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The research work covered by this thesis was done between March
2013 and March 2016 at the Institut für Theoretische Festkörperphysik
and the Institute of Nanotechnology at the Karlsruhe Institute of
Technology. It contains the major part of my investigations as a
PhD student and consists of three different topics which are related
by their physics:

• The dynamics of single magnetic atoms on metallic surfaces. In
particular, the theoretical investigation of holmium atoms on
a platinum surface which showed exceptional long lifetimes in
experimental measurements.

• Lasing produced in multi-level double quantum dot systems
which are coupled to electronic leads and a phonon bath. The
multi-level structure yields several possible resonance condi-
tions with qualitative different transport characteristics.

• Properties of the quantum master equation. An expansion of
the quantum master equation in the coupling strength and in
the correlation time of the environment is derived. Using this
method, we analyze the connection and justification of the well-
known Born and Markov approximations.
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1 Chapter

Introduction

The ongoing trend in miniaturization of electronics yields new per-
spectives but also challenges. The famous Moor’s law stating that the
number of transistors doubles roughly every 18 months is one pop-
ular example [1]. Computer performance is increasing rapidly and
has lead not only to a technological, but to a social revolution. Ev-
ery modern smartphone has more computing power than the Apollo
Guidance Computer used for the moon landing in 1969 [2]. Com-
puter technology is highly integrated in our every day life and we
often only recognize it when it is not working. Thus, the develop-
ment of faster, smaller, more efficient and more reliable devices is
interesting from an economic as well as a sociological point of view.
Today, the smallest on-chip structures produced (Status: January
2016, announced by IBM [3]) are 7 nm in size, i.e., around 70 atoms
in width. In this regime, quantum mechanical effects could begin to
change the properties of the classical electronic circuits and have to



1
1 Introduction

be taken into account in a growing number of circumstances. For ex-
ample, if the insulating barrier between the conductors is too weak,
quantum tunneling becomes important. Then, a proper usage of the
device as expected from classical physics can no longer be guaranteed
[4].

The shrinking of electronic devices goes hand in hand with the
miniaturization of magnetic storage devices. These devices measure
the magnetic moment of an area or domain pointing along an easy
axis. On current hard disks (Status: January 2016) an area den-
sity of approximately 150Gbit/cm2 can be achieved, which implies
that around 107 surface atoms are needed to store one bit of in-
formation [5]. The question arises: What is the minimum number
of atoms required for one memory bit? The main problem of the
shrinking process is the decreasing magnetic anisotropy of the clus-
ter of atoms as fewer atoms are used. The magnetic anisotropy is the
tendency of the magnetic moment to align with a specific axis, thus
the lower the magnetic anisotropy the weaker the stability. In par-
allel with the miniaturization, the magnetic moment decreases and
thermal fluctuations become pronounced. The bit flips stochastically
between its two states and the lifetime becomes too short to use the
bit as a memory.

The field of laser physics is another example creating strong in-
terest in producing tiny on-chip structures. In 1917, Albert Einstein
explained theoretically the stimulated emission of photons [6], which
was used in 1960 by Theodore H. Maiman to build the first laser with
a size of around one meter. The shrinking of the laser eventually
leads to lasing of single-atoms strongly coupled to an optical cav-
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ity [7]. This concept could directly be transferred to solid state sys-
tems with superconducting quantum mechanical bits (qubits) [8–10].
Because the produced photons have frequencies in the GHz regime,
which corresponds to microwave wavelengths (1 mm to 300 mm), the
device is occasionally called “maser” instead of laser. The super-
conducting qubits in this setting serve as artificial atoms with a well
controlled, tunable level structure which can be coupled to microwave
resonators [11–15]. Thus, they behave according to models developed
in the field of quantum optics, i.e., for atoms coupled to photons in
optical cavities, but with a higher control over the system properties.

As mentioned, miniaturization has several negative effects such as
unwanted tunneling or instability of the systems. But miniaturization
towards the regime of quantum mechanics also leads to completely
new applications and devices. The single-electron transistor is one
example. It has been developed as an accurate current standard
and finds application in laboratories for high precision measurements
[16–20]. The device consists of a metallic, semiconducting or super-
conducting island coupled to two electron reservoirs. By adjusting
the properties of the island via applied gate voltages, single electron
transport through the device can be controlled. The device exploits
the property of quantum mechanical objects to tunnel through clas-
sically impenetrable barriers. Other important features of quantum
mechanics are the superposition principle, the coherent time evolu-
tion, as well as the properties of entangled states. A state is called co-
herent when the quantum mechanical phases are well defined during
the time evolution, i.e., they change during the time evolution only
in a deterministic way. This situation is used in qubits which are the

3
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basic elements for quantum computing. The entanglement of several
qubits leads to maximal parallel computing and for certain problems
to an exponential speedup compared to classical computations. The
most famous examples are the Shor algorithm for the factorization of
large numbers [21] and the Grover algorithm for searching unsorted
arrays [22]. For magnetic devices, quantum mechanics can be an ad-
vantage as well. Already in 1988 the giant-magnetoresistant (GMR)
effect was discovered by Grünberg and Fert [23]. They investigated
a system of alternating ferromagnetic and non-magnetic layers with
a few nanometer thickness. The GMR effect relies on the differing
resistance perpendicular to the layers for parallel and anti-parallel
orientations of the magnetization of the ferromagnets. This is caused
by the spin of the electrons which forces the electrons to scatter dif-
ferent in the parallel or anti-parallel configurations. Therefore, the
state of such a memory bit can be read out through a current mea-
surement. We will later see that the same effect is used to read out
and manipulate the state of single magnetic atoms. The discovery of
the giant-magnetoresistant effect lead only 9 years later to the first
hard disk built by Parkin at IBM using this phenomenon. World-
wide, the information stored digitally raised from around 3% in 1993
to 94% in 2007 [24] - a technological revolution. In the future, nano-
electronics and devices which use quantum mechanical principles will
be part of our everyday life and have the potential to change again
our standard of living.

A powerful theoretical tool to describe these quantum systems con-
nected to their environment, e.g., the electronic leads, bulk phonons,
electromagnetic background fields and so on, is provided by the quan-

4
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tum master equation (QME) [25, 26]. This is the basis of our in-
vestigations in this thesis, however there exist other descriptions of
quantum processes like, e.g., the scattering-matrix approach [27]. In
almost all real systems the number of degrees of freedom in the en-
vironment is huge and it is impossible to solve the whole quantum
mechanical system including the environment. Therefore, the envi-
ronment is traced out and only the information about the system
of interest is retained. The environment enters through correlation
functions which depend on the coupling and effective spectrum of the
environment seen by the quantum system. Despite these restrictions,
the solution of the QME in its general form remains challenging and
often intractable. The most common simplifications of this theory
are the Born and Markov approximations. The Born approximation
assumes that the coupling strength between the quantum system of
interest and its environment is weak, allowing one to keep only low-
est order coupling terms in the QME. The Markov approximation
requires that the correlation time of the environment is much shorter
than typical system timescales. Then, one can assume that the state
of the system simply depends on its present state and not on its past.
We will have a closer look at the master equation and its derivation
in chapter 2, where also basic notations and concepts are introduced
following the textbooks and established results.

In this thesis, we are interested in the description of single mag-
netic atoms on metallic surfaces in the frame of the QME. Up to a
few years ago, a reduction of magnetic bits to single atoms seemed
impossible, but in experiments of Gambardella et al. [28] giant mag-
netic anisotropies of single cobalt atoms have been observed raising

5
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expectations of applications. However, the lifetimes reached only
the order of tens of nanoseconds. In spite of the large magnetic
anisotropy, quantum tunneling between the ground states is pos-
sible through the anisotropy barrier. Investigations of single iron
atoms [29, 30] with spin-polarized scanning tunneling microscopes
(STM) led to the same conclusion that quantum tunneling destroys
the stability of single atom memory bits even when the magnetic
anisotropy barrier is large. The spin-polarized STM was developed
in the group of R. Wiesendanger to investigate the lifetimes of the
two ground states with opposite magnetic moment. Due to the dif-
fering number of spin up and down electrons in the tunneling current
between the tip and the bulk via the magnetic atom, the atom state
can be measured through the current [31]. The smallest possible size
of a single bit appeared to be an iron atom cluster of the size of
five atoms, which was investigated in experiments in the group of A.
Khajetoorians and turned out to be stable for times longer than 103 s
at low temperatures of around 0.3 K [32].

But, in the year 2013 experiments performed in the group of W.
Wulfhekel at KIT for single holmium (Ho) atoms on platinum (Pt)
showed surprising lifetimes in the order of minutes. We have to men-
tion at this point that the results are under dispute in the community,
and investigations of Steinbrecher et al. [33] could not confirm the
long lifetimes. We will nevertheless concentrate on the experiments
of W. Wulfhekel reported in publication [I] of the publication list.
The stability can be explained by various properties and symmetries
of the system, which prevent transitions between the ground states
by single electron scattering. In Fig. 1.1, the energy level structure

6
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FIG. 1.1: Eigenenergies of the holmium atom on platinum vs. the ex-
pectation value of the z-projection Jz of the total angular momentum
operator. A direct transition between the ground states by electron
scattering is forbidden due to various properties and symmetries of the
system.

is shown. In chapter 3, we develop first a theoretical description for
general single magnetic atoms adsorbed on a metallic surface in con-
tact with electronic reservoirs and derive in detail the corresponding
QME. The transitions between the states of the single Ho atom on
platinum are analyzed applying this theory. The different perturba-
tions acting on the Ho atom and a comparison between experiment
and theory are also presented in chapter 3. This was reported in
publication [III].
In contrast to simpler theoretical approaches used to describe single

magnetic adatoms [34–38], we solve the full QME instead of rate

7



1
1 Introduction

equations for the populations. The solution of the full QME includes
not only the populations, i.e., the diagonal elements of the density
matrix, but also the coherences, i.e., the off-diagonal elements of the
density matrix. Decoherence induced by the environment changes the
properties of the system. It leads to a tradeoff between the coherent
system dynamics and the dissipative environment. This results in a
projection on to states, which are not the eigenstates of the system
but of the full dissipative system. W. H. Zurek called this effect
environment-induced superselection [39] and it is explained in more
detail in Sec. 2.4.

Next, we investigate a solid-state lasing complex. In this context,
we already mentioned superconducting qubits, which serve as artifi-
cial atoms. Another possibility is to use quantum dots. The energy
level structure of the quantum dots can be efficiently tuned via ca-
pacitively coupled gates. Source and drain electrodes can be used to
drive a current through the whole system. We will concentrate on
quantum dots made up of nanoscale semiconducting islands, which
are very well understood and controlled. The system of interest is a
double quantum dot (DQD) coupled to a microwave oscillator which
has been intensively investigated both in theory [40–45] as well as in
experiments [46–52]. An analogous setting of the single-atom lasing
can be realized with a single level in each of the dots as sketched in
Fig. 1.2 a). Appropriate adjusting of the levels to resonance with the
coupled microwave oscillator, combined with an applied bias volt-
age to produce a population inversion in the dots, lead to a lasing
state in the oscillator [40–42]. In addition, the lasing situation has
a clear signature in the transport properties of the DQD, which is

8
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FIG. 1.2: a) Scheme of the lasing-type situation with a double quantum
dot and one level in each dot. Tunneling processes of electrons and
photons emitted to the microwave oscillator are illustrated by solid and
wavy arrows, respectively. b) With two levels in each dot a cascade
of transitions and various resonance situations leading to lasing can be
achieved. In these cases also inelastic transitions mediated by phonons,
indicated by dashed arrows, are important. Reprinted with permission
of Ref. [V]. Copyright (2015) by the American Physical Society.

useful for verification in experiments. First verifications of the theo-
retical models were made in recent experiments of Liu et al. [48, 49].
The environmental effects on the DQD, i.e., relaxation and decoher-
ence, lead to more complicated dynamics than in the ideal lasing
scheme. Phonons have been identified as an important source of
dissipation. At first sight, they produce further decoherence in the
system which is usually unwanted for the proper operation of the
device [43]. However, phonons also enhance transport through the
DQD which increases the photon creation [44, 45, 51].
The situation becomes even more interesting and complex if multi-

ple levels in each dot are involved in the transport through the DQD.
This is described in chapter 4. The transition from the left to the
right lead can involve several hopping processes in the DQD systems,
which we call a cascade. Whenever the microwave oscillator is in res-
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onance with one of the transitions, a lasing state may be induced.
In Fig. 1.2 b) a specific situation is depicted in which four levels of
the DQD system are required in the transition. The resonant tun-
neling process producing the photon in the microwave oscillator is
associated with a charge transport in the opposite direction of the
total current direction. The black dashed arrows represent incoherent
transitions. They involve the emission of a phonon and are crucial
for the performance of the lasing device. This is an example of a pos-
itive effect of the additional phonon coupling and deserve a proper
theoretical study which is presented in chapter 4.

In both examples, the DQD and the single Ho atom, a QME with
the Born-Markov approximation is used leading to a QME in Lind-
blad form. The connection and validity of the Born and Markov
approximations are unclear from the derivation presented in chap-
ter 2. The three important timescales of the problem are the one of
the quantum system itself, the correlation time of the environment
and the timescale associated with the coupling strength between en-
vironment and system. On the one hand, the Born approximation’s
validity depends on the coupling strength, on the other hand, the
Markov approximation’s validity depends on the correlation time.
However, this distinction is unclear for higher orders beyond both
approximations. Therefore, we develop in chapter 5 an exact expan-
sion of the QME. It is important to know how to compute higher
order terms and to estimate the time scales at which the Born and
Markov approximation are valid. As an example how higher order
terms in this expansion contribute to the solution we study the dy-
namics of the famous spin-boson model in Sec. 5.2. The spin-boson

10
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model is a playground often used to investigate new concepts or ideas
because of its simplicity, but nevertheless interesting dynamics. As
in Ref. [53], we find the expected back flow of information from the
bosonic environment to the spin for non-Markovian dynamics [54]
and faster relaxation of the spin with higher order coupling terms.
Another question arises when excited initial states of the system are

considered. If the dynamic behaves non-Markovian, i.e., it depends
on its past, how can a simulation be started with a specific initial
state? The system is in a non-Markovian simulation always entangled
with the environment and can not be described as a product state,
except for the equilibrium state [55]. With our expansion, the order
of magnitude of this effect can be made as shown in Sec. 5.3.
The last problem we want to discuss in this framework in Sec. 5.4

are non-Markovian two-time correlators. In publication [IV], Jin et
al. extended the formula for the evaluation of two-time correlators
within the Markov approximation, known as the quantum regression
theorem [25, 26, 56], to non-Markovian dynamics. However, in the
derivation the Born approximation is used. In the frame of our ex-
pansion of the QME, we can estimate the timescale on which the
formula is valid.

11
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2 Chapter

Theoretical Background

In this chapter we present the theoretical background required for the
understanding of this thesis. Additionally, it gives the opportunity to
use established results in the later calculations. First, the quantum
master equation is derived in a textbook way, which has some ma-
jor disadvantages. These are overcome with the time-convolutionless
method developed by Breuer et al. [25, 53] and the diagrammatic
expansion of the quantum master equation. In addition, an interpre-
tation of the solutions of the quantum master equation is introduced,
called environment-induced superselection. This is important if the
influence of the environment on the system is strong.



2

2 Theoretical Background

2.1 Quantum Master Equation

The description of nano- or mesoscopic electronic systems is often
based on the quantum master equation (QME). Here, we sketch the
derivation from the textbook of Carmichael [26]. The description
starts with dividing the system into three parts. First, the quan-
tum system of interest with a small number of degrees of freedom is
described by the Hamiltonian HS(t) in the Hilbert space HS. The
second part is the bath with many degrees of freedom with Hamil-
tonian HB in the Hilbert space HB. And the third element is the
coupling between them given by HC(t). Thus, the total Hamiltonian
is given by three parts,

H(t) = HS(t) +HB +HC(t). (2.1)

A state of the total system in the Hilbert spaceH = HS⊗HB is deter-
mined by the density operator ρSB(t). The focus in many problems
is on the quantum system. Its state is represented by the reduced
density matrix

ρ(t) = TrB {ρSB(t)} . (2.2)

TrB{·} symbolizes the trace over the bath degrees of freedom. We
are interested in the dynamics of the reduced density matrix, but we
start with the equation of motion for the total density operator ρSB.
It is given by the Liouville-von Neumann equation (~ = 1)

ρ̇SB(t) = −i [H(t), ρSB(t)] . (2.3)

14
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2.1 Quantum Master Equation

In the interaction picture, an operator A is defined as

AI(t) =U †0(t0, t)AU0(t0, t), (2.4)

U0(t0, t) =T ei
∫ t
t0

dt′HS(t′)
, (2.5)

where T is the time-ordering operator. From now on the interaction
picture is labeled by an index I. By tracing out the bath and using
the above definition we obtain the QME in the interaction picture

ρ̇I(t) = −
∫ t

t0
dt′TrB

{[
HC,I(t),

[
HC,I(t′), ρSB,I(t′)

]]}
. (2.6)

In many textbooks, the following assumption is used

ρSB,I(t) = ρS,I(t)ρ0
B +O(HC,I(t)), (2.7)

to further simplify Eq. (2.6) [26]. The idea behind the assumption is
that the huge bath is not changed by the small quantum system and
remains in its equilibrium state ρ0

B in lowest order of the coupling.
This is a non-systematic approach, e.g., it is not clear how to get
the next order terms and we show in Sec. 2.3 the more accurate
diagrammatic derivation of this equation. Nevertheless, the result
is the master equation in the well-known Born approximation and
reads

ρ̇I(t) = −
∫ t

t0
dt′TrB

{[
HC,I(t),

[
HC,I(t′), ρS,I(t′)ρ0

B

]]}
. (2.8)

We choose the coupling term to be HC(t) = gC
∑
i siXi with si as an

15
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operator from the system Hilbert space and Xi as an operator from
the bath Hilbert space. By explicitly computing the commutator and
with the definition of the correlation functions

Cij(t− t′) = TrB
{
ρ0

BXi(t)Xj(t′)
}
, (2.9)

the QME can be written in the form

ρ̇I(t) = −
∑
ij

∫ t

t0
dt′
[
si(t)sj(t′)ρI(t′)− sj(t′)ρI(t′)si(t)

]
Cij(t− t′)

+
[
ρI(t′)sj(t′)si(t)− si(t)ρI(t′)sj(t′)

]
Cji(t′ − t).

(2.10)

The second common approximation is the Markov approximation.
If the correlation functions Cij(t) decay much faster than the typical
time scales of the dynamics of the reduced density matrix ρI(t), the
dynamics only depend on the actual state of the system and not on
the past. This implies the replacement of ρI(t′) in the integrals by
ρI(t) yielding the famous QME in Born-Markov approximation, used
in a broad field of problems,

ρ̇I(t) = −
∑
ij

∫ t

t0
dt′
[
si(t)sj(t′)ρI(t)− sj(t′)ρI(t)si(t)

]
Cij(t− t′)

+
[
ρI(t)sj(t′)si(t)− si(t)ρI(t)sj(t′)

]
Cji(t′ − t).

(2.11)

The Lindblad-form of the QME is very similar to this equation and
is often used in the field of quantum optics. It can be achieved by
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2.2 Time-Convolutionless Method

transforming Eq. (2.11) back into the Schrödinger-picture [26]

ρ̇(t) = i [ρ(t), HS] +
∑
i,j

γij
(
2Liρ(t)L†j −

(
ρ(t)L†jLi + L†jLiρ(t)

))
.

(2.12)

The Lindblad-operators Li/j coincide with the operators si/j , and
the transition rates γij are connected to the correlation functions
Cij(t). The Lindblad-form guarantees the semi-positive definiteness
of the reduced density matrix during its time evolution [25]. We will
use this simplified version of the QME during the investigations in
chapters 3 and 4.
Both approximations, Born and Markov, are on one hand very

restrictive and, on the other hand, in the way how they are introduced
not very satisfying. For example, it is not clear what is the small
expansion parameter for which these approximations are valid and
what are the next order terms in the expansion. In chapter 5 we
develop an accurate expansion of the QME with clearly defined higher
order terms.

2.2 Time-Convolutionless Method

It is often useful to transform the general QME in a time local equa-
tion, meaning all the functions in the equation only depend on time t.
Numerical simulations can be performed step by step without storing
all the reduced density matrices of the past. For example, the QME
with Born-Markov approximation or in Lindblad-form are time local.
One possible way to get a time local QME beyond these approxima-
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tions is to use the time-convolutionless (TCL) method developed by
Breuer et al. [25, 53]. We will sketch briefly its derivation. It starts
with introducing projection operators on the relevant part, the small
quantum system,

PρSB(t) = TrB {ρSB(t)} ⊗ ρB = ρ(t)⊗ ρB, (2.13)

and the irrelevant part, the bath, Q = 1−P. From these definitions,
the equations of motion can be derived again by the Liouville-von
Neumann equation

d
dtPρSB(t) =PL(t)PρSB(t) + PL(t)QρSB(t), (2.14)

d
dtQρSB(t) =QL(t)PρSB(t) +QL(t)QρSB(t), (2.15)

with the definition of the Liouvillian

L(t)· = −i [HC,I(t), · ] . (2.16)

These coupled equations of motion are formally solved by the Naka-
jima-Zwanzig generalized master equation which is exact in the rel-
evant degrees of freedom of the reduced density matrix [25]

d
dtPρSB(t) =PL(t)PρSB(t) + PL(t)G(t, 0)QρSB(0)

+
∫ t

0
dt′PL(t)G(t, t′)QL(t′)PρSB(t′), (2.17)

with G(t, t′) a chronological propagator, i.e., including the chronologi-
cal time ordering operator T . The second term PL(t)G(t, 0)QρSB(0)
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depends on the initial conditions and describes non-Markovian ef-
fects or entanglement between the system and the bath at t = 0.
The chronological propagator is defined as

G(t, t′) = T exp

 t∫
t′

dt′′QL(t′′)

 , (2.18)

with T the chronological time-ordering.

