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Chapter 1

Introduction

1.1 Existing Literature

In 1951, John Nash investigated the problem of finding equilibria in situations
where several competing players try to optimize their objective functions over
strategy sets that are independent of the decisions of the remaining players
(cf. [53]). We will refer to this situation as the (classical) Nash equilibrium
problem (NEP). Only a few years later, Kenneth Arrow and Gérard Debreu
extended the setting towards a model with coupled strategy sets, that is,
strategy sets that may depend on the decisions of the remaining players (cf.
[1, 15]). Coupled strategy sets arise in a very natural way if, for instance,
players share at least one constraint which could be a common budget or
commonly used infrastructure. A Nash equilibrium problem with coupled
constraints is called a generalized Nash equilibrium problem (GNEP). De-
spite the early introduction of GNEPs it took over 40 years until GNEPs
attracted attention in the operations research community. During this time,
that is, until the mid nineties mainly existence results for (generalized) Nash
equilibria where available and the numerical computation of equilibria was
less developed (cf. [27]). However, the field of operations research had a
deep impact on game theory and provided powerful numerical methods for
the computation of Nash equilibria. Excellent overviews of theoretical and
numerical results as well as numerous applications of GNEPs are given in
[27] and [32].

Typically, GNEPs are studied under some general convexity assumptions.
In the present work, we assume linearity of the cost functions and the con-
straints of all players. This special GNEP, the so-called linear generalized
Nash equilibrium problem (LGNEP), enables a treatment that heavily ex-
ploits the linear structure and is therefore not available in the convex nonlin-
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2 CHAPTER 1. INTRODUCTION

ear setting. Moreover, some techniques from nonlinear GNEPs require the
nonsingularity of some second order derivatives and are therefore not appli-
cable for linear generalized Nash equilibrium problems. LGNEPs arise very
naturally in many situations as we shall see in this work. To the best of our
knowledge, the articles [26] and [67] of the author contain the first systematic
treatments of LGNEPs. Therefore, this work fills a remaining gap in litera-
ture and provides a systematic approach of tackling linear Nash equilibrium
problems. The closest setting treated in literature considers so-called affine
generalized Nash equilibrium problems (AGNEPs) where GNEPs with linear
constraints and quadratic cost functions are considered which are convex in
the player variables. This setting was introduced explicitly in [62] and also
investigated in [21, 23].

This thesis is based on the articles [26] and [67] of the author and refers
also to [66] where the author does not consider LGNEPs but smoothness
properties of optimal value functions that are closely related to GNEPs.

1.2 Setting and Blanket Assumptions

In a generalized Nash equilibrium problem (GNEP), player ν, ν ∈ {1, . . . , N},
N ∈ N, controls a decision vector xν ∈ Rnν , nν ∈ N, and wishes to solve his
optimization problem

Qν(x
−ν) : min

xν∈Rnν
θν(x

ν , x−ν) s.t. xν ∈ Xν(x
−ν)

which depends on the decisions of the remaining players

x−ν :=



x1

...
xν−1

xν+1

...
xN


∈ Rn−nν ,

with n := n1 + . . .+ nN and is therefore a parametric optimization problem
(see [4, 6, 64] for an introduction to parametric optimization). For fixed
x−ν ∈ Rn−nν , we call θν(·, x−ν) : Rnν → R the cost function of player ν and
denote his strategy set by Xν(x

−ν) ⊆ Rnν . Note that both, the cost function
and the strategy set of player ν depend on the decisions of the remaining
players x−ν whereas in a classical Nash equilibrium problem (NEP), we have
Xν(x

−ν) ≡ Xν for some set Xν ∈ Rnν . A generalized Nash equilibrium
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problem (GNEP) consists of finding some

x̄ := (x̄ν , x̄−ν) :=

 x̄1

...
x̄N

 ∈ Rn,

such that x̄ν is a global minimal point of Qν(x̄
−ν) for each ν ∈ {1, . . . , N}.

Such a point is called a generalized Nash equilibrium and, obviously, in a
generalized Nash equilibrium no player has an incentive to deviate unilat-
erally from his chosen strategy x̄ν . Since Nash equilibria will play a crucial
role in this work we restate this definition in a more explicit way.

Definition 1.2.1 A vector x̄ ∈ Rn with x̄ν ∈ Xν(x̄
−ν) and

θν(x̄
ν , x̄−ν) ≤ θν(x

ν , x̄−ν)

for all xν ∈ Xν(x̄
−ν) and each ν ∈ {1, . . . , N} is called a (generalized) Nash

equilibrium.

In the following, we assume linearity of all functions in the whole vector x,
that is, for each ν ∈ {1, . . . , N} there exist an integer mν ∈ N, matrices
Aν ∈ Rmν×nν , Bν ∈ Rmν×(n−nν) and vectors cν ∈ Rnν , bν ∈ Rmν , such that
player ν’s minimization problem can be expressed as

Qν(x
−ν) : min

xν∈Rnν
〈cν , xν〉 s.t. Aνxν +Bνx−ν ≤ bν ,

where we denoted the canonical inner product by 〈·, ·〉, that is, we have
〈x, y〉 := xTy. Hence, throughout this paper we shall have

θν(x
ν , x−ν) = 〈cν , xν〉

and
Xν(x

−ν) = {xν ∈ Rnν : Aνxν ≤ bν −Bνx−ν}

for all ν ∈ {1, . . . , N}.

Remark 1.2.2 The appearance of equality constraints in player ν’s opti-
mization problem does not lead to any qualitative changes in our results.
This is obvious since it is possible to reformulate linear equations as linear
inequalities without destroying the Abadie constraint qualification. However,
in Part III of this work we shall introduce a new problem format in order to
examine equality constraints in a more elegant way. This is not necessary in
the prior parts of this work and therefore omitted.
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Remark 1.2.3 All constraints of player ν where the corresponding rows in
Bν vanish are so-called private constraints, that is, constraints that do not
depend on the decisions of the remaining players. In particular, for Bν = 0
for all ν ∈ {1, . . . , N} we arrive at a NEP.

Remark 1.2.4 The representation of player ν’s constraints with two matri-
ces Aν and Bν is very handy but in some situations it will be advantageous
to reformulate the constraints of player ν in order to obtain a more specific
representation. Therefore, if necessary, we shall introduce suitable matrices
Aνµ, ν, µ ∈ {1, . . . , N}, and rewrite the constraints of player ν as

Aννxν +
∑
µ 6=ν

Aνµxµ ≤ bν

for all ν ∈ {1, . . . , N}.

Remark 1.2.5 Note that it would add no generality to augment player ν’s
cost function θν by a term 〈eν , x−ν〉 or even by a nonlinear function f(x−ν)
because this would only affect its optimal value but not its optimal point and
therefore not the position of the Nash equilibrium.

Throughout this work we assume the existence of at least one Nash equilib-
rium. In our main application, the extended transportation problem (ETP)
(cf. Part III), this assumption is always fulfilled.

Assumption 1.2.6 There exists at least one (generalized) Nash equilibrium.

Usually, sufficient conditions for the existence of Nash equilibria are derived
by some boundedness and continuity conditions (cf. [1, 27]). Furthermore,
Proposition 1.5.1 characterizes the existence of Nash equilibria with means
of an reformulation as an optimization problem.

For each ν ∈ {1, . . . , N} we denote by

domXν := {x−ν ∈ Rn−nν : Xν(x
−ν) 6= ∅}

the (effective) domain of the set-valued mapping Xν : Rn−nν ⇒ Rν which
assigns to each vector x−ν ∈ Rn−nν a set Xν(x

−ν) ⊆ Rnν (see [2, 60] for
an introduction to set-valued analysis). Throughout this article we will use
the subsequent assumption, which follows, for example, if the strategy sets
Xν(x

−ν) are bounded for each x−ν ∈ domXν .

Assumption 1.2.7 For each ν ∈ {1, . . . , N} and all x−ν ∈ domXν the
problem Qν(x

−ν) is solvable, that is, Qν(x
−ν) possesses at least one optimal

point.



1.3. EXAMPLES 5

1.3 Examples

Linear generalized Nash equilibrium problems arise quite naturally in situa-
tions where several competing agents face linear optimization problems while
sharing at least one constraint. In Section 1.3.1 and 1.3.2 we consider some
examples to illustrate this thought. Furthermore, it is possible to reformulate
some classes of nonlinear generalized Nash equilibrium problems as LGNEPs
as we shall see in Section 1.3.3.

1.3.1 Basic Economic Market Model

In this section, we introduce a simple economic model which we call basic
economic market model. The basic economic market model is an LGNEP
where some constraints are shared by all players.

Assume that we have N companies offering the same product on a com-
mon market. Company ν ∈ {1, . . . , N} possesses a contingent Cν ≥ 0 of
this product and sells it in K different price categories pν1, . . . , p

ν
K , where the

prices are given, that is, company ν acts as price taker. For each price cate-
gory k ∈ {1, . . . , K} there is a given total demand Dk ≥ 0 of this good. The
optimization problem of company ν is to determine the quantity xνk to sell
in price category pνk in order to maximize its profit. Hence, company ν faces
its optimization problem

max
xν∈RK

〈pν , xν〉

subject to its nonnegativity constraint

xν ≥ 0

and the constraint
K∑
k=1

xνk ≤ Cν

which guarantees that the total offering of company ν respects its capacity.
These are private constraints for company ν. Further, there is a coupling
third constraint

N∑
ν=1

xνk ≤ Dk, k ∈ {1, . . . , K},

assuring that within each price category the accumulated offering of all com-
panies does not exceed its total demand. Obviously, the search of Nash
equilibria in this setting yields an LGNEP.
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Example 1.3.1 As an example for the considered market setting one might
think of several travel agencies offering seats for the same flight. Usually,
these seats are offered in different price categories which depend on the re-
maining time until departure. These prices may differ within the travel agen-
cies, that is, pνk 6= pµk is possible for ν 6= µ. Typically, the demand Dk is a
random variable which, for instance, can be replaced by its expected value or
other estimators that are based on historical data.

Obviously, we arrive at GNEPs if players share at least one constraint but it
is also possible that player ν possesses a coupled restriction that is not shared
with the remaining players. This is illustrated in the following example where
we consider a modification of the economic market model. Assume that a new
company N + 1 is entering the market. In order to find its market position
company N + 1 tries to offer at least the same amount in the cheapest price
category as the average of all other companies. Therefore, company N + 1
has the profit maximization problem

max
xN+1∈RK

〈pN+1, xN+1〉 s.t. xN+1 ≥ 0,

K∑
k=1

xN+1
k ≤ CN+1,

N+1∑
ν=1

xνk ≤ Dk, k ∈ {1, . . . , K},

xN+1
1 ≥ 1

N

N∑
ν=1

xν1.

The established N companies have the same optimization problems as in the
original model.

Both market models, the basic economic market model with N companies
and its modified version with N + 1 companies will be further investigated
in Part II where we shall also use them as test examples for our numerical
tests.

1.3.2 Extended Transportation Problem

In the classical transportation problem we have one forwarder who trans-
ports a given good from manufacturers to consumers while minimizing his
transportation costs. We extend the transportation problem towards a more
realistic scenario and introduce several forwarders as depicted in Figure 1.1.
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To improve the readability, in the subsequent work we will refer to the trans-
portation problem with several forwarders just as extended transportation
problem (ETP)

Figure 1.1: The classical transportation problem with one forwarder on the
left hand side and the extended transportation problem with several for-
warders on the right hand side

More formally, consider N competing forwarding agencies which want to
transport one good from R manufacturers to T consumers. Manufacturer r ∈
{1, . . . , R} has a production capacity of Sr ≥ 0 and consumer t ∈ {1, . . . , T}
needs at least Dt ≥ 0 units of this good with

∑R
r=1 Sr =

∑T
t=1Dt. The

transportation cost per unit from manufacturer r ∈ {1, . . . , R} to consumer
t ∈ {1, . . . , T} by forwarder ν ∈ {1, . . . , N} is denoted by cνrt. Further, xνrt is
defined as the number of transported units from manufacturer r to consumer
t by forwarder ν.

Each forwarder wants to minimize his transportation costs given the deci-
sions of the remaining forwarders, that is, forwarder ν faces the optimization
problem

min
xν∈RR×T

R∑
r=1

T∑
t=1

cνrtx
ν
rt

subject to his constraints concerning the supply

N∑
`=1

T∑
t=1

x`rt = Sr, r ∈ {1, . . . , R},
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as well as his demand constraints

N∑
`=1

R∑
r=1

x`rt = Dt, t ∈ {1, . . . , T},

and the nonnegativity condition

xνrt ≥ 0, r ∈ {1, . . . , R}, t ∈ {1, . . . , T}.

The search for equilibria in extended transportation problems yields an equal-
ity constrained LGNEP. Therefore, we shall adapt our notation in Part III
where we examine ETPs extensively and consider both, theoretical properties
of ETPs as well as the numerical computation of their equilibria.

1.3.3 Epigraphical Reformulation of Min-Max Games

Suppose there are N players facing nonsmooth convex piecewise linear opti-
mization problems with coupled linear constraints, that is, player ν’s opti-
mization problem is given by

min
xν∈Rnν

max
t=1,...,T

〈at, xν〉 s.t. Aνxν +Bνx−ν ≤ bν

for some T ∈ N. This can be reformulated using the so-called epigraphical
reformulation (cf. [65]) and we obtain the equivalent linear optimization
problem

min
(xν ,α)∈Rnν×R

α s.t. 〈at, xν〉 ≤ α, t ∈ {1, . . . , T},

Aνxν +Bνx−ν ≤ bν

for each player ν ∈ {1, . . . , N}, such that we arrive at an LGNEP.

Example 1.3.2 Let us modify the ETP from Section 1.3.2. Suppose the
transportation from manufacturer r to consumer t may fail due to some lo-
gistic problems. The costs of such an error are assumed to be very high. In
order to limit the associated costs forwarder ν wants to set the maximal de-
livery size as low as possible. Additionally, the accumulated costs of player ν
must not exceed a given amount Cν.

Hence, player ν faces the transportation problem

min
xν∈RR×T

max
(r,t)∈{1,...,R}×{1,...,T}

xνrt
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subject to the constraints

R∑
r=1

T∑
t=1

cνrtx
ν
rt ≤ Cν

N∑
`=1

T∑
t=1

x`rt = Sr, r ∈ {1, . . . , R},

N∑
`=1

R∑
r=1

x`rt = Dt, t ∈ {1, . . . , T},

xνrt ≥ 0, r ∈ {1, . . . , R}, t ∈ {1, . . . , T}.

As described above, the resulting system of piecewise linear optimization prob-
lems can be reformulated as an LGNEP.

Remark 1.3.3 The epigraphical reformulation is a useful modeling tool, in
particular, to exploit min-max structures in optimization problems.

1.4 Structure of the Set of Nash Equilibria

Typically, in LGNEPs where players share at least one constraint there is
no unique Nash equilibrium. In contrast, there may exist many Nash equi-
libria and under mild conditions the set of Nash equilibria together with
their corresponding dual variables form a Lipschitz manifold whose dimen-
sion coincides with the number of shared constraints (cf. [17]). Furthermore,
the set of Nash equilibria is formed by the union of facets of a polyhedron
since Nash equilibria are exactly the minimal points of a concave function
where the minimization is taken over a polyhedral set as we shall see in Sec-
tion 1.5.1. The following examples illustrate that, even in the linear case, in
general the set of all Nash equilibria does not possess any specific topological
properties like connectedness of convexity. The set of all Nash equilibria is
denoted by S.

Example 1.4.1 Consider the following LGNEP with two players, that is,
N = 2. Player one controls the variable x1 and player two x2, respectively.
The optimization problems of the players are given by

Q1(x2) : min
x1∈R
−x1 s.t. x1 + x2 ≤ 1,

−x1 ≤ 0,

−x2 ≤ 0
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for player one and

Q2(x1) : min
x2∈R
−x2 s.t. x1 + x2 ≤ 1,

−x1 ≤ 0,

−x2 ≤ 0.

for the second player. Direct inspections show that the set of Nash equilibria
is the line segment

S =

[(
0
1

)
,

(
1
0

)]
as depicted in Figure 1.2.

Figure 1.2: An illustration of the common strategy set where the Nash equi-
libria form the convex red colored set

In Example 1.4.1, the set of all Nash equilibria is a line segment and therefore
a convex set. In general, the set of Nash equilibria does not have to be convex
as we see in Example 1.4.2.

Example 1.4.2 Consider the following LGNEP where the optimization prob-
lems are given by

Q1(x2) : min
x1∈R
−x1 s.t. 1

2
x1 + x2 ≤ 1,

x1 + 1
2
x2 ≤ 1,

−x1 ≤ 0,

−x2 ≤ 0
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and

Q2(x1) : min
x2∈R
−x2 s.t. 1

2
x1 + x2 ≤ 1,

x1 + 1
2
x2 ≤ 1,

−x1 ≤ 0,

−x2 ≤ 0.

Straightforward calculations show that the set of Nash equilibria is given by

S =

[(
0
1

)
,

(
2
3
2
3

)] ⋃ [(
2
3
2
3

)
,

(
1
0

)]
which is a connected but nonconvex set as depicted in Figure 1.3.

Figure 1.3: An illustration of the common strategy set where the Nash equi-
libria form the red colored set which is connected but nonconvex

Furthermore, the set of all Nash equilibria of a given LGNEP may even fail
to be connected as illustrated in Example 1.4.3.

Example 1.4.3 Consider an LGNEP which is defined by

Q1(x2) : min
x1∈R
−x1 s.t. x1 − x2 ≤ 0,

x1 + x2 ≤ 1,

−2x1 + x2 ≤ 0

and

Q2(x1) : min
x2∈R
−x2 s.t. x1 − x2 ≤ 0,

x1 + x2 ≤ 1,

−2x1 + x2 ≤ 0.
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The set of Nash equilibria is formed by

S =

{(
0
0

)} ⋃ [(
1
2
1
2

)
,

(
1
3
2
3

)]
which is a set that is not connected as illustrated in Figure 1.4.

Figure 1.4: An illustration of the common strategy set where the Nash equi-
libria form the red colored set which is not connected

1.5 Computation of Nash Equilibria

In this section, we discuss some reformulations of GNEPs that yield numerical
methods for the computation of generalized Nash equilibria. In Section 1.5.1,
we shall see that GNEPs may be reformulated as nonsmooth optimization
problems. In Section 1.5.2, we consider a reformulation of the LGNEP as a
constrained equation that is based on the concatenated KKT systems of all
players. In Section 1.5.3, we briefly examine a reformulation via so-called
quasi-variational inequalities and, finally, in Section 1.5.4 we shall have a
look on further numerical methods for the computation of Nash equilibria in
LGNEPs.

1.5.1 Gap Function

For x ∈ Rn and ν ∈ {1, . . . , N} we define player ν’s optimal value function

ϕν(x
−ν) :=

{
minxν∈Xν(x−ν) 〈cν , xν〉, if x−ν ∈ domXν ,

+∞, else,
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where the attainment of the minimum in the case x−ν ∈ domXν is ensured
by Assumption 1.2.7, and the function

V (x) :=
N∑
ν=1

〈cν , xν〉 − ϕν(x−ν),

which, again under Assumption 1.2.7, is real-valued if and only if x is taken
from the set

M :=
⋂

ν=1,...,N

(Rnν × domXν),

whereas we have V (x) = −∞ for x 6∈M . Particularly, in general, the domain
of V does not cover the whole space, which causes numerical and theoretical
difficulties (see, e.g. [35] and [66], resp.). Rewriting

V (x) = max
y∈X1(x−1)×...×XN (x−N )

N∑
ν=1

〈cν , xν〉 − 〈cν , yν〉

shows that V is a merit function based on the Nikaido-Isoda function

Ψ(x, y) :=
N∑
ν=1

〈cν , xν〉 − 〈cν , yν〉

of LGNEP ([54]). Borrowing the terminology from the related case of (quasi)
variational inequalities ([3, 34]) in the following we shall refer to V as a gap
function of LGNEP. According to [25], the function V is nonnegative on the
unfolded common strategy set

W := {x ∈ Rn : xν ∈ Xν(x
−ν), ν = 1, . . . , N} ⊆ M.

These properties yield the following result, which also holds under consider-
ably weaker assumptions (cf., e.g., [39]).

Proposition 1.5.1 The generalized Nash equilibria of LGNEP are the global
minimal points of the (possibly non-smooth) optimization problem

min V (x) s.t. x ∈ W

with optimal value zero.

As mentioned above the gap function V is an extended-valued, that is, not
necessarily real-valued, and possibly nonsmooth function. We approach both
difficulties in Part I of this work. Furthermore, in Section 7 we shall discuss
some nonsmooth numerical methods that are able to compute Nash equilibria
by solving the nonsmooth optimization problem of minimizing V over W . We
also apply these nonsmooth optimization algorithms in Part III in order to
compute Nash equilibria for the ETP.
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1.5.2 Concatenated KKT Systems

As mentioned in Remark 1.2.4, in this chapter we change our notation slightly
in order to obtain a more specific representation of player ν’s constraints,
that is, we introduce suitable matrices Aνµ ∈ Rmν×nµ , such that player ν’s
optimization problem is given by

Qν(x
−ν) : min

xν∈Rnν
〈cν , xν〉 s.t. Aννxν +

∑
µ6=ν

Aνµxµ ≤ bν

for each ν ∈ {1, . . . , N} and fixed x−ν ∈ Rn−nν .
One way to compute a generalized Nash equilibrium is to solve the KKT

systems for all players simultaneously. In particular, in the linear case this
yields that x̄ is a generalized Nash equilibrium, if and only if there exist
λν , wν ∈ Rmν satisfying the KKT conditions

cν + (Aνν)T λν = 0,

(Aν1Aν2 . . . AνN) x̄− bν + wν = 0,

wν ≥ 0, λν ≥ 0, (wν)Tλν = 0

for all ν ∈ {1, . . . , N}. Let us define m := m1 + . . . ,mN and vectors

c :=

 c1

...
cN

 ∈ Rn, b :=

 b1

...
bN

 ∈ Rm, λ :=

λ1

...
λN

 ∈ Rm

and

w :=

w1

...
wN

 ∈ Rm

as well as matrices

E :=

(A11)T 0
. . .

