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Abstract: Nanolaminate metamaterials recently attracted a lot of attention 
as a novel second-order nonlinear material that can be used in integrated 
photonic circuits. Here, we explore theoretically and numerically the 
opportunity to enhance the nonlinear response from such nanolaminates by 
exploiting Fano resonances supported in grating-coupled waveguides. The 
enhancement factor of the radiated second harmonic signal compared to a 
flat nanolaminate can reach values as large as 35 for gold gratings and even 
7000 for MgF2 gratings. For the MgF2 grating, extremely high-Q Fano 
resonances are excited in such all-dielectric system that result in strong 
local fields in the nonlinear waveguide layer to boost the nonlinear 
conversion. A significant portion of the nonlinear signal is also strongly 
coupled to a dark waveguide mode, which remains guided in the 
nanolaminate. The strong excitation of a dark mode at the second harmonic 
frequency provides a viable method for utilizing second-order nonlinearities 
for light generation and manipulation in integrated photonic circuits. 
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1. Introduction 

Second-order nonlinear optical metamaterials have attracted increasing attention in recent 
years due to the wide range of practical applications such as efficient frequency conversion, 
biochemical sensing, and optical switching and memories [1]. They derive their properties not 
just from the intrinsic nonlinear properties of the constituents but also from the geometrical 
structure of the material. Very often, periodic unit cells are considered, however, aperiodic 
structures are possible, too. Compared to bulk nonlinear crystals, nonlinear optical 
metamaterials provide new possibilities for the integration of nonlinear optical functionalities 
into nanophotonic chips. Several methods have been demonstrated to achieve large effective 
nonlinear susceptibilities such as poling in polymers [2], alternating stacking of germanium-
doped and undoped poled-silica layers [3], and exploiting metallic nanostructures with non-
centrosymmetric geometries [4–9]. Lee et al. [10] also utilized inter-subband transitions in 
multi-quantum well semiconductor heterostructures at infrared wavelengths. 

Recently, Alloatti et al. [11] and Clemmen et al. [12] used atomic-layer deposition to 
fabricate non-centrosymmetric nanolaminates. These nanolaminates are composed of a 
sequence of layers from three centrosymmetric dielectric materials. In consequence, each 
individual material possesses only a surface second-order nonlinearity. However, by using 
many layers with a nanometric thickness, the emerging bulk material consists effectively of 
densely packed surfaces. By using a stack of three layers made from different materials in 
each unit cell, the macroscopic centrosymmetry is broken and the second-order surface 
nonlinearity can be harvested since it translates effectively to a bulk second-order 
nonlinearity. This approach is especially promising for on-chip nonlinear optics because it is 
compatible with state-of-art complementary metal-oxide-semiconductor (CMOS) technology 
as well as substantial degrees of freedom for substrate materials. 

To further enhance the effective susceptibilities of such nanolaminates, nanooptical 
concepts can be used that cause strong local fields. Possible approaches rely on photonic 
crystals [13], gratings [14], slot waveguides [15, 16], resonant waveguide gratings [17–20], or 
hybrid plasmonic waveguides [21, 22]. In this paper, we theoretically study the linear and 
nonlinear optical responses for one-dimensional nanostrip gratings made of either gold (Au) 
or magnesium fluoride (MgF2), respectively, buried inside a nanolaminate metamaterial. This 
material on its own already acts as a waveguide layer. The periodic corrugation in such hybrid 
structure enables the coupling of the external illumination with waveguide (dark) modes [23]. 
The resulting quasi-guided (leaky) modes exhibit Fano line shapes in the spectra, and their 
strong local fields in the nanolaminate waveguide layer can be used to enhance the second-
harmonic generation (SHG). The characteristic of Fano resonances and their roles in affecting 
the magnitude and spectral position of SHG is systematically investigated. We analytically 
model the devices and also present results from nonlinear full-wave numerical calculations 
[24]. Combined, these results allow to comprehensively understand the optical properties of 
such advanced nonlinear nanolaminate structures. 