The TCL method gives a time local QME by introducing a back-
ward propagator of the composite system

G(t, t′) = T̄ exp
(
−
∫ t

t′
dt′′L(t′′)

)
, (2.19)

where T̄ is the anti-chronological time ordering. Thus, G(t, t′) can
be interpreted as a reverse in time propagator. For simplification, we
define the superoperator Y(t)

Y(t) =
∫ t

t0
dt′G(t, t′)QL(t′)PG(t, t′). (2.20)

The QME within the TCL method is then

d
dtPρSB(t) =K(t)PρSB(t) + PL(t) [1− Y(t)]−1 G(t, t0)QρSB(t0),

K(t) =PL(t) [1− Y(t)]−1 P. (2.21)

This equation is exact and time local. Expanding the superoperator
K(t) =

∑∞
n=1 g

n
CKn(t) in powers of the coupling strength gC gives a

correct expansion of the master equation. This expansion demon-
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FIG. 2.1: Comparison of the imaginary part of the correlation function
〈Sx(t)Sx(0)〉 between the TCL method up to fourth order in K(t) and
the Born-Markov approximation in the spin-boson model with a single
spin ~S(t) = (Sx(t), Sy(t), Sz(t)) coupled to a bath of bosons in the
low temperature regime. Figure taken with permission from Ref. [53].
Copyright (2001) by Elsevier.

strates that, e.g., non-Markovian effects can be important for short
times and in the low temperature regime. An example for the spin-
boson model is shown in Fig. 2.1. This will be discussed in more
detail in Sec. 5.2.
The different terms of Eq. 2.21 are difficult to interpret in a physical

way, because they, e.g., depend on the reverse time propagator. We
therefore develop in chapter 5 a different approach to derive a time
local expansion of the QME, which can easily be understood in each
term of the expansion.

2.3 Diagrammatic Expansion of the QME

Another way to expand the quantum master equation in the coupling
strength was found by Schoeller et al. in the 1990s [57, 58]. The
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starting point is the equation of motion of one reduced density matrix
element ρnn′(t) represented in the HS eigenbasis |n〉 with HS |n〉 =
En |n〉 [59]. For simplicity we focus on time-independent system and
bath Hamiltonians.

One element of the reduced density matrix ρ(t) can be calculated
with the expectation value of the projection operator p̂nn′ = |n′〉 〈n|,

ρnn′(t) = 〈n|ρ(t)|n′〉 =
∑
ñ

〈ñ|ρ(t)|n′〉 〈n|ñ〉 = TrS{ρ(t)p̂nn′}. (2.22)

By switching to the interaction picture with respect to the Hamilto-
nian H0 = HS + HB, we can define the time evolution operator in
the interaction picture

UI(t0, t) = T
[
e
i
∫ t
t0

dt′HC,I(t′)
]
. (2.23)

We use now the approximation that at the initial time t0 the total
density matrix ρSB(t) can be separated into the direct product of the
system ρ(t0) and the bath density matrix ρB(t0)

ρSB(t0) = ρ(t0)⊗ ρB(t0) =
∑
nn′

ρnn′(t0) |n〉 〈n′| ⊗ ρB(t0). (2.24)

This implies that system and bath are uncorrelated at time t0 which
in general is not correct. However, in the limit t0 → −∞ or in a
Markovian description, the assumption is satisfying. An out of equi-
librium initial state of a non-Markovian system is always entangled
with its environment [55]. We will analyze this assumption in Sec. 5.3
in more detail.
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The expectation value of Eq. (2.22) leads with this considerations
to

ρnn′(t) = TrSB{ρSB(t)p̂nn′} (2.25)

=
∑
n̄n̄′

ρn̄′n̄(t0) 〈n̄|TrB{ρB(t0)UI(t0, t)p̂nn′I(t)UI(t, t0)}|n̄′〉 .

With the exception of the initial product state this equation is still
exact. In the next step, we expand the exponential functions of
the time evolution operators UI(t, t0) in the coupling strength gC.
Eventually, the resulting integrals can be symbolized by diagrams
and the master equation can be written as

ρnn′(t) =
∑
n̄n̄′

ρn̄′n̄(t0)
∏

n̄n̄′→nn′
(t0, t), (2.26)

∏
n̄n̄′→nn′

(t0, t) =
|n̄′〉

|n̄〉

t0 t
|n′〉

|n〉
+
|n̄′〉

|n̄〉

t0 t
|n′〉

|n〉

t2

t1

+ . . . . (2.27)

The square at the right end of the diagram represents the projec-
tion operator p̂nn′(t) evaluated at time t and the dots symbolize the
interaction Hamiltonians HC(tx). We compute the integrals on the
Keldysh contour [59] and a solid line depicts the free time evolution
of the system. The different operators are ordered along the Keldysh
contour, e.g.,

|n̄′〉

|n̄〉

t0 t
|n′〉

|n〉

t1

t2

=
∫ t

t0
dt1

∫ t1

t0
dt2 〈n̄|TrB{ρB(t0)U0(t0, t2)HCU0(t2, t)
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×p̂nn′U0(t, t1)HCU0(t1, t0)} |n̄′〉 .
(2.28)

With the previously defined coupling HC = gC
∑
i siXi and Wick’s

theorem the trace over the bath can be calculated. The bath operator
correlators decay into products of two time expectation values

TrB{ρB(t0)XiI(t1) . . . XkI(tn)} = 〈Xi1 . . . Xkn〉B
=
∑
j

〈Xj1Xj2〉B · . . . · 〈Xjn−1Xjn〉B , (2.29)

with the short-hand notation XkI(tn) = Xkn. The sum over j con-
tains all possible permutations of indices in Xkn. The diagrammatic
representation of Wick’s theorem for four vertices is

|n̄′〉

|n̄〉

t0 t
|n′〉

|n〉

t1

t2

t3

t4

︸ ︷︷ ︸
〈Xi1Xj2Xk3Xl4〉B

=
|n̄′〉

|n̄〉

t0 t
|n′〉

|n〉

t1

t2

t3

t4

︸ ︷︷ ︸
〈Xi1Xj2〉B〈Xk3Xl4〉B

+
|n̄′〉

|n̄〉

t0 t
|n′〉

|n〉

t1

t2

t3

t4

︸ ︷︷ ︸
〈Xi1Xl4〉B〈Xj2Xk3〉B

+
|n̄′〉

|n̄〉

t0 t
|n′〉

|n〉

t1

t2

t3

t4

︸ ︷︷ ︸
〈Xi1Xk3〉B〈Xj2Xl4〉B

. (2.30)

A dashed line illustrates a contraction between two vertices, i.e.,

γ(si,I(tx), sj,I(ty)) = 〈n̄x|si,I(tx)|nx〉 〈n̄y|sj,I(ty)|n̄′〉 〈XixXjy〉B .
(2.31)

23



2

2 Theoretical Background

Here, the states |nx〉 and |n̄x〉 (|ny〉 and |n̄y〉) are the incoming and
outgoing states at the vertex si,I(tx) (sj,I(ty)). The bath operator
function is called correlation function of the bath Cij = 〈XixXjy〉B
and reflects the properties of the bath as, e.g., the memory.
We can now proceed with using the standard text book method of

defining the self-energy
∑
n̄n̄′→nn′(t0, t) as all non-separable diagrams

of the full time-propagator
∏
n̄n̄′→nn′(t0, t) [25], i.e.,

∏
= + + . . .+ ︸ ︷︷ ︸

separable

+ ︸ ︷︷ ︸
non-separable

+ . . . ,

(2.32)∑
= + + + + + . . . .

(2.33)

Using the Dyson-equation for
∏

∏
=
∏

0 +
∏ ∑ ∏

0 , (2.34)

and that
∏

0 represents the free time evolution

∏
0 = , (2.35)

it is possible to obtain the QME for the reduced density matrix. To
return from the diagrammatic form of the QME to the real mathe-
matic equations, several rules were formulated in reference [57]:

• A contraction from vertex 1 at time t1 to vertex 2 at time
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t2 yields the term γ(si,I(tx), sj,I(ty)). All vertices are only at-
tached to one contraction.

• The connection between two vertices along the Keldysh contour
is given by 〈n|U0(t1, t2)|n′〉, the free time evolution of the states.

• A diagram gets a prefactor (−1)a+b with a the number of con-
tractions and b the number of vertices on the lower part of the
Keldysh contour.

This method creates an easy tool to investigate problems in an ef-
ficient way, e.g., to find a class of diagrams which can be summed
and thus calculated to all orders, or to see higher order effects in the
number of contractions. In a mathematic formulation, this means

ρ̇(t) =i [ρ(t), HS] +
∫ t

t0
dt′Σ(t′, t)ρ(t′), (2.36)

ρ̇I(t) =
∫ t

t0
dt′ΣI(t′, t)ρI(t′), (2.37)

constituting an expansion in contractions of the self-energy ΣI(t′, t).
For a time-translational invariant problem, the self-energy only de-
pends on the difference between the two times, i.e., ΣI(t− t′).

2.4 Environment-Induced Superselection

In the previous sections of this chapter, we presented the mathe-
matical language to treat a quantum mechanical system coupled to
a large environment. In this section, we will focus on one of the
consequences of this framework stated first by Zurek in 1992 [39].
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FIG. 2.2: Environment-induced superselection of a two level system
represented by the Bloch sphere. Decoherence by an σz coupling forces
an arbitrary state to the north or south pole of the sphere which is then
a classical bit with one and zero state.

The question he addressed is: How does the classical world appear
in the quantum mechanical description of a system? The basic idea
is that the full Hilbert space of the quantum system is reduced by
environment-induced decoherence to pointer states which are stable
under this influence. In particular, a measuring device will deco-
here the system and thus change the measured outcome itself. A
demonstrative example is the limit coupling strength to infinity, i.e.,
gC →∞. Then, the natural states of the system are the eigenstates
of the coupling Hamiltonian HC(t) and not the eigenstates of the sys-
tem Hamiltonian HS(t). Another example is shown in Fig. 2.2 for a
two level system represented by a Bloch sphere. The closed quantum
system decoupled from the environment would let an arbitrary state
(depicted by the green arrow) evolve with the time evolution of the
system Hamiltonian. The coupling, which is in this example a σz
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coupling with σz the Pauli-matrix, yields decoherence in the system
and the steady states are the up or down state of the system. In more
complicated systems with gC 6= 0 and [HC, HS] 6= 0 any state, which
eventually is stable under the competition between system Hamilto-
nian and the coupling to the environment, can be the pointer state.
For example, this state is recorded by the measurement device in
experiments. The stable steady states calculated by the QME are a
representation of these pointer states.
A separation in environment and system of interest, namely the

small quantum system, is crucial for this interpretation of quantum
mechanics. The universe is divided in quantum mechanical inter-
acting systems with correlations between them [60]. Environment-
induced superselection describes the transition between classical be-
havior of a system and the quantum mechanical properties. The
boundary between classical and quantum mechanical can be shifted
by the coupling strength and depends on the coupling to the en-
vironment as well as on the measurement. Furthermore, also the
measurement device is correlated with the system and the environ-
ment. The measured quantity which is stored in the memory of the
device is itself a pointer state and will be the only accessible state of
the device. A detailed overview is given by Zurek in Ref. [60].
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33 Chapter

Single Magnetic Adatoms

We use the method of the quantum master equation developed in
chapter 2 to evaluate the dynamics of a single magnetic atom on top
of a metallic surface. The adsorbed atoms are called adatoms. In
this setup the single adatom is coupled to the bulk electrons of the
metal and in addition to the tip of a spin-polarized scanning tunneling
microscope (STM). The coupling to the tip is experimentally required
for read-out and manipulation of the atomic state. The stability of
the single adatoms can be calculated with the QME and the solutions
are compared with experimental results.
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The demand for higher storage densities in the information tech-
nology sector is growing and will lead in the end to the maximal
achievable density for atoms: one atom represents one bit. Promising
candidates for this aim are magnetic adatoms which have a preferen-
tial direction of their magnetic moment. Essential for data storage
are long lifetimes of the bit and the possibility to read and write
the bit. With a spin-polarized current it is at least possible to read
and manipulate these adatoms [I] [29, 30, 34, 61, 62]. The first long
lifetimes of several minutes were measured by Miyamachi et al. [I]
with exceptional gain over before measured lifetimes of a few hun-
dred nanoseconds. We will present the theoretical background and a
detailed analysis of these experiments in this chapter.
The magnetic adatoms are often analyzed by a STM and an exem-

plary picture is shown by Fig. 3.1. With a spin-polarized tip, which is
typically anti-ferromagnetically coated, a spin-polarized current can
be used. The anti-ferromagnetic coating has the advantage of re-
duced magnetic stray fields compared to a ferromagnetic tip. Still,
a spin-polarized current can be produced due to the last atom or
domain of the tip, which has a preferred magnetic direction. The
spin-polarization offers the opportunity to measure the magnetic ori-
entation of the sample.

3.1 Stevens Operator Method

The effective description of single magnetic atoms on top of a metal-
lic surface, which we present here, is around 65 years old and orig-
inates from the work of Blenay, Elliot and Stevens (1953) [63, 64].
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FIG. 3.1: Topographic STM picture of single Ho atoms on Pt(111) at
4.4 K. Figure taken with permission from Ref. [I]. Copyright (2013) by
Nature Publishing Group.

The magnetic properties of the atom are determined by the elec-
trons surrounding the nucleus. The influence of the nucleus itself
will be neglected in the following discussion. Each electron features
its own orbital angular momentum ~li and spin ~si. The total orbital
angular momentum ~L =

∑Ne
i=1

~li and the total spin ~S =
∑Ne
i=1 ~si of

an electron configuration of the atom with Ne electrons produce the
magnetic characteristics of the atom. Because of the relativistic spin
orbit coupling the total angular momentum ~J = ~L+ ~S is an appropri-
ate quantity to describe the magnetic atom which couples, e.g., to an
external electromagnetic field or to scattering electrons. If the spin
orbit coupling is strong, J is a good quantum number for the system
and this will be assumed in the rest of this chapter. The possible
values of J are

J = |L− S|, |L− S|+ 1, . . . , L+ S, (3.1)

altogether known as the fine structure of the atom. Each multiplet
belonging to one quantum number J is 2J+1 times degenerate. The
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quantum numbers S, L and J of a multiplet can be identified with
the help of Hund’s rules [65]:

I. Maximize the total spin S.

II. Maximize the total orbital angular momentum L.

III. If the shell is less than half full J = |L− S|, else J = L+ S.

Because full shells do not contribute to the magnetic moment of the
atom, only atoms with a partially filled shell are suitable for being
magnetic atoms. For example, we will later consider Ho which has a
4f (10) electron configuration in compound with orbital angular mo-
mentum L = 6, spin S = 2 and thus a total angular momentum
J = 8.
The aforementioned degeneracy of all the states of a multiplet

is lifted if the atom is placed on a surface [66]. The breaking of
the spherical symmetry due to the surrounding charges of the bulk
changes the energies. This change of the energies of the different
total angular momentum states depends on the symmetry of the
adsorption place and can lead to a magnetic anisotropy [64]. The
calculation of the Coulomb potential of the crystal as point charges
affecting each electron of the multiplet is very difficult and not prac-
tical. The Stevens operator method is an elegant way to avoid this
issue. The Stevens operators Omn and Õln (n ≥ 1, 0 ≤ m ≤ n,
1 ≤ l ≤ n) which are polynomials of the total angular momentum
operators Jz, J± = Jx ± iJy, correspond to the effect of the coulomb
potential of the lattice expressed in tesseral spherical harmonics on
the atom. Tesseral spherical harmonics are also known as real-valued
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spherical harmonics. The operators Omn and Õmn contain J and Jz to
the power n and the operators J+ and J− to the power n−m. They
are listed, e.g., in Ref. [67] and the relevant ones for Ho on Pt with
a (111) surface configuration are listed in Sec. 3.3. In this sense, any
crystal and adsorption site with a given symmetry can be expanded
in these operators

HCF =
∞∑
n=1

(
n∑

m=0
Bm
n O

m
n +

n∑
l=1

B̃l
nÕ

l
n

)
. (3.2)

The parameters Bm
n and B̃l

n are known as Stevens or anisotropy pa-
rameters. They are very system specific as they depend on the sym-
metry of the adsorption site, the type of substrate and the magnetic
atom.

If the leading term of the crystal field Hamiltonian HCF is

B0
2O

0
2 = B0

2

(
3J2

z − J(J + 1)
)
, (3.3)

and B0
2 is negative, the eigenstates of the Hamiltonian are approxi-

mately the Jz eigenstates

HCF ≈B0
2

(
3J2

z − J(J + 1)
)
, (3.4)

HCF |m〉 =Em |m〉 , (3.5)

Jz |m〉 =m |m〉 , (3.6)

and the energies vs. the Jz expectation value fit to an inverted para-
bola as shown in Fig. 3.2. The height of the parabola is known as
the magnetic anisotropy barrier. This corresponds to an easy axes
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FIG. 3.2: The energies of the eigenstates of the crystal field Hamiltonian
HCF = B0

2
(
3J2

z − J(J + 1)
)
with B0

2 < 0 vs. the Jz expectation value.
The maximum Jz states of the inverted parabola represent the two
’classical’ bit states.

perpendicular to the metallic surface and the two ground states of the
system are the states with maximum Jz expectation value pointing
in or out of the surface. As a classical analogon, the two states
represent one and zero of a bit on a computer. Therefore, these
systems are promising candidates for single atom memory bits. In
the following discussion, the focus will be most of the time on the case
when the system has two degenerate ground states with maximum
Jz expectation value. The influence of other Stevens operators is
discussed with the specific example of Ho on Pt(111) in Sec. 3.3.
In general, they result in new eigenstates of the system which are
superpositions of the Jz eigenstates.
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The Secs. 3.2-3.7 are based on the Ref. Karlewski et al. [III] and
this publication will not be cited in this part any further.

3.2 Coupling of Adatoms to Electrons

The magnetic adatom is coupled on the one hand to the electronic
bath of the metal and on the other hand to the spin-polarized STM
tip. This tip is required for read-out and control of the state of the
magnetic atom. The setup is shown schematically in Fig. 3.3 for the
exemplary system of a single Ho atom on Pt(111).
The electrons of the two reservoirs, the bulk and the tip, dynami-

cally scatter with the adatom and can change the angular momentum
~J . The Hamiltonian which describes this system is

H =HS +HB +HC, (3.7)

HS =HCF + gJµB ~B · ~J, (3.8)

HB =
∑

α=T,B
σ=↑,↓; k

(εαkσ + eUα) cα†kσc
α
kσ, (3.9)

HC =
∑

α,α′=T,B
kk′

tαα
′

kk′

{
J+c

α†
k↓c

α′
k′↑ + J−c

α†
k↑c

α′
k′↓

+Jz
[
cα†k↑c

α′
k′↑ − c

α†
k↓c

α′
k′↓

]}
, (3.10)

and consists of three parts: First, the system Hamiltonian HS in-
cluding the crystal field Hamiltonian of the magnetic adatom and
the coupling to an applied or stray magnetic field ~B. Here, the pa-
rameter gJ = 3

2 + S(S+1)−L(L+1)
2J(J+1) is the Landé-factor and µB is the
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FIG. 3.3: Setting of the experiment in Ref. [I]: The magnetic state of
a Ho atom on a Pt(111) surface is studied by a STM with a spin-
polarized tip. Reprinted with permission from [III]. Copyright (2015)
by the American Physical Society.

Bohr magneton.

Second, the total Hamiltonian contains the Hamilton operator de-
scribing the electron reservoirs HB. The operator cα†kσ (cαkσ) creates
(annihilates) an electron in the reservoir α = T,B, where T stands
for tip and B for bulk, with spin σ =↑, ↓. The electron energy εαkσ
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is shifted by the potential of the bulk UB or the tip UT . The spin
dependency of the electron energy εαkσ is later important for spin
dependent density of states at the Fermi edge of the spin-polarized
tip.

Third, the coupling between the electronic reservoirs and the sys-
tem is needed. The first two terms in the coupling Hamiltonian HC

describe scattering with spin flip, whereas the third term is with-
out change of the spin states. We have to distinguish between three
possible processes affecting the adatom. For α 6= α′ the term HC

corresponds to a tunneling electron from the tip to the bulk via the
adatom or vice versa. For α = α′ = B, the term describes the scat-
tering of a bulk electron and for α = α′ = T of a tip electron. The
scattering strength of the different processes is parameterized by the
amplitude tαα′kk′ . In principle, electrons can scatter also with other
multiplets of the magnetic adatom or tunnel directly between the tip
and the bulk, which has to be taken into account by comparing the
theoretically calculated current with experiments (see Sec. 3.4.1).

The dynamics of the magnetic adatom in contact with the men-
tioned reservoirs is governed by a QME in Lindblad-form as intro-
duced in chapter 2 of this thesis. We will in the following develop the
QME for this specific system. Metallic bulk and tip are supposed to
be huge electron reservoirs weakly coupled to the magnetic adatom.
Thus, the Born-Markov approximation can be used. In the interac-
tion picture and with the coupling Hamiltonian as previously defined
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we find

ρ̇I(t) =−
∑

ν,ν′=+,−,z
α,α′=T,B

∞∫
0

dt′

×
{[
Jν(t)Jν′(t′)ρI(t)− Jν′(t′)ρI(t)Jν(t)

]
Cαα

′
νν′ (t− t′)

+
[
ρI(t)Jν′(t′)Jν(t) −Jν(t)ρI(t)Jν′(t′)

]
Cαα

′
νν′ (t′ − t)

}
,

(3.11)

with the dissipative kernel expressed by the correlation functions

Cαα
′

νν′ (t) =
∑
k,k′

|tαα′kk′ |2〈sαα
′

kk′ν(t)sα′αk′kν′(0)〉 (3.12)

with

sαα
′

kk′− = cα†k↓c
α′
k′↑, sαα

′
kk′+ = cα†k↑c

α′
k′↓,

sαα
′

kk′z = cα†k↑c
α′
k′↑ − c

α†
k↓c

α′
k′↓. (3.13)

The Fourier transformed correlation functions are

C̃αα
′

+− (ω̂nm) = |tαα′ |2Nα
↑ N

α′
↓ ζ(ω̂nm + e(Uα − Uα′))

C̃αα
′

−+ (ω̂nm) = |tαα′ |2Nα
↓ N

α′
↑ ζ(ω̂nm + e(Uα − Uα′))

C̃αα
′

zz (ω̂nm) = |tαα′ |2
(
Nα
↑ N

α′
↑ +Nα

↓ N
α′
↓

)
ζ(ω̂nm + e(Uα − Uα′)).

(3.14)

We assume energy independent coupling constants tαα′kk′ ≈ tαα
′ and

define the spin-dependent electron densities of states at the Fermi-
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edge Nα
σ (σ = ↑, ↓). Additionally, we introduce the matrix of the

energy differences of the system ω̂nm = En − Em, with HS |n〉 =
En |n〉.

The correlation functions are evaluated at the energy differences
which are shifted by the energy of the applied voltage e(Uα − Uα′).
The function ζ(ω) is given by

ζ(ω) =
∫
f(E) [1− f(E − ω)] dE = ω

exp[ω/(kBT )]− 1 ,

where f(E) = [eE/(kBT ) + 1]−1 is the Fermi function.

