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Abstract

Over the last two decades the paradigm in hydrometeorological forecasting has
shifted from deterministic to probabilistic. Numerical weather prediction (NWP)
models are run increasingly as ensemble forecasting systems, which provide a fi-
nite sample of forecast scenarios for atmospheric variables like near-surface tem-
perature or precipitation. Hydrologists use such NWP ensemble forecasts as input
to hydrological models in order to obtain a sample of river runoff scenarios. Pre-
dictive skill of hydrometeorological ensemble forecasts can typically be improved
by statistical post processing. The objective of this thesis is twofold. The first
goal is to compare raw ensemble forecasts with probabilistic forecasts that have
been obtained by state-of-the-art post processing approaches. In particular, the
temporal evolution of the gap in skill between meteorological raw ensemble and
post processed forecasts is assessed over the period from 2004 to 2014. For some
applied problems appropriate post processing methods do not exist. Accordingly,
the second goal is to develop novel post processing approaches, which is summa-
rized next.

Two methods to post process ensemble forecasts for the discrete and bounded
weather variable of total cloud cover (TCC) are developed. Applying them to
TCC ensemble forecasts from the European Centre for Medium-Range Weather
Forecasts improves forecast skill significantly. River runoff is an inherently mul-
tivariate process with typical events lasting from hours in case of floods to weeks
or even months in case of droughts. This calls for multivariate post process-
ing techniques that yield well calibrated forecasts in univariate terms and at the
same time ensure realistic temporal dependence structures. To this end, meth-
ods originally developed for meteorological variables are adapted such that their
application to hydrologic ensemble forecasts leads to an improvement in forecast
skill, while ensuring temporal dependences inherent to river runoff.
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Zusammenfassung

Uber die letzen zwei Jahrzente hat ein Paradigmenwechsel im Gebiet der hy-
drometeorologischen Vorhersagen stattgefunden, infolgedessen deterministische
Vorhersagen mehr und mehr durch probabilistische Vorhersagen ersetzt wer-
den. Numerische Wettervorhersagesysteme werden zunehmend verwendet, um
Ensemblevorhersagen zu generieren. Solche Ensemblevorhersagen bilden eine end-
liche Stichprobe von Vorhersageszenarien fiir Variablen wie Temperatur in Bo-
dennédhe oder Niederschlag. Hydrologen verwenden solche Ensemblevorhersagen
als Eingangsdaten fiir hydrologische Modelle, womit Abflussszenarien erzeugt
werden. Die Vorhersagegiite hydrometeorologischer Ensemblevorhersagen kann
mittels statistischer Nachbearbeitung verbessert werden. Die vorliegende Arbeit
verfolgt zwei Ziele. Das erste Ziel ist es, Ensemblevorhersagen mit mittels “state-
of-the-art” Nachbearbeitungsmethoden generierter probabilistischen Vorhersagen
zu vergleichen. Insbesondere wird untersucht, wie sich die Differenz in der Vor-
hersagegiite zwischen meteorologischen Ensemblevorhersagen und nachbearbei-
teter Vorhersagen {iber den Zeitraum von 2004 bis 2014 entwickelt. Fiir einige
angewandten Probleme existieren keine adédquaten Nachbearbeitungsmethoden.
Dementsprechend, beinhaltet das zweite Ziel die Entwicklung neuartiger Nachbe-
arbeitungsmethoden, die im Folgenden erwéhnt werden.

Zwei Methoden zur Nachbearbeitung von Vorhersagen des Gesamtbewdlkungs-
grads (TCC), der eine diskrete und beschriankte Wettervariable darstellt, werden
entwickelt. Die Anwendung dieser Methoden auf TCC Ensemblevorhersagen vom
Européischen Zentrum fiir mittelfristige Wettervorhersage fithrt zu einer signifi-
kanten Verbesserung der Vorhersagegiite. Abfluss ist ein inh#irent multivariater
Prozess mit stark variierenden Ereignisldngen von wenigen Stunden im Falle von
Hochwasserspitzen bis hin zu Wochen oder sogar Monaten im Falle von Trocken-
perioden. Dies erfordert Nachbearbeitungsmethoden, die zu marginal kalibrierten
Vorhersagen fithren und gleichzeitig die zeitliche Abhéngigkeitsstruktur richtig
abbilden. Hierzu werden Methoden, die fiir meteorologische Variablen entwickelt
wurden, so angepasst, dass sie zu einer Verbesserung der Vorhersagegiite fiihren
und gleichermaflen die abflusstypischen zeitlichen Abhéngigkeitsstrukturen erhal-
ten bleiben.
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Chapter 1

Introduction

1.1 Motivation and outlook

Over the last two decades the paradigm in weather forecasting has shifted from
deterministic to probabilistic (see e.g. Palmer (2000) and Hamill et al. (2000)).
Accordingly, numerical weather prediction (NWP) models have been run increas-
ingly as ensemble forecasting systems. The goal of such ensemble forecasts is to
approximate the forecast probability distribution by a finite sample of scenarios
(Leith, 1974). This sample provides an estimate of forecast uncertainty. Global
ensemble forecast systems, like the European Centre for Medium-Range Weather
Forecasts (ECMWF) ensemble, are prone to probabilistic biases, and are there-
fore not reliable. They particularly tend to be underdispersive for surface weather
parameters (Bougeault et al., 2010; Park et al., 2008). Probabilistic hydrologic,
i.e. river runoff, forecast models, which are driven by ensemble weather forecasts,
tend to inherit the inadequate representation of forecast uncertainty. In order
to correct for underdispersion and bias in NWP ensembles, statistical post pro-
cessing methods have been developed, of which ensemble model output statistics
(EMOS, Gneiting et al., 2005) is among the most widely applied. EMOS yields
a parametric forecast distribution by linking its parameters to ensemble statis-
tics. Due to its versatility and low computational cost, we focus on EMOS in
the studies presented in this thesis. In general, post processing methods like
EMOS convey considerable improvements in forecast skill. The main goal of post
processing is to achieve well calibrated and yet sharp probabilistic predictions
(Raftery et al., 2005; Gneiting et al., 2007a). In case of well calibrated forecasts,
the theoretical levels of prediction intervals are equal to the relative frequency
of the observations to lie within the corresponding forecast intervals. Sharpness
relates only to the forecasts and denotes how “narrow” prediction intervals are
at a given nominal level.

In this work several advances in statistical post processing are presented. The
main goal is to improve skill of probabilistic forecasts for different atmospheric
variables and runoff. Already available, state-of-the-art statistical post process-
ing methods are used when they are applicable. Otherwise, novel methods are



developed. In the following, we summarize these contributions.

The first study presents the work by Hemri et al. (2014b) which applies statis-
tical post processing to ensemble forecasts of near-surface temperature, 24-hour
precipitation totals, and near-surface wind speed from the global model of the
ECMWF. The main objective is to evaluate the evolution of the difference in
skill between the raw ensemble and the post processed forecasts. Reliability and
sharpness, and hence skill, of the former is expected to improve over time. Thus,
the gain by post processing is expected to decrease. Based on ECMWF forecasts
from January 2002 to March 2014 and corresponding observations from globally
distributed stations we generate post processed forecasts using EMOS for each
station and variable. Given the higher average skill of the post processed fore-
casts, we analyze the evolution of the difference in skill between raw ensemble
and EMOS. This is discussed in detail in Section 3.1.

The second study presents an approach by Hemri et al. (2016) to post process
ensemble forecasts for the discrete and bounded weather variable of total cloud
cover. Two methods for discrete statistical post processing of ensemble predic-
tions are tested: The first approach is based on multinomial logistic regression,
the second involves a proportional odds logistic regression model. Both methods
are applied to TCC raw ensemble forecasts from the ECMWEF. The performance
of the TCC post processing methods is assessed based on a stationwise post pro-
cessing scheme that covers forecasts for a global set of 3330 stations over the
period from January 2007 to March 2014. This is discussed in detail in Section
3.2.

In hydrologic forecasting systems, data below or above certain threshold val-
ues are subject to increased uncertainty. This may be due to very uncertain or
not defined data, when, for instance, exceeding the range of the measured pairs
of gauge levels and runoff values, on which the rating curve is based on. In the
third study, which is based on Hemri et al. (2014a), a post processing method
is presented that is tailored to the left censored runoff values encountered in the
forecasting system of the German Federal Institute of Hydrology (BfG). On the
basis of EMOS, we develop a censored EMOS method that is able to cope with
censored data. The censored EMOS method is applied to ensemble runoff fore-
casts for the gauge Friedrichsthal, river Wied, and the gauge Altenahr, river Ahr,
which both are sub-catchments of river Rhine. Censored EMOS forecasts are
then verified for the period from November 2008 to October 2011 over the entire
forecast horizon from 1 to 114 hours using several different statistical measures.
This is discussed in detail in Section 4.2.

The analyses on multivariate post processing of hydrologic ensemble forecasts
by Hemri et al. (2015) are presented in the fourth study. Runoff is an inher-
ently multivariate process with typical events lasting from hours in case of floods
to weeks or even months in case of droughts. This calls for multivariate post



processing techniques that yield well calibrated forecasts in univariate terms and
ensure a realistic temporal dependence structure at the same time. To this end,
the univariate EMOS post processing method is combined with two different cop-
ula approaches that ensure multivariate calibration throughout the entire forecast
horizon. The domain of this study covers three sub-catchments of the river Rhine
that represent different sizes and hydrological regimes: the Upper Rhine up to
the gauge Maxau, the river Moselle up to the gauge Trier, and the river Lahn up
to the gauge Kalkofen. In this study the two approaches to model the temporal
dependence structure are ensemble copula coupling (ECC: Schefzik et al. (2013)),
which preserves the dependence structure of the raw ensemble, and a Gaussian
copula approach (GCA: Pinson and Girard (2012)), which estimates the temporal
correlations from training observations. This is discussed in detail in Section 4.3.

Additional to the main studies mentioned above, a few smaller studies focus-
ing on hydrological forecasts, are presented as well. These studies are preliminary
in that we recommend further research in order to either confirm or refute our
findings. The first smaller study in Section 4.4 concerns an analysis of hydro-
logical regime dependent post processing. The second one, which is presented in
Section 4.5, summarizes a method to convert probabilistic runoff forecasts into
deterministic forecasts in a sound way. Finally, Section 4.6 assesses whether the
skill of seasonal hydrological forecasts can be improved by state-of-the-art statis-
tical post processing methods.

From a historical point of view, statistical post processing methods have
emerged from hydrometeorological raw ensemble forecasts that have become in-
creasingly affordable over the last few decades. In order to place the topic of post
processing into a broader perspective, an overview of raw ensemble forecasting
is provided next in Section 1.2. The statistical post processing and verification
methods needed for the studies mentioned above are presented in Section 2. This
is followed by Chapters 3 and 4 that discuss the meteorological and hydrologi-
cal studies in detail. Along with a short outlook on further research concluding
remarks are provided in Chapter 5.

1.2 Raw ensemble forecasting

In this section, an introduction to (raw) ensemble forecasting is given, which
follows closely Hemri (2016).

1.2.1 Introduction to ensemble forecasting

Despite of the uncertainty inherent to any forecasting problem, deterministic fore-
casts have been the state of the art in hydrometeorological forecasting over many
decades. Even with the best physical models substantial predictive uncertainty
remains. Predictive uncertainty denotes the uncertainty conditional on the fore-



caster’s expertise and the information set available (Krzysztofowicz, 1999; Todini,
2008). In order to assess predictive uncertainty, the paradigm in hydrometeoro-
logical forecasting has shifted from deterministic to probabilistic forecasting over
the last two decades (see e.g. Palmer (2000) and Hamill et al. (2000)). The
first meteorological ensemble prediction systems (EPS) have been developed in
the early 1990s. For atmospheric variables like temperature, air pressure, wind
speed, or precipitation, an EPS provides an estimate of their predictive distri-
bution. This estimate is obtained by running the same NWP model multiple
times with different initial conditions and/or model variants. Hence, in ideal set-
tings, ensemble forecast members can be interpreted as random samples from the
unknown predictive distribution. Or in other words, an ensemble of parallel fore-
cast runs may also be understood in a probabilistic manner through its empirical
cumulative distribution function. The increasing availability of meteorological en-
semble predictions gave rise to the development of hydrologic ensemble forecasts
(Cloke and Pappenberger, 2009).

1.2.2 The poor person’s approach

The first EPS methods like the ones implemented in the 1990s by the U.S. Na-
tional Centers for Environmental Prediction (NCEP) and the ECMWF took only
account for the uncertainty about initial states. As stated by Ziehmann (2000),
these models completely neglected model uncertainty. A simple alternative to
EPS forecasting is to account for NWP model uncertainty by combining the pre-
dictions from several independent weather centers without applying any modifica-
tions to the actual forecasts. This almost cost free procedure is referred to as the
poor person’s approach (Arribas et al., 2005; Atger, 1999; Ebert, 2001; Ziehmann,
2000). The ensemble size of global poor person’s ensembles constructed from de-
terministic NWP forecasts is usually limited to a few members, because there
are only a few weather centers that run global atmospheric models. Neverthe-
less, poor person’s approaches proved to perform well in comparison with EPS
ensemble forecasts from the NCEP and the ECMWEF. Poor person’s ensembles
often lack a correct representation of spread, but they usually perform quite well
in terms of forecast resolution. Here, resolution refers to the ability of a model
to issue case dependent forecasts that differ from climatological forecasts. Refer
to Hersbach (2000) for further details on forecast resolution.

1.2.3 Recent developments in ensemble forecasting

Let us now focus again on the topic of uncertainty quantification by EPS forecast-
ing. Within a single EPS, combining several model runs that have been gener-
ated in slightly different ways, i.e. perturbations in initial states and/or modified
model parameters, accounts for the corresponding sources of uncertainty. Ad-
ditionally, it can be accounted for model formulation uncertainty by combining
ensemble forecasts issued by different weather centers to a multi-model ensemble.
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Obviously, this applies the idea of the poor person’s ensemble to EPS forecasts.
Hence, a multi-model raw ensemble is a physically based approach to quantify
multifaceted sources of uncertainty, namely the uncertainties in initial conditions,
parameterizations, model structure, and data assimilation methods of the differ-
ent meteorological ensembles. The THORPEX Interactive Grand Global Ensem-
ble (TIGGE: Bougeault et al. (2010); Park et al. (2008); Richardson et al. (2005))
project ensemble is the most prominent example of such a multi-model combina-
tion. The global TIGGE ensemble, which currently comprises the EPS forecasts
from ten different operational centers, exhibits high forecast skill. According to
Hagedorn et al. (2012) a reduced TIGGE ensemble consisting only of the four,
often considered to be the best, EPSs provided by the Canadian Meteorological
Center, the NCEP, the UK Met Office, and ECMWF showed an improved perfor-
mance on the global domain for 850 hPA temperature and 2 meter temperature
compared to the best single-model EPS, the ECMWEF EPS. For precipitation
the same reduced TIGGE ensemble performed even better compared to the re-
forecast calibrated ECMWEF EPS (Hamill, 2012). Moreover, the results indicated
that statistical post processing of the reduced TIGGE ensemble did not provide as
much improvement as post processing of the ECMWEF EPS did. Based on these
results, Hamill (2012) concluded that “all operational centers, even ECMWF,
would benefit from the open, real-time sharing of precipitation data and the use
of reforecasts”. Of course, multi-model approaches can also be applied on re-
gional domains. The Grand Limited Area Model Ensemble Prediction System
(GLAMEPS), for instance, combines four regional EPS forecasts over the Euro-
pean domain (Iversen et al., 2011). Furthermore, multi-model approaches have
also been used for seasonal forecasting. Palmer et al. (2004) summarize the devel-
opment of the European multi-model ensemble system for seasonal-to-interannual
prediction (DEMETER). As part of the DEMETER project a multi-model en-
semble seasonal forecasting system based on seven global atmospheric models
has been tested. The results of these tests indicate that such a multi-model
combination approach leads to more reliable seasonal-to-interannual predictions.
Detailed analyses on the performance of the DEMETER multi-model ensemble
can be found in Hagedorn et al. (2005), Doblas-Reyes et al. (2005) and Wein-
heimer et al. (2005).

Moving on to river runoff, Cloke and Pappenberger (2009) provide a review
on ensemble flood forecasting. Most uncertainty in hydrological forecasting is re-
lated to uncertainty in the meteorological inputs for forecast horizons beyond 2-3
days. Meteorological uncertainty can be quantified by using meteorological EPS
forecasts as inputs to the hydrologic models. As for the meteorological variables,
probabilistic hydrologic forecasts benefit from multi-model ensemble forecasting.
Therefore, hydrologic ensemble forecasts are often driven by input from several
atmospheric models, issued by different weather centers, of which each is either
deterministic or probabilistic (Bartholmes et al., 2009; Thielen et al., 2009).

Hydrological multi-model ensemble forecasts are used operationally by dif-
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ferent flood warning services. For instance, the European Flood Alert System
(EFAS) uses two deterministic models, i.e. the high-resolution run of the ECMWF
and the deterministic model of the German Meteorological Service (DWD), and
two ensemble models, i.e. the 51 member ECMWF ensemble and the 16 member
Consortium for Small-Scale Modeling (COSMO) ensemble (Bartholmes et al.,
2009; Thielen et al., 2009; European Flood Awareness System, 2014). On a re-
gional scale there are a lot of similar flood alert systems. For instance, for river
Sihl, which drains a pre-alpine sub-catchment of the river Rhine catchment, an
operational hydrologic ensemble prediction system based on meteorological input
from the COSMO ensemble and from the COSMO-7 deterministic model by Me-
teoSwiss is run routinely (Addor et al., 2011).

The above mentioned hydrological ensemble forecasts account only for uncer-
tainties in the meteorological part of the runoff generation process. Georgakakos
et al. (2004) performed the first study which quantified the uncertainty in hydro-
logic model structure by multi-model combination. Their multi-model ensemble
consisted of ensemble members stemming from both calibrated and uncalibrated
deterministic hydrologic models. In this context, calibration refers to the adjust-
ment of the hydrological model parameters like, for instance, the percolation rate
to the catchment of interest, and not to calibration in a statistical sense. If not in-
dicated otherwise, henceforth the term calibration refers to statistical calibration,
which is introduced in Section 2.3.1. The multi-model ensemble by Georgakakos
et al. (2004) performed quite well in terms of calibration and its mean performed
better than the best single model in terms of quadratic error, which is in line
with the results from the meteorological studies on the poor person’s ensemble.
Zappa et al. (2011) have introduced a framework that investigates the relative
contributions of meteorological inputs, initial conditions, and hydrologic model
parameter estimates to the total predictive uncertainty. Within this framework,
a large multi-model ensemble is constructed, which consists of any permutation
of the meteorological raw ensemble members, of the weather radar precipitation
field ensemble members, which account for uncertainty in initial conditions, and
of an ensemble of equifinal parameter sets.



Chapter 2

Methods

In this chapter, methods for both univariate and multivariate statistical post
processing are presented in detail. Along with a short overview over different post
processing approaches, the methods used in Chapters 3 and 4 are discussed in
Sections 2.1 and 2.2. This is followed by an overview over the verification measures
used in this thesis in Section 2.3. For the sake of readability methodological
details specific to particular studies are omitted here and introduced along with
the corresponding studies. Note that all analyses have been performed using the
statistical software R (R Development Core Team, 2014).

2.1 Univariate post processing

2.1.1 Introduction to post processing of multi-model en-
semble forecasts

One of the first methods for post processing of multi-model forecasts was the
multi-model superensemble by Krishnamurti et al. (1999, 2000), which is a re-
gression technique that is closely related to the poor person’s approach introduced
in Section 1.2.2. In short, the superensemble is a statistical technique that fits a
multiple regression model with the members of a poor person’s ensemble as pre-
dictors and the observations as dependent variable. Accordingly, parameters have
to be estimated based on training data. The coefficients of the superensemble are
estimated separately for each location and each variable. Here, location refers
to both the geographical location and the vertical position in the atmosphere.
Since the coefficients of the superensemble model reflect the performance of the
different members in the poor person’s ensemble, they can also be understood as
weights assigned to the different members. Predictions from such a model proved
to outperform any of the poor person’s ensemble members in terms of root mean
squared error (Krishnamurti et al., 1999, 2000). They also outperformed the en-
semble mean and the mean of individually bias corrected members of the poor
person’s ensemble. The superensemble technique is deterministic in that it gener-
ates a deterministic forecast of increased skill by post processing the output from
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an ensemble forecast, which in most cases consists of a poor person’s ensemble.

State of the art techniques for univariate, i.e. each lead-time and each location
is considered independently, probabilistic multi-model combination and simulta-
neous statistical post processing include Bayesian model averaging (BMA) devel-
oped by Raftery et al. (2005), and the ensemble model output statistics (EMOS)
method introduced by Gneiting et al. (2005). An illustrative example of both
methods is given in Figure 2.1. Subsequent to introductions to exchangeable en-
semble members, BMA and EMOS are discussed in detail. This is followed by
an introduction to discrete post processing of TCC ensemble forecasts in Section
2.1.2 and by a discussion of methods that are tailored to hydrologic forecasts in
Section 2.1.3. Note that the description of univariate post processing methods
closely follows Gneiting (2014) and Hemri (2016).

Exchangeable ensemble members

The concept of exchangeable ensemble members is introduced here. As already
stated, meteorological EPSs give an estimate of the forecast uncertainty by pro-
viding a finite sample of forecast scenarios. Each scenario is represented by an
ensemble member. In case of an exchangeable ensemble, like for instance the
COSMO Limited Area Ensemble Prediction System (COSMO-LEPS: Montani
et al., 2011), the ensemble members lack individually distinguishable physical
features. Statistical post processing methods have to take account of exchange-
able ensemble members (Fraley et al., 2010; Gneiting et al., 2005). Therefore,
parameters of the BMA and EMOS models are constrained to be equal within
each exchangeable group.

Bayesian model averaging

BMA is a general method that has been developed originally in order to assess,
and include, model uncertainty in situations where several competing models are
available to predict the same variable. Closely following Hoeting et al. (1999),
a brief summary of BMA is given here. Let y be the variable to be predicted,
e.g. an atmospheric variable or river runoff, and r be the available data, e.g. a
raw ensemble forecast. With My, ... Mj; being the M competing models, the
posterior distribution of y given r can be written as

p(ylr) =D p(yl M, 7)p(My, |7), (2.1)

which corresponds to a weighted average of the of the posterior distributions
p(y| My, 7). The posterior model probabilities p(My, |r) can be understood as
model weights, which in turn are given by

e PTIMa M) s
PME) = S MMy &2
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Figure 2.1: Examples of a) BMA and b) EMOS predictive probability density
functions (PDFs). The panels on the left show the PDFs in the Box-Cox trans-
formed space, those in the panels on the right are in the original space. FC1 to
FC4 refer to different forecast models, of which FC1 is an ensemble of size 16
and the others are deterministic. Refer to Figure 4.7 in Section 4.3 for details on
these forecast models. The horizontally aligned dots show the values of the raw
ensemble members. Figure taken from Hemri (2016).

where p(M,,) denotes the prior probability that M,, is the true model. The
likelihood under model M,,, can be calculated as

p(r|Mp,) = /p('rlem, M) p(0,| M)A, (2.3)

where 0,, denotes the parameter vector for model M,,,. The vector 8,,, may, for in-
stance, refer to the parameters of a particular post processing model, p(7|0,,, M,,)
denotes the likelihood under model M,,, and parameter value 0,,,, and p(0,,| M,)
is the prior density of 8,, in model M,,. In the following, the BMA variant by
Raftery et al. (2005), which is used for post processing of hydrometeorological
ensemble forecasts, is presented.

For a variable of interest, y, BMA links the raw ensemble forecast r =

r1,...,7r of size M to a mixture distribution of the form
M
Y1~ Wy | 7m), (2.4)
m=1



where y | r denotes the predictive distribution of y conditional on the raw en-
semble forecast r. In the standard BMA approach the kernel densities ¢,,,(y | 7m)
are parametric and depend on the raw ensemble member 7, in suitable ways.
The weights wq, ..., wy > 0 sum to 1 and reflect the relative performances of the
corresponding raw ensemble members over the training period.

As stated in Section 1.2.3 state-of-the-art probabilistic forecasts of weather
variables and river runoff are usually based on multi-model approaches. The
members of a particular meteorological centers ensemble are in general exchange-
able. In the case of river runoff forecasts, the corresponding hydrologic ensemble
members are exchangeable as well. Fraley et al. (2010) discuss the adaptation of
the basic Gaussian BMA model in Equation (2.4) to ensembles with exchangeable
members. Their model is given by

M w Ny,
Yy | Tl,l) .. 7T1,N17 s 7TM,17 .. aTM,NM ~ Z N_m ng,n<y | Tm,n)a (25)
m=1 ™M p=1

where the members 7y, 1,...,7y n,, are the exchangeable members of model m.
The ensemble size N,, of model m equals one for a deterministic model like the
ECMWF high resolution (HRES) run. For the 50 member ECMWEF ensemble

(ENS) it would equal 50. BMA methods for normal and gamma distributed ker-
nel densities are implemented in the R-package ensembleBMA (Fraley et al., 2015).

