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A neutron diffraction study of (KxNa1�x)NbO3-based ceramics has been carried

out from 5 K to high temperatures well above the Curie temperature. The

diffraction data were analysed using Rietveld refinement. For pure KNN

samples, especially at the Na-rich side of the phase diagram, the low-

temperature structure of simple rhombohedral symmetry changes to a highly

complex monoclinic structure at a higher temperature. Chemical analysis on the

samples showed good agreement of the expected and actual compositions.

Trigonal, monoclinic, orthorhombic, tetragonal and cubic phase models as well

as two-phase mixtures are observed depending on the temperature of

measurement. Space groups R3c, P1m1, P11m, Amm2, P4mm, Pm3m and their

combinations are used to refine the trigonal, monoclinic, orthorhombic,

tetragonal, cubic and mixed phases, respectively. For the (K0.48Na0.48Li0.04)-

(Nb0.86Ta0.1Sb0.04)O3 sample at temperatures between 5 and 300 K, the

monoclinic P11m space group gives the best refinement fit. For the

(K0.17Na0.83)NbO3 sample, a two-phase refinement using the trigonal R3c and

monoclinic Pm space groups gave the best fit at 300 K, while at 5–150 K the

trigonal R3c space group gives the best fit. The understanding of the structure of

these lead-free ceramics will help in the optimization of their piezoelectric

properties.

1. Introduction

(KxNa1�x)NbO3 (KNN) is a solid solution of NaNbO3 and

KNbO3 and is of interest to researchers because of its

potential to replace the currently used lead-based piezo-

electric ceramics. The earliest phase diagram and crystal

structures were obtained from temperature-dependent

dielectric measurements and X-ray diffraction studies

(Shirane et al., 1954). Since then the piezoelectric, dielectric

and electromechanical properties of KNN ceramics have been

widely investigated (Egerton & Dillon, 1959; Jaeger &

Egerton, 1962; Haertling, 1967). The presence and position of

different phase boundaries were first reported by Tennery

(1968) using calorimetric studies of enthalpy and entropy

changes. Using X-ray diffraction, the lattice parameters, the

tilting of the oxygen octahedra and the sequence of phase

transitions have also been reported (Ahtee & Glazer, 1976).

The tilting of the oxygen octahedra in perovskite materials is

normally represented using the notation proposed by Glazer

(1972). Ahtee & Hewat (1975) using neutron diffraction have

studied the structure of KNN ceramics containing different

potassium amounts (x = 0.02 and 0.1). The structural phase
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transitions were reported both at room temperature and at

higher temperatures (Ahtee & Hewat, 1978).

Other characterization techniques have been used in recent

times to investigate the structure of KNN ceramics. With

Raman spectroscopy, it has been shown that the particle size

of KNN ceramics influences the type of phase present (Shir-

atori et al., 2005). When the particle size is <200 nm, a triclinic

phase is observed, while when it is >200 nm, a monoclinic

phase is observed. The symmetry of KNN ceramics with

different sintering temperatures and holding times investi-

gated with transmission electron microscopy (TEM) revealed

that the crystal planes of the grains around the intragranular

pores are of the {100} family, which are assumed to have the

lowest surface energy (Jenko et al., 2005). On the basis of TEM

analysis, KNN single crystals were reported to have mono-

clinic symmetry at room temperature (Lallart, 2011).

The local atomic structure of KNN ceramics up to the third

shell around the Nb atoms (x = 0–0.65) has been studied from

low to high temperatures using Nb K edge extended X-ray

absorption fine structure analysis (EXAFS), and the result

shows that the distribution of Nb atoms on the surface changes

during phase transitions (Lemeshko et al., 2007). The

geometry of the NbO6 octahedra depends not on the value of

K [the value of x? the fraction of K?] at each temperature but

on the rotation of the octahedral Nb—O—Nb angle. In

another EXAFS study, over a range of phase transitions, the

Nb atoms were found to be displaced from the centre of the

octahedra of their immediate oxygen neighbours through

splitting of the Nb—O distances, with high displacements in

the [111] crystallographic directions (Kodre et al., 2009).

Investigations of both KNN single crystals and ceramics by

Baker et al. (2009b) have led to a modification of the phase

diagram. On the basis of the tilt system and cation displace-

ments as a function of temperature, the most significant

structural change in KNN occurs when x = 0.2. Low-

temperature structural investigations of KNN using neutron

diffraction (x = 0.05 and 0.3) showed that rhombohedral R3c

structure and tilt system a�a�a� are present at room

temperature. When x = 0.05, a two-phase coexistence between

a monoclinic and a rhombohedral phase was observed (Zhang

et al., 2009).

The report by Saito et al. (2004) about KNN ceramics

modified with Li, Ta and Sb showing much improved piezo-

electric properties renewed a lot of interest in the topic.