In this setting the STM tip is spin-polarized. We account for this
by defining the tip polarization η = (P↑ − P↓)/(P↑ + P↓) ∈ [−1, 1]
as it is done in the field of tunneling-magneto resistance. Here, P↑/↓
are the spin up and down populations of the tip. They enter in our
calculation in the densities of states P↑/↓ ∝ NT

↑/↓ = NT · 12(1±η). The
bulk is in most cases paramagnetic and, hence, the bulk electrons are
not spin-polarized NB

↑/↓ = NB. The remaining parameters, apart
from the polarization η, can be combined in the coefficients

cαα′ = 1
2 |t

αα′ |2NαNα′ .

So far the theory is generally applicable to all magnetic adatoms
which can be described by a single spin or total angular momentum
on metal surfaces with Stevens operators. We will concentrate in the
Secs. 3.3-3.7 on Ho on Pt(111) also analyzed in Ref. [I] and [68, 69].
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FIG. 3.4: The differential conductance vs. time for Ho on Pt(111)
for the two temperatures T = 0.7 K (top) and T = 4.4 K (bottom).
Reprinted with permission from Ref. [I]. Copyright (2013) by Nature
Publishing Group.

3.3 Holmium on Platinum (111)

The values of the Stevens parameters and the total angular momen-
tum are the determining factors of the characteristics of the adatom.
For Ho on Pt(111), the conditions to use our theory are fulfilled be-
cause Ho has a strong spin orbit coupling as a rare earth metal [70]
and the total angular momentum is a good quantum number for the
system with J = 8. We consider in our theory only the dynamics
of this multiplet with its 17 eigenstates. This setting showed excep-
tionally long lifetimes of the two ground states of the system in the
experiment of Miyamachi et al. [I].

The measurements of the differential conductance vs. the time is
shown in Fig. 3.4. The signature is telegraph-noise like correspond-
ing to the switching between the two ground states. The lifetimes
of the two ground states are in the order of minutes. In recent ex-
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FIG. 3.5: Scheme of the Pt(111) surface with the two possible adsorp-
tion sites at the hcp and fcc positions.

periments of Steinbrecher et al. [33] the telegraph-noise could not be
measured and the conclusion was that the 4f -electron shell could not
be detected by the STM-tunneling current. The 4f -shell is shielded
by the surrounding 5s-shell and close to the nucleus, thus scattering
with the tunneling electrons is suppressed. A possible explanation
could be the larger noise levels in the measurement of Steinbrecher et
al. [33]. We will continue in this work with the results of Miyamachi
et al. [I].

The Pt(111) surface has two possible adsorption sites, one in the
hexagonal close-packed (hcp) and one at the face-centered cubic (fcc)
configuration, which is schematically shown in Fig. 3.5. From den-
sity functional theory (DFT) calculations the adsorption energy of
the hcp site was estimated with around 6 meV and for the fcc site
around 8 meV [I]. Thus, the fcc site is the preferred adsorption place.
Both sites are located on a C3v symmetric point of the lattice. The
C3v point group has three rotational axes and three vertical mirror
planes. This has direct consequence on the crystal-field Hamiltonian
of the adatom. Only the Stevens parameters obeying the three-fold
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symmetry are included in the crystal-field Hamiltonian [63, 64]

HCF =
∑

n=2,4,6
m=0,3,6
m≤n

Omn B
m
n (3.15)

= 3J2
zB

0
2 + 35J4

zB
0
4 + 1

4
[
Jz, (J3

+ + J3
−)
]

+
B3

4 + . . . .

The index n has the constraints that it has to be non-negative, even
because of the time inversion symmetry, and smaller or equal to 2l,
with l the orbital angular momentum of an electron as mentioned in
Sec. 3.1. In the case of Ho, l equals 3 which results in a maximum of
n = 6.

The C3v-symmetry reflects itself in the appearing powers of the J+

and J− operators occurring only in multiples of three, i.e.,m = 0, 3, 6.
The full list of involved Stevens operators can be found in Ref. [I]
and [71]. They are given by

O0
2 =3J2

z − J(J + 1), (3.16)

O0
4 =35J4

z − 30J(J + 1)J2
z + 25J2

z − 6J(J + 1)

+ 3J2(J + 1)2, (3.17)

O3
4 =1

4
[
Jz(J3

+ + J3
−) + (J3

+ + J3
−)Jz

]
, (3.18)

O0
6 =231J6

z − 315J(J + 1)J4
z

+ 735J4
z + 105J2(J + 1)2J2

z − 525J(J + 1)J2
z

+ 294J2
z − 5J3(J + 1)3

+ 40J2(J + 1)2 − 60J(J + 1), (3.19)
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O3
6 =1

4
[
(11J3

z − 3J(J + 1)Jz − 59Jz)(J3
+ + J3

−)

+ (J3
+ + J3

−)(11J3
z − 3J(J + 1)Jz − 59Jz)

]
, (3.20)

O6
6 =1

2
[
J6

+ + J6
−

]
. (3.21)

The other important parts besides the Stevens operators are the
associated Stevens parameters or crystal field parameters Bm

n . They
define the strength of the different operators and hence the physi-
cal properties of the adatom. Miyamachi et al. [I] determined the
Stevens parameters for Ho on Pt(111) at the fcc site by ab-initio
DFT calculations listed in Tab. 3.1. The first excitation energy fits
to the experimental measured inelastic step in the current spectrum.
But Donati et al. [69] found another set of coefficients. They used
only the parameters B0

2 and B0
4 to fit their experiments very accu-

rately. The B0
2 term is in both cases dominating and negative leading

to the general inverted parabola behavior. But in Ref. [69], the B0
4

coefficient is stronger which influences the position of the largest J
states. We will have a closer look at the difference in the dynamics in
Sec. 3.5.5, but concentrate our analysis on the parameters of Ref. [I].

The C3v-symmetry is of course also reflected in the eigenstates of
the crystal-field Hamiltonian HCF. Because the generator of the ro-
tation R3 = e−i

2π
3 Jz commutes with the crystal-field Hamiltonian

[R3, HCF] = 0, the operators have a common set of eigenstates and
we can label them with r = +,−, 0 corresponding to the three pos-
sible eigenvalues of R3 |ψrm〉 = eri

2π
3 |ψrm〉 [72]. The states can be

represented as superpositions of the Jz eigenstates with magnetic
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Anisotropy constant Value
B0

2 -239 µeV
B0

4 86 neV
B3

4 293 neV
B0

6 0.186 neV
B3

6 -1.967 neV
B6

6 0.630 neV

TAB. 3.1: Anisotropy parameters as used in Ref. [I].

quantum numbers differing by multiples of three

|ψrm〉 =
∑
k

arm,m±3k |m± 3k〉 , −J ≤ m± 3k ≤ J. (3.22)

The sum over k contains all terms fulfilling the condition −J ≤
m ± 3k ≤ J . The crystal-field Hamiltonian HCF has 2J + 1 = 17
eigenstates which we label by a lower index m indicating the domi-
nant Jz eigenstate |m〉. Therefore, the Jz expectation value together
with the eigenenergy enables to identify a state and get information
about superpositions of these states which will be useful for later in-
vestigations. This is shown in Fig. 3.6 a) for the HCF eigenstates.
The three sets +, − and 0 are depicted by red circles, green squares
and blue triangles respectively. It can be clearly seen that the +
and − set fit approximately on the inverted parabola, whereas the 0
states built superpositions with 〈Jz〉 = 0.

Eigenstates from one of the sets contain no Jz eigenstates from
one of the other sets. For example, the ground state |ψ−−8〉 is made
of the Jz eigenstates |−8〉, |−5〉, |−2〉, |1〉, |4〉 and |7〉, whereas the
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FIG. 3.6: a) Energies of the eigenstates of the Hamiltonian HCF plotted
vs. the expectation value 〈Jz〉. b) Energy expectation values of the
steady states |φm〉 of the QME for strong dissipation due to an applied
voltage of U = 7.3mV. The labels refer to the dominantly contributing
Jz-eigenstates. Reprinted with permission from [III]. Copyright (2015)
by the American Physical Society.

other ground state |ψ+
8 〉 contains |−7〉, |−4〉, |−1〉, |2〉, |5〉 and |8〉.

This is also true for all the excited degenerated states belonging to
the sets + and −. They are superpositions from non-degenerate Jz
eigenstates. The situation is different for the 0 family. The possible
Jz eigenstates are multiples of three, so the |ψ0

m〉 state consists of
degenerate states coupled via the Stevens operators O3

4, O3
6 and O6

6.
The coupling yields a splitting in symmetric and antisymmetric (s,a)
states |ψ0

6s〉, |ψ0
6a〉, |ψ0

3s〉 and |ψ0
3a〉 with zero Jz expectation value.

This is shown by the centered blue triangles in Fig. 3.6 a).

An exceptional property of the Ho on Pt(111) system produces
the long measured lifetimes which can be qualitatively understood
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by looking at the matrix element 〈ψσm|Jν |ψ−σ−m〉 for ν ∈ {+,−, z},
σ = ± and all m between two degenerate eigenstates from different
sets, i.e., the + and − set. This matrix element is needed for the rate
between the states defined by a Fermi’s Golden rule approximation
giving a first estimation of the transition rate (we assume no potential
difference in the electron reservoirs, see Eq. (3.14))

Γm−m = 2π| 〈ψσm|Jν |ψ−σ−m〉 |2ζ(0). (3.23)

Specific for this system is that this matrix element is exactly zero.
The reasons are the combination of the C3v-symmetry of the ad-
sorption site and the time-reversal symmetry for zero magnetic field
~B = 0. As described before the C3v-symmetry determines the rele-
vant Stevens operators and thus the coupling between the eigenstates.
Additionally, the time reversal symmetry with the time reversal op-
erator T yields [I]

T 2 = 1, 〈χ|φ〉 = 〈T φ|T χ〉 ,

T Jν =− JνT , T |ψσm〉 = |ψ−σ−m〉 . (3.24)

The matrix element 〈ψσm|Jν |ψ−σ−m〉 with these ingredients is given by

〈ψσm|Jν |ψ−σ−m〉 = 〈T ψσm|T Jνψ−σ−m〉
∗ = −〈ψ−σ−m|JνT ψ−σ−m〉

∗

=− 〈ψ−σ−m|Jν |ψσm〉
∗ = −〈ψσm|Jν |ψ−σ−m〉 , (3.25)

⇒ 〈ψσm|Jν |ψ−σ−m〉 = 0. (3.26)

Therefore, transitions between degenerated eigenstates from different
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sets with single electron scattering are forbidden. In particular, the
two ground states |ψ±±8〉 are decoupled and are very stable which was
observed in Ref. [I].

The described symmetry protection would suggest that the life-
times are infinitely long, but in the experiments of Miyamachi et
al. [I] lifetimes in the order of minutes were measured. This is
caused by several possible perturbations on the system. The elec-
tronic reservoirs of the bulk and the tip are at non-zero temperature
and an applied voltage U additionally gives the electrons enough
energy to overcome the lowest energy gap of the crystal-field Hamil-
tonian. These excitations can then decay to the other side of the
parabola and lead to transitions between the ground states. Further-
more, the symmetry protection is based on time-inversion symmetry
which can be broken by various perturbations of the Hamiltonian,
e.g., a magnetic stray field creating direct transitions between the
ground states. Altogether, the finite relaxation time T1 is the signif-
icant quantity characterizing the system and its external influences.

3.3.1 Pointer States of Ho on Pt(111)

The interesting properties of the system, e.g., lifetimes of the ground
states, are encoded in the QME for the magnetic adatoms (3.11). A
detailed explanation how to effectively implement the general QME
in a numerical computer program is given in Appendix A.1. We
describe in this part the specific terms for Ho on Pt(111). To achieve
a form of the QME easily solvable with standard numerical tools, we
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transform Eq. (3.11) to

~̇ρ(t) =M~ρ(t), (3.27)

with the density matrix ~ρ(t) reshaped from a square matrix (here
17 × 17) to a vector (with 289 components). The large matrix M
(289× 289) contains all the coherent and dissipative dynamics of the
system. The disadvantage of the method is the quadrature of the
problem dimension, but this is often balanced by the simplicity of
the resulting QME. An important step to achieve this structure is
the relation [73]

vec{AXB} = (A⊗BT )vec{X}, (3.28)

where A, X and B are matrices. The function vec{·} is the vector-
ization of a matrix in row-ordered form, i.e., each row is taken in turn
to create the vector. The Kronecker product depicted by the symbol
⊗ is defined as

A⊗B =


a11B · · · a1nB
... . . . ...

am1B · · · amnB

 . (3.29)

In our case, we are interested in the reduced density matrix ρ(t) cor-
responding to the matrix X. The operators Jν(t) from the coupling
Hamiltonian HC together with proper used identity matrices are the
matrices A and B.

In the Born-Markov approximation, the time integrals of the QME
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can be calculated explicitly by using the correlation functions of the
system and the time dependency of the system operators Jν(t) [II] [74].
We define

Sαα
′±

νν′ ≡
∫ ∞

0
dτ Cαα′νν′ (±τ)e−iHSτJν′e

iHSτ . (3.30)

The time evolution operators can be evaluated in the system eigen-
basis HS |n〉 = En |n〉 and the matrix elements of Sαα′νν′ (±τ) are

〈n|Sαα′±νν′ |m〉 =
∫ ∞

0
dτ Cαα′νν′ (±τ)

× 〈n| e−iHSτ |n〉 〈n| Jν′ |m〉 〈m| eiHSτ |m〉 (3.31)

= 〈n| Jν′ |m〉
∫ ∞

0
dτ Cαα′νν′ (±τ)eiω̂nmτ (3.32)

= 〈n| Jν′ |m〉
[

1
2C

αα′
νν′ (±ω̂nm)− iP

∫ dω
2π

Cαα
′

νν′ (ω)
ω̂nm ∓ ω

]
.

(3.33)

We use the diagonal form of HS in its eigenbasis, define the matrix of
energy differences with the entries ω̂nm = Em−En and indicate again
the Fourier transform of the correlation function by its argument in
frequency space.

With this definition, the large matrixM, which contains as men-
tioned all the information of the dynamics, is given by

M =MC +MD (3.34)

MC = i
(
1⊗HT

S −HS ⊗ 1
)

(3.35)

49



3

3 Single Magnetic Adatoms

MD = −
∑

ν,ν′=+,−,z
α,α′=T,B

[(
JνS

αα′+
νν′ ⊗ 1

)
−
(
Sαα

′+
νν′ ⊗ (Jν)T

)

+
(
1⊗ [Sαα′−νν′ Jν ]T

)
−
(
Jν ⊗ [Sαα′−νν′ ]T

)]
. (3.36)

The coherent part of the QME defined by the system Hamiltonian
HS is represented by MC and the dissipative part is induced by
scattering with electrons byMD.

Important information about the dynamics of the system is given
by the spectral decomposition of this matrix

M ~ρn =mn ~ρn, (3.37)

~ρ(t) =
289∑
n=1

cn~ρne
mnt. (3.38)

All rates along different transition paths in the adatom are given
by the eigenvalues and eigenstates of M. The coefficients cn are
determined via the initial state at t0. Obviously, the steady state of
the system ~ρ(t→∞) = ~ρst = ~ρ0 corresponds to the eigenvector with
zero eigenvaluem0 = 0 [75]. All other eigenvalues need to be negative
relaxation rates. Their transition paths ~ρn, n > 0, are decaying to
zero in the long time limit. For more details see Appendix A.1.

The calculation of the full QME can be computationally intensive
and the interpretation of transition rates is difficult because of the
mixture of coherent and incoherent transitions as described before.
Thus, it is often useful or desirable to reduce the QME to rate equa-
tions between the populations Pi of a set of basis states. This kind
of reduction is possible if the coherences, the off-diagonal elements
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of the density matrix, decay much faster in this basis than the non-
equilibrium populations. Then, the time scales of the dynamics are
separated and the off-diagonal elements can be neglected

dPi
dt =

∑
j

(ΓjiPj − ΓijPi) . (3.39)

A transition from state |j〉 to state |i〉 is characterized by the rate
Γji. The choice of the basis is the central problem in this description,
because of the required decoupling between coherences and popula-
tions. If the bath coupling is very small, the obvious selection are
the eigenstates of the system HS. They will probably be hardly af-
fected by the environment. The success of this model and the proper
description of physical effects was, e.g., presented in Refs. [34–38].

This reduction to classical rate equations is impossible if the basis
states (for example, the HS eigenstates) are not weakly affected by
the environment. Therefore, the use of the previously described spec-
tral decomposition of Eq. (3.38) including all off-diagonal dynamics is
necessary. The steady state solution eigenvectors, i.e., the eigenbasis
of the steady state reduced density matrix, are superpositions of dif-
ferent HS eigenstates. In our case this applies especially for the 0-set
of HS eigenstates which are coherent symmetric and antisymmetric
superpositions of predominantly two Jz basis states. In this discus-
sion we assume zero magnetic field, i.e., HS = HCF. Thus, the 0-set
states have vanishing Jz expectation value as shown in Fig. 3.6 a).
The coupling to the environment can cause decoherence and reduces
the system to states being stable under this coupling in the long time
limit. Zurek called this environment-induced superselection [39, 60]
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and we made a short overview of this interpretation in Sec. 2.4. We
represent the pointer states by |φm〉 and m = −J,−J + 1, . . . , J ,
which are the steady state solutions of the QME (3.38) [76]. Again,
the lower index m indicates the predominantly Jz basis state of the
superposition |φm〉. For the case of strong dissipation in comparison
with the coupling between the Jz basis states |±6〉 the pointer states
approach de facto the original Jz basis states and fit nearly on the
inverted parabola as displayed in Fig. 3.6 b). The states |φ±6〉 and
|φ±3〉 have then non-vanishing Jz expectation values 〈Jz〉 ≈ ±6 and
accordingly 〈Jz〉 ≈ ±3.

In Fig. 3.7 we have a closer look at the U dependency of the Jz
expectation value of the pointer states |φ±6〉. This displays the com-
position of the Jz basis states. The plot shows two limiting cases.
On the one hand, for low voltages the 〈Jz〉-value is nearly zero indi-
cating that the symmetric and antisymmetric HCF eigenstates |ψ0

6s〉
and |ψ0

6a〉 are untouched. The electrons do not have enough energy
to scatter into the high excitations |φ±6〉. On the other hand, for
higher voltages, the scattering becomes possible and the dissipation
decoheres the superposition to the states with maximum 〈Jz〉. Be-
cause of the finite temperature, this starts already for energies below
the first excitation energy of 7.7meV. At the first excitation energy,
a distinct dip back to the symmetric and antisymmetric states ap-
pears. This is caused by the resonance of the applied voltage with
the first excitation. Because the energy gaps in the system are not
equidistant, a transition to the first excited state and then a direct
decay to the ground states is much more likely than an additional
excitation.
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FIG. 3.7: Expectation value 〈Jz〉 of the pointer states |φ+6〉 and |φ−6〉
vs. the voltage U for a tip polarization η = −0.15, and in the inset
vs. the polarization η for U = 7.3mV. The other parameters are Bz =
10−8 T and cT B = 3.41·106(meV s)−1. Reprinted with permission from
[III]. Copyright (2015) by the American Physical Society.

The polarization of the tip η is important for the selection of
the maximum 〈Jz〉 values by the environment-induced superselec-
tion. The dependency of the 〈Jz〉 values on the tip polarization η

is presented in the inset of Fig. 3.7. A polarization in z-direction
is assumed. The electrons without polarization (η = 0) produce
no spin dependent scattering with the Ho adatom, therefore the
pointer states possess no favored magnetic moment direction and the
pointer states remain the symmetric and antisymmetric superposi-
tions. However, the system saturates already for small polarizations
η to the pointer states with maximum 〈Jz〉.
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This environment-induced superselection has direct consequences
on relaxation rates and, thus, on the lifetimes of the two ground
states which will be analyzed in the next Sec. 3.4.

3.4 Relaxation Time T1

The relaxation time T1 of the system corresponding to the decay time
of a non-equilibrium state to the steady state can be calculated by the
spectral decomposition of the matrix M as defined in the previous
Sec. 3.3.1. One condition is that the system is primarily in one of
the two ground states. Therefore, low temperatures of the setting are
required to exclude too much thermal excitations. In the experiments
of Ref. [I] the temperature was 0.7K (i.e., kBT ≈ 0.060meV). This
is well below typical system energies like the first excitation energy
7.7meV. In this case, the inverse of the T1 time is according to its
amount smallest negative non-zero eigenvalue m1 of the matrix M
(see Eq. (3.38)) belonging to slowest transition in the system with
the eigenvector ~ρ1 = (1, 0, ...., 0,−1)T . The entries of the vector ~ρ1

are listed in the order in which the first and the last entries are the
populations of the two ground states |φ±8〉.
All possible relaxation channels between the two ground states

contribute in the transition rate −m1 = 1/T1 = Γ−8→+8 + Γ+8→−8.
This is different from the already introduced rates, e.g., Γ−88, by
the rate equations (3.39). They just account for the direct tran-
sition between the states, whereas Γ−8→+8 from |φ−8〉 to |φ8〉 also
includes transitions via excited states. The spin-polarization of the
tip or a magnetic field create different lifetimes τ+8 and τ−8 for
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the two ground states given by the quotient of the rates Γ−8→+8

and Γ+8→−8 and the steady state populations P−8 and P+8, i.e.,
τ−8/τ+8 = Γ+8→−8/Γ−8→+8 = P−8/P+8.

3.4.1 Current through the Tip

One crucial parameter of the model is the coupling strength of the
tunneling electrons via the Ho atom which is needed to compare the
theory with the experiment of Ref. [I]. With the measured current
through the tip, it is possible to estimate this coupling by matching
the theoretical predicted current via the QME with the actual exper-
imental data. In the model, the current through the tip is defined as
the time-derivative of the number of electrons in the tip NT (t),

NT (t) =
∑
kσ

(
cTkσ

)†
(t)cTkσ(t), (3.40)

ITh(t) = e
d

dt
〈NT (t)〉 = ie〈[H,NT (t)]〉. (3.41)

All terms of the Hamiltonian H commute with the number of elec-
trons NT (t) except of the coupling Hamiltonian HC yielding

ITh =− ie
∑
kk′

(
tTB

)2
(
〈J+

(
cBk↓

)†
cTk′↑〉+ 〈J−

(
cBk↑

)†
cTk′↓〉

+ 〈Jz
[(
cBk↑

)†
cTk′↑ −

(
cBk↓

)†
cTk′↓

]
〉 − 〈J+

(
cTk↓

)†
cBk′↑〉

− 〈J−
(
cTk↑

)†
cBk′↓〉 − 〈Jz

[(
cTk↑

)†
cBk′↑ −

(
cTk↓

)†
cBk′↓

]
〉
)
. (3.42)

As one would suspect, the current consists of positive terms corre-
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sponding to tunneling processes from the tip to the bulk and of neg-
ative terms describing the backwards events. The structure is very
similar to the dissipative part of QMEMD and the same mathematic
procedures are applicable. We are again interested in the stationary
limit of the current and the resulting equation is [77],

MI
D =

∑
ν,ν′

{
STB+
νν′ ⊗ J

T
ν + Jν ⊗ [STB−νν′ ]T

−SBT+
νν′ ⊗ J

T
ν − Jν ⊗ [SBT−νν′ ]T

}
, (3.43)

ITh =Tr
[
ÎThρSt

]
= e

∑
ij

(MI
D)(j−1)·17+j,i(~ρSt)i . (3.44)

The matrix multiplication of the supermatrix MI
D and the steady

state density matrix ~ρSt is calculated by the sum over i with 1 ≤
i ≤ 172 = 289, whereas the trace is given by the sum over j with
1 ≤ j ≤ 17. The vectorization of the trace leads to the difficult j
dependency of the supermatrixMI

D.

