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1 Introduction

Maxwell’s equations on the whole three-dimensional space are considered with
initial conditions and inhomogeneity having support in a bounded domain that
is not required to be convex (or in a finite collection of such domains). The
study of such problems leads to transparent boundary conditions, which yield
the restriction of the solution to the domain. Such boundary conditions are
nonlocal in space and time, for both acoustic wave equations and Maxwell’s
equations. There is a vast literature to tackle this problem in general for wave
equations: fast algorithms for exact, nonlocal boundary conditions on a ball
[16,17], local absorbing boundary conditions [15,18], perfectly matched layers,
which were originally considered for electromagnetism in [6], and numerical
coupling with boundary integral operators [1,5]. All the above approaches,
except the last one, are inadequate for non-convex domains. The local methods
fail because waves may leave and re-enter a non-convex domain. Inclusion of a
non-convex domain in a larger convex domain is computationally undesirable
in situations such as a cavity or an antenna-like structure or a far-spread non-
connected collection of small domains. We note that for Maxwell’s equations,
far less is known on the numerical approximation of transparent boundary
conditions than for the acoustic wave equation.

The main goal of the present work is to transfer the programme of [5]
from acoustic wave equations to Maxwell’s equations: to propose and analyse
a provably stable and convergent fully discrete numerical method that couples
discretizations in the interior and on the boundary, without requiring convexity
of the domain. In the interior we use a discontinuous Galerkin (dG) method
in space [14,21,23] together with the explicit leapfrog scheme in time [19].
The boundary integral terms are discretized by standard boundary element
methods in space and by convolution quadrature (CQ) in time [25,26].

While the general approach of this paper is clearly based on [5], it should
be emphasized that the appropriate boundary integral formulation requires
a careful study of the electric Helmholtz equation. This is based on [9,10,
13,2], with special attention to the appropriate trace space on the boundary
and to the corresponding duality. Due to the analogue of Green’s formula for
Maxwell’s equations, the duality naturally turns out to be an anti-symmetric
pairing. This is responsible for the unusual structure of the Calderon oper-
ator. The Calderon operator used here differs from the acoustic case to a
large extent, and therefore the study of its coercivity property is an important
and nontrivial point. Similarly to the acoustic case, the continuous-time and
discrete-time coercivity is obtained from the Laplace-domain coercivity using
the operator-valued version [5] of the classical Herglotz theorem [20]. Both the
second and first order formulation of Maxwell’s equations are used.

We use a first order symmetric semidiscretization that has formally the
same matrix–vector formulation as for the acoustic wave equation studied in
[5], with the same coercivity property of the Calderon operator. Because of
this structural similarity, the stability results of [5], which are shown using the
matrix–vector setting, remain valid for the Maxwell case without any modifi-
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cation. On the other hand, their translation to the functional analytic setting
differs to a great extent. Therefore further care is required in the consistency
analysis.

In Section 2 we recapitulate the basic theory for the electric version of the
Helmholtz equation (obtained by Laplace transformation). Based on Buffa
and Hiptmair [9], and further on [10,2], we describe the right boundary space,
which allows for a rigorous boundary integral formulation for Maxwell’s equa-
tions. Then the boundary integral operators are obtained in a usual way from
the single and double layer potentials.

As the crucial technical result of the present work, we show in Section 3 a
coercivity property of the Calderon operator for the electric Helmholtz equa-
tion. This property translates to the continuous-time Maxwell’s equations
later, in Section 4.2, via an operator-valued Herglotz theorem.

In Section 4 we study the interior–exterior coupling of Maxwell’s equations,
resulting in an interior problem coupled to an equation on the boundary with
the Calderon operator. In particular, we derive a first order symmetric vari-
ational formulation, which, together with the continuous-time version of the
coercivity property of the Calderon operator, allows us to derive an energy
estimate. Later on this analysis is translated to the discrete settings.

Section 5 presents the details of the discretization methods: In space we use
discontinuous Galerkin finite elements with centered fluxes in the domain [14,
21], coupled to (continuous) linear boundary elements on the boundary. Time
discretization is done by the leapfrog scheme in the interior domain, while
on the boundary we use convolution quadrature. An extra term stabilizes
the coupling, just as for the acoustic wave equation [5]. The matrix–vector
formulation of the semidiscrete problem is formally the same as for the acoustic
wave equation, and therefore the stability results shown in [5] can be reused
here with minor modifications.

In Section 6 and 7 we revise the parts of the results and proofs of [5]
where they differ from the acoustic case, which is mainly in the estimate of
the consistency error. Finally, we arrive at the convergent error bounds for the
semi- and full discretizations.

To our knowledge, the proposed numerical discretizations in this paper
arethe first provably stable and convergent semi- and full discretizations to
interior–exterior coupling of Maxwell’s equations. We believe that the pre-
sented analysis and the techniques, which we share with [5], can be extended
further: to other discretization techniques for the domain, for instance edge ele-
ment methods [22], higher order discontinuous Galerkin methods, and different
time discretizations in the domain, together with higher order Runge–Kutta
based convolution quadratures on the boundary [3,4]. For ease of presentation
we consider in this paper only constant permeability and permittivity. How-
ever, it is only important that the permeability and permittivity are constant
in the exterior domain and in a neighbourhood of the boundary. In the interior
these coefficients may be space-dependent and discontinuous. In the latter case



4 Balázs Kovács, Christian Lubich

the equations can be discretized in space with the dG method as described in
[23].

In this paper we focus on the appropriate boundary integral formulation
and on the numerical analysis of the proposed numerical methods. Numerical
experiments are intended to be presented in subsequent work.

Concerning notation, we use the convention that vectors in R3 are denoted
by italic letters (such as u,E,H, . . . ), whereas the corresponding boldface let-
ters are used for finite element nodal vectors in RN , where N is the (large)
number of discretization nodes. Hence, any boldface letters appearing in this
paper refer to the matrix–vector formulation of spatially discretized equations.
Functions defined in the domain Ω are denoted by letters from the Roman al-
phabet, while functions defined on the boundary Γ are denoted by Greek
letters.

2 Recap: the electric Helmholtz equation and its boundary integral
operators

2.1 Preliminaries and notation

Let us consider the electric Helmholtz equation, obtained as the Laplace trans-
form of the second order Maxwell’s equation (with constant permeability µ
and permittivity ε):

εµs2u+ curl curlu = 0 in R3 \ Γ, (2.1)

where Γ is the boundary of a bounded piecewise smooth domain (or a finite
collection of such domains) Ω ⊂ R3, not necessarily convex, with (exterior)
normal ν.

We shortly recall some useful concepts and formulas regarding the above
problem, based on [9] and [24]. For the usual trace we will use the notation γ.
The tangential and magnetic traces are defined, respectively, as

γT v = v|Γ × ν, and γNv = (s−1 curl v)|Γ × ν.