0 (ANN)T


and

A :=

A11 · · · A1N

...
...

AN1 · · · ANN

 .
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Then the optimality conditions can be written in the form

c+ Eλ = 0, (1.1)

Ax̄− b+ w = 0, (1.2)

λ ≥ 0, w ≥ 0, wTλ = 0. (1.3)

Using the Hadamard product

λ ◦ w :=

 λ1w1
...

λmwm


we define the function H : Rn × Rm × Rm → Rn+2m by

H(x, λ, w) :=

 c+ Eλ
Ax̄− b+ w

λ ◦ w


an arrive at the following result (cf. [23]) where the nonnegative orthant is
denoted by Rm

+ .

Proposition 1.5.2 A vector x̄ is a generalized Nash equilibrium if and only
if there are some λ̄, w̄ ∈ Rm, such that (x̄, λ̄, w̄) is a solution of the con-
strained equation

H(x, λ, w) = 0, (x, λ, w) ∈ Rn × Rm
+ × Rm

+ . (1.4)

In Chapter 6, we shall discuss some algorithms that compute generalized
Nash equilibria by solving the constrained equation (1.4).

1.5.3 Quasi-Variational Inequalities

Let x̄ be a generalized Nash equilibrium of an LGNEP. Then finding a Nash
equilibrium amounts to computing a vector x̄ with

x̄ν ∈ Xν(x̄
−ν)

and
〈cν , x̄ν〉 ≤ 〈cν , xν〉

for each ν ∈ {1, . . . , N} and all xν ∈ Xν(x̄
−ν). It was first noticed in [5] in

the context of nonlinear GNEPs that this is equivalent to finding a vector x̄
with

〈F (x̄), y − x̄〉 ≥ 0 (1.5)
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for all y ∈ S(x̄) where we defined the constant function

F (x) :=

 c1

...
cN

 ∈ Rn

and
S(x) := X1(x−1)× · · · ×XN(x−N).

The inequality in (1.5) is a so-called quasi-variational inequality (cf., e.g.,
[36]) and therefore one might think of computing Nash equilibria by exploit-
ing the theory and numerical results of quasi-variational inequality. Unfor-
tunately, both, theory and numerical results on quasi-variational inequalities
are far less developed than for variational inequalities where the feasible set S
does not depend on x̄ (cf. [27]). Therefore, in this work we do not try to com-
pute Nash equilibria by exploiting their reformulation as quasi-variational
inequalities.

1.5.4 Further Numerical Approaches

Besides the reformulation presented in Section 1.5.2, the search for solutions
of the concatenated KKT systems of all players can be formulated as a so-
called linear complementarity problem (cf. [13]). A common method to solve
linear complementarity problems is Lemke’s method which is a finite method
and an extension of the famous Simplex method. In [62], the authors compute
equilibria for AGNEPs by Lemke’s method and reporte numerical problems
which where caused by degeneracies that are intrinsic in GNEPs with shared
constraints (cf. [18]). We do not consider this approach in this work for the
solution of LGNEPs but its application would be an interesting subject to
future research.

Besides these general methods, in concrete applications it is sometimes
possible to compute Nash equilibria in a more simple way by exploiting the
structure of the problem. This works pretty well for the extended transporta-
tion problem as we will see in Part III.

1.6 Normalized Nash Equilibria

Let us consider GNEPs where all coupled constraints are shared by all play-
ers. Without loss of generality we may assume

m1 = . . . = mN , b
1 = . . . = bN and A1ν = . . . = ANν
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for each ν ∈ {1, . . . , N} for these special GNEPs. This does not reduce
any generality since all private constraints may be posed to the remaining
players without restricting their strategy spaces. For these kind of GNEPs,
a special type of equilibrium, the so-called normalized (or variational) Nash
equilibrium, was introduced in the seminal work [61].

Definition 1.6.1 Let (x̄, λ̄, ω̄) be a solution of (1.1), (1.2) and (1.3). Then
x̄ is a normalized Nash equilibrium if and only if there exist positive weights
r1, . . . , rN > 0, such that there is a common KKT multiplier λ̂ ∈ Rm1 satis-
fying λ̂ = rνλ̄

ν for all ν ∈ {1, . . . , N}.

As we shall see in Theorem 1.6.2, normalized Nash equilibria are exactly
the optimal points of a linear optimization problem whose feasible set is the
unfolded common strategy set

W = {x ∈ Rn : Âx ≤ b̂}

with Â := (A11A22 . . . ANN) ∈ Rm1×n and b̂ := b1. Note that in the repre-
sentation of W we omitted the constraints that occur multiply. In order to
construct the associated objective function let r1, . . . , rN > 0 and let cν ∈ Rnν

be the cost vector of player ν. Then we define the vector

cr1,...,rN :=

 r1 · c1

...
rN · cN

 ∈ Rn

and arrive at the following result which states that normalized Nash equilibria
are equivalent to solutions of a single linear program. Despite its straight-
forward proof this is a powerful result since it provides a set of efficiently
computable Nash equilibria for a certain class of LGNEPs.

Theorem 1.6.2 Let r1, . . . , rN > 0. Then x̄ solves the linear optimization
problem

min
x
〈cr1,...,rN , x〉 s.t. Âx ≤ b̂ (1.6)

if and only if x̄ is a normalized Nash equilibrium with weights r1, . . . , rN .

Proof. Inspecting the optimality conditions (1.1), (1.2) and (1.3) we see
that x̄ is a normalized Nash equilibrium if and only if there are λ̂, ŵ ∈ Rm1 ,
such that

cr1,...,rN + ÂT λ̂ = 0,

Âx̄− b̂+ ŵ = 0,

λ̂ ≥ 0, ŵ ≥ 0, ŵT λ̂ = 0.
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These are exactly the optimality conditions of the single linear program (1.6)
and therefore we have shown the desired result. •

Remark 1.6.3 According to Theorem 1.6.2, the existence of a normalized
Nash equilibrium is equivalent to the solvability of the corresponding linear
program. Further, note that for the considered class of LGNEPs, which are
non-cooperative games, normalized Nash equilibria can be interpreted as equi-
libria in cooperative games where the function 〈cr1,...,rN , ·〉 is the common
objective function which is minimized by all players in a cooperative way.

As we shall see in the following example there are Nash equilibria which
are not normalized equilibria, such that, in general, one may not expect to
be able to compute all Nash equilibria of an arbitrary LGNEP by solving
linear programs. This is an example that accompanies the famous nonlinear
example from Harker (cf. [36]) and states that also for LGNEPs there are
Nash equilibria that are not normalized equilibria.

Example 1.6.4 In Example 1.4.3, we construct the optimization problem
(1.6) and obtain

P : min
x∈R2
−r1x1 − r2x2 s.t. x1 − x2 ≤ 0,

x1 + x2 ≤ 1,

−2x1 + x2 ≤ 0

with r1, r2 > 0. Then it is straightforward to see that each equilibrium in the

line segment

[(
1
2
1
2

)
,

(
1
3
2
3

)]
is a normalized Nash equilibrium since it is also

an optimal point of P provided a suitable choice of r1 and r2. However, there

is no choice of positive parameters r1 and r2, such that

(
0
0

)
is an optimal

point of P . Thus,

(
0
0

)
is not a normalized Nash equilibrium of the LGNEP.

1.7 Thesis Overview

In Part I of this work, we study the gap function which arises as the objec-
tive function from a reformulation of the LGNEP as a constrained nonsmooth
optimization problem (cf. Section 1.5.1). The gap function is a nonsmooth
and extended real-valued function. Both of these properties cause theoretical
and numerical problems and, therefore, we are going to study its nondiffer-
entiability structure in detail and introduce a real-valued global extension of
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this function. Interestingly, there exist very deep connections between non-
smoothness of the gap function and the regularity of its feasible set in a sense
that will be explained later on. Besides these theoretical investigations, in
Part I we derive a formula for the subdifferential of the gap function which
will be exploited numerically by designing a projected subgradient method
in Part II.

Besides the introduction of the aforementioned projected subgradient
method, in Part II we investigate an interior point method for the com-
putation of Nash equilibria. The known convergence results from literature
for the interior point method require the nonsingularity of some second or-
der derivatives and are therefore not applicable in the linear case. Thus, we
present new convergence conditions for this method that are also valid in the
linear case. All introduced algorithms are extensively tested on instances of
the basic market models.

Finally, in Part III, we introduce a special LGNEP, the extended trans-
portation problem (ETP). The ETP is the first treatment of a very natural
extension of the celebrated transportation problem by non-cooperative game
theory. We apply the projected subgradient method in order to compute
Nash equilibria in the ETP. Furthermore, we show that the computation of
a large set of Nash equilibria in the ETP can by done very efficiently. This
enables the computation of many Nash equilibria for the ETP and, therefore,
the question arises which equilibrium to select in practical application. That
is a problem which is also known as the Equilibrium selection problem and
will be addressed before we end this work with some closing remarks.
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Theory
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Chapter 2

Gap Function

2.1 Basic Definitions, Notation and Overview

This part is based on the article [66] of the author. Let us briefly recall all
definitions from Section 1.5.1 that we need in order to introduce the gap
function V .

We have N competing players and player ν tries to optimize his paramet-
ric optimization problem

Qν(x
−ν) : min

xν∈Rnν
〈cν , xν〉 s.t. xν ∈ Xν(x

−ν).

His strategy set depends on the decision of the remaining players x−ν and is
described by

Xν(x
−ν) := {xν ∈ Rnν : Aνxν +Bνx−ν ≤ bν}

whereas, as mentioned in Remark 1.2.2, in Part III we shall also consider
equality constraints explicitly. However, in this part the appearance of equal-
ity constraints does not imply any qualitative changes in our results and is
therefore omitted.

Note that Xν : Rn−nν ⇒ Rnν is a set-valued mapping whose domain
domXν is defined as

domXν := {x−ν ∈ Rn−nν : Xν(x
−ν) 6= ∅}.

We define player ν’s optimal value function

ϕν(x
−ν) :=

{
minxν∈Xν(x−ν) 〈cν , xν〉, if x−ν ∈ domXν ,

+∞, else,

23
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where the attainment of the minimum in the case x−ν ∈ domXν is ensured
by Assumption 1.2.7. This allows us to define the gap function at a given
x = (xν , x−ν) ∈ Rn by

V (x) :=
N∑
ν=1

〈cν , xν〉 − ϕν(x−ν),

whose domain
domV := {x ∈ Rn : V (x) ∈ R}

is given by

domV = M :=
⋂

ν=1,...,N

(Rnν × domXν).

According to [25], the function V is nonnegative on the unfolded common
strategy set

W = {x ∈ Rn : xν ∈ Xν(x
−ν), ν = 1, . . . , N}

= {x ∈ Rn : Aνxν +Bνx−ν ≤ bν , ν = 1, . . . , N}
⊆ M.

Note that, in general, the inclusion W ⊆ M is strict, that is, we may have
domV ⊆ W and domV 6= W as illustrated in Figure 2.1. Further, we denote
the set of all (generalized) Nash equilibria of a given GNEP by S.

According to Proposition 1.5.1, generalized Nash equilibria of LGNEP are
the global minimal points of the (possibly non-smooth) optimization problem

min V (x) s.t. x ∈ W

with optimal value zero.
The gap function V gives rise to two main difficulties. First, in general,

the domain of V does not cover the whole space which causes numerical and
theoretical difficulties (see, e.g. [35] and [66], resp.). Thus, in Section 2.2, we
will overcome this difficulty by introducing a global real-valued extension of
V . This global extension is only computable if the vertices of some polyhedral
sets are known or can be computed efficiently. However, as we shall see in
Part II this holds true for some LGNEPs and enables a very stable and fast
numerical treatment for these LGNEPs.

Second, V may be a nondifferentiable function. Therefore, in Chapter 3,
we study its nonsmoothness in detail and introduce a new regularity condi-
tion that even characterizes the nonsmoothness of V under mild conditions.
Chapter 3 also provides a basis for an algorithmic treatments of LGNEPs
with nonsmooth optimization techniques as we will see in Part II.
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2.2 Global Extension of the Gap Function

We will use the following example throughout this article to illustrate our
results. Note that the example is stable in the sense that small perturbations
in the defining data do not imply qualitative changes in our results.

Example 2.2.1 Let us consider an LGNEP with two players, each having
a one-dimensional strategy set, that is, n1 = n2 = 1 and therefore N = n =
2. To simplify the notation, we denote the decision variable of player one
by x1 and of the second player by x2, respectively. The players share three
constraints given by −1

2

1
−1

x1 +

 1
−1
−1

x2 ≤

1
1
1

 .

Furthermore, the objective functions are θ1(x1) = −x1 and θ2(x2) = x2. Then
we obtain the optimal value functions

ϕ1(x2) =

{
−x2 − 1 , x2 ∈ domX1 = [−1, 3],

∞ , else,

and

ϕ2(x1) =

{
|x1| − 1 , x1 ∈ domX2 = [−4

3
, 4],

∞ , else,

so that the gap function is given by

V (x) =

{
2− x1 − |x1|+ 2x2 , x ∈M = [−4

3
, 4]× [−1, 3],

−∞ , else.

The generalized Nash equilibria form the line segment

S =

[(
0
−1

)
,

(
4
3

)]
and the sets W and M as well as the graph of V on W are illustrated in
Figures 2.1 and 2.2, respectively.

As Example 2.2.1 illustrates, the minimization of V over W may be a non-
smooth optimization problem, so that below we shall study smoothness prop-
erties of V . As V is only real-valued on the set M , first we will construct
a global extension V̂ of V which is real-valued on Rn and then examine the
smoothness properties of V̂ on Rn. The explicit form of one such global ex-
tension is straightforward in Example 2.2.1, but in general its investigation
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Figure 2.1: Illustration of the sets W and M in Example 2.2.1

is based on a dual representation of V . Therefore, we will now consider the
dual problem associated with Q(x−ν).

For ν ∈ {1, . . . , N} and x−ν ∈ domXν , the dual problem of Qν(x
−ν) is

Dν(x
−ν) : max

λν∈Rmν
〈λν , Bνx−ν − bν〉 s.t. λν ∈ Zν

with
Zν := {λν ∈ Rmν : cν + (Aν)Tλν = 0, λν ≥ 0}.

Remark 2.2.2 Note that Zν does not depend on x−ν. This is an interest-
ing property since it implies that each LGNEP is equivalent to a ‘dual game’
where the feasible sets of all players do not depend on the decisions of the
remaining players. However, this dual game is not a (standard) Nash equi-
librium problem since, now, player ν’s dual objective function

〈·, Bνx−ν − bν〉

depends on the vector x−ν which is not a decision vector in this dual game
but a fixed parameter. Therefore, the dual game of an LGNEP still depends
on the ‘primal parameter’ x.

For all ν ∈ {1, . . . , N} and x−ν ∈ domXν strong duality yields

ϕν(x
−ν) = max

λν∈Zν
〈λν , Bνx−ν − bν〉.
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Figure 2.2: The graph of the gap function V on W in Example 2.2.1

Hence, if for each λν ∈ Zν and any x ∈ Rn we define the affine function

`λν (x) := 〈cν , xν〉+ 〈λν , bν −Bνx−ν〉,

then for x ∈M we obtain

V (x) =
N∑
ν=1

〈cν , xν〉 − ϕν(x−ν)

=
N∑
ν=1

〈cν , xν〉 − max
λν∈Zν

〈λν , Bνx−ν − bν〉

=
N∑
ν=1

min
λν∈Zν

`λν (x).

We remark that the latter representation of V , in an extended-valued sense,
even holds on all of Rn. In fact, for x 6∈M duality implies that `λν (x) is not
bounded below (in λν) on Zν for at least one ν ∈ {1, . . . , N}, so that the
right-hand side formally attains the correct value −∞ at x.

By Oν := vertZν let us denote the finite vertex set of the polyhedron Zν .
The set Oν is nonempty since, due to the nonnegativity condition on λν , the
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polyhedron Zν cannot contain a line and is, thus, pointed. Consequently we
may define the function

ϕ̂ν(x
−ν) := max

λν∈Oν
〈λν , Bνx−ν − bν〉

for all x−ν ∈ Rn−nν . Note that ϕ̂ν is a real-valued global extension of ϕν ,
that is, we have ϕ̂ν(x

−ν) ∈ R for all x−ν ∈ Rn−nν and furthermore

ϕ̂ν(x
−ν) = ϕν(x

−ν)

for all x−ν ∈ domXν by the vertex theorem of linear programming. This
allows us to define a global extension V̂ of V by

V̂ (x) :=
N∑
ν=1

〈cν , xν〉 − ϕ̂ν(x−ν)

=
N∑
ν=1

〈cν , xν〉 − max
λν∈Oν

〈λν , Bνx−ν − bν〉

=
N∑
ν=1

min
λν∈Oν

`λν (x)

for all x ∈ Rn. Clearly, the functions V and V̂ coincide on M but, in contrast
to V , the function V̂ is real-valued on all of Rn. This will be crucial for our
subsequent analysis.

Example 2.2.3 In Example 2.2.1, we have

Z1 = {λ1 ∈ R3 : −1− λ1
1

2
+ λ1

2 − λ1
3 = 0, λ1 ≥ 0}

with the singleton vertex set

O1 =


0

1
0


for player one, as well as

Z2 = {λ2 ∈ R3 : 1 + λ2
1 − λ2

2 − λ2
3 = 0, λ2 ≥ 0}

with the vertex set

O2 =


0

1
0

 ,

0
0
1


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for player two. Then we obtain the global extensions of the optimal value
functions

ϕ̂1(x2) = max
λ1∈O1

〈
λ1,

 1
−1
−1

x2 −

1
1
1

〉
= −x2 − 1

for the first player, and

ϕ̂2(x1) = max
λ2∈O2

〈
λ2,

−1
2

1
−1

x1 −

1
1
1

〉
= max(x1 − 1,−x1 − 1)

= |x1| − 1

for the second player. Finally, as expected, the global extension of the gap
function is given by

V̂ (x) = 2− x1 − |x1|+ 2x2

for all x ∈ R2. •

The global extension V̂ of V obviously is a piecewise linear concave function,
which is formed by means of finitely many affine functions `λν , λ

ν ∈ Oν ,
ν ∈ {1, . . . , N}. The latter are called the selection functions of V̂ . For
x ∈ Rn we call

Oν(x
−ν) := {λ̄ν ∈ Oν : `λ̄ν (x) = min

λν∈Oν
`λν (x)}

the index set of active selection functions of player ν at x−ν . Note that for
ν ∈ {1, . . . , N} the set Oν(x

−ν) is nonempty, and that it does not depend on
xν since the condition `λ̄ν (x) = minλν∈Oν `λν (x) is equivalent to

〈λ̄ν , Bνx−ν − bν〉 = max
λν∈Oν

〈λν , Bνx−ν − bν〉. (2.1)

Due to (2.1), we may also write

Oν(x
−ν) = {λν ∈ Oν : 〈λν , Bνx−ν − bν〉 = ϕ̂ν(x

−ν)} (2.2)

and have

V̂ (x) =
N∑
ν=1

min
λν∈Oν(x−ν)

`λν (x). (2.3)

For a given point x̄ ∈ Rn the sets Oν(x̄
−ν), ν ∈ {1, . . . , N}, already determine

the local behavior of V̂ around x̄:
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Proposition 2.2.4 For each x̄ ∈ Rn there exists a neighborhood U of x̄ with

V̂ (x) =
N∑
ν=1

min
λν∈Oν(x̄−ν)

`λν (x)

for all x ∈ U .

Proof. Let x̄ ∈ Rn. Then for all ν ∈ {1, . . . , N} we have Oν(x̄
−ν) ⊆ Zν and

therefore

V̂ (x) =
N∑
ν=1

min
λν∈Zν

`λν (x)

≤
N∑
ν=1

min
λν∈Oν(x̄−ν)

`λν (x)

for all x ∈ Rn.
In view of (2.3), for the reverse inequality we show for each ν ∈ {1, . . . , N}

the existence of a neighborhood Uν of x̄ with Oν(x
−ν) ⊆ Oν(x̄

−ν) for all
x ∈ Uν . In the case Oν(x̄

−ν) = Oν this is trivially satisfied. Otherwise,
choose any λ̄ν ∈ Oν \Oν(x̄

−ν). Then, in view of (2.1), we have

〈λ̄ν , Bν x̄−ν − bν〉 < max
λν∈Oν(x̄−ν)

〈λν , Bν x̄−ν − bν〉.