The current described by ITh contains electrons tunneling via the
Ho atom from or to the tip. However, there exist additional electrons
which tunnel directly between tip and bulk and other electrons which
tunnel via the Ho atom but do not scatter with the 4f shell, i.e., the
multiplet of interest. This ’leakage’ current ILeak is independent of
the state of the Ho atom and therefore can be separately identified.
Particularly, the differential conductance G = dI/dU(U) shows for
the transition between elastic scattering of electrons, i.e., below the
first excitation gap, to inelastic scattering above the first excitation
gap a step s = G(U>)/G(0)−1 with eU> > ∆E87. This step depends
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on the ratio between the elastic and inelastic channels and thus on
the state of the Ho atom. With increasing leakage current ILeak the
step size gets reduced. The theoretical predicted step size by ITh

would be 10% without leakage current, whereas in the experiment a
step size of sExp ≈ 0.9% was measured. This leads to the conclusion
that the leakage current accounts for 90% of the total current and
only 10% are represented by ITh yielding a step size of sTot ≈ 1%.
An accordance between theory and experiment is thereby achieved.
In the experiments the total current was measured and fixed at

the value IExp = 1nA. The theoretical current ITh is about 10%
of the total current, i.e., ITh = 0.1 nA. With this value for the
current we can fix the coupling strength of the electrons resulting in
cTB = 3.41 · 106(meV s)−1 for U = 3mV.

3.4.2 Voltage Dependency

With the help of the pre-examinations made in the last sections,
we can start the numerical investigation of the lifetimes of the Ho
ground states and the dependency on several parameters and pertur-
bations. We will focus most of the time on the regime of voltages
above U = UT − UB > 3meV as they were applied in the experi-
ments. The used voltage is needed to measure the current and to get
information about the state of the Ho atom. Under this conditions,
the influence of the tunneling electrons is dominant compared to the
scattering of tip electrons, thus we neglect them in this analysis, i.e.,
cTT = 0. Additionally, the bulk electrons have little effect on the
system due to their small energy (low temperatures). We will have a
closer look at them separately in Sec. 3.5.1 and in the derivation of
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the T2 time in Sec. 3.6, i.e., cBB = 0 for most parts. In all numeri-
cal investigations we added a very weak magnetic field in z-direction
(Bz = 10−8 T) because of numerical stability of the solution. With-
out the magnetic field in some parameter regimes divergences could
occur or the reduced density matrix becomes non-positive semidefi-
nite because of the complete decoupling of the two ground states.

We begin with the relaxation time T1 dependency on the applied tip
voltage U . Different temperatures are used starting from T = 0.7 K
as in the experiments to T = 1.4K, T = 3.5K, and last T = 7K. For
each temperature and also in the later figures, the outcome which is
numerical achieved by the full QME solution is plotted together with
the result from the approximate rate equations (3.39) in the basis of
the HS eigenstates.

For the two lowest temperatures T = 0.7K and T = 1.4K and
low voltages (below 7mV and below 5.5mV, respectively) the system
shows an exponentially activated behavior. This is reflected in the
linear part of the solid lines in the semi-log plot of Fig. 3.8. Both,
the full QME and the rate equations, describe this physical effect
nearly identically. An excitation from the ground state to one of
the first excited states |φ7〉 or |φ−7〉, decays in some cases into the
ground state on the opposite side of the parabola, being the leading
transition channel between the two ground states. The excitation
process is the bottleneck of this transition and defines the relaxation
time 1/T1 ≈ Γ87 + Γ−8−7. Approximately, without tip polarization
and magnetic field, the rates Γ87 and Γ−8−7 are equal and are given
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FIG. 3.8: Relaxation time T1 and decoherence time T2 of the two ground
states vs. the applied voltage U obtained from the full QME (3.38)
(solid lines) and the rate equation (3.39) based on HS eigenstates (dot-
ted lines). A weak magnetic field Bz = 10−8 T is applied, the tem-
peratures are T = 0.7K, T = 1.4K, T = 3.5K and T = 7K, and
the coupling strength is cT B = 3.41 · 106(meV s)−1. Reprinted with
small modifications and permission from [III]. Copyright (2015) by the
American Physical Society.

by

Γ87 = cTB| 〈ψ−7 |J−|ψ
+
8 〉 |

2 · ζ(E7 − E8 − eU) (3.45)

≈ 16cTB
(E7 − E8 − eU)

e(E7−E8−eU)/kBT − 1
. (3.46)
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Above 7 mV the lifetimes calculated by the two methods start to
deviate from each other, for high voltages several orders of magni-
tude. The reason is the environment-induced superselection of the
symmetric and antisymmetric HCF-eigenstates |ψ0

6s〉 and |ψ0
6a〉 de-

caying in the full QME in the pointer states |φ±6〉. A detailed in-
vestigation is given in Sec. 3.3.1. In the rate equations the states
|ψ0

6s〉 and |ψ0
6a〉 possess large overlap matrix elements and therefore

high transition rates between each other and also to both sides of
the parabola. This yields a ’shortcut’ through the anisotropy barrier
and if the states are energetically available, i.e., if the scattering elec-
trons have enough energy to excite the system up to the 0-set states,
this leads to a high switching probability. In contrast, the pointer
states |φ±6〉 in this regime are approximately the Jz eigenstates |±6〉
as shown in the Figs. 3.7 and 3.9 a). The coupling between these
states is weak and the shortcut is closed. The stability of the ground
states grows drastically. The same applies for the higher |ψ0

3s〉 and
|ψ0

3a〉 states from the 0-set.

The slope of the curves changes again qualitatively at voltages
above 8.6 mV corresponding to the largest energy gap of the sys-
tem between the first and second excited states ∆E67 = E6 − E7 ≈
8.6 meV. All the electrons contain enough energy to excite the sys-
tem to all higher states independent of the temperature. Thus, the
leading transition channel is sequential tunneling over the top of the
parabola. Therefore, the slope of T1(U) vs. U flattens. This is generic
for all plots with different temperatures, because the additional en-
ergy provided by the heat of the electrons is not needed. But for
lower voltages the temperature is important. Higher temperatures
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FIG. 3.9: a) Energy expectation values vs. the expectation values 〈Jz〉
for the steady states of the full QME and for the HS eigenstates at
T = 0.7K for U = 3mV and U = 7.3mV. b) Relaxation time T1 vs. the
coupling strength cT B as obtained from the full QME and the rate
equation for T = 0.7K and U = 7.3mV. Reprinted with permission
from [III]. Copyright (2015) by the American Physical Society.

smear out the borders between the different regimes, especially for
T = 3.5K and T = 7K. For these temperatures, the plots in Fig. 3.8
for the full QME and the rate equations are always separated, mean-
ing the switching is always via higher excited states. The rate equa-
tions underestimate the stability of the ground states.

To emphasize the difference between the pointer states and the
HS-eigenstates we plotted 〈Jz〉 vs. the energy for two different ap-
plied voltages U in Fig. 3.9 a). For the low voltage (U = 3 mV) the
excitations to the high excited states are exponentially suppressed.
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The states |ψ0
6s〉 and |ψ0

6a〉 are unaffected by scattering and the su-
perpositions remain. The higher pointer states can not be tracked
numerically, because these states are nearly completely unpopulated,
thus they cluster in the full QME solution non-physically. As no
scattering in this states occurs they have no influence on the phys-
ical properties of the system. For the high voltage (U = 7.3 mV)
scattering in all excited states is possible and the pointer states fit
approximately on the inverted parabola (orange squares). The short-
cut between left and right side of the parabola is closed.
This of course depends on the coupling strength cTB of the elec-

trons which we investigate in Fig. 3.9 b) for the experimental tem-
perature T = 0.7 K and U = 7.3 mV. When the rate equations
lead to the same lifetimes as the full QME, the shortcut remains
also for the full QME. This is true for small coupling strengths
cTB < 105 (meV s)−1. For the rate equations the lifetimes have a
1/cTB dependency, because the rates are proportional to the cou-
pling strength. However, in the full QME the destruction of the
symmetric and the antisymmetric state with rising coupling strength
even increases the lifetimes in the range of 105(meV s)−1 ≤ cTB ≤
107(meV s)−1. The two sides of the parabola become more and more
decoupled.

3.4.3 Experimental Issues

In the experiments of Ref. [I] two modifications of the setting de-
scribed so far were made for technical reasons which we have to
take into account if we want to compare our results. First, the
applied tip voltage was not a fixed DC voltage but modulated to
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FIG. 3.10: Relaxation time T1 and decoherence time T2 of the two
ground states vs. the applied voltage U in a weak magnetic field Bz =
10−8 T at T = 0.7K for the full QME solution and the rate equation
(3.39) with the HCF eigenstates with and without modulation voltage
Umod = 0.8mV. For comparison the experimental data are shown in
red. Reprinted with small modifications and permission from [III].
Copyright (2015) by the American Physical Society.

measure derivatives of the current, Utot(t) = U +
√

2Umod cos(ωt),
with Umod = 0.8 mV and a frequency of ω = 720 Hz. The period
of one oscillation is several orders of magnitude shorter than our
timescales of interest which are the lifetimes of the ground states in
order of seconds. Accordingly, we can describe the modulation by
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an energy distribution of the tunneling electrons. The cosine implies
that many electrons experience the maximum or minimum potential
energy U ±

√
2Umod, whereas only few electrons undergo the average

potential energy U . This can be modeled with the energy distri-
bution h(U ′) = 1/π

[
2(eUmod)2 − (eU ′)2]−1/2 for U ′ ≤

√
2Umod and

h(U ′) = 0 otherwise [78]. The energy distribution has to be convo-
luted with the correlation functions C̃αα′ij (ω̂nm) in which the electron
energies enter, e.g.,

C̃TB+−(ω̂nm) = cTB
1
2(1 + η)

∫
dU ′ζ(ω̂nm + eUT + eU ′)h(U ′). (3.47)

In Fig. 3.10 the difference between the solutions with and without the
modulation is shown. The highest energy electrons become dominant
and the modulation yields essentially a shift to U → U +

√
2 · Umod,

in our case approximately 1.1mV.

The second modification of our theory is that in the experiments
the tunnel current in the STM setting was kept fixed at IExp = 1nA.
This was achieved by fine-tuning the distance between tip and Ho
adatom. We can implement this feature by assigning a U dependency
cTB(U) to the coupling strength. The tunnel contact operates in this
parameter regime almost as an Ohmic resistance, ITh ≈ U/RTun. To
keep the current fixed the coupling strength has to be cTB(U) ∝ 1/U .
Of course, this is not exact, e.g., at the transition from elastic to
inelastic scattering, where new transport channels open, but the dif-
ference is very small. As shown in the Sec. 3.4.1, 90% of the current
is leakage current and with cTB(U = 3mV) = 3.41 · 106(meV s)−1

the theoretical current is ITh = 0.1 nA, in agreement with the ex-
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FIG. 3.11: Relaxation time T1 and decoherence time T2 of the two
ground states vs. the applied voltage U in a weak magnetic field
Bz = 10−8 T at T = 0.7K for the full QME solution and the rate
equation (3.39) with the HCF eigenstates with and without tip dis-
tance correction. For comparison the experimental data are shown
in red. Reprinted with small modifications and permission from [III].
Copyright (2015) by the American Physical Society.

periment. The influence of this correction of the coupling strength
is shown in Fig. 3.11. The difference between solutions with and
without correction is small. Because the coupling strength becomes
smaller for larger U with the correction, the difference between the
full QME and the rate equations result is smaller as without the
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correction and large U (see also Fig. 3.9 b)).

3.5 Deviations from the Ideal Situation

The previous simulated relaxation times are several orders of mag-
nitude longer as measured in experiments depicted by the red dots
in Figs 3.10 and 3.11. The theory overestimates the stability of the
ground states. The ideal situation we described so far has to be mod-
ified by perturbations and experimental deviations from this model.
Some of the possible issues are presented in the Secs. 3.5.1 to 3.5.5
and, eventually, we get lifetimes in the right order of magnitude with
realistic parameters.

3.5.1 Scattering of Bulk Electrons

We started our investigation with setting the scattering strength of
bulk electrons cBB to zero. Reasons for this are, on the one hand, that
they have not enough energy to overcome the first excitation gap. On
the other hand, we see a clear voltage dependency of the lifetimes em-
phasizing the leading impact of the tunneling electrons. In this part,
we will have a closer look at the influence of the bulk electrons on the
model and answer the question if they could solve the discrepancy
between theory and experiment. We add the scattering of the bulk
electrons as an extra bath in the QME which is possible in the Born-
Markov approximation.The coupling strength to the bulk electrons
cBB is assumed to be slightly higher than the coupling of the tunnel-
ing electrons cBB = 1.0 · 107 (meV s)−1 > cTB = 3.41 · 106(meV s)−1

to see a clear effect of the bulk electrons. The results of the simu-
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FIG. 3.12: Relaxation time T1 vs. the voltage U for the model with
modulation voltage broadening and tip distance correction with and
without bulk electron scattering strength cBB = 1.0 · 107 (meV s)−1.
Reprinted with small modifications and permission from [III]. Copy-
right (2015) by the American Physical Society.

lations are presented in Fig. 3.12. The voltage modulation and tip
distance correction are also included. As expected, the bulk electrons
possess not enough energy to excite the system and ’cool’ the system
into its ground states yielding longer lifetimes. They can not be re-
sponsible for the shorter lifetimes measured in the experiments and,
counter intuitively, the additional coupled environment stabilizes the
system by freezing it in its ground states.
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3.5.2 Breaking the C3v-Symmetry

In the experimental adatom system the C3v-symmetry of the adsorp-
tion site is probably not perfectly fulfilled. For example, the tip could
not be directly centered over the Ho atom, or defects in the crystal
break the symmetry. We will use as an exemplary term the Stevens
operator B1

2 ·O1
2 = B1

2 · [Jz, J+ + J−]+ [79] breaking all the rotational
symmetries of the system. In real systems, a lower symmetry could
remain in the system, even with defects and so on, which would be
interesting to investigate in future. A magnetic field in the xy-plane
along some specific axes would lead to a similar effect.

The influence of the symmetry-breaking term is shown in Fig. 3.13
for a Stevens parameter B1

2 between 10−15 meV and 10−3 meV and the
voltage U = 6mV. The leading term of the crystal-field Hamiltonian
B0

2 = −0.239meV remains dominating in this range of B1
2 and our

general considerations are still valid. The main effects of the symme-
try breaking are the mixing of the HCF eigenstates and the loss of the
symmetry protection. A direct transition between the ground states
becomes possible and is the main transition channel in the Fig. 3.13
for the rate equations (dotted lines). The full QME T1 time is not
affected by the symmetry breaking up to B1

2 ≈ 10−11 meV. The main
transition remains over the first excitation and a subsequent decay.
For comparison, the lifetime for U = 6 mV in the ideal model was
approximately T1 ≈ 1017 s. For B1

2 > 10−11 meV, the T1 time is in
both models inverse proportional to the symmetry breaking strength
squared, i.e., T1 ∝ (B1

2)−2.

The result of the rate equations differs a lot from the full QME
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FIG. 3.13: Relaxation time T1 vs. Stevens parameter B1
2 characterizing

the deviation from the perfect trigonal symmetry. We compare the
results obtained from the full QME (3.38) and the rate equation (3.39)
based on the HS eigenstates. We choose the parameters U = 6mV and
Bz = 10−8 T. The inset shows the Jz expectation value of the steady
states and the HS eigenstates. Reprinted with small modifications
and permission from [III]. Copyright (2015) by the American Physical
Society.

solution. The coupling to the environment again destroys the mixing
of the states and leads to pointer states closer to the Jz eigenstates.
This is depicted in the inset of Fig. 3.13. The focus is here on the
ground states of the system which are directly coupled via B1

2 . The
Jz expectation values of the first excited states |φ±7〉 are also much
closer to the inverse parabola as the HS eigenstates. This is further
the reason why the full QME solution does not change for small
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FIG. 3.14: Relaxation time T1 vs. the strength of Gaussian broadening
γ chosen to account for further lifetime broadening effects. We compare
the results obtained from the full QME (3.38) and the rate equation
(3.39) based on the HS eigenstates. We choose the parameters U =
5mV and Bz = 10−8 T. The insets show the Jz expectation value of
the steady states and the HS eigenstates. Reprinted with permission
from [III]. Copyright (2015) by the American Physical Society.

B1
2 , because the pointer states are nearly unaffected. The detailed

analysis of the effect of B1
2 is impossible in the experiment because

it is not independently accessible and can not be varied easily.

3.5.3 Noise in the Circuit

There are other possible uncontrolled perturbations on the system
which could have great influence on the lifetimes, e.g., thermal noise
in the electronics. We include these effects by a Gaussian broadening
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of the electron energies. Many perturbations can eventually be de-
scribed by such behavior [78]. The correlation functions C̃αα′ij (ω̂nm)
are convoluted with the energy distribution of the electrons,

g(δE, γ) = 1/
√

2πγ2 exp[−δE2/(2γ2)], (3.48)

similar to the modulation broadening in Sec. 3.4.3, e.g.,

C̃TB+−(ω̂nm) = cTB
1
2(1 + η)

∫
dU ′ζ(ω̂nm + eUT + eU ′)g(U ′, γ).

(3.49)

The Gaussian broadening is characterized by the parameter γ.
In Fig. 3.14 the effect of the broadening on the relaxation time

T1 is shown. The exponential decrease of the lifetime is caused by
the rising possibility to excite the Ho atom to the first excited state
via the broader distribution of the tunneling electrons. The main
transition up to γ ≈ 0.6 meV is an excitation followed by a decay
to the ground state on the opposite side. Above γ ≈ 0.6 meV also
sequential scattering to higher excitations get possible and the rate
equations yield different results than the full QME. This can again be
explained by the different Jz expectation values of the HS eigenstates
and the pointer states in the inset of Fig. 3.14. The shortcut through
the 0-family states is closed by the high energy electrons. The figure
is qualitatively similar to the voltage dependency in Fig. 3.8.
The order of magnitude of the relaxation times of the experiment

can be reached (see Fig. 3.15) with all the perturbations to the ideal
system which we considered in the beginning. The parameters are
tuned to physical acceptable values. To take care of electron heating
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FIG. 3.15: Relaxation time T1 and decoherence time T2 of the two
ground states vs. the applied voltage U at T = 0.7K and T = 1.4K
for the modulation amplitude Umod = 0.8mV, lifetime broadening
γ = 0.95meV, magnetic field Bz = 1 · 10−8 T, symmetry breaking
B1

2 = 4 · 10−4 meV, and tip spin-polarization η = 0.15. We compare
the results obtained from the full QME (3.38) (solid lines) and the
rate equation (3.39) based on the HS eigenstates (dashed lines). The
theoretical values are compared with the state-dependent data from
the experiment with error bars indicating the statistical errors of the
measurement. Reprinted with permission from [III]. Copyright (2015)
by the American Physical Society.

induced by the current, we plot the results for the experimental bath
temperature T = 0.7 K and for a higher temperature of T = 1.4 K. A
very high temperature alone of around T ≈ 8 K could be sufficient to
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fit the experimental data also in agreement, but a maximum heating
of T = 1.5 K is expected by the experimentalists. Altogether, too
few data points exist to perform a real fit of the data to determine
the large number of parameters independently, but it shows that the
measured data are physically explainable without questioning the
model itself.

3.5.4 Magnetic Field Dependency

A magnetic field in z-direction breaks the time inversion symmetry
and thereby the symmetry protection of the ground states. Such a
magnetic field is probably present in the experiments, caused, e.g.,
by stray fields of the spin-polarized tip or by a deliberately applied
field.
The effect of the magnetic fields on the lifetimes is strongly de-

pending on the values of the other parameters which can be seen in
comparison between Fig. 3.16 and Fig. 3.17. The main transition
channel for low voltages U = 5 mV with applied magnetic field is
directly between the two ground states |ψ+

8 〉 and |ψ
−
−8〉. Fig. 3.16

shows the result for the ideal model without any modifications as
defined in Sec. 3.4.2. The symmetry breaking magnetic field reduces
the lifetimes drastically, even with still small rates. The simulations
with the rates equations and the full QME are nearly identical.
However, with another set of parameters, the dependency can

be even qualitatively completely different from Fig. 3.16 plotted in
Fig. 3.17. We choose the parameters from the experimental fit in
Fig. 3.15. The ground states become stabilized by the magnetic field
working against the mixing of the states by the symmetry break-
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FIG. 3.16: Relaxation time T1 of the two ground states vs. a magnetic
field Bz as obtained from the full QME (3.38) and the rate equations
(3.39) based on HS eigenstates. The insets show the expectation value
of Jz for the two descriptions. Results for the ideal model for U =
5mV. Reprinted with permission from [III]. Copyright (2015) by the
American Physical Society.

ing term B1
2 . The pointer states get closer to the Jz eigenstates

with stronger magnetic fields and the lifetimes increase. This qual-
itatively different behavior should be a good test to examine the
strength of different influences on the Ho adatom. A detailed study
of the magnetic field dependency in future could give new insights
into the dynamics.
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FIG. 3.17: Relaxation time T1 of the two ground states vs. a mag-
netic field Bz as obtained from the full QME (3.38) and the rate equa-
tions (3.39) based on HS eigenstates. The insets show the expectation
value of Jz for the two descriptions and U = 5mV. Results with
symmetry-breaking and Gaussian broadening corresponding to the fits
of Fig. 3.15, i.e., Umod = 0.8mV, γ = 0.95meV, and B1

2 = 4 ·10−4 meV.
Reprinted with permission from [III]. Copyright (2015) by the Ameri-
can Physical Society.

3.5.5 Alternative Steven’s Parameters

The properties of the adatom system are determined by the involved
Steven’s operators and the strength of the Steven’s parameters. Our
choice from the publication of Miyamachi et al. [I] is based on a DFT
calculation and confirmed by the measured excitation spectrum. In-
vestigations by Donati et al. [69] measured x-ray absorption spec-
troscopy (XAS) and magnetic circular dichroism (XMCD) to analyze
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FIG. 3.18: Relaxation time T1 of the two ground states vs. the voltage U
as obtained from the full QME and from the rate equations (3.39) based
on HS eigenstates for Bz = 10−8 T. The inset shows the expectation
value of Jz for the two descriptions for U = 8mV. The black line shows
the function f(Jz) = −140µeV · O0

2 + 1µeV · O0
4 + const.. Reprinted

with permission from [III]. Copyright (2015) by the American Physical
Society.