These traces are also often called Dirichlet trace and Neumann trace, moti-
vated by the analogue of Green’s formula for Maxwell’s equations (for suffi-
ciently regular functions):∫

Ω

(
w · curl v − curlw · v

)
dx =

∫
Γ

(γ w × ν) · γ v dσ

=

∫
Γ

−(γ w × γ v) · ν dσ.

(2.2)

We introduce an important notation, the

anti-symmetric pairing on L2(Γ ) : [γ w, γ v]Γ =

∫
Γ

(γ w × ν) · γ v dσ,
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which appears on the right-hand side of (2.2). We note that the relation
[γ w, γ v]Γ = [γT w, γT v]Γ holds, cf. [9,24].

Let us now set w = s−1 curlu, which provides

1

s

∫
Ω

(
curlu · curl v − curl curlu · v

)
dx = [γN u, γT v]Γ .

Moreover, if u satisfies (2.1) and v = u then∫
Ω

(
s−1| curlu|2 + εµs|u|2

)
dx = [γN u, γT u]Γ . (2.3)

2.2 Function spaces

We collect some results on function spaces, which will play an important role
later on. All of the results in the present subsection can be found in Section 2
of [9].

Let us start by recalling the usual definition of the Sobolev space corre-
sponding to the curl operator:

H(curl, Ω) =
{
v ∈ L2(Ω)3 : curl v ∈ L2(Ω)3

}
,

with corresponding norm ‖v‖2H(curl,Ω) = ‖v‖2L2(Ω)3 + ‖ curl v‖2L2(Ω)3 .

Clearly, the above integral relations hold for functions v, w ∈ H(curl, Ω).
If it is clear from the context we simply write H(curl) instead of H(curl, Ω).

Now we are turning to trace spaces. However, even though γT : H(curl, Ω)→
H−1/2(Γ ) is a continuous mapping,H−1/2(Γ ) is not the right choice for bound-
ary integral operators. As it was emphasized by Buffa and Hiptmair [9]: the
study of the continuous mapping γT : H(curl, Ω) → H−1/2(Γ ) is ”actually
sufficient for the understanding of homogeneous boundary conditions for fields
in the Hilbert space context. However, to impose meaningful non-homogeneous
boundary conditions or, even more important, to lay the foundations for bound-
ary integral equations we need to identify a proper trace space”1. In the follow-
ing, we briefly summarize the definition of such a trace space, together with
some related results.

The Hilbert space Hp
×(Γ ) collects the γT traces of Hp+1/2(Ω) functions,

for p ∈ (0, 1), i.e., Hp
×(Γ ) = γT (Hp+1/2(Ω)). The corresponding inner product

is chosen such that γT : Hp+1/2(Ω) → Hp
×(Γ ) is continuous and surjective.

In particular, the space H
1/2
× (Γ ) = γT (H1(Ω)) has the dual space H

−1/2
× (Γ ),

defined with respect to the (extended) duality [·, ·]Γ .
Then, the above mentioned proper trace space is given as:

HΓ = H
−1/2
× (divΓ , Γ ) =

{
w ∈ H−1/2× (Γ ) : divΓ w ∈ H−1/2(Γ )

}
,

with norm
‖w‖2HΓ = ‖w‖2

H
−1/2
× (Γ )

+ ‖ divΓ w‖2H−1/2(Γ ).

The tangential trace satisfies the following analogue of the trace theorem.

1 Quoted from Buffa and Hiptmair, [9], Section 2.2.
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Lemma 2.1 ([8], Section 4) The trace operator γT : H(curl, Ω) → HΓ is
continuous.

The following lemma clarifies the role of the anti-symmetric pairing [·, ·]Γ .

Lemma 2.2 ([8], Lemma 5.6, [9], Theorem 2) The pairing [·, ·]Γ can be
extended to a continuous bilinear form on HΓ . With this pairing the space HΓ
becomes its own dual.

The above results clearly point out that a natural choice of trace space is(
HΓ , [·, ·]Γ

)
, which fits perfectly to the analogue of Green’s formula (2.2) and

to the boundary integral formulation of Maxwell’s equations. This trace space
is appropriate for the analysis of boundary integral operators.

2.3 Boundary integral operators

On potentials and boundary integral operators we follow Buffa and Hiptmair
[9], and we also refer to [10,13].

The usual boundary integral potentials for the electric Helmholtz equation

εµs2u+ curl curlu = 0 in R3 \ Γ

are obtained, based on [9] and [2]: the (electric) single layer potential is given,
for x ∈ R3 \ Γ , as

S(s)ϕ(x) = −s
∫
Γ

G(s, x− y)ϕ(y) dy + s−1
1

εµ
∇
∫
Γ

G(s, x− y) divΓ ϕ(y) dy,

while the (electric) double layer potential is given, for x ∈ R3 \ Γ , as

D(s)ϕ(x) = curl

∫
Γ

G(s, x− y)ϕ(y) dy,

where the fundamental solution is given, for z ∈ R3, as

G(s, z) =
e−s
√
εµ|z|

4π|z|
.

The solution then has the representation

u = S(s)ϕ+D(s)ψ, x ∈ R3 \ Γ, (2.4)

where

ϕ = [[γNu]] = [[γT (s−1 curlu)]] and ψ = [[γTu]]. (2.5)

Here [[γv]] = γ−v − γ+v denotes the jumps in the boundary traces. A further
notation is the average of the inner and outer traces on the boundary: {{γv}} =
1
2 (γ−v + γ+v). On vectors both operations are acting componentwise.
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For every ϕ ∈ HΓ and ψ ∈ HΓ , formula (2.4) defines u ∈ Hloc(curl,R3\Γ ).
Because of the jump relations

[[γN ◦ S(s)]] = Id, [[γN ◦ D(s)]] = 0,

[[γT ◦ S(s)]] = 0, [[γN ◦ D(s)]] = Id,

ϕ and ψ are reconstructed from u by (2.5).
Let us now define the boundary integral operators. As opposed to the

general second order elliptic case, due to additional symmetries of the problem,
they reduce to two operators V and K, see [9, Section 5]. They satisfy

V (s) = {{γT ◦ S(s)}} = {{γN ◦ D(s)}},
K(s) = {{γT ◦ D(s)}} = {{γN ◦ S(s)}}.

In [9, Section 5] the continuity of these operators was proven, without giving
an explicit dependence on s. Such bounds are crucial in the analysis later,
therefore we now show s-explicit estimates for the boundary integral operators.
Our result is based on [2].

Lemma 2.3 For Re s ≥ σ > 0 the boundary integral operators V (s),K(s) :
HΓ → HΓ are bounded as

‖V (s)‖ ≤ C(σ)|s|2 and ‖K(s)‖ ≤ C(σ)|s|2.