Ensemble model output statistics

Gneiting et al. (2005) introduced the ensemble model output statistics (EMOS)
or non-homogenous regression (NR) method, which models the predictive distri-
bution as a single parametric distribution of the general form

ylr~glylr), (2.6)

where we use the same notation as above for BMA (cf. Equation (2.4)). EMOS
variants based on many different distributions g are applied in the studies in
Chapters 3 and 4. For the sake of simplicity, we assume here a Gaussian density
to be appropriate for the variable to be forecast and refer to Chapters 3 and 4
for examples of other distributions. The normal EMOS predictive distribution is

ylr~ Ny, o®), (2.7)

where 1 = ag + airy + -+ + ayry and 02 = by + bys?, where s? denotes the
ensemble variance

2 1 d —\2
s :MZ:(M—T), (2.8)

m=1
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with ensemble mean 7 = 1/M M r

In case of exchangeable members the mean parameter p is given by pu =
aog+ a7+ - -+ayTy, where 71, ... 7y are the means of each set of exchangeable
ensemble members (i.e. the members stemming from the same EPS) given by

1 o
Tm = N_m HZ:; Tm,n;, (29>

and the ensemble variance s? by

M Np

2 ZmlN _122%71_* , (2.10)

=1n=1

where 7 = M S Ve /ST N, denotes the ensemble mean. The coeffi-
cients ag € R, aq,...,ap, by, by > 0 are estimated by numerical optimization over
a training period. To this end, a target function, which depends on the model
coefficients and the observations, is minimized. Usually, the continuous ranked
probability score (CRPS: Matheson and Winkler (1976); Hersbach (2000)) is well
suited for that purpose. More details on the CRPS can be found in Section 2.3.1
about verification. For EMOS based on a Gaussian distribution, functions for
model fitting are available in the R package ensembleMOS (Yuen et al., 2013).

The EMOS model can alternatively be formulated as an extended logistic
regression (ExtLR) model (Wilks, 2009). In order to obtain a complete predic-
tive distribution, ExtLR uses the threshold to be forecast, y, as an additional
predictor. The ExtLR forecast cumulative density function (CDF) F' is given by

exp(ag + arr + -+ - + ayr$y + by?)
1+ exp(ag + a7 + - - + aprsy + byP)

F(y) =

for y >0, (2.11)

where o > 0 and 8 > 0 are fixed coefficients and » € RM is the vector of
predictors. Though originally developed for meteorological variables, ExtLR can
also be used to post process hydrologic ensemble forecasts. For instance, Fundel
and Zappa (2011) apply ExtLR to hydrological reforecasts following Wilks (2011)
who uses the ensemble mean 7 and spread s as predictors. The corresponding
ExtLR model can be written as

exp(ag + a1 7 + ags®? + by?)
1+ exp(ag + a17 + ags® + byP)’

F(y) = (2.12)
where a1, as, 5 have to be determined based on the forecaster’s knowledge and
ag, a1, as, b are estimated, for instance, by maximum-likelihood. A more recent

development of ExtLR allows for interaction between predictor » and threshold
y (Ben Bouallegue, 2013).
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2.1.2 Total cloud cover

As stated in Section 1.1 statistical post processing methods for TCC should take
account of the discrete nature of the reported TCC data. Hence, among the
different post processing methods those which contain some kind of a “logistic
regression” core are expected to perform quite well. In the following, two discrete
statistical post processing methods are presented: a method based on multino-
mial (or polytomous) logistic regression (MLR: Agresti and Kateri (2011)), and a
method based on proportional odds logistic regression (POLR: Walker and Dun-
can (1967); McCullagh (1980); Ananth and Kleinbaum (1997); Messner et al.
(2014)). Despite their differences, MLR and POLR are closely related.

MLR is a direct generalization of binary logistic regression. In the case of
TCC, the sample space is restricted to the discrete observations of cloudiness
which take values in Q = {0,1/8,2/8,...,1}. The elements of €, also called
octas, refer to the proportion of the sky covered by clouds. In the following,
the different TCC states are denoted by z; € 0, 7 = 1,...,J. For instance, z;
refers to a clear sky. Hence, the MLR model has to assign probabilities to the
J = 9 different states of cloudiness based on raw ensemble statistics as predic-
tors. Here, again a multi-model raw ensemble containing exchangeable ensemble
members is considered. Like in Section 2.1.1 such a raw ensemble is given by
= ("1, s "INy« s TM1s - - - s TM.Ny, )» Where the members 71, ..., 7y, ,, are
the exchangeable members of model m and N,,, denotes its size. Following Wilks
and Hamill (2007), and Hamill et al. (2008) we link the ensemble spread to the
MLR model using the ensemble variance as an additional predictor. The ensemble
variance s? is given by Equation (2.10). Inspired by Scheuerer (2014) we have also
tested the ensemble mean difference as a more robust alternative to the ensemble
variance, which — at least in the settings of the study discussed in Section 3.2 —
did not improve forecast skill. Again inspired by Scheuerer (2014) we introduce
the predictors fy and f;, which denote the ratio of ensemble members equal to
zero or one, respectively. For instance,

M Ny,

fo= ST N 1N S 1p-a (2.13)

m m=1n=1

where 1) denotes the indicator function. Accordingly, the vector of predictors is
given by

x=(1,7,...,7:m, 5 fo, f1)", (2.14)

where 71,...7); are the means of each set of exchangeable ensemble members.
Selecting now a TCC state zy € () as a pivot, the MLR model based on a random
variable Z can be written as

P(Z = Zj 7A Zo)
P(Z = z)

log = Bz, (2.15)
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where 3; is the vector of coefficients for state z;. Though any state z; could be
used as pivot state z, it is most natural to set z; = zp. Then, model (2.15) has
to be fitted J — 1 times such that the probabilities sum up to 1. Using a suitable
training period, this model can easily be estimated using the function multinom
of the R package nnet (Ripley and Venables, 2014).

POLR (Walker and Duncan, 1967; McCullagh, 1980; Ananth and Kleinbaum,
1997) is an alternative to MLR. POLR is well suited for ordinal data like TCC.
Since it assumes proportional odds, it requires fewer free parameters. This allows
to add an interaction term to the set of predictors used in the MLR model.
This term represents the interaction between the ensemble variance s? and the

deviation of 7* from 0.5, where 7™ = % The rationale behind this is to
map s2 to the variance of the post processed ensemble in a more natural way

than in the MLR model. More specifically, the interaction term is defined as
I = s%ign(d)d?, where d = (7* — 0.5). This formulation is expected to shift
extreme TCC forecasts towards the center, if s? is large, and at the same time
%

7™ is close to zero or one. Let m; = P(Z < z;) be the cumulative predictive
probability for TCC states. Then, the POLR model can be written as

logit(7;) = log N U - 9, — Bz, (2.16)
J

where the coefficient 6, takes a different value for each state z; and 6, < 0, <
.-+ < @ are strictly ordered. The coeflicients 8 = (5, ..., Bry» Bs2, Bro» Bris Br)
do not change with state. Additionally, 55, ..., 3, are constrained to be non-
negative. This is ensured by estimating the model iteratively. In each iteration
step negative estimates for any 87, , m =1,..., M, are set to zero and the model
is re-estimated without the corresponding predictor [ . This iterative proce-
dure stops as soon as min(ﬁ}l, cee B,;M) > 0. As stated above, the assumption
of proportional odds makes POLR much sparser than MLR. For the MLR model
(p + 1)(]Q2] — 1) coefficients have to be estimated, where || is the number of
different states and p denotes the number of predictors not counting the inter-
cept. In case of the POLR model we need only p + || coefficients. POLR is
implemented in the function polr of the R package MASS (Venables and Ripley,
2002). Example forecasts obtained by the POLR approach are presented in the
context of the study in Section 3.2.

2.1.3 River runoff

River runoff data are undoubtedly non-Gaussian. In order to be able to resort to
post processing methods relying on Gaussian distributions, both the observations
and the raw ensemble predictions have to be transformed such that forecast er-
rors are approximately normally distributed. Like Duan et al. (2007) we use the
Box-Cox transformation (Box and Cox, 1964) for that purpose. Details on how
the Box-Cox transformation has been implemented for the studies presented in
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Sections 4.2 and 4.3 can be found in Appendix A.2.1.

Truncated normal EMOS

In order to avoid positive probabilities for unrealistically high runoff forecasts, the
normal EMOS method presented in Section 2.1.1 has to be replaced by a trun-
cated normal EMOS method that is closely related to the one proposed by Tho-
rarinsdottir and Gneiting (2010). The main difference is that the left-truncation
is replaced by a right-truncation. Given a raw ensemble r = ri1,...,70p N,
one first applies a Box-Cox transformation A that yields Box-Cox transformed
ensemble members f, ,, = h(rm,.). Accordingly, the Box-Cox transformed mean
of a set of exchangeable members would be f,, = N! Zg;”l mm- Lhe upper
limit b of the predictive truncated normal distribution has to be selected based
on the forecaster’s expertise. Depending on the actual Box-Cox transformation
parameter estimate and the properties of the catchment of interest a lower limit
might be needed as well. With N®(u, 0?) denoting a right truncated normal dis-
tribution with support (—oo,b] the truncated EMOS predictive density for the
variable of interest y, here Box-Cox transformed runoff, can be written as

p(y | f1,17' . '7f1,N17f2,17' . '7fM,NM) :Nb<lu’0-2)’ (217)

where jt = ag+ai fi+asfo+- - -+ay frr and 0% = ¢; + co5? depends on the ensem-
ble variance s2. With this model formulation, truncated EMOS also accounts for
heteroscedasticity, i.e. heterogeneity in variances. Constraints on the parameters
are: agp € R and ay,as, ..., ay, ¢, co € Ri. The ensemble statistics u and s? are
computed using Equations (2.9) and (2.10), respectively.

Censored EMOS

As already mentioned, raw ensemble forecasts for runoff gauges with censored ob-
servations and forecasts such as the rivers Wied and Ahr need a specific, i.e. cen-
sored, post processing method. In order to obtain a post processing method suit-
able for censored data, a flexible, yet not too complex, post processing method
should be adapted, such that censored data are handled properly by the statistical
model. Truncated normal EMOS proved to be a good starting point to develop
a censored EMOS method. Here, we present an EMOS model that is based on
a truncated normal distribution with point mass at the censoring threshold. De-
tails on such censored distributions can be found in Gneiting et al. (2004). The
censored EMOS approach moves the forecast density mass below the threshold of
zero (since negative runoff has zero probability) to a point mass at zero, whereas
a similar truncated normal approach would shift this density mass to the interval
[0,00). The idea of censored raw ensemble forecasts and censored post process-
ing are illustrated in Figures 2.2 and 2.3, respectively. Both figures are based
on the raw ensemble forecasts issued on 9 May 2009 for river Wied at gauge
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Friedrichsthal. Details on the raw ensemble and the underlying meteorological
input models can be found in the studies presented in Chapter 4. The runoff
data from the catchments, considered in the just mentioned studies, need to be
Box-Cox transformed with a quite extreme transformation parameter A in order
to meet the assumption of normality. As for truncated normal EMOS, back-
transforming the post processed censored EMOS forecast to the original space
may lead to positive probabilities for unrealistically high runoff values. This can
be avoided by using an EMOS approach based on a left censored and right trun-
cated normal distribution. For technical simplicity, the raw ensemble forecasts
have to be transformed in a way such that censoring at zero makes sense. There-
fore, the raw ensemble runoff means are Box-Cox transformed and shifted leading
to transformed ensemble means f,, = h(7,,) — h(d), where d denotes the lower
threshold, i.e. the value at which left censoring is applied. This leads to the CDF

0 ify <0,
Fly) =4 25 ifo<y<w (2.18)
1 ify >,

where ® denotes the CDF of the standard normal distribution and g = (ID(“;“ )
is the cumulative density at the transformed upper threshold v. The variance
0% depends on the raw ensemble in the same way as described above for the
truncated normal EMOS model. However, the parameterization of the location
parameter ;o has to be adapted such that point masses p > 0.5 at the censoring
threshold are allowed. To this end, the intercept parameter aq is now allowed to
take values in R. Additionally, the ratio of ensemble means f,, that are equal to
the censoring threshold is used as an additional predictor. With this, the location

parameter depends on

f=ag+aifi + asfo+ -+ anfu + an1mo, (2.19)

where 7, is defined as the ratio of ensemble means equal to zero,

I
1
™= > - (2.20)
m=M

Though this model works quite well, the model may benefit from a modification of
the parametrizations for parameters p and o, such that, despite of the application
of a truncated normal distribution, the expected value of the forecast density
equals to the weighted mean of the raw ensemble means f,,. Differently from
the parameterization in Equation (2.19), for this approach censored EMOS is
applied without explicit correction of systematic errors (bias correction) in order
to enhance numerical stability of the model parameter estimation algorithms. If
needed, any kind of bias correction may be added prior to the estimation of the
EMOS parameters. The location parameter p is now estimated using numerical
optimization and has to fulfill
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Figure 2.2: Example of a censored raw ensemble forecast covering lead times 1-50
h. Each of the 18 trajectories corresponds to a particular member of a multi-
model raw ensemble forecast. Note that the trajectories may coincide at the
threshold. Figure taken from Hemri et al. (2014a).

- p(4)
EY|Y <v] = Z Wi frm + amo = 4 — 0—=Z (2.21)
m=1

where w,, are weights with Zi\le w,, = 1. The parameterization of the vari-
ance parameter o2 depends on whether all ensemble members are equal to the
lower threshold, i.e. the left-censoring threshold, or not. In the former case
0? = ¢ is used, since s> = 0, and in the latter case 0? = c¢; + cs®. The
term o [p(*=£)]/[®(*#)] in Equation (2.21) corrects the location parameter p

such that truncation of the forecast density does not lead to any systematic bias.

2.2 Multivariate extensions

Recently different methods to incorporate multivariate dependence structures into
the post processing of ensemble forecasts have been proposed. Let us first have a
look at non-parametric reordering approaches that comprise mainly the Schaake
shuffle (Clark et al., 2004) and ensemble copula coupling (ECC: Schefzik et al.
(2013)). Both approaches implicitly rely on empirical copulas. The notion of a
copula is critical in Sklar’s theorem (Sklar, 1959), which states that any L-variate
CDF F with margins Fi, ..., F can be represented by

Fyi,yn) = C(R(), - Fu(ye)), (2.22)

where yi,...,y; € R and C: [0,1]% — [0,1] is a multivariate CDF with standard
uniform marginal distributions. In case of ensemble forecasts, the rank order
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Figure 2.3: Example of a 48 h censored EMOS forecast.
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et al. (2014a).
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structure of the ensemble members defines an empirical copula over the forecast
margins, which correspond to particular lead times and locations.
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2.2.1 Schaake shuffle

Before introducing the multivariate extensions used for multivariate post process-
ing of river runoff forecasts in the study presented in Section 4.3, we discuss first
the Schaake shuffle, which can somehow be understood as a precursor of ECC.
The Schaake shuffle transfers historical spatio-temporal dependence structures to
the forecasts of interest. For simplicity, it is assumed here that only one variable,
like for instance runoff, precipitation, or temperature, is of interest. Of course,
the method could easily be used to model dependence structures between differ-
ent variables. Additionally, the difference between single model and multi-model
ensembles is ignored here. Let R,, ;s be the raw ensemble forecast array at a spe-
cific day. The index m = 1,..., M refers to the ensemble members, t =1,...,T
to the lead times, and s = 1,...,.S to the locations. Then a corresponding obser-
vation array Y, s of equal size is selected. Y, s is constructed by selecting the
same number of historical observations as there are ensemble members. Times of
day, such that lead times are reflected correctly, and locations have to be equal in
R, ;sandinY,, ;. In Clark et al. (2004) the dates of the historical observations
are selected such that they match the calendar day of the forecast of interest by
+7 days, regardless of the year. The multi-index ¢ = (s,¢) defines the margins
at which univariate statistically post processed ensemble forecasts are available.
For a given location s and lead time ¢, i.e. margin ¢, the Schaake shuffle can be
summarized as follows:

L. Soert the f(zrecast Vect(zr R, = (ré, ... ,rf\zf) such that R, = (#,...,#,) =

2. Sozrt the ob;ervati(;n vectc;r Y, = (.. X y%,) such that Y, = (e, ... ,?jﬁz[’) =
Yy Yan) Yoy < Yoy < - < Y, and denote the corresponding
ranks by rk’ .

=0 ).

3. Construct the reordered forecast vector R*® = (Trk“ s T
1 M

The above reordering procedure is applied to all margins £. With this, the Schaake
shuffle preserves the Spearman rank correlation structure between the margins.

2.2.2 Ensemble copula coupling

The non-parametric ECC approach reorders samples from the predictive densities
that may, for instance, have been obtained by EMOS. An illustrative example of
how ECC retains the rank order structure of the raw ensemble, while still follow-
ing the post processed marginal distributions, is given in Figure 4.7 in Section
4.3.3. For simplicity, only dependences between different lead times, which are
now denoted by [ = 1,..., L are considered here. Among the different ECC ap-
proaches discussed in detail in Schefzik et al. (2013) only ECC-T is applicable to
the strongly auto-correlated hourly runoff predictions, i.e. yields realistic runoff
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trajectories. The other approaches lead to unrealistic jumps between consecutive
lead times due to the processes used for the selection of samples from the pre-
dictive distributions. For ECC-T one first fits a parametric density function to
the raw ensemble for each verification day and lead time separately. Then, one
checks to which quantiles of these density functions the raw ensemble members
correspond. By doing this over the entire range of lead times a set of trajecto-
ries of probabilities is obtained. Each trajectory corresponds to a raw ensemble
member. Hence, the trajectories inherit the rank order structure from the raw
ensemble. By extracting the corresponding quantiles from the post processed pre-
dictive distributions one eventually obtains the ECC-T trajectories. Technically,
ECC-T operates as follows:

1. Assign unique and ordered indices 1, ..., K to the, possibly Box-Cox trans-
formed, raw ensemble members f,im, so that the ensemble can be rewritten
as (fl,..., f). Even though the actual order of the indices does not mat-
ter, the index assigned to a particular raw ensemble member has to remain
constant over all lead times.

2. Obtain for each lead time the reordered EMOS forecasts
o= FYS(f), k=1,....K, 1=1,...,L, (2.23)

where S, is the fitted CDF of a suitable parametric distribution to the,
possibly Box-Cox transformed, raw ensemble and Ffl denotes the inverse
of the marginal post processed CDF'.

2.2.3 (Gaussian copula approach

GCA is a parametric approach for modelling the correlation structure among dif-
ferent lead times. One first estimates a parametric correlation function from train-
ing data and then the respective multivariate normal distribution of dimension
equal to the number of lead times. By sampling several times from this distribu-
tion and then evaluating the CDF of the univariate standard normal distribution
at the sampled values, trajectories of probabilities are obtained. Extracting the
corresponding quantiles from the post processed forecast distributions results in
the GCA trajectories. The rank order structure of the GCA trajectories is in-
dependent from the rank order structure of the raw ensemble. For an example
illustrating this we refer to Figure 4.7 in Section 4.3.3. Technically, GCA can be
summarized as follows:

1. Calculate the empirical correlogram among lead times 1 to L from the
observations in the training period.

2. Fit a correlation function to the empirical correlogram.

3. Sample K realizations, (z},2%,...,zE) with k =1,..., K, from a standard
L-variate Gaussian distribution N'(p = 0, ¥) with diagonal elements ¥;; =
1 and correlation structure from 2.

19



4. Using the inverse, F’l_l, of the post processed marginal forecast CDF for
each individual lead time, multivariate scenarios with marginal distributions
inherited from the univariate fits are obtained as

O = F7H (), (2.24)

2.3 Verification

In the following, methods for the verification of probabilistic forecasts are dis-
cussed. For methodological details specific to the different case studies refer to
the corresponding sections in Chapters 3 and 4.

2.3.1 Univariate verification

As stated in Gneiting et al. (2007a) probabilistic forecasts should be (statistically)
well calibrated and yet sharp. In practice, univariate calibration is assessed via
the probability integral transform (PIT: Dawid (1984); Diebold et al. (1998);
Gneiting et al. (2007a)). The PIT value z for a particular verification day and
lead time is defined as the value of the predictive CDF evaluated at the observa-
tion. According to Rosenblatt (1952) well calibrated continuous forecasts imply
that z ~ U(0,1). In the present context, this means that the observations should
look like random samples from the predictive distribution. When translating into
bins and calculating the relative frequencies over the entire verification period,
the PIT can be visualized by a histogram as shown in Figure 2.4 (Hamill, 2001).
A flat histogram indicates well calibrated forecasts, whereas underdispersion is
indicated by a U-shape and overdispersion by an N-shape, respectively.

In the context of hydrometeorological forecasting the above notion of calibra-
tion, which is also called probabilistic calibration, is the most important one. In
some cases, marginal calibration may be of interest in practice as well. According
to Gneiting and Katzfuss (2014) a forecast with CDF F' is marginally calibrated
if the mean forecast CDF equals the marginal CDF of the respective observations.
An example of how to assess marginal calibration in the case of total cloud cover
forecasts is provided in Appendix A.1.2. Sharpness refers to how focused prob-
abilistic forecasts are. Sharpness can, for instance, be assessed by verifying the
widths of prediction intervals at a given nominal level, e.g. in many cases the
centered 90 % prediction intervals. The narrower those intervals, the sharper is
the forecast. An example of box plot like diagrams that assess sharpness can be
found in Gneiting et al. (2007a).

Besides the appealing concepts of calibration and sharpness, a representation
of forecast skill in terms of a scalar number is desirable. To this end, many
different scoring rules have been proposed. For the verification of probabilistic
forecasts, proper scoring rules should be applied as they “encourage the forecaster
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Figure 2.4: Left to right: PIT histograms for a well calibrated, an underdispersed,
an overdispersed, and a biased forecast. Figure taken from Hemri et al. (2014a).

to make careful assessments and to be honest” (Gneiting and Raftery, 2007). If
a forecaster issues the predictive distribution F' and the event y materializes, a
scoring rule S(F,y) can be understood as the reward of the forecaster. Denoting
the forecasters true belief by G, the negatively oriented, i.e. the lower the score
the more skillful is the forecast, scoring rule S(F,-) is proper, if

Ec[S(G,Y)] < Eg[S(FY)], (2.25)
for all FG, where E¢[S(-)] denotes the expectation of S(-) under G. If

Ec[S(G,Y)] < Eg[S(F,Y)], (2.26)

holds for any F' # G, S(F,y) is called strictly proper. In hydrometeorological
applications, the most widely used proper scoring rules are the CRPS (Matheson
and Winkler, 1976; Hersbach, 2000)) and the logarithmic (log) score (Good, 1952).
For a forecast with predictive CDF F', the CRPS is given by

CRPS(F,y) = / [F(u) = Ly ] du
1 !/
=Er|Y —y| - Er|Y Y], (2.27)

where Y,Y’ ~ F are independent random variables with finite mean (Gneiting
and Raftery, 2007). For a forecast with density p, the log score is given by

log(p,y) = —log p(y). (2.28)

Skill of forecasts for dichotomous variables can be evaluated in a proper way using
the Brier score (Brier, 1950), of which the CRPS is a generalization. The Brier
score is given by

BS = (p —0)?, (2.29)

where p denotes the predicted probability for an event x to occur, and o is an
indicator function that returns 1 if the event x materializes and 0 otherwise.
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In order to rank different forecasters, the scores are usually averaged over the
verification period leading to the average score Sy

;
1
=_ F,. y,). 2.
Sv V;ﬂ ) (2:30)

The concept of skill scores has been developed in order to be able to compare
forecasts for distinct sets of forecasts situations (e.g. Murphy (1973) and Gneiting
et al. (2007a)). Hence, computing skill scores may, for instance, be beneficial
when comparing competing hydrological forecast methods at different gauges.
Following Gneiting and Raftery (2007) skill scores are calculated using

- St — §¢
Syt = —2¥, 2.31
A (2.31)
where Sy, is the average score of an ideal forecast, i.e. a forecast that always assigns
probability 1 to the value that materializes. The average scores Si, and S¢ refer
to the forecast of interest and the reference forecast, respectively. In practice,
the reference forecast corresponds often to the climatology, i.e. the empirical
distribution obtained from past observations. The skill score S{ attains values
in (—oo, 1] and is positively oriented. Forecasts with skill equal to the skill of the

reference forecast lead to a skill score of zero.

2.3.2 Multivariate verification

As already mentioned, it is crucial to ensure a realistic correlation structure
among the forecast margins in case of issuing multivariate predictions. To this
end, Gneiting et al. (2008) proposed the multivariate rank histogram, which is
a visual method to assess multivariate calibration, i.e. the correct representation
of the dependence structure among different margins by the forecasts. For visual
verification in high dimensional settings, as it is typically the case in the field of
hydrometeorological forecasting, Thorarinsdottir et al. (2014) proposed the aver-
age rank and the band depth rank histogram. These rank histogram methods are
further developments of the concept of the multivariate rank histogram. Given
univariate calibration, they can be used to detect unrealistic correlation struc-
tures among lead times and/or locations of the forecast distribution. Following
Thorarinsdottir et al. (2014) the average and the band depth rank histogram can
be obtained as follows:

e Obtain M randomly sampled forecast trajectories (here over lead times 1 to
114 h, i.e. dimension L = 114) from the multivariate predictive distribution,
where M corresponds to the size of the raw ensemble.

e Add the observed trajectory to the set of sampled forecast trajectories,
leading to the set S = {@1,..., @y, X1} of trajectories of dimension L
with @, = (Tm1, ..., Tmy) for m = 1,..., M + 1. The observed trajectory
y is now denoted by @y ;.
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e (Calculate pre-ranks using either the average pre-rank function

ps(x) = 7 > rankg(z)), (2.32)

=1

or the band depth pre-rank function

L M+1
1

ps(x) = T Z [rankg(xl)[m — rankg(z;)] + [rankg(z;) — 1] Z ]l[wml:xl]},

=1 m=1

where rankg(z;) denotes the rank of member x at lead time I.

e Obtain the rank of @/, by first calculating ps(xys41) and then determining
its rank in {pg(x1),...,ps(xrm), ps(®rri1)} with ties resolved at random.