Ho on Pt(111) yielding a different set of Steven’s parameters. They
managed to fit their experimental results accurate with a crystal-field
Hamiltonian from Eq. 3.15 and only the coefficients B0

2 = −140µeV
and B0

4 = 1µeV unequal zero. On the contrary, the model proposed
by Miyamachi et al. [I] and used in the last sections comprises all
possible Steven’s parameters tolerating the C3v symmetry.

The ground states in the model of Donati et al. [69] are completely
decoupled and a numerical simulation would not be possible for low
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temperatures and voltages. To simulate the model from Donati et
al. [69] we add a small B3

4 ≈ 0.3µeV as described by Miyamachi et
al. [I] to achieve finite lifetimes.

In the inset of Fig. 3.18, the new level structure of the HS eigen-
states is depicted in blue and the pointer states in orange. The
stronger term B0

4 , containing the term J4
z , bends the states with the

highest Jz expectation values |ψ−−8〉, |ψ
+
8 〉, |ψ

+
−7〉 and |ψ

−
7 〉 upwards.

The most important difference to the previous shown spectra is that
the states |ψ0

6s〉 and |ψ0
6a〉( or |φ6〉 and |φ−6〉) become the ground

states of the system. They are strongly coupled via the term B3
4

and are not symmetry protected yielding short lifetimes in the rate
equations shown in Fig. 3.18. The results of the full QME simulation
are in the order of milliseconds instead of nanoseconds as in the rate
equations, so the difference is even more pronounced than before.
The environment-induced superselection chooses the pointer states
being closer to the Jz eigenstates |±6〉 which are much more stable
than the superpositions.

Another qualitatively different feature occurring in this simulation
is that higher voltages stabilize the system, because the higher states
are more decoupled than the ground states |φ6〉 and |φ−6〉. They still
have a coupling matrix element equal to zero for transitions between
states of the sets ±, i.e., are symmetry protected. The voltage depen-
dency observed by Miyamachi et al. [I], where the lifetimes decrease
with increasing voltages, is in stark contrast with this. It supports
the use of the parameters derived by DFT calculations where only
high-symmetry fcc adsorption sites on the Pt(111) surface were con-
sidered. The experiments of Donati et al. [69] worked with a high
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coverage of Ho atoms of 0.04 monolayers with a mixture of hcp and fcc
adatoms. A detailed analysis is needed to answer if this is the reason
for the differing results. First unpublished data from the experimen-
tal group of Brune in Lausanne with very low coverage indicate that
the coverage has no influence on their results.

3.6 Decoherence Time T2

In quantum mechanical devices, e.g., qubits, the decoherence time is
essential for the successful operation of the device. The T2 is defined
as the decay time of the phase of a coherent superposition of the
logical basis states. In our case, this is the phase between the ground
states of the Ho adatom |ψ+

8 〉 and |ψ
−
−8〉. The phase information is

given by the off-diagonal matrix element ρ+8−8 of the reduced den-
sity matrix. The decay rate of this reduced density matrix element
corresponds to the matrix element M8−8→8−8 of the QME in the
form of Eq. 3.27,

1/T2 = −M8−8→8−8

≈ 4cTB 〈ψ+
8 |Jz|ψ

+
8 〉 〈ψ

−
−8|Jz|ψ

−
−8〉 ζ(−eU)

≈ 264 cTB eU. (3.50)

In the previous Figs. 3.8, 3.10, 3.11 and 3.15 T2 times are plotted
for different parameters. The result is that T2 is mainly depending on
the number of scattered electrons, i.e., the current. For the dephas-
ing of the superposition is no energy needed and practically every
electron which tunnels on or from the Ho adatom causes decoher-
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ence, independent of the other parameters. Therefore, if the current
is kept constant by not changing U or by adjusting the coupling con-
stant cTB(U) the decoherence time is fixed. Only in the Figs. 3.8
and 3.10, T2 is decreasing proportionally to 1/U with increasing U .
But in all plots, it turns out that T2 is short, i.e., in the order of
10−10 s. Thus, the system is probably not usable in this form as a
qubit. T2 needs to be compared with the time required to operate
the qubit, i.e., to execute a logical gate. At the moment, it is totally
unclear how such a gate would look like in this system. Furthermore,
according to our investigations, T2 is independent of the symmetry
breaking term B1

2 , the broadening γ or the magnetic field Bz.

One could argue that an operating qubit is not permanently cou-
pled to a tip or another bias current and if T2 is only depending
on the current, this system could for U = 0 still be an operating
qubit. Without the bias current, all the possible coupling terms to
the environments C̃αα′νν′ (±ω̂nm) with {ν, ν ′} = {T,B} are without any
precognition relevant. In the Born-Markov approximation, the envi-
ronments are additive and T2 can be estimated by

1/T2 = −M8−8→8−8

≈ 4(
∑
νν′

cνν′) 〈ψ+
8 |Jz|ψ

+
8 〉 〈ψ

−
−8|Jz|ψ

−
−8〉 ζ(0)

≈ 264 kBT
∑
νν′

cνν′ . (3.51)

For coupled environments with coupling strengths in the order of
magnitude found in our investigation of the current in Sec. 3.4.1∑
νν′ cνν′ ≈ 106(meV s)−1 and a temperature of T = 1 K, the deco-
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herence time is approximately 10−8 s. Therefore, also in the best case
scenario, T2 is still very small.

3.7 Initialization

The long lifetimes reported so far are one key ingredient for using
the Ho adatom as memory. Another important part is the writing
process or more general, the initialization of one of the ground states.
It would also be useful for experiments with defined initial state. The
different parameters should be modified to the point that high fidelity
initialization can be accomplished. This is achievable in our setting
by voltage pulsing the system with the spin-polarized current for a
time tp and by letting the system afterwards relax for tr. The relax-
ation time tr should be large enough that all excitations decay in the
ground states and we choose tr = 1µs for all simulations. As the im-
portant quantity, we look at the switching probability S−8→8(U, tp).
It depends on the pulse voltage strength U and the pulse length tp.
S−8→8(U, tp) is defined as the probability to end after the pulse in
state |ψ+

8 〉 if you start in state |ψ−−8〉. If this probability is close to one
for one parameter set and close to the zero for the contrary writing
process, a good initialization of a wanted state is possible.
We use the full QME model and parameters as in the case of

the comparison with the experiment in Fig. 3.15, but without the
cTB(U) correction (because we want to pulse the system). According
to this comparison, we neglect the scattering of bulk electrons. The
switching probability S−8→8(U, tp) is plotted vs. the applied volt-
age U for different spin-polarizations η of the tip and a pulse time
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FIG. 3.19: The probability for switching from |ψ−−8〉 to |ψ
+
8 〉 vs. the

applied pulse voltage for different values of the tip polarization η and
a pulse time of tp = 2.5 · 10−7 s. The upper inset shows the switching
probability vs. the tip polarization for pulse strength U = 20mV and
pulse time tp = 2.5 · 10−7 s. The lower inset shows the dependency
on the pulse time tp for pulse strength of U = 20mV and η = 0.2.
Reprinted with permission from [III]. Copyright (2015) by the Ameri-
can Physical Society.

tp = 2.5 · 10−7 s in Fig. 3.19. As one could expect, for higher po-
larizations higher fidelities can be reached. In the regime above
U ≈ 20 mV and strong polarization, the switching probability be-
comes close to one. Furthermore, a pulse with the opposite volt-
age strength U < −20 mV does not change the population of the
state |ψ−8〉, the switching probability remains small. Combined, this
means that both states can be prepared by strong pulses and by a
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better polarization of the tip. One disadvantage of high polarizations
is the enhancement of the stray fields belonging to the tip.

Voltage pulses in the range of −10 mV to 10 mV leave the system
unchanged. The pulse time and corresponding number of electrons
with high energy are not enough to cause a transition between the
states. The plots for η 6= 0 show all a small maximum between 10 mV
and 20 mV. The population for no polarization η = 0 voltage pulses
above U ≈ 15 mV is equally distributed on both ground states. There
is no preferred state of the system without polarization.

The dependency of the fidelity on the tip polarization η is shown
in the upper inset of Fig. 3.19 for the approximately best conditions
U = 20 mV and pulse time tp = 2.5 · 10−7 s. This leads again to
the conclusion that the higher the polarization the better the initial-
ization. By looking at the dependency of the fidelity on the pulse
time tp in the lower inset of Fig. 3.19, we can estimate the number
of electrons needed for a good initialization process, i.e., switching
probability close to 1. The voltage is again near the optimum of
U = 20 mV producing a current of ITh(20 mV) ≈ 0.75 nA. We can
see from the plot that the pulse time has to be longer than approx-
imately 250 ns. The number of electrons needed to flip the ground
state with a high fidelity is

Ne =
ITh(20 mV) · tmin

p

e
≈ 1100, (3.52)

with e the elementary charge. This could be tested in the experiments
by changing the tip distance, i.e., changing the number of tunneling
electrons.
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In summary, we propose an initialization process which is fast, i.e.,
pulse times of a few hundreds nanoseconds, and which gives high
fidelities with the assumption of good tip polarizations. But it is
important to consider the effect of the coupling strength cTB which
has direct impact on the required pulse time tmin

p .
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4 Chapter

Double Quantum Dots

The second system we analyze with the QME is a double quantum
dot (DQD) coupled to a microwave oscillator. Our method for solving
the QME allows us to investigate DQDs with multiple levels in each
dot and coupled to different environments simultaneously. To be
more specific, the DQD is connected to two electronic leads and a
bath of phonons. This leads to incoherent and coherent transitions
in the DQD with rich and interesting dynamics. We will investigate
different possible processes and lasing situations. In particular, we
have a more detailed look at the situation sketched in the introduction
in Fig. 1.2 b) and the influence of the phonon coupling.
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4 Double Quantum Dots

This chapter is based on the publication Karlewski et al. [V] which
will not be further cited in this part.

4.1 The DQD Hamiltonian and the QME

The QME, defined by the Hamiltonian of the system, the baths and
the coupling between them, can be solved with the method used
in the previous chapters. In the first part, we will therefore show in
detail how the DQD coupled to the oscillator and the electronic leads
can be described in this framework. With this in mind, we introduce
the additional phonon bath and reproduce the derivation of the QME
with the new environment.

4.1.1 DQD Coupled to a Microwave Oscillator

The Hamiltonian of the DQD system with discrete energy levels εαi
in the left and in the right dot (α = L,R) coupled to a microwave
oscillator and electronic leads is

H = HDQD +Hosc +HDQD−osc +HC +Hleads. (4.1)

The DQD Hamiltonian HDQD describes the two semiconducting is-
lands

HDQD =
∑

α=L,R
i

εαi nαi +
∑
ij

(
tijd
†
LidRj + h.c.

)

+ U1
∑

α=L,R
i 6=j

nαi nαj + U2
∑
ij

nLi nRj , (4.2)
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with d†αi (dαi) the creation (annihilation) operator and nαi = d†αidαi

the occupation of the ith level of dot α (left or right). The intra-dot
and inter-dot Coulomb energy scales are U1 and U2, respectively. The
electrons can tunnel between the dots with amplitude tij which pro-
vides a transition channel of the current and additionally generates
hybridization between the dot states.

We assume a single-mode oscillator with eigenfrequency ω0. This
is, e.g., a very good description of the superconducting transmission
line resonator [15],

Hosc = ω0a
†a. (4.3)

The oscillator is coupled via the occupation of the left dot levels with
an energy-independent coupling constant g,

HDQD−osc = g(a+ a†)
∑
i

nLi. (4.4)

In the QME we have to define our system of interest which is in our
setting the combination of these three Hamiltonians HS = HDQD +
Hosc +HDQD−osc. To simplify the problem we assume large Coulomb
energies U1 and U2 and reduce the Hilbert-space to at most one
electron in the DQD, i.e., the three possibilities: one electron in the
left dot or right dot or no electron in the DQD.

The electronic environments are given by the left and right lead
which we assume to be coupled weakly and equal for both leads,
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γL = γR = γ, i.e.

HC = γ
∑

α=L,R
ik

(
d†αicαk + h.c.

)
. (4.5)

The coupling strength γ defines the tunneling rate of the electrons
into the DQD

Γ = 2πN0(Ef )γ2, (4.6)

where N0(Ef ) is the electron density of states at the Fermi edge.
The tunneling rate Γ is the essential element of the overall current
through the DQD and appears as a scaling factor of the current.

Similar to the Ho adatom, we assume that the electronic leads, in
the case of Ho the tip and the bulk, are in equilibrium. The difference
between the two systems (Ho and DQD) in the QME is the tunneling
of electrons into the DQD system but not through the DQD. They
stay there. This is reflected by the equilibrium Green’s functions of
the leads which are

G<αk(t) = i 〈c†αk(0)cαk(t)〉 = if(εαk + eVα)e−i(εαk+eVα)t,

G>αk(t) =− i 〈cαk(t)c†αk(0)〉 = −i [1− f(εαk + eVα)] e−i(εαk+eVα)t,

(4.7)

with the Fermi-Dirac distribution function f(ε). Mind the small dif-
ferences between the Green’s function definitions and the correlation
functions given by the Eqs. 3.14 of the Ho QME, e.g., the complex
factor i and the appearance of the Fermi-Dirac distribution only once
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not twice as in the correlation functions.

In accordance to the previous chapters, we are interested in prop-
erties of the small quantum system encoded in the reduced density
matrix ρ(t) with the environment traced out. As mentioned before,
this means in this setting that the DQD and oscillator states are
important and the electronic leads enter through their Green’s func-
tions. We assume that the conditions for the Born-Markov approxi-
mation explained in chapter 2 are fulfilled, i.e., weak coupling to the
electrodes and large decay rates of the correlations inside the leads
as compared to typical system dynamic time scales. Therefore, we
can use the QME in the shorthand notation (cf. Eq. (2.11))

∂

∂t
ρ(t) = Lρ(t), (4.8)

with Liouvillian L = LS + LC defined as

LSρ(t) = i [ρ(t), HS] ,

LCρ(t) = −
∫ t

−∞
dt′ 〈

[
HC(t),

[
HC(t′), ρ(t)

]]
〉LR . (4.9)

The Liouvillian L describes a similar object as the superoperatorM
of chapter 3, but still in the matrix dimension of ρ(t) and not in the
enlarged space of ~ρ(t). As usual, we trace out the equilibrium leads
〈·〉LR = TrLR {·ρLρR}.

We will transform Eq. (4.8) into a form that can be written with
~ρ(t) and perform the same analysis used for the Ho adatom. So, we
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introduce the Laplace transforms of the Green’s functions

G<αk(ω) =
0∫

−∞

dtG<αk(t)e
iωt+ηt = f(εαk + eVα)

ω − (εαk + eVα)− iη ,

G>αk(ω) =
0∫

−∞

dtG>αk(t)e
iωt+ηt = − 1− f(εαk + eVα)

ω + εαk + eVα − iη
, (4.10)

with the small parameter η = 0+ introduced for convergence. We
follow our protocol, change into the eigenbasis of the system Hamil-
tonian HS, i.e., V †HSV = diag(E1, . . . , EN ) and introduce the no-
tation Ā = V †AV . The aim is to evaluate the Green’s functions
at the eigenenergies of the Hamiltonian. The dissipative part of the
Liouvillian LC turns into [II] [74]

V †LCρ(t)V =iγ2 ∑
α=L,R
ijk{

d̄αi
[
G<αk(ω̂) ∗ d̄†αj

]
ρ̄(t) + d̄†αi

[
G>αk(ω̂)† ∗ d̄αj

]
ρ̄(t)

+ d̄αiρ̄(t)
[
G>αk(ω̂) ∗ d̄†αj

]
+ d̄†αiρ̄(t)

[
G<αk(ω̂)† ∗ d̄αi

]
−
[
G>αk(ω̂)† ∗ d̄αi

]
ρ̄(t)d̄†αj −

[
G<αk(ω̂) ∗ d̄†αi

]
ρ̄(t)d̄αj

−ρ̄(t)
[
G<αk(ω̂)† ∗ d̄αi

]
d̄†αj − ρ̄(t)

[
G>αk(ω̂) ∗ d̄†αi

]
d̄αj
}
.

(4.11)

The product, denoted by the symbol ∗, represents the direct or Hada-
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mard product between two matrices, e.g.,(
G>αk(ω̂)† ∗ d̄αj

)
nm

=
(
G>αk(ω̂)

)∗
mn

(
d̄αj
)
nm

. (4.12)

Additionally, we use again the matrix ω̂ with elements ω̂nm = En −
Em. In this form the QME can be easily written in the enlarged
Hilbert-space ~̇ρ(t) = M~ρ(t), which is very useful for numerics. We
are interested in the steady state ρst properties of the system given
by the corresponding eigenstate of M with the eigenvalue m0 = 0.
For details of this derivation see Appendix A.1 and section 3.3.1.

The oscillator is exposed to the environment and excitations decay
into the surroundings of the oscillator with a decay rate κ. This can
be treated as an additive term in the QME by the Liouvillian

Lκρ(t) = κ

2

(
2aρ(t)a† −

[
a†a, ρ(t)

]
+

)
, (4.13)

where [·, ·]+ is the anti-commutator.

The focus of our investigation of the system will be the analysis of
the current through the DQD and the number of photons in the oscil-
lator, as well as their statistical properties. Both are experimentally
accessible and show characteristic behavior in the lasing situation.
The total current is defined as the change in the number of electrons
in the left or right lead (which are the same in the steady state so-
lution). Without loss of generality we choose the left lead electron
number NL(t) =

∑
k c
†
Lk(t)cLk(t). The time evolution of this opera-

tor is given by the Heisenberg equation ṄL(t) = i [H(t), NL(t)]. All
parts of the total Hamiltonian except the coupling HC(t) commute
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with NL(t) and the resulting current in the steady state through the
left tunnel junction is

〈IL〉 = e
d

dt
〈NL(t)〉

∣∣∣∣
t→∞

= ie〈[H(t), NL(t)]〉
∣∣∣∣
t→∞

= 4eγ2∑
kij

Tr
{
Im
[
−d̄Li

(
G<Lk(ω̂) ∗ d̄†Li

)
ρ̄st

+ d̄†Li

(
d̄Lj ∗G>Lk(ω̂)†

)
ρ̄st
]}
. (4.14)

The important observables for the oscillator are the number of
photons and the distribution of these photons described by the Fano
factor [80]. To be more specific, the Fano factor gives a quantitative
measure for the statistical dispersion of a probability distribution. In
particular, if the Fano factor equals 1, the distribution is a Poisson
distribution. A Fano factor smaller (larger) than 1 means that the
distribution is more narrow (wider) than the Poisson distribution
known as sub-Poissonian (super-Poissonian). The average number of
photons and the Fano factor are both defined via the photon number
operator NPh = a†a

〈NPh〉 =Tr
{
a†a ρst

}
(4.15)

Fa =
(
〈N2

Ph〉 − 〈NPh〉2
)
/ 〈NPh〉 . (4.16)

We are interested in the possible lasing states of the oscillator. These
display, on the one hand, a characteristic narrow peak in the number
of photons. On the other hand, the Fano factor shows typical indi-
cations of the lasing state, i.e., it is approximately Fa ≈ 1 + 〈NPh〉 in
the non-lasing regime, whereas in the transition to the lasing regime
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the Fano factor should decrease. In the ideal lasing model, the pho-
ton generation events are discrete and independent giving a Poisson
distribution with Fa = 1. In the more complex systems of our studies
and in real systems, deviations from the ideal situation are possible
. In particular, a sub-Poissonian distribution of the radiation field
Fa < 1 is achievable which is sometimes called squeezed light [41].

4.1.2 Coupling to a Phonon Bath

The phonons coupled to the DQD are an additional dissipative bath.
We assume very low temperatures, therefore the phonons will re-
move energy from the system. The phonon bath is added to the
QME in the Born-Markov approximation in the same manner as the
electronic leads with small adjustments, e.g., the bosonic character
of the phonons and the specific coupling. With the new dissipation
channel, transitions inside the DQD can be increased and the total
current through the DQD is influenced by the phonons of the semi-
conducting bulk material [44, 49, 51]. First, we have to define the
kind of coupling between the phonons and the electrons in the DQD.
The dominant coupling in this system is the piezoelectric interaction
as presented in Ref. [81] and given by

Hel−ph = gel−ph
∑
αik

nαiϕαk, (4.17)

with phonon operators ϕαk = bαk + b†α−k and the coupling constant
gel−ph, which is considered to be energy-independent. The operators
b†αk (bαk) are now bosonic creation (annihilation) operators of the
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phonons. Following the procedure from the electron coupling, we use
the phonon Green’s functions for the phonon-bath in equilibrium

D<
αk(t) = i 〈ϕαk(0)ϕαk(t)〉 = inB(ωαk)e−iωαkt + i[1 + nB(ωαk)]eiωαkt,

D>
αk(t) =− i 〈ϕαk(t)ϕαk(0)〉

=− inB(ωαk)eiωαkt − i[1 + nB(ωαk)]e−iωαkt , (4.18)

with the Bose-Einstein distribution nB(ω). The respective Laplace
transforms are

D<
αk(ω) = nB(ωαk)

ω − ωαk − iη
+ 1 + nB(ωαk)
ω + ωαk − iη

,

D>
αk(ω) =− nB(ωαk)

ω + ωαk − iη
− 1 + nB(ωαk)
ω − ωαk − iη

. (4.19)

With the coupling Hamilton operator Hel−ph and the Green’s func-
tions D≶

αj(ω), the Liouvillian of the phonon coupling is given by

V †Lel−phρstV =ig2
el−ph

∑
αijk

×
{
n̄αi

[
D<
αk(ω̂) ∗ n̄αj

]
ρ̄st − n̄αiρ̄st

[
D>
αk(ω̂) ∗ n̄αj

]
−
[
D<
αk(ω̂) ∗ n̄αi

]
ρ̄stn̄αj − ρ̄st

[
D>
αk(ω̂) ∗ n̄αi

]
n̄αk

}
.

(4.20)

In the usual way, we convert the sum over k in an integral with the
effective phonon density of states F (ω).
Altogether, the QME, describing our system, is the sum of the

coherent evolution of the DQD coupled to the oscillator and the dis-
sipative parts due to electron tunneling, phonon coupling and decay
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of the oscillator

ρ̇(t) = Lρ(t) = (LS + LC + Lel−ph + Lκ) ρ(t). (4.21)

The observables current, number of photons and Fano factor defined
in section 4.1.1 depend on the stationary solution of the equation, i.e.,
Lρst = 0. This is the basis of the following numerical investigation
in the next section in which we set the free parameters to values
suggested by recent experiments.

