2005].

In [Heger et al., 2010c, Heger et al., 2010b, Heger et al., 2011a] we developed
an EEG-based, self-paced, real-time workload recognition system. We intro-
duced high-dimensional spectral features (HDspec) for workload recognition,
i.e. power spectral density based features from a wide frequency band ex-
tracted from 1-2 seconds of EEG data and proposed the temporal smooth-
ing of the classification output to generate more stable recognition results.
We integrated the workload recognizer in the closed-loop interaction with
an adaptive information system of a humanoid robot head. To the best of
our knowledge, our study [Heger et al., 2011a] was the first evaluation of an
EEG-based workload recognition based adaptive interaction system in the
domain of human-robot interaction. The following evaluations are based on
this study.

6.1.2 Description of the Data Corpus

During the experiment, participants had to perform two different tasks,
partly by multitasking, i.e. handling two tasks at the same time. In the
first task (information task) the participants were asked to manually fill in a
paper form according to information given by speech synthesis embodied by
a humanoid robot head. In a secondary task, participants performed a vari-
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ant of the Eriksen flanker task [Eriksen and Schultz, 1979] (flanker task), in
which five arrows were displayed (e.g. <<><<). Participants were expected
to indicate the orientation of the middle arrow by pressing the corresponding
left or right button on the keyboard (right button in the given example).

Figure 6.1 shows the experimental setup. The information system was rep-
resented by a humanoid robot head which talked to the participants using
text-to-speech synthesis. The participants faced paper forms to be filled in
for the information task as well as a desktop computer to execute the flanker
task.

Figure 6.1 — Recording setup with the robot head and speech synthesis (left
side), the laptop computer for the secondary task (center) and participant
wearing an EEG cap (right side) while performing the tasks, i.e. writing down
the information on paper using one hand and pushing buttons on the keyboard
using the other hand.

In total 20 subjects participated in the experiment. Fach participant com-
pleted five sessions that were recorded consecutively in one sitting. Each
session consisted of four parts: First, 1 minute of the information task (sin-
gle task), followed by 1 minute of performing the information task and the
flanker task in parallel (dual task). After that, the single task and the dual
task were performed one more time. This way, each session alternates twice
between a low workload period (single task) and a high workload period (in-
duced by dual tasking). Transitions between segments were marked by an
acoustic signal. Table 6.1 summarizes the experimental design.
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Single (1 min) | Dual (1 min) | Single (1 min) | Dual (1 min)

Table 6.1 — Experimental setup of alternating single and dual tasks that has
been used for each of the five sessions of each participant.

The first session was used to train the workload recognizer. The workload
recognition system was used in one of the four subsequent session that auto-
matically adapted the speaking style of the humanoid robot according to the
recognized workload (EEGADAPTIVE). In this session, the speaking style for
the information task was selected from two different strategies, appropriate
to high and low workload of the user, as described in the next section. The
other three sessions were performed using different speaking styles for the
information task as baselines (ALWAYSHIGH, ALwAYSLOW, ORACLE, see
next session). To eliminate the impact of bias effects such as fatigue, the
order of sessions 2-5 was randomly chosen.

Adaptive Information System

The information for the information task were reported to the user via text-
to-speech synthesis. The information were listings of a database containing
attributes of students, such as name, id, and telephone number.

There were two different speaking styles to present this information: The
Low style designed for low mental workload, and the HIGH style designed
for high workload conditions. Although the style of presentation differed
between LOW and HIGH, the content of the information stayed the same.

The Low style focused on high information throughput, i.e. only short pauses
between utterances and between different database entries were made. When-
ever possible, multiple information chunks were merged into one utterance
and phone numbers were presented in a block-wise fashion. However, maxi-
mizing efficiency was not the only criterion but LOw takes the time to convey
information in complete sentences to mimic a polite communication.

The HIGH style on the other hand was tuned towards situations in which the
user has to divide his or her cognitive resources between two tasks that he
or she executes in parallel (dual task). As this multitasking may cause mem-
ory capacity reduction, split attention, and limited processing capabilities,
the HIGH style accommodated the situation by presenting information in a
separated fashion, giving only one attribute at a time and reporting phone
numbers as single digits. Furthermore, pauses were extended between utter-
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ances and database entries such that the user has more time to deal with the
secondary task. Reporting time was conserved by limiting the information
to the attribute name and value, thus minimizing utterance duration.

] Speaking style Low \ HicH \
Pause duration short (500 ms) long (2000 ms)
Number presentation | block-wise isolated
Items per utterance | multiple single
Formulations polite concise
Example utterances The name of the next Heidi Kundel

person is Heidi Kundel. | Telephone:
Her telephone number | 5-2-1-1-6-6-3
is 52-11-66-3.

Table 6.2 — Low and HIGH styles for information presentation.

Table 6.2 summarizes the two speaking styles. The output of the workload
recognizer (next section) selected the appropriate style (i.e. HIGH when the
workload recognition corresponds to high mental workload, and Low other-
wise). The speaking style could be switched seamlessly between two spoken
utterances. Besides the information on the user’s workload level from work-
load recognition system, the adaptive interaction system that controls the
information presentation and speech synthesis had no information on the
secondary task.

’ Session \ Speaking style ‘
ArwAaysLow Low
ArLwAYsHIGH Hicu
EEGADAPTIVE | Low / HIGH according to

recognized workload
ORACLE Low / HIGH according to
single / dual tasking

Table 6.3 — Different speaking styles during the four sessions.

In addition to the session EEGADAPTIVE that adapts the speaking style to
the recognized workload, sessions were recorded that use consistently one
of the speaking styles for the whole session, called ALwAYSLOW and AL-
WAYSHIGH. Additionally, a session called ORACLE switched between speak-
ing styles according to the reference information on the secondary task, i.e. in-
stead of relying on potentially noisy information from EEG workload recog-
nition, it selects the suitable speaking style for each utterance according to
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the contextual information of whether the secondary task is currently run-
ning or not. This session is called ORACLE and can be regarded as a gold
standard that performs an optimal adaptation to the task for comparison
with EEGADAPTIVE. Table 6.3 summarizes the different speaking styles for
the four sessions.