Continuity and the finiteness of the set Oν(x̄
−ν) ensure the existence of a

neighborhood Uλ̄ν of x̄ with

〈λ̄ν , Bνx−ν − bν〉 < max
λν∈Oν(x̄−ν)

〈λν , Bνx−ν − bν〉

≤ max
λν∈Oν

〈λν , Bνx−ν − bν〉

for all x ∈ Uλ̄ν , which by (2.2) means λ̄ν ∈ Oν \ Oν(x
−ν). We thus have

Oν(x
−ν) ⊆ Oν(x̄

−ν) for all x from the set Uν :=
⋂
λ̄ν∈Oν\Oν(x̄−ν) Uλ̄ν , and

U :=
⋂
ν=1,...,N Uν is the asserted neighborhood of x̄. •

Player ν’s index set of active selection functions Oν(x
−ν) at x−ν is of

course intimately related to dual information. In fact, for ν ∈ {1, . . . , N}
and x−ν ∈ domXν let

Sν(x
−ν) := {xν ∈ Xν(x

−ν) : 〈cν , xν〉 = ϕν(x
−ν)}

denote the (nonempty) set of optimal points of Qν(x
−ν) and

KKTν(x
−ν) := {λν ∈ Zν : 〈λν , Aνyν +Bνx−ν − bν〉 = 0}
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its set of Karush-Kuhn-Tucker (KKT) multipliers for any yν ∈ Sν(x−ν). Note
that the latter set may be rewritten as

KKTν(x
−ν) = {λν ∈ Zν : 〈λν , Bνx−ν − bν〉 = ϕν(x

−ν)},

so that it does not depend on the actual choice of yν ∈ Sν(x−ν).

Proposition 2.2.5 The set Oν(x
−ν) is the set of vertices of KKTν(x

−ν) for
all ν ∈ {1, . . . , N} and x−ν ∈ domXν.

Proof. The dually optimal set KKTν(x
−ν) is a face of Zν . Thus, the vertex

set of KKTν(x
−ν) coincides with the set

KKTν(x
−ν) ∩ vert(Zν) = {λν ∈ Oν : 〈λν , Bνx−ν − bν〉 = ϕν(x

−ν)}
= Oν(x

−ν),

where the last equality holds due to (2.2) and the vertex theorem of linear
programming. •

For any ν ∈ {1, . . . , N} and x−ν ∈ domXν , Proposition 2.2.5 states that
Oν(x

−ν) coincides with the vertex set of KKTν(x
−ν) and, thus, establishes a

link between the ‘primal’ index set of active selection functions Oν(x
−ν) and

the ‘dual’ set of vertex KKT multipliers vertKKTν(x
−ν). More importantly,

it shows that the set-valued mapping Oν : Rn−nν ⇒ Rmν is a global extension
of the set-valued mapping vertKKTν : domXν ⇒ Rnν .

According to Propositions 2.2.4 and 2.2.5, the local behavior of V̂ on M
and outside of M is governed by vertex KKT multipliers and their global
extensions by active index sets of selection functions, respectively. We will
heavily exploit this connection in Section 3.1.

2.3 Directional Derivatives

Let x̄ ∈ Rn and d ∈ Rn. The (one-sided) directional derivative of V̂ in x̄
along d is defined by

V̂ ′(x̄, d) := lim
t↘0

V̂ (x̄+ td)− V̂ (x̄)

t
.

The following result immediately follows from the additivity of the directional
derivative and the formula for directional derivatives of max-functions from,
e.g., [14].
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Proposition 2.3.1 Let x̄ ∈ Rn and d ∈ Rn. Then V̂ ′(x̄, d) exists and we
have

V̂ ′(x̄, d) =
N∑
ν=1

min
λν∈Oν(x̄−ν)

〈∇`λν (x̄), d〉

=
N∑
ν=1

〈cν , dν〉 − max
λν∈Oν(x̄−ν)

〈(Bν)Tλν , d−ν〉.

Clearly, if V̂ is locally linear in x̄ ∈ Rn, then V̂ ′(x̄, d) is a linear function
in d.

Let us briefly compare the assertion of Proposition 2.3.1 with a directional
differentiability result that we obtained under considerably weaker assump-
tions in [66, Prop. 3.10, Prop. 3.19]. For its formulation, consider the set of
active indices of player ν in x̄,

Iν0 (x̄) :=
{
i ∈ {1, . . . ,mν} : Aνi x̄

ν +Bν
i x̄
−ν = bνi

}
,

where Aνi is the i-th row of Aν and Bν
i the i-th row of Bν , respectively. Then

we may define the outer linearization cone

L(x̄,W ) := {d ∈ Rn : (Aνi , B
ν
i )d ≤ 0, i ∈ Iν0 (x̄), ν ∈ {1, . . . , N}}

to W in x̄ ∈ bdW , where bdW denotes the boundary of W . For x̄ ∈ intW
we put L(x̄,W ) := Rn.

Proposition 2.3.2 ([66]) Let x̄ ∈ W and d ∈ L(x̄,W ). Then we have

V ′(x̄, d) =
N∑
ν=1

〈cν , dν〉 − max
λν∈KKTν(x̄−ν)

〈(Bν)Tλν , d−ν〉.

First note that the weaker assumptions from [66] do not imply the existence of

a global extension V̂ of V , which explains the restricted choices of x̄ and d in
the assumption of Proposition 2.3.2. More importantly, in Proposition 2.3.2
the maximizations in the representation of V ′(x̄, d) are taken over the whole
sets KKTν(x̄

−ν), ν ∈ {1, . . . , N}, while in Proposition 2.3.1 they are taken
over the finite sets Oν(x̄

−ν) which, in view of W ⊆M and Proposition 2.2.5,
coincide with the vertex sets of KKTν(x̄

−ν), ν ∈ {1, . . . , N}. As the sets
KKTν(x̄

−ν), ν ∈ {1, . . . , N}, may be unbounded, the correspondence be-
tween the assertions of the two propositions in terms of the vertex theorem
is not immediate.
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2.4 Subdifferential

Despite the fact that V̂ may be a nondifferentiable function it is still possible
to compute some generalized gradients of V̂ at each x ∈ Rn. This enables
the application of nonsmooth subgradient methods as we shall see in Part II.

Let us recall the definition of a generalized gradient in the sense of Clarke
(cf. [11]) to which we will just refer as Clarke subgradient throughout this
work. Further, we denote the convex hull of a set A by conv(A).

Definition 2.4.1 Let f be a Lipschitz continuous function and denote the
set of its nondifferentiability points by ND. Then we define the Clarke sub-
differential of f at x by

∂f(x) := conv

(
lim

xi→x, xi /∈ND
∇f(xi)

)
and each element s ∈ ∂f(x) is called a Clarke subgradient of f at x.

Remark 2.4.2 According to Rademacher’s theorem, the set of nondifferen-
tiability points of Lipschitz continuous functions has Lebesgue measure zero.
This ensures the possibility to approach each point x with sequences on smooth
parts of a Lipschitz continuous function and, thus, the Clarke subdifferential
is well-defined for Lipschitz continuous functions.

Since V̂ is a piecewise linear function, it is also Lipschitz continuous and
therefore its Clarke subdifferential is well-defined and can be computed ac-
cording to Proposition 2.4.3 where we used the Minkowski sum

A+B := {a+ b : a ∈ A, b ∈ B}

in order to simplify the notation.

Proposition 2.4.3 The Clarke subdifferential of V̂ at x ∈ Rn is given by

∂V̂ (x) =
N∑
ν=1

{(
cν

−b−ν
)

: b−ν ∈ conv
({

(Bν)Tλν : λν ∈ Oν(x
−ν)
})}

.

Proof. Recall that we have

ϕ̂ν(x
−ν) = max

λν∈Oν

〈
λν , Bνx−ν − bν

〉
.
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The Clarke subdifferential is homogeneous with respect to also negative
scalars. Furthermore, convex functions are subdifferentiable regular (cf. [11])
which implies the validity of a sum rule. Altogether, we have

∂V̂ (x) = ∂

(
N∑
ν=1

(
〈cν , xν〉 − ϕ̂ν(x−ν)

))

= ∂

(
−

N∑
ν=1

(
ϕ̂ν(x

−ν)− 〈cν , xν〉
))

= −∂

(
N∑
ν=1

ϕ̂ν(x
−ν)− 〈cν , xν〉

)

= −

(
N∑
ν=1

∂ϕ̂ν(x
−ν)−∇x〈cν , xν〉

)

=
N∑
ν=1

{(
cν

−b−ν
)

: b−ν ∈ ∂x−ν ϕ̂ν(x−ν)
}

and the assertion follows from a standard formula for the subdifferential
of convex functions which have a representation as pointwise maximum of
finitely many smooth functions (cf. [7]). •

In order to clarify the notation, let us assume for the remainder of this
section that player ν’s strategy set is given by

Xν(x
−ν) = {xν ∈ Rnν | Aννxν +

∑
µ 6=ν

Aνµxµ ≤ bν}

with suitable matrices Aνµ for all ν, µ ∈ {1, . . . , N}. Then we restate Propo-
sition 2.4.3 using this representation of player ν’s constraints and obtain a
new representation of the Clarke subdifferential which is a little bit lengthy
but at the same time more precise. Proposition 2.4.4 is of great importance
for this work since it provides exact formulas for the subdifferential which we
shall exploit heavily by implementing the corresponding nonsmooth numer-
ical methods.
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Proposition 2.4.4 The Clarke subdifferential of V̂ at x ∈ Rn is given by

∂V̂ (x) =




c1

−(A1,2)Tλ1

...
−(A1,N)Tλ1

 : λ1 ∈ conv
(
O1(x−1)

)


+




−(A2,1)Tλ2

c2

−(A2,3)Tλ2

...
−(A2,N)Tλ2

 : λ2 ∈ conv
(
O2(x−2)

)


+ . . .+



−(AN,1)TλN

...
−(AN,N−1)TλN

cN

 : λN ∈ conv
(
ON(x−N)

)
 .

Now, suppose there is an iterative subgradient based method and we aim to
minimize V̂ . One evaluation of V̂ at a given iterate x requires the computa-
tion of N optimal points λ̄1, . . . , λ̄N . For x ∈M this is equivalent to solving
the linear optimization problems Dν(x

−ν) for all ν ∈ {1, . . . , N}. For x /∈M
we solve the globally extended dual optimization problem

D̂ν(x−ν) : max
λν∈Rmν

〈λν , Bνx−ν − bν〉 s.t. λν ∈ Oν .

Despite the fact that the computation of the whole subdifferential ∂V̂ at a
given iterate x may be a difficult task, using these optimal points λ̄1, . . . , λ̄N ,
the computation of one subgradient sk of V̂ at xk can be done easily as stated
in the following result which follows immediately from Proposition 2.4.4.

Corollary 2.4.5 Let xk ∈ Rn and λ̄ν be an optimal point of player ν’s (glob-
ally extended) dual problem Dν((x

k)−ν) for all ν ∈ {1, . . . , N}. Then we have

sk =


c1

−(A1,2)T λ̄1

−(A1,3)T λ̄1

...
−(A1,N)T λ̄1

+


−(A2,1)T λ̄2

c2

−(A2,3)T λ̄2

...
−(A2,N)T λ̄2

+ . . .+


−(AN,1)T λ̄N

−(AN,2)T λ̄N

...
−(AN,N−1)T λ̄N

cN



=

 c1

...
cN

+

 (A1,1)T λ̄1

...
(AN,N)T λ̄N

− N∑
ν=1


−(Aν,1)T λ̄ν

−(Aν,2)T λ̄ν

...
−(Aν,N)T λ̄ν

 ∈ ∂V̂ (xk),
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that is sk is a subgradient of V̂ at xk.

Remark 2.4.6 Corollary 2.4.5 will play a crucial rule in Chapter 7 where we
shall design a nonsmooth subgradient method in order to compute generalized
Nash equilibria.

Corollary 2.4.7 Let x ∈ Rn and λ̄ν be an optimal point of player ν’s (glob-
ally extended) dual problem Dν(x

−ν) for each ν ∈ {1, . . . , N}. Then we have

∇V (x) =

 c1

...
cN

+

 (A1,1)T λ̄1

...
(AN,N)T λ̄N

− N∑
ν=1


−(Aν,1)T λ̄ν

−(Aν,2)T λ̄ν

...
−(Aν,N)T λ̄ν

 .

for all x ∈ Rn such that V̂ is smooth in x.

Example 2.4.8 In the basic economic market model (cf. Section 1.3.1) at
a given x ∈ Rn we have

V (x) =
N∑
ν=1

〈−pν , xν〉+ min
λν∈Zν

〈
λν ,

0K
Cν

D

−∑
µ 6=ν

(
0K+1

xµ

)〉

=
N∑
ν=1

min
λν∈Zν

〈
λν ,

 0K
Cν

D −
∑

µ6=ν x
µ

〉− 〈pν , xν〉
=

N∑
ν=1

min
λν∈Zν

〈 λνK+1
...

λν2K+1

 ,

(
Cν

D −
∑

µ6=ν x
µ

)〉
− 〈pν , xν〉

and the set

Zν =

λν ∈ R2K+1

∣∣∣∣∣
−IKe
IK

T

λν = pν , λν ≥ 0


=

λν ∈ R2K+1

∣∣∣∣∣
−1 0 1 1 0

. . .
...

. . .

0 −1 1 0 1

λν = pν , λν ≥ 0

 .
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Therefore, after having computed the optimal points λ̄νK+2, . . . , λ̄
ν
2K+1 of player

ν’s dual problem Dν(x
−ν) for each ν ∈ {1, . . . , N}, we have

s :=



−p1 −
∑

ν 6=1

 λ̄νK+2
...

λ̄ν2K+1


...

−pN −
∑

ν 6=N

 λ̄νK+2
...

λ̄ν2K+1




∈ ∂V̂ (x).



38 CHAPTER 2. GAP FUNCTION



Chapter 3

Smoothness and Regularity
Conditions

3.1 Definition and Motivation

Recall that the gap function V is not real-valued outside of the set M . For
a smoothness analysis of V on W ⊆ M , this may cause technical issues at
boundary points of W in cases where these also are boundary points of M (cf.

Fig. 2.1). Fortunately, we may analyse its global extension V̂ instead. Since

V̂ is piecewise linear on Rn, in the following the notion of ‘local linearity’ is
chosen to describe its smoothness properties at a given reference point.

Definition 3.1.1 We call the extended gap function V̂ locally linear in a
point x̄ ∈ Rn if and only if there exist an affine linear function A : Rn → R
and a neighbourhood U of x̄ with V̂ (x) = A(x) for all x ∈ U .

We will use the terms ‘smooth’ and ‘locally linear’ synonymously in the
following. Analogously, we shall denote V̂ as ‘nonsmooth’ in a reference
point, if it is not locally linear there.

Using Example 2.2.1, we will motivate why smoothness of the gap func-
tion is related with regularity conditions of its feasible set which, at first
glance, might be a surprising connection. The observations here are rather
informal and aim at presenting the main ideas of the following sections. A
more stringent and general formulation of these results can be found in The-
orem 3.4.9.

Direct inspections show that the nondifferentiability points of V form the
set

ND :=

[(
0
−1

)
,

(
0
1

)]
39
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Figure 3.1: The set W and the red colored set of nondifferentiability points
of V

as depicted in Figure 3.1. Note that the kinks of V lie on a ray that emerges
from a vertex of W while the remaining vertices of W do not ’generate’ kinks
of V . However, as we shall see in Theorem 3.4.9, the vertex in (0,−1)T

possesses two outstanding properties that are both necessary for ’generating’
kinks of V . First, (0,−1)T is the unfolded optimal point of player two in
X2(0). Second, there is a paraxial ray that emerges from (0,−1)T and points
into the set W . In each of the both remaining vertices of W one of these
properties is violated.

The vertex (0,−1)T of the set W in turn is closely related to regular-
ity conditions in the feasible set of players two: In (0,−1)T we have two
active constraints which is caused by the fact that (0,−1)T is a vertex of
a polyhedron in the two-dimensional space R2. This implies that the lin-
ear independence constraint qualification is violated in the one-dimensional
strategy set

X1(0) = [−1, 1]

of player one.
In this chapter we shall see that kinks of the gap function V may only

occur if some regularity condition is violated in the strategy sets of at least
one player, that is, the violation of a regularity condition is necessary for the
occurrence of nondifferentiability points of V . In Section 3.2, we shall also
introduce a new regularity condition, the cone condition, that even charac-
terizes the occurrence of nonsmoothness of the gap function V .

3.2 The Cone Condition

From Proposition 2.2.4 we see that locally around any point x̄ ∈ Rn the
function V̂ is constituted as the sum of pointwise minima of affine functions,
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indexed by the set of active selection functions Oν(x̄
−ν). If Oν(x̄

−ν) is a

singleton for all ν ∈ {1, . . . , N} then, obviously, V̂ is smooth at x̄.

Definition 3.2.1 For ν ∈ {1, . . . , N} and x−ν ∈ Rn−nν we say that the
player cone condition (PCC) is valid in x−ν, iff Oν(x

−ν) contains at most one
element. We say that the collective cone condition (CCC) holds in x ∈ Rn,
if PCC holds in x−ν for all ν ∈ {1, . . . , N}.

We emphasize that, as Oν(x
−ν) is not void, CCC at x ∈ Rn actually implies

that Oν(x
−ν) is a singleton for all ν ∈ {1, . . . , N}.

Remark 3.2.2 Since, in view of Proposition 2.2.5, for all ν ∈ {1, . . . , N}
and x−ν ∈ domXν the set Oν(x

−ν) coincides with the vertex set of the
polyhedron KKTν(x

−ν), the player cone condition states for these x−ν that
KKTν(x

−ν) possesses at most one vertex or, equivalently, that it is a (trans-
lated) convex cone. This explains the terminology in Definition 3.2.1.

As discussed above, the following result immediately follows from Proposi-
tion 2.2.4.

Proposition 3.2.3 If CCC holds in x̄ ∈ Rn, then V̂ is smooth in x̄.

Next example illustrates the interplay between CCC and smoothness of V̂ .

Example 3.2.4 In Example 2.2.1, by direct inspection it is immediate, that
the non-differentiability points of V̂ form the set

ND := {x ∈ R2 : x1 = 0}.

Since O1 and, thus, the sets O1(x2) are singletons for all x2 ∈ R, PCC holds
for player one in each x2 ∈ R. Furthermore, we have |O2(x1)| > 1 if and
only if x1 = 0, so that PCC holds for player two in x1 ∈ R if and only if
x1 6= 0. Consequently, CCC in x ∈ R2 is violated exactly on the set ND and,
in this example, CCC even characterizes the smoothness of V̂ . •

The latter example indicates that the collective cone condition might be a
suitable tool to examine the nonsmoothness structure of V̂ . Actually, as we
will see below, the collective cone condition characterizes the smoothness of
V̂ under mild assumptions. Before we show this, we need some auxiliary
concepts and results.

For ν ∈ {1, . . . , N} and λν ∈ Oν we define the index set of positive
multipliers of player ν at λν by

I+(λν) := {i ∈ {1, . . . ,mν} : λνi > 0} .

In the next lemma we obtain an upper bound to the number of non-vanishing
multipliers.
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Lemma 3.2.5 Let ν ∈ {1, . . . , N} and λ̄ν ∈ Oν. Then we have |I+(λ̄ν)| ≤
nν.

Proof. Let λ̄ be a vertex of Zν = {λν ∈ Rmν : cν + (Aν)Tλν = 0, λν ≥ 0}.
Then, by definition, the rank of the gradients that belong to active constraints
equals mν . More formally, the rank of the mν × (nν + |I+(λ̄ν)c|)-matrix(
Aν
∣∣eI+(λ̄ν)c

)
is mν , where eI+(λ̄ν)c is a matrix whose columns are the mν-

dimensional unit vectors ei, i ∈ I+(λ̄ν)c. Since the rank of a matrix cannot
exceed its number of columns, we have

mν ≤ nν + |I+(λ̄ν)c| = nν +mν − |I+(λ̄ν)|,

which proves the assertion. •
As we will see in Chapter 4.1, the following assumption holds generically,

that is, it holds on an open and dense subset of the defining data.

Assumption 3.2.6 For any ν ∈ {1, . . . , N} and J ⊆ {1, . . . ,mν} with |J | ≤
nν the rows (Aνj , B

ν
j ), j ∈ J , are linearly independent.

Note that Assumption 3.2.6 is unrelated to LICQ in the unfolded common
strategy space W or to player LICQ (cf. Sec. 3.4 below).

Proposition 3.2.7 Let Assumption 3.2.6 be valid, and let V̂ be smooth in
x̄ ∈ Rn. Then CCC holds at x̄.

Proof. Let V̂ be smooth in x̄ ∈ Rn. Then due to Proposition 2.3.1 its
directional derivative

V̂ ′(x̄, d) =
N∑
ν=1

〈cν , dν〉 − max
λν∈Oν(x̄−ν)

〈(Bν)Tλν , d−ν〉

is a linear function in d.
As V̂ ′(x̄, d) is the sum of functions which are concave in d, easy calcula-

tions show that each summand maxλν∈Oν(x̄−ν)〈(Bν)Tλν , d−ν〉 must be linear
in d−ν , that is, there exist vectors wν ∈ Rn−nν with

max
λν∈Oν(x̄−ν)

〈(Bν)Tλν , d−ν〉 = 〈wν , d−ν〉, ν = 1, . . . , N.