2. Grating-coupled nanolaminates 

A schematic view of the considered hybrid structure is shown in Fig. 1. The nanostrip grating 
has a period of p = 500 nm and a height of h = 30 nm and 60 nm for the Au and MgF2 
gratings, 
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Fig. 1. (a) Scheme of the hybrid structure. The periodic nanostrips are embedded in the 
nanolaminate metamaterial with h = 30 nm for Au and h = 60 nm for MgF2. (b) Illustration of 
the mechanism of the SHG enhancement in our structure. Light at the fundamental wavelength 
impinges onto the hybrid system and excites the quasi-guided mode in the nanolaminates (red-
horizontal arrows). Transmitted and reflected partial waves as indicated by the downward- and 
upward-red arrows, respectively. The guided field interacts with the nonlinear medium and 
generates the SH signal. 

respectively. The substrate is fused silica. The superstrate is air. The parameter we 
systematically change is the strip width w. Nonlinear nanolaminates with a thickness of 285.8 
nm were considered accordingly as a waveguide layer. The scenario of the SHG enhancement 
is sketched in Fig. 1(b). First, the incoming fundamental wave (FW) is coupled to the quasi-
guided mode and meanwhile amplifying the nonlinear conversion. The generated SH signal 
can be coupled to another waveguide mode, and also radiate to the air and glass substrate. 
Such normal-incident thin-film devices are promising to provide reasonable absolute second-
harmonic generation efficiencies at visible frequencies in analogy to what has been presented 
in Ref. 10 at infrared wavelengths. Such materials constitute an excellent material plattform 
for multiple applications where high nonlinear conversion efficiencies are important, e.g. for 
the spectral conversion in light management devices where up- and down-conversion [25] is 
required or for nonlinear sensing devices [26, 27]. 

3. Numerical modelling 

Full-wave electrodynamic calculations were performed with an in-house developed finite-
difference time-domain (FDTD) program [28]. The optical data for nanolaminates were taken 
from ellipsometry measurements [29]. For Au, MgF2, and the fused silica substrate, they were 
taken from literature values [30–32]. The dispersive permittivity for each material was fitted 
by a Drude-Lorentz model with two Lorentzian terms, 

 ( )
22 2

2 2 2
1

,Lj Ljd
r

jd Lj Lj

A

i i

ωωε ω ε
ω γ ω ω γ ω ω∞

=

= − +
+ − −  (1) 

where ε∞ is the high-frequency limit of the dielectric constant, ωd and ωLj are the plasma 
frequencies, γd and γLj are the effective damping rate, ALj is the weighting number of the jth 
oscillator. The Drude-Lorentz model is then incorporated into the FDTD program by 
auxiliary differential equations [28]. Table 1 lists all the fitting parameters for the materials 
we concern. To calculate the SHG of the hybrid structure, the dispersive-FDTD is further 
extended to solve the nonlinear Maxwell’s equations [1], 
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Table 1. Parameters of Drude-Lorentz model for Dispersive Materials. 

Drude-Lorentz 
model 

Au MgF2 Nanolaminate Fused silica 

ε∞ 5.9673 1.2762 1.23 1.005 
ωd (rad/s) 1.3280 × 1016 0 0 0 
γd (1/s) 5.7805 × 1013 0 0 0 
AL1 1.0983 0.6097 1.9446 0.6940 
ωL1 (rad/s) 4.2730 × 1015 2.1827 × 1016 1.0833 × 1016 2.7761 × 1016 
γL1 (1/s) 1.35 × 1015 0 0 0 
AL2 0.9779 2.1497 0.4010 0.4010 
ωL2 (rad/s) 4.9956 × 1015 7.5398 × 1013 1.6391 × 1016 1.6391 × 1016 
γL2 (1/s) 1.2620 × 1015 0 0 0 

where dJ


 is the polarization current density associated with the Drude model and 
iLJ


 is the 

polarization current density associated with ith pole of the Lorentz model, (2)P


is the nonlinear 
polarization, and [d] is the nonlinear optical coefficient tensor. The time and space derivatives 
in Eq. (2) are then approximated by the usual central-difference method. However, different 
from the linear update equations under the leap-frog scheme, the coupled nonlinear update 
equations require all the values of electric-field components in the future time step 
simultaneously. Such coupling equations are then solved by Newton iteration procedure [33, 
34]. The nonlinear coefficients of the nanolaminates were set to be 