6.1.3 Workload Recognition System

During the experiment, EEG data were recorded by an active EEG-cap
(BrainProducts actiCap) with 16 electrodes sampled at 256 Hz using Biosig-
nalsStudio [Heger et al., 2010a]. The impedances of each electrode were kept
below 20 k) during all recordings.

The workload recognition system implemented the three objectives DISCRIM-
INATIVE, COMPACT, and ROBUST as follows:

Di1SCRIMINATIVE: To enable the workload recognition continuously over time
(asynchronous BCI), short windows of 2 seconds length were continuously
extracted from the signals with an overlap of 1.5 seconds to get a workload
estimate every 0.5 seconds. Logarithmic power spectral density features (HD-
spec) between 4 and 30 Hz were calculated from the EEG data of all channels.
Support Vector Machines (SVMs) [Chang and Lin, 2011] with linear kernels
or the DCR Framework were employed to discriminate the two different brain
activity patterns corresponding to two different levels of mental workloads,
i.e. with and without secondary task.

CoMPACT: The dimensionality of the HDspec features was reduced by av-
eraging over three adjacent frequency bins. Furthermore, both the SVM
and the DCR Framework learn models using regularized optimization. The
SVM implements the regularization using slack variables to penalize miss-
classification of the training data and relies only on a small number of sup-
port vectors. The DCR Framework implements the ¢;-norm regularization
to learn sparse models. The regularization parameters were estimated using
5-fold cross-validation on the training data for both approaches.

RoBUST: Robustness against artifacts is among the most challenging
problems for training and operation of the workload recognition systems in
this study. Predominantly, eye movement and muscular artifacts are present
when EEG signals are recorded under not strictly controlled conditions as in
this experiments. Therefore, we applied fully automatic artifact reduction
methods based on the combination of two blind source separation tech-
niques: Independent Component Analysis (ICA) and Canonical Correlation
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Analysis (CCA). ICA is well-known to be very effective for artifact removal
of eye blinks and saccades. The infomax algorithm [Makeig et al., 1996]
is applied to the training data to calculate a transformation matrix that
decomposes the 16-channel EEG signal into 16 independent components.
The components related to eye movement activity were identified by
their frequency and power characteristics. During the operation of the
workload recognition system the EEG signals are transformed using the
precalculated transformation matrix. For muscular artifacts, we applied a
blind source separation based on canonical correlation analysis that has
shown to be more effective than low pass filtering or ICA-based meth-
ods [De Clercq et al., 2006]. It leverages the fact that muscle activity has,
in general, a lower autocorrelation than brain activity. After decomposition,
the components with an autocorrelation below a certain threshold are set to
zero. Thereafter, the signals are recomposed into cleaned EEG signals by
back transformation into the original signal space.

In addition to artifact reduction techniques, the recognition results
were integrated by averaging over the past s recognition outputs (linear
temporal smoothing). This temporal smoothing procedure increases the
robustness of the recognition results (reduces variabilities over time) with
the cost of a reduction of temporal resolution. It was applied to the binary
classification outputs of the SVM or the real-valued regression outputs of
the DCR Framework to generate a task specific workload estimate over
time.

The calculated workload estimates were thresholded to control switching be-
tween the two different speaking styles. To determine a subject specific
threshold from recognition results of the training session we calculate the av-
erage workload estimation for the training parts without the secondary task
(wy) and the average workload with both tasks (ws). The subject specific
threshold ¢ is calculated by t = %

The described workload recognition system features a speedometer to visu-
alize the recognized workload (see Figure 6.2). However, we did not reveal
this information to the subjects during the experiments to avoid distractions
and influences by self-regulation.
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Figure 6.2 — Speedometer visualizes the recognized workload estimates in
real-time.

6.1.4  Evaluations and Results
Workload Recognition Performance

During the online experiment the workload recognition system based on SVM
classification was used as described in the previous section. In the follow-
ing evaluations we compare the results of the SVM-based system with the
DCR Framework in an offline analysis of recognizing workload during the
EEGADAPTIVE session.

We evaluated the recognition of high and low workload periods during the
workload adaptive session of the experiment (EEGADAPTIVE). This means
we assume low workload in single task and high workload in dual task.
We varied the number of recognition outputs used for the linear temporal
smoothing from 0 to 20. Figure 6.3 shows the corresponding recognition
results of the SVM classification (SVM) based system and the DCR Frame-
work using regression (DCRFrmw) using the linear temporal smoothing with
s €{0,2,5,10,20} averaged over all subjects.

One can clearly see the superior performance of the DCR Framework in this
evaluation, which can be attributed to benefits of regression in comparison to
the classification based SVM approach. Both recognition approaches benefit
from the linear temporal smoothing. It achieved an increase in recognition
accuracy of more than 10% (absolute) for both classification approaches,
whereby the estimate includes information from the EEG signals of the last
12 seconds instead of the last two seconds when no temporal smoothing is
applied. The maximum recognition accuracy of 85.5% was achieved with
the DCR Framework using the recognition results from the last 20 recogni-
tion outputs for temporal smoothing. In comparison, increasing the window
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Figure 6.3 — Recognition accuracies of the SVM classification (SVM) based
system and the DCR Framework regression based system (DCRFrmw) for
lengths s € {0,2,5,10,20} of the linear temporal smoothing.

length to 12 seconds (11.5 seconds overlap) only achieved a performance of
79.63% and 78.63% for the SVM-based system and for the DCR Framework-
based system, respectively. Figure 6.4 shows the classification results of all
20 users with s = 20 recognition outputs for temporal smoothing.