Calculating the above ranks for each day in the verification period allows to
plot PIT-like histograms. Though they look like univariate PIT histograms, their
interpretation is somewhat different. Assuming the forecasts to be marginally,
i.e. for each individual lead time, well calibrated, U-shaped average or band
depth rank histograms indicate too low correlations among lead times, whereas M-
shaped histograms indicate too high correlations. But note that these histograms

are highly sensitive to marginal miscalibration. Refer to Thorarinsdottir et al.
(2014) for further details.

For multivariate assessment of forecast skill Gneiting and Raftery (2007) pro-
posed the energy score (ES) given by

1
ES(Fy) = Er[|X —yll = 5 Epl|X — X[, (2.33)

where || ]| denotes the Euclidian norm. Here, X and X’ are independent random
vectors following the predictive distribution F' with finite first moments and the
observation vector is denoted by y. The ES is negatively oriented, proper, and
a generalization of the CRPS. If the forecast is available as an ensemble of size
M with ensemble member trajectories fi,..., fi; € RE, according to Gneiting
et al. (2008) the ES can be calculated as

1 M 1 M M
ES(Fy) = 3 D If vl =y oD IF = £l (239
m=1

i=1 j=1

In case of a deterministic forecast trajectory f the ES reduces to the Euclidian
norm,

ES(f,y) = [If —yll- (2.35)
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Hence, the ES may be used to compare multivariate density forecasts, discrete
ensemble forecasts, and deterministic forecasts (Gneiting et al., 2008). The ES
discriminates well between forecasts with different mean vectors, and shows satis-
fying discrimination ability with regard to variance specification. But its ability to
detect errors in the correlation structure is quite poor (Pinson and Girard, 2012;
Pinson and Tastu, Pinson and Tastu; Scheuerer and Hamill, 2015). Scheuerer
and Hamill (2015) recently developed the p-variogram score as a complement to
the ES. Its main advantage is the much better discrimination ability between

correct and misspecified correlation structures. The p-variogram score of order p
is defined by

L
2
S (Foy) = Y wii(jyi — y51” — Br| Xi — X517)°, (2.36)
ij=1

where F' denotes the L-variate predictive distribution, y is the observation vec-
tor of length L, X; and X are the i-th and j-th component of a random vector
X ~ F, and w;; > 0 are weights. As proposed in Scheuerer and Hamill (2015)
pairs of far distant lead times are down-weighted in order to increase the sig-
nal to noise ratio. This is done by setting w;; to be proportional to the inverse
distance between i and j. Additionally, they have demonstrated by simulation
experiments that setting p = 0.5 leads to a good discrimination ability of the
p-variogram score.
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Chapter 3

Meteorological ensemble post
processing

3.1 Trends in the predictive performance of raw
ensemble weather forecasts

As stated in Chapter 1 univariate statistical post processing conveys considerable
improvements in skill to hydrometeorological ensemble forecasts. The study at
hand assesses the evolution of skill of both raw ensemble and EMOS post pro-
cessed forecasts from the ECMWEF ensemble over the period from January 2004
to March 2014. The following sections follow mainly the work by Hemri et al.
(2014b).

3.1.1 Introduction

NWP models are under continuous development. Hence, the forecast skill of the
ECMWF ensemble, of which a detailed description can be found in Molteni et al.
(1996) and Buizza et al. (2007), improves over time (Buizza et al., 1998, 2007;
Richardson et al., 2013). These improvements may either stem from a reduction
of probabilistic biases or from an increase in potential skill. The former directly
competes with statistical post processing, whereas the latter corresponds to an
increased information content of the raw ensemble. If most of the improvement
is due to the reduction of probabilistic biases and the raw ensemble forecasts
continue to improve in the future, the gap in skill between raw ensemble and
post processed forecasts is expected to decrease over time. Eventually, the raw
ensemble forecasts may become reliable and unbiased, and hence the gap in skill
will be closed. However, if most of the improvement is due to an increase in
potential skill, statistical post processing will keep adding skill in the future.

In this study we analyze the evolution of the global performance of the op-

erational ECMWF raw ensemble and the corresponding post processed EMOS
forecasts for 2-meter temperature (T2M), 24-hour precipitation (PPT24), and
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10-meter wind speed (V10). We verify the forecasts against globally distributed
surface synoptic observations (SYNOP) data over a period of about 10 years.
We firstly evaluate the monthly average skill for both the raw and the EMOS
forecasts. In order to assess the extent to which the results depend on the choice
of the post processing method, BMA is additionally applied to the T2M raw
ensemble forecasts. We will use the negatively oriented CRPS as a measure of
skill. As the CRPS assesses both reliability and sharpness and is a proper scoring
rule (Gneiting and Raftery, 2007), we rely on it for model fitting and verification
throughout this study. Note that skill and reliability are linked in that given
constant sharpness an improvement in reliability leads to an improvement in skill
and vice versa. We finally analyze the evolution of the gap in CRPS between raw
ensemble and post processed forecasts.

After presenting the dataset in Section 3.1.2, we summarize the methods for
post processing and for the assessment of the global skill evolution in Section
3.1.3. In Section 3.1.4 the results are shown. This is followed by a discussion in
Section 3.1.5 along with some concluding remarks.

3.1.2 Data

We have selected a large number of synoptical observation (SYNOP) stations for
verification to perform a study which covers the entire globe as ECMWF forecasts
are issued on the global domain. SYNOP stations with suspicious or too many
missing data are removed from the dataset following the approach used by Pinson
and Hagedorn (2012) with some modifications. The main criterion for removal
of a station from the dataset for a particular variable is the percentage of data
points that are equal to the previous ten data points. If this exceeds 20 % a sta-
tion is considered to be unreliable. In case of PPT24 and V10 this is applied only
for non-zero values. Additionally, T2M stations with values outside the range
[-70°C, 60°C|, PPT24 stations with values outside [0 mm, 1826 mm]| and V10
stations with values outside [0 m/s, 113.2 m/s] are removed. Those ranges ex-
tend from the lowest to the highest measurements recorded on earth. With these
removal criteria 4160 out of 4586, 2917 out of 2956, and 4387 out of 4509 stations
are considered to be of reasonable quality for T2M, PPT24, and V10, respectively.

In this study we focus on observations for 12:00 UTC and ECMWF ensemble
forecasts initialized at 12:00 UTC with lead times of 3, 6, and 10 days. This
selection of forecast ranges covers the transition from higher predictability at lead
time 3 d to considerably lower predictability at 10 d. The raw ensemble consists
of the ECMWF high-resolution (HRES), the corresponding 50 member ensemble
(ENS) and the control (CTRL) runs. During the time period considered (1st
January 2002 to 20th March 2014) the forecast model, which is the same for ENS,
HRES, and CTRL, has undergone several upgrades. Additionally, the ENS has
been reconfigured several times over that period. The ECMWF ensemble system
is described in detail in Molteni et al. (1996) and Buizza et al. (2007). Since
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for the post processed forecasts some data has to be put aside for training (see
Section 3.1.3), the verification periods for the following analyses are somewhat
shorter and extend from January 2004 to March 2014 for T2M and V10, and from
January 2007 to March 2014 for PPT24.

3.1.3 Methods

Based on the EMOS method introduced in Section 2.1.1, the EMOS variants for
T2M, PPT24, and V10 are now presented in detail.

EMOS for T2M

For T2M forecasts g (cf. Equation (2.6) in Section 2.1.1) is a normal density dis-
tribution with mean m and variance 2. In order to account for seasonality, we
use here a variant of the original EMOS approach similar to the one proposed by
Scheuerer and Biiermann (2014) where the departures of observed temperatures
from their climatological means are related to those of the forecasts. Specifically,
let T = {t1,...,t,} be a training period of n days preceding the forecast initial-
ization and denote by 7, the forecast of the k-th ensemble member and by y; the
observation on day t € T'. As a first step, we fit a regression model
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. (271 .
Yi; = Co + c1sin (ﬁ) + ¢o Ccos (%) +e,, j=1,....n (3.1)

which captures the seasonal variation of T2M. The residual terms ¢;; are likely
correlated over time, but for simplicity an ordinary least squares fit is performed.
We denote by g, the fitted value of this periodic regression model on day ¢ and
interpret it as the climatological mean temperature on this day. This model can
easily be extrapolated to future days 411,449, ... The above regression includes
both a sine and a cosine term which is equivalent to a cosine model with variable
phase and amplitude. Since 7 = 1,...,n is just a numbering of the days in
T, different training periods have different phase parameters and hence ¢; and
co evolve over the calendar year. We fit the same type of model also to the
ensemble mean, control, and high resolution run and obtain climatological means
FENS.¢» TCTRL 1 and Tures;. The mean of the forecast distribution is then

m = § + a1 (rures — Tures) + @2(rerrL — Torr) + 03(TExs — TExg)- (3.2)
The variance of the forecast distribution is linked to the raw ensemble by

0'2 = b[) + b182, (33)

where 5% = & Zle(rk - % Zszl re)?. The parameters Oron = (ay, as, as, by, by)”
are constrained to be non-negative, and hence ay/ Z,{;l aj can be understood as
the weight of model k.
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EMOS for PPT24

For PPT24 we use the EMOS approach proposed by Scheuerer (2014), where g
is a left-censored (at zero) generalized extreme value (GEV) distribution. While
the shape parameter ¢ of the GEV is kept constant (£ = 0.2), the location and
the scale parameters m and o are linked to the raw ensemble via

m = ag + a1THRES + A2"CTRL 1+ A3TENg + A4T0, (3.4)

g = bg + blMDT, (35)

where 7 is the fraction of ensemble members predicting zero precipitation and
MD, = K2 ZkK,kle |7k — 71| is the ensemble mean difference. Again, the param-
eters are denoted by O@ppray = (g, . . ., as, by, by)T. The parameters ay, az, as, by, by
are constrained to be non-negative, and hence the normalized parameters a; to
az can be understood as weights.

EMOS for V10

For V10 we use a modified version of the EMOS model based on a left-truncated
(at zero) normal distribution by Thorarinsdottir and Gneiting (2010). A trun-
cated normal distribution on the square root transformed space seems to be an
appropriate choice for ¢, as it outperformed both the untransformed truncated
normal model and a model with predictive gamma distributions in preliminary
tests. We model the distribution of /y by a truncated normal distribution with
parameters

m = ag + a14/THRES T A2+/TCTRL + G3/TENS (3.6)

O'2 = b(_) + blMD\/;, (37)

where MDW = K2 Zkkazl \./rk—,/rk/|. The parameters 0\/10 = ((Io, ..., as, b(),
bl)T are constrained to be non-negative, thus the normalized parameters a; to as
can be understood as model weights.

Model fitting and evaluation

For all three variables the parameter vector 0 is estimated by CRPS (cf. Equation
(2.27) in Section 2.3.1) minimization over the training period 7. The training
period for each verification day consists of the n days preceding the initialization
date. Tests using a subset of European stations indicate that for T2M forecasts
a training period of 720 days is appropriate, while for PPT24 and V10 training
periods of 1816 and 365 days, respectively, performed best. Following Scheuerer
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(2014) we try to avoid overfitting by using the parameter estimates 0,_, as start-
ing values for the estimation of 0, for verification day t and then stopping the
optimization process after a few iterations. This sliding window model fitting
approach generally results in good parameter estimates, but it may be affected
by sudden changes in the raw ensemble models during the training period. Never-
theless, the good performance of the post processed forecasts as shown in Section
3.1.4 indicates that this effect can be neglected for the majority of stations.

A closed-form expression for the CRPS for the normal model for T2M can be
found in Gneiting et al. (2005). For the censored GEV model used for PPT24
a closed-form expression has been derived by Friederichs and Thorarinsdottir
(2012) and Scheuerer (2014). For the square root transformed truncated normal
model used for V10 the CRPS can be calculated using formulae by Gneiting et al.
(2004). With ¢ = ®(—p/o), p=1—g¢q, and w = (\/y — p)/o the CRPS can be

written as

CRPS(y, u,0) = ]%<U - 2—\;;) — 202{%2 - }9 [(Uﬂ —1)®(w) + wgp(w)} +
q%’?} _ 2aﬂ{w _ %[w@(w) +pw)] + 2%“’} + (3.8)

o? 1 /—p\2 2 20 2 2¢?
[ o) o) 2o L) - £,
L ¢ \o o? PV o p?
where ® and ¢ denote cumulative and probability density functions of the stan-
dard normal distribution, respectively.

BMA for T2M

As T2M predictions can be described well by a normal distribution, BMA pa-
rameters can be estimated easily using the R package ensembleBMA (Fraley et al.,
2015). Hence, for T2M BMA can be used as an alternative to EMOS even on
the global set of stations. Resuming the BMA model for raw ensembles with ex-
changeable members (cf. Equation (2.5)) and with an additional bias correction
the BMA model is parameterized by

M Nm
ylr ~ D w9 | @m0 + G Om), (39)
m=1 n=1

where M is the number of subgroups of the ensemble within which all members
are exchangeable and N,, is the number of members in this group (Fraley et al.,
2010). In case of T2M g is a normal kernel distribution and wy, . .., wy; are model
weights. The parameters a,,g, 1, © = HRES, CTRL, ENS, are estimated by lin-
ear regression and ,,, 6, by the Expectation-Maximization algorithm (Dempster
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et al., 1977; McLachlan and Krishnan, 1997). The BMA models for this study are
fitted using a training period of 365 days prior to the verification day. The esti-
mates for day ¢ — 1 are used as starting values for the estimation of the parameter
values for day t.

Global CRPS analysis

As stated above, the main objective of this study is to analyze whether the gap
in CRPS between the raw ensemble and the post processed forecast narrows over
time. This is assessed stationwise using both a parametric and a non-parametric
approach. For the former, we fit the following regression model to the monthly

time series of CRPS differences (ACRPS; = CRPS,.wv: — CRPSgmos.),

2 2
ACRPS; = By + pit + [ sin (g) + B3 cos (g) +e  e~N(0,0%) (3.10)

where ACRPS,; is the predictand, ¢ is now time in months, and o2 denotes the
error variance. For the latter, we use Kendall’s correlation coefficient 7 and the
associated test statistic (Mann, 1945) as implemented in the R package Kendall
(McLeod, 2011). In order to correct for seasonal effects, we calculate the 7 statis-
tic using the residuals of the model

27t 2wt
ACRPS; = vy + 71 sin (%) + 72 cos (%) +e,  e~N(0,0?) (3.11)

Note that negative values of 7 indicate a negative trend and positive values a
positive one. Figures 3.1 a) and b) show the regression lines estimated by the
model described by Equation (3.10) for monthly averages of ACRPS and the
corresponding Kendall’s 7 test statistics for an example with decreasing and in-
creasing gap.

3.1.4 Results
General features of ACRPS

Before assessing the stationwise evolution of ACRPS over time, we consider first
the evolution of global average CRPS values of both raw ensemble and EMOS
forecasts. As shown in Figures 3.1 ¢) to k) the average CRPS for both forecasts
increases with increasing lead time regardless of the variable of interest. Note
that all three variables exhibit seasonal oscillations in average CRPS. In case of
T2M and V10 post processing by EMOS obviously improves the average CRPS,
whereas for PPT24 the improvement is much smaller relative to its seasonal oscil-
lations in average CRPS. In any case, further analyses on the temporal evolution
of ACRPS should correct for seasonal effects. Note that ACRPS depends on
the performance of the post processing method selected. If alternative post pro-
cessing methods perform better, ACRPS will be further increased by using them.
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Figure 3.1: a) and b) show monthly averages of ACRPS between raw ensemble
and EMOS forecasts with a lead time of 6 d for example stations with a decreasing
and an increasing gap for T2M. The red solid lines correspond to the fits of the
regression model stated in Equation (3.10); the red dashed lines to their linear
parts. ¢) to k) depict the monthly (in black) and yearly (in red) global average
CRPS of the raw ensemble and EMOS forecasts for T2M, PPT24, and V10.
Figure taken from Hemri et al. (2014b).

Let us now focus on a stationwise analysis. According to the box plots on the
panels on the left of Figures 3.2 a) to ¢) more than 95 % of the stations bene-
fit from EMOS in terms of ACRPS averaged over the entire verification period
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Figure 3.2: Box plots over all stations representing the 5, 25, 50, 75, and 95
% quantiles of the average CRPS differences between raw ensemble and EMOS
forecasts (left panels), and (right panels) the slope coefficients of the linear model
fits and the Kendall’s 7 statistics of monthly ACRPS averages. Depicted are
a) T2M, b) PPT24, and c) V10; the red dashed lines on the right-hand panels
indicate the zero line. Figure taken from Hemri et al. (2014b).

regardless of lead time and variable of interest. Note also the positive skewness
and the decrease in ACRPS with increasing lead time. The box plots on the
panels on the right of Figures 3.2 a) to c¢) describe the empirical distributions
among the set of all stations considered of the slope coefficients Bl and the 7
test statistics of ACRPS against time for the parametric and the non-parametric
model, respectively. For T2M and, in particular, PPT24 negative trends are more
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common than positive trends, whereas the corresponding box plots for V10 are
almost symmetric around the zero line. In general the medians of the 5; and the
7 values seem to converge to zero with increasing lead time.

Though not discussed in Hemri et al. (2014b), the spatial distribution of the
relative improvement in skill by EMOS is also relevant. Neglecting the changes
in CRPS over time, the relative change in average CRPS by applying EMOS
compared to the raw ensemble can easily be assessed in a stationwise manner.
As shown in Figure B.1 in Appendix B.1 and also discussed in Richardson et al.
(2015) EMOS improves forecast skill of T2M forecasts considerably at almost
all stations for lead times up to about 5 days. At a forecast horizon of 6 days
there is an increasing number of stations that exhibit only a very small improve-
ment in CRPS by EMOS, which are located mostly in Eastern Europe and North
America. At a lead time of 10 days, a considerable number of stations shows no
improvement or even a deterioration. Nonetheless, EMOS improves forecast skill
at the majority of stations even for the very long forecast horizon of 10 days. In
general, the improvement by EMOS is smaller, but still considerable, in case of
PPT24 as can be seen from Figure B.2 in Appendix B.1. Note that already at
a forecast lag of 3 days there are several stations that exhibit a deterioration in
skill. These stations are located to a large extent in North Africa and the Arabian
Peninsula. As for T2M, also for PPT24 there is an increasing number of stations
with only a very small improvement in CRPS by EMOS at a forecast lag of 6
days. But compared to the results for T2M these stations are more numerous and
spread more widely. Going from a forecast lag of 6 to 10 days, the picture does
not change much in case of PPT24. The number of station with only a very small
improvement or even a deterioration in skill by applying EMOS increases again.
But the vast majority of stations still shows an improvement. For V10 the im-
provement in skill by EMOS is considerable at the vast majority of stations over
the entire forecast horizon as can be seen from Figure B.3 in Appendix B.1. Like
for T2M and PPT24, the extent of this improvement decreases with increasing
forecast lag. However, even at a lead time of 10 days skill is increased by EMOS at
all stations. The improvements are greatest over Brazil, India, and (South) East
Asia, whereas they are rather moderate over Western Europe and North America.

Are there any significant temporal trends?

The above results indicate a tendency of a decrease in ACRPS over time at least
for T2M and PPT24. In the following we check the percentages of stations with
decreasing, an absence of, or increasing trend in ACRPS over time at a signifi-
cance level of 0.05. In order to be more confident about the results this analysis
is performed using both the parametric regression model and the non-parametric
Kendall’s 7 correlation coefficient test. As already mentioned both approaches
correct for seasonal effects. Furthermore, in case of T2M the same analysis has
been performed additionally using BMA instead of EMOS in order to relax the
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dependence on one particular post processing method. As shown in Table 3.1 the
stations with no significant trend outnumber the stations with either negative or
positive trend for all three variables and lead times considered. Note that the
percentage of stations without any significant trend increases with increasing lead
time. In line with the results shown in Figure 3.2, significantly negative trends are
more common than positive ones for T2M and PPT24. The difference between
the number of stations with negative and those with positive trend reduces with
increasing lead time, but is still greater than zero for a 10 day forecast. Note that
the high number of non-significant stations in case of PPT24 is likely to be due
to the high variability of precipitation amounts, and hence variability of CRPS
values, which leads to a large residual standard error in case of the parametric
regression model and to a lot of pairs (a pair denotes here a value of ACRPS and
its associated time stamp) opposite to the estimated direction in case of the 7
test statistics. In case of V10 the stations with a negative trend and those with a
positive trend are almost equally frequent regardless of the lead time. The global
distributions of stations with no, significantly negative, and significantly positive
trend in ACRPS are shown in Figures B.4 and B.5 in Appendix B.1.

Additionally to the analyses presented above that can also be found in Hemri
et al. (2014b), the evolution of the weights assigned to HRES by EMOS is an-
alyzed here. For each verification year the empirical distribution of all weights
assigned to HRES pooled over all verification days and the global set of sta-
tions is obtained. Figure 3.3 shows the mean weights against lead time as
a separate curve for each verification year for T2M and V10. For 2013 the
0.05,0.25,0.5,0.75, and 0.95 quantiles of the distribution of weights are shown
as well. For visualization purposes, the weights are given as equivalent number
of ENS members. For instance, if EMOS assigns equal weights to the HRES run,
the CTRL run and the 50 ENS runs, this weight measure would equal one. As
expected the weight of HRES decreases with increasing lead time. This is in line
with the gradually decreasing predictability over the forecast horizon (Richardson
et al., 2015). The gain by running the model at high-resolution in comparison
with the lower resolution ENS runs decreases with increasing uncertainty. But
more importantly, the weights assigned to HRES generally decrease over the
years. For V10 the importance of HRES mostly decreases from year to year. In
case of T2M this decrease is not so obvious, in particular at the first two lead
days. However, the average weight assigned to HRES during the last two years,
2012 and 2013, is considerably lower than for any of the previous years.

3.1.5 Discussion

According to the above analyses the gap in CRPS between the raw ensemble and
the EMOS forecasts remains almost constant over time. For T2M and PPT24
ACRPS shows a slightly decreasing tendency. The higher the lead time the less
accentuated is this tendency. For V10 such a tendency cannot be detected. The
parametric regression model and the non-parametric Kendall’s 7 test yield similar
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Figure 3.3: Weights assigned to HRES by EMOS for a) T2M and b) V10 against
lead time for different verification years. The solid lines correspond to the yearly
averages, while the box plots show the 0.05, 0.25, 0.5, 0.75, and 0.95 quantiles of
the empirical distribution of HRES weights in 2013.

results. Hence, a linear model that is overlaid by seasonal fluctuations seems to be
reasonable. Note that the skill of the raw ensemble and the EMOS forecasts may
sometimes be negatively affected by upgrades to the atmospheric model. Model
upgrades may deteriorate raw ensemble skill at some individual stations. For
instance, a resolution increase may introduce new issues with statistical down-
scaling of the forecasts to some specific observation sites. But more importantly,
the skill of the post processed forecasts can be lowered dramatically if a model
update happens between the training and the verification period. These issues
may result in positive trends in ACRPS. Ideally, post processing would be based
on a cascade of reforecasts. That is, for each atmospheric model version, training
of the post processing model would be done using a corresponding time series of
reforecasts made with that same model version. Furthermore, the observations
may be affected by measurement errors. If these errors change over time, they
may also influence the estimates of the trends in ACRPS. As the problems in-
troduced by statistical downscaling may be mitigated by verifying against model
analysis, a similar study that replaces observations by model analysis, as pro-
posed by Ghelli and Lalaurette (2000) and Pappenberger et al. (2009), may give
further insights.

Additionally, verification scores are affected by ensemble size (e.g. Richardson
(2001)). Let us assume the hypothetical case of a perfect forecast distribution
that equals the distribution of the stochastic process of interest. A raw ensemble
forecast sampled from this forecast distribution would then be reliable by defini-
tion. Nevertheless, the raw ensemble would only be a step-wise approximation to
the underlying forecast distribution. This would lead to an under-performance
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of the raw ensemble compared to the underlying forecast distribution in terms of
CRPS, because CRPS is a proper skill score (Gneiting and Raftery, 2007). This
has to be kept in mind when comparing raw ensemble CRPS values with those
values obtained from continuous forecast distributions. But note that this does
not mean that the continuous forecast distributions obtained by post processing
equal the underlying distribution mentioned above. Ferro et al. (2008) discuss
the effect of ensemble size on CRPS. Hence, further analyses on the gap in skill
between raw ensemble and post processed forecasts may benefit from taking this
effect into account.

From the above we conclude that the probabilistic skill of both the raw ensem-
bles and the EMOS forecasts improves over time. The fact that the gap in skill
has remained almost constant, especially for V10, suggests that improvements
to the atmospheric model have an effect quite different from what calibration by
statistical post processing is doing. That is, they are increasing potential skill.
Thus this study indicates that (a) further model development is important even
if one is just interested in point forecasts, and (b) statistical post processing is
important because it will keep adding skill in the foreseeable future.