4.2 Lasing in the Multi-Level System

With more than one level in each dot, several resonance conditions
with the microwave oscillator are possible. We will restrict ourselves
to a system with two levels in each dot qualitatively including all dif-
ferent lasing situations which can occur. An overview of the different
possible resonant transitions is presented in section 4.2.1. In sec-
tion 4.2.2, we have a closer look at the transition sketched in Fig. 1.2
b).

4.2.1 Overview of Different Lasing Situations

In the experiments of Liu et al. [49] the theoretical predicted las-
ing state in the system with one level in each dot has been con-
firmed. A small fly in the ointment: the chosen coupling strength
to the leads is not covered by the QME described here and also
the reached number of photons (8000) is out of scope of the nu-
merical feasible range. Nevertheless, the encountered parameters are
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our starting point with small adjustments to better emphasize our
findings. The central quantity of the system is the oscillator fre-
quency which f0 = 7.8 GHz = ω0/2π, i.e., ω0 = 0.032 meV in the
experiment. All other parameters will be normalized with this en-
ergy reference scale. The multiple levels of the DQD lie all inside
the range of the applied voltages at the left and right lead, i.e.,
eVL > εLi, εRi > eVR, to suppress any effect of too low applied
voltages. We set the coupling of the left dot to the oscillator to
g = 0.02ω0. This is an order of magnitude stronger than determined
by the experiment to better highlight our different findings. For the
same reason, we consider a very high-quality microwave oscillator
with κ = 10−6 ω0 corresponding to a quality factor Q = 2 · 106. Such
a quality has been achieved in purely superconducting systems [82],
while in semiconductor-superconductor heterostructures only values
reaching Q ≈ 104 have been reported [83].

The base temperature of the experiment was 10 mK, but e.g., the
current heats the device and we include this by choosing a tempera-
ture of T = 100 mK = 0.27ω0. Furthermore, the authors of Ref. [49]
managed to fit the effective phonon density of states F (α)(ω) =∑
αk δ(ω − ωαk) and which is approximately

F (ω) = (ω/Ω0)2

[α1 + (ω/Ω0)2]α2/2+1 (4.22)

with the parameters α1 = 0.02, α2 = 1.4, and Ω0 = 0.4 meV.

As mentioned before, our investigation focuses on the model with
two levels in each dot lying in the window between the applied po-
tentials. One example is the situation depicted in Fig. 1.2 b) of the
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introduction. The energy differences of the two levels in the left and
right dot are εL2 − εL1 = ∆Lω0 and εR2 − εR1 = ∆Rω0. In general,
the energy splittings differ from the oscillator frequency (∆L/R 6= 1),
and they differ from each other (∆L 6= ∆R). We assume that the dot
levels can be shifted relative to each other by applied gate voltages
in a way that the energy difference between the two lower levels is
εL1−εR1 = ε, whereas the energy difference of the dots ∆L/R remain
constant. For simplicity we assume that the tunneling strength tij

between the right and left dot levels is identical for all levels tij = t

and i, j = {1, 2}. The tunneling strength of the electronic leads is
Γ = 10−6ω0.

By varying the relative shift ε, all the possible resonance situations
between left and right dot levels can be realized. This is shown in
Fig. 4.1 for the four levels of our model. The number of photons
〈NPh〉 displayed in the upper part peaks every time a downwards
transition in the DQD fulfills the lasing condition. As consequence,
the DQD emits photons in the microwave oscillator. The bias voltage
produces the needed population inversion, i.e., an occupation of the
energetically higher states. We illustrate for each of the resonances
the corresponding energy level structure in the small sketches. Blue
wavy arrows indicate the emission of a photon, a red curved arrow the
tunneling of an electron and a gray dashed arrow tunneling induced
by a dissipative emission of a phonon.

The simplest lasing situation in the multi-level system is similar
to the single level in each dot lasing scenario sketched in Fig. 1.2
a) [41]. A lasing transition occurs when a state in the left dot is
exactly ω0 higher than a right dot level. This is fulfilled by the
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FIG. 4.1: Top: The photon expectation value 〈NPh〉 vs. the detun-
ing ε with ∆L = 1.3, ∆R = 1.15. The parameters are t = 0.01ω0 and
gel−ph = 0.01ω0. Mid: The current through the left lead 〈IL〉 /Γ vs. the
detuning ε. Bottom: The difference between the current through the
left lead with (g = 0.01ω0) and without (g = 0) coupling to the oscilla-
tor. The current is enhanced or decreased in the resonance situations.
Reprinted with permission of Ref. [V]. Copyright (2015) by the Amer-
ican Physical Society.
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two peaks at the right side of Fig. 4.1 which are at ε = ω0 and
ε = (1 −∆L + ∆R)ω0 (corresponding to the sketch labeled by (5)).
The two lower or the two higher dot states are in resonance with
the oscillator. The same applies for the peak labeled by (2) at ε =
(1−∆L)ω0. Here, the upper left and the lower right dot level satisfy
the resonance condition. All the exact solutions of the resonance
conditions for ε in this overview part are valid for small tunneling
couplings t� ∆L/R between the dots. Otherwise, the hybridization
of the states have to be taken into account which is done in the
investigation of the tunneling dependency in section 4.2.2.

More complex and qualitatively different is the lasing resonance
at ε = (∆R − 1)ω0 labeled by (3). Sequential hopping of the elec-
tron among all four DQD levels eventually produces a photon in the
resonator during the transport through the DQD. In this cascade of
transitions three different steps happen. First, the phonon induced
incoherent hopping from the higher left dot level to the higher right
dot level. Second, the resonant transition with the microwave oscil-
lator against the main current direction to the lower left dot level.
Third, again an incoherent transition with the emission of a phonon
to the right lower dot level.

The small peak labeled (1) is similar. The resonant transition
occurs from the lower right dot level to the lower left dot level. This
needs first a hopping from the higher level of the left dot to the
lower level of the right dot by tunneling or incoherent transition with
emission of a phonon. But the electron is trapped in the left dot and
because of the high Coulomb energies the transport through the dot
is blocked. A higher order or thermally activated process is needed
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to overcome the barrier to the lower right dot level and opens again
the DQD for the next electron. Therefore, the peak is small and this
is also the reason for the asymmetry between positive and negative
ε.

Our model is further able to account for more than one photon
processes which can be seen at the position ε = (2−∆L)ω0 (labeled
by (4)). In this case, it is a two-photon process εL2 − εR1 = 2ω0

strongly depending on the coupling strength between the DQD and
the microwave oscillator. For our choice it is very small but becomes
stronger with increasing coupling strength.

With Eq. (4.14) the current through the DQD can be simulated and
is shown in the central plot of Fig. 4.1 vs. ε. The current 〈IL〉 depends
on the properties of the system and with our set of parameters we get
currents in the order of 1 fA which is experimentally accessible. In
this regime, a change of Γ is dominantly a scaling of the current and
we therefore plot the ratio between 〈IL〉 and Γ. For ε = 0 the lower
levels of the dots are aligned yielding a broad resonant peak. One
might expect a similar peak for ε = ∆R − ∆L when the two upper
states coincide. This peak is in fact much smaller than the central
peak. The reason is that the lower left dot level is below the lower
right dot level. If this state is occupied, the Coulomb interaction
prevents another electron from tunneling from the left lead on the
DQD and the transport can not continue until the electron hops via
thermal activation, coherent tunneling or a higher order process to
the right dot. Actually, this is why the current for ε < 0 is smaller
than for ε > 0. Another broader peak appears at the far right side
of the plot when the lower left dot level is aligned with the higher
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right dot level. In our case, the linewidth of this peak is determined
by the temperature. In contrast to these broad peaks, much sharper
peaks emerge at the lasing-resonances when one of the energy level
gaps is tuned to the microwave oscillator frequency. The best visible
ones are the two most right peaks where the broad peak is weaker.
The other peaks are too small or too close to the central resonance
peak at the given resolution of the plot.
To investigate the possible appearance of the lasing conditions in

the current also for the smaller peaks, we plot the difference of the
current between the situation with and without coupling to the oscil-
lator in the lower of the three panels in Fig. 4.1. All lasing situations
have a clear imprint in the current. In particular, the lasing peaks
in the photon number identified as a backward tunneling process
(labeled (3) and (1)) are linked to a sharp dip in the current.

4.2.2 Detailed Analysis of the Cascade Lasing

As described in Sec. 4.1.1, the Fano factor Fa accounts for the statis-
tics of the produced photons in the microwave oscillator and has a
specific behavior in the lasing regime. Therefore, it is a good mea-
sure if the sharp photon peaks are really associated with lasing. In
Fig. 4.2 we show the results in the vicinity of the resonance labeled
(3), but similar results are found also for the other lasing peaks. The
figure displays the increase of the Fano factor in the vicinity of all
peaks. For weak tunneling strength t = 0.01ω0 and phonon coupling
strength gel−ph = 0.01ω0, the Fano factor shows a clear dip and even
drops below 1. This is a signature of lasing, although the total num-
ber of photons remains small. With increasing phonon coupling or
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FIG. 4.2: Photon expectation value 〈NPh〉 (dashed lines) and Fano fac-
tor Fa (solid lines) vs. detuning ε for ∆L = 1.3, ∆R = 1.15 and different
phonon couplings strengths gel−ph or tunneling strengths t. Reprinted
with permission of Ref. [V]. Copyright (2015) by the American Physical
Society.

tunneling strength the number of photon rises, but the dip is less
pronounced.
The processes involving a series of transitions, inclusive inelastic

ones, and the resulting lasing-type situations strongly rely on the
coupling to the phonons. We illustrate this in Fig. 4.3 for the two
processes labeled (2) at ε = (1−∆L)ω0 and (3) at ε = (∆R−1)ω0 by
varying the strength of the phonon coupling. The peak in the photon
number, arising from a backward tunneling process depending on
the population of the upper right level, disappears in the absence of
phonons and grows with increasing phonon coupling strength. The
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FIG. 4.3: Photon number 〈NPh〉 vs. detuning ε for ∆L = 1.3, ∆R = 1.15
and different phonon coupling strengths gel−ph. The tunneling strength
is t = 0.01ω0. The inset shows the difference (〈IL〉 − 〈IL0〉)/Γ between
the currents with (g = 0.01ω0) and without (g = 0) coupling to the
oscillator vs. the detuning ε. Reprinted with permission of Ref. [V].
Copyright (2015) by the American Physical Society.

effect is also visible in the current as shown in the inset of the figure.
Also in process (2) the transition through the DQD system is strongly
enhanced by the phonons leading to more pronounced photon peaks.

In Fig. 4.5 we illustrate the dependency of the lasing peaks on the
tunneling strength t. Such a dependency was also investigated in the
experiments with single-level double quantum dots by Stockklauser et
al. [50] shown in Fig. 4.4. They found that with stronger tunneling
strength the hybridization of the levels leads to a merging of the
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FIG. 4.4: Photon emission power vs. the detuning of the single dot
levels δ measured for the indicated interdot tunnel rates 2t/h with h
the Planck constant. The background proportional to the current is
subtracted and the emission resonances are fitted using a sum of two
Gaussian line shapes to extract the values of resonant detuning and
power (sum is the solid orange line; individual line shapes are dashed
gray lines). Reprinted with permission of Ref. [50]. Copyright (2015)
by the American Physical Society.

resonance peaks. In our system, for weak tunneling the lasing peaks
are sharp. With increasing tunneling strength the transport current
through the DQD and the population inversion increase leading to
more photons. But eventually also the hybridization of the dot levels
becomes stronger. This leads to broader and weaker peaks, and the
peaks are shifted due to the hybridization. Their positions εp follow
from the condition

1 = ∆L+∆R
2 −

√
( t
ω0

)2 +
(
εp

2ω0

)2
−
√

( t
ω0

)2 +
(

∆L−∆R+εp/ω0
2

)2
.

(4.23)

This equation has two solutions for a sufficiently small tunneling t
(as illustrated in the inset of Fig. 4.5) determining the positions of
the two lasing peaks. When the tunneling strength is stronger the
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FIG. 4.5: Photon number 〈NPh〉 vs. the detuning ε with ∆L = 1.3,
∆R = 1.15 and for different tunneling strengths t. The phonon coupling
strength is gel−ph = 0.01ω0. The inset shows the two ideal solutions
for the peak position εp vs. the tunneling strength t. Reprinted with
permission of Ref. [V]. Copyright (2015) by the American Physical
Society.

peaks merge and it is not possible to satisfy the separate resonance
conditions anymore. In this case we still observe an enhanced pho-
ton number, but the process is no longer associated with lasing. A
physical argument for the disappearing of the lasing peaks may be
as follows: For strong hybridization the distinction between left and
right levels is lost. This is, however, crucial for the creation of a
population inversion by the imposed current.

105





5

5 Chapter

Master Equation

This part of the thesis focuses on the expansion of the QME beyond
the Lindblad-form used in the chapters 3 and 4. The often used Born
and Markov approximations are strong restrictions. The method
developed in this thesis shows the dependencies and the validity of
these approximations. It uses the diagrammatic expansion of the
QME developed in the group of G. Schön at the KIT [57] as shown
in chapter 2. We will illustrate our findings with three examples:
the spin-boson model, the initial state problem and the two-time
correlator.
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5.1 Expansion of the QME

Solving the QME without any approximation is complex and even
numerically most of the time challenging. The main problem is that
the equation is not time local and therefore, depending on the kernel
of the integral, the integration has to be made for the whole time
range. As shown in the introductory chapter 2, Breuer et al. found
with the TCL method a way to transform the QME in a time local
equation, but this method is often clumsy and difficult to handle. In
this chapter we develop an expansion of the QME which, on the one
hand, results in a time local equation and, on the other, connects the
Born and Markov approximations.
The following four sections 5.1.1-5.3 are based on the publication

Karlewski and Marthaler [II] and the reference is therefore not cited
any further in this part.

5.1.1 Time Local QME and Diagrammatic Expansion

To get the solution of the reduced density matrix ρI(t) at time t, the
QME has to be solved for the whole past of ρI from t0 → −∞ to t,
i.e.,

ρ̇I(t) =
∫ t

−∞
dt′ΣI(t′, t)ρI(t′). (5.1)

The Markov approximation reduces the problem by using just the
actual state of the system and neglecting its history. This can be im-
proved by not only using the information about ρI(t) but additionally
the derivative ρ̇I(t). Eventually, we use an expansion in derivatives
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of the reduced density matrix and primitive integrals of the kernels
to obtain a time local QME as Rojek et al. [84] used in a similar way
to describe the pumping of quantum dots. This is accomplished by
integration by parts of Eq. (5.1) where an upper index will mark the
primitive integral of a function. The antiderivatives of the self-energy
are

Σ(k+1)
I (t− t′) =

t−t′∫
∞

dt′′Σ(k)
I (t′′). (5.2)

We apply the integration by parts once to Eq.(5.1) resulting in the
following term with the definition from above

ρ̇I(t) =−

 t−t
′∫

∞

dt′′Σ(0)
I (t′′)ρI(t′)


t

t′=−∞

+
t∫

−∞

dt′Σ(1)
I (t− t′)ρ̇I(t′).

(5.3)

The term in the square brackets can be identified as the Markov
approximation (see Eq. (2.11)) if evaluated at t′ = t and vanishes
if evaluated at minus infinity. Continuous application of the inte-
gration by parts produces derivatives of the reduced density matrix
multiplied by antiderivatives of the self-energy. It is an expansion in
the derivatives of ρI(t) and we call it the Markov expansion. To keep

things short, we define S(k) =
(
∞∫
0
dt′Σ(k)

I (t′)
)

and the kth derivative

of ρI(t) as ρ(k),I(t). The QME (5.1) contains the propagation of the
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first derivative and is in this notation

ρ(1),I(t) =
∞∑
l=0
S(l)ρ(l),I(t). (5.4)

The kth derivative can be derived by k-times differentiating Eq. (5.4)
and is coupled in this way to its antiderivative, itself and all the
derivatives of itself

k > 0; ρ(k),I(t) =
∞∑

l=k−1
S(1−k+l)ρ(l),I(t). (5.5)

The Eq. (5.4) is identical to Eq. (5.1) and is in this sense exact if
all summands are considered. Now, we recursively insert Eq. (5.5)
in Eq. (5.4). The right hand side of Eq. (5.4) should only depend
on ρ(0),I and not on any derivatives anymore (to keep the equation
compact we write ρ(k),I without its argument)

ρ(1),I = S(0)︸︷︷︸
A1

ρ(0),I +
∞∑
l=1
S(l)

∞∑
m=l−1

S(1−l+m)ρ(m),I, (5.6)

ρ(1),I = A1ρ(0),I + S(1)S(0)︸ ︷︷ ︸
A2

ρ(0),I

+
∞∑
l=1
S(l)

∞∑
m=l
S(1−l+m)ρ(m),I +

∑
l=2
S(l)S(0)ρ(l−1),I. (5.7)

Repeated inserting of Eq. (5.5) leads to a compact form of Eq. (5.1)

ρ(1),I(t) =
( ∞∑
n=1

An

)
ρ(0),I(t). (5.8)
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A An consists of different terms of products of S(k),

An =
∑
m

[
n∏
1
S(fm(n))

]
, (5.9)

which can be calculated following these rules for fm(n):

• The sum of the indices fm(n) for all S(fm(n)) of one term must
be n− 1, fm(n) ∈ N0.

• Assign each S(fm(n)) from right to left a position index p. The
sum of the indices fm(n) from 1 to a given position p must be
smaller p.

All terms fulfilling the two rules above must be summed (∑
m
). For

example, with these rules the possible terms of A3 are

S(2)S(0)S(0) ⇒ X

S(0)S(2)S(0) ⇒  
S(0)S(0)S(2) ⇒  
S(1)S(1)S(0) ⇒ X

S(1)S(0)S(1) ⇒  
S(0)S(1)S(1) ⇒  


A3 = S(2)S(0)S(0) + S(1)S(1)S(0). (5.10)

The condition for the steady state solution of the system where the
derivative of ρ(0),I is zero, i.e., ρ(1),I = Σ(0)

I ρ(0),I = 0, implies identical
solutions of the Markovian and non-Markovian QMEs in the steady
state and of course all the derivatives of ρ(0),I are then zero.
To have a useful expansion which we could truncate at wanted

order, we need a small expansion parameter. Therefore, we use the
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diagrammatic expansion introduced in chapter 2.3 and study the time
dependence of the self-energy and the coupling to the bath. The
diagrammatic expansion is done in the contractions and we call this
the Born expansion because the lowest order in contractions is known
as the Born approximation. The self-energy ΣI(t − t′) is defined as
shown before by all the possible irreducible diagrams on the Keldysh
contour

ΣI(t− t′) = + + + + + . . . .

(5.11)

With the notation we developed in this part we can write the dia-
grammatic expansion of the self-energy with a lower index k corre-
sponding to the number of contractions

ΣI(t, t′) = Σ1,I(t, t′) + Σ2,I(t, t′) + ...+ Σk,I(t, t′) + ... . (5.12)

The next step is to identify the small parameter which is done via
the combination of the two expansions.

5.1.2 Combined Expansion

It is important to define the correlation functions and their properties
as general as possible to identify the order of magnitudes of the self-
energy. Our assumption is that the bath or environment has a maxi-
mum memory time, i.e., a minimum decay rate γmin. Additionally, we
estimate the decay as an exponential function C≶

ij(t) ∝ exp(−γmint).
This is useful for the estimation of the order of magnitude of inte-
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grations of the correlation functions. In principal, our method is also
applicable for other cases if the order of magnitude of the integration
can be predicted.

The important energy scales of the problem are the characteris-
tic energy scale of the small quantum system which we call for now
∆E, the coupling strength gc between the system and the bath and
the inverse of the maximum correlation time ~γmin (for comparison
~ is written explicitly in this paragraph). The system energy ∆E,
e.g., is in a two level system given by the energy splitting of the
two levels and defines in general the time scale of coherent dynamics
in the system. It is included in the self-energy in exponential form
by changing from the interaction to the Schrödinger picture. The
Markov expansion as well as the number of contractions yields inte-
grations of the self-energy. Each integration leads to a factor of the
order 1/(~γmin + ∆E). We will assume that the correlation decay
rate is larger than the system energy scale ~γmin > ∆E. In this
limit we can approximate the prefactor by 1/~γmin. This is the most
important case. For example, if ~γmin � ∆E the bath correlation
decays fast on time scales relevant for the system dynamics and the
bath correlation function can be approximated with a Dirac delta
distribution. This case corresponds to the Markov approximation.
In the opposite case, the prefactor can be approximated by 1/∆E
and our model is still applicable. The Born approximation is known
as the weak coupling limit ∆E � gc. In our exact expansion we
show that a combination of the coupling strength gc and the decay
rate ~γmin is the correct expansion parameter.

We combine the two expansions by extending the former defined
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S(k) with another index accounting for the involved number of con-

tractions, i.e., S(k) =
∑
l S

(k)
l with S(k)

l =
(

t∫
−∞

dt′Σ(k)
l,I (t− t′)

)
.

Thus, the QME (5.1) in the Born-Markov expansion is given by

ρ(1),I(t) =
( ∞∑
n=1

∑
m

[
n∏
1

∑
l

S(fm(n))
l

])
ρ(0),I(t), (5.13)

which is the main equation of this part. To estimate the order of
magnitude of the terms we have a closer look at the S(k)

l . Each con-
traction produces a factor g2

c , so l contractions give g2l
c . Additionally,

the contractions result in each diagram in 2l−1 integrations and the
primitive integrals give k more integrations. Altogether, each S(k)

l

yields a factor O
(
g2l
c /γ

2l−1+k
min

)
which is the small parameter of our

Born-Markov expansion. To illustrate our result we present the ex-
pansion up to order O(g6

c/γ
5
min)

ρ(1),I =
(
S(0)

1 + S(0)
2 + S(0)

3 +

S(1)
1 S

(0)
1 + S(1)

2 S
(0)
1 + S(1)

1 S
(0)
2 + (5.14)

S(2)
1 S

(0)
1 S

(0)
1 + S(1)

1 S
(1)
1 S

(0)
1

)
ρ(0),I +O(g8

c/γ
7
min).

