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Preface

In this work we consider an inverse problem arising from electromagnetic
scattering by a medium covered with a very thin and highly conducting
layer. Our main objective is to show that the Factorization Method, which
is an inverse problem solution algorithm, can be applied to detect the
position and shape of such objects from the measurements of the scattered
waves at large distances. Such problems originate from applications such
as land-mine detection, radar or seismic imaging. We consider two special
cases of the problem which are derived as the TM- (transverse magnetic)
and TE- (transverse electric) modes from the full Maxwell system. The
studies of both modes are divided into the following parts:

(1)

Instead of considering the full model with a thin highly conductive
layer of given thickness d, we first derive an approximate one. With
the scaled asymptotic expansions technique [25], [12], one can show
that for the layers of thickness 6 and conductivity proportional to § 1,
the model with the well-known conductive transmission conditions
[45], [46] can be used as the first order approximation of the original
model.

Prior to considering the inverse problem we study the corresponding
forward problem. We establish the well-posedness for both modes
by a variational approach involving the Dirichlet-to-Neumann map
on an auxiliary interface. This approach will be also used to solve
the direct problems numerically.

We show the applicability of the Factorization Method. It turns ou
that for the TM-mode the FM works for partially coated obstacles
(the results are published in [5]). For the TE-mode one has to make
the assumption that the obstacle is fully coated. The study of the FM
for the TE-mode has been recently submitted to Inverse Problems
Journal [4].
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(4) To test the factorization method numerically on a generic data,
we developed solvers for the direct problems. Two approaches we
used: the combined integral equation and finite element method as
suggested in [37], [38] (implemented in MATLAB), and the finite
element method (using the FreeFem++ solver [27]).

In Chapter 4 we study an interior transmission eigenvalue problem.
Roughly speaking, interior eigenvalues are the wave numbers for which
the far field operator lacks injectivity. In recent years the study of interior
transmission eigenvalues became an important area in the inverse scat-
tering research (see [13]). It has been shown that with the knowledge of
the transmission eigenvalues it is possible to get information about the
material properties of the scatterer [15], [22], [11], [18]. In a collaboration
with I.Harris (Texas A&M) and A.Kleefeld (Brandenburg University of
Technology) we showed that for the TE mode for a real valued boundary
parameter interior eigenvalues exist. We also established monotonicity
results which suggest that it is possible to retrieve information about
the boundary parameter (if the refractive index is fixed) or about the
refractive index (if the boundary parameter is fixed) from the knowledge
of the interior eigenvalues. The monotonicity results were established by
I. Harris and the computations of interior eigenvalues are thanks to A.
Kleefeld. We present them here for the sake of completeness.

This work has been partly supported by German Research Foundation
(DFG), grant KI906/14-1. The financial support is greatly acknowledged.
The results of Chapter 4 were carried out during my research stay at the
University of Delaware in Summer 2015. I thank Dr. Fioralba Cakoni for
the hospitality during the stay and Karlsruhe House of Young Scientists
(KHYS) for the financial support.

This work would not exists without the support of my colleagues. First
of all, T would like to thank my advisor Prof. Dr. Andreas Kirsch for
the formulation of the problem and for valuable discussions during recent
years. I also thank PD Dr. Frank Hettlich for being the co-examiner of
the thesis and for always being open to discuss any mathematical problem
I would come with to his office. I am very thankful to Irene de Teresa
Trueba for introducing me to the perturbation theory and suggesting
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to use FreeFem++ package for numerical simulations. Her suggestions
enriched this work considerably. I am very grateful to Xiaodong Liu for
being an initiator to collaborate which resulted in publishing [5] and [6].
Finally, T would like to thank my colleagues from the working group on
Inverse Problem Thomas Rosch, Elena Cramer, Janina Stompe, Monika
Behrens, Tilo Arens, Julian Ott and Uwe Zeltmann for providing a friendly
atmosphere throughout the years.