Proof These estimates can be shown by adapting the arguments of [2, Sec-
tion 4.2]. In particular, by using the anti-symmetric pairing [·, ·]Γ instead of
the usual L2(Γ ) inner product, the results of [2, Theorem 4.4] transfer from
H−1/2(divΓ , Γ )→ H−1/2(curlΓ , Γ ) to the estimates stated here. �

Furthermore, using the potential representation of the solution (2.4), the
averages of the traces can be expressed using the operators V and K in the
following way:

{{γTu}} = {{γTS(s)ϕ}}+ {{γTD(s)ψ}}
= V (s)ϕ+K(s)ψ, and

{{γNu}} = {{γNS(s)ϕ}}+ {{γND(s)ψ}}
= K(s)ϕ+ V (s)ψ.

(2.6)

3 Coercivity of a Calderon operator for the electric Helmholtz
equation

An important role will be played by the following operator on HΓ × HΓ , to
which we refer as a Calderon operator :

B(s) = µ−1
(

V (s) K(s)
−K(s) −V (s)

)
. (3.1)

The extra factor µ−1 appears unmotivated here, but will turn out to be con-
venient later. This operator satisfies the following coercivity result, which is
the key lemma of this paper.
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Lemma 3.1 There exists β > 0 such that the Calderon operator (3.1) satisfies

Re

[(
ϕ

ψ

)
, B(s)

(
ϕ

ψ

)]
Γ

≥ β m(s)
(

(εµ)−1‖s−1ϕ‖2HΓ + ‖s−1ψ‖2HΓ
)

for Re s > 0 and for all ϕ,ψ ∈ HΓ , with m(s) = min{1, |s|2εµ}Re s.

Proof The proof has a structure similar to the proof of the corresponding re-
sult for the acoustic Helmholtz equation [5, Lemma 3.1], although it now uses
a different functional-analytic setting. The structural similarity becomes pos-
sible thanks to the anti-symmetric duality pairing that replaces the symmetric
duality pairing of the acoustic case.

For given ϕ,ψ ∈ HΓ , we define u ∈ Hloc(curl,R3 \Γ ) by the representation
formula (2.4). We can then express ϕ and ψ in terms of u by (2.5). We note
that (2.6) yields

B(s)

(
ϕ

ψ

)
= µ−1

(
{{γTu}}
−{{γNu}}

)
.

Now, using the properties of the anti-symmetric pairing [·, ·]Γ (acting compo-
nentwise on HΓ × HΓ ), the analogue of Green’s formula (2.3) and using the
definition of the traces, we obtain

µ

[(
ϕ

ψ

)
, B(s)

(
ϕ

ψ

)]
Γ

= [[[γN u]], {{γT u}}]Γ + [[[γT u]],−{{γN u}}]Γ

= [γ−N u, γ
−
T u]Γ − [γ+N u, γ

+
T u]Γ

= s
(
‖s−1 curlu‖2L2(R3\Γ ) + εµ‖u‖2L2(R3\Γ )

)
.

We further obtain

‖ψ‖2HΓ =
∥∥[[γT u]]

∥∥2
HΓ

≤ C
(
‖ curlu‖2L2(R3\Γ )3 + ‖u‖2L2(R3\Γ )3

)
= C|s|2

(
‖s−1 curlu‖2L2(R3\Γ )3 + |s|−2‖u‖2L2(R3\Γ )3

)
≤ C|s|2 max{1, |s|−2(εµ)−1}

(
‖s−1 curlu‖2L2(R3\Γ )3 + εµ‖u‖2L2(R3\Γ )3

)
,

and for γN we use the fact that γN u = γT (s−1 curlu):

(εµ)−1‖ϕ‖2HΓ = (εµ)−1
∥∥[[γT (s−1 curlu)]]

∥∥2
HΓ

≤ C(εµ)−1
(
‖s−1 curl curlu‖2L2(R3\Γ )3 + ‖s−1 curlu‖2L2(R3\Γ )3

)
= C

(
εµ‖su‖2L2(R3\Γ )3 + (εµ)−1‖s−1 curlu‖2L2(R3\Γ )3

)
≤ C|s|2 max{1, |s|−2(εµ)−1}

(
‖s−1 curlu‖2L2(R3\Γ )3 + εµ‖u‖2L2(R3\Γ )3

)
where, for the first inequalities in both estimates, we used the trace inequality
of Lemma 2.1. Extraction of factors and dividing through completes the proof.
�
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4 Boundary integral formulation of Maxwell’s equations

Let us consider the first order formulation of Maxwell’s equations, in the fol-
lowing form:

ε∂tE − curlH = J

µ∂tH + curlE = 0

div
(
εE
)

= 0

div
(
µH
)

= 0

in Ω,

with appropriate initial and boundary conditions. If the initial conditions sat-
isfy the last two equations, then they hold for all times, see [28,11], therefore
these conditions are assumed to hold. The permeability and permittivity is de-
noted by µ and ε, respectively, and they are assumed to be positive constants,
while J denotes the electric current density.

Using the relation ∂tH = −µ−1 curlE, the above equation can be written
as the second order problem

εµ∂2tE + curl curlE = J̇ in Ω,

with J̇ = ∂tJ .
Setting J̇ = 0, applying Laplace transformation, and writing u instead of

LE, we obtain the time-harmonic version (2.1).

4.1 Recap: Temporal convolutions and Herglotz theorem

We recall an operator-valued continuous-time Herglotz theorem from [5, Sec-
tion 2.2], which is crucial for transferring the coercivity result of Lemma 3.1
from the electric Helmholtz equation to the time-dependent Maxwell’s equa-
tion.

Let V be a complex Hilbert space, with dual V ′ and anti-duality 〈·, ·〉. Let
B(s) : V → V ′ and R(s) : V → V be both analytic families of bounded linear
operators for Re s ≥ σ > 0, satisfying the uniform bounds:

‖B(s)‖V ′←V ≤M |s|µ and ‖R(s)‖V ′←V ≤M |s|µ, Re s ≥ σ.

For any integer m > µ+ 1, we define the integral kernel

Km(s) =
1

2πi

∫
σ+iR

ests−mB(s) ds.

For a function w ∈ Cm([0, T ], V ) with vanishing initial data, w(0) = w′(0) =
· · · = w(m−1)(0) = 0, we let

(B(∂t)w)(t) =
( d

dt

)m ∫ t

0

Km(t− τ)w(τ) dτ,

that is, B(∂t)w is the distributional convolution of the inverse Laplace trans-
form of B(s) with w.

The operator-valued version of the classical Herglotz theorem, Lemma 2.1
in [5], yields the following result.
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Lemma 4.1 ([5], Lemma 2.2) In the above setting, the following two state-
ments are equivalent:

(i) Re〈w,B(s)w〉 ≥ β‖R(s)w‖2, for any w ∈ V , Re s ≥ σ;

(ii)
∫∞
0
e−2σt Re〈w(t), B(∂t)w(t)〉dt ≥ β

∫∞
0
e−2σt‖R(∂t)w(t)‖2 dt, for all w ∈

Cm([0, T ], V ), with w(0) = w′(0) = · · · = w(m−1)(0) = 0, and for all t ≥ 0.