Several research results on these KNN-based ceramics have

been reported. The increase in piezoelectric properties was

attributed in part to the coexistence of the orthorhombic and

tetragonal phases and has also been investigated with

synchrotron X-ray diffraction (Mgbemere, Fernandes et al.,

2011; Mgbemere, Hinterstein & Schneider, 2011, 2012, 2013).

According to Akdoğan et al. (2008) this phase coexistence is

expected on the basis of Gibb’s phase rule under isothermal

and isobaric conditions. Rubio-Marcos et al. (2011) attributed

it to the diffusion of the tetragonal phase and inhomogeneity

in the composition. In the Raman stretching modes, the

relation between structure, properties and the effective ionic

displacement which leads to polarization were established

(Rubio-Marcos et al. (2011).

Neutron diffraction is a valuable tool in the study of the

structure of KNN ceramics because it gives a lot of informa-

tion on the oxygen matrix owing to the high scattering cross

section of oxygen compared to the X-ray atomic form factor.

Therefore, precise determination of oxygen octahedral tilting

is possible. There are only a few reports on the study of the

structure of KNN ceramics from low temperatures to high

temperatures using diffraction. Because of their minimal

piezoelectric properties, the phase boundaries in KNN where

x = 0.17 and 0.35, respectively, have not been investigated as

they should be. There has also been little or no investigation of

KNN ceramics containing Li, Ta and Sb using neutron

diffraction. The objective of this paper is to study the structure

of KNN ceramics at these phase boundaries (x = 0.17 and 0.35)

as well as KNN ceramics modified with Li, Ta and Sb, using

neutron diffraction in order to understand how the changes in

composition and temperature affect the structure. The results

will be significant for the development and optimization of

KNN and other new lead-free piezoceramics, as a detailed

knowledge of the crystal structure allows for tailoring of the

electromechanical properties.

2. Experimental procedure

The samples were produced using the conventional mixed-

oxide synthesis approach. The synthesis details for the KNN

sample modified with Li, Ta and Sb, (K0.48Na0.48Li0.04)(Nb0.86-

Ta0.1Sb0.04)O3, here abbreviated as KNNLST, have been

reported in the literature (Mgbemere et al., 2009a), while for

(K0.17Na0.83)NbO3 and (K0.35Na0.65)NbO3 compositions,

K2CO3, Na2CO3 and Nb2O5 were used as the starting powders.

The powders were mixed and attrition milled for 2 h at

500 r mine�1 using zirconia balls as grinding media and

ethanol as solvent. The powders were then calcined at 1123 K

for 4 h, and after the calcination, the milling process was

repeated using the same process parameters. The powders

were pressed into tablets of approximately 13 mm diameter by

12 mm thickness with a uniaxial press at 75 MPa for 30 s and

with a cold isostatic press at 300 MPa for 2 min. The samples

were sintered in air atmosphere at temperatures between 1373

and 1453 K for 1 h. The density was measured using the

Archimedes method, and grinding and polishing of the sample

were done in preparation for the measurements. The chemical

analysis of the sample after sintering was carried out using an

optical emission spectroscopy/inductive coupled plasma

(OES/ICP) device (PE-Optima 7000 DV).

2.1. Neutron diffraction data collection and refinement

The neutron powder diffraction measurements were carried

out with the powder diffractometer SPODI at the research

reactor FRM II of the Heinz Maier-Leibnitz Zentrum

(Garching near Munich, Germany) (Hoelzel et al., 2012) with

an incident wavelength of 1.548 Å. Low-temperature

measurements were performed using a closed cycle cryostat
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from 5 to 300 K. Temperature intervals of approximately

150 K were chosen for the measurements to correspond to the

occurrence of different phases in the samples. The high-

temperature measurements were made in situ in a high-

temperature vacuum furnace from 300 K up to 976 K. The

patterns were collected using a bank of 80 position-sensitive
3He detectors which covers a 160� scattering range. The

wavelength and instrumental profile were determined using a

corundum standard. The samples have a cylindrical form with

a height of �10 mm and a diameter of �10 mm.

The Rietveld method as implemented in the Fullprof suite

(Rodrı́guez-Carvajal, 2001) was used to refine all the collected

data. The following phases were used for the refinement:

rhombohedral (R3c), monoclinic (P1m1), monoclinic (P11m),

orthorhombic (Amm2), tetragonal (P4mm) and cubic

(Pm3m). The criteria for choosing the various models used in

the refinement, whether a single-phase model or a two-phase

model is used, are based on the obtained agreement factors of

the fit. This decision is also guided by prior knowledge of the

KNbO3 – NaNbO3 system and low R values. A two-phase

model is used where a combination of the phases results in

lower R values and better goodness of fit. The background was

refined using a linear interpolation between points from the

regions where no reflections contributed to the intensities. A

Thompson–Cox–Hastings pseudo-Voigt profile function,

which is convoluted with asymmetry owing to axial divergence

as formulated by Laar & Yelon (1984) and using the method

of Finger (Finger et al., 1994; Finger, 1998), is used for the

model. The atomic positions were refined for the oxygen

atoms and B-site cations, while the isotropic atomic displace-

ment parameters Biso were refined for all the elements.