1 Introduction

1.1 Aim of This Work and Previous Results

In this work we focus on the applicability of the factorization method
for two scalar inverse scattering problems. The problems are derived as
TM- and TE-modes from the time-harmonic Maxwell system where the
scattering medium is coated by a thin highly conductive layer. The TM-
and TE-modes are special cases when the electric or the magnetic field have
only one non-zero component. For this modes we consider the scattering
of the electromagnetic waves by an infinitely long cylinder with constant
cross section [33]. The appearance of the thin highly conductive layer
leads to conductive transmission conditions [2] which has been known for
a long time in the study of electromagnetic induction in the Earth [45], [46].

In the following we use the abbreviations (SP1) and (SP2) for the scat-
tering problems which correspond to the TM- and TE-modes, respectively.
In both cases an incident wave of the form

ui(z) = e*d z e R? k>0,

with the direction of incidence d € S* = {z € R? : |z| = 1}, is scattered by
the medium, which results in the total field u given as the sum u = v’ 4+ u?,
where u® denotes the scattered field.

We assume that the scattering medium is embedded in a homogeneous
background. Let D C R? represent the support of the medium. Further,
we assume that D has a smooth boundary D and its complement R?\ D
is connected. The scatterer is characterized by the complex-valued index
of refraction n such that Ren > 0,Imn > 0on D and Re n # 1 a.e. in D.
The thin layer is represented by 7, which is a real-valued function defined
on 0D, and it stays for the (scaled) surface conductivity.
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In problem (SP1) the total field u satisfies the Helmholtz equation
Au+k*nu=0 in R?*\OD, (1.1)

with conductive transmission conditions of the form

8U+ ou_
—u = D T = D. (L2
Uy — U 0 on 0 and £ 5 +inu=0 ond (1.2)
For now, uy and Ouy/0v denote the limits of u and du/Ov from the

exterior (+) and the interior (—), respectively.

In problem (SP2) the total field satisfies the generalized Helmholtz equa-
tion

1
V- (nVu) +k*u=0 in R*\0D (1.3)
with the following transmission conditions:
Ouy 1 Ou . Oug
- —— = D —u_ —in—— = D.
% o 0 on 0 and  uy —u =, 0 on 0
(1.4)

In order u® to be outgoing we require it to satisfy the Sommerfeld radiation
condition

. ou®
Tlggo \/77< o —iku ) =0, r=|z|, (1.5)
uniformly for all directions z/|z|. The Sommerfeld radiation condition
implies [16] the following asymptotic behavior of the scattered field

2) = %@w(@no(li')), 2] = oo,

uniformly with respect to # = x/|z| € S'. The function u> defined on S*
is called the scattering amplitude, or the far field pattern. In the following
we will also write 4™ = u*°(+, d) to indicate that the far field corresponds
to the scattered field due to the incident plane wave with direction d € S*.
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We distinguish between the direct (or, also called forward) and inverse
problem. In the forward problem the information about the scattering
medium is given and we study the behavior of the scattered field. In this
work, we address the questions of uniqueness, existence and stability, i.e.,
the continuous dependence, of the scattered field u® with respect to the
incident field u’ in an appropriate norm.

The inverse problem we will be studying consists of determining the
location and the shape of the domain D from the knowledge of the far field
patterns u> (%, d) for all #,d € S* by the Factorization Method (FM). The
Factorization Method belongs to the family of non-iterative methods and,
unlike iterative methods, it does not require solving a sequence of forward
problems. Computationally the method is fast. Another advantage of the
FM is, that it works without prior knowledge on material properties or
the number of components of the medium.

The rough idea of the Factorization Method is the following: for a given
sampling point z € R? we determine whether or not the equation

Fg(2) =e "% 3¢S, (1.6)

is solvable in L?(S'), which in turn is equivalent to whether or not the
given point z belongs to D. That is, we sample a region, which as we
suppose contains the scatterer, and reconstruct its support based on the
criteria above. The operator F' in (1.6) is computed from the far field
operator F : L?(S') — L?(S') which incorporates the far fields and is
defined by

(Fg)(3) = /uoo(as,d)g(d) ds(d) for & € S (1.7)
Sl

The Factorization Method provides both necessary and sufficient condi-
tions to determine if z € D. Thus, an important by-product of the FM is
an explicit proof of uniqueness of the inverse problem.

The FM has been introduced by Kirsch in 1998 for scattering by im-
penetrable sound soft or sound hard obstacles [29]. Since then, it has been
applied to a variety of problems from acoustic and electromagnetic scat-
tering and from problems arising in the electrical impedance tomography.
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The monograph [32] captures just a few of them.