Now we choose ν ∈ {1, . . . , N} and λν ∈ Oν(x̄
−ν) arbitrarily, and obtain

〈(Bν)Tλν − wν , d−ν〉 ≤ 0
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for all d−ν ∈ Rn−nν , which implies (Bν)Tλν = wν . Moreover, due to
Oν(x

−ν) ⊆ Zν we have (Aν)Tλν = −cν , so that we arrive at

(Aν , Bν)Tλν =

(
−cν
wν

)
. (3.1)

Using the submatrix

AνI+(λν) :=


...
Aνi , i ∈ I+(λν)

...


of Aν which contains the rows of Aν corresponding to the positive multipliers
at λν , as well as the analogously reduced submatrix Bν

I+(λν), the system (3.1)
reduces to

(AνI+(λν), B
ν
I+(λν))

TλνI+(λν) =

(
−cν
wν

)
.

Due to Lemma 3.2.5 and Assumption 3.2.6, the rows (Aνi , B
ν
i ), i ∈ I+(λν), are

linearly independent, and therefore λν is uniquely determined. This implies
that Oν(x̄

−ν) is a singleton, and therefore PCC is valid at x̄−ν for player ν.
As ν ∈ {1, . . . , N} was arbitrarily chosen, we have shown that CCC holds at
x̄. •

Our subsequent main result is a direct consequence of Propositions 3.2.3
and 3.2.7. Since the nonsmoothness points of V̂ are of special interest, we
formulate the result as a characterization of their location.

Theorem 3.2.8 Let Assumption 3.2.6 be valid. Then V̂ is nonsmooth at
x̄ ∈ Rn if and only if CCC is violated at x̄.

Assumption 3.2.6 is nearly trivial, if each player’s strategy space is one-
dimensional. This yields the next corollary.

Corollary 3.2.9 Let nν = 1 and (Aνj , B
ν
j ) 6= 0 for all j ∈ {1, . . . ,mν} and

ν ∈ {1, . . . , N}. Then V̂ is nonsmooth at x̄ ∈ Rn if and only if CCC is
violated at x̄.

Remark 3.2.10 The condition (Aνj , B
ν
j ) 6= 0 from Corollary 3.2.9 is not

restrictive, because a constraint with (Aνj , B
ν
j ) = 0 either is redundant and

can be removed or yields an infeasible LGNEP, where the latter case would
contradict Assumption 1.2.7.

Note that Corollary 3.2.9 explains, in particular, the observation from Ex-
ample 3.2.4.
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3.3 Strict Mangasarian Fromovitz Condition

While the collective cone condition captures nonsmoothness very sharply, it
is rather hard to verify, so that it might sometimes be more convenient to
work with a different regularity condition instead.

In view of Proposition 2.2.5, for all ν ∈ {1, . . . , N} and x−ν ∈ domXν

the set Oν(x
−ν) coincides with the vertex set of KKTν(x

−ν). Hence, ev-
ery condition that implies unique KKT multipliers at x ∈M will also imply
smoothness of the extended gap function V̂ there. According to [48] it is pos-
sible even to characterize unique KKT multipliers by the strict Mangasarian
Fromovitz condition, if KKT multipliers exist at all. While we will not use
this set of conditions explicitly, it gives rise to the following notion.

Definition 3.3.1 For ν ∈ {1, . . . , N} and x−ν ∈ domXν we say that the
player strict Mangasarian Fromovitz condition (PSMFC) is valid in x−ν, iff
KKTν(x

−ν) contains at most one element. We say that the collective strict
Mangasarian Fromovitz condition (CSMFC) holds in x ∈ M , if PSMFC
holds in x−ν for all ν ∈ {1, . . . , N}.

Remark 3.3.2 Although Definition 3.3.1 does not explicitly involve the no-
tion of an optimal point yν ∈ Sν(x

−ν) to which the set KKTν(x
−ν) corre-

sponds, it is well-defined, since Assumption 1.2.7 guarantees Sν(x
−ν) 6= ∅ for

any x−ν ∈ domXν, and the set of KKT multipliers does not depend on the
actual choice yν ∈ Sν(x−ν).

Remark 3.3.3 We refrain from calling PSMFC a constraint qualification,
since, first, it is not imposed only on the constraints and, second, it does
not guarantee the existence of KKT multipliers at a local optimal point. The
weakest constraint qualification that implies existence and uniqueness of KKT
multipliers for all objective functions is the linear independence constraint
qualification (cf. [71]).

In our linear setting the Abadie constraint qualification and Assumption 1.2.7
ensure KKTν(x

−ν) 6= ∅ for all x−ν ∈ domXν and ν ∈ {1, . . . , N}. Hence,
CSMFC is valid at x ∈ M if and only if KKTν(x

−ν) is a singleton for all
ν ∈ {1, . . . , N}.

The regularity condition CSMFC is sufficient for smoothness of the global
extension of the gap function V̂ , as we will see in the following proposition.
We state the result for V̂ instead of V , because at boundary points of the
domain M smoothness of V is not defined.

Proposition 3.3.4 If CSMFC holds at x̄ ∈M , then V̂ is smooth in x̄.
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Proof. The CSMFC at x̄ ∈M implies unique KKT multipliers, that is, the
set KKTν(x̄

−ν) is a singleton for each ν ∈ {1, . . . , N}. This implies CCC at
x̄, so that the assertion follows from Proposition 3.2.3. •

According to Proposition 3.3.4, CSMFC is sufficient for smoothness of V̂
at x̄ ∈M , but the following example shows that CSMFC is not necessary.

Example 3.3.5 In Example 2.2.1, easy calculations show that PSMFC is
violated for player one if and only if x2 = −1 or x2 = 3. The associated
KKT multipliers are given by

KKT1(−1) =


 0

1 + t
t

 , t ≥ 0


and

KKT1(3) =


 t

1 + 1
2
t

0

 , t ≥ 0

 .

Analogously, we obtain that PSMFC is violated for player two if and only if
x1 = −4

3
, x1 = 0 or x1 = 4. The corresponding KKT multipliers are

KKT2

(
−4

3

)
=


 t

0
1 + t

 , t ≥ 0


as well as

KKT2(0) =


 0

1− t
t

 , t ∈ [0, 1]

 =

0
1
0

 ,

0
0
1


and

KKT2(4) =


 t

1 + t
0

 , t ≥ 0

 .

Altogether, CSMFC is violated exactly in the boundary points of M and on

the line segment

[(
0
−1

)
,

(
0
3

)]
.

The nondifferentiability points of V̂ in the set M form the line segment

ND :=

[(
0
−1

)
,

(
0
3

)]
,

that is, they are ‘created’ by the violation of PSMFC of player two in x1 = 0,
whereas the other points where PSMFC is violated do not affect the smooth-
ness of V̂ . This effect will be further pursued in Theorem 3.3.10 below.
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Note that the phenomena in this example are stable under small perturba-
tions of the defining data, so that not even under generic conditions we may
expect to characterize smoothness of V̂ via CSMFC . However, if x̄ is chosen
from the topological interior of W , then, under the generic Assumption 3.3.6,
CSMFC is not only sufficient but also necessary for smoothness of V in x̄, as
we shall see in the following result.

Assumption 3.3.6 The rows (Aνi , B
ν
i ), i ∈ Iν0 (x), are linearly independent

for any ν ∈ {1, . . . , N} and x ∈ Rn with Aνxν +Bνx−ν ≤ bν.

Proposition 3.3.7 Let Assumption 3.3.6 be valid, and let V be smooth in
x̄ ∈ intW . Then CSMFC holds at x̄.

Proof. Let V be smooth in x̄ ∈ intW . Then Proposition 2.3.2 implies that
its directional derivative

V ′(x̄, d) =
N∑
ν=1

〈cν , dν〉 − max
λν∈KKTν(x̄−ν)

〈(Bν)Tλν , d−ν〉

is a linear function in d. Following the lines of the proof of Proposition 3.2.7,
we obtain that for each ν ∈ {1, . . . , N} there exists a vector wν ∈ Rn−nν with

(Aν , Bν)Tλν =

(
−cν
wν

)
(3.2)

for all λν ∈ KKTν(x̄
−ν). Let yν ∈ Xν(x̄

−ν). Due to the complementarity
condition we have λνi = 0 for all i /∈ Iν0 (yν , x̄−ν), and therefore system (3.2)
reduces to

(AνIν0 (yν ,x̄−ν), B
ν
Iν0 (yν ,x̄−ν))

TλνIν0 (yν ,x̄−ν) =

(
−cν
wν

)
.

Finally, due to Assumption 3.3.6, the latter system of equations determines
the multipliers λν uniquely, which implies the validity of CSMFC at x̄. •

In analogy to Theorem 3.2.8 we may, thus, characterize the nonsmooth-
ness of V at interior points of W by CSMFC. Recall that, in contrast, Theo-
rem 3.2.8 characterizes the nonsmoothness of V̂ at arbitrary points by CCC.

Theorem 3.3.8 Let Assumption 3.3.6 be valid. The mapping V is non-
smooth at x̄ ∈ intW if and only if CSMFC is violated at x̄.

It is possible to extend the result from Proposition 3.3.7 to certain boundary
points of W as we will see in the next result which, as discussed above, we
state for V̂ instead of V , because smoothness of V is not defined at boundary
points of M .
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Proposition 3.3.9 Let Assumption 3.3.6 be valid and let V̂ be smooth in
x̄ ∈ W . Then for all ν ∈ {1, . . . , N} such that PSMFC is violated at x̄−ν we
have (xν , x̄−ν) /∈ intW for all xν ∈ Xν(x̄

−ν).

Proof. We prove the assertion by contraposition. Let x̄ ∈ W and ν ∈
{1, . . . , N} such that PSMFC is violated at x̄−ν and xν ∈ Xν(x̄

−ν) with
(xν , x̄−ν) ∈ intW . Furthermore, for λ ∈ (0, 1] we define

x(λ) := (1− λ)x̄+ λ(xν , x̄−ν) = ((1− λ)x̄ν + λxν , x̄−ν).

Then we have x(λ) ∈ intW for all λ ∈ (0, 1] (cf. [59, Th. 6.1]), and PSMFC
is violated at x(λ)−ν = x̄−ν . According to Proposition 3.3.7, the function

V̂ is not smooth in x(λ) for all λ ∈ (0, 1]. By a standard argument from

calculus, this also holds for λ = 0, that is, V̂ is not smooth in x̄. •
The next result follows from Propositions 3.3.4 and 3.3.9.

Theorem 3.3.10 Let Assumption 3.3.6 be valid and let x̄ ∈ W . Further-
more, if PSMFC is violated for some player ν ∈ {1, . . . , N} at x̄−ν, let there

exist some xν ∈ Xν(x̄
−ν) with (xν , x̄−ν) ∈ intW . Then V̂ is nonsmooth at x̄

if and only if CSMFC is violated at x̄.

The latter theorem has an interesting interpretation for one-dimensional
strategy sets, that indicates why not all violations of CSMFC in Example
3.3.5 enforce nonsmoothness of V̂ in x̄: Paraxial rays that emerge from opti-
mal points in kinks of the boundary of the set W cause kinks of the function
V , if these rays point into the interior of W .

3.4 Linear Independence Constraint Qualifi-

cation

The following constraint qualification is the strongest common regularity
condition, but has the advantage that its verification is an easy task. Again,
we distinguish between a player regularity condition that may hold in his
strategy set and a collective regularity condition that acts on the unfolded
common strategy set.

Definition 3.4.1 For ν ∈ {1, . . . , N} and x−ν ∈ domXν we say that the
player linear independence constraint qualification (PLICQ) holds in x−ν, iff
for some yν ∈ S(x−ν) the vectors Aνi , i ∈ Iν0 (yν , x−ν), are linearly indepen-
dent. We say that the collective linear independence constraint qualification
(CLICQ) holds in x ∈M , if PLICQ holds in x−ν for all ν ∈ {1, . . . , N}.
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It is a well-known fact that PLICQ enforces PSMFC, so that the next result
immediately follows from Proposition 3.3.4.

Proposition 3.4.2 If CLICQ holds at x̄ ∈M , then V̂ is smooth in x̄.

While CLICQ implies CSMFC, both conditions even coincide under a mild
assumption, as we shall see in Proposition 3.4.6.

Assumption 3.4.3 For any ν ∈ {1, . . . , N} and x−ν ∈ domXν, all
yν ∈ Sν(x

−ν) and all J ⊆ Iν0 (yν , x−ν) with |J | ≤ nν the rows Aνj , j ∈ J ,
are linearly independent.

Remark 3.4.4 Assumption 3.4.3 is unrelated to Assumption 3.2.6 and As-
sumption 3.3.6.

Remark 3.4.5 For ν ∈ {1, . . . , N} let PLICQ be violated at x−ν ∈ domXν.
Then Assumption 3.4.3 implies |Iν0 (yν , x−ν)| > nν for all yν ∈ Sν(x−ν). This
is one main reason why the violation of PLICQ is sufficient for the existence
of kinks that are related with the existence of ’too many’ active constraints.

Proposition 3.4.6 Let Assumption 3.4.3 be valid, let ν ∈ {1, . . . , N} and
let x̄−ν ∈ domXν. Then PSMFC at x̄−ν implies PLICQ at x̄−ν.

Proof. We prove the assertion by contraposition. Let ν ∈ {1, . . . , N} and
x̄−ν ∈ domXν , such that PLICQ is violated at x̄−ν .

On the one hand, the strong theorem of complementarity (cf. [12, Th.
A.7]) yields the existence of an optimal point ȳν ∈ Sν(x̄

−ν) with positive
KKT multipliers λi > 0, i ∈ I0(ȳν , x̄−ν). Therefore, due to Remark 3.4.5, we
have at least nν + 1 positive scalars λi > 0 with

−(cν)T =
∑

i∈I0(ȳν ,x̄−ν)

λiA
ν
i . (3.3)

On the other hand, Carathéodory’s theorem states, that the conic repre-
sentation from (3.3) is also available with at most nν positive multipliers.
Therefore, there are two different sets of KKT multipliers, and PSMFC is
violated at x̄−ν . •

We summarize our observations in the following result.

Theorem 3.4.7 Let Assumption 3.4.3 be valid and let x̄ ∈M . Then CLICQ
is valid at x̄ if and only if CSMFC is valid at x̄.

Theorem 3.4.7 allows us to restate the Theorems 3.3.8 and 3.3.10 in terms
of CLICQ which is advantageous, because CLICQ is easier to verify than
CSMFC or even CCC.
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Theorem 3.4.8 Let Assumptions 3.3.6 and 3.4.3 be valid. Then V is non-
smooth at x̄ ∈ intW if and only if CLICQ is violated at x̄.

Theorem 3.4.9 Let Assumptions 3.3.6 and 3.4.3 be valid and let x̄ ∈ W .
Furthermore, if PLICQ is violated for some player ν ∈ {1, . . . , N} at x̄−ν, let

there exist some xν ∈ Xν(x̄
−ν) with (xν , x̄−ν) ∈ intW . Then V̂ is nonsmooth

at x̄ if and only if CLICQ is violated at x̄.

Note that Theorem 3.4.9 provides an explanation for the connection be-
tween some vertices of W and kinks in the graph of V that we have noticed
in Section 3.1 and recall in the following figure. In Figure 3.2 all assumptions

Figure 3.2: The red colored set of nondifferentiability points of V

of Theorem 3.4.9 are valid, such that V is nonsmooth in x if and only if the
collective linear independence constraint qualification is violated in x which
clearly exhibits the connection between a regularity condition on the set W
and nonsmoothness of the function V .
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Chapter 4

Further results

4.1 Genericity

The notion of genericity is a powerful concept to distinguish mild from strong
assumptions. In this section we will show that our Assumptions 3.2.6, 3.3.6
and 3.4.3 are mild in the sense that they hold generically.

We identify an instance of an LGNEP with the data tuples (cν , Aν , Bν , bν)
in Rnν+mν ·n+mν , ν ∈ {1, . . . , N}, and say that an assumption A holds gener-
ically, if the set of all tuples (cν , Aν , Bν , bν), ν ∈ {1, . . . , N}, such that A
is valid constitutes a set that is open and dense in the space Rn+(n+1)m,
where we put m :=

∑N
ν=1 mν . The openness yields that a generic property

A is stable under small perturbations of the defining data (cν , Aν , Bν , bν),
ν ∈ {1, . . . , N}.

Remark 4.1.1 Note that sufficient conditions for smoothness like CCC,
CSMFC and CLICQ, of course, do not hold generically everywhere. This
corresponds to the fact that there are nondifferentiability points of the gap
function which do not vanish under small perturbations of the data.

In order to show the genericity of an assumption A, we will prove that the set
of tuples with the respective undesired properties lie in the union of finitely
many smooth manifolds with positive codimensions. Before we start with
the proofs we need some definitions and results from [43, 63], which will be
our main tools in the subsequent genericity proofs.

For M,N,R ∈ N with R ≤ min(M,N) we denote the set of (M,N)-
matrices of rank R by

RM×N
R := {A ∈ RM×N : rank(A) = R}

51
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and for L ⊆ {1, . . . ,M} and max(R + |L| −M, 0) ≤ S ≤ min(R, |L|), we
define

RM×N
R,L,S := {A ∈ RM×N

R : A(L) ∈ R(M−|L|)×N
R−S },

where the matrix A(L) results from A by deletion of the rows with indices in
L. The above restrictions on S follow from the relations 0 ≤ R−S ≤M−|L|
and R− |L| ≤ R− S ≤ R.

Proposition 4.1.2 a) The set RM×N
R is a smooth manifold of codimen-

sion (M −R) · (N −R) in RM×N .

b) The set RM×N
R,L,S is a smooth manifold of codimension

(M −R) · (N −R) + S · (M −R + S − |L|) in RM×N .

Proof. The proof of part a) can by found in [43]. For part b) see [63]. •

Proposition 4.1.3 The Assumptions 3.2.6, 3.3.6 and 3.4.3 hold generically.

Proof. First, we show the genericity of Assumption 3.2.6. As the splitting of
the involved matrices in A- and B-parts is irrelevant for this proof, we show
that the set of (m,n)−matrices A such that Assumption 3.2.6 is violated, lies
in the finite union of smooth manifolds with positive codimensions in Rm×n.

In fact, let A ∈ Rm×n be a matrix such that Assumption 3.2.6 is violated.
Then, for some ν ∈ {1, . . . , N} and a submatrix Aν ∈ Rmν×n of A there exists
a set J ⊆ {1, . . . ,mν} with |J | ≤ nν such that the rows of AνJ are linearly
dependent. Let us define rν := rank(Aν). In the case rν < min(mν , n),
according to Proposition 4.1.2a), the matrix Aν lies in a smooth manifold of
codimension (mν − rν) · (n− rν) > 0.

On the other hand, let rν = min(mν , n). Due to the trivial bounds
|J | ≤ mν and nν ≤ n we obtain |J | ≤ min(mν , n) and, thus,

rankAνJ < |J | ≤ min(mν , n) = rν .

We define sν := rν − rankAνJ > 0 and notice that, according to Proposition
4.1.2b), the matrix Aν lies in a smooth manifold of codimension

(mν − rν)︸ ︷︷ ︸
=0

·(n− rν) + sν · (mν − rν + sν − |J c|) = sν · (sν − rν + |J |)

= sν · (|J | − rankAJ)︸ ︷︷ ︸
>0

> 0.

Since the possible choices of ν, rν and sν in both cases only yield finitely
many manifolds, the matrices that do not fulfill Assumption 3.2.6 lie in the



4.2. ERROR BOUNDS 53

finite union of smooth manifolds with positive codimensions, and therefore
the desired property holds generically.

Assumption 3.3.6 just states that LICQ holds everywhere in the set
{x ∈ Rn : Aνxν + Bνx−ν ≤ bν} for any ν ∈ {1, . . . , N}. It is well-known
that this property holds generically (cf. [58]).

To show the genericity of Assumption 3.4.3, as in the genericity proof for
Assumption 3.2.6, we show that the set of data where it is violated lies in
the finite union of smooth manifolds with positive codimensions. In fact, if
Assumption 3.4.3 is violated, there exist some ν ∈ {1, . . . , N}, x−ν ∈ domXν ,
yν ∈ Sν(x−ν) as well as J ⊆ Iν0 (yν , x−ν) with |J | ≤ nν such that rankAνJ < |J |
for a submatrix Aν ∈ Rmν×nν of the data. After dropping the dependence of
this condition on (yν , x−ν) and replacing the set Iν0 (yν , x−ν) by the larger set
{1, . . . ,mν}, along the lines of the genericity proof of Assumption 3.2.6, one
can easily show that also Assumption 3.4.3 holds generically. •

4.2 Error bounds

One way to compute Nash equilibria is to minimize the gap function V
over the common strategy set W as stated in Proposition 1.5.1. Since the
equilibria are exactly the vectors in W with optimal value zero, a reasonable
numerical stopping criterion would be x ∈ W and V (x) < ε with a small
positive number ε. By doing so we implicitly assume that the distance of
an iterate x to the set of all Nash equilibria S is small for small values of ε.
This is an issue that is examined within the theory of error bounds (see [57]
for an article that may serve as starting point to this field of research).

Let ‖ · ‖ : Rn → R be an arbitrary norm on Rn and S the set of all
Nash equilibria in a given LGNEP. Since V is a nonconvex function we can
only expect to obtain a local error bound, that is, the existence of a Nash
equilibrium x̄ and positive scalars `(x̄) > 0 and δ > 0 with

dist(x, S) · `(x̄) ≤ V (x)

for all x ∈ B(x̄, δ) ∩W where we denote the closed unit ball with radius δ
and center x̄ with respect to ‖ · ‖ by B(x̄, δ) and define

dist(x̄, S) := inf
x∈S
‖x̄− x‖.