3. Results and discussion

The result of the chemical analysis on the samples is shown in

Table 1. The actual amount represents the mean value from

four separate measurements, while the expected amounts are

based on calculations from the stoichiometric composition.

The actual and expected amounts of the sample with

composition (K0.17Na0.83)NbO3 are similar with only very

small differences. The actual amount of oxygen is lower than

expected, and this could be because of the atmosphere used

during sintering, where there was insufficient oxygen for the

process. The alkali elements Na and K are known to volatilize

during sintering, and to compensate for their volatility, 3%

excess was added to the starting powder. For the sample with

composition (K0.35Na0.65)NbO3, the actual and expected

amounts of K are very similar but the amount of Na was

higher than expected. This can be explained by the fact that

less Na than anticipated was lost during sintering. For the

KNNLST sample, the difference between the actual and

expected element amounts is minimal, thereby confirming that

the composition of the sample produced matches what is

expected. The trace Zr in the analysis is from the ZrO2 balls

used during milling, and this is as a result of friction between

the grinding balls and the powder.

3.1. (K0.17Na0.83)NbO3 ceramics from 5 to 976 K

The lead-free composition (K0.17Na0.83)NbO3 is situated at

one of the phase boundary lines in the KNbO3–NaNbO3

system. Because of the difficulty associated with sample

preparation and sintering, there is little or no information in

the literature about its properties. The measurement of the

ferroelectric properties can be challenging owing to the high

conductivity under an applied electric field. The Curie

temperature of the sample is approximately 691 K, while its

dielectric constant value at 1 kHz is approximately 350 with a

dielectric loss value as high as 0.5.

The neutron powder diffraction patterns for

(K0.17Na0.83)NbO3 ceramics from 5 to 776 K are shown in

Fig. 1. The diffraction pattern at 976 K is very similar to that at

776 K and so is not presented here. The right-hand panel is an

enlargement of the pattern from 37 to 41� to highlight the

presence of superlattice reflections in the sample originating

from in-phase or anti-phase tilting of the oxygen octahedra.

As the temperature of data acquisition increases, the patterns

gradually change, reflecting structural transitions from the

rhombohedral phase at 5 K through the monoclinic phase
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Table 1
Actual and expected amounts of the elements in the samples analysed
using the OES/ICP technique.

Element Li Na K Nb Ta Sb O Zr

K0.17Na0.83NbO3

Expected amount (mol) 0.83 0.17 1 3
Actual amount (mol) 0.818 0.173 1.091 2.918

K0.35Na0.65NbO3

Expected amount (mol) 0.65 0.35 1 3
Actual amount (mol) 0.734 0.34 0.968 2.957 0.0008

(K0.48Na0.48Li0.04)(Nb0.86Ta0.1Sb0.04)O3

Expected amount (mol) 0.04 0.48 0.48 0.86 0.1 0.04 3
Actual amount (mol) 0.034 0.508 0.476 0.85 0.099 0.038 2.994 0.0008

Figure 1
Neutron powder diffraction (� = 1.5484 Å) patterns of (K0.17Na0.83)NbO3

at 5, 150, 300, 526 and 776 K. The right-hand panel shows some of the tilt
peaks in the patterns between 37 and 41�, from 5 K to temperatures up to
526 K. The subscript ‘c’ refers to the pseudocubic indexing of the unit cell.
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around room temperature and finally to the cubic phase at

776 K.

The measured and calculated diffraction profiles together

with their difference plots for two structure models for

(K0.17Na0.83)NbO3 ceramics at 300 K are shown in Fig. 2.

A two-phase monoclinic–rhombohedral (P1m1 + R3c)

model was used to describe the measured diffraction data

(Fig. 2a). Attempts to use only either P1m1 or R3c single-

phase models resulted in higher R values and a poorer fit. As a

comparison, the fit with a single-phase monoclinic structure

model is shown in Fig. 2(b) and the differences in the R values

of the samples are shown in Table 2. While R3c exhibits an

a�a�a� tilt system, the P1m1 phase exhibits an a�b+c� tilt

system. A comparison of the two structure models in Figs. 2(a)

and 2(b) and the inset of the 1
2310C and 1

2311C reflections

[where is this?] clearly show that only a combination of the

two phases allows the correct modelling of the measured

intensities. At low temperatures (5–150 K), however, the

diffraction data were refined using a single-phase rhombohe-

dral model with R3c space group only. Here a low-tempera-

ture structure of simple rhombohedral symmetry changes to a

highly complex monoclinic structure at a higher temperature

(Zhang et al., 2009; Baker et al., 2009b). This appears to be

extremely unusual for most materials but it is the case with

KNN ceramics, especially the Na-rich portion of the phase

diagram.