The system could achieve recognition accuracies of individual users up to
95%, whereby the chance level of the (binary) classification task is about
50%. The performance of nearly all users is above 80%, with the exception
of user 13 that achieved only 65%, which can be seen as an outlier. Overall,
the workload recognition performance in this study was suitable to enable an
automatic adaptation of the intelligent human-machine interaction system.

Task performance and Subjective Ratings

In addition to the recognition results, we assessed the performance in the
human-machine interaction scenario, i.e. the performance of the users in the
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Figure 6.4 — Person-specific workload recognition accuracies of the 20 users of
the DCR Framework regression based system with linear temporal smoothing
using 20 output results.

information task and the flanker task during the 5 sessions. Table 6.4 summa-
rizes the task performance results. Comparing the EEGADAPTIVE sessions
with the baseline session ALWAYSLOW shows that EEGADAPTIVE could in-
crease the correctness rates in both tasks in comparison to the (fast) AL-
wAYSLow. Comparing the EEGADAPTIVE sessions with the baseline AL-
WAYSHIGH showes a higher throughput (higher completion rate with the
same correctness rate) in the information task for EEGADAPTIVE. Further-
more, the adaptive strategies EEGADAPTIVE and ORACLE maintained the
correctness rate of the (slow) ALWAYSHIGH.

After each session we assessed subjective ratings using a questionnaire with
11 items using 6 point scale (table 6.5). Table 6.6 summarizes the subjective
evaluation results.

The evaluations showed that users clearly recognized the adaptive behavior
(Q1) and preferred the adaptive speaking styles (Q2-Q7). Overall, the results
of EEGADAPTIVE are a promising approximation to the optimal adaptation
strategy ORACLE.
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Strategy Correctness rate | Completion rate | Correctness rate
information task | information task flanker task
ALWAYSLOW 86% 98% 69%
ALWAYSHIGH 96% 58% 87%
EEGADAPTIVE 96% 85% 82%
ORACLE 94% 85% 86%

Table 6.4 — Average completion and correctness rates for the robot instruction
and the flanker task.

Q1 | How strongly did the robot adapt to the switch
between the conditions with and without secondary task?
Q2 | How appropriate was the behavior of the robot
in conditions without secondary task?
Q3 | How appropriate was the behavior of the robot
in conditions with secondary task?
Q4 | Would you like to work together with a robot
with this behavior?
Q5 | How do you judge the behavior of the robot
concerning “friendliness”?
Q6 | How do you judge the behavior of the robot
concerning “empathy”?
Q7 | How do you judge the behavior of the robot in general?
Q8 | Experienced time pressure*
Q9 | Experienced accomplishment*
Q10 | Experienced effort*
Q11 | Experienced frustration®

Table 6.5 — Questionnaire for subjective evaluation of presentation strategies.
Ttems marked with * are extracted from the NASA TLX workload scale.
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| Item | ALwAaysLow | ALWAYSHIGH | EECADAPTIVE | ORACLE |

Ql 0 (0.97) 5 (1.66) 45 (1.10) | 5.4 (1.09)
Q2 9 (1.00) 1 (1.75) 19 (1.14) | 5.1 (1.07)
Q3 3 (1.10) 3 (1.03) 3.9 (1.25) | 5.1 (0.89)
Q4 2 (1.15) 3 (L.18) 36 (1.14) | 4.8 (0.69)
Q7 8 (0.95) 0 (0.71) 3.9 (0.87) | 4.8 (0.61)
Q5 1 (1.15) 8 (0.80) 37 (1.22) | 4.3 (0.86)
Q6 2 (0.93) 6 (1.19) 3.4 (0.99) | 4.4 (0.87)
Q8 3 (0.66) 2 (1.14) 10 (0.99) |35 (1.23)
Q9 (1 19) (1 16) 3.7 (1.04) | 4.0 (1.27)
Q10 1 (1.05) 5 (1.12) 44 (0.75) | 4.0 (1.09)
Q11 0 (1.25) 5 (1.05) 3.0 (1.00) | 2.5 (0.61)

Table 6.6 — Subjective evaluation of the different strategies and experienced
mental workload; average score (standard deviation).

The evaluations of the perceived workload (questions Q8-Q11 from NASA
TLX workload scale [Hart and Staveland, 1988]) showed that users experi-
enced low workload in ALWAYSHIGH. ORACLE nearly reaches this workload
level, while ALwWAYSLOW generated higher workload. EEGADAPTIVE could
reduce workload and could achieve workload ratings nearly as low as ORA-
CLE, but is dependent on noisy recognition results.

We also investigated the relationship between recognition performance in the
EEGADAPTIVE session and the subjective ratings. We found a strong corre-
lation between the difference of the user ratings of EEGADAPTIVE and ORA-
CLE and the recognition rates of the workload recognition system. Therefore,
improvements in recognition accuracy can be expected to further improve
subjective experiences of the workload adaptive system towards the results
of ORACLE. Table 6.7 summarizes the correlation results.

Item Q1 Q2 Q3 Q4 Q5 Q6 Q7
Pearson correlation | -0.40 -0.18 -0.51* -0.35 -0.51* -0.74* -0.54*
Ttem Q8 Q9 Qio  Qil
Pearson correlation | 0.29 -0.24 0.46* 0.24

Table 6.7 — Pearson correlation coefficients beween recognition accuracy
and the difference between user ratings of ORACLE and EEGADAPTIVE
(EEGADAPTIVE-ORACLE). Statistically significant correlations are marked
by a star (a = 0.05).
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6.1.5 Conclusions

We described the design, implementation, and evaluation of a workload adap-
tive information system for closed-loop human-robot interaction in a study
with single and dual tasking. The workload recognition system was able to
adapt the speaking styles according to brain activity patterns of its user in
real-time. We highlighted how DISCRIMINATIVE (HDspec), COMPACT (reg-
ularization) and ROBUST (artifact reduction, temporal smoothing) were im-
plemented and could show performance improvements by using the DCR
Framework regression compared to the SVM based classification. The lin-
ear temporal smoothing further increased the robustness against short-time
variabilities. The DCR Framework could achieved a mean recognition rate
of 85.53% for the discrimination between low and high mental workload,
which outperformed our previous SVM-based system that achieved 81.72%.
Furthermore, we could show that the adaptive strategy using the workload
recognition improved task performance and user satisfaction in comparison
to static interaction strategies.