However, error bounds for GNEPs are very rare and we are only aware of
[22, 42] where the authors derive error bounds for nonlinear GNEPs in order
to apply an interior point method for the computation of Nash equilibria.
Therefore, Theorem 4.2.2 seems to be the first result on error bounds related
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to the gap function of LGNEPs. However, Theorem 4.2.2 considers only the
case of isolated Nash equilibria.

Definition 4.2.1 A Nash equilibrium x̄ is called isolated if there exists an
neighborhood U of x̄ with V (x) > 0 for all x ∈ (U ∩W ) \ {x̄}.

Theorem 4.2.2 Let x̄ ∈ W be an isolated Nash equilibrium. Then there
exist scalars `(x̄) > 0 and δ > 0 with

`(x̄) · dist(x, S) ≤ V (x)

for all x ∈ B(x̄, δ) ∩W .

Proof. Let x̄ ∈ W be an arbitrary Nash equilibrium. Then there exists an
δ > 0, such that V can be expressed as pointwise minimum of finitely many
active selection functions, which implies that for all x ∈ B(x̄, δ)∩W we have

V (x) = V (x̄)︸ ︷︷ ︸
=0

+V ′(x̄, x− x̄)

= V ′(x̄, x− x̄)

= ‖x− x̄‖ · V ′(x̄, x− x̄
‖x− x̄‖

).

This means we arrive at

V (x) = V ′
(
x̄,

x− x̄
‖x− x̄‖

)
· ‖x− x̄‖︸ ︷︷ ︸
≥dist(x,S)

≥ V ′
(
x̄,

x− x̄
‖x− x̄‖

)
· dist(x, S)

≥ min
d∈L(x̄,W )∩B=(0,1)

V ′(x̄, d) · dist(x, S)

where L(x̄,W ) is the outer linearization cone in x̄ at W and B=(0, 1) is the
unit sphere.

Let us define
`(x̄) := min

d∈L(x̄,W )∩B=(0,1)
V ′(x̄, d).

Since x̄ is a Nash equilibrium and therefore a global minimal point of V we
arrive at `(x̄) ≥ 0. Assume that we have `(x̄) = 0. This implies the existence
of a direction d̄ ∈ L(x̄,W ) ∩B=(0, 1) and a scalar t̄ > 0 with

V
(
x̄+ td̄

)
= 0
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for all t ∈ [0, t̄] which is a contradiction becase x̄ is an isolated Nash equilib-
rium. Therefore, we have `(x̄) > 0 which shows the assertion. •

However, this is only a first result concerning the theory of error bounds
applied to the gap function of LGNEPs and especially the case of nonisolated
Nash equilibria deserves special attention which we leave for future research.



56 CHAPTER 4. FURTHER RESULTS



Part II

Algorithms
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Chapter 5

Related Literature and
Overview

This part ist based on the article [26] of this author.
In the literature on nonlinear generalized Nash equilibrium problems,

the following reformulation techniques have been used to tackle GNEPs by
existing algorithms:

• The solution of the concatenated Karush-Kuhn-Tucker (KKT) condi-
tions of all players which was used to discuss local convergence proper-
ties for suitable Newton methods in [30, 56], and in [22, 23] to develop
a robust potential reduction algorithm for GNEPs.

• The use of the Nikaido-Isoda function in order to get a constrained or
unconstrained, typically nonsmooth, optimization reformulation of the
GNEP (cf. [24, 25, 39]). Note that the Nikaido-Isoda function has also
been used to design relaxation methods like, e.g., in [40, 46, 68].

• A transformation of GNEPs into easier Nash equilibrium problems with
the help of penalty terms as, e.g., in [28, 31, 33].

• A quasi-variational inequality reformulation for GNEPs (see, e.g., [47]).

In this part, we compare methods which are based on the first three
approaches described above. We do not use the quasi-variational inequality
reformulation, since in our opinion there is a lack of efficient numerical meth-
ods for this problem class and the recent promising algorithm from [29] is
similar to the potential reduction algorithm we will consider.

To be more specific, in Chapter 6, we examine the interior point method
PRA that was originally designed for the computation of Nash equilibria in
nonlinear GNEPs. Since these convergence results are not available in the
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linear setting, in Theorem 6.2.1 we present some new convergence conditions
for PRA that are tailored to the linear case.

In Chapter 7, we examine some subgradient methods that solve LGNEPs
by minimizing the nonsmooth function V over the unfolded common strategy
set W . Unfortunately, we were not able to prove convergence for the result-
ing methods but at least it is possible to show that V possesses no local
minimal points in the basic economic market which indicates the promising
performance of the subgradient methods.

In Chapter 8, we report numerical results that we obtain from applying
PRA and the subgradient methods to some test examples. Due to the absence
of test examples of LGNEPs in the existing literature we test the algorithms
on different instances of the basic economic market model. Even for test
instances with more than ten thousand variables the numerical results are
very convincing.

In order to obtain a more detailed representation of the LGNEP we in-
troduce matrices Aνµ ∈ Rmν×nµ and vectors cν ∈ Rnν , bν ∈ Rmν , such that
player ν’s optimization problem is given by

Qν(x
−ν) : min

xν∈Rnν
〈cν , xν〉 s.t. Aννxν +

∑
µ6=ν

Aνµxµ ≤ bν ,

for all ν ∈ {1, . . . , N} where the decisions of the remaining players xµ ∈ Rmµ ,
µ 6= ν, are given. Thus, player ν’s strategy set is denoted by

Xν(x
−ν) :=

{
xν ∈ Rnν : Aννxν ≤ bν −

∑
µ6=ν

Aνµxµ

}
.

for all ν ∈ {1, . . . , N}.



Chapter 6

Interior Point Method

In this section, we will discuss two algorithms that are able to compute
generalized Nash equilibria by solving the concatenated KKT conditions as
described in Section 1.5.2.

6.1 Concatenated KKT Systems

As mentioned in Section 1.5.2, x̄ is a generalized Nash equilibrium, if and
only if there exist λν , wν ∈ Rmν satisfying the KKT conditions

cν + (Aνν)T λν = 0,

(Aν1Aν2 . . . AνN) x̄− bν + wν = 0,

wν ≥ 0, λν ≥ 0, (wν)Tλν = 0

for all ν ∈ {1, . . . , N}.

Remark 6.1.1 In LGNEPs, the Abadie constraint qualification is always
valid in the strategy sets of all players which implies that solutions of the
concatenated KKT conditions are exactly the Nash equilibria without pos-
ing any further assumptions. This is an important difference to nonlinear
GNEPs where we have to assume further player constraint qualifications, as,
e.g., player LICQ, in order to obtain a one to one correspondence between
solutions of the KKT systems and Nash equilibria. However, these player
constraint qualifications are not mild assumptions since they may be violated
in a stable way which yields theoretical and numerical difficulties as men-
tioned in Part I of this work. The stable violation of constraint qualification
is caused by the fact that each player faces a parametric optimization problem
(cf. [43]).
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The above system is equivalent to the constrained system

H(x, λ, w) = 0, (x, λ, w) ∈ Rn × Rm
+ × Rm

+ . (6.1)

with

H(x, λ, w) :=

 c+ Eλ
Ax̄− b+ w

λ ◦ w


as we have seen in Proposition 1.5.2 for suitable defined matrices E and A
and vectors c, b, w and λ. In the following sections we discuss two algorithms
that compute Nash equilibria in LGNEPs by solving the constrained equation
(6.1).

6.2 Potential Reduction Algorithm

The following algorithm was introduced in [26] for the solution of LGNEPs.
In Section 8, we shall compare this algorithm numerically with the subgra-
dient method from Section 7.5.

For a numerical solution of LGNEPs we consider the potential reduction
algorithm (PRA) from [23] which was designed for nonlinear GNEPs. This
algorithm exploits the constrained equation reformulation given in Proposi-
tion 1.5.2. Setting

ZI := {(x, λ, w) ∈ Rn × Rm × Rm : Ax− b+ w > 0, λ > 0, w > 0}

and z := (x, λ, w), we define the potential function

ψ(z) := ζ log(‖H(z)‖2)−
m∑
i=1

(log(Aix− bi + wi) + log(λiwi))

for all z ∈ Rn×Rm
++×Rm

++ and some ζ > m, where ‖·‖ denotes the Euclidean
norm and Rm

++ the positive orthant. Below, we restate a version of the PRA
from [23], where the linear equation system is solved exactly in each iteration.

We denote the n-dimensional vector of zeros by 0n, the 2m-dimensional
vector of ones by 12m and the Jacobian of H by JH.
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Algorithm 1: Potential Reduction Algorithm (PRA)

(S.0): Choose z0 ∈ Rn × Rm
++ × Rm

++, β, γ ∈ (0, 1), ε ≥ 0 and set k := 0,
aT := (0Tn , 1

T
2m).

(S.1): If ‖H(zk)‖ ≤ ε: STOP.
(S.2): Choose λk ∈ [0, 1) and compute dk ∈ Rn+2m, such that

JH(zk) dk = −H(zk) + λk
aTH(zk)

‖a‖2
a.

(S.3): Compute a stepsize tk := max{β` : ` = 0, 1, 2, . . .} such that

zk + tkd
k ∈ ZI and

ψ(zk + tkd
k) ≤ ψ(zk) + γtk∇ψ(zk)Tdk.

(S.4): Set zk+1 := zk + tkd
k, k := k + 1 and go to (S.1).

The application of PRA requires the Jacobian matrix JH(z) to be non-
singular on ZI which is also the only assumption in the convergence theorem
(every accumulation point is a solution) of PRA in [23]. But all the condi-
tions for nonsingularity given in [23] require the nonsingularity of a matrix
JxF (x, λ) which consists of second order derivatives of the cost and constraint
functions. By the linearity of these functions in our setting, all the nonsin-
gularity results of [23] are therefore not applicable to LGNEPs. Thus, we
will develop a nonsingularity condition tailored to LGNEPs. Note that the
definitions of the matrices E and A in Section 6.1 correspond to the matrices
E(x) and Jxg(x) in [23] which, in our linear context, are independent of x.
Furthermore, for positive vectors λ,w ∈ Rm

++ we define the diagonal matrices

Λ := diag(λ) and W := diag(w)

and have to find conditions that guarantee the nonsingularity of

JH(x, λ, w) = JH(λ,w) =

0 E 0
A 0 Im
0 W Λ


for all λ,w ∈ Rm

++. Note that this matrix is independent of the x-part of the
considered point. Clearly, a necessary nonsingularity condition is that E has
full row rank and A has full column rank, that is n. Therefore we assume for
the remaining part m ≥ n which, for instance, follows from a boundedness
assumption for the LGNEP. To prove a sufficient condition we introduce for
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an index set I ⊆ {1, . . . ,m} the notation E•I and AI• for the matrices E
and A, where all columns and rows, respectively, with indices not in I are
dropped. Further, for I, J ⊆ {1, . . . ,m} and a matrix M ∈ Rm×m we denote
by MJI the matrix where all rows with indices not in J and all columns with
indices not in I are dropped.

Theorem 6.2.1 Assume that det(E•IAI•) ≥ 0 for all I ⊆ {1, . . . ,m} with
|I| = n, and that the determinant is positive for one of these index sets. Then
JH(λ,w) is nonsingular for all λ,w ∈ Rm

++.

Proof. The matrix

JH(λ,w) =

0 E 0
A 0 Im
0 W Λ


is nonsingular if and only if the matrix(

E 0
W −ΛA

)
is nonsingular. Since w ∈ Rm

++ the matrix W is a positive definite diagonal
matrix, and hence nonsingular. Therefore the matrix JH(λ,w) is nonsingular
if and only if

EW−1ΛA

is nonsingular. Let I(n) denote all subsets of {1, . . . ,m} with exactly n
elements. Then applying the Binet-Cauchy formula for the determinant of
this matrix twice yields

det(EW−1ΛA) =
∑
I⊆I(n)

det((EW−1Λ)•I) det(AI•)

=
∑
I⊆I(n)

∑
J⊆I(n)

det(E•J) det((W−1Λ)JI) det(AI•).

Since W−1Λ is a diagonal matrix we have det((W−1Λ)JI) = 0 for J 6= I.
Hence we have

det(EW−1ΛA) =
∑
I⊆I(n)

det((W−1Λ)II) det(E•IAI•).

Since λ,w ∈ Rm
++, we have det((W−1Λ)II) > 0 for all I ∈ I(n). Hence

our assumption yields det(EW−1ΛA) > 0 and hence the nonsingularity of
JH(λ,w) for all λ,w ∈ Rm

++. •
Obviously, we can also assume that det(E•IAI•) ≤ 0 for all I ⊆ {1, . . . ,m}

with |I| = n, and that the determinant is negative for one of these index sets.
In the case of LGNEPs with shared constraints we obtain a nice corollary.
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Corollary 6.2.2 Assume that the matrix Â = (A11A22 . . . ANN) ∈ Rm1×n

has full column rank for an LGNEP with shared constraints. Then JH(λ,w)
is nonsingular for all λ,w ∈ Rm

++.

Proof. In view of Theorem 6.2.1 it suffices to prove that det(E•IAI•) ≥ 0
for all I ⊆ {1, . . . ,m} with |I| = n, and that the determinant is positive for
one of these index sets.

Let an arbitrary I ⊆ {1, . . . ,m} with |I| = n be given. Then we define
the splitting I = I1∪. . .∪IN where Iν contains all those indices corresponding
to chosen constraints for player ν. Exploiting the structure of A and E we
obtain

E•IAI• =

((A11)T )•I1
. . .

((ANN)T )•IN


(A11)I1• . . . (ANN)IN•

...
...

(A11)I1• . . . (ANN)IN•


=

 ((A11)T )•I1(A
11)I1• . . . ((A11)T )•I1(ANN)IN•

...
...

((ANN)T )•IN (A11)I1• . . . ((ANN)T )•IN (ANN)IN•


=

 ((A11)T )•I1
...

((ANN)T )•IN

((A11)I1• . . . (ANN)IN•
)
.

This shows that for all I ⊆ {1, . . . ,m} with |I| = n, the matrix E•IAI•
is positive semidefinite, and hence a P0-matrix, implying det(E•IAI•) ≥ 0.
Further the full column rank assumption guarantees that we can find at least
one index set Ĩ with |Ĩ| = n such that the matrix(

(A11)Ĩ1• . . . (ANN)ĨN•
)

is nonsingular. Thus E•ĨAĨ• is positive definite, and hence a P -matrix, which
implies det(E•ĨAĨ•) > 0. Then Theorem 6.2.1 shows the assertion. •

Let us consider the nonsingularity condition in the context of Example
6.2.3.

Example 6.2.3 Consider the 2-player game whose cost functions possess a
maximum structure

min
x1

max{x1 − 2x2,−x1 − x2} s.t. x1 + x2 ≤ 1, x1 ≥ 0

min
x2

max{x2 − x1, x1 − x2} s.t. x1 + x2 ≤ 1, x2 ≥ 0.
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Here we have nondifferentiable but convex cost functions and we are not
aware of efficient algorithms that solve GNEPs of this particular class. How-
ever, we can reformulate the problem exploiting the maximum structure in
the cost function. Applying the epigraphical reformulation (cf. Sec. 1.3.3)
we obtain the equivalent LGNEP

min
α1,x1

α1 s.t. x1 + x2 ≤ 1, x1 ≥ 0, x1 − 2x2 ≤ α1, −x1 − x2 ≤ α1,

min
α2,x2

α2 s.t. x1 + x2 ≤ 1, x2 ≥ 0, x2 − x1 ≤ α2, x1 − x2 ≤ α2.

Example 6.2.4 In order to apply the PRA for the reformulated LGNEP
from Example 6.2.3, one has to guarantee nonsingularity of the matrix

JH(λ,w) =

0 E 0
A 0 I8

0 W Λ

 ,

with

E :=


0 0 −1 −1 0 0 0 0
1 −1 1 −1 0 0 0 0
0 0 0 0 0 0 −1 −1
0 0 0 0 1 −1 1 −1


and

A =



0 1 0 1
0 −1 0 0
−1 1 0 −2
−1 −1 0 −1
0 1 0 1
0 0 0 −1
0 −1 −1 1
0 1 −1 −1


.

For these matrices it is (with some computational effort) possible to check
that the conditions of Theorem 6.2.1 are satisfied and hence JH(λ,w) is
nonsingular for all λ,w ∈ Rm

++. The potential reduction algorithm requires
15 iterations to compute the solution

(α1, x1, α2, x2) = (−3.342, 2.513, 1.420, 3.237) · 10−9.

Let us further mention that our theoretical conditions are not always sat-
isfied. For a slight change in the cost function of player 1 to

max{x1 − 2x2,−x1 + x2},
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we can still get an LGNEP with non-shared constraints as in Example 6.2.3
and we have the same E as before but a slightly different matrix

Ã =



0 1 0 1
0 −1 0 0
−1 1 0 −2
−1 −1 0 1
0 1 0 1
0 0 0 −1
0 −1 −1 1
0 1 −1 −1


,

which differs from A only in the last entry in the fourth row. Now we have
for the index set I = {3, 4, 7, 8}

det(E•IÃI•) = det



−1 −1 0 0
1 −1 0 0
0 0 −1 −1
0 0 1 −1



−1 1 0 −2
−1 −1 0 1
0 −1 −1 1
0 1 −1 −1




= −8 < 0,

and the condition of Theorem 6.2.1 is violated. Moreover, it is possible to
find λ,w ∈ Rm

++ such that JH(λ,w) is indeed singular. However, the poten-
tial reduction algorithm is still able to solve the problem numerically in 14
iterations.

6.3 A Hybrid Algorithm

Based on a combination of the robust potential reduction algorithm (PRA)
and a local LP-Newton-method, a hybrid algorithm for GNEPs was devel-
oped in [22] which was called PRALP and is presented in Algorithm 2. In an
initial phase this hybrid algorithm is equal to the potential reduction algo-
rithm and hence solves a linear equation system in each iteration. When the
current iterate seems to be close to a solution the algorithm switches to the
LP-Newton part and solves a linear program to obtain the next iterate. If the
convergence is fast enough, the algorithm continues solving linear programs
until convergence, otherwise it returns to the last iterate of the potential
reduction part and performs a further step there. The algorithm inherits
the convergence properties of the potential reduction algorithm and is there-
fore applicable to LGNEPs under the conditions developed in the previous
section. Furthermore, under an additional assumption on the multipliers,
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Algorithm 2: Hybrid Algorithm for GNEPs (PRALP)

(S.0): Choose z0 := ẑ ∈ ZI , β, η, θ ∈ (0, 1), ζ > m, 0 < τmin ≤ τmax,τ0 ∈
[τmin, τmax], ε ≥ 0,

and set k := 0, aT := (0Tn , 1
T
2m).

(S.1): If ‖H(zk)‖ ≤ ε then STOP.
If ‖H(zk)‖ ≤ τk set λk := 0 and go to (S.4), else go to (S.2).

(S.2): Choose λk ∈ [0, 1) and compute dk ∈ Rn+2m such that

JH(zk) dk = −H(zk) + λk
aTH(zk)

‖a‖2
a.

(S.3): Compute a stepsize tk := max
{
βi | i = 0, 1, 2, . . .

}
such that

zk + tkd
k ∈ ZI and

ψ(zk + tkd
k) ≤ ψ(zk) + ηtk∇ψ(zk)Tdk.

Set zk+1 := zk + tkd
k, ẑ := zk+1, τk+1 := τk, k := k + 1, go to (S.1).

(S.4): Compute a solution (z̃k+1, γk+1) of the linear program

min
z,γ

γ s.t. z ∈ Ω,

‖H(zk) + JH(zk)(z − zk)‖∞ ≤ γ‖H(zk)‖2
∞,

‖z − zk‖∞ ≤ γ‖H(zk)‖∞.

If ‖H(z̃k+1)‖ ≤ θ‖H(zk)‖ then

set zk+1 := z̃k+1, τk+1 := τk, k := k + 1, go to (S.1),
else set zk+1 := ẑ, k := k+ 1, choose τk+1 ∈ [τmin, τmax], go to (S.2).
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which is weaker than strict complementarity, PRALP is locally quadratic
convergent. Hence, the additional effort in solving a linear program instead
of linear equation systems pays off if one requires to compute solutions with
high precision.

Finally, we would like to mention that there is also a nonsmooth vari-
ant of the hybrid algorithm presented in [20] which, however, has similar
convergence conditions and numerical performance as PRALP.
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Chapter 7

Subgradient Method

7.1 Nikaido-Isoda Based Approaches

A different approach to solve GNEPs is an optimization reformulation that
was introduced in [39] for the computation of generalized Nash equilibria
and uses the so-called Nikaido-Isoda function from [54] which, for LGNEPs,
is defined by

Ψ(x, y) :=
N∑
ν=1

〈cν , xν〉 − 〈cν , yν〉.

Additionally, we define player ν’s optimal value function by

ϕν(x
−ν) :=

{
min

xν∈Xν(x−ν)
〈cν , xν〉, if Xν(x

−ν) 6= ∅,

∞, else,

where Assumption 1.2.7 ensures the attainment of the minimum in case of
nonempty strategy sets. For LGNEPs strong duality yields

ϕν(x
−ν) = max

λν∈Zν

〈
λν ,

∑
µ6=ν

Aνµxµ − bν
〉

with
Zν :=

{
λν ∈ Rmν : cν + (Aνν)Tλν = 0, λν ≥ 0

}
.