The Markov approximation is the lowest order in the expansion in
the primitive integrals, meaning all terms with a single S(0)

l (first row
of Eq. (5.14)). The Born approximation corresponds to lowest order
terms in the contractions S(k)

1 (one contraction). The two approxi-
mations which seem first independent can now be compared by the
order of magnitude of higher order terms. For example, the second
term in the Born expansion is S(0)

2 = O(g4
c/γ

3
min) which is exactly the
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same order of magnitude as the second term in the Markov expansion
S(1)

1 S
(0)
1 = O(g4

c/γ
3
min). Each higher order term of one of the expan-

sions is of the same order as a cross term in the other expansion.
Thus, it is not justifiable in general to use one of the approximations
and go to all orders in the other, as e.g., in non-Markovian calcu-
lations with Born approximation [85–88]. It is possible that such
investigations are correct on certain time-scales, what needs to be
judged case by case.
An outstanding property of our method is that all terms can be

traced back to their origin meaning if they result from correlation
parts of the bath, higher order contractions or are cross terms. But
they are still easy to estimate.

5.2 Spin-Boson Model

To see the influence of higher order terms of the different expansions
and approximations we analyze the spin-boson model in the this sec-
tion. The spin-boson model is an important and often used model
to analyze new ideas how to treat and expand the QME [89, 90].
It contains a two-level system (the spin) coupled to an infinite bath
of bosonic modes. The popularity of the model is due to its sim-
plicity and wide applicability, e.g., in electron transfer reactions [91],
bio molecules [92], cavity-QED [93, 94] and general dissipative quan-
tum systems [85, 95]. Moreover, it can be solved exact in the Born
approximation [96] and perturbatively in a wide parameter regime
[97].
We use now the method developed in the previous section of this
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thesis to test the influence of the higher order terms in the Born and
Markov expansions. Thus, we have to specify the different parts of
the total Hamilton operator H(t). The two level system is defined
by its energy splitting ∆E. We want to add a driving with driving
frequency ωD being in resonance with the spin ωD = ∆E to have the
possibility to excite the system from the equilibrium state,

HS(t) = 1
2∆Eσz + gDσx cos(ωDt)f(t). (5.15)

σz and σx are the Pauli matrices and the function f(t) defines the
shape of the driving pulse. To analyze the influence of the different
expansion terms we have a closer look at the decay of the excited
state, thus the driving is important for our example. We will use
the rotating frame with respect to the driving term to implement
this in our calculation. The rotating frame transformation is done by
separating the driving from the time independent Hamiltonian, i.e.,
Ã(t) = e−

i
2 ∆EσztA(t)e

i
2 ∆Eσzt.

Next, we specify the environment as a bath of harmonic oscillators

HB =
∑
i

ωib
†
ibi (5.16)

with bosonic creation b†i and annihilation bi operators. The bosonic
modes are coupled to the spin in the rotating wave approximation
via

HC = gc
∑
i

(
σ+bi + σ−b

†
i

)
. (5.17)
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The bath will enter the QME due to their correlation functions as in
Ref. [26]

∑
i

〈b̃†i (t
′)b̃i(t)〉B = C−(t− t′) =

∞∫
0

dωJ(ω)nB(ω)eiω(t−t′)

∑
i

〈b̃i(t′)b̃†i (t)〉B = C+(t− t′) =
∞∫
0

dωJ(ω)(nB(ω) + 1)e−iω(t′−t),

(5.18)

with the spectral density function J(ω) and the Bose-Einstein statis-
tic

nB(ω) = 1
exp(~ω/kBT )−1 . (5.19)

Eq. (5.18) consistently defines the spectral function as the Fourier
transform of the correlation function. The Fourier transformed func-
tions are indicated just by their argument ω

C−(ω) = J(ω)nB(ω),

C+(ω) = J(ω)(nB(ω) + 1). (5.20)

In this example we will use the Ohmic spectral density with the
Lorentz-Drude cutoff J(ω) = ω/(1 + ( ω

ωC
)2) and ωC the cutoff fre-

quency.

We start the simulation from the equilibrium without driving.
Then, we pulse the system for a time τ . This driving pulse affects
the reduced density matrix ρ̃(t) but also its derivatives. These infor-
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mation is included in Eq. (5.4) of the Markov expansion containing
all the derivatives of ρ̃(t)

ρ̃(1)(t) = i[gDσxf(t), ρ̃(0)(t)] +
∞∑
l=0
S̃(l)ρ̃(l)(t). (5.21)

It is particularly interesting that the derivatives give the spin an
inertia. So, the reduced density matrix replies with delay to the
beginning and ending of the driving pulse which is a non-Markovian
effect. To estimate and compare the different orders of magnitude of
the terms we assume that the kth derivative of the reduced density
matrix ρ̃(k) is of order O(gk·2c /γkmin). This is strictly speaking only
correct in the limit of a time independent system Hamiltonian as
described in section 5.1.2 in Eq. (5.13). To use this estimation, the
change induced by the driving needs to be slow in comparison to the
system dynamics. In the end, it results in the expansion up to order
O(g6

c/γ
5
min),

ρ̃(1) =i[H̃D(t), ρ̃(0)] +
(
S̃(0)

1 + S̃(0)
2 + S̃(0)

3

)
ρ̃(0)

+
(
S̃(1)

1 + S̃(1)
2

)
ρ̃(1) + S̃(2)

1 ρ̃(2) +O(g8
c/γ

7
min). (5.22)

Additionally, the energy splitting of the spin is in principle influ-
enced by the driving pulse. The new eigenenergies of the system
are ±

√
∆E2/4 + g2

D. Therefore, if the driving strength is small the
eigenenergies are approximately ±1

2 |∆E|, and will not effect the ex-
pansion of the self-energy.

The choice of our coupling Hamiltonian HC = gc
∑
i

(
σ+bi + σ−b

†
i

)
and the assumption of an equilibrium bosonic bath secures that the
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contractions in the self-energy Σ̃(t − t′) involve exactly one raising
σ̃+(t) and one lowering operator σ̃−(t). As an example, one of the
diagrams with one contraction is given by

q′

q̄

+q̄′

t′

− q
t

+q̄′

t′

− q
t

= 〈q̄| σ̃−(t) |q〉 〈q′| σ̃+(t) |q̄′〉 g2
c

∑
i

〈b̃†i (t)b̃i(t
′)〉B.

(5.23)

In this example, the term is only non-zero if q̄ is the down state |↓〉,
q is the up state |↑〉, q′ is the up state |↑〉 and q̄′ is the down state |↓〉.
The specific coupling Hamiltonian and the simplicity of the two level
system thus reduces the possible diagrams drastically. Moreover, a
systematic derivation of any higher order term is possible which is
seldom in quantum mechanical systems and a special feature of the
spin-boson model.

5.2.1 Evaluation of the Self-Energy

An evaluation of a diagram with nc contractions leads to 2nc−2 time
ordered integrals, one integral from the integration of the self-energy
itself and k integrals from the number of integration by parts (the
Markovian order of the term) as shown in section 5.1.2. Altogether,
this yields 2nc − 1 + k integrations for a diagram. Each contraction
gives

tl < tk : eib∆E(tl−tk)Cc(d(tl − tk)), {b, c, d} ∈ {−1,+1} (5.24)
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as contribution to the integrand. The parameters b, d and c depend on
the contraction, i.e., if the contraction is along the Keldysh contour,
on the order of the involved bath operators and on the involved energy
splitting. A vertex at position tl can thus either have a positive or
negative sign in front of the time tl, indicated below by an additional
parameter al, and defined by the parameters bl, dl and cl.

Now, we can write a general form of a diagram S̃
(k)
nc with nc con-

tractions in mathematical language with time ordered integrals Ijnc
and in the limit of t0 → −∞

2nc−1∏
j=1

∫
dω

cj
j

Ijnc =
2nc−1∏
j=1

∫
dω

cj
j

tj+1∫
tj−1

dtj

 t∫
∞

dt2nc

k · eiajtj(bj∆E−cjdjωj)
· eia2nc t2nc (b2nc∆E−c2ncd2ncω2nc ). (5.25)

Each vertex is at a time tj , j = 1, 2, . . . , 2nc − 1 (the time of the
last vertex is fixed to time t) and time ordered with tj < tj+1. A
vertex is defined by Eq. (5.24). We use the spectral functions (see
Eq. (5.20)) in this equation and the frequency integrals

∫
dω

cj
j

are
symbolic representations for the integrals including these spectral
functions

∫
dω<j

=
∞∫
−∞

dωjJ(ωj)n(ωj), (5.26)

∫
dω>j

=
∞∫
−∞

dωjJ(ωj)(n(ωj) + 1). (5.27)
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Thus, only nc spectral functions, one from each contraction, occur
with nc different ω

cj
j . The double counting by the index j numbering

the vertices must be ignored and all integrals are only evaluated once.
The time integrals to the power k are caused by the antiderivatives
of the self-energy and should be read as

 t∫
∞

k =
t∫
∞

dτ1

τ1∫
∞

dτ2 · . . . ·
τk−1∫
∞

dt2nc . (5.28)

The spin-boson model in our formulation restricts the possible com-
binations of the parameters aj , bj , cj and dj and the frequency ωj of
the spectral function for a contraction between the time steps tj and
tl to

ωj = ωl, aj = −al, bj = bl, cj = cl, dj = dl. (5.29)

All these parameters appear in Eq. (5.25) in the exponent of the
integrand. We combine them in the function Γj with η = 0+ as
convergence factor of the integrals in Eq. (5.25)

Γj = aj(bj∆E − cjdjωj − iajη). (5.30)

With the exponents Γj the time integrals Ijnc are

2nc−1∏
j=1

Ijnc =
exp

[
i
∑2nc
l=1 Γl t

]
∏2nc−1
j=1 (

∑j
l=1 iΓl) · (

∑2nc−1
l=1 iΓl)k

. (5.31)

At first glance this looks like the time dependence remains after the

121



5

5 Master Equation

integration, which would be incorrect. But each Γl is associated with
a vertex and all the vertices are connected with one other vertex via a
contraction. For each contraction between tj and tl the corresponding
Γj and Γl fulfill the condition Γj = −Γl in the limit η → 0. Summing
up all the Γl in the exponent leads to a zero and the numerator of
the fraction is 1, so the time dependence is removed.

To evaluate the denominator, the Sokhotsky-Weierstrass theorem

lim
η→0+

1
(x+ iη)n = P 1

xn
− iπ (−1)n−1

(n−1)! δ
(n−1)(x), (5.32)

where P denotes a principal value integral, can be used and yields

k = 0 :
2nc−1∏
j=1

Ijnc =
2nc−1∏
j=1

(−1)nc+1

πδ0(
j∑
l=1
−Re{Γl}) + iP 1∑j

l=1−Re{Γl}


(5.33)

k > 0 :
2nc−1∏
j=1

Ijnc =
2nc−1∏
j=1

(−1)nc+1

πδ0(
j∑
l=1
−Re{Γl}) + iP 1∑j

l=1−Re{Γl}


·
{

(−1)nc+1
[
π (−1)k−1

k! δ(k−1)
(2nc−1∑

l=1
−Re{Γl}

)

+iP 1
(
∑2nc−1
l=1 −Re{Γl})k

]}
. (5.34)

This rather complicated expression for the integrand of the inte-
grals

∫
dω

cj
j

is not useful, because of the combination of principal value
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integrals and Dirac delta distributions. But, the spin-boson model
in our form makes it again possible to add up diagrams contributing
to the same in- and outgoing states and number of contractions. For
example, depending on the diagram, mirror operations on the dia-
gram by changing the order of the operators on the real time axis
can lead to such behavior . This corresponds to changing the sign of
aj , but not touching the other parameters bj , cj and dj . This means
that complex numbers with opposite imaginary parts are summed in
the Eq. (5.33) and Eq. (5.34). Therefore, the imaginary part of the
self-energy with the principal values vanishes. But in general there
could be principal value contributions to the real part of the system
in higher order cross terms which needs to be taken into account.
In the simple case of the Born-Markov approximation with k = 0

and nc = 1 only the delta distribution δ(ω − ∆E), the real part of
Eq. (5.33), contributes to the QME. In the appendix A.2 an example
of a summation of higher order diagrams is shown.
Based on reference [57] (see section 2.3), we established the follow-

ing rules for our system [II]:

I. A contraction from a − -Vertex to a + -Vertex along the Kel-
dysh-contour gives a factor ∂kC̃−(±∆E)

∂ωk
.

II. A contraction from a + -Vertex to a − -Vertex along the Kel-
dysh-contour gives a factor ∂kC̃+(±∆E)

∂ωk
.

III. The prefactor g2nc
c · (−1)nc+l is given by nc the number of con-

tractions, l the number of vertices on the lower contour and gc
the coupling constant to the bath.
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IV. Each vertex at ti gives a factor 〈q̄i|σi |qi〉 with |qi〉 the incoming
state and |q̄i〉 the outgoing state.

5.2.2 Comparing Different Orders

The different terms of our expansion can be used to investigate the
effect of the often used Born and Markov approximations. Therefore,
we compare three different simulations. First, a simulation which
contains all terms of our expansion is given by Eq. (5.22). This, we
call the non-Born-Markov (NBM) simulation. Second, we use the
standard Born-Markov (BM) approximation and third, we compute
the dynamics for the QME with Born approximation and without
Markov approximation which we name Born simulation (Born). The
QME in the BM approximation can in our theory be written as only
single contraction diagrams and lowest order in the (anti)derivatives
(k = 0)

ρ̃(1) = S̃(0)
1 ρ̃(0). (5.35)

This is equivalent to [26]

˙̃ρ(t) = −
t∫

0

dt′ TrB
{[
H̃C(t), [H̃C(t′), ρ̃(t)ρB]

]}
. (5.36)

Furthermore, it is straightforward to write the QME with Born ap-
proximation but to all orders in the Markov expansion by using only
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single contraction diagrams S(l)
1 but all terms in k in Eq. (5.4)

ρ̃(1)(t) =
∞∑
k=0
S̃(k)

1 ρ̃(k)(t), (5.37)

which is in all orders equivalent to Ref. [26] and Eq. (2.8)

˙̃ρ(t) = −
t∫

0

dt′ TrB
{[
H̃C(t), [H̃C(t′), ρ̃(t′)ρB]

]}
. (5.38)

For the numerical simulations we want to compute the dynamics up
to the order O(g6

c/γ
5
min). This is identical to Eq. (5.22) with only

single contractions

ρ̃(1) = S̃(0)
1 ρ̃(0) + S̃(1)

1 ρ̃(1) + S̃(2)
1 ρ̃(2). (5.39)

The focus of this analysis is to investigate the decay of an excited
state after the pulse depending on the involved terms from the ex-
pansion. For that reason, we prepare the excited state in the NMB
model and use the resulting reduced density matrix for all models as
starting point. As a result, the preparation is not model dependent.
Naturally, initial state correlations of the excited state with the non-
Markovian bath are included. Thus, the simulation starts with an
equilibrium state and is then pulsed with a weak π/2-pulse in the
rotating frame to excite the system. We use as pulse shape a simple
step function

f(t) = Θ(t− tp − π
2gD )Θ(tp − t), (5.40)
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with tp the end, π
2gD the length and gD the height of the pulse. There-

fore, the area under the pulse is π/2.

As a measure to compare the different decays of the reduced density
matrices, we use the trace distance [98]

D(A,B) = 1
2 ||A−B||1, (5.41)

with A and B two trace class operators and || · ||1 the trace norm. A
trace class operator has a well defined trace also for an infinite dimen-
sional Hilbert-space. Particularly, density matrices fulfill this condi-
tion. The physical interpretation of the trace distance for two reduced
density matrices is the information about the distinguishability be-
tween them [98]. Additionally, the non-Markovianity of a system
can be quantified by verifying if and how strong the trace distance
increases in time. Markovian processes can in general only decrease
the trace distance of two reduced density matrices with trace distance
D(ρa(0), ρb(0)) at time t = 0, i.e., D(ρa(t), ρb(t)) ≤ D(ρa(0), ρb(0)).
If the trace distance grows, then a back flow of information from
the bath to the quantum system has taken place which we call a
non-Markovian process or effect.

We use in the following investigation the inverse temperature β =
1

kBT
= 10 ∆E, the cut-off frequency ωC = 10 ∆E and measure all

energy scales in multiples of the system energy splitting ∆E. As
driving strength we choose gD = 0.2∆E yielding an energy splitting
of the energy eigenstates ≈ ±0.54|∆E|. We will use for simplicity
also during the driving time the bare energy splitting of ±0.5|∆E|.
The end of the pulse tp fixes the time t = 0, in order to investigate
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FIG. 5.1: The time t = 0 equals the moment of the end of the pulse
tp. The inverse temperature is β = 10 ∆E and the pulse strength is
gd = 0.2 ∆E. a) The decay of the excited state ρ↑↑ with and without
BM-approximation for the strongest coupling gc = 0.2 for short times
and intermediate times. b) The trace distance D(ρBM, ρNBM) between
the BM simulation ρBM and the NBM simulation ρNBM for different
coupling strengths gc. Reprinted with permission from [II]. Copyright
(2014) by the American Physical Society.

for all positive times the decay of the excited state.

In Fig. 5.1 the difference between the NBM model and the common
BM approximation is shown. The population of the up state |↑〉 is en-
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FIG. 5.2: The time t = 0 equals the moment of the end of the pulse
tp. The inverse temperature is β = 10 ∆E and the pulse strength is
gd = 0.2 ∆E. a) The decay of the excited state ρ↑↑ with and without
Born approximation for the strongest coupling gc = 0.2 for short times
and intermediate times. b)The trace distance D(ρBorn, ρNBM) between
the BM simulation ρBorn and the NBM simulation ρNBM for different
coupling strengths gc. Reprinted with permission from [II]. Copyright
(2014) by the American Physical Society.

coded in the matrix element ρ↑↑(t). With our choice of small temper-
atures the system will for long times decay in the down state |↓〉. In
the BM expansion the decay is strictly exponential which can be seen
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from the corresponding ordinary differential equation for the matrix
element ρ̇↑↑(t) = −Γ↑↑ρ↑↑(0) with Γ↑↑ = 〈↑ |σ+| ↓〉 〈↓ |σ−| ↑〉C>(∆E)
and negligible Γ↓↓ because of the small temperature (see Fig. 5.1 a)).
The possible excitation from the down state |↓〉 is neglected because
of the low temperature. However, NBM model shows in the begin-
ning no decay because of the inertia or memory of the preparation.
The past of the state is important for the system and initial correla-
tion after the pulse exist. The dynamics for short and intermediate
times differs from the BM approximation as shown in Fig. 5.1 b).
The trace distance shows two peaks. The first one right after the
beginning of the decay. Then, for strong couplings, the curves show
a minimum and rise again. The non-Markovianity of the system
induces a back flow of information resulting in general in a charac-
teristic oscillating behavior. The stronger the coupling strength the
larger is the memory effect. In the long time limit the system decays
into its ground state and the different models yield the same state.
In principal, there could be higher order coupling corrections giving
a different steady state, but in our case this is not measurable. As
one would suspect, the higher order terms become more important
for short to intermediate times and stronger couplings.

In the next comparison in Fig. 5.2 we use the Born approximation
and all the Markovian expansion terms up to order O(g6

c/γ
5
min). So,

we directly see the influence of higher order contractions. As sus-
pected, without the higher order contraction terms the decay is too
slow as in Fig. 5.2 a). The non-exponential decay in the beginning
produced by the higher order Markovian terms can be seen in both
models. All models eventually decay into the ground state |↓〉. The
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trace distance again peaks, but in comparison to Fig. 5.1 b) shows
no double peak structure. Interestingly, the trace distance is larger
with just the Born approximation compared to trace distance with
the BM approximation. This demonstrates the consequence of not
adding up all terms belonging to the same order of magnitude. In
summary, higher order terms in the Born expansion yield a faster
decay, whereas higher order terms in the Markov expansion lead to
a kind of inertia behavior.
In this section we used our model to explicitly calculate higher

order corrections to the BM approximation and numerically inves-
tigate the influence of these terms. In our opinion, this is not the
strength of our method, even though one advantage is that higher
order terms only have to be computed once and can be used for all
time steps of the simulation. The theory is more suitable in the es-
timation of orders of magnitude of higher order terms to justify the
Born and Markov approximations or to define the parameters and
time regimes in which they are valid.

5.3 Initial State Problem

In this section we want to show an application of our method in
which we can understand physical consequences of non-Markovianity
without calculating the self-energies explicitly. The problem we ad-
dress is the occurrence of initial state correlations present in non-
Markovian systems. If the system is always depending on its past,
the investigation of an initial state which is not the steady state is not
possible without considering initial state correlations with the bath.
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The preparation of the excited state is important for the dynamics,
therefore we introduced the driving pulse in section 5.2. To quantify
the initial correlations, we cut the QME at tc = 0 and examine the
limit t0 → −∞

ρ̇I(t) =
0∫

−∞

dt′Σ(0)
I (t− t′)ρI(t′)

︸ ︷︷ ︸
A0

+
t∫

0

dt′Σ(0)
I (t− t′)ρI(t′)︸ ︷︷ ︸

B0

. (5.42)

The initial correlations of the system are given by the term A0 and
the dependence of ρI(t′) in B0 on its past. They are non-Markovian
effects and thus we use our Markov expansion from section 5.1.1 to
investigate the order of magnitude of these correlations. We apply
integration by parts to A0 and B0 and the kth order of the Markov
expansion of A0 and B0 are

Ak =
0∫

−∞

dt′Σ(k)
I (t− t′)ρI(k)(t′) (5.43)

=

 t∫
∞

dt′Σ(k)
I (t′)

 ρI(k)(0)

︸ ︷︷ ︸
AIC
k

+
0∫

−∞

dt′Σ(k+1)
I (t− t′)ρI(k+1)(t′)

︸ ︷︷ ︸
Ak+1

,

Bk =
t∫

0

dt′Σ(k)
I (t− t′)ρI(k)(t′) = S(k)ρI(k)(t)︸ ︷︷ ︸

see Eq. (5.4)

(5.44)
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−

 t∫
∞

dt′Σ(k)
I (t′)

 ρI(k)(0)

︸ ︷︷ ︸
BIC
k

+
t∫

0

dt′Σ(k+1)
I (t− t′)ρI(k+1)(t′)︸ ︷︷ ︸

Bk+1

.

In Bk the expected term from Eq. (5.4) can be recovered, but also
the initial correlations appear inBIC

k . As one can easily see, by adding
Ak and Bk the terms AIC

k and BIC
k cancel and Eq. (5.4) is again exact

by adding all orders in k. The simulation of an excited state without
the preparation belongs to neglecting the terms Ak and the initial
correlations BIC

k must be considered. They are decaying like the self-
energy S(k)ρ(k),I(t) in time and are thus suppressed for t larger than
1/γmin, the maximum correlation time of the bath. But the short
time behavior of the system is influenced by the non-Markovian initial
correlations. With our method the order of magnitude of the initial
correlations can be estimated to any order in the Markov expansion.