3.2 Discrete post processing of total cloud cover
ensemble forecasts

As stated in Chapter 1 the discrete nature of total cloud cover observations calls
for discrete post processing methods. The MLR and POLR methods, which have
been introduced in Section 2.1.2, are suitable for this purpose. In the following
sections, which closely follow Hemri et al. (2016), we present a study that assesses
the performance of MLR and POLR for ECMWEF TCC forecasts on the global
domain.

3.2.1 Introduction

Forecasts of total cloud cover (TCC) are an important part of numerical weather
prediction (NWP) both in terms of model feedbacks and with respect to forecast
users in areas such as energy demand and production, agriculture, and tourism.
In NWP models cloud cover affects the evolution of the model state through
feedback loops on radiative fluxes and heating rates (Kohler, 2005; Haiden and
Trentmann, 2015). Predictions of energy demand and production rely in part on
TCC forecasts. Photovoltaic energy forecasting in particular relies on accurate
predictions of solar irradiance, which is on a day-to-day basis mainly determined
by variations in TCC (Taylor and Buizza, 2003; Pelland et al., 2013). Observa-
tional astronomy depends on reliable TCC forecasts (Ye and Chen, 2013). Other
applications of TCC forecasts can be found in agriculture, where they may fa-
cilitate irrigation scheduling (Diak et al., 1998), in avalanche forecasting, where
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the amount of radiational cooling influences the stability of snow packs (Mc-
Clung, 2002), and in leisure activities where cloudiness influences, for example,
the amount of sun protection required (Dixon et al., 2008).

(Total) cloud cover is defined as “portion of the sky cover that is attributed to
clouds” (American Meteorological Society, 2015). Obviously, TCC takes values
in [0, 1], and unlike other weather variables, such as temperature or precipitation,
TCC is reported and forecast on a discrete space with only a small number of
possible values. Usually, observers report TCC as values in (0,1,2,...,8), hence-
forth called octas. At the European Centre for Medium-range Weather Forecasts
(ECMWF) probabilistic TCC forecasts are provided as direct output from the
NWP ensemble. The skill of NWP TCC forecasts in the short and medium range
is low compared to the forecasts for other meteorological variables like 6 h ac-
cumulated precipitation, geopotential, 2-meter temperature, or 10-meter wind
speed (Kéhler, 2005). In 2004 the high resolution (HRES) ECMWF TCC fore-
casts showed skill compared to persistence only up to forecast day 3 over Europe.
Furthermore, Haiden and Trentmann (2015) showed that the skill of 24-h HRES
TCC forecasts verified against a set of European stations improved little over the
last decade.

The limited skill of direct model output TCC point forecasts is partly due to
a representativeness mismatch between models and observations. Areas covered
by visual observations typically vary in scale from 10 to 100 km, depending on
visibility and topography (Mittermaier, 2012). Automated observations as de-
rived from ceilometers measure cloud cover directly overhead. Depending on the
wind speed in the cloud layer the scanned area may or may not be representative
of the model grid-scale. Temporal variability of cloudiness on hourly and sub-
hourly scales presents an additional challenge for predicting instantaneous TCC.
As shown by Haiden et al. (2015), the forecast range over which there is positive
skill relative to persistence increases from 2-3 days to 5 days if daytime averages
rather than instantaneous values of TCC are considered.

The potential benefits of skillful TCC forecasts together with the relatively
low performance of state-of-the-art NWP TCC point forecasts, i.e. forecasts inter-
polated from the NWP model grid to specific sites, motivates the development of
statistical methods to post process raw ensemble TCC forecasts. In this study, we
focus on post processing of the global point forecasts of TCC from the ECMWF
ensemble forecast system. For this purpose, we have developed variants of MLR
and POLR that are suitable for TCC post processing (cf. Section 2.1.2). In order
to put these models into a broader context, we will now give an overview on simi-
lar, mostly “logistic regression” based, post processing methods, of which several
approaches have been proposed in the field of meteorological forecasting over the
last 15 years.

Applequist et al. (2002) applied logistic regression to produce forecasts of

38



precipitation threshold exceedance probabilities. Hamill et al. (2004) used logis-
tic regression to obtain probabilistic forecasts of temperature and precipitation
from ensemble model output statistics. Wilks (2009) proposed extended logis-
tic regression (ELR) as a further development of the approach by Hamill et al.
(2004) that provides full predictive distributions from ensemble model output
statistics. ELR has been used to post process NWP ensemble precipitation (and
much less frequently also wind speed) forecasts in many studies. Schmeits and
Kok (2010) compared raw ensemble forecasts from a 20 year ECMWF precip-
itation reforecast dataset with Bayesian model averaging (Raftery et al., 2005)
and ELR. While ELR outperformed the raw ensemble only slightly in case of
area-mean precipitation amounts, area-maximum forecast skill was significantly
improved by ELR. Furthermore, ELR performed considerably better than BMA
and equally well as a modified BMA approach by Schmeits and Kok (2010). A
similar study by Roulin and Vannitsem (2012) showed that applying ELR led to
substantially improved skill and mean error of ECMWEF precipitation ensemble
forecasts for two catchments in Belgium. Likewise, Ben Bouallegue (2013) con-
firmed the good performance of ELR. However, there are also studies that reveal
the limitations of ELR. In a study comparing 8 different post processing meth-
ods for (ensemble) precipitation forecasts over South America, ELR ranks in the
upper mid-range among the methods considered (Ruiz and Saulo, 2012). Hamill
(2012) showed that ELR improved skill of ECMWTF precipitation ensemble fore-
casts considerably over the United States, but that the multi-model ensemble
consisting of the ensemble forecasts from the ECMWEF, the UK Met Office, the
U.S. National Centers for Environmental Prediction (NCEP), and the Canadian
Meteorological Center could not be improved much by ELR. Scheuerer (2014)
was able to outperform ELR by applying an ensemble model output statistics
approach (Gneiting et al., 2005) based on a generalized extreme value distribu-
tion. Messner et al. (2014) applied ELR, censored logistic regression, and POLR
to ECMWFEF ensemble wind speed and precipitation forecasts. Their study re-
vealed the good performance of POLR for discrete, categorical sample spaces.
However, we are not aware of any study that post processes TCC ensemble fore-
casts based on a logistic regression approach.

First, the TCC dataset used for this study is presented in Section 3.2.2. This is
followed by Section 3.2.3 that discusses the different forecast models and methods.
Section 3.2.4 provides an in-depth presentation of the results, which is followed
by a brief discussion in Section 3.2.5.

3.2.2 Data

Like in Section 3.1 (see also Hemri et al. (2014b)) the TCC dataset used in
this study consists of stationwise daily time series from January 2002 to March
2014 of forecast/observation pairs at 12:00 UTC for lead times up to ten days. As
ECMWETF forecasts are issued on the global domain, we have selected 3435 surface
synoptic observations (SYNOP) stations that cover the entire globe (except from
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Australia, which does not report at 12:00 UTC) as observational dataset. Stations
with unreliable observation time series are detected and removed according to the
following scheme, which is a modification of the approach by Pinson and Hagedorn
(2012):

e Count the number of days with observed values that are equal to the ob-
servations from the previous ten days. If this number exceeds 20 % of the
length of the time series, a station is considered to be unreliable.

e Additionally, remove stations with recorded observations outside the range
[0,1].

After removing the unreliable stations, 3330 are left for the following analyses.

3.2.3 Methods

Training and verification periods

Prior to introducing the different forecast models, the training periods used for
estimation of the parameters of the statistical post processing models are pre-
sented here along with the corresponding verification periods. In line with the
study on trends in predictive performance of raw ensemble weather forecasts pre-
sented in Section 3.1 rather long training periods of up to five years are applied.
Accordingly, the verification period extends from January 2007 to March 2014.
The corresponding training periods are selected in a non-seasonal and in a sea-
sonal way. In case of the non-seasonal approach, for any verification day x the
corresponding training period covers the five calendar years prior to the day .
For instance, for a random verification day x in 2009, say 27 June 2009, the cor-
responding training period lasts from 1 January 2004 to 31 December 2008. The
same training period would apply for any other verification day in 2009. In case
of the seasonal approach, the block-wise training periods from the non-seasonal
approach are additionally differentiated according to the season of the verification
day. For this study, we divide the year into two seasons (April to September and
October to March).

Climatological and uniform forecasts

Climatological and uniform forecasts are used as reference. The climatological
forecasts are constructed stationwise in the same way as the seasonal training
periods. That is, for each verification day the climatological forecast corresponds
to the empirical distribution of all TCC observations in the same season (winter
half-year or summer half-year) within the five calendar years prior to the verifica-
tion day. The uniform forecasts simply assign a probability of 1/9 to each TCC
level in (0,1, ...,8) irrespective of station climatology and NWP model output.
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Raw ensemble forecasts

The ECMWEF TCC forecasts used in this study are issued daily from 1 January
2002 to 20 March 2014 at 12:00 UTC and cover the lead times 1,2,...,10 days.
In the following, we will focus mostly on the lead times 3, 6, and 10 d, which
reflect sequentially decreasing predictability and are representative for the other
lead times. As already stated, the ECMWEF EPS consists of the HRES run, of
the 50 member ENS, and the CTRL run. As in the two previous case studies,
this 52 member ensemble is used as raw ensemble.

MLR and POLR

In this study MLR and POLR post processing (see Section 2.1.2 for details) is
applied to the ECMWF raw ensemble, which is now written as

r = (7‘1, e 7TK) = (TENs,h cee 7TENS,507THRE87TCTRL); (3-12)

where K denotes ensemble size. Accordingly, the first three predictors in the MLR
model are the mean of the ENS runs 7gns, the HRES run rgrgs, and the CTRL
run rorrr, leading to a vector of predictors © = (1, Pens, THRES, TCTRL 525 fo, f1)7 -
As mentioned above, both non-seasonal and seasonal post processing approaches
are applied. In case of MLR we test a non-seasonal approach with block-wise
training periods (MLR-B) and a seasonal approach with seasonal block-wise train-
ing periods (MLR-S). As for MLR, the non-seasonal POLR model is denoted as
POLR-B, and its seasonal counterpart as POLR-S h, where h indicates that it
is the full model with all predictors, i.e. © = (1, Tgxs, THRES; TCTRL, 52, fo, f1, 1)
In order to find the best set of predictors, various POLR-S models with different
sets of predictors are tested. They are listed in Table 3.2.

In order to allow numerically trouble-free verification, any forecast distribu-
tion P(Z = z;), where z; with j = 1,...,9 denotes the different cloud cover
states, is slightly modified subsequent to model fitting. Namely, unrealistically
low forecast probabilities p; for cloud cover state z; are avoided by setting p; to
p; = max(P(z;),p’), where p’ =1— (1 — a)% and T is the length of the training
period. The parameter o denotes the probability that state j is observed at least
once during a period of length T, i.e. a = 1 — (1 — p/)T. For this study, we delib-
erately set a = 0.01, which leads to p’ = 5.5 - 107% for the non-seasonal models
and p’ = 1.1-107° for the seasonal models. In case of a forecast distribution with
p' > P(z;) for at least one state z;, the probabilities p;«; have to be adjusted
slightly such that 2?21 p; = 1. We apply this correction to all considered predic-
tive distributions P(Z = z;) including the raw ensemble and the climatological
forecasts.
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Table 3.2: Overview of the different POLR-S model variants, where Tgns, THRES,
and rcrrr are always included, s? denotes the ensemble variance, f, and f; rep-
resent the proportion of ensemble members equal to zero and one, respectively,
and I is the interaction term between s? and the squared, sign adjusted difference
of 7 from 0.5. Table taken from Hemri et al. (2016).

model Fens  THRES ToTRL S° fo fi I
POLR-Sa VvV v v

POLR-Sb V v v v

POLR-Sc¢ Vv v v v v
POLR-Sd V v v v
POLR-Se V v v v v Y
POLR-S f v v v v v
POLR-Sg VvV v v v v v
POLR-Sh V v v v v v Y

Example forecasts

Before discussing the results in Section 3.2.4, four subjectively selected example
forecasts for Vienna, Austria, are presented in Figure 3.4 to highlight typical
properties of post processing of TCC forecasts. Vienna was chosen as a location in
Europe that is situated in the broad transition zones from maritime to continental
in winter, and from mediterranean to temperate in summer. As a result, it
experiences a rich and complex cloud climatology which is additionally modulated
by orographic effects due to its proximity to the European Alps. For illustrative
purposes, raw ensemble forecasts are compared with the corresponding seasonal
POLR forecasts that use the complete set of predictors (POLR-S h). The raw
ensemble and POLR-S h bear strong resemblances. However, POLR-S h seems to
move some weight from the extremes (0 or 8 octas) towards the more moderate
levels of cloudiness (1 to 7 octas).

3.2.4 Results

After having introduced the different forecast models, we first evaluate forecast
skill of these models. This is followed by an in-depth assessment of calibration and
sharpness of a selected set of models. For a fair comparison of verification scores,
raw ensemble and post processed forecasts have to be mapped to the space of
the observations. The function selected to map raw ensemble and post processed
forecasts to the observation space influences most of the verification measures.
Hence, it is important that the mapping function mimics the procedure of TCC
observers, who have to give 1/8 as soon as a little cloud appears, even if the TCC
is only 1 percent, and have to give 7/8 as soon as there is a little gap somewhere in
the cloud layer. This is ensured by applying a non-equidistant mapping function,
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Figure 3.4: Example forecasts for Vienna comparing the raw ensemble and the
POLR-S h predictions with a lead time of 6 days. The TCC class in which the
observation falls is shaded in black. Figure taken from Hemri et al. (2016).

for which the details can be found in Appendix A.1.1.

Forecast skill

Average skill of the different TCC forecast models is assessed using the log score
and the CRPS averaged over the entire verification period and all stations. As
TCC is a discrete variable, the ranked probability score (RPS: Epstein (1969);
Murphy (1969)) could be used instead of the CRPS. But since the ordered cate-
gories of TCC are not equidistant in the dataset at hand (see above and Appendix
A.1.1), RPS and CRPS would differ slightly. For this study, we have decided to
use the CRPS, because it allows direct skill comparison with continuous TCC
forecasts, which may become available in future (see also Section 3.2.5). Both
log score and CRPS are proper scoring rules that are negatively oriented, i.e. the
lower the score the higher is the forecast skill. While the log score is a local scor-
ing rule that takes only the forecast probability of the materializing observation
into account, the CRPS is sensitive to distance in that forecasts with high proba-
bilities attributed to values close to the materializing observation are considered
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to be skillful (Gneiting and Raftery, 2007). Mathematical formulations of both
scores are given in Section 2.3.1.

According to Table 3.3, the raw ensemble outperforms climatological and uni-
form forecasts in terms of CRPS for lead times of 1, 3, and 6 days, but not for
10 days. Log scores have not been calculated for the raw ensemble, because they
would not be meaningful. All MLR and POLR models outperform the climato-
logical, uniform, and raw ensemble forecasts in terms CRPS at all lead times. In
terms of log score all MLLR and POLR perform better than the climatological and
the uniform forecasts. In case of MLR, the seasonal model slightly outperforms
its non-seasonal counterpart in terms of CRPS, while the log score tends to prefer
the non-seasonal model. For POLR log score and CRPS are more consistent in
that both scores indicate a slightly better skill of the seasonal model. This is also
reflected in Figure 3.5, which shows averaged log score and CRPS values includ-
ing their associated 90 % confidence intervals for the raw ensemble (only CRPS),
MLR-B, MLR-S, POLR-B, and POLR-S h, i.e. the full model (cf. Table 3.2). The
90 % confidence intervals are obtained by block bootstrapping (Kiinsch, 1989)
with block resamples following a geometric distribution with mean |V/|'/3] where
|V| is the length of the verification period. The block bootstrapping method
is implemented in the R package boot (Canty and Ripley, 2014). Comparing
POLR-B with MLR-B and POLR-S h with MLR-S reveals a slight advantage of
POLR over MLR. Additionally, POLR allows to make a statement on the rela-
tive performance of the Tgns, rures, and rcorrp, runs. Due to the non-negativity
constraint, the estimates BFENS? BTHRES, and BTCTRL can be interpreted as relative
weights. As shown in Figure 3.6, Tgns contributes most to the POLR forecast
distribution over all lead-times, while rcrry, contributes least. The high resolu-
tion run rgrps shows a quite high average weight at the short lead times, but its
importance decreases with increasing forecast lag. This is in line with the find-
ings by Richardson et al. (2015) that the decreasing predictability leads to more
need for the full ensemble distribution with increasing forecast lag. Note that we
have also tested a POLR variant without any constraint on the coefficients. This
approach did not only destroy the physical interpretability of the coefficients, but
also did not lead to an improvement in forecast skill. Likewise, the coefficients
of the MLR model cannot be interpreted easily. As forecast skill, physical inter-
pretability, and model sparsity all favor POLR over MLR, the remainder of this
study focuses on POLR. Knowing that the seasonal POLR models perform best,
the different seasonal POLR models are now compared. Comparing the models
POLR-S a to POLR-S h it becomes clear that in addition to Tgns, rures, and
rcrrr the fraction of zero, fy, and complete, f;, TCC have to be included in the
model. Models c, e, g, and h fulfill this requirement.

In order to assess the importance of s? and the interaction term I, we perform
an in-depth comparison of predictive skill of the models c, e, g, and h. As the
mean verification scores are almost equal, statistical testing is required in order to
be able to make sound statements on relative model performances. To this end, a
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Table 3.3: Means of log scores and CRPS values over the entire verification
period and all stations®. Table taken from Hemri et al. (2016).

model log score CRPS

lead time 1d 3d 6d 10d 1d 3d 6d 10d
raw ensemble - - - - 0.154 0.154 0.168 0.184
uniform 220 220 2.20 220 0.226 0.2260 0.226 0.226
climatology 1.76 176 176 1.76 0.177 0.177 0.177 0.177
MLR-B 1.50 155 164 1.72 0.119 0.128 0.148 0.166
MLR-S 1.50 1.55 1.65 1.73 0.117 0.127 0.147 0.165
POLR-B 149 154 164 1.72 0.119 0.128 0.148 0.166

POLR-S a 149 154 163 1.70 0.121 0.129 0.148 0.165
POLR-S b 149 154 163 1.70 0.120 0.129 0.148 0.165
POLR-S ¢ 1.47 1.52 1.62 1.70 0.118 0.127 0.147 0.165
POLR-S d 148 1.53 1.63 1.70 0.119 0.128 0.148 0.165
POLR-S e 1.47 1.52 1.62 1.70 0.117 0.127 0.147 0.165
POLR-S { 148 153 163 1.70 0.119 0.128 0.148 0.165
POLR-S g 1.47 1.52 1.62 1.70 0.117 0.127 0.147 0.165
POLR-S h 1.47 1.52 1.62 1.70 0.117 0.126 0.147 0.165

2 In each column the best value is shown in bold. Log scores have not been
calculated for the raw ensemble.

raw ensemble
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Figure 3.5: Means of log scores and CRPS values over the entire verification pe-
riod and all stations for the raw ensemble (only CRPS), MLR-B, MLR-S, POLR-
B, and POLR-S h. The centered 90 % confidence intervals have been obtained
by block bootstrapping. Figure taken from Hemri et al. (2016).

stationwise assessment of significant changes in CRPS and/or log score has been
performed using block bootstrapping. In order to combine log score and CRPS,
three cases are distinguished:
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Figure 3.6: EMOS weights pooled over all stations and training periods of 7gns,
rurges, and rorry. Figure taken from Hemri et al. (2016).

i) Deterioration: at least one of the two scores (CRPS or log score) is deteri-
orated, while the other is not improved.

ii) No clear-cut difference: either both scores indicate no change in forecast
skill or one of the two scores is improved, while the other is deteriorated.

iii) Improvement: at least one of the two scores is improved, while the other is
not deteriorated.

As we are comparing changes in CRPS and log score simultaneously, a correc-
tion for multiple comparison has to be applied. We set the target Type I error
to 0.05, i.e. @ = 0.05. In order to achieve a = 0.05, a Bonferroni correction is
applied (Bonferroni, 1936). In the present example o = 0.0255 is used in the
individual tests for changes in CRPS and changes in log score, respectively. As
for the above confidence interval calculations, the block bootstrapped tests for
significant changes in CRPS and/or log score are based on block resamples fol-
lowing a geometric distribution with mean |V|'/3. Models c, e, g and h are now
compared using a forward selection approach. As reported in Table 3.4 adding
the interaction term I leads to greater improvements in skill than adding s* at
a forecast lag of three days. The full model h with an additional inclusion of s?
shows a slightly increased skill relative to model g. Hence, the full model h should
be preferred in case of short forecast lags. At a forecast lag of 6 days no clear
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Table 3.4: From left to right: Percentage of stations with a deterioration, no
clear-cut difference, or an improvement in skill when adding s?> to POLR-S c
resulting in POLR-S e, when adding I to POLR-S c resulting in POLR-S g, and
when adding s? to POLR-S g resulting in POLR-S h. Table taken from Hemri
et al. (2016).

e to c g toc h to g
det mno diff impr det mno diff impr det mno diff impr
lag 3 day 2.5 789 186 0.9 73.3 259 3.6 84.0 124
lag 6 day 4.7 89.9 54 3.5 93.3 32 6.1 90.3 3.6
lag 10 day 5.9 92.0 2.1 7.2 92.3 0.5 7.5 91.0 1.5

difference can be observed between the different model versions. At a very long
lead time of 10 days the simplest model ¢ seems to perform best. We subjectively
select the full model h for the further analyses, because it performs best at the
short lead times, which are also those with the highest predictability.

Calibration and sharpness

Keeping the improvement in skill by TCC post processing in mind, calibration
and sharpness are now assessed in more detail. Calibration is the degree of statis-
tical consistency between predictive distributions and observations, and is verified
by means of PIT histograms. Figure 3.7 compares the PIT histograms of the raw
ensemble, MLR-B, POLR-B, and POLR-S h predictions at forecast lead times
of 3, 6, and 10 days. Flat PIT histograms indicate well calibrated forecast dis-
tributions, whereas a U-shape is a sign of underdispersion, and a N-shape is a
sign of overdispersion. Pooled over all stations, all post processed models are well
calibrated. The raw ensemble forecasts are clearly underdispersive at a forecast
lag of 3 days and only slightly underdispersive at a forecast lag of 6 days. At a
forecast lag of 10 days the PIT histogram of the pooled raw ensemble forecasts
is somewhat unclear. Nevertheless, it is still less well calibrated than the corre-
sponding post processed forecasts.

Sharpness is assessed here by an evaluation of the variances, and the widths
of the centered 90 % prediction intervals, pooled over all stations and verification
days. As shown in Figure 3.8, the raw ensemble provides the sharpest forecasts
at a forecast horizon of 3 days. At lead times of 6 and 10 days the sharpness
of the raw ensemble and the post processed forecasts is quite poor. However,
all post processed models are sharper than the raw ensemble. This result is
somewhat surprising in that statistical post processing improves both calibration
and sharpness. Further insight into this can be obtained by assessing marginal
calibration (Gneiting et al., 2007a). A forecast is marginally well calibrated if
the average predictive CDF over all verification days equals the empirical CDF
of the observations. A marginally well calibrated forecast leads to a horizontal
marginal calibration graph. Details on the marginal calibration graph can be
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Figure 3.7: Histograms of the PIT values pooled over all stations and verification
days for the raw ensemble, MLR-B, POLR-B, and POLR-S h. Figure taken from
Hemri et al. (2016).

found in Appendix A.1.2. Figure 3.9 shows such graphs for the climatological,
the raw ensemble, and the POLR-S h forecasts for a selection of European sta-
tions with different TCC climate. As expected, the climatological forecasts show
almost perfect marginal calibration. The raw ensemble exhibits poor marginal
calibration, even though it is mapped to the observation space in a sound way
(see above and Appendix A.1.1). It assigns too much weight to TCC values of 0
or 8 octas irrespective of station and lead time. Brussels provides a good example
of this. The most frequently observed TCC value is seven octas. However, the
raw ensemble assigns forecast weight rather to 8 octas as can be seen from the ac-
centuated negative peak in the marginal calibration graph. POLR-S h performs
as well as the climatological forecasts in terms of marginal calibration. Hence,
post processing conveys a significant improvement in marginal calibration.
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Figure 3.8: Box plots showing the 5, 25, 50, 75, and 95 % quantiles of the empirical
distribution of a) the forecast variances and b) the widths of the centered 90
% prediction intervals pooled over all stations and all verification days for the
climatological, the raw ensemble, MLR-B, POLR-B and POLR-S h forecasts. The
horizontal dashed (dotted) line corresponds to the 50 % quantile of the empirical
distribution of the corresponding statistic of the raw ensemble (climatological)
forecasts. Figure taken from Hemri et al. (2016).