6.2 ECoG-based Brain-to-Text Classifica-
tion of Vowels

Continuous speech production is a highly complex process involving multiple
parts of the human brain. The fundamental building blocks of continuous
speech have been studied by scientists from different disciplines, including
linguists, speech processing technologists, and computational neuroscientists.
However, a fundamental representation that allows for decoding speech from
neural signals has not been presented, yet. In this chapter we contribute
to our research on Brain-to-Text [Herff et al., 2015], which is the first sys-
tem to decode brain activity of continuously spoken speech into text that we
have recently proposed. While our paper describes the decoding of contin-
uously spoken speech, in this thesis we show that vowels produced during
continuous speech can be classified from invasively measured brain activity,
i.e. intracranial electrocorticographic (ECoG) recordings. ECoG measures
electrical potentials directly on the brain surface with high temporal and
spatial resolution. Due to the location directly on the brain surface, signals
are unfiltered by skull and scalp.

We compare two different classification approaches (i) generative Gaussian
models as used in our continuous decoding system [Herff et al., 2015] and (ii)
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the DCR Framework with regularized discriminative models that are trained
to be robust against non-stationarities.

In addition to their discriminative abilities, we show that the learned models
can give insights into timings and locations of neural processes associated
with the continuous production of speech.

6.2.1 Related Work

The high complexity and agile dynamics of the activity in cortical networks
make it challenging to investigate speech production with traditional neu-
roimaging techniques, such as functional magnetic resonance imaging (fMRI),
or non-invasive brain activity measurements, such as EEG. In the last few
years, researchers started to investigate speech using ECoG recordings. To
date, previous work has mostly focused on isolated aspects of speech in the
brain, but so far not on the analysis and fully automatic decoding of brain
activity during continuously produced natural speech.

Studies provided evidence for a neural representation of phones
and phonetic features during speech perception [Chang et al., 2010,
Mesgarani et al., 2014, but did not investigate continuous speech pro-
duction. Furthermore, studies investigated the dynamics of the general
speech production process [Crone et al., 2001a, Crone et al., 2001b].
Neural activity during the production of isolated  phones
[Leuthardt et al., 2011, Guenther et al., 2009, Formisano et al., 2008,
Blakely et al., 2008, Pei et al., 2011] or words [Kellis et al., 2010] has been
classified using different brain imaging techniques but not during continuous
speech.  First attempts to classify brain activity during the imagined
production of isolated phones are reported in [Brumberg et al., 2011].
[Mugler et al., 2014] recently demonstrated the classification of a full set
of phones within manually segmented boundaries during isolated word
production.

In [Herff et al., 2015] we showed for the first time that techniques from auto-
matic speech recognition can be applied to decode a textual representation
of spoken words from neural signals. For this system we employed techniques
from automatic speech recognition, such as statistical bigram language mod-
els, a restricted English dictionary that maps words to phone sequences, a
Gaussian modeling of the cortical signals corresponding to phones, and a
Hidden Markov Model based decoding. When restricting the dictionary to
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small subsets, Word Error Rates as low as 25% could be achieved. The
following evaluations are based on the dataset for this study.

6.2.2  Description of the Experiment and Data Corpus

The data set for this evaluation was recorded and provided to us in a collab-
oration with Dr. Gerwin Schalk and his team from the Wadsworth Center,
New York State Department of Health, Albany, USA. Our collaboration in
this project has been established more than three years ago and was ini-
tially funded by the KIT International Excellence fund, which supported our
research visit to Albany for one month.

Participants and electrode placement

Seven epileptic patients (4 female, 3 male) who underwent neurosurgical
procedures for epilepsy treatment at the Albany Medical Center (Albany,
New York, USA) participated in this study. The age of the participants
varied between 18 and 56 (mean age of 31.0). All participants gave informed
consent and the study was approved by the Institutional Review Board of
Albany Medical College and the Human Research Protections Office of the
US Army Medical Research and Materiel Command.

Electrodes were implanted depending only on clinical needs of the patients.
All participants had electrode grids placed on the left hemisphere that cov-
ered parts of the frontal and temporal lobes. Electrode grids (Ad-Tech Med-
ical Corp., Racine, WI; PMT Corporation, Chanhassen, MN) consisted of
platinum-iridium electrodes (4 mm in diameter, 2.3 mm exposed) with dis-
tances of 0.6-1 cm embedded in silicone. In a post-operative computer to-
mography scan, electrode positions were registered and co-registered with a
pre-operative magnetic resonance imaging scan.

To be able to compare activations across subjects, electrode posi-
tions of all subjects were co-registered in a common Talairach space
[Talairach and Tournoux, 1988]. Activation maps were rendered using the
NeuralAct software package [Kubanek and Schalk, 2014]. See Figure 6.5 for
electrode placement of all subjects that passed the data pre-selection process
(see next section).
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Figure 6.5 — Combined electrode montage of all participants after pre-
selection. Participant 1 (yellow), participant 2 (magenta), participant 3
(cyan), participant 5 (red), participant 6 (green) and participant 7 (blue).
Participant 4 did not yield sufficient activations related to speech activity and
thus was excluded from the analyzes presented here.