5.4 Two-Time Correlator

Another example of an application of our expansion by estimating
the order of magnitude of different terms was made by Jin et al. in
Ref. [IV]. This section is based on the work [IV] and the reference
will only be cited at selected places in the text.
As already shown in this thesis, the reduced density matrix of a

small quantum system enables the possibility to evaluate the expec-
tation value 〈A(t)〉 of any operator A of the system by calculating
TrS{Aρ(t)}. This is a single-time expectation value and the compu-
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tation is straightforward. The situation already becomes much more
complicated considering two-time correlators

〈A(t)B(0)〉 = TrSB{ρSBU(t0, t)AU(t, 0)BU(0, t0)}, (5.45)

with A and B system operators and the full time evolution of the sys-
tem plus bath as in Sec. 2.3. With the Born-Markov approximation
the two-time correlator is given by the quantum regression theorem
[25, 26, 56]

〈A(t)B(0)〉 = TrS{AΠ(t, 0)Bρ(0)}, (5.46)

with Π(t, 0) the time evolution of the QME. This equation implies
that the full time evolution Π(t, 0) is time-translational invariant.
This is not the case for a non-Markovian system, i.e., Π(t, 0) 6=
Π(t, t′)Π(t′, 0). But, Jin et al. [IV] could show that a very similar
version of the quantum regression theorem can be found even in the
case of non-Markovianity of the dynamics and in lowest order in the
coupling strength, i.e., the Born approximation. To achieve this, the
QME is expanded with the hierarchical QME method [99] which we
will not explain here any further. The final result is

〈A(t)B(0)〉 = TrB
{
A
[
~Π(t, 0)B~ρ(0)

]}
, (5.47)

where the components of the density operators in the vector are now

~ρ(t) =
[
ρ(t), φ+(ω, t), φ−(ω, t)

]T
. (5.48)
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The matrices φ+(ω, t) and φ−(ω, t) are auxiliary density matrices
used to take care of the non-Markovianity of the system (see Ref. [IV]
and [99] for details). The initial state at t = 0 is given by

B~ρ(0) = {Bρ(0), Bφ+(ω, 0), Bφ−(ω, 0)}, (5.49)

where ρ(0) is the density matrix being time evolved from a initial
time t0 → −∞. Thus, ρ(0) = ρeq is the equilibrium reduced density
matrix. The new object ~Π(t, 0) is time-translational invariant and
the quantum regression theorem is restored. In the derivation of the
non-Markovian quantum regression theorem a full non-Markovian
calculation, i.e., to all orders in the Markov expansion, with Born
approximation was done. Because terms of the Markov expansion
are of the same order as terms in the Born expansion as shown in
Sec. 5.1.2, the range of validity of the solution needs to be checked.

To connect the two-time correlator with our theory, we sketch its
derivation in the diagrammatic way. We assume that we can write
the density matrix for t0 as a direct product of the reduced density
matrices of the system and the bath, which is valid for the limit
t0→−∞,

ρSB(t0) =ρB(t0)⊗
∑
nn′

ρnn′(t0) |n〉 〈n′| , (5.50)

〈A(t)B(0)〉 = Tr
[
ρB(t0)⊗

∑
nn′

ρnn′(t0) |n〉 〈n′|

U(t0, t)AU(t, 0)BU(0, t0)
]

(5.51)
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=
∑
n,n′

ρnn′(t0)

〈n′|TrB
{
ρB(t0)U(t0, t)AU(t, 0)B̂U(0, t0)

}
|n〉 , (5.52)

where |n〉 is a basis set for the system. By changing to the interac-
tion picture the equation can be further simplified. The exponential
functions UI(t, t′) expanded in the coupling strength between bath
and system yields

UI(t0, t)AI(t)UI(t, 0)BI(0)UI(0, t0) = AI(t)BI(0)

+
∫ t

0
dt1

∫ t1

0
dt2HC,I(t1)AI(t)HC,I(t2)BI(0)

−
∫ t

0
dt1

∫ t1

0
dt2HC,I(t2)HC,I(t1)AI(t)BI(0) + · · · , (5.53)

〈A(t)B(0)〉= AI(t)

BI(0)

+ AI(t)

BI(0)

+ AI(t)

BI(0)

+ AI(t)

BI(0)

+ . . . . (5.54)

This leads to

〈Â(t)B̂(0)〉 =
∑
n,n′

ρnn′(t0)
∏
nn′

(t0, AI(t), BI(0)). (5.55)

Each dot in a diagram denotes a coupling Hamiltonian HC. The
superoperator

∏
nn′(t0, AI(t), BI(0)) is the full time evolution of the

density matrix including the two operators A and B. By using Wicks
theorem the trace over the bath decays into two point functions rep-
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resented by a contraction between the dots resulting in

AI(t)

BI(0)

∏ = AI(t)

BI(0)

∏ ∏ + AI(t)

BI(0)

∏ ∏∑
B . (5.56)

Here, ΣB is the self-energy of the vertex correction including the
operator B and contains all the inseparable diagrams. Eq. 5.56 is still
exact. The first diagram corresponds to the Markov approximation,
i.e., the possibility to cut the propagator Π at time t = 0 while
the second diagram contains contractions over the vertex B. This
equation rewritten in algebraic form is

〈A(t)B(0)〉 = Tr {AI(t)Π(t, 0)BI(0)Π(0, t0)ρ(t0)

+
∫ t

0
dt2

∫ 0

t0
dt1AI(t)Π(t, t2)ΣB(t2, t1)Π(t1, t0)ρ(t0)

}
. (5.57)

In the following, we assume that t0 → −∞ and the reduced density
matrix at t = 0− is in equilibrium ρeq. This formalism can be used to
discuss the range of validity of the non-Markovian correlation func-
tion. As shown in Sec. 5.1.2, non-Markovian effects are in general of
the same order as higher order contractions in the self-energy. How-
ever, for this correlation function we have a well defined time scale
and for short times scales, the combination of non-Markovian QME
and lowest order self-energy can be valid.

We investigate the short time behavior of the two-time correlator
and therefore have a closer look at the Taylor expansion of the time-
derivative of the correlation function, i.e, G(t) = d〈A(t)B(0)〉

dt for small
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t = 0+,

G(t) = G(0) + dG(t)
dt

∣∣∣∣
t=0

t+ 1
2

d2G(t)
dt2

∣∣∣∣∣
t=0

t2 + . . . . (5.58)

For the first terms, this can be written in the explicit form

G(t) = Tr

A ∞∫
0

dtΣB(t)ρeq

+ Tr {A [Σ(0)B + ΣB(0)] ρeq} t

+ 1
2 Tr

{
A
[
Σ̇(0)B + Σ̇B(0)

]
ρeq
}
t2 + · · · . (5.59)

Following the estimation of the order of magnitude of the self-energy
from Sec. 5.1.2, we roughly get

G(t) ∼Tr [Af2(si,I, B, ρeq)]
∑
l

g2l
C

γ2l−1
min

+ Tr {A [f1(si,I)Bρeq + f2(si,I, B, ρeq)]}
∑
l

g2l
C

γ2l−2
min

t

+ 1
2 Tr {A [f1(si,I)Bρeq + f2(si,I, B, ρeq)]}

∑
l

g2l
C

γ2l−3
min

t2

+ . . . , (5.60)

where γmin is the smallest decay rate of the correlation function of the
bath (see Sec. 5.1.2), f1(si,I) and f2(si,I, B, ρeq) are the formal expres-
sions, i.e., the matrix elements arising from ΣB and Σ, respectively.
We assume that the magnitudes of f1(si,I)Bρeq and f2(si,I, B, ρeq)
have the same order of magnitude. Altogether, for times t . 1/γmin

all the terms of the Markov expansion need to be taken into account,
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but the sums can be truncated at the lowest order coupling l = 1,
i.e., the Born approximation,

g2
C

γmin
+g2

C · t+ g2
Cγmin · t2 + . . .

>
g4

C
γ3

min
+ g4

C
γ2

min
· t+ g4

C
γmin

· t2 + . . . > . . . , for t < 1
γmin

.

(5.61)

138



6

6 Chapter

Conclusion

The field of nanoelectronics is rapidly growing and new technological
devices are announced more and more frequently. This thesis con-
tributes to this important field by giving new insights in the theoret-
ical description of nanoelectronics by the quantum master equation
(QME). On the one hand, we investigated two practical important
systems, i.e., magnetic adatoms on metallic surfaces and double-
quantum dot (DQD) lasing. On the other hand, we explored the
foundation and basic properties of the QME.
In chapter 3, the dynamics of the total angular momentum states

of holmium (Ho) atoms on platinum (Pt) with (111) surface config-
uration were analyzed with our computational tool which is able to
simulate also complex QME. The work was previously reported in
publication [III]. We identified an important regime of parameters
where the system behaves deeply quantum mechanically. It cannot
be described by rate equations for transitions between the eigenstates
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of the crystal-field Hamiltonian HCF, as it was done before for other
magnetic adatom systems [34–38]. Instead, the system has to be
treated by the full quantum master equation. In general, its steady-
state basis differs from the HCF eigenstates. This is an example of
the environment-induced superselection principle [39, 60]. We ana-
lyzed how the relaxation time T1 depends on various parameters of
the system. In ideal situations at low temperatures it should be ex-
tremely long. In contrast, the decoherence time T2 is always very
short. We further described a method to initialize the system in one
of the two ground states by suitable voltage pulses. By adjusting the
parameters describing deviations from the ideal situation we could
roughly fit the experiments, with their remarkably long lifetimes.

Our analysis showed that with more precise and improved param-
eter control, the system would acquire even longer lifetimes than
observed already. The system therefore promises to be useful as a
single-atom memory with the possibility to address the memory by
short pulses of electric currents with high fidelity. On the other hand,
at this stage, we have to conclude that there is too little experimen-
tal data available to determine the parameters independently. A
further detailed investigation of the coupling parameter cTB includ-
ing the scattering strength of an electron tunneling between tip and
bulk via the atom and the other parameters is required to identify
the main perturbation limiting the lifetime of the Ho adatom in the
experiment. The lifetime depends strongly on an applied magnetic
field. Analysis of this effect would help to obtain the missing infor-
mation of the parameters. One interesting extension of the presented
work would be a classification of possible stable combinations of other

140



6

adatoms and symmetries of the adsorption site. Perhaps even bet-
ter setups than Ho and Pt(111) with similar symmetry protection
against scattering could be found.

The second system investigated in chapter 4 is a double quantum
dot system coupled to a microwave oscillator. The results were pub-
lished in Ref. [V] of the publication list. Electron transport through
the system may lead to a lasing state (strictly speaking a “masing”
state) with a narrow resonance peak in the photon number as a func-
tion of the detuning tending towards a Poisson distribution [40, 41].
It is interesting that this property of the photon field is reflected also
in a peak in the transport current providing an alternative to study
the lasing state. We extended earlier work on dots with one level each
[41] to dots with multiple levels. As one could expect, we see several
peaks similar to the situation with a single level in each dot but also
qualitatively different ones. In particular, we observed a backward
tunneling process in a cascade of transitions leading to a lasing peak
in the photon number associated with a dip in the transport current.

These multi-level processes involve inelastic transitions, which may
occur in the presence of phonons. We therefore analyzed the multi-
level DQD-microwave oscillator system coupled to piezoelectric acous-
tic phonons. We used realistic parameters, taken from the exper-
iments of Liu et al. [49], including the phonon spectrum as deter-
mined in this reference. The lasing peaks and the Fano factor are
sensitive to the coupling strength as well as the spectrum and may
provide a tool to analyze phonon properties in more detail. We ex-
tended earlier work with single levels in each dot to multiple levels
and conducted a detailed analysis of the coupling to phonons. Both
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investigations were covered by the QME. The description accounts for
various quantum properties, such as lasing, but we also see the effect
of two-photon transitions. Further physical properties of the system,
e.g., spin-degrees of freedom leading to spin-blockade effects [100] or
spin-photon coupling [101], could be implemented in this framework.

In chapter 5, we developed an exact expansion of the QME in
the coupling strength to the environment and in the environment
correlation time. This was presented before in publication [II]. The
approach allows a physical interpretation of the different expansion
terms, thus providing a better understanding of the QME as com-
pared to the standard textbook derivation presented in chapter 2.
In particular, the relation between the Born and Markov expansions
become clear. Higher order terms in the Born expansion are of the
same order of magnitude as higher order non-Markovian terms. This
is remarkable since many investigations of non-Markovian effects use
the Born approximation without specifying the time scales of the
problem [85, 87, 88, 102].

The interest in non-Markovian models has grown, on the one hand,
because of recent experiments [103, 104], and ,on the other hand,
because of theoretical predictions of, e.g., noise cancellation [105] or
improved decoherence times [106]. Therefore, an investigation of the
system beyond the Markovian approximation also requires in general
going beyond Born approximation, despite, e.g., short timescales. We
demonstrated this in Sec. 5.2 with the spin-boson model. In addition,
non-Markovianity is important for initial state correlations [25, 55,
107, 108], which can be quantified with our expansion (see Sec. 5.3).
Specific terms can be identified as initial correlations by cutting the
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exact time evolution and can be calculated in principle to all orders.
This expansion also provides a convenient tool to estimate the validity
of the common Born, Markov and initial state approximation and
an approach to go beyond. As an example, we showed the non-
Markovian effects on two-time correlators and estimated the range of
the validity of the model in Sec. 5.4.
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Appendix

A.1 Implementation of the QME

In this Appendix we want to present the general form of the imple-
mentation of the QME in program-code as it was done in all the sim-
ulations in this thesis [II, III, V] and is nicely reviewed in Ref. [109].
The general form of the master equation is given by Eq. (2.36)

ρ̇(t) =i [ρ(t), HS] +
∫ t

t0
dt′Σ(t′, t)ρ(t′). (A.1)

The self-energy Σ(t′, t) contains system operators from the coupling
between system and bath in combination with the reduced density
matrix ρ(t′). With the help of our Born-Markov expansion from
Sec. 5.1.2, we can simplify this part to terms which are combina-
tions of the reduced density matrix ρ(t) at time t or derivatives of
ρ(t). In the simplest and most important case of the Born-Markov
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approximation the QME can be written as

ρ̇I(t) = −
∑
ij

∫ t

t0
dt′
[
si(t)sj(t′)ρI(t)− sj(t′)ρI(t)si(t)

]
Cij(t− t′)

+
[
ρI(t)sj(t′)si(t)− si(t)ρI(t)sj(t′)

]
Cji(t′ − t).

(A.2)

But also for higher order QME with several correlation functions the
structure of the equation remains the same

ρ(1)(t) = i
[
ρ(0)(t), HS

]
−
∑
ij
k=0

[
SiSjρ(k)(t)Γ

(k)
ij − Sjρ(k)(t)SiΓ

(k)′
ij

]

+
[
ρ(t)SjSiΓ(k)

ji − Siρ(t)SjΓ(k)′
ji

]
.

(A.3)

Here, again the index k at the reduced density matrix labels the
derivative of ρ(t). The operators Si can be arbitrary multiplications
of system operators si depending on the number of contractions and
the order in the diagram. The rate Γ(k)

ij is defined via the in gen-
eral multiple correlation functions and the evaluation of the time
integrals. For simplicity we will consider only k = 0, but the gen-
eralization is straightforward. This equation written in the basis
{|n〉}n=1,2,...,d, e.g., the system eigenbasis with dimension d, is just a
system of coupled ordinary differential equations [109] of the matrix
elements ρnm(t) = 〈n|ρ(t)|m〉

ρ̇nm(t) =
d∑
l=1

i (ρ(t)nlHSlm −HSnlρ(t)lm)
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−
∑
ij

vu=1

[
SinuSjuvρvm(t)Γij − Sjnuρuv(t)SivmΓ′ij

]

+
[
ρnu(t)SjuvSivmΓji − Sinuρuv(t)SjvmΓ′ji

]
. (A.4)

By introducing the vectorization of a matrix vec{·} meaning the
rewriting of a matrix row by row as a vector the equation can be
simplified to the form [109]

vec{ρ(t)} =~ρ(t) = (ρ11, ρ12, . . . , ρd1, ρd2, . . . , ρdd)T (A.5)

~̇ρ(t) =M~ρ(t). (A.6)

The superoperatorM is derived with the relation

vec{AXB} = (A⊗BT )vec{X}, (A.7)

where A, X and B are matrices and the symbol ⊗ is the Kronecker
defined as

A⊗B =


a11B · · · a1nB
... . . . ...

am1B · · · amnB

 . (A.8)

In our case, we can transform the different terms of the QME by
inserting identity matrices, e.g.,

vec{ρ(t)HS} =vec{1ρ(t)HS} =
(
1⊗ [HS]T

)
~ρ(t), (A.9)

vec{Sjρ(t)Si} =
(
Sj ⊗ STi

)
~ρ(t). (A.10)
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Eventually, the superoperatorM is given by

M =MC +MD (A.11)

MC = i
(
1⊗HT

S −HS ⊗ 1
)

(A.12)

MD = −
∑
ij

[
(SiSj ⊗ 1) Γij −

(
Sj ⊗ STi

)
Γ′ij

+
(
1⊗ [SjSi]T

)
Γji −

(
Si ⊗ STj

)
Γ′ji
]
, (A.13)

with MC the coherent and MD the dissipative part of the QME.
The Eq. (A.6) is solved by the matrix exponential ofM

~ρ(t) = eMt~ρ(0). (A.14)

It is possible to expand the solution for the reduced density matrix
~ρ(t) in eigenvectors and exponentials of the eigenvalues ofM

M~ρn =mn~ρn (A.15)

~ρ(t) =
d2∑
n=0

cn~ρne
mnt (A.16)

The eigenvalues mn have the property that m0 = 0 and all other
n > 0 are negative mn < 0. The prefactors cn are fixed by the initial
condition

~ρ(0) =
d2∑
n=0

cn~ρn. (A.17)
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From the construction of this expansion it is clear that the steady
state solution t→∞ corresponds to the eigenvector with zero eigen-
value m0, i.e., ~ρ0 = ~ρSt. All other contributions of the other eigen-
vectors are exponentially suppressed. In addition, further properties
of the eigenvectors can be extracted from Eq. (A.16). Because the
reduced density matrix ρ(t) and the steady state density matrix ρSt

have to fulfill the properties of a density matrix, in particular that
their traces are one, all the other eigenvectors ofM with n > 0 can
not change the trace. This implies that they (rewritten as matrices)
have trace zero and are no density matrices. In fact, they can by
interpreted as transitions channels. Thus, a spectral decomposition
of the superoperatorM like in Eq. (A.15) gives access to the steady
state and all the transition rates between the steady state basis states
[75].
We want to give a small example how to implement the Eqs. (A.13)

and (A.15) in Mathematica with the simple Si = Sj = Jz coupling
term.

1 CorP=Table [ 0 , {k , 1 , d} , { l , 1 , d } ] ;
2 CorM=Table [ 0 , {k , 1 , d} , { l , 1 , d } ] ;
3 {EigVal , EigVec} = Eigensystem [Hs ] ;
4 EigVec = Transpose [ EigVec ] ;
5 JzNew=Inve r s e [ EigVec ] . Jz . EigVec ;
6 For [ k = 1 , k < (d+1) , k++,
7 For [ l = 1 , l < (d+1) , l++,
8 CorP [ [ k , l ] ]=CorFunc [ EigVal [ [ l ] ]−EigVal [ [ k ] ] ] ;
9 CorM [ [ k , l ] ]=CorFunc [ EigVal [ [ k ] ]−EigVal [ [ l ] ] ] ;

10 ] ;
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11 ] ;
12 MCoherent= −I ( KroneckerProduct [ Hs ,

Ident i tyMatr ix [ d ]]−KroneckerProduct [
Ident i tyMatr ix [ d ] , Transpose [ Hs ] ] ) /hbar ;

13 MDiss= − ( KroneckerProduct [ JzNew . ( JzNew∗CorP) ,
Ident i tyMatr ix [ d ] ] − KroneckerProduct [ ( JzNew∗
CorP) , Transpose [ JzNew ] ] + KroneckerProduct [
Ident i tyMatr ix [ d ] , Transpose [ ( JzNew∗CorM) .
JzNew ] ] − KroneckerProduct [ JzNew , Transpose [
JzNew∗CorM ] ] ) ;

14 MTot=MCorherent+MDiss ;
15 {MVal , MVec}=Eigensystem [MTot ] ;
16 rhoSteady=MVec [ [ − 1 ] ] ;
17 s c a l i n g=Tr [ ArrayReshape [ rhoSteady , {d , d } ] ] ;
18 rhoSteady=(1/ s c a l i n g ) ∗ rhoSteady ;

Here, Hs can be a arbitrary system Hamiltonian with dimension d.

A.2 Higher Order Diagrams in the
Spin-Boson Model

As an example, we show the diagrams of the spin-boson model in-
vestigated in Sec. 5.2 for k = 0 (Markov approximation) and two
contractions nc which couple the reduced density matrix element ρ↑↑
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to itself
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+−

+
− +

−+

+
+
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−

+
−

−

+

+

+
− +−+

+
+ −+−

=

∫
ω<1

∫
ω<2

[(
πδ(ω1 −∆E) + P i

ω1−∆E

)

·
(
πδ(∆E − ω2) + P i

∆E−ω2

) (
πδ(ω1 − ω2) + P i

ω1−ω2

)
+
(
πδ(ω1 −∆E)− P i

ω1−∆E

) (
πδ(∆E − ω2)− P i

∆E−ω2

)
·
(
πδ(ω1 − ω2)− P i

ω1−ω2

)
+
(
πδ(∆E − ω1) + P i

∆E−ω2

)2 (
πδ(ω2 − ω1) + P i

ω2−ω1

)
+
(
πδ(∆E − ω1)− P i

∆E−ω2

)2 (
πδ(ω2 − ω1)− P i

ω2−ω1

)
+
(
πδ(∆E − ω1) + P i

∆E−ω1

) (
πδ(ω2 −∆E) + P i

ω2−∆E

)
·
(
πδ(ω2 − ω1) + P i

ω2−ω1

)
+
(
πδ(∆E − ω1)− P i

∆E−ω1

)
·
(
πδ(ω2 −∆E)− P i

ω2−∆E

) (
πδ(ω2 − ω1)− P i

ω2−ω1

)]

=
∫
ω<1

∫
ω<2

6π3δ(. . .)3 +
∫
ω<1

∫
ω<2

3π

−Pδ(ω1−ω2)
(ω1−∆E)2 + Pδ(ω1−ω2)

(ω1−∆E)(ω2−∆E)︸ ︷︷ ︸
=0

− P 2 δ(ω1−∆E)
(ω1−∆E)(ω1−ω2)︸ ︷︷ ︸

=0(PV)

− Pδ(∆E−ω2)
(ω1−∆E)(ω1−ω2) + Pδ(ω1−∆E)

(ω2−∆E)(ω1−ω2)︸ ︷︷ ︸
=0

 (A.18)

The parts which contain the principal values cancel.
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