4.2 Calderon operator for Maxwell’s equations

Consider the second order formulation of Maxwell’s equations in three dimen-
sions:

εµ∂2tE + curl curlE = J̇ in R3 × [0, T ],

E(x, 0) = E0 in R3,

∂tE(x, 0) = H0 in R3.

Let Ω ⊂ R3 be a bounded Lipschitz domain, with boundary Γ , and further
assume that the initial values and J̇ are supported within Ω.

We rewrite this problem as an interior problem over Ω:

εµ∂2tE
− + curl curlE− = J̇ in Ω × [0, T ],

E−(x, 0) = E0 in Ω,

∂tE
−(x, 0) = H0 in Ω,

and as an exterior problem over Ω+ = R3 \Ω:

εµ∂2tE
+ + curl curlE+ = 0 in Ω+ × [0, T ],

E+(x, 0) = 0 in Ω+,

∂tE
+(x, 0) = 0 in Ω+.

The two problems are coupled by the transmission conditions:

γ−T E
− = γ+T E

+ and γ−N E
− = γ+N E

+.

Using the temporal convolution operators of Section 4.1, the solution of
the exterior problem is given as

E+ = S(∂t)ϕ+D(∂t)ψ,

with boundary densities

ϕ = − γ+N E
+ and ψ = − γ+T E

+,

which satisfy the equation

B(∂t)

(
ϕ

ψ

)
=
µ−1

2

(
γ−T E

−

− γ−N E−

)
.

Here B(∂t) is the temporal convolution operator with the distribution whose
Laplace transform is the Calderon operator B(s) defined in (3.1).
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4.3 First order formulation

From now on, we use Maxwell’s equations in their first order formulation on
the interior domain Ω (and we omit the omnipresent superscript −):

ε∂tE = curlH + J

µ∂tH = − curlE
in Ω × [0, T ], (4.1)

with the coupling through the Calderon operator as

B(∂t)

(
ϕ

ψ

)
=
µ−1

2

(
γT E

− γN E

)
,

where ϕ = − γN E and ψ = − γT E. In addition, by −µ∂tH = curlE we
obtain

ϕ = − γN E = − γT (∂−1t curlE) = µγT H

ψ = − γT E,
(4.2)

where we also used (2.5). Hence, − γN E = µγT H

B(∂t)

(
ϕ

ψ

)
=
µ−1

2

(
γT E

− γN E

)
=

1

2

(
µ−1 γT E

γT H

)
.

4.4 Coercivity of the time-dependent Calderon operator

In the same way as in [5, Lemma 4.1] for the acoustic wave equation, the co-
ercivity of the Calderon operator B(s) for the electric Helmholtz equation as
given by Lemma 3.1 together with the operator-valued continuous-time Her-
glotz theorem as stated in Lemma 2.3 yields coercivity of the time-dependent
Calderon operator B(∂t).

Lemma 4.2 With the constant β > 0 from Lemma 3.1 we have that∫ T

0

e−2t/T
[(
ϕ(·, t)
ψ(·, t)

)
, B(∂t)

(
ϕ(·, t)
ψ(·, t)

)]
Γ

dt

≥ βcT
∫ T

0

e−2t/T
(

(εµ)−1‖∂−1t ϕ(·, t)‖2HΓ + ‖∂−1t ψ(·, t)‖2HΓ
)

dt

for arbitrary T > 0 and for all ϕ ∈ C4([0, T ],HΓ ) and all ψ ∈ C4([0, T ],HΓ )
with ϕ(·, 0) = ∂tϕ(·, 0) = ∂2t ϕ(·, 0) = ∂3t ϕ(·, 0) = 0 and ψ(·, 0) = ∂tψ(·, 0) =
∂2t ψ(·, 0) = ∂3t ψ(·, 0) = 0, and with constant cT = m(T−1).

A Gronwall argument then yields the following energy estimate, see [5,
Lemma 4.2].
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Lemma 4.3 Let the functions E : [0, T ] → [0,∞), F : [0, T ] → R, and
ϕ,ψ ∈ C2([0, T ],HΓ ) with ϕ(·, 0) = ∂tϕ(·, 0) = ∂2t ϕ(·, 0) = ∂3t ϕ(·, 0) = 0,
ψ(·, 0) = ∂tψ(·, 0) = ∂2t ψ(·, 0) = ∂3t ψ(·, 0) = 0, be such that for all t ∈ [0, T ]

Ė(t) +

[(
ϕ(·, t)
ψ(·, t)

)
, B(∂t)

(
ϕ(·, t)
ψ(·, t)

)]
Γ

= F(t).

Then, with cT = m(T−1),

E(T )+ βcT

∫ T

0

e−2t/T
(

(εµ)−1‖∂−1t ϕ(·, t)‖2HΓ + ‖∂−1t ψ(·, t)‖2HΓ
)

dt

≤ e2 E(0) +

∫ T

0

e2(1−t/T )F(t) dt.

(4.3)

4.5 Weak formulation and energy estimate

Analogously to [1,5], a symmetric weak form of (4.1) is obtained on using

(curlu, v) = 1
2 (curlu, v) + 1

2 (u, curl v)− 1
2 [γT u, γT v]Γ ,

and using (4.2) for the boundary term. Here (·, ·) denotes the standard L2(Ω)3

inner product.
The coupled weak problem then reads: find E,H ∈ H(curl, Ω) and ϕ,ψ ∈

HΓ such that

(ε∂tE,w) = 1
2 (curlH,w) + 1

2 (H, curlw)− 1
2 [γT H, γT w]Γ + (J,w)

= 1
2 (curlH,w) + 1

2 (H, curlw)− 1
2 [µ−1ϕ, γT w]Γ + (J,w),

(µ∂tH, z) = − 1
2 (curlE, z)− 1

2 (E, curl z) + 1
2 [γT E, γT z]Γ

= − 1
2 (curlE, z)− 1

2 (E, curl z)− 1
2 [ψ, γT z]Γ ,[(

ξ

η

)
, B(∂t)

(
ϕ

ψ

)]
Γ

=
1

2

(
[ξ, µ−1 γT E]Γ + [η, γT H]Γ

)
(4.4)

hold for arbitrary w, z ∈ H(curl, Ω), and ξ, η ∈ HΓ .
While this weak formulation is apparently non-standard for Maxwell’s

equations, we will see that it is extremely useful, in the same way as the
analogous formulation proved to be for the acoustic case in [1,5].