In Glazer’s (1972) notation, the R3c space group has

a�a�a� anti-phase tilting of the oxygen octahedra. Megaw &

Darlington (1975) reported that, for rhombohedral perov-

skites, the hexagonal axes should be used for the refinement,

which allows for several important structural parameters to be

determined. The fractional coordinates for the hexagonal

setting are shown in Table 3.

The geometrical relationships shown for rhombohedral R3c

perovskites are used to calculate the structural parameters

from the refinement results. The results of the Rietveld

refinement are shown in Table 4. For diffraction data acquired

at 5 and 150 K, respectively, the trigonal crystal structure with

space group R3c best describes the observed diffraction data.

At 300 K, there is phase coexistence between the trigonal and

the monoclinic structure with space group P1m1, while at

526 K, only the monoclinic P1m1 best describes the observed

pattern. The phase coexistence is an indication of a first-order

phase transition with increasing temperature. From 776 to

976 K, the cubic structure with space group Pm3m best

describes the diffraction pattern. The fraction of the phases at

300 K is 16.26% for the rhombohedral phase and 83.74% for

the monoclinic phase. The density values for the sample

decrease with increasing temperature, from 4.555 (5) g cm�3

at 5 K to 4.434 (1) g cm�3 at 976 K. The refinement para-

meters for the sample show a good agreement from very low

temperatures up to high temperatures.

The lattice constants for the sample as a function of

measurement temperature are shown in Fig. 3(a). It appears as

research papers

4 of 11 Henry Mgbemere et al. � (KxNa1�x)NbO3-based ceramics J. Appl. Cryst. (2016). 49

Figure 2
Measured and calculated neutron diffraction profiles and their difference
curves for (K0.17Na0.83)NbO3 ceramics at 300 K

Table 2
Table showing the refinement details for all the possible models
investigated for (K0.17Na0.83)NbO3 ceramics from 5 to 976 K.

The models that were actually selected are shown in bold.

Temperature (K) Space group Rp Rwp �2 RBragg

5 R3c 7.88 8.96 12.2 3.07
150 R3c 8.18 9.22 12.2 3.34
300 P1m1 14.3 15.9 28.8 6.49
300 P1m1 9.39 10.3 11.9 5.45

R3c 5.96
300 R3c 32.4 33.2 114 9.54
526 P1m1 11.7 13.3 22 6.88
526 P1m1 10.7 12.4 19.6 5.94

R3c 14.6
776 Pm3m 15.3 17.4 44.9 6.93
976 Pm3m 15.3 17.1 40.1 7.74

Table 3
Fractional coordinates for the hexagonal setting of rhombohedral
perovskites with space group R3c.

Atom x/a y/b z/c

Na/K 0 0 1/4 + s
Nb 0 0 t
O 1/6 � 2e � 2d 1/3 � 4d 1/12
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if the values of the lattice parameters change a lot with

increasing temperature, but a look at the unit-cell volume of

the different structures shows a uniform increase with

temperature. The parameters that give more information

about the rhombohedral perovskite are based on the reports

in the literature by Megaw & Darlington (1975) and later by

Zhang et al. (2009). s describes the fractional displacement of

the A cation along the lattice parameter c of the hexagonal cell

(cH) from the ideal perovskite structure site. Since the Na and

K positions are fixed, a single s parameter is obtained. As the

temperature of measurement increases, the displacement of

Na/K along cH increases but in the negative direction.

t measures the shift of the B cation along the same direction

from the centre of the octahedron, and as the temperature of

data acquisition increases, the Nb shift from the centre of the

octahedron decreases. The rhombohedral angle �pc in the

pseudo-cubic cell is calculated from the relation

cos �pc ¼ ðc2
H � 6a2

HÞ=ðc2
H � 12a2

HÞ; ð1Þ

where aH and cH are the lattice parameters. A graph of the

cation displacements s and t as a function of temperature is

shown in Fig. 3(b). The displacements of both A and B cations

are negative as the temperature increases from 5 to 300 K. For

the A cation, the value decreases from �0.2307 to �0.234,

while for the B cation, the value is from 0.2655 to 0.264. This

implies that the cations are displaced from the cubic positions,

indicating polarization of the unit cell and possibly ferroe-

lectricity.