Experiment Description

In this study, brain activity during overt speech production of the partici-
pants was recorded using electrocorticography (ECoG) grids that had been
implanted as part of presurgical procedures preparatory to epilepsy surgery.
Additionally, we recorded the acoustic waveform of the participants’ speech
in synchronization with the ECoG signals. Both ECoG and acoustic sig-
nals were digitized at 9600 Hz. BCI2000 [Schalk et al., 2004] and eight 16-
channel g.USBamp biosignal amplifiers (g.tec, Graz, Austria) have been used
to record the signals in this study.

During the experiment, participants had to read out text excerpts that
consisted of historical political speeches, i.e. the Gettysburg Address
[Roy and Basler, 1955] and the JFK’s Inaugural Address [Kennedy, 1989,
a childrens’ story, i.e. Humpty Dumpty [Crane et al., 1867], and fan-fiction
of the television serial Charmed [fanfiction.net, 2009].

The texts were displayed on a screen located in about one meter distance
in front of the participant and scrolled through the screen from right to left
at a constant rate, which was adjusted to the participants comfort (rate
of scrolling text: 42-76 words/min). The participants had to read the dis-
played text aloud as it appeared. FEach participant took part in two or three
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recording sessions. Table 6.8 summarizes the data recording details for every
session.

Partic- Session Text |Phrases| Recording
ipant length (s)
1 1 GA 36 279.87

2 JFK 38 326.90
2 1 HD 21 129.87
2 HD 21 129.07
3 HD 21 126.37
3 1 Charmed 42 310.27
2 Charmed 40 310.93
3 Charmed 41 307.50
4 1 GA 38 299.67
2 GA 38 311.97
) 1 JFK 49 341.77
2 GA 39 222.57
6 1 GA 38 302.83
7 1 JFK 48 590.10
2 GA 38 391.43

Table 6.8 — Details for every recording session. Texts are abbreviated as fol-
lows: GA is the Gettysburg address, JFK is the John F. Kennedy’s inaugural
speech, HD is Humpty Dumpty and Charmed are Charmed fan-fiction texts.

Cross-modality Phone Labeling

We used our in-house speech recognition toolkit BioKIT [Telaar et al., 2014]
to phone-label the audio recordings. As ECoG and audio data were recorded
in synchronization, this enables to mark the ECoG signals corresponding to
the production of any given phone as identified by the speech recognition
system from the audio data.

We segmented the recorded texts along pauses into 21 to 49 phrases, depend-
ing on the session length. An English automatic speech recognition system,
which was trained on broadcast news was applied to the segmented acoustic
recordings. The sequence of phones was calculated by Viterbi forced align-
ment [Huang et al., 2001] given the transcribed texts and acoustic models
of the automatic speech recognition system. We then adapted the Gaus-
sian mixture model-based acoustic models of the system using maximum
likelihood linear regression (MLLR) [Gales, 1998]. Finally, we repeated the
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Figure 6.6 — Data recording and phone labeling. Acoustic data and ECoG
data were recorded synchronously. Acoustic data is labeled on phone-level
using BioKIT and labels from the acoustic data are then imposed on the
neural data.

Viterbi forced alignment using the adapted models of each session. These
final phone alignments were then imposed on the ECoG data.

Figure 6.6 illustrates the experimental setup and labeling of the neural data.

Data Pre-selection

To pre-select recordings, we analyzed whether speech activity segments could
be distinguished from segments with no speech activity. Therefore, we fitted
a Gaussian model to all feature vectors (see next section) containing speech
activity and one to feature vectors when the participant was not speaking.
Timings of speech and non-speech segments were extracted from the audio
recordings.

In a leave-one-phrase-out validation, we then evaluated whether these models
could be used to identify speech activity above chance level. Both sessions of
participant 4 and session 2 of participant 5 did not show classification rates
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significantly above chance level (paired t-test, p > 0.05) and were excluded
based on this analysis.

6.2.3 Feature Extraction

The neural signal data was downsampled to 600 Hz and continuously seg-
mented into 50 ms intervals with 25 ms overlap. This enabled to capture the
fast cortical processes underlying continuous speech while providing signal
segments long enough to extract spectral power in the gamma broadband
between 70 and 170 Hz robustly. Each signal segment was labeled with the
corresponding phone from the audio labeling.

To calculate features, we first removed linear trends in the raw signals from
each channel. The signals were then down-sampled to 600 Hz. Noisy channels
were identified and excluded from the evaluations. Specifically, we calculated
the energy in the frequency band 58-62 Hz (line noise) and removed channels
with more noise energy than two interquartile ranges above the third quartile
of the energy of all channels in the data set. We used common average re-
referencing on the remaining channels and applied elliptic IIR low-pass and
high-pass filters to represent broadband gamma activity. To attenuate the
first harmonic of 60 Hz line noise, which is within the high-gamma frequency
range, we applied an elliptic IIR notch filter (118-122 Hz).

We calculated the signal energy FE,;. for each channel ¢ and inter-
val ¢ and applied the logarithm to Gaussianize the feature distribution
[Gasser et al., 1982]. Then, the logarithmic broadband gamma power of all
channels were stacked into one vector E; = [E; 1, ..., E; 4]

The vectors of neighboring segments up to 200 ms prior and after the current
interval were concatenated to include the temporal dynamics of the context
of each ECoG interval. Contexts of similar sizes have been found relevant
in other speech perception studies [Sahin et al., 2009]. The resulting feature
vectors thus include the four feature vectors in the past and four in the
future, ie. F; = [Ei_y,..., E; ... ,Ei+4]T. The stacked feature vectors were
extracted every 25 ms.

6.2.4 Vowel Classification from ECoG Data

In this evaluation, we investigate the frame-wise classification of the five vow-
els (/a/, Je/, /i/, Jo/, /u/) from neural data. Brain activity based vowel
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classification is a particularly challenging task as vowels share multiple artic-
ulatory properties and their production involves similar motor actions. To
the best of our knowledge, vowel classification from neural data has not been
investigated for continuous speech before. Furthermore, the frame-wise mod-
eling of phones is an important aspect of Brain-to-text, our system for the
decoding of text from neural activity ([Herff et al., 2015] and improvements
in vowel classification can be expected to improve the decoding of word se-
quences.