3.2.5 Discussion

Both MLR and POLR prove to be useful methods for post processing of raw
ensemble TCC forecasts. The results indicate that on average POLR with sea-
sonally estimated model parameters performs best. This post processing method
clearly improves forecast calibration. In order to achieve well calibrated forecasts,
sharpness has to be reduced at the shorter forecast horizon of 3 days. But sur-
prisingly, sharpness can be improved by post processing for the longer forecast
lags of 6 and 10 days. Keeping in mind the paradigm stated by Gneiting et al.
(2005, 2007a) that the goal of statistical post processing is to maximize sharpness
subject to calibration, the simultaneous improvement in calibration and sharp-
ness is very desirable. This is mostly due to the tendency of the raw ensemble to
assign too much weight to cloud cover states of zero and eight octas.

The methods presented in this study are designed to post process discrete
TCC raw ensemble forecasts against SYNOP observations. Depending on the
region, TCC observations are recorded automatically or manually, with different
observation error characteristics. According to Mittermaier (2012) automated
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Figure 3.9: Marginal calibration plots comparing the climatological, the raw en-
semble, and the POLR-S h forecasts at lead times of 3, 6, and 10 days at different
stations in Europe. The observed climatology over the verification period is vi-
sualized by the barplots showing the relative frequencies of the different TCC
classes. Figure taken from Hemri et al. (2016).

observations may underestimate the amount of high cloud (cirrus), while for hu-
man observers there is a tendency to underestimate cloud cover states of 0 and
8 octa. This may partly explain the poor marginal calibration of the raw en-
semble when compared to the observations. However, a comparison of results at
individual stations with manual observations and with automated observations
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did not reveal a systematic difference in marginal calibration. As human TCC
observers are increasingly replaced by automated observations (Wacker et al.,
2015), one would need to know the exact date at which a particular station has
been changed from manual to automated for a more detailed analysis of this ef-
fect. Currently, SYNOP observations of total cloud cover are mainly automated
in western Europe, North America, Australia and New Zealand, Japan, South
Africa and Antarctica. Due to the increasing number of automated stations, con-
tinuous TCC observations may become more widely available in future. As the
ECMWF raw ensemble provides TCC forecasts that are continuous on the unit
interval, this would allow for continuous verification and post processing of TCC
raw ensemble predictions and probably further enhance forecast skill. A con-
tinuous post processing method for predictions of visibility, which is a bounded
variable like TCC, has already been implemented by Chmielecki and Raftery
(2011).

TCC can be differentiated into low, medium, and high level clouds. Predictive
skill of NWP cloud cover forecasts can be different depending on cloud level. For
instance, in the lowlands of the greater Alpine region, the ECMWF HRES model
underestimates persistent low stratus (Haiden and Trentmann, 2015). It might be
possible to reduce such systematic biases by cloud level specific post processing.
Though a direct inclusion of low, medium, and high level cloud forecasts as pre-
dictors in the POLR model, cf. Equation (2.16), did not lead to any improvement
in forecast skill (results not shown here), further analyses may be beneficial. In
particular, a separate post processing of each cloud level with training observa-
tions differentiated according to cloud level may further increase forecast skill.

To summarize, considering the global set of SYNOP stations covered by this
study post processing of discrete TCC raw ensemble predictions using readily
available methods can improve forecast skill significantly. Hence, post processing
helps to improve the generally low predictive performance of raw ensemble TCC
forecasts. Additionally, this study identified the seasonal POLR model as the
most skillful TCC post processing approach.
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Chapter 4

Hydrological ensemble post
processing

4.1 Scientific setting

4.1.1 Motivation

Reliable hydrologic forecasts are crucial for a wide range of activities like, for
instance, the operation of hydropower plants, shipping, flood prevention, and
leisure activities. Information about the predictive uncertainty of the predictand
(i.e. runoff, water level) is required for rational decision making. As already
mentioned in Section 1.2, predictive uncertainty is defined as the uncertainty
of a future realization of a predictand, the quantity of interest, conditional on
all available information and knowledge (Krzysztofowicz, 1999; Todini, 2008).
The available knowledge about the future realization in hydrologic forecasting
is generally embedded in one or more hydrological model forecasts. As already
mentioned, one of the main sources of uncertainty is the meteorological uncer-
tainty of the short- to medium-range development of weather patterns. Usu-
ally, the hydrological forecast ensembles inherit the biases and underdispersion
of the meteorological input ensembles (Bougeault et al., 2010; Park et al., 2008).
Additionally, hydrological uncertainties, like the level of ground water storage
or uncertainties in the hydrological model formulation, are typically neglected
in rainfall-runoff modelling. Accordingly, statistical post processing of the hy-
drologic ensemble forecasts is needed in order obtain an estimate of predictive
uncertainty and improve forecast skill.

4.1.2 Univariate post processing

In order to put the hydrological case studies of this chapter into a broader con-
text, a selection of studies that focus on statistical post processing of hydrologic
ensemble forecasts is presented first. Earlier studies on statistical post processing
proposed Bayesian models to quantify the uncertainties of hydrological forecasts.
Krzysztofowicz (1999, 2002) introduced the Bayesian forecasting system (BFS)
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to produce probabilistic forecasts from deterministic hydrological forecasts. The
hydrological uncertainty processor (HUP) that aggregates the hydrological model
uncertainties is a component of the BFS (Krzysztofowicz and Kelly, 2000). Reg-
giani et al. (2009) extended the HUP for post processing of ensemble forecasts for
the river Rhine on the Dutch-German border. Madadgar et al. (2012) post pro-
cessed ensemble forecasts by applying copula techniques that fit a bivariate distri-
bution to forecasts and observations. Bayesian model averaging (BMA: Raftery
et al. (2005)) has been used for the probabilistic combination of (ensemble-) runoff
forecasts in many cases. For instance, Ajami et al. (2007) or Duan et al. (2007)
showed that the combination of hydrologic forecasts using BMA led to both,
quantitative statements on prediction uncertainty and improvements in terms of
deterministic verification measures. As already stated in Section 2.1.1, Fraley
et al. (2010) introduced an adapted BMA version that is able to take account
of ensemble forecasts with exchangeable members as typically encountered with
meteorological ensemble forecasts. Recent developments allow to use flexible pre-
dictive distributions (Parrish et al., 2012; Rings et al., 2012) and to post process
forecasts over an entire range of lead times simultaneously (Hemri et al., 2013;
Engeland and Steinsland, 2014). Other alternatives for statistical post process-
ing are the model conditional processor (Todini, 2008; Coccia and Todini, 2011),
which has recently been extended to handle ensembles (Todini et al., 2015), and
quantile regression (Weerts et al., 2011). A non-parametric approach for the
post processing of hydrological ensemble forecasts which is similar to indicator
co-kriging was proposed by Brown and Seo (2010). This list gives an overview
over the different post processing methods used in hydrology, but is by no means
exhaustive.

4.1.3 Seamless prediction

Seamless prediction, i.e. consistent prediction over successive lead times, is of in-
creasing importance in the field of hydrometeorological forecasting and the main
topic of the study by Hemri et al. (2015) presented in Section 4.3. For instance,
Palmer et al. (2008) motivate the use of seamless predictions by the verification
of climate models. Based on the premise that the fundamental physical processes
of seasonal forecasts and decadal climate projections are similar, probabilistic cli-
mate forecasts can be calibrated according to the validation results of the seasonal
predictions of the corresponding models. In meteorology a seamless prediction
system is designed to cover the time span from weather to climate predictions.
However, in hydrology seamless predictions span a somewhat shorter time hori-
zon from nowcasting flash floods to seasonal drought predictions (Yuan et al.,
2014). Short range hydrologic forecasts may benefit from a blending of precipita-
tion nowcasts and forecasts. Kober et al. (2012, 2014) and Scheufele et al. (2014)
propose and apply such a blending method using a weighting function that de-
pends on lead time and the conditional square root of the ranked probability
score. Hydrologic model runs based on seamless meteorological predictions can
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be expected to be seamless as well. If hydrologic ensemble forecast trajectories,
which have been obtained by statistical post processing, are used as inputs to
a hydrodynamic model or for river routing, it is crucial to avoid discontinuities
in the marginal predictive distributions. Naive approaches smooth the param-
eter estimates of the univariate model fits. For instance, in case of EMOS the
estimates of the parameters can be smoothed using cubic smoothing splines as
implemented in the study in Section 4.3. More sophisticated approaches would be
based on simultaneous parameter estimation over the entire range of lead times.
To the authors knowledge there are no studies addressing this in the context of
hydrological post processing, though several methods used for spatially adapted
post processing of meteorological forecasts have been developed. Such methods
can often be transferred to temporal problems. For instance, the locally adaptive
EMOS method (Feldmann et al., 2015; Scheuerer and Biiermann, 2014) could
probably be modified in such a way that simultaneous parameter estimation over
the entire range of lead times becomes feasible.

4.2 Ascertainment of probabilistic runoff fore-
casts considering censored data

As stated in Chapter 1 uncertainty of hydrologic forecasts is increased below or
above certain thresholds. The BfG forecasting system for river Rhine handles
uncertainty of very low runoff values by censoring runoff at a lower threshold. In
the study by Hemri et al. (2014a) a method for post processing of left censored
hydrologic data has been developed and applied to two test catchments. The
following sections on censored post processing closely follow Hemri et al. (2014a).

4.2.1 Introduction

As stated above, the BfG forecasting system for river Rhine includes left-censored
(model-) data, i.e. values below a certain threshold are replaced by this threshold.
Censoring is an appropriate method to deal with very uncertain or not defined
data in hydrologic real-time applications. Censoring may apply to both very low
runoff values (e.g. in the case of unreliable rating curves between water level and
runoff and in the case of impounded waters) and very high runoff values (e.g. when
the range of the rating curve is exceeded). The goal of this study is to apply the
censored EMOS model from Section 2.1.3 to censored raw ensemble forecasts.
The following analyses focus on the rather small catchments of the rivers Ahr
(gauge Altenahr) and Wied (gauge Friedrichsthal), because both rivers feature
high proportions of censored data.

After a short description of the data used in this study in Section 4.2.2, an
overview of the different censored forecasting methods will be given in Section
4.2.3. The results in Section 4.2.4 are followed by a short discussion in Section
4.2.5.
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4.2.2 Runoff data

The following analyses are based on forecast and observation data from the gauges
Friedrichsthal (Wied) and Altenahr (Ahr) with an hourly temporal resolution.
The catchment areas amount to 680 km? and 746 km? for the rivers Wied and
Ahr, respectively. Figure 4.1 depicts the location of the two catchments within
the catchment of river Rhine and their topography. In case of both catchments
the operational forecasting system of the BfG censors the large proportion of
runoff observations that are below a global threshold of 5 m?/s prior to any fur-
ther processing (i.e. primarily statistical forecast corrections). Over the study
period from 1 November 2008 to 31 October 2011 55 % of the observations are
censored at gauge Friedrichsthal and at gauge Altenahr censoring amounts to 72
%. Likewise, the corresponding runoff forecasts from the hydrologic model are
left-censored.
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Figure 4.1: Location of the catchments of the rivers Wied and Ahr in the Rhine
basin and equal-area projection of both areas’ digital elevation models. Figure
taken from Hemri et al. (2013).

4.2.3 Methods

Raw ensemble forecasts

At the BfG the conceptual, semi-distributed rainfall-runoff model HBV-96 (Berg-
strom, 1995; Lindstrom et al., 1997) is used for operational runoff forecasting.
The Rhine river basin is divided into 134 sub-basins which are further subdi-
vided into hydrological response units (HRU) according to land use and elevation
classes. The hydrologic processes for runoff formation are calculated on those
HRU’s (Meifiner and Rademacher, 2010). The model calculates runoff with a
temporal resolution of 1 h using temperature and precipitation fields that have
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Table 4.1: Meteorological deterministic and ensemble forcing models?

name number of members max forecast lag resolution
COSMO-LEPS 16 132 h 10 km
DWD-GME 1 (deterministic) 174 h 20 km
DWD-MER 1 (deterministic) 78 h (174 h) 7 km (20 km)

L DWD-MER stands for a model run based on COSMO-EU forcing up to
lead-time 78 h and on DWD-GME thereafter. Table taken from Hemri
et al. (2014a).

been interpolated over the sub-basins as meteorological input. Runoff forecasts
are obtained by running the hydrological model with the meteorological fore-
casts from several different NWPs. NWP models can be either deterministic or
probabilistic. In the first case, uncertainty is neglected and a single forecast tra-
jectory is provided. In contrast, ensemble forecasts try to represent uncertainty
by several model runs with different initial conditions, boundary conditions and
physical parameter values. The term ensemble forecast comprises the collection
of these distinct model runs. In current operational use at the BfG the ensemble
forecasts from the hydrological model HBV-96 are used as boundary conditions
and lateral inflows to a hydrodynamic model to calculate water level forecasts for
stations along the river Rhine.

All hydrological forecast data used here is generated by hindcasting the hydro-
logical model with archived operational meteorological forecasts. As summarized
in Table 4.1, the meteorological forcing models vary in both the number of en-
semble members and the forecast time horizon. The hydrologic model is run with
these models as forcing leading to a hydrologic 18 member multi-model ensemble,
referred to as the raw ensemble. It is composed of the 16 COSMO-LEPS members
(Montani et al., 2011), and the two deterministic models DWD-GME (Majewski
et al., 2002, 2012) and DWD-MER. The hydrologic model provides hourly fore-
casts up to 174 h (DWD-GME and DWD-MER) and 114 h (COSMO-LEPS).
DWD-MER uses meteorological forcing from the COSMO-EU model (Steppeler
et al., 2002; Schulz and Schéttler, 2011) up to lead time 78 h, and data from the
DWD-GME model from lead time 79 h. Hence, two members of the raw ensem-
ble rely on the same meteorological inputs from lead time 79 h onwards. The
hydrologic forecasts are initialized on a daily basis from 1 November 2008 to 25
January 2011 at 06:00 UTC. The initial conditions of the hydrologic model are
generated by a continuous simulation up to the forecast issue date using observed
meteorological input. Finally, the raw ensemble runoff forecasts are statistically
corrected based on the observations available up to the forecast date using an
autoregressive model (Boersen and Weerts, 2005). For the following analyses,
only lead times up to 114 h are considered because of dropping out ensemble
members. At lead time 114 h the forecast horizon of COSMO-LEPS is reached.
Hence, it drops out of the raw ensemble. This problem of dropping out ensem-
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ble members would require a more detailed analysis (see also Hemri et al. (2013)).

Climatological forecasts

Climatological forecasts serve as reference forecasts for forecast verification. In
order to account for seasonal runoff variation daily climatological forecasts are cal-
culated. Based on an hourly time series of observed runoff from 1 November 1998
to 31 October 2008, the climatological forecasts are obtained by calculating the
empirical distribution of the observations that lie within 15 days of the calendar
date of the verification day, but not in the same year. The dependence of runoff
on the time of day is neglected. The drawback of mixing different times of day
is more than compensated for by the increase in the sample size from which the
climatology is constructed. The climatological forecasts are probabilistic which
results directly from their construction that is based on empirical distributions
of historical observations.

Censored EMOS

As mentioned in Section 4.2.1 post processing of the ensemble runoff forecasts for
the rivers Wied and Ahr is based on the censored EMOS approach that has been
presented in Section 2.1.3. Prior to any statistical model fitting, training and
and corresponding verification periods have to be selected. Here, the verification
set comprises forecast/observation pairs from 1 November 2008 to 31 October
2011. As the forecasts cover lead times from 1 to 114 h, the forecast initialization
dates range from 1 November 2008 to 25 October 2011. That is, the verification
set consists of 1085 initialization days and 114 lead times. As the behavior of
the hydrological system varies over the year (e.g. snow accumulation in winter,
snow melt in spring, low flow situations in summer), the parameters of the EMOS
model have to be estimated for each meteorological season separately. That is, for
the verification of a forecast issued on a particular date the forecast/observation
pairs issued on days that are in the same season but not in the same year are used
as training data. For instance, if the forecast to be verified is issued in March
2009, the training period comprises the forecasts issued in spring 2010 and spring
2011. Such training periods are constructed for each verification day. Examples
of combinations of verification and training periods are listed in Table 4.2. These
pairs of verification and training periods are used for this study and the study on
multivariate post processing of runoff ensemble forecasts presented in Section 4.3.

The censored EMOS model is then fitted to Box-Cox transformed pairs of
raw ensemble forecasts and observations over the training periods using minimum
CRPS estimation. The estimated Box-Cox parameter X are —0.31 and —0.42 for
the rivers Wied and Ahr, respectively. We estimate two slightly different censored
EMOS models. The first, which is called the naive approach henceforth, does not
apply the correction for p described in Equation (2.21) in Section 2.1.3. The
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Table 4.2: Examples of pairs of verification and training peri-
ods !

verification period training period

November 2008 SON 2009, SON 2010, SO 2011
DJF 2008/2009 DJF 2009/2010, DJF 2010/2011
MAM 2009 MAM 2010, MAM 2011

SO 2011 November 2008, SON 2009, SON 2010

1'SON denotes September, October, November; SO Septem-
ber, October; DJF December, January, February; MAM
March, April, May. Table taken from Hemri et al. (2015).

second, called the p-corrected approach in the following, includes this correction
term.

4.2.4 Results

Averaged over the entire verification period, raw ensemble as well as the naive and
the p-corrected EMOS methods perform well compared to the climatological fore-
casts. Figure 4.2 a) reveals the clear-cut skill improvement in terms of CRPSS,
i.e. the skill score calculated from the CRPS based on Equation (2.31) in Section
2.3.1, by EMOS compared to the raw ensemble. In case of both catchments Wied
and Ahr, CRPSS of the two EMOS methods and the raw ensemble is comparable
for the first 10 to 15 lead times, whereas CRPSS benefits from EMOS at higher
forecast lags. The naive and the more sophisticated p-corrected EMOS method
show hardly any differences. Because of the large number of censored observa-
tions at both gauges, an evaluation of the predicted censoring probabilities is now
performed by means of the Brier skill score (BSS), i.e. the skill score associated
to the Brier score. Here, the two dichotomous events considered for calculation
of the BSS are censoring, i.e. runoff up to 5 m?/s, or no censoring. As shown in
Figure 4.2 b) BSS cannot be improved by any of the two EMOS methods. In
contrast to the improvements in terms of CRPPS, EMOS even deteriorates BSS
for forecast lags beyond 50 hours in case of the river Ahr.

Subsequent to the assessment of forecast skill, let us now take a closer look at
calibration and sharpness. As depicted by the U-shaped 3D PIT histograms in
Figure 4.3 a) the raw ensemble forecasts for both censored catchments are clearly
underdispersed over the entire forecast horizon. Nevertheless, these forecasts are
quite well calibrated compared with the forecasts for the uncensored and consid-
erably larger catchments of the Upper Rhine, Moselle, and Lahn as will be shown
in Figure 4.9 in Section 4.3. As shown in Figure 4.3 b), post processing using
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Figure 4.2: CRPSS and BSS values at the censoring threshold of 5 m?®/s for the
rivers Wied at Friedrichsthal and Ahr at Altenahr. Due to a modification in the
calculation of the climatological reference forecasts, the corresponding figures in
Hemri et al. (2014a) show different CRPSS and BSS values.

the censored EMOS leads to well calibrated forecasts for both catchments. Note
that in case of censoring probabilities greater than 0.1, censored observations are
assigned proportionally to one of the possible quantile intervals. If, for instance,
the forecast censoring probability is 0.15, then a censored realization is assigned
at a ratio of two thirds to the first decile and the remaining one third to the
second decile.

Given the well calibrated EMOS forecasts, sharpness is assessed now. To this
end, the empirical distribution of the lower one-sided 90 % prediction intervals is
constructed from the entire verification period. Following Gneiting et al. (2007a),
important quantiles of that distribution are plotted in a box plot like manner.
As shown in Figure 4.4, censored EMOS deteriorates sharpness only slightly. For
both gauges, the most substantial difference can be seen from the 95 % quantiles
of the just mentioned empirical distribution. This indicates that censored EMOS
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a) raw ensemble

b) EMOS

Figure 4.3: 3D PIT histograms for a) the raw ensemble and b) the censored

EMOS forecasts with naively estimated variance. Figures taken from Hemri et al.
(2014a).

augments forecast uncertainty particularly when raw ensemble uncertainty is al-
ready quite high. In case of the 24 h forecasts for river Wied, also the 50 % and 75
% quantiles are higher for EMOS than for the raw ensemble. Besides from that,
differences in sharpness can hardly be detected. Furthermore, the 25 % quantile
of the distribution of interval widths is zero for both methods at both gauges
and all considered lead times. This reflects the effect of censoring on forecast
sharpness. In line with the improved calibration, censored EMOS also increases
forecast coverage. The rather small differences in sharpness compared to the raw
ensemble, indicate that on average censored EMOS leads to quite sharp forecasts.
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Figure 4.4: Comparison of sharpness and coverage of the raw ensemble and EMOS
forecasts at lead times 24, 72, and 114 h. The blue dotted line segments show
the medians of the empirical distribution of the lower one-sided 90 % prediction
interval widths of the daily climatological forecasts. The purple lines correspond
to the nominal coverage. The box plots show the 5, 25, 50, 75, and 95 % quantiles
of the widths of lower one-sided 90 % prediction intervals from a) the raw ensemble
and b) the EMOS forecasts for the rivers Wied (indicated by “W-xx", where xx
denotes lead time), and Ahr (“A-xx"). Figure taken from Hemri et al. (2014a).

Example forecast

The verification results show that censored EMOS is able to post process ensemble
forecasts that are affected by censoring. As an example of a forecast at the tran-
sition form censored to uncensored runoff, the raw ensemble forecasts, which are
interpreted as quantiles from a probability distribution, for river Wied initialized
on 7 November 2010 are shown along with the corresponding p-corrected cen-
sored EMOS predictive distribution in Figure 4.5. In this example the marginal
EMOS forecasts are well adjusted. However, it shows also the need for a mul-
tivariate EMOS method, because the forecast EMOS distribution exhibits quite
sharp changes in marginal distributions from lead time to lead time that cannot
be explained physically.
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Figure 4.5: Raw ensemble and censored EMOS forecasts for river Wied at
Friedrichsthal initialized on 7 November 2010 at 06:00 UTC. The quantiles of
the raw forecasts have been obtained by linear interpolation between adjacent
ensemble members. Figure taken from Hemri et al. (2014a).

4.2.5 Discussion

The verification analyses performed above have shown that censored EMOS im-
proves the raw ensemble forecasts for the rivers Wied and Ahr in terms of CRPSS
and calibration without deteriorating sharpness much. This is especially the case
for forecast lags greater than one day. Accordingly, censored EMOS proves to be
a useful approach to post process ensemble runoff forecasts at gauges with a large
proportion of censored runoff values. Since censoring just shifts the density dis-
tribution below (or above) a deliberately selected censoring threshold to a point
mass at the threshold value, it would be worth evaluating the general performance
of censored EMOS to predict the probability of falling below (or exceeding) differ-
ent thresholds. For instance, an artificially right censored EMOS method could
lead to improvements in probabilistic flood forecasting. In particular in case
of measurement uncertainties that are typical for flooding conditions, censored
EMOS would allow to analyze questions like “What is the probability that runoff
will exceed notification stage I, i.e. 823 m?/s, at the gauge Trier in 48 hours?”
adequately. Hence, following-up studies on left and right censored EMOS cov-
ering different catchments are crucial to gain further insight into censored EMOS.
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The unsatisfactory results of censored EMOS in terms of BSS for river Ahr
suggest that censored EMOS should be further improved. Furthermore, alter-
native censored methods should be taken into account. Nevertheless, censored
EMOS is a promising approach, because it is a relatively simple post process-
ing approach, of which the parameters can be estimated with low computational
cost. A censored BMA approach could be an obvious alternative to censored
EMOS. However, BMA would imply a much more complex modelling process.
BMA based on a mixture of truncated normal kernel distributions (Baran, 2014)
may be a good starting point for the development of a censored BMA method
for ensemble river runoff forecasts. Furthermore, this study reveals the need for
a multivariate post processing method that allows to introduce a realistic corre-
lation structure between different forecast lags and avoids too wiggly patterns in
the marginal distributions from lead time to lead time. Such multivariate post
processing methods for uncensored catchments are discussed in the following sec-
tion.

4.3 Multivariate post processing techniques for
probabilistic hydrological forecasting

4.3.1 Introduction

As already mentioned in Chapter 1, runoff is an inherently multivariate process
with typical events lasting from hours in case of floods to weeks or even months
in case of droughts. This calls for multivariate post processing techniques that
yield well calibrated forecasts in univariate terms and ensure a realistic tempo-
ral dependence structure at the same time. In the study presented here, which
closely follows Hemri et al. (2015), multivariate post processing techniques are
adapted and applied to multi-model river runoff ensemble forecasts.

The first but minor goal of this study is to achieve well calibrated and yet
sharp marginal predictive densities. Here, the term marginal refers to the uni-
variate predictive distribution for a particular lead time. To this end, we adapt
the ensemble model output statistics (EMOS: Gneiting et al. (2005)) post pro-
cessing method, which is frequently used for meteorological variables, so that it
becomes suitable for probabilistic river discharge forecasts. More specifically, the
truncated normal EMOS method from Section 2.1.3 is applied to ensemble runoff
forecasts for three sub-catchments of river Rhine. Refer to Thorarinsdottir and
Gneiting (2010) for details on the truncated EMOS approach.