Note that in contrast to the primal feasible set Xν(x
−ν), the feasible set

Zν of player ν’s dual problem does not depend on x−ν . According to [39],
generalized Nash equilibria are exactly the roots of the gap function

V (x) := max
y∈X1(x−1)×...×XN (x−N )

Ψ(x, y)

=
N∑
ν=1

〈cν , xν〉 − max
λν∈Zν

〈
λν ,

∑
µ6=ν

Aνµxµ − bν
〉

71
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on the set

W := {x ∈ Rn : Ax ≤ b}.

The gap function V is an extended-valued piecewise linear concave function
and V (x) is real-valued if and only if Xν(x

−ν) 6= ∅ for all ν ∈ {1, . . . , N}. As
mentioned in Proposition 1.5.1, a vector x̄ is a generalized Nash equilibrium
if and only if x̄ is a global minimal point of the constrained nonsmooth
optimization problem

minV (x) s.t. x ∈ W

with optimal value V (x̄) = 0.

In order to get an unconstrained optimization reformulation we have to
deal with the fact that V may be not real-valued all over Rn. To overcome
this difficulty we construct a real-valued global extension of the gap function
V which can be done in at least two different ways: In [24, 25], a projection
based real-valued extension of V is proposed. However, this approach uses a
regularized version of the Nikaido-Isoda function that we try to avoid since
this would destroy our linear structure. Therefore, we apply a global real-
valued extension of V that was suggested in Section 2.2 and is applicable if
the set of vertices of the polyhedron Zν is known or easily computable. This
holds true for some LGNEPs as we shall see in the Lemmata 7.4.1 and 7.4.2.
Therefore, let

Oν := vert(Zν)

be the finite set of all vertices of Zν . Then, by the vertex theorem of linear
programming, the function

V̂ (x) =
N∑
ν=1

〈cν , xν〉 − max
λν∈Oν

〈
λν ,

∑
µ6=ν

Aνµxµ − bν
〉

is a real-valued global extension of V on Rn, that is, V̂ is real-valued all over
Rn and V̂ (x) = V (x) for all x ∈ W .

Denoting the i-th row of Aνµ by Aνµi we define the `1-penalty term

P (x) :=
N∑
ν=1

mν∑
i=1

max

{
0, Aννi x

ν +
∑
µ6=ν

Aνµi x
µ − bνi

}

which is a penalty function for W and arrive at the following result that was
indicated in [67].
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Proposition 7.1.1 There exists some ρ > 0, such that x̄ is a generalized
Nash equilibrium if and only if x̄ is a global minimal point of the uncon-
strained nonsmooth optimization problem

min V̂ρ(x) := V̂ (x) + ρP (x)

with optimal value V̂ρ(x̄) = 0.

Proof. The function V̂ is piecewise affine-linear and by standard argu-
ments one could find a finite penalty parameter for each of its linear pieces.
Since the polyhedral sets Oν have only a finite number of vertices, V̂ has only
a finite number of linear pieces and setting ρ as the maximum of the asso-
ciated penalty parameters, we have that V̂ρ(x) is an exact penalty function.

This implies V̂ρ(x) > 0 for all x ∈ Rn \W and together with the fact that we

have V̂ρ(x) = V (x) on W, the assertion follows from Proposition 1.5.1. •
The algorithms in Section 7.5 and 7.6 compute generalized Nash equi-

libria by solving the constrained and unconstrained nonsmooth optimization
problems from Proposition 1.5.1 and 7.1.1.

7.2 Structural Properties of Subgradient Me-

thods

The optimization problem

minV (x) s.t. x ∈ W

is a linearly constrained nonsmooth piecewise-linear concave optimization
problem which, in principle, can be tackled by each algorithm from non-
smooth, nonconvex optimization. However, due to the fact that we cannot
exploit second order information in the linear case, we restrict ourselves to
subgradient methods which only use first order information.

One major drawback of general nonsmooth methods is that an ordinary
‘pointwise’ subdifferential does not yield a numerical stopping criterion. One
possibility to overcome this difficulty is the use of an epsilon subdifferen-
tial that contains information of subderivatives from a neighborhood of the
point of interest as it is done, e.g., in bundle methods or the robust gra-
dient sampling method (RGS) from [8]. Usually, the approximated epsilon
subdifferential is used to compute a search direction or to check a stopping
criterion at the cost of an quadratic optimization problem at each iteration
(cf. [8, 49]). In particular for high dimensional problem data this computa-
tion becomes numerically expensive.
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However, in contrast to general nonsmooth optimization problems, we can
exploit that the optimal function value is known to be zero, which provides
the handy stopping criterion V (xk) < ε, and we do not have to construct a
numerically expensive epsilon subdifferential.

Since our objective function V is piecewise-linear, the set of nondifferen-
tiability points has Lebesgue measure zero, that is, V is differentiable almost
everywhere. Therefore, a subgradient based method that works with numer-
ical precision is likely to compute gradients instead of subgradients at each
iteration. Hence, together with our stopping criterion V (xk) < ε, in this case
we would basically apply a smooth method to a nonsmooth optimization
problem. The idea of applying smooth methods to nonsmooth nonconvex
problems is known to work very well but it seems to be a very challenging
task to obtain convergence results (cf., e.g., [50, 51]).

7.3 Local and Global Minima

As illustrated in the following Examples 7.3.1 and 7.3.2, the gap function
V may have strict local minimal points as well as plateaus. Therefore, in
general, we cannot expect a gradient based local method to find a global
minimal point of the gap function V or the penalty function V̂ρ in order to
compute a Nash equilibrium as described in Section 1.5.1. Nonetheless, in
contrast to these general LGNEPs there are no local minimal points in our
economic market example with shared constraints that are not solutions of
the LGNEP as we shall see in Lemma 7.3.3.

Example 7.3.1 Consider the 2-player game with shared constraints defined
by

min
x1
−x1 s.t. x1 ∈ [0, 2], x1 − 2x2 ≤ 1,−2x1 + x2 ≤ 1,

min
x2
−x2 s.t. x2 ∈ [0, 2], x1 − 2x2 ≤ 1,−2x1 + x2 ≤ 1.

Here we can find

ϕ1(x2) = min
x1∈X1(x2)

−x1 = −min{2, 1 + 2x2},

ϕ2(x1) = min
x2∈X2(x1)

−x2 = −min{2, 1 + 2x1},

and therefore we have

V (x) = −x1 − x2 + min{2, 1 + 2x2}+ min{2, 1 + 2x1}.
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In a feasible neighborhood of (0, 0) we have

V (x) = −x1 − x2 + 1 + 2x2 + 1 + 2x1 = 2 + x1 + x2

and hence (0, 0) is a local minimum which is not a solution, since V (0, 0) =
2 > 0.

Example 7.3.2 Consider the 2-player game with shared constraints defined
by

min
x1
−x1 s.t. x1 + x2 ≤ 1,−x1 + x2 ≤ 1, x1 − x2 ≤ 1,−x1 − x2 ≤ 1,

min
x2
−x2 s.t. x1 + x2 ≤ 1,−x1 + x2 ≤ 1, x1 − x2 ≤ 1,−x1 − x2 ≤ 1.

Here we can find

ϕ1(x2) = min
x1∈X1(x2)

−x1 = −min{1− x2, 1 + x2},

ϕ2(x1) = min
x2∈X2(x1)

−x2 = −min{1− x1, 1 + x1},

and therefore we have

V (x) = −x1 − x2 + min{1− x2, 1 + x2}+ min{1− x1, 1 + x1}
= 2− x1 − x2 − |x1| − |x2|.

In this example we have

V (x) = 2 ∀x ∈ {x ∈ R2 | x1 < 0, x2 < 0,−x1 − x2 ≤ 1},

and therefore we have a part of the feasible set where V is constant.

Lemma 7.3.3 Assume the basic market model from Section 1.3.1 with non-
negative and ordered price vectors, that is, with 0 < pν1 ≤ pν2 ≤ . . . ≤ pνK for
all ν ∈ {1, . . . , N}. Further assume that for each i = 1, . . . , K, there is at
least one ν ∈ {1, . . . , N} with pνi−1 < pνi (where pν0 := 0). Then every local
minimum of V on W is a solution of the LGNEP.

Proof. See [26]. •
The existence of local minimal points in the modified economic market

example is more involved and we have not been able to obtain a positive or
negative result. However, our subgradient based methods work numerically
very well for the basic economic markets and its modified version as we shall
see in Section 8.
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7.4 The Computational Effort of Subgradient

Methods

In order to apply a subgradient method we need to compute one subgradient
of V in each iteration. Recall that V may not be defined outside of W ,
but it is possible to replace V by its global extension V̂ for all x /∈ W . The
subdifferential in the sense of Clarke (cf. [11]) of V̂ can be computed explicitly
as already mentioned in [67]. For completeness, we recall the result whose
proof follows from calculation rules of Clarke subdifferentials. We denote
for given x−ν by Oν(x

−ν) the set of optimal vertex points of player ν’s dual
problem

max

〈
λν ,

∑
µ6=ν

Aνµxµ − bν
〉

s.t. λν ∈ Zν

and use the Minkowski sum A+B for two sets A,B ⊆ Rn.
Recall that according to Proposition 2.4.4 the Clarke subdifferential of V̂

at x ∈ Rn is given by

∂V̂ (x) =




c1

−(A1,2)Tλ1

...
−(A1,N)Tλ1

 : λ1 ∈ conv
(
O1(x−1)

)


+




−(A2,1)Tλ2

c2

−(A2,3)Tλ2

...
−(A2,N)Tλ2

 : λ2 ∈ conv
(
O2(x−2)

)


+ . . .+



−(AN,1)TλN

...
−(AN,N−1)TλN

cN

 : λN ∈ conv
(
ON(x−N)

)
 .

By definition, each evaluation of V̂ requires the computation of N optimal
points λ̄1, . . . , λ̄N . Having these optimal points, the computation of one sub-
gradient of V̂ is an easy task as we have seen in Corollary 2.4.5. Therefore,
the main computational effort is the evaluation of V̂ . For x ∈ W , the com-
putation of the optimal points λ̄1, . . . , λ̄N is equivalent to solving N linear
programs whereas for x /∈ W , we need to compute V̂ (x) with help of the
vertex set Oν of the polyhedron Zν , which, in general, is a difficult task.
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However, if the vertex set Oν of Zν is known, the evaluation of V̂ becomes
cheap. For our economic market models from Section 1.3.1 the sets Oν can
be computed using the following Lemmata. Note that for known vertex sets
Oν also in the case x ∈ W , the numerical solution of N linear optimization
problems can be replaced by an enumeration of the known vertices of Zν
which is possible since the number of vertices increases only linearly in K.

Lemma 7.4.1 The set Z := {λ ∈ R2K+1 : ATλ = p, λ ≥ 0} with

AT :=

1 0 1 −1 0
. . .

...
. . .

0 1 1 0 −1

 ∈ RK×(K+1+K)

possesses at most K + 1 different vertices which are given by

λ(i) =

max{0, p− pi · e}
pi

max{0, pi · e− p}


for all i ∈ {1, . . . , K} and

λ(K+1) =

 max{0, p}
0

max{0,−p}


where the maximum is taken componentwise.

Proof. First, we rearrange the equations to obtain λK+2
...

λ2K+1

 =

1 0 1
. . .

...
0 1 1


 λ1

...
λK+1

−
p1

...
pK

 ,

and, hence, finding the vertices of Z becomes equivalent to finding the vertices
of

Z̃ =

λ̃ ∈ RK+1 :

1 0 1
. . .

...
0 1 1

 λ̃ ≥ p, λ̃ ≥ 0


=

{
λ̃ ∈ RK+1 : λ̃K+1 ≥ 0, λ̃i ≥ max{0, pi − λ̃K+1} ∀i = 1, . . . , K

}
.

Since at any vertex at least K+1 linearly independent constraints are active,
we consider the following cases:
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• λ̃K+1 = 0: Then we must have λ̃i = max{0, pi} for all i ∈ {1, . . . , K} in
order to get K+1 linearly independent active constraints, which is clear
for pi 6= 0, and follows for pi = 0 from the fact that λ̃i ≥ 0, λ̃K+1 ≥ 0
and λ̃i + λ̃K+1 ≥ 0 are linearly dependent. This results in the vertex

λ̃(K+1) =

(
max{0, p}

0

)
.

• λ̃K+1 6= 0 and λ̃K+1 6= pi for all i ∈ {1, . . . , K}: Then we can have at
most K active constraints λi = max{0, pi− λ̃K+1} and hence we do not
have a vertex in this case.

• λ̃K+1 6= 0 and λ̃K+1 = pi for some i ∈ {1, . . . , K}: Then we have the
two independent active constraints λ̃i = 0 and λ̃ + λ̃K+1 = pi. If for
some j 6= i we have pj = pi, then λ̃j = max{0, pj − λ̃K+1} brings two
new active constraints, but the number of linearly independent active
constraints increases only by one. Further, also if we have pj 6= pi we
can increase the number of linearly independent active constraints by
one if we set λ̃j = max{0, pj− λ̃K+1} = max{0, pj−pi}. Altogether this
means that we have only one way to obtain K+ 1 linearly independent
constraints, and hence only one vertex

λ̃(i) =

(
max{0, p− pi · e}

pi

)
.

This shows that we get one vertex from the first case and at most K (if all
pi are different) vertices from the third case. Having the vertices from Z̃ we
get those of Z using the equations, and hence we have at most K+1 vertices

λ(i) =

max{0, p− pi · e}
pi

max{0, pi · e− p}


for all i ∈ {1, . . . , K} and

λ(K+1) =

 max{0, p}
0

max{0,−p}


•

In the economic market with nonshared constraints the vertex compu-
tation for the players 1, . . . , N does not change but player N + 1 faces the
additional constraint

−N · xN+1
1 ≤ −

N∑
ν=1

xν1.
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Furtunately, the vertex set ON+1 of ZN+1 is still computable as we see in the
following Lemma.

Lemma 7.4.2 For the matrix

AT :=

1 0 1 −1 0 −N
. . .

...
. . . 0

0 1 1 0 −1 0

 ∈ RK×(K+1+K+1)

the set
Z := {λ ∈ R2K+2| AT λ = p, λ ≥ 0}

possesses at most K + 2 different vertices which are given by

λ(i) =


max{0, p− pi · e}

pi
max{0, pi · e− p}

0


for all i ∈ {1, . . . , K} as well as

λ(K+1) =


max{0, p}

0
max{0,−p}

0


and

λ(K+2) =



0
max{p2, 0}

...
max{pK , 0}

0
0

max{p2, 0} − p2
...

max{pK , 0} − pK
−p1
N


provided that p1 < 0.

Proof. First we can rearrange the equations to obtain λK+2
...

λ2K+1

 =

1 0 1 −N
. . .

... 0
0 1 1 0




λ1
...

λK+1

λ2K+2

−
p1

...
pK

 ,
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and finding the vertices of Z becomes equivalent to finding the vertices of

Z̃ =

λ̃ ∈ RK+2

∣∣∣∣∣
1 0 1 −N

. . .
... 0

0 1 1 0

 λ̃ ≥ p, λ̃ ≥ 0


= {λ̃ ∈ RK+2| λ̃ ≥ 0, λ̃1 ≥ p1 − λ̃K+1 +N · λ2K+2,

λi ≥ pi − λ̃K+1∀i = 2, . . . , K}
=

{
λ̃ ∈ RK+2

∣∣ λ̃2K+2 ≥ 0, λ̃K+1 ≥ 0, λ̃1 ≥ max{0, p1 − λ̃K+1 +N · λ2K+2}
λ̃i ≥ max{0, pi − λ̃K+1} ∀i = 2, . . . , K

}
.

Since at any vertex at least K + 2 linearly independent constraints are
active, we consider the following cases:

• Let λ̃2K+2 = 0. This yields at most K + 1 different vertices

λ̃(i) =

max{0, p− pi · e}
pi
0


for all i ∈ {1, . . . , K} and

λ̃(K+1) =

max{0, p}
0
0


as seen in Lemma 7.4.1.

• Let λ̃2K+2 6= 0 and λ̃K+1 = 0. Then we have λ̃i = max{pi, 0}, i =
2, . . . , K, which yields K − 1 independent equalities. The only way to
obtain two more linearly independent constraints is the case λ1 = 0
and λ2K+2 = −p1/N , and the vertex

λ̃(K+2) =



0
max{p2, 0}

...
max{pK , 0}

0
−p1
N


is only feasible, if we have p1 < 0.
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• Let λ̃2K+2 6= 0, λ̃K+1 6= 0 and λ̃K+1 6= pi for all i = 2, . . . , K. Then
there is no possibility to obtain more than K active constraints and
therefore we do not have a vertex in this case.

• Let λ̃2K+2 6= 0, λ̃K+1 6= 0 and λ̃K+1 = pi for some i = 2, . . . , K. Then
the constraint λ̃i = max{0, pi − λ̃K+2} yields two active independent
constraints. Following the arguments in the proof of Lemma 7.4.1, we
obtain from each constraint

λ̃j = max{0, pj − λ̃K+2} = max{0, pj − pi}

with j ∈ {2, . . . , K} \ {i} only one more independent equation. How-
ever, also in this case it is only possible to obtain at most K+1 vertices,
such that there is no vertex in this case.

Finally, we obtain at most K + 2 different vertices which are given by

λ(i) =


max{0, p− pi · e}

pi
max{0, pi · e− p}

0


for all i ∈ {1, . . . , K} as well as

λ(K+1) =


max{0, p}

0
max{0,−p}

0


and

λ(K+2) =



0
max{p2, 0}

...
max{pK , 0}

0
0

max{p2, 0} − p2
...

max{pK , 0} − pK
−p1
N


provided that p1 < 0. •
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7.5 Projected Subgradient Method

In order to solve the constrained optimization reformulation from Proposition
1.5.1 we suggest the following simple projected subgradient method (PSM),
where we denote the projection of a vector x onto the set W with respect to
the Euclidean norm by PW (x).

Algorithm 3: Projected Subgradient Method (PSM)

(S.0): Choose x0 ∈ W , ε ≥ 0, and set k := 0.
(S.1): If V (xk) ≤ ε: STOP.
(S.2): Compute a subgradient sk ∈ ∂V (xk).
(S.3): Set αk := 1√

k+1
.

(S.4): Compute xk+1 = PW [xk − αksk].
(S.5): Set k := k + 1 and go to (S.1).

Note that we choose a nonsummable diminishing a priori step size in
(S.3) that does not require a function evaluation of V at the point xk−αksk
in order to avoid the evaluation of V outside of W, where it is possibly
undefined. The effort in (S.4) is the computation of the projection which is
a quadratic program whenever xk − αksk 6∈ W. The remaining effort is the
evaluation of V in (S.1) since the computation of a subgradient in (S.2) is
cheap using the formula from Corollary 2.4.5.

7.6 Penalty Approach

Here we want to exploit the unconstrained optimization reformulation of an
LGNEP obtained by a penalty approach as stated in Proposition 7.1.1 and
suggested in [67]. In principle, if one can estimate a sufficiently large penalty
parameter, this unconstrained optimization problem can be tackled by an
arbitrary method from unconstrained nonsmooth, nonconvex optimization.
In Section 8, we will use the following algorithms in order to solve the penalty
reformulation of LGNEPs.

• The robust gradient sampling (RGS) algorithm from [8] which guar-
antees convergence to a Clarke starionary point but requires sampling
and the solution of a quadratic program at each iteration.

• The following ordinary subgradient method which exploits prior knowl-
edge about the optimal value in both, the step size with the so-called
Polyak step size rule, and the stopping criterion as discussed in the
beginning of Section 7.
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Algorithm 4: Penalty Method

(S.0): Choose x0 ∈ W , ε1, ε2 ≥ 0, ρ > 0, and set k := 0.
(S.1): If V̂ (xk) ≤ ε1 and P (x) ≤ ε2: STOP.

(S.2): Compute a subgradient sk ∈ ∂V̂ρ(xk).
(S.3): Set αk := V̂ρ(xk)

(sk)T sk
.

(S.4): Set xk+1 := xk − αksk as well as k := k + 1 and go to (S.1).

In contrast to the evaluation of V which requires the solution of linear pro-
grams that may not have a solution for x 6∈ W , the evaluation of V̂ is possible
for all x ∈ Rn but requires the computation of the vertex sets Oν = vert(Xν).
While this is difficult in general, we are able to compute the vertex sets Oν

for the economic market models from Section 1.3.1 by the Lemmata 7.4.1
and 7.4.2.

Using Corollary 2.4.5 we are able to compute an element of ∂V̂ (x) and
since ∂P (x) is computable by standard arguments, we can find explicit for-

mulas for a subgradient s ∈ ∂V̂ρ(x) that we have to compute in (S.2).
Therefore, if we are able to compute the vertex set Oν the penalty method
is very cheap.
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Chapter 8

Numerical results

Due to the lack of an explicit treatment of LGNEPs in the existing literature,
we were not able to find a set of existing test examples and, therefore, the
numerical tests in this section are based on the economic market models that
were introduced in Section 1.3.1.

8.1 Construction of Test Examples

In order to construct numerical examples for the economic problems with
N players and K categories as described in Section 1.3.1, we created 25
instances of the market model in different dimensions by doing the following:

• The price vectors pνk are the sum of two parts: a random integral be-
tween 1 and 100, which is equal for all players ν ∈ {1, . . . , N} and an
individual random integral between 1 and 10, which may be different
for each player and models the individual profit.