In this evaluation, we compare two different classification approaches:

(i) generative Gaussian models as used in our Brain-to-Text decoding system
[Herff et al., 2015] using features selected by a Kullback-Leibler divergence
based feature selection and

(ii) discriminative models learned by the DCR Framework that are regular-
ized for sparsity and trained to be robust against non-stationarities.

In both approaches, the vowel recognition is only based on the ECoG data
and does not use the acoustic information, i.e. the acoustic data were only
used to create the phone labeling that is required to train the neural models
and to validate the recognition estimates.

Gaussian Model Training

To limit model complexity of the Gaussian models (COMPACT), we selected
features using a Kullback-Leibler divergence (KL-div) based feature selection
as follows: We estimated the relevance of the features F; . (log broadband
gamma at a recording position for a specific time interval) by calculating
the mean KL-div [Duda et al., 2001] between all phone-pairs for this feature.
The number of selected features was automatically determined based on the
distributions of KL-div values. i.e. features with the largest normalized mean
KL-div values were selected until the difference between subsequent values
in the sorted sequence of KL-div values was smaller than —0.05. The feature
selection was purely based on KL-divs in the training data and did not include
any prior knowledge about suitable brain regions or time offsets.

We modeled the selected features for each vowel by a Gaussian distribution.
Thus, each vowel is characterized by the mean broadband gamma activity
and the variance of the neural activity measurements at each of the selected
electrodes and time offsets. The Gaussian models were used in a multi-
class Gaussian classifier [Bishop et al., 2006] to discriminate between the five
different vowels.
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DCR Framework Model Training

In addition to Gaussian models, we applied the DCR Framework for vowel
classification. It differs from the Gaussian classification approach, as it learns
discriminative models instead of the generative Gaussian models. Further-
more, it the feature selection using KL-div is not applied but an implicit
feature selection by ¢;-norm regularization is performed. Additionally, it
learns models that are robust against changes of the feature distributions
over time and between multiple recording sessions (non-stationarities). For
multi-class classification we employed the one-vs-rest classification scheme as
described in section 4.5.2.

To incorporate invariance against non-stationarities, we chose the robustness
directions as follows (cf. section 4.1.4):

For each of the five vowel classifiers in the one-vs-rest classification, we split
the training features of vowel ¢ and the other vowels into 10 blocks per
session, each, and calculated the mean feature vectors Bj for each block.
The number of blocks has been evaluated for different numbers between 1
and 16, of which 10 was a reasonable tradeoff for all participants. We set
robustness directions df, to the difference between the average feature vector
in the training data for the vowel to be detected ¢ and the average feature
vector of each of the blocks in the training data set By, i.e. dj = u® — Bj.

Summary of the Vowel Classification Approaches

The frame-wise vowel classification approaches implemented the three objec-
tives DISCRIMINATIVE, COMPACT, and ROBUST as follows:

DISCRIMINATIVE: For both classification approaches we used logarithmic
high-gamma power features (70-170Hz) extracted from each channel. High-
gamma activity is known to correlate with language function, however the
channel number and channel locations differ between the participants. Fea-
tures from 50 ms windows of all channels were stacked using features from
up to 200 ms before and up to 250 ms after the interval of each feature.

CompPACT: For the Gaussian modeling approach a KL-div based feature
selection was applied. This filter based feature selection identified features
whose distribution is most dissimilar between the different phones.

The DCR Framework does not require a specialized feature selection but
uses its ;-norm penalty regularization for implicit feature selection.
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RoBUST: The robustness directions of the DCR Framework were chosen to
reduce the impact of non-stationarities. For the participant with multiple
recording sessions, the choice of robustness directions also reduces between-
session variabilities.

6.2.5 Evaluations and Results

ECoG recordings have high temporal and spatial resolution which allows
us to trace the temporal dynamics of speech production in the brain. The
topography and temporal information of the models learned by the DCR
Framework can be visualized for neurophysiological interpretation. Figure
6.7 shows topographical maps of a model to discriminate all vowels from the
other phones (without silence) for participant 7. The backward model learned
by the DCR Framework was converted into a forward model to represent in-
terpretable regions of cortical activity with high relevance [Haufe et al., 2014]
(see section 4.5.3). Heat maps show the temporal course of regions of high
discriminability (red) according to the learned model.

Starting 200 ms before the actual vowel production, early differences are
present in diverse areas. Concurrent with the vowel production and shortly
after the production onset, high discriminability in sensorimotor areas can be
observed. 150 ms after production, the regions of highest discriminabilities
correspond to auditory regions of the superior temporal gyrus.

For vowel classification, features were calculated as described in section 6.2.3.
As the data available for the evaluations is very limited we combined multiple
sessions of the participants. The feature vectors were restricted to vowel
frames and classified frame-wise using a 10-fold cross-validation with splits
between phrases.

Figure 6.8 shows the recognition results for the six evaluated participants in
terms of f-scores weighted by the prior distribution of the phones. Whiskers
indicate standard deviations across the different vowels.

Randomization tests showed that all recognition results were significantly
above chance level, except for participant 6 (one-sided, paired Wilcoxon
signed rank tests, p < 0.05). The classification using the DCR Frame-
work shows improvements in recognition rates over Gaussian models for all
participants except participant 1. It achieved significant improvements in
weighted f-score over Gaussian models by up to 6.8% absolute (participants
2, 3, and 5, paired Wilcoxon signed rank tests, p < 0.05). The average
performance improvements were 2.8% absolute.



6.2 ECoG-based Brain-to-Text Classification of Vowels 143

Figure 6.7 — Topographical maps showing discriminative regions of vowel
speech production on the brain over time.
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Figure 6.8 — Weighted f-scores of frame-wise vowel classification. Figure
shows results of the DCR Framework models (green) in comparison to Gaus-
sian models (blue) and randomized models (purple). Whiskers indicate stan-
dard deviations across the different vowels.