The lattice strain is the deviation of the rhombohedral angle

from 90�. According to Thomas (1996), when the rhombohe-

dral angle is less than 90�, it [what is ‘it’ referring to here?]

conforms to the general behaviour of rhombohedral ferro-

electric perovskites. The obtained rhombohedral angles are

less than 90�, which implies that they exhibit ferroelectric

behaviour. As the temperature increases, the values approach

90�, which means that the structure evolves towards cubic

symmetry. e shows the rotation of the octahedron face about

the triad axis, leading to the tilt angle ! according to the

equation tan! ¼ 4ð31=2Þe. A plot of the octahedral distortion

d and the octahedral rotation e as a function of temperature is

shown in Fig. 3(c). The trend for both distortions is negative

with temperature. With increasing temperature, the value of e

decreases from 0.0264 to 0.0256, which implies that the rota-

tion of the octahedral face decreases slightly. The tilt angle

also slightly decreases with temperature. d indicates the
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Figure 3
(a) Temperature dependence of the lattice parameters (Å) ah, ch for the rhombohedral phase, am, bm, cm for the monoclinic phase and ac for the cubic
phase for (K0.17Na0.83)NbO3 ceramics. (b) Cation displacements s and t as a function of temperature. (c) Octahedral distortion d and rotation e as a
function of temperature. (d) Octahedral tilt angle ! and octahedral strain � as a function of temperature.
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octahedral distortion where the triad axis symmetry is in place

but the upper and lower faces are different. The values of d are

negative, and this means that the upper face of the octahedron

is larger than the lower face. The cation displacements are all

positive, implying that Nb atoms move towards the upper

large face. The octahedral strain (�) describes the elongation

or compression of the octahedron along the triad axis and is

given by the expression

1 þ � ¼ cosw
cH

aHð6Þ1=2

� �
: ð2Þ

A graph of the octahedral tilt angle ! and the octahedral

strain � as a function of temperature is shown in Fig. 3(d).

The values of � are negative, which shows that the octa-

hedra are compressed while the tilt angle decreases with

increasing temperature.

After the refinements, the values [which values?] of some of

the oxygen atoms and the lattice parameters were used to

calculate the tilt angles (!a, !b and !c) in the monoclinic P1m1

phase. The tilt angles are actually proportional to the intensity

of the superlattice reflections. As the temperature of the data

acquisition increases, the tilt angles decrease (Table 4).

3.2. (K0.35Na0.65)NbO3 ceramics from 5 to 776 K

(K0.35Na0.65)NbO3 ceramics have a piezoelectric charge

coefficient (d*
33) value of 125 pm V�1, a Curie temperature

(Tc) of 685 K, a remanent polarization value of 24 mC cm�2,

and a coercive field EC of

approximately 6800 at 100 kHz

and dielectric loss of 0.025

(Mgbemere et al., 2009b).

The neutron powder diffrac-

tion patterns for (K0.35Na0.65)-

NbO3 ceramics from 5 to 776 K

are shown in Fig. 4. Some

superlattice reflections which

lead to the tilting of the oxygen

octahedra can be observed,

especially for patterns at low

temperatures. As the tempera-

ture of data acquisition

increases, the diffraction

patterns also gradually change,

reflecting alterations in crystal

structure from a mixture of

rhombohedral and monoclinic

phases at 5 K to a mixture of

tetragonal phases at 776 K. R

values from the Rietveld

refinement of the various

models investigated in this work

are shown in Table 5. The

models with the lowest R values

are chosen to represent the

observations in the diffraction

patterns for the sample

The diffraction patterns and hence the refinement for

(K0.35Na0.65)NbO3 ceramics are more complicated than for the

(K0.17Na0.83)NbO3 composition, possibly because of the

difference in stoichiometry between the actual and the

expected amount of sodium in the sample. The details of the

refinement results are shown in Table 6. It is common practice

in the synthesis of KNN ceramics to add an excess of about 2–

3 mol% of the alkali elements to compensate for volatiliza-
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Figure 4
Neutron powder diffraction (� = 1.5484 Å) patterns of (K0.35Na0.65)NbO3

at 5, 150, 300, 526 and 776 K. The right-hand panel shows some of the tilt
peaks in the patterns between 37 and 41�, from 5 K to temperatures up to
300 K. The subscript ‘c’ refers to the pseudocubic indexing of the unit cell.

Table 4
Refinement results for (K0.17Na0.83)NbO3 ceramics from 5 to 976 K.

Temperature (K) 5 150 300 526 776 976

Crystal Structure Trigonal Trigonal Trigonal Monoclinic Monoclinic Cubic Cubic

Space group R3c R3c R3c P1m1 P1m1 Pm3m Pm3m
a (Å) 5.53143 (4) 5.53562 (4) 5.54137 (12) 7.9078 (3) 7.95538 (12) 3.95985 (3) 3.96645 (3)
b (Å) 7.82363 (12) 7.88237 (15)
c (Å) 13.75702 (12) 13.75539 (12) 13.7485 (4) 7.89555 (20) 7.86712 (18)
� (�) 90.3813 (11) 89.912 (2)
Volume (Å3) 364.527 (5) 365.037 (5) 365.613 (16) 488.47 (2) 493.325 (16) 62.0923 (7) 62.4029 (8)
Phase fraction (%) 16.26 (4) 83.74 (7)
Density (g cm�3) 4.555 (5) 4.548 (5) 4.541 (2) 4.532 (2) 4.487 (2) 4.456 (1) 4.434 (1)
Z 6 6 6 8 8 1 1