• The capacities Cν = 100 · K are assumed to be equal for all players
ν ∈ {1, . . . , N}.

• The demand Dk for the product in the price category k is the sum of
50 ·N and a random integral between N and 40 ·N, which is different
for all categories k ∈ {1, . . . , K}.

We also construct the modified basic economic problems from Section
1.3.1 by the rules above with randomly generated but ordered price vectors.

Although the LGNEPs in our basic economic market model do not have
local minimal points (cf. Lemma 7.3.3), LGNEPs resulting from these eco-
nomic market models have indeed nonsmooth concave gap functions and the
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structure of the solution set is not simple, as one can see for low dimensional
problems by direct inspection.

8.2 Implementation Details

All our implementations are done in Matlab R© and the tests are run on a
personal computer with four cores à 3.2 GHz and 12 GB RAM.

As we have seen in Section 1.6, the computation of normalized Nash equi-
libria of an LGNEP is equivalent to the solution of a single linear program.
We used the dual simplex method implemented in the Matlab R© function
linprog to find normalized solutions for different instances of our economic
market model. Note that we used the dual simplex method in linprog since
it outperformed the interior point algorithm in linprog in both, running time
and accuracy of the results.

In PRA and PRALP we set the starting point x0 = 0, λ0 = 10, w0 =
max{10, 5−g(x0)}, and as stopping criterion we use that the merit function,
defined in [22], is less or equal ε = 10−8. In PRA we use the parameters
γ = 0.01, β = 0.5 and a constant λk = 0.1. The hybrid method PRALP is
run with the parameters as in [20], i.e.,

β = 0.5, η = 0.01, θ = 0.9, ζ = 2m, τmin = 10−11, τmax = τ0 = 10−3,

the constant choice λk = 0.1 in (S.2), and the update strategy τk+1 =
max{τmin, θ‖H(zk)‖}. For further implementation details we refer to [20].
The linear programs in PRALP were solved with the dual simplex method
from linprog.

The projected subgradient method (PSM) is run with x0 = 0 and ε = 10−6

and the quadratic programs are solved by the Matlab R© function quadprog. In
the case of unknown vertices Oν , the linear optimization problems are solved
with the primal simplex method in linprog. The robust gradient sampling
(RGS) algorithm is run with standard settings and starting point x0 = 0.
For the penalty method we choose x0 = 0, ε1 = ε2 = 10−4 and ρ = 1000.

8.3 Discussion of Numerical Results

8.3.1 Normalized Solutions

Table 8.1 summarizes the results for the computation of normalized equilib-
ria which is done by solving a linear program with linprog as described in
Section 1.6. In order to compare it with a different approach, we also test
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the potential reduction algorithm (PRA), Algorithm 1, which computes by
[19, Lemma 6.7] normalized Nash equilibria with weights r1 = . . . = rN = 1,
if equal starting vectors for all components of λ and w are chosen.

The first column is the number of players N, the second the number
of categories K. Then we have three columns for the potential reduction
algorithm (PRA): The first, ‘LS’, is the number of equation systems solved.
The second, ‘term’, is the final merit function value when the algorithm
terminates, where the merit function is defined for the KKT system of the
GNEP using the minimum function as complementarity function, see [23] for
details. The third column is the running ‘time’ of the method (which is in all
tables given in seconds). Furthermore, the last two columns in Table 8.1 are
for the test runs for the direct solution of the linear program with linprog.
We report the number of iterations ‘iter’ and the running ‘time’.

As Table 8.1 reveals for the computation of normalized Nash equilibria
the direct solution of the linear program with the Matlab function linprog
is very efficient and except for some problems with small dimension much
faster than PRA, even though it solves much more linear equation systems,
since it requires the solution of two of them at each iteration.

8.3.2 General Solutions

As we have seen in the previous section the computation of normalized so-
lutions by linprog is very efficient. However, since these are only defined for
GNEPs with shared constraints and even there not all solutions are normal-
ized, we present here numerical results for different methods to compute not
necessarily normalized solutions.

First, we use PRA again. Choosing the starting vectors λ and w, such
that not all partial vectors of λ and w coincide this algorithm computes not
necessarily normalized solutions. However, its performance is very similar to
the case with equal starting vectors, as reported in Table 8.1, and therefore we
do not report new results here. Second, we test the hybrid method PRALP,
Algorithm 2. We report the number of linear equation systems ‘LS’, the
number of linear programs ‘LP’, the final merit function value ‘term’, and
the running ‘time’. As a third algorithm we use the projected subgradient
method (PSM), Algorithm 3. Here we report the number of linear programs
‘LP’, the number of quadratic programs ‘QP’, the final value of the merit
function V, and the running ‘time’. Note that the stopping criterion V (x) ≤
10−6 yields results that are for most of the problems slightly more precise as
those for PRA with a stopping tolerance of 10−8. Compared to PRALP with
the same stopping tolerance 10−8, the precision of PSM with 10−6 is worse
for small and middle problem sizes and better for larger problems. Finally,
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we solve the penalty reformulation with two algorithms, the robust gradient
sampling (RGS) from [8] and our penalty method Algorithm 4.

As one can see in the Tables 8.2 and 8.3, PRA and PSM are able to solve
all instances of the test problems, and we have only one failure for PRALP
for the largest problem in each class which was caused by the fact that the
resulting linear problem was to large to be solved by linprog with the provided
memory. Therefore, all algorithms seem to be suitable to solve LGNEPs. Let
us mention that slightly negative values of V correspond to iterates that are
slightly not feasible but within the feasibility tolerance used by the quadratic
program to obtain the projection on W. PRA solves the test examples faster
than PRALP, which, however, achieves a higher accuracy than PRA. This
phenomenon is due to the solution of linear programs in PRALP which, on
one hand, takes more time than the solution of linear equation systems but,
on the other hand, improves the precision of the results. Comparing the
running time between PRA and PSM, we see that PRA is often faster for
the lower and middle dimensional cases whereas PSM is much faster than
PRA for high dimensional problems. In our opinion, all three algorithms are
recommendable for the solution of LGNEPs.

In Table 8.4, we test the general PSM against ‘PSMvert’ which is a version
of PSM that exploits the knowledge of the vertex sets in order to avoid
the numerical solution of linear optimization problems in each iteration of
PSM. We see that especially in lower and middle dimensional examples,
the enumeration of the known vertices saves a lot of time compared with
the solution of linear programs. However, for the largest examples, this
advantage becomes negligible since then most of the running time is spent
with solving the quadratic problem to compute the projection onto W . We
see that both algorithms are able to solve LGNEPs with up to ten thousand
variables in a reasonable time.

Furthermore, with known vertex sets we can apply the penalty method
Algorithm 4 and RGS to the penalty reformulation of LGNEPs. In Table 8.5,
we report the number of iterations ‘iter’, the final value of V̂ρ, and the running
‘time’ for both methods. The penalty method performs much better than
RGS which can be explained by the fact that it exploits prior knowledge of
our optimal value as explained in the beginning of Section 7. However, both
algorithms are not comparable to PRA, PRALP or PSM, in both, accuracy
and running time. Hence, in conclusion, we do not recommend the penalty
reformulation for the solution of LGNEPs.
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8.4 Conclusions

In this part we analysed algorithms for the solution of LGNEPs. We provided
a new convergence condition for the potential reduction algorithm applied to
LGNEPs since the existing ones do not cover the linear case. The algorithm
turns out to be robust and for small and middle dimensional problems also
fast. Due to the lack of LGNEPs in the literature, our numerical results were
based on some economic market models, introduced in Section 1.3.1. These
problems were shown to have the favorable property that all local minima
are also global in some optimization reformulation of the LGNEP. Therefore,
we proposed a projected subgradient method for the solution of the LGNEPs
which turned out to be very efficient and fast and, in particular, outperforms
all other algorithms for larger dimensional problems.

The use of a penalty method as indicated in [67] which is only possible if
one is able to compute the vertices of some polyhedral sets is, in our opinion,
not competitive to the other algorithms.

Using linear functions as approximations for nonlinear ones, we think
that the numerical solution of LGNEPs can play an important role also for
the solution of nonlinear problems and it is a future research topic to find
appropriate approximation procedures for GNEPs by LGNEPs.

8.5 Tables
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PRA linprog
N K LS term time iter time
2 3 30 2.7e-09 0.14 9 0.04
2 10 30 1.8e-09 0.13 26 0.14
2 30 36 1.2e-09 0.20 66 0.14
2 50 42 1.4e-09 0.36 111 0.13
2 100 44 1.1e-09 1.06 248 0.14
5 3 24 1.2e-09 0.10 19 0.13
5 10 38 1.8e-09 0.17 65 0.14
5 30 38 1.8e-09 0.51 183 0.17
5 50 50 2.3e-09 1.73 307 0.18
5 100 49 2.7e-09 7.44 603 0.17

10 3 29 4.8e-09 0.13 39 0.13
10 10 34 7.6e-09 0.31 135 0.14
10 30 40 2.3e-09 2.04 362 0.16
10 50 49 8.2e-09 7.27 589 0.16
10 100 54 8.8e-09 45.53 1167 0.21
30 3 31 1.6e-09 0.28 108 0.14
30 10 38 5.9e-09 2.01 367 0.15
30 30 44 6.9e-09 28.58 996 0.19
30 50 43 1.5e-09 104.09 1739 0.29
30 100 45 6.3e-09 744.48 3776 0.76
50 3 34 5.6e-09 0.55 170 0.14
50 10 40 1.3e-09 6.54 585 0.16
50 30 39 9.1e-09 97.10 1685 0.29
50 50 42 5.7e-09 421.40 2793 0.52
50 100 47 1.1e-09 3369.20 5607 1.58

Table 8.1: Numerical results with PRA and linprog for the computation of
normalized Nash equilibria
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RGS Algorithm 4

N K iter V̂ρ(x) time iter V̂ρ(x) time
2 3 304 4.6e-05 3.17 379 9.6e-05 0.17
2 10 482 5.3e-05 9.86 13115 1.9e-04 5.51
5 3 500 3.8e-05 10.44 943 9.6e-05 0.55
5 10 915 1.2e-04 82.41 6369 1.4e-04 5.31

10 3 554 1.2e-03 39.34 2625 1.1e-04 3.03
10 10 1154 5.1e-04 436.20 1956 1.3e-04 3.27
30 3 1008 2.9e-04 901.80 11170 9.7e-05 54.06
30 10 2252 5.9e-03 11839.31 50487 1.6e-04 334.26

Table 8.5: Numerical results with RGS and the penalty method Algorithm
4 for small instances of the basic economic market model
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The Extended Transportation
Problem
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Chapter 9

The Extended Transportation
Problem

9.1 Motivation

Since its first mathematical formulation in the 18th century (cf. [52]), the
transportation problem is one of the most famous problems in operations
research. In the classical transportation problem we have one forwarder who
transports a given good from manufacturers to producers while minimizing
his transportation costs. We extend the transportation problem towards
a more realistic scenario and introduce several forwarders as illustrated in
Figure 9.1. In the following lines we will refer to the transportation problem
with several forwarders as extended transportation problem (ETP).

Figure 9.1: The classical transportation problem on the left hand side and
the extended transportation problem on the right hand side
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In the resulting setting each forwarder wants to minimize his transporta-
tion costs while sharing the supply and demand constraints with the remain-
ing forwarders. This is exactly the situation which is addressed in noncooper-
ative game theory. Therefore one may ask about existence and computation
of Nash equilibria which are configurations where no forwarder wants to de-
viate from his strategy given the decision of the remaining forwarders. This
question is not only of theoretical interest: Suppose, there is one owner of dif-
ferent factories who negotiates contracts with several competing forwarders.
If the contract conditions are set such that the resulting configuration is a
Nash equilibrium no forwarder has an incentive to deviate from the contract
conditions. This yields a very stable situation and is therefore preferable.

9.2 The Model

Consider N competing forwarding agencies which want to transport one good
from R manufacturers to T consumers. Manufacturer r has a production ca-
pacity of Sr ≥ 0, r ∈ {1, . . . , R}, and consumer t needs at least Dt ≥ 0,
t ∈ {1, . . . , T}, units of this good with

∑R
r=1 Sr =

∑T
t=1Dt. The uni-

tary transportation cost from manufacturer r to consumer t by forwarder
ν ∈ {1, . . . , N} is denoted by cνrt and xνrt is defined as the number of trans-
ported units from manufacturer r to consumer t by forwarder ν. Each for-
warder wants to minimize his transportation costs given the decisions of the
remaining forwarders, that is forwarder ν faces the optimization problem

min
xν∈RR×T

R∑
r=1

T∑
t=1

cνrtx
ν
rt

subject to his constraints concerning the supply

N∑
`=1

T∑
t=1

x`rt = Sr, r ∈ {1, . . . , R},

as well as his demand constraints

N∑
`=1

R∑
r=1

x`rt = Dt, t ∈ {1, . . . , T}

and the nonnegativity condition

xνrt ≥ 0, r ∈ {1, . . . , R}, t ∈ {1, . . . , T}.
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The search for equilibria in the ETP yields a linear generalized Nash equi-
librium problem. We pose the following assumption in order to avoid trivial
ETPs.

Assumption 9.2.1 We have Dt > 0 for at least one t ∈ {1, . . . , T}.
The following example will be used throughout this part to illustrate our
thoughts.

Example 9.2.2 Consider the ETP where we have two manufacturers pro-
ducing one good which is delivered by two forwarders to two consumers, that
is, N = R = T = 2. The first manufacturer offers one unit of this good and
the second one wants to sell two units, thus, we set S1 = 1 and S2 = 2. The
demand of the first consumer is given by D1 = 2 and consumer two needs
two units, that is, D2 = 1.

Furthermore, the costs of forwarder ν ∈ {1, 2} for transporting one good
from manufacturer r ∈ {1, 2} to consumer t ∈ {1, 2} are denoted by cνrt. The
cost matrices Cν = (cνrt) are given by

C1 =

(
1 2
2 1

)
and

C2 =

(
2 1
1 2

)
.

In order to obtain a clear representation of player ν’s optimization problem
we vectorize it and arrive at

Qν(x
−ν) : min

xν∈RR·T
〈cν , xν〉 s.t. Axν +

∑
µ6=ν

Axµ = b, xν ≥ 0

given the decisions xµ, µ 6= ν, of the remaining players with

xν = (xν11, . . . , x
ν
1T , x

ν
21, . . . , x

ν
2T , . . . , x

ν
R1, . . . x

ν
RT )T ∈ RR·T ,

cν = (cν11, . . . , c
ν
1T , c

ν
21, . . . , c

ν
2T , . . . , c

ν
R1, . . . c

ν
RT )T ∈ RR·T ,

b = (S1, . . . , SR, D1, . . . , DT )T ∈ RR+T

and

A =


eT 0 · · · 0

0 eT
. . . 0

...
. . . . . .

...
0 0 . . . eT

IT IT · · · IT

 ∈ R(R+T )×(R·T )

for all ν ∈ {1, . . . , N} with e = (1, . . . , 1)T ∈ RT and the T -dimensional
identity matrix IT .
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Remark 9.2.3 Note that the representation of player ν’s constraints in the
ETP differs from the model of general inequality constrained LGNEPs pre-
sented in the previous parts of this work. Of course, it would be possible to
represent the constraints in the ETP in the format

Aννxν +
∑
µ6=ν

Aνµxµ ≤ bν .

However, the chosen model enables an explicit and uncluttered treatment of
player ν’s equality constraints and is therefore preferable.

Example 9.2.4 In Example 9.2.2 we have

c1 =


1
2
2
1

 , c2 =


2
1
1
2

 , b =


1
2
−2
−1


and

A =


1 1 0 0
0 0 1 1
−1 0 −1 0
0 −1 0 −1

 .

However, hereinafter, in order to improve the readability we will prefer to
work with the non-vectorized version of Example 9.2.2.

Note that Qν(x
−ν) is solvable for all x−ν ∈ domXν with

domXν =

{
x−ν ∈ RR·T ·(N−1) : ∃xν with Axν +

∑
µ 6=ν

Axµ = b, xν ≥ 0

}

since the classical transportation problem is solvable. This implies that As-
sumption 1.2.7 is always valid in the ETP. Furthermore, strong duality yields
that also player ν’s dual optimization problem Dν(x

−ν) is solvable which we
will need later on in the construction of the gap function V for the ETP.

Also the existence of Nash equilibria in the ETP is always ensured as
we shall see in Theorem 10.1.2, such that it is not necessary to refer to
Assumption 1.2.6.
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9.3 Overview

In Chapter 10, we investigate the numerical computation of Nash equilibria
in the ETP. It is possible to compute an (N − 1)-dimensional set of Nash
equilibria very efficiently, such that the question arises which equilibrium
one should select in practical applications. This issue, the so-called Equilib-
rium selection problem, is addressed in Chapter 11 where we examine several
criteria for the selection of specific Nash equilibria in terms of auxiliary op-
timization problems and show that for N = 2 we even obtain closed form
solutions for these optimization problems. However, not each Nash equilib-
rium of the ETP lies in the efficiently computable (N − 1)-dimensional set,
such that we also apply the projected subgradient method for the computa-
tion of arbitrary Nash equilibria in the ETP.
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Chapter 10

Computation of Nash
Equilibria

10.1 Efficient Computation of Special Nash

Equilibria

It is possible to compute an (N−1)-dimensional set of Nash equilibria in the
ETP very efficiently by solving N linear optimization problems as we shall
see in Theorem 10.1.2. Before that we need to introduce some notation.

Let yν ∈ RR·T be an optimal point of player ν’s optimization problem for
x−ν = 0, that is an optimal point of Qν(0). This optimal point exists since
the classical transportation problem is solvable. Further, define the vectors

ŷ1 :=


y1

0
...
0

 , ŷ2 :=


0
y2

0
...
0

 , . . . , ŷN :=


0
...
0
yN

 ∈ RR·T ·N

and the set
Y := conv(ŷ1, . . . , ŷN).

We define the dimension of a convex set by the dimension of its affine hull,
that is, the smallest affine subspace that contains Y .

Proposition 10.1.1 Let Assumption 9.2.1 be valid. Then Y is a (N − 1)-
dimensional set.

Proof. The affine hull of Y is spanned by theN−1 vectors ŷ1−ŷ2, . . . , ŷ1−ŷN
which are linearly independent due to Assumption 9.2.1. •

103



104 CHAPTER 10. COMPUTATION OF NASH EQUILIBRIA

In Theorem 10.1.2, we see that each element of Y is a Nash equilibrium
and, therefore, we obtain a large set of Nash equilibria which can be computed
very efficiently.

Theorem 10.1.2 Each element of Y is a Nash equilibrium in the ETP.

Proof. The concatenated KKT systems of all players are given by

cν + ATµν − λν = 0 (10.1)

Axν +
∑
µ 6=ν

Axµ = b (10.2)

xν ≥ 0 (10.3)

λν ≥ 0 (10.4)

(λν)Txν = 0 (10.5)

for all ν ∈ {1, . . . , N}. Now take an arbitrary y ∈ Y , that is, there exist
nonnegative scalars σ1, . . . , σN ≥ 0 with

∑N
i=1 σi = 1 and

y =
N∑
i=1

σiŷ
i =

 σ1y
1

...
σNy

N

 .

Note that y is a Nash equilibrium if and only if σνy
ν solves (10.1)-(10.5) for

all ν ∈ {1, . . . , N}. Since yν is an optimal point of Qν(0), there exist vectors
λ̄ν ≥ 0 and µ̄ν with

cν + AT µ̄ν − λ̄ν = 0

Ayν = b

yν ≥ 0

λ̄ν ≥ 0

(λ̄ν)Tyν = 0

for all ν ∈ {1, . . . , N}. Now, we take the vector σνy
ν together with the

dual variables λ̄ν and µ̄ν of yν and plug them into (10.1)-(10.5) for all ν ∈
{1, . . . , N}. It is easy to see that (σνy

ν , λ̄ν , µ̄ν) satisfies (10.1), (10.3),(10.4),
and (10.5) for all ν ∈ {1, . . . , N}. Equation (10.2) is also valid for (σνy

ν , λ̄ν , µ̄ν)
since we have

A(σνy
ν) +

∑
µ6=ν

A(σµy
µ) =

N∑
ν=1

σν Ay
ν︸︷︷︸

=b

= b

N∑
ν=1

σν︸ ︷︷ ︸
=1

= b.
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Altogether, we have shown that each element of Y is a Nash equilibrium in
the extended transportation problem. •

As we have seen above, we have the (N − 1)-dimensional set Y which
can be computed very easily by solving N classical transportation problems
which are linear optimization problems. However, there exist Nash equilibria
in the transportation problem that are not elements of Y as we shall see in
the following examples.

Example 10.1.3 In Example 9.2.2, the vector

x̄ = (1, 0, 0, 1, 0, 0, 1, 0)T

is a Nash equilibrium since the transportation plan

X̄1 := (x̄1
rt) =

(
1 0
0 1

)
is optimal for player one if player two delivers according to

X̄2 := (x̄2
rt) =

(
0 0
1 0

)
.

Vice versa, X̄2 is optimal for player two if player one follows the transporta-
tion plan X̄1.

Furthermore, the optimization problems Q1(0) and Q2(0) have the unique
optimal transportation plans

y1 =

(
1 0
1 1

)
and

y2 =

(
0 1
2 0

)
which we did not vectorize in order to improve the readability. Hence, we
have

Y =



λ1 0
λ1 λ1

0 λ2

2λ2 0

 ∈ R4×2 : λ1 + λ2 = 1, λ1, λ2 ≥ 0

 .