6.3 Conclusions

We described the evaluation of two approaches for the classification of vow-
els during continuous speech from ECoG data. Both vowel recognition sys-
tems were able to classify the five vowels significantly above chance level.
We highlighted how DISCRIMINATIVE (based on high-gamma power), COM-
PACT (KL-div feature selection and ¢;-norm regularization) and ROBUST (re-
duction of non-stationarities) were implemented. The models learned by the
DCR Framework show neurophysiological meaningful interactions of differ-
ent brain areas involved in the speech production process. Furthermore, we
could show performance improvements by using the DCR Framework in-
stead of Gaussian models by up to 6.8% in weighted f-score. These results
suggest that frame-wise modeling of phones in Brain-to-Text by the DCR
Framework may increase the performance of decoding of word sequences
from neural activity, which is an important step towards the recognition of
imagined speech.



CHAPTER 7

Conclusion and Perspectives

The final chapter of this dissertation briefly summarizes the pre-
sented work. We summarize the main contributions and explain
how our findings may foster future developments in BCI research.

7.1 Discussion, Contributions and Main
Results

The primary goal of this dissertation was to systematically advance pattern
recognition for BCIs. In the introductory chapter (section 1.2) we analyzed
the current state-of-the-art of BCIs and identified four important challenges
that pattern recognition for BCIs should approach: enable shorter setup
times, higher information throughput, more reliable recognition and more
natural and intuitive BCI paradigms. Furthermore, we found that there is a
lack of principled approaches for pattern recognition in BCIs which allow to
recognize many different BCI paradigms and different brain activity signals
(chapter 3).

As a consequence, we formulated the hypothesis that for pattern recogni-
tion in BCIs it is necessary to implement the three objectives DISCRIMINA-
TIVE, COMPACT, and ROBUST (section 3.1). These objectives have special
relevance for BCIs (section 3.2) and can be related to principles of pattern
recognition (section 3.3). To the best of our knowledge the three objectives
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have not been formulated as a triad before, and in particular, it has not been
discussed that the three objectives are dependent on each other and have
to be optimized with respect to each other for optimal pattern recognition
results.

The insights on the interdepencences of the three objectives lead to the DCR
Framework, which is, to the best of our knowledge, the first BCI pattern
recognition framework that jointly optimizes the three objectives (chapter
4). It makes use of generic high-dimensional features in time and frequency
domain and can be used for classification and regression problems. A par-
ticular novelty of the DCR Framework are the robustness directions that
provide an elegant method to incorporate directions in the feature space to
which the learned models become invariant. To the best of our knowledge, an
approach that includes robustness directions or alike has not been proposed
in pattern recognition or BCI research before.

We proposed an algorithm based on the Alternating Direction Method of
Multipliers (ADMM) that allows to calculate the updates in each step by
elegant closed-form solutions (section 4.4). This way, calculations are very
efficient, especially if the number of dimensions is much larger than the num-
ber of calibration instances.

Using the DCR Framework, we evaluated 8 different BCI data sets with
EEG, fNIRS, and ECoG data and 2 synthetically generated data sets
(chapters 5 and 6). We showed that the proposed methods can achieve
state-of-the-art recognition performances outperforming numerous current
alternative methods. The evaluations include different publicly available
benchmark data sets, such as the BCI Challenge @ NER2015 in which
our submission based on the DCR Framework won the 2nd prize at the
IEEE Neural Engineering Conference 2015. The application of the DCR
Framework to very different kinds of BCI problems using classification or
regression problems of different brain signal types shows that it is indeed a
quite generic approach for BCI pattern recognition.

With this work, we contributed to each of the four challenges listed above
as follows: We showed that the DCR Framework can be used when only
small amounts of calibration data have been recorded (section 5.1). Fur-
thermore, we showed that it can be applied to reduce the setup times by
transfer learning using only a small amount of user specific calibration data
and additional data from different subjects (in section 5.3). Furthermore, we
evaluated its multi-subject learning capabilities (section 5.4). Therefore, we
conclude that the DCR Framework improves inconveniences of BCI setups
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by reducing setup times (challenge 1) before BCI use.

In the evaluations in chapters 5 and 6, we showed improvements in recogni-
tion accuracies for multiple BCI problems in comparison to many alternative
approaches. By definition [Kronegg et al., 2005], improvements in recog-
nition rates directly translate to improvements in information throughput
(challenge 2). Furthermore, because of its generic data-driven approach, we
assume that the DCR Framework will benefit from future advancements in
new measurement technologies that may lead to further increases in infor-
mation throughput of BCIs (see next section).

We have highlighted that the proposed robustness directions technique of
the DCR Framework contributes to more reliable recognition (challenge 3)
results. Specifically, we have shown that the robustness directions can im-
prove recognition when signal variabilities are present that are caused by
using data of different users (sections 5.2.1, 5.3 and 5.4) or caused by non-
stationarities (sections 5.2.2 and 6.2).

Following the principles of DISCRIMINATIVE, COMPACT, and ROBUST, we
advanced pattern recognition for novel BCI paradigms (challenge 4) for which
there are no well established pattern recognition methods. Specifically, we
introduced two examples for novel BCI paradigms in which spontaneous
naturally occurring brain activity of the user is analyzed and interpreted
(chapter 6). For workload recognition we could show advanced recognition
performance using the DCR Framework. Furthermore, the analysis of the
task performance and self-reports of the users showed measurable benefits of
EEG-based workload adaptation (section 6.1). Additionally, we contributed
to the emerging research of recognizing speech from invasive neural signals
by contributing a first recognition system for vowels during continuously ar-
ticulated speech from ECoG signals (section 6.2).