Refinement
Rp 7.78 8.36 9.39 11.7 16.2 15.3
Rwp 8.96 9.23 10.3 13.3 17.4 17.1
Rexp 2.57 2.7 2.99 2.83 2.91 2.72
�2 12.15 11.65 11.86 21.98 36.02 39.71
No. of data points 3060 3060 3060 3060 3060 3054
No. of parameters 28 28 46 38 19 19
t 0.2655 0.26523 0.26404
s �0.23068 �0.23215 �0.23403
d �0.000725 �0.000759 �0.000809
e 0.02644 0.02556 0.025607
�pc (�) 89.4156 89.4207 89.5087
w (�) 10.3804 10.0421 10.06
� �0.0012815 �0.001091 �0.0026775
!a 4.301 1.613
!b 7.466 6.047
!c 3.038 0.965
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tions during sintering. In the case of this sample, the chemical

analysis showed that, while the amount of potassium was as

expected, that of sodium was higher.

Phase coexistences can be observed in a broad range of

temperatures from 5 to 776 K. At 5 K, the structure model was

refined using a combination of monoclinic P1m1 and rhom-

bohedral R3c space groups. The fractions of the phases are

48.79 and 51.21%, respectively. The monoclinic–rhombohe-

dral phase coexistence was also observed at 150 K, the frac-

tions of the phases being 44.35 and 55.65% (Fig. 5). A single-

phase monoclinic P1m1 model was used to refine the structure

at 300 K. In order to verify the transition to a single mono-

clinic phase, a combined refinement with neutron and high-

resolution X-ray diffraction data (PETRA III at DESY in

Hamburg) was performed. The measured and calculated

synchrotron diffraction profiles and their difference curves are

shown in Fig. 6. A monoclinic P1m1 model is adequate to

describe the observed patterns for both synchrotron and

neutron data and gave good refinement fits. At 526 K, two

tetragonal P4mm phases with slightly different lattice para-

meters gave a better refinement fit than only one tetragonal

phase. A very small amount of the second tetragonal phase

(3.35%) is necessary to achieve a good fit. It has been reported

in the literature that changes in stoichiometry can cause a

core–shell structure in KNN ceramics (Zhen & Li, 2007; Wang

et al., 2007). The core and the shell have different concen-

trations of the elements and thus slightly different structures,

which might be a possible explanation of our observation. As

the temperature increases to 776 K, the sample can still be

refined using a tetragonal phase model. Considering the two

phases at low temperatures, the density of the sample can be

said to increase with increasing temperature.

The tolerance factor values for the (K0.17Na0.83)NbO3 and

(K0.48Na0.48Li0.04)(Nb0.86Ta0.1Sb0.04)O3 samples are 0.982 and

1.016, respectively. An investigation into the tolerance factor

values for the proposed and actual composition of the

(K0.35Na0.65)NbO3 sample can give an insight into the mate-

rials properties. The proposed composition has a tolerance

factor of 0.997, while the actual composition has a tolerance

factor of 1.03. According to Acker et al. (2010), non-stoi-

chiometry in KNN-based ceramics plays a significant role in

the structure of the sample. The coexistence of phases

observed in this sample is possibly caused by the distortion of

the crystal structure which is induced by the difference in

tolerance factor.

At 5 K a density of 4.362 (5) g cm�3 and at 150 K a density

of 4.371 (7) g cm�3 was obtained for the sample. The density

values are 4.649 (2), 4.545 (2) and 4.469 (1) g cm�3 at 300, 526

and 776 K, respectively.

The temperature dependence of the lattice parameters for

(K0.35Na0.65)NbO3 ceramics is shown in Fig. 7(a). In order to

compare the lattice parameter values in one graph, the values

of the monoclinic phase were divided by 2, while the a and c

values of the rhombohedral phase were divided by the square

roots of 2 and 12, respectively, to match the pseudocubic

values.
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Figure 5
Measured and calculated neutron diffraction profiles and their difference
curves for (K0.35Na0.65)NbO3 ceramics at 150 K

Figure 6
Measured and calculated diffraction profiles for a combination of neutron
and synchrotron data and their difference curves for (K0.35Na0.65)NbO3

ceramics at 300 K.

Table 5
Table showing the refinement details for all possible models investigated
for (K0.35Na0.65)NbO3 ceramics from 5 to 776 K.

The models that were actually selected are shown in bold.