In the following we would like to mention the works which are closely
related to the problems we will be studying and which were most helpful
for our research.

In his work from 1998 in [28] F. Hettlich studied (SP1) and (SP2) with
index of refraction n and the conductivity being a constant. The inverse
problem was solved by a Newton-like method.

A .Kirsch proved the applicability of the FM for the problem of scat-
tering by inhomogeneous media with transmission conditions, i.e., the
version of (SP1) with n=10:

Au 4+ E*nu = 0 in R*\OD,
uy —u_ =0 on 9D,
Juy  Ou—
_ — = D
ov ov 0 on oD,

u® = u —u' satisfies (1.5),

with n € L*°(D) real-valued [30] and later for a complex-valued n [32]. In
[32] was assumed that the contrast ¢ := n—1 is locally bounded from below
and that the wave number k is not an interior transmission eigenvalue.
In [41] A. Lechleiter weakened the assumptions on ¢ and showed that for
this case the Factorization Method works, regardless if k is an interior
transmission eigenvalue.

In [34] A. Kirsch and A. Kleefeld applied the Factorization Method to
(SP1) with refractive index n = 1 inside D and conductivity n > 0 on
0D. The authors obtained the forward data by solving the direct problem
numerically by a boundary element collocation method and presented
reconstructions in 3D.



1.1 Aim of This Work and Previous Results 9

In [36] A.Kirsch and X.Liu proved the Factorization Method for the
problem

V- (AVu) + k*mu =0 in D, (1.8)
Au+ k*u =0 in R*\D, (1.9)
uy —u— =0 on 90D, (1.10)

Ouy  Ou_
—_-— = 1.11
5 ey 0 on 4D, (1.11)
u® =u —u' satisfies (1.5), (1.12)

with A € CY(D,C?*?) and m € C'(D) being complex-valued. With
A =diag (%, 1) this case corresponds to the (SP2) with 1 = 0. Detailed
analysis of this work was crucial for us to prove the applicability of the

Factorization Method for (SP2).

F.Cakoni et. al. proved in [9] the applicability of Linear Sampling Method
for a more general version of (SP2). In their work the authors allow
1 to vanish on some parts of the boundary which leads to the mixed
type transmission conditions. Although, the Linear Sampling Method is
closely related to the Factorization Method and provides good numerical
reconstructions, its mathematical theory is still incomplete.

In the next section we give a motivation for the conductive transmis-
sion conditions. In Chapter 2 we show that the FM works for (SP1) for
partially coated case, i.e., 7 may vanish on a part of the boundary 9D, and
without any restriction on the wave number k£ > 0. In Chapter 3 we study
an interior eigenvalue problem which appears in the context of problem
(SP1). In Chapter 4 we study the FM for (SP2) with n = 0. Finally, in
Chapter 5 we prove the FM (SP2) for a completely coated obstacle.
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1.2 Motivation

1.2.1 Derivation of the Full Model for the TE- and
TM-Mode

We consider the problem of scattering of a time-harmonic electromagnetic
wave by a penetrable inhomogeneous object covered by a thin highly
conductive layer. We suppose that the covered object is embedded in a
non-conductive homogeneous background.

Let £ and H denote the electric and the magnetic field, respectively. The
electromagnetic wave satisfies the Maxwell equations

OH o0&
curl £ — =0, curl H —e— = o€,
T ot
where ¢, u and o are real-valued positive functions which stay for the elec-
tric permittivity, magnetic permeability and the conductivity, respectively.
In the time-harmonic case we assume that the magnetic and the electric
field can be decomposed into space dependent and time dependent parts
as
E(x,t) = BE(x)e™ ™", H(x,t) = H(x)e ™",

where w > 0 is the frequency. Then the (complex-valued) fields E and H
satisfy
curl F —iwpH =0, curl H + iweFE = oFE.