We have seen above that the concatenated matrix

x̄ =


1 0
0 1
0 0
1 0


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is a Nash equilibrium of this ETP. However, it is straightforward to see that
x̄ is not an element of the set Y , such that there exist Nash equilibria which
are not part of the efficiently computable set Y .

10.2 Projected Subgradient Method

As we have seen in Example 10.1.3, it is not possible to compute each Nash
equilibrium of the extended transportation problem by computing the set Y .
Therefore, besides the computation of the set Y there is a need to apply some
additional methods which are able to compute arbitrary Nash equilibria and
not just equilibria in Y .

Remark 10.2.1 It is, trivially, possible to compute each Nash equilibrium
of an arbitrary LGNEP by the projected subgradient method. In order to see
this recall that all generalized Nash equilibria are global minimal points of the
concave function V over the polyhedron W and, therefore, the Nash equilibria
of LGNEPs lie at the boundary of the polyhedron W . Hence, initializing PSM
with a starting point in the normal cone of the desired Nash equilibrium yields
a direct solution in one iteration. However, of course, in practice the desired
Nash equilibrium is not known in advance.

In contrast to the setting in the previous parts of this work, the ETP is an
LGNEP with equality constraints. Therefore, let us briefly recall the main
results and techniques which are necessary to apply the projected subgradient
method (PSM) from Chapter 7.5 to the extended transportation problem in
the modified format of the ETP.

For given x−ν player ν’s dual problem is given by

Dν(x
−ν) : max

λν∈RR+T
〈b−

∑
µ 6=ν

Axµ, λν〉 s.t. ATλν ≤ cν .

We define player ν’s optimal value function by

ϕν(x
−ν) := max

λν∈Zν
〈b−

∑
µ6=ν

Axµ, λν〉

with
Zν := {λν ∈ RR+T : ATλν ≤ cν}.

Furthermore, we define the gap function

V (x) :=
N∑
ν=1

〈cν , xν〉 − ϕν(x−ν)
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which does not have to be real-valued outside of W . According to Proposi-
tion 1.5.1, the Nash equilibria are exactly the global minimal points of the
possibly nonsmooth optimization problem

P : minV (x) s.t. x ∈ W

with optimal value zero. Since, in general, V is a nonsmooth function, we
use the projected subgradient method which was introduced in Section 7.5
in order to solve P .

Furthermore, let Oν denote the set of vertices of Zν . According to [44,
Ex. 6.1.9], the set Oν is nonempty, that is Zν possesses at least one vertex.
Then due to the vertex theorem of linear programming we may extend ϕν to
the real-valued function

ϕ̂ν(x
−ν) := max

λν∈Oν
〈b−

∑
µ 6=ν

Axµ, λν〉

and define

Oν(x
−ν) := {λν ∈ Oν : 〈b−

∑
µ 6=ν

Axµ, λν〉 = ϕ̂ν(x
−ν)}.

If we adapt the result in Proposition 2.4.4 to the ETP we arrive at

∂V̂ (x) =




c1

ATλ1

...
ATλ1

 : λ1 ∈ conv
(
O1(x−1)

)


+




ATλ2

c2

ATλ2

...
ATλ2

 : λ2 ∈ conv
(
O2(x−2)

)


+ . . .+



ATλN

...
ATλN

cN

 : λN ∈ conv
(
ON(x−N)

)

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and after having evaluated the gap function V̂ at a given point x the vector

s :=


c1

AT λ̄1

...
AT λ̄1

+


AT λ̄2

c2

AT λ̄2

...
AT λ̄2

+ . . .


AT λ̄N−1

...
AT λ̄N−1

cN−1

AT λ̄N−1

+


AT λ̄N

...
AT λ̄N

cN


is a Clarke subgradient of V̂ at x in the ETP. Furthermore, obviously, we
have

∇V (x) =

 c1

...
cN

−
AT λ̄1

...
AT λ̄N

+
N∑
ν=1

A
T λ̄ν

...
AT λ̄ν


for all x where V is smooth.

10.3 Numerical Results

We generated random test examples for the ETP for different combinations
of N , R and T and applied PSM to these test instances using a Matlab R©

implementation. We choose the origin as starting point and

V (x) < 10−6

as stopping criterion and report the needed number of iterations iter, the
final function value of the gap function V term as well as the computation
time time. We see that PSM did not terminate in 6 test examples. This
happened since PSM started cycling and we suspect that PSM got stuck in
a local minimal point of V since we were able to overcome this difficulty
by choosing different starting points. However, note that PSM was able to
compute an equilibrium for N = 50, R = 10 and T = 50 in about ten minutes
which is a nonsmooth nonconvex optimization problem with 25000 variables.
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N R T iter V term time

2 2 10 5 1.8e-14 0.23
2 2 30 6 2.1e-10 0.42
2 2 50 5 2.9e-08 0.51
2 5 10 15 2.6e-08 0.73
2 5 30 - - -
2 5 50 10 1.0e-12 1.51
2 10 10 - - -
2 10 30 - - -
2 10 50 - - -

10 2 10 6 2.2e-08 1.05
10 2 30 10 1.6e-08 2.43
10 2 50 8 2.4e-09 3.11
10 5 10 8 4.0e-12 1.71
10 5 30 12 1.5e-08 5.48
10 5 50 11 7.0e-09 9.13
10 10 10 10 5.2e-09 3.13
10 10 30 14 8.5e-13 12.24
10 10 50 13 1.4e-09 23.15
50 2 10 15 2.2e-09 17.84
50 2 30 - - -
50 2 50 - - -
50 5 10 15 1.0e-06 22.37
50 5 30 16 5.3e-07 76.19
50 5 50 18 4.5e-07 160.90
50 10 10 13 2.9e-10 34.73
50 10 30 17 9.3e-10 197.02
50 10 50 16 5.3e-08 636.30

Table 10.1: Numerical results with PSM for the extended transportation
problem
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Chapter 11

Equilibrium Selection

Recall that in the transportation problem with N forwarders it is possible
to compute the (N − 1)-dimensional set Y of Nash equilibria by solving
N linear optimization problems which can be done very efficiently. Thus,
the question arises which equilibrium one should select. This problem is
known in the economics literature as Equilibrium Selection or Nash Selection
Problem (see [37, 38, 45] for possible entry points in this field of research from
an economic perspective). In this chapter, we will concentrate on selection
techniques that are based on the idea of minimizing an objective function f
over the set Y , that is, we consider the optimization problem

Psel : min
y
f(y) s.t. y ∈ Y

with optimal point y?. In the following sections, we shall discuss several
choices of objective functions f that may be reasonable.

Recall that we have

Y =

{
y ∈ RR·T ·N : ∃λ ∈ ∆N with y =

N∑
i=1

λiŷ
i

}

where ∆N ∈ RN denotes the (N − 1)-dimensional standard simplex, that is,
we have

∆N := {λ ∈ RN : λ ≥ 0,
N∑
i=1

λi = 1}.

Therefore, it is possible to transform Psel into an optimization problem over
the standard simplex

Psel : min
λ
f(

N∑
i=1

λiŷ
i) s.t. λ ∈ ∆N .
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Note that this is an optimization problem with N − 1 degrees of freedom
since it is possible to eliminate one variable from the representation above.

Example 11.0.1 We will apply the subsequent results to our running exam-
ple in order to illustrate our thoughts. In Example 9.2.2 the set Y was given
by

Y =

y : ∃λ ∈ [0, 1] with y = λ ·


1 0
1 1
0 0
0 0

+ (1− λ) ·


0 0
0 0
0 1
2 0




which is a one-dimensional set.

Remark 11.0.2 Of course it is also possible to consider known equilibria
that are not elements of the set Y in the selection problem Psel. Therefore,
in the following, we will also evaluate the different objective functions on the
equilibrium

x̄ =


1 0
0 1
0 0
1 0


which is an equilibrium in Example 10.1.3 that is not part of the set Y .

11.1 Minimal Total Costs

In order to select the ‘best’ Nash equilibrium from the set Y , perhaps the
most obvious thought would be to minimize the sum of the cost functions of
all forwarders over Y , that is, to set

f1(y) := 〈c, y〉

with c = (c1, . . . , cN)T and to solve

P1 : min
y
〈c, y〉 s.t. y ∈ Y

which is a linear optimization problem. There is a very efficient way to solve
P1 without employing a numerical method of linear programming since the
set of vertices of Y possesses only N elements which are given by

vertY =
{
ŷ1, . . . , ŷN

}
.

Therefore, due to the vertex theorem of linear programming, we can solve
P1 by enumeration of the N vertices of Y which can be done very efficiently
even for a large number of forwarders.



11.2. UNIFORM DISTRIBUTION OF GOODS 113

Example 11.1.1 The vertices of Y in Example 9.2.2 are given by

ŷ1 =


1 0
1 1
0 0
0 0

 and ŷ2 =


0 0
0 0
0 1
2 0

 .

An evaluation of the sum of both cost functions f at these vertices yields
f1(ŷ1) = 4 and f1(ŷ2) = 3, such that we would select the Nash equilibrium ŷ2

since it is the equilibrium in Y that minimizes the sum of both cost functions.
Further, we have f1(x̄) = 3, that is x̄ is also an optimal choice.

The advantage of this approach is that it yields a decision criterion which
is easy to interpret and very efficiently computable. One disadvantage in
this approach is that we will always arrive at an equilibrium that is a vertex
of Y because these equilibria are exactly the points in which all goods are
delivered by only one forwarder, such that the remaining forwarders transport
nothing. Therefore, in Section 11.2 we shall consider an approach that aims
at obtaining a Nash equilibrium which possesses a uniform distribution of all
goods within the forwarders.

11.2 Uniform Distribution of Goods

Another approach of choosing a Nash equilibrium from the set Y may be to
distribute the good from manufacturers to the consumers in a way that the
maximal delivery size is minimal. This has at least two advantages: First,
this approach is very risk averse and may be preferable if the costs of trans-
portation errors is very high. Second, it enforces a uniform transportation
over all forwarders and possible combinations. This is also the big difference
to the approach in Section 11.1 where all units were delivered by only one
forwarder. Thus, we set

f2(y) := max
r,t,ν

yνr,t

and obtain the optimization problem

P2 : min
y

max
r,t,ν

yνr,t s.t. y ∈ Y

which, using the epigraphical reformulation, can be reformulated, such that
P2 is equivalent to the linear optimization problem

min
(y,α)

α s.t. y ∈ Y,

yνr,t ≤ α, r = {1, . . . , R}, t = {1, . . . , T}, ν = {1, . . . , N}.
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Note that the polyhedron Y is given in the so-called V -representation of poly-
hedral sets (cf. [72]), that is, as convex hull of its vertices. However, standard
solvers of linear programming require the so-called H-representation of poly-
hedral feasible sets, that is, a representation as intersection of finitely many
half spaces. Fortunately, as mentioned in the beginning of Chapter 11, we
can overcome this difficulty by transforming the linear optimization problem
into ’λ-variables’ and arrive at

min
(λ,α)

α s.t. λ ≥ 0,

N∑
i=1

λi = 1,

N∑
i=1

λiŷ
i
r,t ≤ α, r = {1, . . . , R}, t = {1, . . . , T},

which is an optimization problem whose representation is accessible to stan-
dard solvers in linear optimization.

Example 11.2.1 In Example 9.2.2, direct inspections show that finding the
equilibrium in Y with the smallest component is equivalent to determining
λ ≥ 0, such that

λ · 1 = (1− λ) · 2
since 1 and 2 are the largest components of ŷ1 and ŷ2, respectively, and the
order is not influenced by scaling with λ. Therefore, we arrive at λ = 2

3
, that

is, we would select the Nash equilibrium

y? =


2
3

0
2
3

2
3

0 1
3

2
3

0


from the set Y which, indeed, possesses a very uniform distribution of the
good over all forwarders and possible combinations. Further, we have

f2(x̄) = 1 >
2

3
= f2(y?),

that is, in this situation we would not choose the equilibrium x̄.

11.3 Minimizing the Sum of Squares

A more technical approach addresses the fact that one may not expect to
obtain one unique equilibrium by the decision rules in the Sections 11.1 and
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11.2 since they result from solving linear optimization problems that may
have nonisolated solutions. A standard approach to tackle this issue is to
choose norm minimal solutions, that is, solutions with minimal Euclidean
norm of. These solutions are unique since they can be obtained as optimal
points of an unconstrained strictly convex quadratic optimization problem.
Thus, we set

f3(y) := ‖y‖2
2

and obtain the convex quadratic optimization problem

P3 : min
y
yTy s.t. y ∈ Y.

which possesses a unique solution.

Example 11.3.1 In Example 9.2.2 solving P3 is equivalent to computing a
scalar λ ∈ [0, 1], such that∥∥∥∥∥∥∥∥λ ·


1 0
1 1
0 0
0 0

+ (1− λ) ·


0 0
0 0
0 1
2 0


∥∥∥∥∥∥∥∥

2

F

=

∥∥∥∥∥∥∥∥


λ 0
λ λ
0 1− λ

2(1− λ) 0


∥∥∥∥∥∥∥∥

2

F

= 3λ2 + 5(1− λ)2

is minimal where we used the Frobenius norm

‖A‖F :=
∑
i,j

a2
i,j.

Thus, we compute λ = 5
8

and choose the Nash equilibrium

y? =


5
8

0
5
8

5
8

0 3
8

6
8

0


from the set Y with f3(y?) = 15

8
. Further, we have f3(x̄) = 3, that is, the

equilibrium x̄ is not an optimal choice.

Note that the obtained norm minimal solution is not sparse at all. How-
ever, in the following section we will see that it is possible to compute the
sparsest equilibria in the set Y very efficiently.
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11.4 Sparse Equilibria

One may also think of situations where it is advantageous to select a sparse
equilibrium, that is, an equilibrium with as little non-zero components as
possible. This could be preferable in situations where each non-zero entry
yνrt is associated with high fix costs that occur for ‘activating’ the combination
xνrt which for instance might be the costs for constructing new infrastructure
or legal fees for designing new contracts.

Selecting the sparsest equilibrium is equivalent to minimizing the so-called
zero norm of a given vector y ∈ Rn which is defined by

‖y‖0 :=
n∑
i=1

|yi|0 = |{1 ≤ i ≤ n : yi 6= 0}|

where we defined 00 := 0, that is, we set

f4(y) := ‖y‖0

and obtain the `0-minimization problem

P4 : min
y
‖y‖0 s.t. y ∈ Y

In general, the `0-minimization problem is computationally intractable and
is therefore replaced by minimizing the `1-norm of y (cf., e.g., [10, 16, 9]).

However, in the ETP, the situation differs greatly from the general case.
First, the `1-minimization does not make any sense for the ETP since each
equilibrium of Y possesses the same `1-norm which follows from the following,
more general, result.

Proposition 11.4.1 There exists a scalar D ∈ R with

‖x‖1 = D

for all x ∈ W , that is, each x ∈ W possesses the same `1-norm.

Proof. Let x ∈ W . Then we have

‖x‖1 =
N∑
ν=1

T∑
t=1

R∑
r=1

xνrt

=
T∑
t=1

N∑
ν=1

R∑
r=1

xνrt︸ ︷︷ ︸
=Dt

=
T∑
t=1

Dt,
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that is, the assertion is shown with D :=
∑T

t=1Dt. •
Second, for the extended transportation problem the `0-minimization is

tractable since it can be reduced to selecting the most sparsest vertex ŷν ,
ν ∈ {1, . . . , N}, of the set Y . This can be seen easily, since the number of
zeros of each element in Y cannot be higher than the number of zeros of a
vertex ŷν , ν ∈ {1, . . . , N} of Y because the creation of a ‘new zero’ as convex
combination of nonnegative elements is not possible.

Example 11.4.2 In Example 9.2.2, we have ‖y‖1 = 3 = D1 + D2 for all
y ∈ Y . Further, ŷ2 is an optimal point of P4 since it belongs to the sparsest
player solution. The equilibrium x̄ is not as sparse at y? = ŷ2 and therefore
not preferable.

11.5 Closed Form Solutions for N = 2

Two player games form an important field of research in the existing literature
on game theory (cf. [55, 70]). Also for ETPs, the case N = 2 deserves
some special attention since for N = 2 the set of efficiently computable Nash
equilibria Y is a one-dimensional line segment which implies that the selection
problem Psel is a one-dimensional optimization problem. In contrast to Rn

for n > 1, the one-dimensional strategy space R is an ordered field which
sometimes enables the possibility to find closed form solutions.

Remark 11.5.1 Note that N = 2 is the only restriction in this section.
Particularly, each player may possess a large number of decision variables
and constraints.

In Sections 11.1 and 11.4 we selected the desired equilibrium out of a set of
N equilibria which just shrinks to a set of two equilibria in the case N = 2.
However, as described in Sections 11.2 and 11.3, the computation of the
equilibrium that possesses a uniform distribution of goods or minimizes the
sum of squares, respectively, requires the solution of a linear or a quadratic
optimization problem, respectively. In the case N = 2 we can avoid the nu-
merical solution of these optimization problems and obtain closed analytical
solutions instead as stated in the following propositions.

As mentioned at the beginning of Chapter 11, the problem of selecting a
Nash equilibrium y out of the set Y can be transformed into determining a
suitable weight λ ∈ ∆N . In the following, we will denote the desired Nash
equilibrium by y? ∈ R2·T ·R and the corresponding weight by λ? ∈ R.
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Proposition 11.5.2 Let ŷ1
max, ŷ

2
max ∈ R be the largest entries of the vectors

ŷ1 and ŷ2, respectively, and define

λ? :=
ŷ2
max

ŷ1
max + ŷ2

max

.

Then the vector
y? = λ?ŷ1 + (1− λ?)ŷ2

is the Nash equilibrium that solves P2, that is, the equilibrium which enforces
a uniform distribution of all goods.

Proof. It is straightforward to see that in order to solve P2 we have to choose
λ, such that we arrive at

λŷ1
max = (1− λ)ŷ2

max

since the position of the maximal component is not influenced by the mul-
tiplication of the corresponding vectors with the scalar λ ≥ 0. Further,
Assumption 9.2.1 implies

ŷ1
max + ŷ2

max 6= 0,

such that we have

λ? :=
ŷ2
max

ŷ1
max + ŷ2

max

.

•

Proposition 11.5.3 Let us define

λ? :=
‖ŷ2‖2

F

‖ŷ1‖2
F + ‖ŷ2‖2

F

.

Then the vector
y? = λ?ŷ1 + (1− λ?)ŷ2

is the Nash equilibrium that solves P3, that is, the equilibrium with minimal
Euclidean norm.

Proof. It is easy to see that the vectors ŷ1 and ŷ2 are orthogonal. Therefore,
we have

f(λ) := ‖λŷ1 + (1− λ)ŷ2‖2
F = λ2‖ŷ1‖2

F + (1− λ)2‖ŷ2‖2
F

and differentiating f with respect to λ yields

f ′(λ) = 2λ‖ŷ1‖2
F − 2(1− λ)‖ŷ2‖2

F .
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Then we have

f ′(λ) = 0 ⇐⇒ 2λ‖ŷ1‖2
F = 2(1− λ)‖ŷ2‖2

F

⇐⇒ λ(‖ŷ1‖2
F + ‖ŷ2‖2

F ) = ‖ŷ2‖2
F

⇐⇒ λ? =
‖ŷ2‖2

F

‖ŷ1‖2
F + ‖ŷ2‖2

F

where
‖ŷ1‖2

F + ‖ŷ2‖2
F 6= 0

is ensured by Assumption 9.2.1. Since f is a strongly convex function, we
have shown that λ? is the unconstrained global minimal point of f on R. In
particular, we also have

λ? ∈ [0, 1]

which implies that λ? is also an optimal point of the constrained optimization
problem P3 which proves the desired assertion. •



120 CHAPTER 11. EQUILIBRIUM SELECTION



Chapter 12

Outlook and Conclusions

This work contains the first systematic treatment of linear generalized Nash
equilibrium problems (LGNEPs). We have examined theoretical aspects of
LGNEPs as well as numerical algorithms and our main application - the
extended transportation problem.

We have seen that there is a deep intrinsic connection between smoothness
properties of a gap function that arises from a reformulation of the LGNEP
as optimization problem and some regularity conditions of its feasible set.
In particular, we have introduced a new regularity condition, the so-called
cone condition. In contrast to stronger conditions like LICQ oder SMFC,
the cone condition does not enforce unique KKT multipliers and seems to
be a suitable tool to deal with nonunique KKT multipliers. Multiple KKT
multipliers are known to cause severe theoretical and numerical problems
(see [41] for a recent discussion). In this context, it would be interesting to
study the interplay between the cone condition and these phenomena in a
more general setting, which we leave for future research.

We have also considered LGNEPs from a numerical point of view and
applied some algorithms in order to compute Nash equilibria for LGNEPs.
Particularly, we designed a nonsmooth optimization method for the solu-
tion of LGNEPs which showed very promising performance and is based on
subdifferentials in the sense of Clarke. It is also possible to compute exact
formulas for the Fréchet or the Mordukhovich subdifferential (cf. [69]) and
design numerical methods that are based on these subdifferentials. However,
this is left to future research. Additionaly, it may also be interesting to ap-
ply a finite algorithm like Lemke’s method in order to solve the concatenated
KKT systems of LGNEPs.
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