Testing with w = E, z = H and ξ = ϕ, η = ψ in (4.4), by using (4.2) we
obtain

(ε∂tE,E) = 1
2 (curlH,E) + 1

2 (H, curlE)− 1
2 [µ−1ϕ, γT E]Γ + (J,E),

(µ∂tH,H) = − 1
2 (curlE,H)− 1

2 (E, curlH)− 1
2 [ψ, γT H]Γ ,[(

ϕ

ψ

)
, B(∂t)

(
ϕ

ψ

)]
Γ

=
1

2

(
[ϕ, µ−1 γT E]Γ + [ψ, γT H]Γ

)
,
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and summing up the three equations yield

d

dt

(ε
2
‖E‖2L2(Ω)3 +

µ

2
‖H‖2L2(Ω)3

)
+

[(
ϕ

ψ

)
, B(∂t)

(
ϕ

ψ

)]
Γ

= (J,E).

For J = 0, the coercivity of the continuous-time Calderon operator, as stated
in Lemmas 4.2 and 4.3, yields that the electromagnetic energy

E(t) =
ε

2
‖E‖2L2(Ω)3 +

µ

2
‖H‖2L2(Ω)3 ,

satisfies the energy estimate (4.3) (with F = 0) for arbitrary T > 0.

5 Discretization

5.1 Space discretization: dG and BEM

For the spatial discretization we use the central flux discontinuous Galerkin
(dG) discretization from [23]; see also [14,21].

We triangulate the bounded polyhedral domain Ω by simplicial triangula-
tions Th, where h denotes the maximal element diameter. For our theoretical
results we consider a quasi-uniform and contact-regular family of such trian-
gulations with h → 0, see e.g. [14] for these notions. We adopt the following
notation from [23, Section 2.3]: The faces Fh of Th, decomposed into boundary
and interior faces: Fh = Fbnd

h ∪ F int
h . The normal of an interior face F ∈ F int

h

is denoted by νF . It is kept fixed and is the outward normal of one of the two
neighbouring mesh elements. We denote by KF that neighbouring element
into which νF is directed. The outer faces of Th are used as the triangulation
of the boundary Γ .

The dG space of vector valued functions, which are elementwise linear in
each component, is defined as

Vh =
{
vh ∈ L2(Ω) : vh|K is at most linear, for all K ∈ Th

}3 6⊂ H(curl, Ω).

The boundary element space Ψh is taken as

Ψh =
{
χh × ν : χh is piecewise linear and continuous on Γ

}
⊂ HΓ .

The corresponding nodal basis functions are denoted by (bΩj ) and (bΓk ), respec-

tively. Jumps and averages over faces F ∈ F int
h are denoted analogously as for

trace operators on Γ , see Section 2.3:

[[w]]F = γ−F w − γ
+
F w and {{w}}F = 1

2 (γ−F w + γ+F w),

where γF is the usual trace onto the face F . We often omit the subscript as it
will always be clear from the context.
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The discrete curl operator with centered fluxes was presented in [23, Sec-
tion 2.3]:

(curlh uh, wh) =
∑
K∈Th

(curluh, wh)K +
∑

F∈F int
h

−[[[uh]], {{wh}}]F .

By the arguments of the proof of Lemma 2.2 in [23], we obtain that the discrete
curl operator satisfies the discrete version of Green’s formula (2.2),

(curlh uh, wh)− (uh, curlh wh) = [γTuh, γTwh]Γ . (5.1)

The curlh operator is well defined on H(curl, Ω) ∩H1(Th)3, with the broken
Sobolev space

Hk(Th) =
{
v ∈ L2(Ω) : v|K ∈ Hk(K) for all K ∈ Th

}
(k ∈ N),

which is a Hilbert space with natural norm and seminorm ‖vh‖Hk(Th) and
|vh|Hk(Th), respectively.

Using the above discrete curl operator, the semidiscrete problem reads as
follows: Find Eh, Hh ∈ Vh and ϕh, ψh ∈ Ψh such that for all wh, zh ∈ Vh and
ξh, ηh ∈ Ψh,

(ε∂tEh, wh) = 1
2 (curlhHh, wh) + 1

2 (Hh, curlh wh)− 1
2 [µ−1ϕh, γT wh]Γ + (J,wh),

(µ∂tHh, zh) = − 1
2 (curlhEh, zh)− 1

2 (Eh, curlh zh)− 1
2 [ψh, γT zh]Γ , (5.2)[(

ξh
ηh

)
, B(∂t)

(
ϕh
ψh

)]
Γ

= 1
2

(
[ξh, µ

−1 γT Eh]Γ + [ηh, γT Hh]Γ

)
.

All expressions are to be interpreted in a piecewise sense if necessary.
We collect the nodal values of the semidiscrete electric and magnetic field

into the vectors E,H, and similarly the nodal vectors of the boundary densi-
ties are denoted by ϕ and ψ. Upright boldface capitals always denote matrices
of the discretization.

We obtain the following coupled system of ordinary differential equations
and integral equations for the nodal values:

εMĖ = −DH −C0ϕ+ MJ ,

µMḢ = DTE −C1ψ,

B(∂t)

(
ϕ

ψ

)
=

(
CT

0E

CT
1H

)
.

(5.3)

The matrix M denotes the symmetric positive definite mass matrix, while the
other matrices are defined as

D|jj′ = − 1
2 (curlh b

Ω
j′ , b

Ω
j )− 1

2 (bΩj′ , curlh b
Ω
j ),

which happens to be a symmetric matrix, and

C1|jk = 1
2 [bΓk , γT b

Ω
j ]Γ , C0 = µ−1C1.
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The matrix B(s) is given by

B(s) = µ−1
(

V(s) K(s)
−K(s) −V(s)

)
,

where the blocks have entries

V(s)|kk′ = 1
2 [bΓk′ , V (s)bΓk ]Γ and K(s)|kk′ = 1

2 [bΓk′ ,K(s)bΓk ]Γ .

The above matrix–vector formulation is thus formally the same as the one
for the acoustic wave equation in [5, Section 5.1], with the same coercivity
estimate for the boundary operator B(∂t), which is inherited from Lemma 4.2.
As an important consequence, the stability results proven in [5] hold for the
present case as well.

Furthermore, differentiating the electric and the coupling equations and
eliminating the discrete magnetic field yields the spatially discrete second-
order formulation:

εµMË = −DM−1(DTE −C1ψ)− µC0ϕ̇+ µMJ̇ ,

B(∂t)

(
ϕ̇

ψ̇

)
=

(
CT

0 Ė

µ−1CT
1 M−1(DE −C1ψ)

)
.

Remark 5.1 The choice of a dG method for the spatial discretization is not
necessary for our analysis. Other space discretization methods, for instance
the ones going back to Raviart and Thomas [31], Nédélec [29], and many
others, detailed in the excellent survey article [22], or locally divergence-free
methods such as [7,12], could also be used as long as they yield a matrix–vector
formulation of the form (5.3).

5.2 Recap: Convolution quadrature

Following [5, Section 2.3] we give a short recap of convolution quadrature and
introduce some notation. For more details see [25–27] and [3].