Let E™ H'™ represent the electric and the magnetic fields, respectively,
inside the scattering object, which we denote by D~, E%, H? the electric
and the magnetic fields inside the layer D%, and E®**, H** the correspond-
ing fields in the exterior D+ := R3\(D U D?). Then the propagation of
the electromagnetic wave is described by the following set of equations:

curl B — dtop ™ =0 0 D (113)
i i ; m , .
curl H™ 4 je EMt = o Eint
curl B® —iwpogH? = 0
e
curl H® + iwe E® = o%E° in D°, (1.14)
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and

¢ lEcxt _ cht =0
o o ; } in DT (1.15)

curl Ho + jweo B

We assume that g, €9 and €; are constants, whereas the layer’s conduc-
tivity o, the conductivity o and the electric permittivity ¢ inside D~
might depend on x. Further we only consider frequencies w belonging to
a “resonance region” [16], i.e., w?ppeoa, where a is a typical dimension of
the scatterer, is less than or comparable to 1. On the interfaces D~ and
OD™ between the scatterer and the layer, and between the layer and the
background medium, respectively, we have the continuity of the tangential
component of both the electric and the magnetic fields:

vx Fint —yx B9 =0
. on 0D~ (1.16)
vx Hot — pyx HY =

and
vXx Bt —pyx B9 =0

on 0D, 1.17
VXHCXt—VxH5:O} ( )

where v is the unit normal vector to the tangential plane to the boundary
OD™ or 8D~ directed into the exterior of D~.

We consider the scattering of an incident time-harmonic electromagnetic
wave £'(x,t) = E'(x)e” ™", H'(x,t) = H'(v)e ™", x € R®,t € Rxo with
E* and H® satisfying curl B* —ikH* = 0 and curl H* + ikE* = 0 in all of
R3, where we set
k=w €0

Then the (exterior) total field consists of the sum of incident and scattered
fields

Eext _ EI’L T ES,

HcXt — HZ 4 HS,
where E®, H® is an outgoing wave which satisfies the Silver-Miiller radiation

condition

lim (H® x x —rE®) =0, r = |z, (1.18)

=00
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uniformly with respect to all directions & = z/|x|.

We will study a special case, where the scattering object is represented by
an infinitely long cylinder with the axis coincident with the z5—axis (for a
point = € R? we write 2 = (21, 22,23) ). Let now D~ C R? represent its
cross section and Dt = R?\(D~ U D?) the exterior (see Figure 1.1). We

Figure 1.1: Notation for the domains

also assume, that ¢, o and e depend only on z; and 5. In this special
case we consider two special situations, or two different modes. Precisely,
when the incident field E? is given by (0,0, E%), the so-called E-mode
(also transverse magnetic, TM-mode), and when H* is given by (0,0, H3),
which is called H—mode (or TE-mode).
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We start with the F-mode. Assume that the incident field is of the form
E* = (0,0,E%) T, where E} is independent of z3. Then the first two

components of E™ E* and E° are zero as well, and Ei**, ES and EY are

functions of =1 and x3. From (1.15) we get
curl curl B = w?1peo B in R®\(D U D)
or (recall k = w,/Eof0)
AES® + K*E§* =0 in DT,
Analogously, (1.13) and (1.14) become
AES +K2ES =0 in D°, AEX 4+ k2pEM =0in D™,

respectively, with k% = w?pge; + iwpoo?® and n = i +igs-

Substituting iwluo curl E for H into the equations with the transmission
conditions (1.16)—(1.17) we get
Eirt — B9 =0 B
o oml on 0D (1.19)
o~ ov
and
E*—E =0 .
oEst  oES 0 on 0D, (1.20)
v ov -

where we write OF3/0v for v - VE. The analogue of the Silver-Miiller
radiation condition in R? is the Sommerfeld radiation condition:

S

E.
lim \/F(aa 2 —ikE5) =0, r = |z, (1.21)
T

T—00

uniformly in & = ﬁ

For the H—mode we set H' = (0,0, Hi)". Then H*™* = (0,0, H$**) T and
H$** also satisfies the Helmholtz equation

AH$ + K*H$ =0 in DT. (1.22)