According to Pinson and Girard (2012) knowing not only the marginal pre-
dictive distributions for each individual lead time, but also the dependence struc-
ture among different lead times, is crucial to making optimal decisions based on
probabilistic forecasts. This applies in particular to runoff which is highly auto-
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Figure 4.6: Locations of the considered sub-catchments within the Rhine river
basin. Figure taken from Hemri et al. (2015).

correlated. After univariate post processing using EMOS the information about
the temporal (spatio-temporal in the case of several gauges in a river basin) de-
pendence structure of the raw ensemble is lost. If one is interested in forecast
runoff trajectories, then a sound representation of the dependence structure has
to be added. Forecast runoff trajectories are, for instance, required for the op-
timization of reservoir operation or, as in the case presented here, used as input
to a hydrodynamic model to forecast water levels. Hence, the second and main
goal of this study is to obtain forecasts that are not only marginally well cali-
brated, but from which it is possible to obtain also runoff scenarios over the entire
forecast horizon. If the observed trajectory and the scenarios are likely to follow
the same multivariate distribution, the forecast model is said to exhibit good
multivariate calibration. This study compares two different approaches to intro-
duce a dependence structure into the post processed forecasts: ensemble copula
coupling (ECC: Schefzik et al. (2013)) and the Gaussian copula approach (GCA:
Pinson and Girard (2012)). The non-parametric ECC approach is similar to the
Schaake Shuffle (Clark et al., 2004) in that post processed forecast trajectories
are reordered using exogenous information. The technical details of ECC, GCA,
and the Schaake Shuffle have already been discussed in Section 2.2. In case of the
Schaake Shuffle the ordering information stems from past observations, in case
of ECC from the raw ensemble. As ECC accounts for both temporal and spatial
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dependencies, it is suitable for parallel post processing of forecasts for different
sub-catchments. This is required, for instance, if the post processed forecast tra-
jectories are used as inputs to a hydrodynamic model to calculate water level
forecasts further downstream. GCA is a parametric approach that estimates the
correlation structure from training observations. GCA is expected to outperform
ECC in cases, where a large number of forecast scenarios is required, or where it
is doubtful whether the raw ensemble captures the correct correlation structure.
The GCA variant described here accounts only for temporal dependencies, though
it may be extended such that it is able to model spatio-temporal dependencies.

In this study EMOS, ECC, and GCA are verified based on runoff forecasts
from the operational forecasting system of the German Federal Institute of Hy-
drology (BfG) for river Rhine (Meifiner and Rademacher, 2010). Three different
sub-catchments of river Rhine with different characteristics are considered: river
Upper Rhine up to gauge Maxau, river Moselle up to gauge Trier, and river Lahn
up to gauge Kalkofen.

In Section 4.3.2 the study areas and the observed runoff data are presented.
The different types of forecasts used in this study as well as the methods used
for model fitting and verification are introduced in Section 4.3.3. The results in
Section 4.3.4 are followed by a discussion in Section 4.3.5.

4.3.2 Study areas and runoff data

The catchments in this study are selected such that different runoff regimes and
catchment sizes are covered. Figure 4.6 shows the locations of the considered sub-
catchments within the Rhine river basin. The runoff of the Upper Rhine at the
gauge Maxau (referenced as Upper Rhine catchment) is dominated by the alpine
part of the catchment. This explains its pronounced, single peak mountain snow
(glacial-nival) regime with maximum in summer and minima in late autumn and
winter. The catchments of the rivers Moselle and Lahn have a rainfall dominated
runoff (pluvial) regime with maximum in winter and minimum in late summer.
Catchment area as well as mean and maximum runoff are listed in the upper part
of Table 4.3. Catchment area decreases in the following order: Upper Rhine >
Moselle > Lahn. Water level measurements from 1 November 1998 to 10 Jan-
uary 2013, which are converted into runoff by means of rating curves, serve as
observations. The forecast data are discussed in Section 4.3.3.
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Table 4.3: Features of the considered catchments (top)* and the meteoro-
logical input models (bottom)®. Table taken from Hemri et al. (2015).

gauge catchment area [km?] MQ [m?/s] HQ [m?®/s]
Maxau (MAXA)  Upper Rhine 50196 1247 4293
Trier (TRIE) Moselle 23857 322 2880
Kalkofen (KALK) Lahn 5304 48 598
name # models lead times spatial resolution ~
COSMO-LEPS 16 1-132 h 10 km
DWD-GME 1 (deterministic) 1-174 h 20 km
DWD-MER 1 (deterministic) 1-78 h (174 h)  1-7 km (20 km)
ECMWEF-HRES 1 (deterministic) 1-240h 16 km

# MQ (mean discharge) and HQ (maximum discharge) are calculated over the
period from 01.11.1998 to 31.10.2011.

> DWD-MER stands for a model run based on COSMO-EU forcing up to lead
time 78 h and based on DWD-GME thereafter (corresponding forecast horizon
and resolution are reported within parentheses). Note also that the forecast
horizon of the hydrologic forecasts based on COSMO-LEPS is only 114 h,
though the meteorological model forecasts up to 132 h.

4.3.3 Methods

Raw ensemble forecasts

A detailed description of the raw ensemble forecasts has already been given in
Section 4.2.3. As summarized in the lower part of Table 4.3 ECMWF-HRES,
i.e. the deterministic high resolution run of the ECMWEF ensemble (Molteni et al.,
1996), is added to the set of meteorological input models used for the study on
censored EMOS in Section 4.2. This leads to a 19 member hydrological raw
ensemble forecast, of which COSMO-LEPS provides the only exchangeable group.
This can also be seen from Figures 4.7 a) and b). As in Section 4.2 we consider
only lead times up to 114 h for the following analysis.

Climatological forecasts

The climatological forecasts are constructed similarly to those for the study on
censored EMOS, which are described in Section 4.2.3. However, now the construc-
tion of the climatological forecasts is based on an hourly time series of observed
runoff from 1 November 1998 to 10 January 2013. As before, they are obtained
by calculating the empirical distribution of the observations that lie within +xz
days of the calendar date of the verification day, but not in the same year. But
for this study we have explored different interval sizes, namely = € {15,30,45}
days. This resulted in a selection of x = 45 for river Upper Rhine, x = 30 for river

Moselle, and = = 15 for river Lahn as these values led to the best climatologi-
cal forecasts in terms of CRPS (cf. Section 2.3.1 for details on the CRPS). The
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Figure 4.7: Example forecasts for river Moselle at Trier for a high flow event
issued on 5 January 2011 at 06:00 UTC. Univariate raw ensemble and EMOS
probability density forecasts with a lead time of 48 h are shown in subfigures a)
on the Box-Cox transformed space and b) on the original space. The horizontal
line of distinct dots represents the raw ensemble members, the vertical purple
line shows the observed value. Subfigures c) to f) show the multivariate forecasts
covering lead times 1 to 114 h. c¢) shows the trajectories of the raw ensemble, d)
the quantiles of the EMOS forecast, and e) and f) the trajectories of the EMOS
forecasts with correlation structure by ECC-T or GCA-exp, respectively. Figure
taken from Hemri et al. (2015).
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smaller the catchment, the narrower is the time frame to be used for calculating
the climatological forecasts.

EMOS post processing

In the multi-model context of this study, EMOS converts the means of the runoff
forecasts generated by the individual models (here: separate HBV-96 model runs
with either COSMO-LEPS, DWD-GME, DWD-MER, or ECMWEF-HRES as me-
teorological input) and the variance among all runoff forecast ensemble members
generated by all models into a continuous predictive distribution. More specif-
ically, EMOS predictive distributions are obtained by applying the truncated
normal EMOS method (cf. Section 2.1.3) to the raw ensemble forecasts. In this
approach, we apply a Box-Cox transformation prior to EMOS post processing.
Details on how the Box-Cox transformation has been implemented in this study
can be found in Appendix A.2. The effect of the Box-Cox transformation becomes
clear from comparing the EMOS predictive densities of the same forecast on the
transformed and on the original space as shown in Figures 4.7 a) and 4.7 b). As
already stated, the EMOS predictive distributions are right-truncated in order to
avoid - though very modest - positive probabilities for unrealistically high runoff.
This limit b is set to two times the Box-Cox transform of the observations from 1
November 1998 to 31 October 2008. For the three catchments considered there is
no need for a lower limit. In case of the river Moselle the estimated Box-Cox pa-
rameter \ is negative, which means that —oo on the Box-Cox transformed space
maps to zero on the original space. s positive for the rivers Upper Rhine and
Lahn, but the predictive probabilities for negative runoff are negligible. They are
numerically zero for the vast majority of verification days and lead times. The
highest probabilities attained are 3.7 - 107* and 7.7 - 107%" for the rivers Upper
Rhine and Lahn, respectively. Training and verification periods are selected in
exactly the same way as in the study on censored EMOS (cf. Section 4.2 and
Table 4.2). The parameters of the EMOS model are estimated by minimization
of the CRPS over the training period.

Using formulae by Gneiting et al. (2004) the CRPS of the right truncated
normal distribution verified at the observation y € (—o0,b] can be written in
closed form as

[_ d(v/2v)

CRPS [Nb(u,a2),y} = NG

% +290(7) +20(7) — 78], (4.1)

where v = (b — p)o~ !, v = (y — p)o~! and B = ®(v). Here, ® and ¢ denote

CDF and probability density function (PDF) of a standard normal distribution,
respectively.
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Multivariate extensions

In Section 2.2 the Schaake Shuffle, ECC, and GCA have been presented, which
are methods to re-introduce a dependence structure into a probabilistic forecast.
ECC and GCA have been selected for the study at hand. Obviously, these mul-
tivariate extensions are independent from the EMOS approach. They could, for
instance, also be applied to BMA post processed probabilistic forecasts. The
EMOS method presented so far, fits an independent univariate model for each
forecast lead time. This approach may lead to unrealistic jumps in the marginal
distributions from lead time to lead time and does not account for the correlation
structure among consecutive lead times. Resolving these problems involves two
steps. Firstly, jumps in the marginal distributions between individual lead times
are removed by smoothing the EMOS parameters among the range of lead times.
In this study, this is done by fitting a cubic smoothing spline. The smoothing
parameter is estimated by leave-one-out cross-validation. This approach is im-
plemented in the R function smooth.spline. For the rest of this study, the term
EMOS predictive distribution refers to density forecasts based on the smoothed
EMOS parameters. Secondly, the multivariate correlation structures are inserted
by using either ECC that preserves the correlation structure of the raw ensemble
forecasts or GCA that relies on the correlation structure of the training obser-
vations. In the following, we describe how ECC-T and GCA are adapted to the
hydrological settings of this study.

For ECC-T, a right truncated normal distribution with mean 4, variance o7,
and upper threshold b (cf. Equation (2.17) in Section 2.1.3) is fitted to the raw
ensemble forecast r; at each lead time [ using maximum-likelihood estimation.
This truncated normal distribution corresponds to the distribution S, in Equation
(2.23) in Section 2.2.2. In order to avoid unrealistically extreme quantiles in cases
of very low raw ensemble spread, the variance of S, is set to

max {gf, (1 + d)F*) — h((1 — d)fl)f}, (4.2)

where 7 is the mean of the raw ensemble at lead time [, h denotes the Box-Cox
transformation, and d is a tuning parameter. This heuristic approach ensures
that the minimal variance is linked to the mean of the raw ensemble and applica-
ble on the Box-Cox transformed space. After having compared different example
forecast trajectories and verification scores the tuning parameter d was set to
d = 0.0005.

As a parametric alternative to ECC, we apply also the GCA method presented
in Section 2.2.3. The exponential, the Matérn, and the generalized Cauchy cor-
relation models (see Schlather (1999) for a comprehensive review of correlation
functions) are candidates for the data at hand. Figure 4.8 shows the empirical
correlograms and the corresponding fitted correlation functions. The correlation
parameters are estimated using the R package geoR (Diggle and Ribeiro Jr, 2007;
Ribeiro Jr and Diggle, 2001). In principle, GCA allows to sample infinitely many
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Figure 4.8: Empirical correlations and associated correlation function estimates
against time lag averaged over all training periods. The black segments corre-
spond to the range of the empirical correlation. Figure taken from the supple-
mental material to Hemri et al. (2015).

forecast runoff trajectories. In the study at hand the number of GCA trajecto-
ries is set to be equal to the size of the raw ensemble, i.e. K = M in point iii)
of the list in Section 2.2.3. Preliminary tests have shown that GCA does not
depend much on the parametrization of the correlation function. For the rest
of this study we consider only exponential GCA, which relies on an exponential
correlation function, and hence is the simplest GCA model. Henceforth, the term
GCA refers to exponential GCA.

Example forecasts

In order to illustrate EMOS, ECC, and GCA the hydrographs of an example
prediction are discussed now. To this end the forecasts issued on 5 January 2011
for river Moselle have been selected, which cover a high flow event at a forecast
lead time of about three days. Though the raw ensemble is able to predict the
magnitude of the event, all members underestimate runoff during the rising limb
of the hydrograph as shown in Figure 4.7 ¢). The EMOS probability forecasts
shown in Figure 4.7 d) clearly improve the prediction compared to the raw en-
semble. ECC-T yields quite realistic forecast trajectories with the same rank
order structure as the raw ensemble. As demonstrated by the runoff trajectories
in Figures 4.7 ¢) and 4.7 f), GCA is more flexible than ECC-T. On the one hand
the 19 randomly selected quantiles, which are independent from the rank order
structure of the raw ensemble, cover the observed trajectory better than the raw
ensemble or ECC-T. On the other hand the forecast trajectories are a bit too
wiggly. Additionally, there is a remarkably high outlier trajectory. Figures B.6
to B.22 in Appendix B.2 show similar plots for additional issue dates for all three
considered catchments in low and high flow conditions.
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4.3.4 Results

In the following sub-sections, truncated EMOS, ECC, and GCA are verified in
detail. Refer to Section 2.3 for details on the verification methods. The consid-
ered runoff forecasts and observations are standardized by catchment size, i.e. the
corresponding unit is [ls™'km™?].

Univariate verification

The forecasts are now verified over the entire verification period and lead times
1 to 114 h. As a sound assessment of multivariate forecast properties relies on
univariately well calibrated forecasts, we start with univariate verification of the
predictive distributions for each individual lead time. Figure 4.9 a) shows the
CRPSS values for the raw ensemble and EMOS forecasts with the daily climato-
logical forecasts as reference. Skill in terms of CRPSS is much improved by post
processing in case of all three catchments. The gain in skill by the raw ensemble
forecasts over the climatological forecasts decreases with decreasing catchment
size and increasing lead time. However, the EMOS forecasts for the river Lahn
exhibit equal performance in terms of CRPSS as the EMOS forecasts for the
substantially larger catchment of river Moselle.

After having discussed general prediction skill in terms of CRPSS, let us now
have a closer look at calibration and sharpness. For all three catchments the
raw ensemble forecasts are highly underdispersed as depicted by the 3D PIT
histograms in Figure 4.9 b). With increasing lead time underdispersion slightly
decreases. Note also the time-of-day-dependent oscillation of raw ensemble cal-
ibration of the forecasts for river Rhine at Maxau. This oscillation most likely
arises from the intraday operation of the Swiss lakes, which are not included
in the hydrological model. EMOS post processing flattens the PIT histograms
regardless of catchment size and lead time. Generally, EMOS leads to well cali-
brated forecasts as shown in Figure 4.9 c¢). However, the [0.9, 1] quantile interval
is still overrepresented. Differences in calibration of the post processed forecasts
between the different catchments can hardly be detected.

Calibration is only meaningful together with sharpness. For the assessment of
forecast sharpness, the empirical distribution of the widths of the centered 90 %
prediction intervals is constructed from the entire verification period. Following
Gneiting et al. (2007a) important quantiles of that distribution are plotted in a
box plot like manner. Figure 4.10 reveals that sharpness is clearly deteriorated
by EMOS in case of river Upper Rhine. For the rivers Moselle and Lahn EMOS
deteriorates sharpness at the short lead time of 24 h, whereas the effect of EMOS
on sharpness for higher lead times is less pronounced. However, EMOS turns the
very poor coverage of the raw ensemble forecasts into almost perfect coverage.
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Figure 4.9: a) CRPSS against lead time of the raw ensemble and the EMOS
forecasts. The daily climatological forecasts serve as reference model. b) 3D PIT
histograms of the raw ensemble forecasts for the rivers Upper Rhine, Moselle,
and Lahn. c¢) 3D PIT histograms of the truncated EMOS forecasts for the corre-
sponding catchments. Figure taken from Hemri et al. (2015).

Multivariate verification

Even though the GCA forecasts look a bit less realistic, they perform slightly
better than ECC-T in terms of multivariate statistical verification. But note that
the differences in verification results between EMOS with either GCA or ECC-T
are minor, compared to the differences to the raw ensemble. The average rank
histograms shown in Figure 4.11 indicate that ECC-T lacks in multivariate cali-
bration. The U-shaped histograms for all three catchments indicate either a too
low correlation among lead times or forecast trajectories that are marginally un-
derdispersive, in that the predictive densities for the individual lead times are too
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Figure 4.10: Sharpness and coverage of the raw ensemble and EMOS forecasts at
lead times 24, 72, and 114 h. The blue dotted line segments show the medians
of the empirical distribution of the 90 % prediction interval widths of the daily
climatological forecasts. The purple lines correspond to the nominal coverage.
The box plots show the 5, 25, 50, 75, and 95 % quantiles of the widths of centered
90 % prediction intervals from a) the raw ensemble and b) the EMOS forecasts
for the rivers Upper Rhine (indicated by “R-xx”, where xx denotes lead time),
Moselle (“M-xx"), and Lahn (“L-xx”). Figure taken from Hemri et al. (2015).

narrow. The correlations of GCA are too strong as can be seen from the rather
N-shaped histograms. In order to highlight the effects of a misspecified corre-
lation structure, a forecast ensemble consisting of 19 runoff trajectories drawn
from the marginal EMOS distributions for the individual lead times with zero
correlation between lead times (INDEP) is evaluated as well in the following.
According to Table 4.4, INDEP performs quite well in terms of the ES, but very
poor in terms of the CRPS of the sum, minimum and maximum functionals, and
the p-variogram score. The just mentioned CRPS analysis of forecast functionals
refers to evaluating the CRPS of the forecasts for the sum, the minimum, and
the maximum of the runoff trajectory over the entire forecast horizon. This gives
insights into important multivariate properties of the forecasts. Note that for all
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Figure 4.11: Average rank histograms comparing raw ensemble, ECC-T, and
GCA with exponential covariance structure forecasts for the rivers Upper Rhine,
Moselle, and Lahn. Figure taken from Hemri et al. (2015).

different forecasts the ES has been calculated based on the forecast vector of the
lead times 24, 48, 72, and 96 h only in order to avoid issues of dimensionality.
ECC and GCA perform better than INDEP in any combination of verification
score and catchment, but the differences are very low in case of the ES. Further-
more, the p-variogram score indicates that ECC-T outperforms GCA in terms of
correlation structure in case of the Upper Rhine, while GCA outperforms ECC-T
for the rivers Moselle and the Lahn. The CRPS values of the minimum func-
tional favor GCA over ECC-T for all catchments. The sum functional tends to
favor GCA as well. However, ECC-T outperforms GCA in terms of the CRPS of
the maximum functional in case of the large catchments Upper Rhine and Moselle.
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Table 4.4: ES, CRPS and p-variogram scores®

ES CRPS.SUM CRPS_.MIN CRPS_MAX p-vario_0.5

g raw ensemble  3.75 156 1.02 2.01 36.0
= INDEP 3.23 155 3.08 3.70 144
ﬂi ECC-T 3.18 126 0.94 1.49 28.9
> GCA-exp 3.13 124 0.86 1.52 29.1

raw ensemble  3.60 147 0.94 2.24 44.1
% INDEP 3.11 144 1.48 4.44 116
Z ECC-T 3.07 119 0.69 1.97 41.1
= GCA-exp 3.07 119 0.62 2.02 40.2

raw ensemble  3.57 146 0.98 2.19 49.7
% INDEP 2.78 131 1.23 4.00 107
4 ECC-T 2.77 109 0.70 1.57 37.5

GCA-exp 2.71 107 0.63 1.53 36.3

& ES, CRPS of the sum, minimum, and maximum functionals as well as the 0.5-
variogram scores comparing raw ensemble and EMOS forecasts with independent,
ECC-T, and GCA-exp correlation structure for the rivers Upper Rhine, Moselle,
and Lahn. Table taken from Hemri et al. (2015).

4.3.5 Discussion

The results confirm that univariate post processing using EMOS improves skill
of the probabilistic runoff forecasts over the entire range of lead times. In partic-
ular, univariate calibration is greatly improved. However, the main focus of this
study was on multivariate calibration. Our results demonstrate that temporal
dependence structures can mostly be represented adequately by either ECC-T or
GCA. On average, GCA performs slightly better than ECC-T in terms of statis-
tical verification measures. However, this is expected, because GCA retains the
univariate predictive distributions, while the ECC-T trajectories depend on the
raw ensemble. For instance, the ECC-T spread is zero if the ensemble spread is
zero even in cases where the variance of the marginal EMOS predictive distribu-
tion for the particular lead time is large. Nevertheless, in combination with the
potential to model spatio-temporal dependencies between sub-catchments and
lead times, EMOS with ECC-T is a suitable approach for post processing of sub-
catchment ensemble forecasts. The post processed sub-catchment trajectories
can then be used as boundary conditions and lateral inflows for a hydrodynamic
model. In the present case, this would lead to well specified forecast scenarios
of runoff, and hence also water levels, in the river Rhine. Such multivariate,
probabilistic forecasts may, for instance, be useful for shipping companies. Fur-
thermore, the results suggest that the relative performance of ECC-T compared
to GCA deteriorates with decreasing catchment size. This is in line with the re-
sults by Pappenberger et al. (2010) who showed that the performance of ensemble
river discharge forecasts based on similar settings of coupled atmospheric and hy-
drologic ensemble models decreases with decreasing catchment size. Hence, it is
reasonable to assume that quality of the correlation structure of the raw ensemble
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is highest for the large catchment of the Upper Rhine, moderate for the medium-
sized catchment of the river Moselle, and lowest for the small catchment of the
river Lahn. Further analyses are needed in order to confirm these results.

The EMOS models have been optimized on the Box-Cox transformed space.
This approach has been chosen in order to be able to use Gaussian distribu-
tions. Nevertheless, one has to keep in mind that the predictive distributions
have to be back-transformed. Hence, distances between equidistant quantiles
on the Box-Cox transformed space are transformed to quantiles with increasing
distances with increasing runoff volume on the original space. This in turn influ-
ences CRPS optimization, i.e. on the Box-Cox transformed space the lower parts
of the predictive distributions have more influence on CRPS calculation than on
the original space. Considering the, though slight, miscalibration of the EMOS
models in the [0.9,1.0] decile, an optimization procedure that gives more weight
to the higher quantiles may be desirable. A first test has shown that refining the
parameter estimates on the original space may slightly increase verification scores.
However, numerical CRPS optimization drastically increases computational cost.
Another way to approach this problem would be to apply EMOS methods that
are based on positively skewed non-Gaussian distributions. Promising approaches
might rely, for instance, on generalized extreme value distributions (Scheuerer,
2014; Lerch and Thorarinsdottir, 2013).

In summary, this study confirms that EMOS along with the multivariate ex-
tensions, ECC-T and GCA, provides reasonably sharp probabilistic runoff fore-
casts that are well calibrated in terms of univariate calibration, and from which
realistic runoff scenarios over the entire range of lead times can be extracted in a
straightforward manner.

4.4 Hydrological regime dependent post process-
ing
4.4.1 Introduction

Runoff pattern vary significantly over time due to changing hydrometeorological
regimes. The EMOS post processing methods presented so far, are based on
seasonal training periods. While such an approach can take account of seasonal
variations, it completely neglects runoff regime. But using the same estimated
EMOS parameters for low and high runoff or even flash floods may not be ap-
propriate. Hence, forecast skill may benefit from selecting training data that
are “similar” to the forecast runoff trajectory for a particular verification day.
Several regime dependent approaches have already been developed in a meteo-
rological context. Gneiting et al. (2006) developed a regime-switching forecast
method designed for a wind farm in the U.S. Pacific Northwest, where it turned
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out to be crucial to differentiate between easterly and westerly wind regimes. A
recent approach by Junk et al. (2015) uses analog past ensemble forecasts (includ-
ing the corresponding observations) as training data in EMOS post processing.
The analog training data set consists of those forecasts, which are most similar
to the current forecast. Lerch and Baran (2016) proposes a semi-local EMOS
approach that clusters stations with similar features and then uses training data
from all stations within a cluster class for model fitting. A feature could, for in-
stance, be the station climatology or the CDF of forecast errors. In the following,
we asses the potential of such a similarity based training data selection in the
framework of hydrological forecasting.