Convolution quadrature (CQ) discretizes the convolution B(∂t)w(t) by the
discrete convolution

(B(∂∆tt )w)(n∆t) =

n∑
j=0

Bn−jw(j∆t),

where the weights Bn are defined as the coefficients of

B
(δ(ζ)

∆t

)
=
∞∑
n=0

Bnζ
n.

In the present paper we choose

δ(ζ) = (1− ζ) + 1
2 (1− ζ)2,
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which corresponds to the second-order backward difference formula.
From [26], it is known that the method is of order two,

‖(B(∂t)w)(t)− (B(∂∆tt )w)(t)‖ = O(∆t2), uniformly in t = n∆t ≤ T,

for functions w that are sufficiently smooth including their extension by 0 to
negative values of t. An important property of this discretization is that it
preserves the coercivity of the continuous-time convolution in the time dis-
cretization. We have the following result.

Lemma 5.1 ([5], Lemma 2.3) In the setting of Lemma 4.1 condition (i)
implies, for σ∆t > 0 small enough and with ρ = e−σ∆t +O(∆t2),

∞∑
n=0

ρ2n Re〈w(n∆t), B(∂∆tt )w(n∆t)〉 ≥ γ
∞∑
n=0

ρ2n‖R(∂∆tt )w(n∆t)‖2,

for any function w : [0,∞)→ V with finite support.

5.3 Coercivity of the time-discretized Calderon operator

Combining Lemma 3.1 and Lemma 5.1 yields the following coercivity prop-
erty of the CQ time-discretization of the time-dependent Calderon operator
considered in Lemma 4.2.

Lemma 5.2 In the situation of Lemma 4.2, we have for N∆t = T and 0 <
∆t ≤ ∆t0 that

∆t

N∑
n=0

e−2tn/T
[(
ϕ(·, tn)

ψ(·, tn)

)
, B(∂∆tt )

(
ϕ

ψ

)
(·, tn)

]
Γ

≥ βcT∆t

N∑
n=0

e−2tn/T
(

(εµ)−1‖(∂∆tt )−1ϕ(·, tn)‖2HΓ + ‖(∂∆tt )−1ψ(·, tn)‖2HΓ
)

for all sequences (ϕ(·, tn))Nn=0 and (ψ(·, tn))Nn=0 in HΓ , with cT = cm(T−1)
for a c > 0 (which depends only on ∆t0 and tends to 1 as ∆t0 goes to zero).

5.4 Time discretization: leapfrog and CQ

Similarly to [5], we couple the leapfrog or Störmer–Verlet scheme (see, e.g.,
[19])

µMHn+1/2 = µMHn + 1
2∆tDEn − 1

2∆tC1ψ
n,

εMEn+1 = εMEn −∆tDTHn+1/2 −∆tC0ϕ
n+1/2 + ∆tMJn+1/2,

µMHn+1 = µMHn+1/2 + 1
2∆tDEn+1 − 1

2∆tC1ψ
n+1,

(5.4)
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with convolution quadrature

[
B(∂∆tt )

(
ϕ

ψ̄

)]n+1/2

=

(
CT

0 Ē
n+1/2

CT
1H

n+1/2

)
+

(
0

−α∆t2µ−1CT
1 M−1C1ψ̇

n+1/2

)
,

(5.5)

where the operation f̄n+1/2 = 1
2 (fn+1+fn) is averaging in time and ψ̇

n+1/2
=

(ψn+1−ψn)/∆t. The second term on the right-hand side is a stabilizing term,
with a parameter α > 0. The role of this extra term becomes clear from the
proof of the stability result for the acoustic wave equation [5, Lemma 8.1],
which applies to the Maxwell case as well.

Like for the acoustic case, the choice α = 1 yields a stable scheme under
the CFL condition ∆t‖M−1/2DM−1/2‖2 ≤

√
εµ. Up to a factor 2 this is the

CFL condition for the leapfrog scheme for the equation with natural boundary
conditions.

In each time step, a linear system with the matrix B0 + ∆tG needs to be

solved for ϕn+1/2 and ψ̄
n+1/2

, where B0 = B(δ(0)/∆t) and

G =

(
1
2ε
−1CT

0 M−1C0 0
0 2αµ−1CT

1 M−1C1

)
.

By the coercivity Lemma 3.1, B0 + BT
0 is positive definite. Moreover, G is

symmetric positive definite.

6 Stability results and error bounds for the spatial
semidiscretization

Using that the obtained discrete system (5.3) is of the same form and with
the same coercivity property as for the acoustic wave equation, the stability
results carry over from Section 6 of [5]. Only minor technical modifications
are needed, such as using the appropriate energy and norms. The only point
where the analysis of the semidiscrete problem deviates from the acoustic case
is the consistency error estimates, which require special care.

6.1 Stability

We consider a system with additional inhomogeneities, which will later be
obtained as the system of error equations with the defects of an interpolation
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of the exact solution. The coupled system

(ε∂tEh, wh) = 1
2 (curlhHh, wh) + 1

2 (Hh, curlh wh)− 1
2 [µ−1ϕh, γT wh]Γ + (jh, wh),

(µ∂tHh, zh) = − 1
2 (curlhEh, zh)− 1

2 (Eh, curlh zh)− 1
2 [ψh, γT zh]Γ + (gh, wh),

(6.1)[(
ξh
ηh

)
, B(∂t)

(
ϕh
ψh

)]
Γ

= 1
2

(
[ξh, µ

−1 γT Eh]Γ + [ηh, γT Hh]Γ

)
+ (ξh, ρh)Γ + (ηh, σh)Γ (6.2)

where (·, ·)Γ denotes the inner product on HΓ , has the matrix-vector formu-
lation

εMĖ = −DH −C0ϕ+ Mj,

µMḢ = DTE −C1ψ + Mg,

B(∂t)

(
ϕ

ψ

)
=

(
CT

0E

CT
1H

)
+

(
MΓρ

MΓσ

)
,

(6.3)

where MΓ is the boundary mass matrix with entries MΓ |k′,k = (bΓk′ , b
Γ
k )Γ . The

solution of this system can be bounded in terms of j, g,ρ,σ by the stability
results proven in Lemma 6.1–6.3 in [5].

We immediately translate the stability lemmas of [5] into the functional
analytic setting. The energy estimate of Lemma 6.1 of [5] becomes the follow-
ing.

Lemma 6.1 The semidiscrete energy

Eh(t) = 1
2

(
ε‖Eh(·, t)‖2L2(Ω)3 + µ‖Hh(·, t)‖2L2(Ω)3

)
,

satisfies the bound, for t > 0,

Eh(t) ≤ C(β)

(
Eh(0) + t

∫ t

0

(
‖jh(·, τ)‖2L2(Ω)3 + ‖gh(·, τ)‖2L2(Ω)3

)
dτ

+ max{t2, t6(εµ)2}
∫ t

0

(
‖∂2t ρh(·, τ)‖2HΓ + ‖∂2t σh(·, τ)‖2HΓ

)
dτ

)
,

provided that ρh(·, 0) = ∂tρh(·, 0) = 0 and σh(·, 0) = ∂tσh(·, 0) = 0.