14 1 Introduction

Inside the inhomogeneity D~ holds

1 . .
curl ———————curl Hi* = Hi™
twpo(—iwe + o)
or .
curl ————curl Hi"* = fint
k2 (g + Z’L) 3 3
€0 we

which yields

k2n

where n is again given by n = % + Zsto In the same way we get that

1 . .
—div(VH§Ht> = H™ inD",

1
—div(WVHif) = H] inD°
1

with k? = w?pge; +iwpoo?. As in the E—mode, we substitute —L—curl i

o—iwe
for E in (1.16)—(1.17), which gives the transmission conditions:
Hi™ — H] —0
1 8H:i;nt 1 aHg —0 on 0D~ (123)
kK*n_ ov kI Ov
and
H$ — HS =0
L oHE | omi _ on dD*. (1.24)
k2 Tov kar v -

Here, k7, stays for the limit of k7 approaching 9D~ (for —) and D™ (for
+) along the normal v, and n_ is the limit of n approaching D~ along
v. As in the previous case, the model is completed by the Sommerfeld
radiation condition for H3.

We summarize the derivations above. Let ut, u® and u~ denote the total

fields inside DT, D and D—, respectively. For the E—mode we have
Aut +Kk*ut =0 in DT, (1.25)
Av’ + k3’ =0 in D’ (1.26)
Au~ +k*nu” =0 in D7, (1.27)
(1.28)

ut =l +uf
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with the boundary conditions

out Ul

+ _ .0 _ _ — +
um —u’ =0, 5 ey 0 on 0D (1.29)
and
ou’  Ou
s - _ _ — -
u’ —u 0, ey oy 0 on 0D". (1.30)
For the H—mode holds
Aut +k*ut =0 in DT, (1.31)
: 1 s s S
le ((l{;%//{2) Vu ) =+ kQU = 0 n D s (132)
1
div (w-) +k*u" =0 inD", (1.33)
n
ut =’ +uf (1.34)

with the transmission conditions

ou™ 1 oul n

1 ou’ 1 ou~™
s _
————— =0 oD~ 1.36
(k2 Jk2) ov  n_ Ov on (1.36)
In both cases, the scattered fields satisfy the Sommerfeld radiation condi-
tion (1.21).

We consider the special case where the layer D° is of constant thickness &
and that the conductivity ¢° is of the order 1/§. For each point x € D?,
we suppose that o remains constant along the normal v (later we give
precise assumptions on the thickness of the layer D® and the smoothness
of the boundary 0D ™).

In this work, instead of studying the full model involving a thin highly con-
ductive layer of a given thickness ¢, we will be working with an approximate
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one. In the following section, employing the scaled asymptotic expansions
technique [25] we will show that the model with the well-known conductive
transmission conditions [2] represents the first order approximation of the
the full model involving the layer. For the surface materials having the
properties described above, the first order approximation is good enough.
However, for more complicated coatings approximations of higher order
are used (see e.g. [7] where surface impedance involves a second order
surface operator).

The use of approximate models is a common practice and has its theoretical
and practical advantages. From the theoretical point of view, the analysis
of the direct and the inverse problem is less technical. In practice, to
obtain a numerical solution of a problem with a thin layer by standard
numerical methods, for instance, finite elements, it is necessary to use a
finer mesh. This increases the size of the discrete model and consequently
the cost of computation.

1.2.2 Approximate Transmission Conditions of the First
Order

As in the previous section, let D° represent the thin layer of (constant)
thickness § and let D denote the exterior (+) and the interior (—) of
inhomogeneity (see Figure 1.2 on the right). We also use u* and u° to
distinguish between the total field inside D* and D?, respectively. We
first derive the approximate transmission conditions for the TM-mode.

TM-Mode. We have
Aut +k*ut =0 in DV, (1.37)
Av’ + k3’ =0 in D° (1.38)
Au” +E*nu” =0 in D7, (1.39)
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Figure 1.2: Notation for the domains

where k? = w?e1p + iwopg. On the interfaces 9D~ and D7 the trans-
mission conditions hold

u” —u’=0 ondD", ut —u’ =0 ondD*t, (1.40)
ou~ ol _ out  oul n
W_W_O OHaD, W_W_O on 0D™. (141)

Following the approach described in [25] and [12], we formally assume that
for sufficiently small & the field u® can be represented by the series

u(x) = ud(z) 4+ 0ul(x) + 6%ud(z) +... for x € D°. (1.42)

Furthermore, we extend u® analytically into D° and assume that the
extensions are also given by

ut =uf +ouf +6%uF +... in D°. (1.43)