Temperature
(K)

Space
group Rp Rwp �2 RBragg

5 P1m1 20.20 23.7 115 7.02
5 P1m1 6.93 7.23 9.82 3.46

R3c 3.4
5 R3c 36 36.9 245 22.3
150 P1m1 23.7 26.9 133 8.61
150 P1m1 12.1 12.9 27.9 5.8

R3c 5.54
150 R3c 36.4 38.2 241 22.5
300 P1m1 16.4 17.2 42.4 8.16

526 P4mm 10.6 12 11.7 5.98
P4mm 5.51

526 P4mm 18.1 18.2 26.8 6.26
776 P4mm Negative Lorentzian: no convergence is achieved

Pm3m
776 P4mm 15.5 15.6 21.61 5.81
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A graph of the cation displacements s and t as a function of

the temperature is shown in Fig. 7(b).

The displacement of the A-site cations along cH shows that

they are displaced in the negative direction, while there is a

positive shift of the B-site cation along the same direction

from the centre of the octahedron. The rhombohedral angles

are less than 90�, which indicates the possible presence of

ferroelectricity in the samples. A plot of the octahedral

distortion d and the octahedral rotation e as a function of

temperature is shown in Fig. 7(c). The positive value of � for

the sample shows that the octahedra are elongated along the

triad axis.

A graph of the octahedral tilt angle ! and the octahedral

strain � as a function of the temperature is shown in Fig. 7(d).

When the tilt angles are all negative or all positive, its

significance is relatively reduced, but tilt angles with different

signs might show some trend. For the (K0.35Na0.65)NbO3

ceramics, the tilt angles do not show a clear trend. This might

be due to the divergence from the stoichiometric composition

(Mgbemere et al., 2009a) which led to the coexistence of

phases at most temperatures of data acquisition.

3.3. (K0.48Na0.48Li0.04)(Nb0.86Ta0.1Sb0.04)O3 ceramics from 5
to 300 K

The properties of KNN ceramics modified with Li, Ta and

Sb have been reported by a lot of researchers (Fu et al., 2008;

Akdoğan et al., 2008; Hagh et al., 2008; Saito et al., 2004;

Mgbemere, Fernandes et al., 2011). These properties vary with

both the composition and the processing conditions. The

measured d33 values range from 220 to 345 pC N�1, while the

Tc values range from 513 K to approximately 573 K. The

dielectric constant values are as high as 1570 at room

temperature with low dielectric loss. The dielectric constant

values at room temperature have been calculated to be

approximately 670 with a dielectric loss value of 0.029.

The neutron powder diffraction patterns for (K0.48Na0.48-

Li0.04)(Nb0.86Ta0.1Sb0.04)O3 ceramics from 5 to 300 K are

shown in Fig. 8. The right-hand panel is an enlargement of the

patterns from 110 to 125� to highlight their differences with

increasing temperature. No superlattice reflections are

observed in the sample, which could possibly be a result of the

doping with Li, Ta and Sb and the high amount of potassium in

the sample. According to Baker et al. (2009a), when the
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Figure 7
(a) Temperature dependence of the lattice parameters (Å) ah, ch for the rhombohedral phase, am, bm, cm for the monoclinic phase, at, ct for the tetragonal
phase and ac for the cubic phase for (K0.35Na0.65)NbO3 ceramics. (b) Cation displacements s and t as a function of temperature. (c) Octahedral distortion
d and rotation e as a function of temperature. (d) Octahedral tilt angle ! and octahedral strain � as a function of temperature.
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amount of potassium in the unmodified KNN solid solution is

up to 40 mol%, the tilts disappear.

The measured and calculated neutron diffraction profiles

and their difference curves for (K0.48Na0.48Li0.04)(Nb0.86Ta0.1-

Sb0.04)O3 ceramics at 300 K are shown in Fig. 9. From the

diagram, it is clear that the monoclinic P11m model

adequately describes the measured diffraction pattern. The

differences in the R values of the samples are shown in Table 7.

The refinement results for (K0.48Na0.48Li0.04)(Nb0.86Ta0.1-

Sb0.04)O3 ceramics from 5 to 300 K are shown in Table 8. At 5,

150 and 300 K, the monoclinic P11m space group model was
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Figure 8
Neutron powder diffraction (� = 1.5484 Å) patterns of
(K0.48Na0.48Li0.04)(Nb0.86Ta0.1Sb0.04)O3 at 5, 150 and 300 K. The right-
hand panel shows some of the differences in the patterns between 110 and
125� with temperature.

Figure 9
Measured and calculated neutron diffraction profiles and their difference
curves for (K0.48Na0.48Li0.04)(Nb0.86Ta0.1Sb0.04)O3 ceramics at 300 K.

Table 6
Refinement results for (K0.35Na0.65)NbO3 ceramics from 5 to 776 K [should the cubic space group be Pm3m?].