In summary, this dissertation contributed the following key achievements that
are important foundations for both, practical BCI application and future BCI
research:

e Formulation of three objectives DISCRIMINATIVE, COMPACT, and RO-

BUST as theoretical concepts that are necessary for pattern recognition
of BCIs (chapter 3)

e Design and development of the DCR Framework, a generic pattern
recognition framework for BCIs that optimizes the three objectives in
a single joint convex optimization (chapter 4)

e Extensive empirical validation of our theory and the DCR Frame-
work using multiple different brain activity signals and multiple dif-
ferent BCI problems (chapter 5)
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e Advancing pattern recognition for novel BCI paradigms, i.e. EEG-based
workload recognition during the interaction in a semi-controlled task
and the classification of vowels during continuous speech from ECoG
signals (chapter 6)

7.2 Perspectives and Future Directions

BCI research is still in its infancy and major obstacles have to be overcome
to bring BCIs to real-life applications with a widespread user acceptance.
In general, traditional brain signal recording devices, such as clinical EEG-
caps with conductive gel, are not acceptable for most users in daily life.
Therefore, research has to provide new brain activity sensors to overcome
such inconvenient setups of current systems. Furthermore, it is crucial to
design innovative BCI applications that bring the users measurable benefits,
which cannot easily be achieved by less obtrusive interfaces. Additionally,
new invasive technologies that may become available in the near future are
of particular interest as they enable to assess much richer information from
the brain, as outlined below.

In the remainder of this section, we outline a number of directions for future
research related to pattern recognition for BCIs that emerge from the theo-
retical and practical advancements that have been developed in this thesis.

A major limiting factor for pattern recognition of BClIs is the small amount
of calibration data that is currently available for BCI research. Therefore,
a highly important aspect of BCI pattern recognition is a flexible imple-
mentation of the COMPACT objective in order to model as much informa-
tion as possible from the available data. Increasing the amount of cali-
bration data, has shown to strongly impact recognition rates and robust-
ness in other pattern recognition based research disciplines, such as au-
tomatic speech recognition and computer vision. Recently, a first large-
scale EEG data corpus has been published by the Temple University Hos-
pital (e.g. [Obeid and Picone, 2013, Obeid et al., 2014]). It comprises about
22,000 EEG recordings from approximately 15,000 different persons, includ-
ing their medical histories and clinical diagnoses. Although this is not a
typical BCI data set, BCI pattern recognition methods can be applied here
as research tools (cf. [Brunner et al., 2015]) to analyze and infer new insights
on brain function. The basic algorithm of the DCR Framework (section 4.4.4)
can easily be extended for large-scale distributed optimization (cluster com-
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puting) with moderate modifications. Therefore, such distributed extensions
should be developed for intelligent analysis of big neural data.

BCIs for communication and control, which are currently a major part of
BCI research, may not be the primary applications in the future. Instead,
new BCI paradigms need to be investigated, in which the user interacts
naturally with the environment and the BCI contributes only additional in-
formation about the user (cf. passive BCIs). Because of the current limi-
tations of BCIs, the highest potential for such applications may arise from
combining BCIs with other sensory modalities. These so-called hybrid BCIs
[Pfurtscheller et al., 2010] have not been discussed in this work, however the
DCR Framework supports large amounts of features, which enables its use
for feature fusion of information from BCIs and additional sensory modali-
ties. For example, applications that combine BCIs with augmented reality
interfaces, such as Google Glass and Microsoft Hololens, should be developed.
They have the opportunities to provide innovative real-world applications in
which the BCI enables completely new ways of interacting with the device
that can have significant benefits for the users.

In current BCI research, brain activity patterns are typically associated with
simple behavioral patterns of the user to train supervised learning models.
However, complex interactions in real-world applications require some form of
context awareness to be able to associate the brain activity patterns with the
corresponding events that occur in a certain situation. Such information may
be provided by an underlying cognitive model that integrates basic principles
about user behavior, the user’s task, and environmental knowledge. Putze
[Putze, 2014] recently proposed ways to combine empirical cognitive models,
such as BCIs, with computational cognitive models. The study discussed in
section 6.1 can be seen as a first promising step into this interesting research
direction.

Invasive BCIs using ECoG and microarrays are an important research direc-
tion, in particular to address the limitations of current BCIs due to their low
information throughput. Invasive systems have shown to be applicable to
complex tasks, such as the control of robotic arms for reaching and grasp-
ing [Hochberg et al., 2012]. Currently, new sensors and new technology to
measure brain activity are developed that may allow long term implanta-
tion of sensors with low health risks for the user. For example, micro-scale,
free-floating sensor networks [Seo et al., 2013] or sensors based on neuro-
nanotechnology [Alivisatos et al., 2013], may enable to infer more relevant
and precise information about neural processes for the next generation of
BCIs. The generic data-driven approach using high-dimensional features
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and its scalability in terms of number of features (COMPACT-objective) and
number of instances (possibility by distributed optimization) are important
factors that may allow the DCR Framework and similar methodologies to
be suitable pattern recognition approaches for these new technologies. Over-
all, we believe that advancements in measuring cortical information are a
key to enable BCIs with high information throughput for many real-world
applications and we hope that the fundamental ideas proposed in this dis-
sertation will be highly valuable for the development of pattern recognition
methodologies for such future BCls.
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BCI and Biosignals MATLAB Toolbox

During the work for this dissertation, a toolbox for processing of BCI and
biosignals time series data has been developed. All of the presented pattern
recognition methods and evaluations have been implemented in this tool-
box. It consists of a modular and light-weight architecture of object-oriented
operations implemented in MATLAB.

Figure A.1 illustrates the features of the toolbox. The key features are:

e Nearly 100 operators for signal processing and machine learning that
can be flexibly combined

e Object-oriented MATLAB implementation

e Capable of online real-time processing
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Figure A.1 — Features of the BCI and Biosignals MATLAB Toolbox
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