To start with, let I" represent a closed curve inside the layer ’in the middle

between’ 9D~ and dD™T (see Figure 1.2 (b)) and let zr(s) = (ilgz;) ,
2

s € [0, L] C R denote its counter-clockwise parametrization with respect to

the arc length. We assume that I' is C? smooth. Then, for sufficiently small

d (to be precise, for § < mingepg,z)(2/c(s)), where c(s) is the curvature of
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" at the point zr(s) € T'), the thin layer can be parametrized in terms of
new coordinates (s,t) € [0,L] x (—0/2,6/2) through

x = zxp(s) + tv(s),

where v(s) is the unit outward normal to I" at s € [0, L]. The boundaries
ODT and D~ can be written in curvilinear coordinates as

OD" = {zr(s) + (§/2)v(s), s € [0, L]}
and

0D~ ={zr(s) — (6/2)v(s), s € [0, L]}

In each case we assume that u5 and u;t, j=0,1,... are bounded and do
_ Ou”

not depend on d. Our aim is to compute the jumps v+ —u~ and 2 3 o
across I'. We truncate the series in (1.42) and (1.43) to only the first two
terms and calculate the jumps

(ug —ug)+6(uf —uy) on T,

oug  Oug ouf  ouy
—_— = = e T.
( ov ov o ov ov on
Let u be a function defined on D?. We define % : R x [—% g} — R as

u(z),

) =
,t) € [0, L] x [—$,$]. The Laplacian of u
(s,t) is given by

and

(s,t

U
where & = zr(s) + tv(s) for (s
in the parametric coordinates

B 1 g 1 g~ . 1 g (1 +t)6
T (1+te) s \ (1 +te) Os 1+tc) Ot t
(I+t0)ds\(1+t0)ds )" (1+1c)d 79

where ¢ is the curvature.

So, with respect to curvilinear coordinates the Helmholtz equation (1.38)
and the continuity conditions (1.40)—(1.41) have the following form

L2 L 04 1 9 9 5 125
(1+tc)58((1+tc)83u>+ (1+tc)at(1+tc)a @+ ki’ =0
(1.44)
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in (0,L) x <_gg>

in [0, L).

Next we introduce a new variable
t )
= — t _— =
g 5 b E [ 2 b 2] b

and define the function @9 (s, &) := @%(s,t/8) (by abuse of notation we
will continue writing @%). After the rescaling the equations (1.44)(1.46)
become

1 9 1 8., 1 1 9

(15 060) s (1 £ 060) D5 T 52 (13 0ee) e T 969

1
+k2a° =0 in (0, L) x (—2, 2), (1.47)

ﬂé

9
o€
L

ui(xr(-)igz/) :ﬂé(-,i;) (1.48)
ut wd
aay(xp(-)j:gl/):;%g(', ;) (1.49)

in [0, L). From (1.49) and the expansions (1.42) and (1.43), comparing the
same powers of § we conclude

10 1
685(',:‘:2) 70. (1.50)
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Now, multiplying (1.47) by (1 + §&c)?, using the asymptotics @’ = 49 +
5ug 4 6%aS + ... and equating the same powers of § we get
9? 5 02 0\ s
a—fzuj + <3£ca€2 (%)uj_l
0 0 02
2 2 02?9 L 2\g
<§ca§2—|— éc 8§+82+k)u 9
0 0? 0
33 2.3 /
— —&d = k2
+ (& O PG e el vt )iy
+ 3¢t k%czu;s 4+ §3k%c3u5 5=0 (1.51)
for (s,&) € (0,L) x ( %, %) and j = 0,1,2,.... By convention, we set
ﬂ? = 0 for negative j.
From (1.51) we read the equations for j = 0,1,2
2
%zag =0, (1.52)
0? a0 0? 0
u 1.
gt [36egga + oge it = (159
0% _ 0? . 9 9 0 0? 23
e {356852 “]u {35 ge " K gg * g T =0
(1.54)
in (0,L) x (3,—3). Recall that our goal is to compute the jumps
ut(zr(-) +0v) —u”(ar(-) +0v)
and

ou™ ou~ )
ﬁ(xp( )+ 0v) — W(ﬂ?[‘( )+ 0v) in [0, L].