Temperature (K) 5 150 300 526 776

Crystal system Monoclinic Rhombohedral Monoclinic Rhombohedral Monoclinic Tetragonal Tetragonal Tetragonal Cubic

Space group P1m1 R3c P1m1 R3c P1m1 P4mm P4mm P4mm Im3m
a (Å) 7.9559 (3) 5.56744 (4) 7.9862 (4) 5.57336 (6) 7.9832 (2) 3.96419 (5) 3.95204 (3) 3.97271 (3) 3.3195 (5)
b (Å) 7.9294 (3) 7.9549 (4) 7.94505 (16) 3.96419 (5)
c (Å) 7.9184 (5) 13.79696 (20) 7.8857 (5) 13.7915 (3) 7.86360 (14) 4.01901 (7) 4.00434 (4) 3.98682 (7) 36.578 (10)
� (�) 90.421 (3) 90.086 (13) 90.2383 (20)
Volume (Å3) 499.52 (4) 370.361 (6) 500.98 (5) 371.002 (9) 498.76 (2) 63.1578 (15) 62.5424 (9) 62.9219 (14)
Phase fraction (%) 48.79 (6) 51.21 (6) 44.35 (8) 55.65 (9) 100 3.35 (4) 96.65 (9) 100 0
Density (g cm�3) 4.143 (4) 4.57 (6) 4.131 (5) 4.562 (9) 4.649 (2) 4.502 (2) 4.547 (1) 4.469 (1)
Z 8 6 8 6 8 1 1 1 1

Refinement
Rp 6.93 12.1 16.4 10.7 15.5
Rwp 7.25 12.9 17.2 12 15.6
Rexp 2.31 2.44 2.64 3.52 3.36
�2 9.82 27.9 42.39 11.52 21.61
No. of data points 3020 3020 3020 3099 3099
No. of parameters 36 36 38 29 30
t 0.26496 0.26395
s �0.23124 �0.23532
d �0.001109 �0.0009567
e 0.0208 0.018
�pc 89.5539 89.61
w (�) 8.2 7.1085
� 0.00136 0.00246
!a (�) �3.589 �2.261 �0.714
!b (�) �0.037 �1.406 3.718
!c (�) �2.106 �0.557 �2.495

Table 7
Table showing the refinement details for all the possible models
investigated for (K0.48Na0.48Li0.04)(Nb0.86Ta0.1Sb0.04)O3 ceramics from 5
to 776 K.

The models that were actually selected are shown in bold.

Temperature (K) Space group Rp Rwp �2 RBragg

5 P11m 7.75 7.95 14.6 2.79
5 Amm2 9.8 10.4 24.6 3.89
150 P11m 6.38 6.48 9.23 2.72
150 Amm2 16.8 20.3 88.2 5.62
300 P11m 5.94 5.68 6.52 2.46
300 Amm2 6.49 6.37 8.16 3.17
300 R3c 4.96 5.67 7.21 0.121

Amm2 0.036
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used to refine the diffraction pattern. The orthorhombic

Amm2 model also gave good refinement results at 300 K, but

the R values are slightly lower. At 5 K, the density obtained is

4.70 (2) g cm�3, and it gradually decreases to 4.697 (2) g cm�3

at 150 K and finally to 4.812 (1) g cm�3 at 300 K. Very

reasonable refinement parameters are obtained for all the

phases. The lattice parameter values for the sample as a

function of temperature for the sample are shown in Fig. 10.

The information obtained from this work will give more

insight into the development and tailoring of existing and

future lead-free piezoceramics and will help to improve their

piezoelectric properties so that they can compete favourably

with currently used lead-based piezoceramics.

4. Conclusion

The structure of (KxNa1�x)NbO3-based ceramics produced

through the conventional ceramics processing method has

been investigated using neutron powder diffraction. Chemical

analysis shows that the expected and actual compositions of

the samples are similar, except for the (K0.35Na0.65)NbO3

sample where the difference was large. The structure of

(K0.17Na0.83)NbO3 composition is similar to what has been

reported in the literature. Between 5 and 150 K, the structure

is trigonal, and at 300 K, it has a two-phase coexistence

between a monoclinic and a trigonal phase. At 526 K, it is

monoclinic, and it changes to cubic from 776 K and above. The

sample with composition (K0.35Na0.65)NbO3 has a two-phase

monoclinic–rhombohedral coexistence at 5 and 150 K. At

300 K, it is monoclinic, and from 526 K, it is tetragonal. For the

(K0.48Na0.48Li0.04)(Nb0.86Ta0.1Sb0.04)O3 composition, the

monoclinic P11m adequately describes the diffraction pattern

at both 5 and 150 K. At 300 K, an orthorhombic phase

adequately describes the pattern. This study has given more

insight into the structure of some KNN-based ceramics,

especially those modified with Li, Ta and Sb, where high

piezoelectric properties have been reported. A better under-

standing of the structure at different temperatures will help

researchers to engineer compositions that will possibly replace

lead-based piezoelectric ceramics in the future.
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Figure 10
Temperature dependence of the lattice parameters (Å) am, bm, cm for the
monoclinic phase in (K0.48Na0.48Li0.04)(Nb0.86Ta0.1Sb0.04)O3 ceramics.
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