4.4.2 Methods

In case of the strongly autocorrelated runoff forecast trajectories, it is crucial to
select a similarity criterion that is designed to detect differences between time se-
ries. Among the different similarity criteria for hydrological trajectories listed by
Ehret and Zehe (2011) dynamic time warping (DTW: Sakoe and Chiba (1978)) is
chosen for this preliminary study, because it has already been implemented suc-
cessfully in a hydrological context (Ouyang et al., 2010) and the corresponding
algorithm is readily available in the R package tsdist (Mori et al., 2014). DTW
has originally been developed for speech recognition. In order to compare word
sequences spoken at different paces, it allows for stretching and compression of
time series. That is, DTW considers time series to be equal if it is possible to
map one into the other by stretching and compression only. More specifically, the
DTW distance measure between two time series corresponds to the minimal am-
plitude error that is obtainable through stretching and compression. Translated
to hydrology, DTW can be applied successfully in cases where the shape of the
hydrograph is important, but not the actual timing (Ehret and Zehe, 2011). The
following mathematical description of DTW follows closely Rabiner and Juang
(1993) and Giorgino (2009). Assuming a training trajectory = (xy,...,2r)
for lead times 1,...,L and a verification trajectory y = (y1,...,yr) one first
computes the local dissimilarity which is given by

where f is most commonly the Euclidian distance. DTW relies on a warping
curve ¢(k),k = 1,..., K consisting of remapped pairs of indices from x and y.
Note that K denotes also the length of the remapped time series, where typically
K # L. If  and y are of the same length, ¢(k) is given by

o(k) = (02(k), ¢y (k)), (4.4)

where the functions ¢,(k), ¢,(k) € 1...L actually select the indices at each k.
In order to avoid temporal inconsistencies, such as loops, copies of the same
flood peak, and reversed peak orders, the following monotonicity constraints are
introduced:
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¢o(k +1) = ¢u(k),
oy(k+1) > ¢y (k). (4.5)

Accordingly, the warped distance between @ and y can be represented as

K
1
dof.y) = 37 D0 A6 (8). 0, () mo(). (16)
k=1
where my is a weighting function and My is a normalizing constant that ensures
comparability between different paths. The DTW approach minimizes now the
warped distance over all paths ¢, that is the DTW distance is given by

D(x,y) = m;ndd)(zc,y). (4.7)

The DTW approach is illustrated in Figure 4.12 that shows how a forecast tra-
jectory and a corresponding training trajectory are mapped. The DTW distance
would then be obtained from the difference of the mapped trajectories shown
in Figure 4.12 e). Hence, hydrological regime dependent post processing can be
summarized as follows:

1. Select a representative forecast trajectory from the raw ensemble to be post-
processed. In the small case study presented in the following, this trajectory
is obtained from the HBV-96 forecasts with ECMWF-HRES meteorological
inputs covering lead times 1 to 114 h.

2. Calculate the selected distance measure, e.g. DTW distance, between the
forecast trajectory and all eligible training trajectories. Typically, the set
of eligible training trajectories consists of all past forecasts that stem from
the same model as the forecast trajectory and do not overlap with the latter
trajectory.

3. Select the T training trajectories that are most similar to the forecast tra-
jectory, i.e. that have lowest distance measures. And use the corresponding
pairs of observations and raw ensemble trajectories for estimation of the
statistical post processing model.

4.4.3 Results

Here, the results from a small case study on EMOS with DTW based training pe-
riods are presented. Unless specified differently, the same data and EMOS post
processing models are used as in the case study on multivariate post process-
ing of hydrologic forecasts in Section 4.3. As mentioned above the deterministic
forecasts from hydrological model runs with ECMWF-HRES meteorological in-
puts are used to determine the training periods. For each verification day, the
T € {45,90, 180, 365} dates in the dataset with the most similar ECMWF-HRES
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Figure 4.12: DTW illustration showing a training trajectory (a), a forecast tra-
jectory (c), the corresponding optimal DTW path (b) as well as both training
and forecast trajectory in one plot (d) and the corresponding DTW matched
trajectories (e). The time series are computed from Box-Cox transformed runoff
forecasts with ECMWF-HRES meteorological input for river Lahn at Kalkofen
initialized on 23 January 2009 and 10 February 2009 for the training and the
forecast trajectory, respectively.

forecast trajectories are used for training. In order to avoid overlapping, dates
in the range of £10 days from the verification day are not considered for train-
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ing. For comparison with the reference forecast, i.e. the seasonally fitted EMOS
forecasts (cf. Section 4.3), we use skill scores of the CRPS, i.e. the CRPSS and
the log score for verification. The log score of the optimal forecast, i.e. Sy, in
Equation (2.31) in Section 2.3.1, would be —oo. Therefore, Sy, is arbitrarily set
to —10, which corresponds to the log score of an almost optimal forecast. The
length of the corresponding seasonal training periods ranges from 172 to 233 days
with a median of 184 days. Hence, the seasonal approach can be compared best
with the DTW approach that is based on the 180 most similar training forecasts,
which is referred to as DTW EMOS 180 in the following. According to Figure
4.13 the performance of DTW EMOS 180 compared to seasonal EMOS depends
on the catchment of interest. In case of the rivers Upper Rhine and Lahn DTW
EMOS 180 improves forecast skill only for the first few lead times. Beyond a lead
time of about 20 h the best DTW EMOS 180 variant and seasonal EMOS per-
form equally well in case of the Upper Rhine, while for river Lahn DTW EMOS
180 is clearly outperformed by seasonal EMOS. Only in the case of river Moselle,
DTW EMOS 180 leads to an improvement in forecast skill over the entire forecast
horizon. On average, DTW EMOS 45 and DTW EMOS 90, i.e. considering the
45 or 90 most similar forecasts, lead to a deterioration in terms of forecast skill
compared to DTW EMOS 180. Note that this is not the case for the lead times
up to 70 hours at gauge Lahn. Considering the 365 most similar training fore-
casts does not change forecast skill much compared to DTW EMOS 180. Small
improvements can be detected for river Upper Rhine and Lahn at higher lead
times.

4.4.4 Discussion

According to the above results the combination of DTW with EMOS did not
lead to clear-cut improvements in forecast skill compared to the seasonally fit-
ted EMOS predictions. Only the forecasts for river Moselle clearly benefit from
DTW. In case of the river Lahn DTW even leads to a deterioration. Considering
the quite different catchment features — large snowmelt dominated, large precipi-
tation dominated, and small precipitation dominated in case of the Upper Rhine,
Moselle, and Lahn, respectively — there might be a connection between catch-
ment type and the performance of the DTW EMOS methods. There is a need for
follow-up studies based on a larger set of different catchments in order to either
confirm or reject this hypothesis. Furthermore, the results indicate a low per-
formance of the DTW EMOS variants with a small number of training forecasts
compared to those with a rather large number of training forecasts. This leads to
the question whether it is more important to remove the very unsimilar trajecto-
ries from the training set than having only the very similar training trajectories in
the training set. Additionally, it would be useful to test also alternative distance
measures that may be more suitable for post processing of hydrologic ensemble
forecasts.
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Figure 4.13: Verification scores comparing DTW EMOS with the seasonally fitted
EMOS model from Section 4.3. Subfigure a) shows the CRPSS and b) the log skill
score over the verification period. The seasonally fitted EMOS forecasts are the
reference model. DTW EMOS is assessed depending on the length of the training
period, i.e. the number of most similar training forecasts that are considered.

4.5 Deterministic evaluation of probabilistic hy-
drological forecasts

4.5.1 Introduction

Though probabilistic forecasts exhibit very desirable properties, there are many
situations in which end-users call for a translation into deterministic forecasts
(Gneiting, 2011), which are also referred to as point forecasts. For instance, the
BfG seeks a deterministic water level forecast with a precision of +10 c¢m in 80
% of the verification instances up to two days for river Rhine. Forecasts up
to 4 days should have a precision of £20 cm in 80 % of the cases (Meifiner and
Rademacher, 2010). Obviously, any deterministic hydrologic forecast model could
be used to generate such a forecast if it is skillful enough. However, it is much
more recommendable to make use of the information inherent to the probabilistic
forecasts. In the following, we present a preliminary study on how to convert
probabilistic hydrologic forecasts into deterministic forecasts.
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4.5.2 Methods

In order to find a sound directive for issuing deterministic forecasts based on
the EMOS predictive distributions, one needs to find a functional T for which
a consistent scoring function exists that is related to the water level precision
requirements of the BfG. Following Gneiting (2011) a functional 7" is a mapping
from a class F' to the real line, F' +— T(F') C R. Like the proper scoring rules
presented in Section 2.3.1, the scoring function S(z,y) is a function of the forecast
x and the event y that materializes. Furthermore, the scoring function S(z,y)
can as well be understood as the reward of the forecaster. Similarly to propriety
(cf. Equation (2.25) in Section 2.3.1), a scoring function S(z,Y) is consistent for
the functional T if

Er[SE,Y)] < Ep[S(z,Y)] (4.8)

for all F, all t € T'(F) and all z € R Gneiting (2011) and with Y ~ F. The
scoring function S(z,Y) is strictly consistent if

Er[S(t,Y)] < Ep[S(x,Y)] (4.9)
holds for all t € T'(F') and all x ¢ T'(F).

The above requirements by the BfG can be considered as an alternative, i.e. in-
verse, formulation of the zero-one scoring function that is given by

Sc(xa ?J) = ]l[|xfy|>c}a (410)

where ¢ > 0 (Gneiting, 2011). The deterministic forecast x can be understood as
a functional of a predictive distribution F' on the real line. According to Gneiting
(2011), the respective midpoint is the optimal point forecast, namely

T = argmax(F(x + ¢) — lTlm F(y)), (4.11)
@ yta—c
so that z is the midpoint of the interval of length 2¢ with maximal probability
mass. In case of continuous predictive distributions like the truncated normal
EMOS model, on which the post processing of the hydrologic ensemble forecasts
at hand is based, the midpoint simplifies to

T = argmax(F(z +c¢) — F(z — ¢)). (4.12)
According to Gneiting (2011), the zero-one functional S, is consistent for the
midpoint functional. Hence, point forecasts can be obtained from post processed
predictive distributions obtained by methods like EMOS or BMA using the ap-
proach of Equation (4.12). The midpoint of the forecast distribution corresponds
to the value at which the most mass of the density function lies within an inter-
val of & 10 cm or + 20 cm, respectively. Figure 4.14 shows the forecast density
of an 48 hour EMOS forecast for river Moselle at gauge Trier initialized on 11
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Figure 4.14: Forecast EMOS density for a 48 h forecast including the DEI forecast
with its associated interval. The lower figure is a magnification of the upper one
that shows the differences between DEI forecast, mode, and expectation.

September 2009 at 06:00 UTC. The midpoint of the EMOS forecast density is
referred to as deterministic EMOS interval (DEI) forecast in the following. Note
that it differs from both the mode and the expectation of the forecast distribution.

In the hydrological studies presented in this thesis, post processing has been
applied only to runoff forecasts, but not to the corresponding water level pre-
dictions. However, as mentioned above, the deterministic forecast verification
method applied by the BfG is performed on gauge levels. The water level ob-
servations that have been used to generate the hydrological ensemble forecasts
used in this study are not identical with the water level observations available
to us. While the former are unmodified operational measurements, the latter
have undergone additional checks. For the sake of consistency, we rely on the
runoff dataset and transform runoff to water level using functional rating curves.
Likewise, in order to find the midpoint of the forecast distribution (cf. Equation
(4.12)), water level intervals have to be back-transformed to runoff intervals. As
stated in Section 2.1.3, the EMOS post processing methods used here are esti-
mated on the Box-Cox transformed space. Hence, the runoff intervals additionally
need to be Box-Cox transformed. Assuming that an EMOS forecast distribution
is already available on the Box-Cox transformed space, the procedure to obtain
the £10 cm (£20 ¢cm) DEI forecast can be summarized as follows:

1. Map the forecast CDF to the original space, i.e. runoff in m?/s, by inverse
Box-Cox transformation.

2. Map the forecast CDF from runoff to water level using fitted rating curves.
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3. Find the midpoint Z, i.e. the center of the £10 cm (£20 cm) water level
interval that covers the most probability mass.

Details on the actual rating curve fitting and the effects of the rating curve and
the Box-Cox transformations are discussed in Appendix A.2.2.

4.5.3 Results

The DEI forecasts are evaluated using the 10 and 20 cm criteria from above for
the uncensored catchments Upper Rhine, Moselle, and Lahn. As shown in Figure
4.15, they are compared with the deterministic forecasts from DWD-GME, DWD-
MER, ECMWF-HRES, and the mean of the COSMO-LEPS members. Obviously,
none of the different forecasts can meet the 10 or the 20 cm criterion at forecast
lags of two and four days, respectively. In order to assess the usefulness of the
density mass maximization approach of Equation (4.12), the expected values of
the EMOS predictive distributions are included as well. These predictions are
referred to as deterministic EMOS expectation (DEE) forecasts. For the rivers
Moselle and Lahn the DEI forecasts outperform all other prediction methods.
Surprisingly, in case of the Upper Rhine the mean of COSMO-LEPS, DWD-
GME, and DWD-MER generally outperform the DEI forecasts at higher lead
times. Looking at the 10 cm criterion, this is the case for all lead times beyond
25 h. With regard to the 20 cm criterion the mean of COSMO-LEPS and DWD-
MER outperform the DEI forecasts at lead times greater than 60 h, while DWD-
GME outperforms the DEI forecasts only beyond 80 h. Furthermore, there is not
much difference between the DEI and the DEE forecasts for the Upper Rhine.
Averaged over the entire forecast horizon, the values for DEI are 0.4 % and 0.3
% better than the values for DEE with regard to the 10 cm and 20 ¢cm criterion,
respectively. In case of river Moselle both DEI and DEE meet the 10 cm and 20
cm criteria considerably more often than any of the other forecasts at lead times
greater 15 h. DEI outperforms DEE only very slightly, if at all. The averaged
outperformance of DEI over DEE amounts to 1.2 % for the 10 cm criterion, and
to 0.8 % for the 20 c¢m criterion. For river Lahn the improvement of DEI and
DEE over the other forecasts is much smaller. But, in case of the 10 ¢m criterion,
the averaged relative improvement of DEI over DEE amounts to 3.6 %. Looking
at the 20 cm criterion, this improvement drops to 0.7 %.

4.5.4 Discussion

On average DEI and DEE lead to a gain in deterministic forecast skill compared
to the raw ensemble deterministic forecasts. The small losses in case of Upper
Rhine are more than compensated by the small gains in case of river Lahn and the
quite significant gains for river Moselle. Furthermore, DEI slightly outperforms
DEE for the three catchments considered. Nevertheless, it is quite difficult to
draw sound conclusions from the above results. There is need for a more detailed
analysis of the conversion of probabilistic hydrologic forecasts into deterministic
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Figure 4.15: Proportion of deterministic forecasts that are not more than 10 cm
(top) and 20 cm (bottom) off the verifying observation. The horizontal dashed
lines indicate the 80 % target of the BfG, the vertical dotted lines are drawn at
forecast lags of two and four days.

forecasts. Directions for theoretically well founded point forecasting can be found
in Gneiting (2011).

4.6 Post processing of seasonal hydrological en-
semble forecasts

4.6.1 Introduction

All the above case studies apply statistical post processing methods to short- to
medium-range (up to 2 weeks) hydrometeorological forecasts. Though seasonal
(one to several months) meteorological forecasts show only very limited skill,
seasonal hydrological forecasting is somewhat more promising due to the long-
term water balance memory of hydrological catchments (e.g. Hurst (1951) and
Mudelsee (2007)). In this study, we rely on two ways to obtain seasonal hydrolog-
ical ensemble forecasts. In the first approach, seasonal NWP forecast ensembles
are used as input to the hydrological model. The second approach, is based on the
past climatology of meteorological variables and summarized now. In a nutshell,
the ensemble streamflow prediction (ESP: Day (1985); Wood and Lettenmaier
(2008) approach can be divided into two steps. First, the hydrological model is
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run using observed meteorological input variables up to the time of forecast ini-
tialization in order to obtain a sound estimate of the present model state. Then,
the ESP ensemble is generated by running the hydrological model multiple times
with meteorological inputs obtained by resampling from the seasonal climatolo-
gies of the meteorological input variables. The length of the resampled sequences
should equal the length of the forecast horizon.

Though not many studies on post processing of seasonal hydrological fore-
casts have been performed up to now, Shi et al. (2008) compared the effects of
statistical post processing and hydrological model calibration on forecast skill.
They considered seasonal ensemble forecasts, based on a 30 member ensemble
obtained by means of the EPS approach, ranging from 1 to 6 months for eight
different catchments in the western U.S. Their results indicate that statistical
post processing by percentile mapping (Panofsky and Brier, 1958; Wood et al.,
2002) leads to seasonal forecast ensembles that perform almost equally well as
those obtained by hydrological model calibration. In the following, we assess if
statistical post processing adds skill to already hydrologically calibrated seasonal
forecasts for the gauges Basel and Cologne (both river Rhine) as well as for the
gauges Achleiten and Hofkirchen (both river Danube).

4.6.2 Data and methods
Study areas and runoff data

The sub-catchments considered cover different catchment characteristics. Their
location within the catchments of the rivers Rhine and Danube is shown in Figure
4.16. As listed in Table 4.5 all catchment are rather large. In case of river Rhine,
we focus on gauge Basel, which is mostly alpine dominated with a quite high aver-
age runoff relative to the catchment size and gauge Cologne that is located at the
Lower Rhine and drains large parts of the river Rhine catchment. The runoff pat-
tern at Cologne results from a mixture between the snow dominated Upper Rhine
catchment and the rainfall dominated tributaries further downstream. In case of
river Danube, gauge Hofkirchen drains large parts of the foothills of the Eastern
Alps, which results in a mostly rainfall dominated runoff pattern with additional
minor snowmelt contributions from the alpine sub-catchments. Gauge Achleiten
is located just below the confluence of the Danube with river Inn. The alpine
runoff pattern of river Inn with snowmelt induced peak runoff in spring/early
summer strongly affects runoff of the river Danube at gauge Achleiten.

For model fitting and forecast verification two different types of monthly runoff
values are used. The first approach relies on mean monthly observed runoff that
is obtained from water level measurements and subsequent transformation to
runoff using the corresponding rating curves. The second approach is based on
mean monthly “observed” runoff that is obtained by running the hydrological
models (see next paragraph for details on the hydrological models) with ECMWF
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Figure 4.16: Locations of the considered sub-catchments within the basins of the
rivers Rhine and Danube. Figure provided by Bastian Klein (BfG).

ERA-interim (Dee et al., 2011) analysis meteorological input. In case of the
latter, uncertainties in the hydrological models and observation measurement
errors can be excluded. Typically, post processing leads to considerably stronger
improvements in the settings of measured observations, since many sources of
systematic errors are eliminated by using simulated observations.

Seasonal hydrological raw ensemble forecasts

The seasonal hydrological raw ensemble is based on monthly hydrological hind-
casts initialized at the beginning of each month from January 1981 to January
2013 covering a forecast horizon of 1 to 7 months. It consists of 48 members
stemming from 15 runs, rgc = (rrc1,-.-,"8c15), of the hydrological model
with atmospheric input from the ECMWF seasonal forecast system 4 (Molteni
et al., 2011) and 33 members obtained using the ESP approach denoted by
rEsp = (TEsp1, - - -, ESP,33). For the two gauges at river Rhine, Basel and Cologne,
the seasonal hydrological forecasts are obtained by running the HBV model
(cf. Section 4.2.3). For river Danube, i.e. gauges Achleiten and Hofkirchen, the
spatially distributed hydrological rainfall runoff model COSERO (Continuous
Semi-distributed Runoff: Nachtnebel et al. (1993)) is used, which is similar to
the HBV model as, for instance, stated by Frey and Holzmann (2015).
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Table 4.5: Features of the considered catchments: area, mean monthly runoff
(mMQ), and maximum monthly runoff (mHQ) in the period from January 1981
to June 2013.

gauge catchment area [km?] mMQ [m?/s] mHQ [m?/s|
Basel Rhine 35897 1073 2713
Cologne Rhine 144232 2210 5340
Hofkirchen Danube 47609 650 1545
Achleiten  Danube 76660 1435 3407

Climatological forecasts

The climatological forecasts correspond to the empirical distribution of runoff
values of the same month as the month of interest but from other years. Since we
use only data from our training/verification period that covers about 30 years, the
climatological forecasts are a quite rough estimate of the climatological forecast
distribution and have to be interpreted as relative benchmarks that may easily
be outperformed by a more elaborated climatological forecast.

EMOS post processing

Preliminary tests for the gauges Achleiten and Hofkirchen have shown that the
more sophisticated BMA method is not able to outperform EMOS. Hence, we
focus here on comparing different EMOS variants. The reference model is a
univariate EMOS model based on either a truncated normal or a lognormal dis-
tribution. The alternative models are estimated jointly over all lead months 1 to
7. For a detailed discussion of truncated EMOS see Section 2.1.3. The estimation
of the coefficients of the statistical post processing models for the forecasts initial-
ized in month z is based on a training set that consists of all obervation/forecast
pairs initialized in month x but not in the same year.

Lognormal EMOS

EMOS based on a lognormal distribution has been proposed by Baran and Lerch
(2015) to post process wind speed forecasts. Here, we use it as an alternative
to truncated EMOS that may be more suitable for the post processing of sea-
sonal ensemble runoff forecasts. The EMOS predictive distribution based on a
lognormal model can be written as

L —logy—“> if y >0
y|r~ y(,@( o) HY=Y (4.13)
0 else,

where ¢ denotes the probability density function of the standard normal distri-
bution. Following Baran and Lerch (2015) the parameters p and o are linked to
the raw ensemble by
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i = log (%) and o =,/log (1 + %), (4.14)

where m and v are the mean and the variance of the predictive distribution,
respectively. In this EMOS method m and v are affine functions of ensemble
statistics. Here, this leads to the link

m = ag+ a17gc + a2fgsp and v = by + b182, (415)

where Tgc and 7gsp denote the means of the ECMWEF and the ESP seasonal
ensemble forecast members, respectively and ag, aq, as, by, by > 0.

Simultaneous parameter estimation

Since this study relies only on monthly average runoff values, the data avail-
able for training of the EMOS models consist of at most 33 forecast/observation
pairs, which is rather small. In order to increase the size of the set of fore-
cast/observation pairs available for model fitting and to smooth the EMOS pa-
rameter estimates over the different lead months, an alternative EMOS scheme
has been developed for this study. The EMOS predictive distribution for a par-
ticular lead month can be written as

y | R~ g(, o), (4.16)

where R = (ry,...r) is a matrix of forecast ensembles with r; being the forecast
vector and y; the variable of interest for lead month [ with [ = 1,..., L. The
function g denotes either a truncated normal or a lognormal density function.
The location parameter y; is now parameterized as

M = Qg + al(wm,Ec —+ (1 — wl)Fl,ESp), (417)
where the weight function w; is given by

| logit ™! (ag)e =1 if az <0

w; = 4.18
: {1 + [logit ~*(ag) — 1]e®(=1  else , (4.18)

where logit™ is the inverse logit transformation, i.e. logit *(a) = expa/(1 +
exp a). The parameter as controls the weights of 7 e and 7, gsp at the first lag
month and a3 the direction and rate of the change in the weights over the forecast
horizon. The forecast variance o7 can be represented by either

of =by+bisi or a7 =by+ b log(l), (4.19)

where s? is the raw ensemble variance at forecast lag [. The constraints on the
parameters are ag, aq, by, by > 0.
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Model variants

Before discussing the results, we give now an overview over the different EMOS
model variants that we have tested. First, the models can be divided according
to distribution function and type of observations. This leads to the following four
groups of models:

1. truncated normal EMOS models fitted and verified against measured ob-
servations

2. truncated normal EMOS models fitted and verified against simulated ob-
servations based on ECMWEF ERA-interim meteorological input

3. lognormal EMOS models fitted and verified against measured observations

4. lognormal EMOS models fitted and verified against simulated observations
based on ECMWEF ERA-interim

Each of the above groups contains five different models with model configurations
according to Table 4.6. Model M1 stands for separate EMOS parameter estima-
tion for each lead month [, whereas M2 to M5 use the simultaneous parameter
estimation approach described above. The model variants M4 and M5 do not
apply any bias correction, i.e. a9 = 0 and a; = 1 in Equation (4.17). Finally,
the models can be divided according to variance specification, for M1, M2, and
M4 the variance depends on the ensemble variance, whereas for M3 and M5 the
variance depends on the lead month.

Table 4.6: EMOS variants for post processing of seasonal runoff forecasts

model  separate simultaneous bias correction variance
estimation estimation depends on

M1 v v s

M2 v v 52

M3 v v log

M4 v 52

Mb v log

4.6.3 Results

As the raw ensemble and most of the different EMOS variants exhibit positive
skill compared to the reference climatology up to a forecast lag of at least three
months for all considered catchments, the skill of the EMOS variants is assessed
in detail in the following. In contrast with the gain in predictive skill of short
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to medium-range hydrological forecasts (cf. Sections 4.2 and 4.3) by statistical
post processing, skill of seasonal ensemble runoff forecasts cannot easily be im-
proved by statistical post processing. Figures 4.17 and 4.18 show skill in terms
of CRPSS of seasonal hydrologic forecasts pooled over all verification months at
gauges Basel and Cologne, respectively. Obviously, skill of the raw ensemble and
all EMOS variants is high compared to the climatological forecasts for the first
month. Here, statistical post processing improves skill slightly compared to the
raw ensemble. At higher lead times skill of the raw ensemble decreases quickly,
while the post processing methods are not able to add any skill to the raw ensem-
ble forecasts. Though they cannot outperform the raw ensemble, the lognormal
EMOS models M4 and M5 perform best among the different post processing mod-
els. Figure 4.21 shows the relative performances of the raw ensemble with regard
to the climatology and of the lognormal EMOS M5 forecasts compared to the raw
ensemble split according to verification month and forecast lag at gauge Basel.
The high CRPSS values for May and June at forecast horizons of more than one
month reflect the effect of snow accumulation and snow melt on the predictability
of runoff from the alpine parts of river Rhine. Though the effect is gradually at-
tenuated further downstream, it can still be detected at gauge Cologne as shown
in Figure 4.22. Independent of forecast lag and verification month, EMOS does
not improve forecast skill much.