(2) 0.34 / ,zzz pm Vχ = (2) (2) 0.36 / ,xxz yyz pm Vχ χ= = and (2) (2) 0.26 /zxx zyy pm Vχ χ= =  according to 

values retrieved from measurements [29]. We consider a transverse magnetic (TM) polarized 
light impinging from air to the system at normal incidence for all the full-wave calculations in 
this paper. A Gaussian-pulsed excitation is used for linear transmission spectra, and a 
continuous-wave excitation (Ex) with an amplitude of 0.2 V/μm is used for SHG so that the 
input power of the fundamental wave is 100 mW under the assumption that the source is 
homogeneous with a spot size of π*24.42 μm2. 

4. Results and discussion 

4.1 Au-grating samples 

Figures 2(a) and 2(b) show the transmission spectra at the fundamental wavelength and the 
SH wavelength, respectively, for Au-grating with w varied from 60 nm to 130 nm. For the 
case of TM-polarized illumination, the localized surface plasmon (LSPs) of the individual 
gold nanostrip is excited. The LSP hybridizes with the quasi-guided modes sustained in the 
nanolaminate. These eigenmodes are bound because the linear permittivity of the 
nanolaminate is larger than that of the substrate. The hybridized modes are known as 
waveguide plasmon polariton (WPP) modes [21, 35]. They exhibit a Fano line-shape as 
shown in the spectra in Fig. 2(b). To quantitatively study these Fano profiles, we used a 
fitting function consisting of the product of a symmetric Lorentzian line-shape function σs(ν) 
and a Fano-like asymmetric function σa(ν) [36], where σs(ν) is associated with the background 
plasmonic (bright) modes, and σa(ν) takes into account the interference between bright modes 
and waveguide (dark) modes. The fitting function is given by [36, 37], 
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 (4) 

where aF is the asymmetric Fano parameter, d is the modulation damping, νa and νs are the 
central frequency of asymmetric and symmetric resonance with the spectral width Wa and Ws, 
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Fig. 2. Transmission spectra for Au-grating samples in the range of (a) SHG and (b) FW, 
respectively, where the dots point out the spectral positions of (a) the SHG emission peaks and 
(b) the corresponding fundamental excitations. The black-dashed curves in (b) show the Fano 
fits of the spectra. (c) The SH enhancement spectra for Au-grating samples with the inset 
showing the integration value of |Ez|

2 inside the nonlinear media. 

respectively, and a is the maximum amplitude of the symmetric resonance. Since the 
asymmetric resonance dominates the spectral region we are interested in, we only list the 
fitting parameters νa and Wa and the corresponding quality factor Q (i.e. Q = νa /Wa) in Table 
2. It can be seen that the fitted spectra [the black-dashed curves in Fig. 2(b)] are in excellent 
agreement with the calculation results. As w increases, the Fano resonance redshifts (νa 
decreases). This is accompanied with a larger resonant bandwidth (Wa increases). Such 
redshift is caused by the change in the resonance wavelength of the plasmonic mode. 
Increasing the axis ratio simply redshifts the LSP. With an increasing strip width the radiative 
losses also increases, since the strip can no longer be considered as merely perturbative for 
the waveguide mode. These enhanced radiative losses cause the spectral broadening. 

Next, the corresponding SHG for each sample is calculated with the FDTD method by 
integrating the SH Poynting vector in the substrate. This analysis takes fully into account how 
the hybrid system influences the radiation of the generated nonlinear signal. The quadratic 
relationship between the initial FW excitation and the SH intensity has been verified in the 
calculation process (not shown). Figure 2(c) shows the SH enhancement, which is defined as 
the SHG of the grating-coupled nanolaminates under normal incidence, PSHG,0°, divided by the 
SHG of the planar nanolaminates under 45° illumination, PSHG,45°. PSHG,45° is 0.017 fW as the 
integrating area is the same as the spot size (i.e. π*24.42 μm2). No SH signal is observed for 
the planar nanolaminates under normal incidence due to the ,C υ∞ -symmetry of the second-