The estimates for the boundary functions of Lemma 6.3 of [5] now translate
into the following.

Lemma 6.2 For t > 0, the boundary functions are bounded as∫ t

0

(
‖ϕh(·, τ)‖2HΓ + ‖ψh(·, τ)‖2HΓ

)
dτ

≤ C(β) max{t2, t6(εµ)2}
(∫ t

0

(
‖∂tjh(·, τ)‖2L2(Ω)3 + ‖∂tgh(·, τ)‖2L2(Ω)3

+ ‖∂2t ρh(·, τ)‖2HΓ + ‖∂2t σh(·, τ)‖2HΓ
)

dτ

)
.
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provided that jh(·, 0) = 0, gh(·, 0) = 0, ρh(·, 0) = ∂tρh(·, 0) = 0 and σh(·, 0) =
∂tσh(·, 0) = 0.

6.2 Interpolation error bounds

We consider the projection of functions on Ω and Γ to continuous piecewise
linear finite element functions by interpolation: Let Ih denote the operator of
piecewise linear (with respect to the triangulation Th) and continuous inter-
polation in Ω, and let Πh denote the operator of piecewise linear continuous
interpolation on Γ . Since the normal vector ν is constant on every face of Γ ,
we then have

Πh(χ× ν) = (Πhχ)× ν for χ ∈ C(Γ ),

which implies that Πh maps HΓ ∩ C(Γ ) into HΓ . Moreover, this yields the
very useful relation

ΠhγTF = γT IhF for F ∈ C(Ω)3, (6.4)

as is seen by noting that

ΠhγTF = Πh(γF × ν) = (ΠhγF )× ν = (γIhF )× ν = γT IhF.

It is because of (6.4) that we work in the following with interpolation
operators rather than orthogonal projections. We recall the standard results
for the interpolation errors.

Lemma 6.3 There exists a constant C, independent of h, such that for all
v ∈ H2(Ω)3,

‖v − Ihv‖L2(Ω)3 + h‖∇(v − Ihv)‖L2(Ω)3×3 ≤ Ch2|v|H2(Ω)3 .

The following interpolation error estimate is a standard result for boundary
element approximations, see [30].

Lemma 6.4 There exists a constant C, independent of h, such that for all
ϕ ∈ H3/2(Γ )3,

‖ϕ−Πhϕ‖H1/2(Γ )3 ≤ Ch‖ϕ‖H3/2(Γ )3 .

For the boundary functions we have the following interpolation error bounds.

Lemma 6.5 There exists a constant C(t), increasing at most polynomially
in t and independent of h, such that for any t > 0∫ t

0

∥∥∥B(∂t)

(
(I −Πh)ϕ(·, τ)

(I −Πh)ψ(·, τ)

)∥∥∥2
HΓ×HΓ

dτ

≤ C(t)h2
∫ t

0

(
‖∂2t ϕ(·, τ)‖2H3/2(Γ )3 + ‖∂2t ψ(·, τ)‖2H3/2(Γ )3

)
dτ

for all ϕ,ψ ∈ C2([0, t],HΓ ∩ H3/2(Γ )3) with ϕ(·, 0) = ∂tϕ(·, 0) = 0 and
ψ(·, 0) = ∂tψ(·, 0) = 0.
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Proof The proof is similar to that of Lemma 7.2 in [5]: first we bound the
action of the blocks of B(s), then we use Plancherel’s formula to bound the
action of the convolution operator B(∂t).

By the boundedness of the boundary integral operators Lemma 2.3, for
Re s ≥ σ > 0 we obtain

‖V (s)(I −Πh)ϕ‖HΓ ≤ C|s|2‖(I −Πh)ϕ‖HΓ
≤ C|s|2

(
‖(I −Πh)ϕ‖

H
−1/2
× (Γ )

+ ‖divΓ ((I −Πh)ϕ)‖H−1/2(Γ )

)
≤ C|s|2 ‖(I −Πh)ϕ‖H1/2(Γ )3 .

Then, Lemma 6.4 yields

‖V (s)(I −Πh)ϕ‖HΓ ≤ C|s|2h‖ϕ‖H3/2(Γ )3 .

A similar estimate holds for the blocks K(s), and so we obtain∥∥∥B(s)

(
(I −Πh)ϕ

(I −Πh)ψ

)∥∥∥
HΓ×HΓ

≤ C|s|2h
(
‖ϕ‖H3/2(Γ )3 + ‖ψ‖H3/2(Γ )3

)
.

Using Plancherel’s formula and causality then yields the stated bound. �

6.3 Consistency

We study the defects (or consistency errors) obtained on inserting the inter-
polated solution (IhE, IhH,Πhϕ,Πhψ) into the semidiscrete variational for-
mulation. These defects are defined by

(dEh , wh) = (ε∂tIhE,wh)− 1
2 (curlh IhH,wh)− 1

2 (IhH, curlh wh)− (J,wh)

+ 1
2 [Πhµ

−1ϕ, γT wh]Γ

(dHh , zh) = (µ∂tIhH, zh)− 1
2 (curlh IhE, zh)− 1

2 (IhE, curlh zh)

+ 1
2 [Πhψ, γT zh]Γ

(ξh, d
ψ
h )Γ + (ηh, d

ϕ
h)Γ =

[(
ξh
ηh

)
, B(∂t)

(
Πhϕ

Πhψ

)]
Γ

− 1
2

(
[ξh, µ

−1 γT IhE]Γ + [ηh, γT IhH]Γ

)
for all wh, zh ∈ Vh and ξh, ηh ∈ HΓ .

These defects are bounded as follows.

Lemma 6.6 If the solution of Maxwell’s equations (4.1) is sufficiently smooth,
then the defects satisfy the first-order bounds, for t > 0,

‖dEh (t)‖L2(Ω)3 ≤ C h, ‖dHh (t)‖L2(Ω)3 ≤ C h,(∫ t

0

(
‖∂2t d

ψ
h (τ)‖2HΓ + ‖∂2t d

ϕ
h(τ)‖2HΓ

)
dτ

)1/2

≤ C(t)h.

The constant C(t) grows only polynomially with t.



Interior–exterior coupling for Maxwell’s equations 21

Proof We begin with the defect dEh . We have for wh ∈ Vh,

(dEh , wh) = (ε∂tIhE,wh)− (curlh IhH,wh)− (J,wh)

+ 1
2 [µ−1Πhϕ− γT IhH, γT wh]Γ ,

where we used the discrete Green’s formula (5.1). Since ϕ = µγT H, the
boundary term vanishes by the relation (6.4). We further note that ∂tIhE =
Ih∂tE and

(curlh IhH,wh) = (curl IhH,wh),

because IhH is a continuous function and so has no jumps on inner faces. The
exact solution satisfies Maxwell’s equation and hence

0 = (ε∂tIhE,wh)− (curl IhH,wh)− (J,wh).