Let s € [0, L] be fixed. Using the Taylor series expansion, after equating
the same powers of d, we get

ut (zr(s) £ gl/) = u (zp(s) + Ov)

+ 5<:|:;aayu§(a:p(s) + 0v) + ui(zp(s) + Ou)) + 82 )+ ...
(1.55)
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This holds for all s € [0,L]. On the other hand, from the continuity
condition (1.45) and from the ansatz (1.42) we have

ui(xp(-)ié) :ﬂ5(-,i1) :ag(-,i1)+5a§(-,il)+... in [0, L).

2 2 2 2
(1.56)

We introduce the following notation: let [@°(-,+3)] denote the difference
(@(-,3)—a’(-,—1)) and (u*(zr(-)+0v)) the average 3 (u™ (zr(-)+0v)+
u™ (zr(-) + 0v)). Then from (1.55) and (1.56) we obtain
[ (ar(s)) + 0v]
= [ug (zr(s) + 0v)] + d[uf (zr(s) + 0v)] + O(5?) (1.57)
= (a8 5)) + 8 [a1(s:25)] — (g ar(s) + 00) ) ) + 03"

for all s € [0, L]. Analogously, for the jump in the normal derivative we
have

{%f(xp(s) + oy)}
_ [augt

W(xp(s) + 01/)] + 5[

1[0l 1 oud 1
~5la o)) e

+ 5( @?(s, i;)] - <;;u0i(a:p<s) + 0y)>> +0(5?)

(1.58)
for all s € [0, L].

+
ou;y

W(xp(s) + Ou)} +0(6?)

We want to express the jumps [@9(-, +3)], j = 0,1 in terms of the functions
[uZ (z(-) + 0v)] and [uF(2(-) 4+ Ov)]. First, from (1.52) we observe that
@S (s, +) is linear for all s € [0, L]. Furthermore, (1.50) yields that @ (s, -)
is a constant, possibly a different one for different s € [0, L]. Thus,

[@(-,£=)] =0 in [0, L]. (1.59)
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Also, (1.53) reduces to

9% _s

8—@@1 =0 in(0,L)x (—g ) (1.60)

and (1.54) to

? 5 0 s 2 N\ .5 , 11
87521142 + Caigul + <832 + kl)uO = 0 mn (07L) X (_57 5) (].6].)

Thus, by (1.60) a%ﬂ‘ls(s, -) is constant for each s € [0, L] and then
oud 1
—(,x=)| =0. 1.62
T ()] -0 -

The fundamental theorem of calculus, (1.62) and the continuity conditions
(1.49) (again, one uses the series ansatz and equates the same powers of ¢)
yield

@(s5) = [ gritlsrar= [ S8 e - gyar
; ugd e
= 8875(361“(8) + %u)d = <8ao(xp(s) + y)> (1.63)

for all s € [0, L]. Thus, from (1.57), (1.59) and (1.63) we obtain
[u™ (2 (s) + Ov)]
- 5(<‘9(,f(xp(s) + ;y)> _ <§Vu§(a:p<s) 4 0y)>> +O()
= 0(8%),

where in the last equality we applied the Taylor series expansion of

%Ua:(l‘r‘(') + 1v) along v.
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With (1.50) and (1.62), (1.58) reduces to

[agjm(s) rov

= 5({5;; (s, ﬁ:l)] - <88—V22u3:(:171“(5) +ou)>> +0(5?)

for all s € [0, L].
We compute the jump in [6—1?( -, +3)] using (1.61). For all s € [0, L] we
have

ouy 1] [ 0%
|:8§ ( +- ):| - 67’2 (SﬂT)dT

1
— (52 + kf) (ug (zr(s) £ 3V s€l0,1], (1.64)
where in the last equality we used that %ﬂ‘f (s,-) and @)(s, ) are constant
for all s € I', and the continuity conditions. For uji, j = 0,1 the derivative
8uji /0s,7 = 0,1 stays for the tangential derivative on T



24 1 Introduction

Thus,
’LL:l: uj:
%(zr(.) +0v)| = =6k (uT (ar () £ %u» - 50(')(%(zr(~) 4 %V»
0%, 4 1 8 ]
+ 055 ug (er() £ 5v) + 5<WUO (zr () + 0v))) + O(5?)
e
= 03 e () + ) — ()P () + 00)
2 2

(1.65)
Let o1 be given by

A(s) 0 9

5 _ .