order susceptibility [11, 12]. It can be seen in Fig. 2(c) that as w increases the SH 
enhancement will decrease. One may speculate that this decline in enhancement is caused by 
the lower Q-factor of Fano resonance in the FW range since no higher-order resonances were 
excited close to the SH range [Fig. 2(a)] [38]. To prove this conjecture, we integrate the 
square of the electric field along the propagation direction, FW 2

z|E | , inside the nonlinear 

Table 2. Parameters of the Fano line shape fitting spectra for Au-grating and MgF2-
grating samples. 

Au-grating MgF2-grating

w (nm) νa (THz) Wa (THz) Q w (nm) νa (THz) Wa (THz) Q 

60 363.3 1.2 315.9 80 370.34 0.042 8818 
70 361.5 1.8 200.8 130 371.65 0.082 4532 
80 359.4 2.9 123.9 180 373.63 0.116 3221 
90 357.3 4.3 83.1 240 377.00 0.137 2752 
130 351.2 12 29.3 300 380.89 0.120 3174 
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Fig. 3. Electric-field distributions at the fundamental wavelength of the SH emission peak for a 
Au-grating with w = 70 nm. 

nanolaminates at the fundamental wavelength of each SH emission peak. This is the field 
component that dominantly enhances the nonlinear signal. Modal patterns with a lower 
amplitude were found for systems that correspond indeed to lower-Q resonances [shown in 
the inset of Fig. 2(c)]. This causes the reduction of the enhancement of the fundamental field 
as well as the SHG for samples with a larger width. 

In addition, it is interesting to observe that the SHG emission peak does not occur exactly 
at the dip of Fano resonance. Instead, it is located in the steep slope as indicated by the dots in 
Fig. 2(b). Normally, the metallic loss of a resonant plasmonic structure can lead to strong 
energy dissipation and, hence, reduction of transmission. Due to unique coupling of LSPs 
andwaveguide modes in such hybrid system, the plasmonic field can be suppressed as a result 
of destructive interference between bright mode and quasi-guided mode [39, 40]. This is 
especially beneficial for the SH enhancement as the hybrid mode can provide a strong FW 
intensity enhancement within the nonlinear nanolaminate while avoiding the high metallic 
loss. Figure 3 shows the field profile for w = 70 nm at 828 nm, which corresponds to the 
green dot shown in Fig. 2(b). There, we can see that the WPP is strongly excited. By 
calculating FW 2

z|E |  at 828 nm and at the Fano transmission dip of 832 nm for w = 70 nm, 

we found the latter is 0.9 times lower than the former. Thus, the intensity enhancement in the 
nanolaminate region due to the WPP excitation is actually maximal at this slightly shifted 
wavelength from the Fano transmission dip, which explains why the SH signal generation is 
optimal there. 

4.2 MgF2-grating samples 

Next, we replaced the Au-grating by a dielectric MgF2-grating. We varied the width w from 
80 nm to 300 nm. Fano resonances become extremely narrowband for such lossless structure 
as shown in Fig. 4(b), and meanwhile exhibit a blueshift trend as w increases. Since the 
permittivity of MgF2 is smaller than that of the nanolaminate, the increase of the grating 
width causes the effective refractive index of quasi-guided modes to decrease, which explains 
the blueshift. The fitting parameters νa and Wa and the corresponding Q-factors for all MgF2 
samples can also be found in Table 2. Different from Eq. (4), the bright mode’s resonant 
strength was fitted here by a function of σs(ν) = gν + b because the background radiation is 
not created by a plasmonic resonance in the case of MgF2 [36]. Instead, it corresponds only to 
the directly transmitted light through the layered system. The Q-factor decreases as w 
increases, while reaching a smallest value for w = 240 nm. One can expect the most severe 
perturbation when the grating width is just close to half the period. Eventually, for a width 
close to zero or close to the period, the radiative losses introduced by the periodic structure 
vanish and the Q-factor attains pretty high values. In addition, the value of FW 2

z|E |  for each 

SH enhancement peak, shown in the inset of Fig. 4(c), displays a good correspondence to the 
trend of Q-factor, which again demonstrates that the Q-factor of Fano resonance can give an 
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Fig. 4. Transmission spectra for MgF2-grating samples in the range of (a) SHG and (b) FW, 
respectively, where the dots point out the spectral positions of (a) the SHG emission peaks and 
(b) the corresponding fundamental excitations. The black-dashed curves in (b) show the Fano 
fits of the spectra. (c) The SH enhancement spectra for MgF2-grating samples with the inset 
showing the integration value of |Ez|