Subtracting the two equations therefore yields

(dEh , wh) = ε
(
Ih∂tE − ∂tE,wh

)
−
(
curl(IhH −H), wh

)
.

With the interpolation error bounds of Lemma 6.3 the right-hand terms are
estimated as O(h) times the L2(Ω) norm of wh. We thus conclude that

‖dEh ‖L2(Ω) ≤ Ch.

Similarly we estimate the defect dHh for the magnetic equation.

For the boundary defects dψh , d
ϕ
h ∈ Ψh we have for all ξh, ηh ∈ Ψh, using the

boundary equation, ((
ξh
ηh

)
,

(
dψh
dϕh

))
Γ

=

[(
ξh
ηh

)
,

(
d̃ψh

d̃ϕh

)]
Γ

where d̃ψh , d̃
ϕ
h ∈ HΓ are given by

(
d̃ψh

d̃ϕh

)
= B(∂t)

(
Πhϕ− ϕ
Πhψ − ψ

)
− 1

2

(
γT (IhE − E)

γT (IhH −H)

)
,

which is bounded by O(h) in the L2(0, T ;HΓ ) norm by Lemmas 6.5 and 6.3.

It then follows that also the defects dψh , d
ϕ
h ∈ Ψh, which are interpolated by Ψh,

are bounded in the same way, using Lemma 2.2:

‖dψh‖
2
HΓ + ‖dϕh‖

2
HΓ ≤ C

(
‖d̃ψh‖

2
HΓ + ‖d̃ϕh‖

2
HΓ
)
.

If we differentiate twice with respect to time before estimating and commute
interpolations and time derivatives, this yields the stated bound for the bound-
ary defects. �
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6.4 Error bound

Theorem 6.1 Assume that the initial data E(·, 0) and H(·, 0) have their sup-
port in Ω. Let the initial values of the semidiscrete problem be chosen as the in-
terpolations of the initial values: Eh(·, 0) = IhE(·, 0) and Hh(·, 0) = IhH(·, 0).
If the solution of Maxwell’s equations (4.1) is sufficiently smooth, then the er-
ror of the dG–BEM semidiscretization (5.1) satisfies, for t > 0, the first-order
error bound

ε‖Eh(·, t)− E(·, t)‖2L2(Ω)3 + µ‖Hh(·, t)−H(·, t)‖2L2(Ω)3

+

∫ t

0

(
‖ϕh(·, τ)− ϕ(·, τ)‖2HΓ + ‖ψh(·, τ)− ψ(·, τ)‖2HΓ

)
dτ ≤ C(t)h2,

where the constant C(t) grows at most polynomially in t.

Proof We insert the interpolated solution (IhE, IhH,Πhϕ,Πhψ) into the semi-
discrete variational formulation and apply the stability lemmas, Lemmas 6.1
and 6.2, to the error equations that have the defects in the role of the in-
homogeneities. We then use the defect bounds of Lemma 6.6 to arrive at a
first-order error bound for (Eh − IhE,Hh − IhH,ϕh −Πhϕ,ψh −Πhψ). The
interpolation error estimates of Lemma 6.3 and 6.5 together with the triangle
inequality then complete the proof. �

7 Stability results and error bounds for the full discretization

Similarly to the semidiscrete case, the stability analysis of the full discretiza-
tion only depends on the formulation of the fully discrete problem (5.4) and
(5.5), which again coincides with the acoustic case in form and relevant prop-
erties. Hence, the analysis of the full discretization can be carried over directly
from [5, Section 8]. The original results are again translated into the current
functional analytic setting.

7.1 Stability

We show stability results under the CFL condition

∆t‖M−1/2DM−1/2‖2 ≤
√
εµ. (7.1)

The fully discrete electric and magnetic field satisfies the inequality below.

Lemma 7.1 Under the CFL condition (7.1) and for a stabilization parameter
α ≥ 1, the discrete energy

Enh =
1

2
ε‖Enh‖2L2(Ω)3 +

1

4
µ
(
‖Hn+1/2

h ‖2L2(Ω)3 + ‖Hn−1/2
h ‖2L2(Ω)3

)
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is bounded, at t = n∆t, by

Enh ≤ C

(
E0h +

t

2
∆t

n∑
k=0

(
‖jk+1/2
h ‖2L2(Ω)3 + ‖gkh‖2L2(Ω)3

)
+ max{t2, t6}∆t

n∑
k=0

(
‖(∂∆tt )2ρ

k+1/2
h ‖2HΓ + ‖(∂∆tt )2σ

k+1/2
h ‖2HΓ

))
,

where C > 0 is independent of h, ∆t and n.

Using Hn
h = 1

2 (H
n+1/2
h + H

n−1/2
h ), the above result also yields a bound on

‖Hn
h ‖2.
For the boundary densities we have the following fully discrete estimate.

Lemma 7.2 Under the CFL condition (7.1) and for a stabilization parameter
α ≥ 1, the discrete boundary functions are bounded, at t = n∆t, by

n∑
k=0

(
‖ϕk+1/2‖2HΓ + ‖ψk+1/2‖2HΓ

)
≤ C max{t2, t6}

n−1∑
k=0

(
‖∂∆tt jkh‖2L2(Ω)3 + ‖∂∆tt g

k+1/2
h ‖2L2(Ω)3

+ ‖(∂∆tt )2ρ
k+1/2
h ‖2HΓ + ‖(∂∆tt )2σ

k+1/2
h ‖2HΓ

)
where C > 0 is independent of h, ∆t and n.

7.2 Error bound

The following convergence estimate for the full discretization is then shown in
the same way as in the proof of Theorem 9.1 of [5], using the consistency errors
of the spatial discretization given in Section 6.3, using known error bounds of
the leapfrog scheme and convolution quadratures, and applying Lemmas 7.1
and 7.2.

Theorem 7.1 Assume that the initial conditions E(·, 0) and H(·, 0), and the
inhomogeneity J have their supports in Ω. Let the initial values of the semidis-
crete problem be chosen as the interpolations of the initial values: Eh(0) =
IhE(·, 0) and Hh(0) = IhH(·, 0). If the solution of Maxwell’s equations (4.1)
is sufficiently smooth, and under the CFL condition (7.1) and with a stabi-
lization parameter α ≥ 1, the error of the dG–BEM and leapfrog–convolution
quadrature discretization (5.4) and (5.5) is bounded, at t = n∆t, by

ε‖Enh − E(·, t)‖2L2(Ω)3 + µ‖Hn
h −H(·, t)‖2L2(Ω)3

+ ∆t

n−1∑
k=0

(
‖ϕk+1/2

h − ϕ(·, tk+1/2)‖2HΓ

+ ‖ψ̄k+1/2
h − ψ(·, tk+1/2)‖2HΓ

)
≤ C(t)(h2 + ∆t4),

where the constant C(t) grows at most polynomially in t.
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