According to Figures 4.19 and 4.20 EMOS post processing seems to be more
beneficial for the two sub-catchments of river Danube. At gauge Hofkirchen, up-
stream of the confluence with river Inn, the lognormal EMOS models M4 and
M5 outperform the raw ensemble in terms of CRPSS at most of the lead times.
When verified against runoff observations this holds also for gauge Achleiten,
while the raw ensemble cannot be outperfomed by the EMOS models when veri-
fied against ERA-interim simulated runoff. As for the gauges Basel and Cologne,
the lognormal EMOS models M4 and M5 perform best among the different post
processing models at the gauges Hofkirchen and Achleiten. As shown in Fig-
ures 4.23 and 4.24, splitting again the CRPSS values according to verification
month and forecast lag reveals a quite high skill of the raw ensemble forecasts
at gauges Hofkirchen and Achleiten compared to the climatology in the period
from roughly May to September when verified against ERA-interim simulated
runoff. At gauge Hofkirchen, the raw ensemble forecasts for May underperform
the climatology quite strongly when verified against measured observations. This
is also reflected by the high relative skill of the lognormal EMOS model M5 com-
pared to the raw ensemble for May. This effect may be explained partly with the
extreme event in May 1999. When verified against the ERA-interim simulations,
this underperformance vanishes.
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Figure 4.17: Pooled CRPSS values of the seasonal runoff forecasts at gauge Basel.
The top panels show the values of the EMOS models based on a truncated normal
distribution, the bottom panels the corresponding values for the models based on
a lognormal distribution. The models shown in the panels on the left have been
fitted and verified against measured observations, those in the panels on the right
against a HBV run with ERA-interim forcing.
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Figure 4.18: Pooled CRPSS values of the seasonal runoff forecasts at gauge
Cologne. The top panels show the values of the EMOS models based on a trun-
cated normal distribution, the bottom panels the corresponding values for the
models based on a lognormal distribution. The models shown in the panels on
the left have been fitted and verified against measured observations, those in the
panels on the right against a HBV run with ERA-interim forcing.
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Figure 4.19: Pooled CRPSS values of the seasonal runoff forecasts at gauge
Hofkirchen. The top panels show the values of the EMOS models based on a
truncated normal distribution, the bottom panels the corresponding values for
the models based on a lognormal distribution. The models shown in the panels
on the left have been fitted and verified against measured observations, those in
the panels on the right against a HBV run with ERA-interim forcing.
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Figure 4.20: Pooled CRPSS values of the seasonal runoff forecasts at gauge
Achleiten. The top panels show the values of the EMOS models based on a
truncated normal distribution, the bottom panels the corresponding values for
the models based on a lognormal distribution. The models shown in the panels
on the left have been fitted and verified against measured observations, those in
the panels on the right against a HBV run with ERA-interim forcing.
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Figure 4.21: Monthly CRPSS of the seasonal runoff forecasts at gauge
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The results shown in the top panels are based on model fitting and verification
against measured observations, those shown in the bottom panels are based on
fitting and verification against a HBV run with ERA-interim forcing. The CRPSS
of the raw ensemble is calculated against the monthly climatology, the CRPSS of
the lognormal EMOS M5 forecasts against the raw ensemble.

97



verification month

verification month

measured obs: raw / clim

| 1 1 1 1 1 1

12

1

10

T

0.22 0.17 0.07 0.03 0.02 001 O

0.44 0.07 0 0.02 -0.02 0.01 0.01
0.35 0.06 0.06 -0.01 O 0 0.02
0.12 0.07 0.03 0.09 0.02 0.05 0.02
0.38 0.02 0.02 -0.03 O 0 0.02
0.18 -0.06 0 0.02 0 -0.05-0.05
0.4 0.15 0.17 0.06 0.02 -0.04 -0.05f
0.38 0.21 0.09 0.05 -0.04-0.01 0.03
0.4 0.07 0.01 -0.02-0.03-0.01-0.03
0.27 -0.02-0.03-0.01 0.01 0 -0.02
0.37 0.09 0.07 0.06 0.09 0.03 0.02 -

T

T

T

0.35 0.08 0.07 0.06 0.02 0 0.03

T T T T T T T

1 2 3 4 5 6 7
lead time [m]

erainterim obs: raw / clim

1 1 1 1 1 1 1

12

10 A

0.22 0.14 0.04 001 0 001 O

0.48 0.07 0.01 0.03 -0.03 0.01 0.01
0.4 0.03 0.07 0.01 -0.01 0.01 0.02
0.32 0.11 0.02 0.05 O 0.05 0.02
0.42 0.04 0.05 -0.01 0.04 0.02 0.02 |-
0.45 0.01 0.03 0.05 0.02 0.01 0.01
0.5 0.17 0.22 0.08 0.06 -0.02-0.03
0.43 0.2 0.09 0.06 -0.04-0.02 0.02
047 0.11 0.05 001 0 001 O

0.4 0.02 0.01 0.06 0.05 0.04 0.03
0.4 0.06 0.06 0.04 0.08 0.03 0.03
0.35 0.07 0.07 0.06 0.03 0.01 0.03

T

T

T

T

T

T T T T T T T

1 2 3 4 5 6 7

lead time [m]

= 1.0

05

0.0

verification month

- -0.5

-1.0

1.0

- 0.5

r 0.0

verification month

- —0.5

-1.0

12

10

measured obs: M5 / raw
Il Il Il Il Il Il Il
-0.02-0.01 0 0.01 0.02 0.01 0.02
0.13 0.01 0.02 -0.01 0.03 -0.01-0.01
-0.03-0.01 0.02 001 0O 0 -0.01}
0.07 -0.01-0.02-0.01 0.01 —0.02 -0.01
0.02 -0.04 0 -0.01001 0 -0.03
-0.02 -0.02 -0.04 0.03 0.02 0.03 0.02
-0.04 0.01 0.03 0.06 0.05 0.03 0.04
-0.01 -0.03 -0.01 -0.03 0.01 0.01 -0.01
0.11 0.05 -0.02 -0.02 —0.02 -0.05 —-0.02

T

T

T

T

0.03 -0.04-0.01-0.03 -0.03 -0.01 -0.02
0.05 -0.04 0 -0.03-0.01-0.01-0.02r
0.06 0.04 0 0.02 -0.01-0.01-0.03

T

T T T T T T

1 2 3 4 5 6 7
lead time [m]

erainterim obs: M5 / raw

1 1 1 1 1 1 1

12

10

N
1

-0.03 0 -001 O 001 0 -001f
0.03 0.02 0.02 -0.02 0.04 -0.01-0.01
-0.03-0.03 -0.02 -0.03 -0.01 -0.03 -0.04
0.08 -0.01 0.01 0.01 0.02 -0.02-0.01
0.02 -0.04 0 0 0 -0.01-0.01
-0.02-0.02-0.04 0.02 0.01 O 0

-0.02 0.03 0 0.03 0.01 0.01 0.02
-0.05-0.01 -0.02 -0.05 -0.01 -0.01 -0.02
0.16 0.06 -0.03 -0.02 -0.03 -0.03 -0.05-

T

T

T

0.1 -0.04-0.07-0.02 O 0 -0.01
0.11 -0.11-0.04-0.06 0 -0.01-0.03r
0.11 004 O 0 -002 0 -0.02

T T T T T T T

1 2 3 4 5 6 7

lead time [m]

= 1.0

r 0.5

r 0.0

- -0.5

-1.0

- 1.0

r 0.5

r 0.0

- -0.5

-1.0

Figure 4.22: Monthly CRPSS of the seasonal runoff forecasts at gauge Cologne.
The results shown in the top panels are based on model fitting and verification
against measured observations, those shown in the bottom panels are based on
fitting and verification against a HBV run with ERA-interim forcing. The CRPSS
of the raw ensemble is calculated against the monthly climatology, the CRPSS of
the lognormal EMOS M5 forecasts against the raw ensemble.
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Figure 4.23: Monthly CRPSS of the seasonal runoff forecasts at gauge Hofkirchen.
The results shown in the top panels are based on model fitting and verification
against measured observations, those shown in the bottom panels are based on
fitting and verification against a HBV run with ERA-interim forcing. The CRPSS
of the raw ensemble is calculated against the monthly climatology, the CRPSS of
the lognormal EMOS M5 forecasts against the raw ensemble.
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Figure 4.24: Monthly CRPSS of the seasonal runoft forecasts at gauge Achleiten.
The results shown in the top panels are based on model fitting and verification
against measured observations, those shown in the bottom panels are based on
fitting and verification against a HBV run with ERA-interim forcing. The CRPSS
of the raw ensemble is calculated against the monthly climatology, the CRPSS of
the lognormal EMOS M5 forecasts against the raw ensemble.
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4.6.4 Discussion

The above results indicate that statistical post processing can hardly improve
forecast skill of seasonal forecasts beyond a forecast horizon of one month. At all
four considered gauges, lognormal EMOS outperforms truncated normal EMOS.
Furthermore, a few conclusions can be drawn from the relative performance of the
different EMOS models. There is probably no need for an explicit bias correction,
because M4 and M5, which only weight the means of the ESP and the EC seasonal
forecast ensemble and add a variance term, perform best. Beyond a forecast lag
of one month, simultaneous parameter estimation seems to be beneficial to the
EMOS forecasts. The univariate approach, i.e. model M1 that fits a single EMOS
model for each lead time, show a poor performance for forecast lags greater than
one month. Furthermore, the raw ensemble variance does not contain much
information about forecast uncertainty. This is reflected by the equal forecast
skill of the EMOS models that connect forecast variance to the raw ensemble
variance, i.e. M2 and M4, with the EMOS models that connect forecast variance
simply to the forecast lag, i.e. M3 and M5. In summary, post processing of
seasonal hydrologic forecasts cannot really add skill unless potential skill of the
raw ensemble forecasts is improved in future.
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Chapter 5

Conclusions and outlook

The results of the studies presented in Chapters 3 and 4 have already been dis-
cussed in the corresponding sections. The preliminary study on deterministic
evaluation of probabilistic hydrologic forecasts needs further analyses before we
can draw firm conclusions. Based on the results from the other case studies, we
provide a brief synthesis of the covered topics and make some suggestions for
further research.

The TCC post processing methods, MLR and POLR, proved to improve fore-
cast skill significantly, when applying them to TCC raw ensemble forecasts from
the ECMWF. From the post processing study on ECMWEF T2M, PPT24, and V10
forecasts, we concluded that the skill gap between raw ensemble and post pro-
cessed forecasts remains almost constant over time indicating that post processing
will keep adding skill in the foreseeable future. Hence, we hypothesize that this
would also be the case for TCC. Nevertheless, further analysis are needed in order
to confirm this hypothesis. Unlike T2M and V10, PPT24 and TCC are integrated
variables. In case of PPT24 precipitation is integrated over the 24 hours accu-
mulation period and over precipitation generation processes. The ECMWEF EPS
differentiates between stratiform and convective precipitation. Likewise, TCC
can be split into low, medium, and high level clouds. Both the ratio between
stratiform and convective precipitation and the proportions of low, medium, and
high level clouds depend on location, season, and, in particular, the prevailing
weather regime. Hence, further analyses are needed in order to take account of the
nature of such integrated variables in statistical post processing. This may lead
to an additional improvement in forecast skill. A post processing method that
takes account of the different types of precipitation generation processes is cur-
rently under development at the Institute for Meteorology and Climate Research
of the Karlsruhe Institute of Technology. In general, weather regime dependent
post processing of ensemble weather forecasts, will probably be of increasing in-
terest in future. Of course, regime dependent post processing is not restricted to
integrated variables. An example of regime dependent wind speed forecasting is
provided by Gneiting et al. (2006).
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From our results on regime dependent post processing of hydrological fore-
casts, it becomes clear that regime dependent post processing does not necessarily
improve forecast skill. As precipitation is the main driver of runoff generation, hy-
drologic forecasts may benefit from using statistically post processed precipitation
forecasts as input to the hydrological model. Additionally, discerning according
to type of precipitation in the post processing process of the meteorological in-
puts may also be a method to achieve well calibrated hydrologic forecasts that
take account of the prevailing weather regime. For instance, it is likely that the
predictability of hydrologic forecasts is relatively high, when the runoff genera-
tion processes are induced by stratiform precipitation. Due to its chaotic nature
predictability is expected to be lower for convective precipitation (Carbone et al.,
2002). This hypothesis on predictability of stratiform and convective precipita-
tion induced runoff should be analyzed in further studies on post processing of
hydrometeorological ensemble forecasts.

The study on multivariate post processing of hydrologic forecasts reveals that
both ECC and GCA are suitable for modelling the temporal dependencies of
probabilistic hydrologic forecasts. Accordingly, multivariate EMOS is a good
starting point for further developments. In the settings of a large river system
like river Rhine with several sub-catchments spatial dependences between the
gauges of different tributaries should be considered in order to obtain a better
representation of the total runoff after the confluence of the tributaries. While
ECC can be applied to spatio-temporal settings in a straightforward manner, a
parametric model that takes account of the dependence between different gauges
may be developed based on the space-time models discussed in Gneiting et al.
(2007b). The further development of multivariate EMOS in time would include
an extension from short- and medium-range hydrologic forecasts to seasonal fore-
casts. Keeping in mind that the seasonal forecasts for the catchments considered
in our case study show some skill compared to the reference climatology, such an
approach would lead to appealing “seamless” predictions.
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Appendix A

Technical details

A.1 Discrete post processing of total cloud cover
ensemble forecasts

A.1.1 TCC mapping

The SYNOP observations dataset at hand reports TCC states as values in Z =
{0,0.1,0.25,0.4,0.5,0.6,0.75,0.9,1}. Obviously, CRPS, log score, forecast vari-
ance, and the width of the 90 % prediction interval are affected by the choice of
the verification space. The ECMWF TCC raw ensemble forecasts are continuous
in [0,1]. The post processed MLR and POLR forecasts are given in 9 ordered
categories, which can be considered octas. Raw ensemble and post processed
forecasts are mapped to Z according to Table A.1.

A.1.2 Marginal calibration

Let F, be the predictive CDF for verification day v in verification period V', then
the average predictive CDF for TCC can be written as

1
Fy(z) = VZFU(Z), »e€{0,1,...,8}, (A1)
and the empirical CDF of the observations as
T4
Gr(2) =4 Z; Loy <2l z€{0,1,...,8}. (A.2)

For a marginally well calibrated forecast the graph of Fi/(z) — Gy (z) describes a
horizontal line at zero (Gneiting et al., 2007a).
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Table A.1: Mapping of TCC raw ensemble and post processed forecasts®*. Table
taken from Hemri et al. (2016).

octa 0 1 2 3 4 5 6 7 8
z 0 0.1 0.25 0.4 0.5 0.6 0.75 0.9 1
x 0 0.01 0.1875 0.3125 0.4375 0.5625 0.6875 0.8125 0.99

Y 0.01 0.1875 0.3125 0.4375 0.5625 0.6875 0.8125 0.99 1

* Note that x and y denote the lower and the upper limit for the mapping
of forecast values to the corresponding values in the format of the SYNOP
observations in Z. Unless TCC state is 8 octas, the mapping intervals are
left-closed and right-open. In case of 8 octas the mapping interval is closed
on both sides. The mapping intervals are not equidistant in order to mimic
human observers.

A.2 Post processing of hydrologic forecasts

A.2.1 Box-Cox transformation

The Box-Cox transformation (Box and Cox, 1964) is given by

o2 e N £,
he) = { log(x) if A =0, (A.3)

where z is on the original space and A is the Box-Cox coefficient. For the studies
in Hemri et al. (2014a) and Hemri et al. (2015) the same estimated parameter
) is used for both observations and forecasts. For each catchment considered
the estimation has been performed using the complete time series of observa-
tions and corresponding simulations from 1 November 1998 to 31 October 2008,
which corresponds to the period prior to the verification period. That is, for each
catchment the estimate \ is constant throughout the entire study. The actual pa-
rameter estimation has been performed by minimizing the Kolmogorow-Smirnow
test statistic of a normal distribution with appropriate mean and variance and
the empirical distribution of the differences between the transformed observations
and the corresponding hydrological model simulations using observed meteorolog-
ical input by applying the R function ks.test. The estimates )\ are —0.31, —0.42,
0.61, —0.04, and 0.03 for the rivers Wied, Ahr, Upper Rhine, Moselle, and Lahn,
respectively. Another widely used alternative method to normalize the data is
the normal quantile transform (NQT, see also van der Waerden (1952, 1953a,b)
and Todini (2008) for an example of its application). Because of the limitations
of NQT with regard to the required extrapolation beyond the maximum observed
runoff, the Box-Cox transformation is preferred here.

A.2.2 Rating curve fitting

Probabilistic forecasts assign positive, though in most cases very low, probabilities
to extreme outcomes. Hence, a rating curve that has been constructed from past
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pairs of water level and runoff cannot cover the entire support of any predictive
density that may be generated by statistical post processing. In order to resolve
this problem, the rating curves for the gauges Maxau, Kalkofen, and Lahn are
extended to the interval from one third of the minimum of the climatology to
3 times the maximum of the climatology, where the climatology corresponds to
the empirical distribution of the hourly observations from 1 November 1998 to
31 October 2008. Additionally to the extension of the rating curve range, the
fitted rating curve function needs to be monotonically increasing in order to
avoid artefacts like runoff values that decrease with increasing gauge levels. A
functional rating curve fulfilling these requirements can be obtained as follows:

1. Select a suitable family of rating curve functions. Usually rating curves can
be approximated by

Q= P(G —e), (A.4)

where () and G denote discharge and water level, respectively, and P, e,
and b are parameters that need to be estimated from pairs of water level
and runoff observations (Kennedy, 1984).

2. Fit two separate rating curves: one in order to extrapolate high flows and
one for low flows. The curves are estimated by minimizing the mean squared
error. The curve for extrapolating at the lower end is forced to pass through
the lowest measured water level /runoff pair, whereas the curve at the upper
end is forced to pass through the highest measured water level /runoff pair.

3. Use the fitted rating curves to predict pairs of extreme water level and
runoff values. We have predicted four pairs of water level and runoff values
on both sides of the observed rating curve.

4. Fit a constrained smoothing spline function, which ensures monotonicity,
to the combination of observed and extrapolated water level/runoff pairs.
This can be done using the penalized splines method by Meyer (2012).

5. If derivatives of the rating curve function are needed: Replace the con-
strained smoothing spline function by the standard R function smooth-
.splines of the stats package. This may, for instance, be needed in order
to convert probabilistic runoff forecast density distributions into probabilis-
tic forecasts of water levels.

The rating curves for the gauges Maxau, Trier, and Kalkofen are shown in
Figure A.1 a), which includes also the extrapolated pairs of water levels and runoff
values as well as the penalized spline fits. The effects of the subsequent Box-Cox
transformation is shown in Figure A.1 b). Note that the Box-Cox transformed
values shown here, are obtained by first converting the runoff values from m?/s to
mm/h, i.e. runoff is normalized with catchment area such that it is represented as
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the equivalent amount of rainfall distributed evenly over the catchment, and then
applying the Box-Cox transformation. Figure A.1 ¢) shows the combined effect
of the two steps transformation from the verification space, i.e. water level, to the
forecast model space, i.e. Box-Cox transformed runoff. Considering the estimates
A for the Box-Cox transformation parameter that are 0.61, -0.04, and 0.03 for
the gauges Maxau, Trier, and Kalkofen, respectively, it looks like the dependence
of the Box-Cox transformed runoff interval width on water level is dominated
by the rating curve in case of the gauge Maxau, whereas it is dominated by the
Box-Cox transformation in case of the gauges Trier and Kalkofen. Given water
level intervals of constant width, dominance of the rating curve corresponds to an
increase in the width of the respective Box-Cox transformed runoff intervals with
increasing water level. Dominance of the Box-Cox transformation corresponds to
a decrease. Note that the inconsistencies at a water level of about 900 cm in the
plot of the transformed runoff interval width against water level at gauge Maxau
is most likely due to a small artifact produced by our actual implementation
of the rating curve fitting procedure that has to be addressed in a following-up
study.
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Figure A.1: Fitted rating curves (a), Box-Cox transformation curves (b), and
widths of Box-Cox transformed runoff intervals (c) for the catchments Upper
Rhine (Maxau), Moselle (Trier), and Lahn (Kalkofen). RC range denotes the
range of observed water levels.






Appendix B

Supplemental figures

B.1 Trends in the predictive performance of raw
ensemble weather forecasts

Figures B.1 to B.3 show the relative change in skill by applying EMOS for T2M,
PPT24, and V10 at the global set of SYNOP stations. The global distributions of
significant trends in ACRPS obtained by the parametric regression model and the
Kendall’s 7 correlation coefficient are shown in Figures B.4 and B.5, respectively.

111



41

30

8914 21

|
0

-8.7

-17

relative change in CRPS compared to the raw ensemble [%]
=47 -29

=70

o
T

c¢) lead day 10

Figure B.1: Relative change (%) in CRPS by EMOS with respect to the raw
ensemble at all stations for T2M for a) lead day 3, b) lead day 6, and ¢) lead day

10. The original figures for lead days 5 and 10 can be found in Richardson et al.
(2015).
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Figure B.2: Relative change (%) in CRPS by EMOS with respect to the raw
ensemble at all stations for PPT24 for a) lead day 3, b) lead day 6, and c) lead
day 10.
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Figure B.3: Relative change (%) in CRPS by EMOS with respect to the raw
ensemble at all stations for V10 for a) lead day 3, b) lead day 6, and c¢) lead day
10.
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Figure B.5: Global distribution of significant trends in ACRPS (between the raw ensemble and the EMOS forecasts) over the
verification period for T2M, PPT24, and V10. The forecast lead times considered are 3 d, 6 d, and 10 d. Significant trends are

obtained. Significant trends are obtained using the Kendall
significance level of 0.05.

Y

s 7 correlation coefficient test with correction for seasonalities at a
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B.2 Multivariate post processing techniques for
probabilistic hydrological forecasting

Figures B.6 to B.22 provide a collection of example forecasts similar to Figures 4.7
¢) to f) in Section 4.3. For each catchment three examples each for low and high
flow events are shown (for river Moselle one of the high flow example forecasts
is actually Figure 4.7). The forecasts are issued on the dates indicated below at
06:00 UTC. The subfigures show a) the trajectories of the raw ensembles, b) the
quantiles of the EMOS forecasts, and c¢) and d) the trajectories of the EMOS
forecasts with correlation structure by ECC-T or GCA-exp, respectively.
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Figure B.6: Example of a low flow forecast for river Upper Rhine at Maxau issued
on 1 October 2009. Figure taken from the supplemental material to Hemri et al.

(2015).
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Figure B.7: Example of a low flow forecast for river Upper Rhine at Maxau issued
on 29 October 2009. Figure taken from the supplemental material to Hemri et al.
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Figure B.8: Example of a low flow forecast for river Upper Rhine at Maxau
issued on 6 May 2011. Figure taken from the supplemental material to Hemri

et al. (2015).
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Figure B.9: Example of a low flow forecast for river Moselle at Trier issued on
26 August 2009. Figure taken from the supplemental material to Hemri et al.
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Figure B.10: Example of a low flow forecast for river Moselle at Trier issued on

7 September 2009. Figure taken from the supplemental material to Hemri et al.
(2015).
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Figure B.11: Example of a low flow forecast for river Moselle at Trier issued on 26
May 2011. Figure taken from the supplemental material to Hemri et al. (2015).
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Figure B.12: Example of a low flow forecast for river Lahn at Kalkofen issued

on 28 August 2009. Figure taken from the supplemental material to Hemri et al.
(2015).
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Figure B.13: Example of a low flow forecast for river Lahn at Kalkofen issued

on 2 January 2011. Figure taken from the supplemental material to Hemri et al.
(2015).
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Figure B.14: Example of a low flow forecast for river Lahn at Kalkofen issued

on 27 May 2011. Figure taken from the supplemental material to Hemri et al.
(2015).
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Figure B.15: Example of a high flow forecast for river Upper Rhine at Maxau
issued on 16 July 2009. Figure taken from the supplemental material to Hemri
et al. (2015).
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Figure B.16: Example of a high flow forecast for river Upper Rhine at Maxau
issued on 7 December 2010. Figure taken from the supplemental material to
Hemri et al. (2015).
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Figure B.18: Example of a high flow forecast for river Moselle at Trier issued on

10 December 2010. Figure taken from the supplemental material to Hemri et al.
(2015).
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Figure B.19: Example of a high flow forecast for river Moselle at Trier issued on
21 December 2010. Figure taken from the supplemental material to Hemri et al.
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Figure B.20: Example of a high flow forecast for river Lahn at Kalkofen issued
on 2 January 2010. Figure taken from the supplemental material to Hemri et al.

(2015).
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Figure B.21: Example of a high flow forecast for river Lahn at Kalkofen issued on

24 February 2010. Figure taken from the supplemental material to Hemri et al.
(2015).
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Figure B.22: Example of a high flow forecast for river Lahn at Kalkofen issued

on 7 January 2011. Figure taken from the supplemental material to Hemri et al.
(2015).
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