2 inside the nonlinear media. 

efficient evaluation of the field enhancement in the guided layer. Therefore, as shown in 
Table 2, the high-Q resonance of MgF2-grating samples are beneficial for SHG than that of 
Au-grating samples. However, owing to its narrowband resonance, the precision and 
periodicity of the gratings are of utmost importance for future experiments. Figure 4(c) shows 
the corresponding SH enhancement for each sample, where the enhancement reaches around 
7000 for w = 80 nm. Aside from the extremely large fundamental field enhancement for the 
MgF2-grating systems, higher-order Fano resonances can also be excited close to the SH 
wavelength region [see Fig. 4(a)]. The resonance seen in the full wave calculations for each 
sample corresponds to a second-order (2nd) quasi-guided mode with a two-fold standing 
wave profile 

 

Fig. 5. Near-field distributions for (a) the 2nd quasi-guided mode, (b) the SHG emission peak 
of MgF2-grating with w = 80 nm, and (c) the 2nd dark waveguide mode, respectively. (a) and 
(b) are calculated by the FDTD program under plane wave excitation, and (c) is calculated by 
the eigenmode solver.  
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As shown in Fig. 5(a), and the Ex (Ez) field displays an even (odd) symmetry with respect to 
the center of the grating. Interestingly, as we examined the SH near-field [Fig. 5(b)], we 
found that most of the generated nonlinear signal does not couple to the bright waveguide 
mode [Fig. 5(a)] but rather to a dark mode, which does not interact with normal incidence or 
outgoing plane waves. Eigenmode calculations using the finite-element solver JCMsuite [41] 
reveal that the dark mode field profile [Fig. 5(c)] overlaps well with the SH near field. Thus, a 
significant portion of the SHG remains guided in the nanolaminates and is forbidden to 
radiate to the far-field because of the odd parity of Ex-field [42]. Such property can be 
potentially exploited as a nonlinear light source in on-chip photonic platforms. 

4. Conclusion 

In conclusion, we have demonstrated the SH emission can be significantly enhanced by 
introducing gratings to a nonlinear nanolaminate waveguide layer. The degree of 
enhancement depends on the Q-factor of the Fano resonance. The emission peak occurs 
where a strong field is excited in the guided layer rather than at the dip of Fano resonance. 
The SH emission reaches an enhancement of 38-fold and 7000-fold enhancement for Au-
grating (w = 60 nm) and MgF2-grating (w = 80 nm), respectively. In addition, for the MgF2-
grating samples, the generated SH signal was found to be strongly coupled to the dark mode 
and remain guided in the nanolaminate layer. 

Acknowledgments 

We thank the financial support by Ministry of Science and Technology of Taiwan under 
Grant NSC 104-2917-I-564-083. Funding by the Deutsche Forschungsgemeinschaft (DFG 
SPP 1391 Ultrafast Nanooptics) within project RO 3640/2-2 is also acknowledged as well as 
by the Helmholtz International Research School for Teratronics (HIRST) and the Karlsruhe 
School of Optics & Photonics (KSOP). We also acknowledge support by the Deutsche 
Forschungsgemeinschaft and Open Access Publishing Fund of Karlsruhe Institute of 
Technology. 

 

#261024 Received 11 Mar 2016; revised 19 Apr 2016; accepted 19 Apr 2016; published 25 Apr 2016 
© 2016 OSA 2 May 2016 | Vol. 24, No. 9 | DOI:10.1364/OE.24.009651 | OPTICS EXPRESS 9659 