0-1(576)_7 m (OaL)X (_§v§)7

where A is a bounded real valued function which does not depend on §.
Since uj[, j = 0,1,2 and their derivatives are uniformly bounded with
respect to §, we get

+ 2 du* ;
[u™(s,0)] = O(6°) and [ay(s,())} = —idwpou + O(9) (1.66)

for all s € [0, L].

Neglecting the terms of order § (in the the literature on approximate
transmission conditions it is also called first order approximation) in the
boundary conditions yields the following approximate model: Let D C R?
represent the inhomogeneity and let A be a real valued and positive function
defined on the boundary 0D. The total field u satisfies

Au+k*u=0 inR*\D, (1.67)
Au+k*nu=0 in D, (1.68)

Uy —U_ = on 0D, (1.69)

Ouy — Ju_ +idu=0 ondD. (1.70)



1.2 Motivation

25
It is exactly the model for the scattering problem (SP1)
TE-Mode. For the TE-mode we have
Aut +k*uT =0 in DT, (1.71)
. 1 5 32,8 D
leWVU; +k’ u :O mD s (172)
1
div (Vu—) +k*u" =0 in D", (1.73)
n

with the transmission conditions on the interfaces

out 1 oub
1y
and
1 ou’ 1 ou~™
5 _ _

We proceed as in the previous case. We assume that the fields u®, u® can
be represented by the series

= ud 4 oud + %S+ ..., ut =ul40uf +6%uF+... inD°
(1.76)
Further, write (1.72) in the curvilinear coordinates (s, t):

1 91 1 1L 9 ((1+t)da’\ 5
(1+t6)<95kf(1+tc)as+(1+tc)at< 32 at>+“ =0 (L.77)
in (0,L) x (_%’_,

5), where 4(s,t) = u(x) with z(s,t) = 2p(s) + tv(s),
(s,t) € (0,L) x (=5, -3).

After the rescaling (s, &)

1 o1 1 ou’

(1+ 6&c) Os k? (1 + 6éc) Os

1 1 9 ((1+ ééc) 0wl 5
*mmgcms( 2 ag) vy

(1.78)
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in (0,L) x (—3,—3%), with the boundary conditions

ut wd
wHer() 59 =80 ) Grler() + 59 = 5 e 3)
(1.79)
and
- 1 _ 1. Ou~ 1 11 0w, 1
u (zr(-) — 5”) = UE(H —5)7 W(Jﬂr(') - 5”) -5 (k2 /k?) 875("_5)
(1.80)
in [0, L].

Substituting the series ansatz (1.76) into (1.79)—(1.80) and making com-
parison of the coefficients we see that

ag(-é) :ag(~,—%) =0 in|[0,L] (1.81)

Multiplying (1.78) by (1 + d&c)? and equating the same powers of § we

get
o/(1 0 AW
)+ (seeag iz ae) * e
o/1 0 19 o/(10
22Y [+ Y 2~ 7 | = ™
* (3’5 ‘ f(k% 85) TR e +6s(k% 8s> “)“”
19 ¢ 0 o190 & o 5

(frae) i ae <o (o) ~ s +950) o
+3¢8%°00_, + &3P 5 =0,j=0,1,..., (1.82)
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with the convention %i; = 0 for negative j. The equations for j =0, 1,2
are:

/10
a1 0 AN AV
ae Goet) + (305 (o) + s ) 6 o s
a<1a~5> + (35 (18) +Ca) ~9
9 \ k2 9 "2 “e\r2oe) T K2 oe )"
1 0 1

g (10 0 0
2 .2 2 ) +1)@d =
+ <3£ c §<k% £> + 2c 12 0 + 5 (k% s> 1)u0 0. (1.85)

The jumps across I' are given by (compare with (1.57) and (1.58)):

[u*(2r(s)) + 0v]
= [m)(s.+5)]
ugd 0
+ (5([1}? (s, i%)] — ;(gyg(xr(s) +0v) + f_aio(xp(s) + OV))>
+ O(6%) (1.86)
and
ut u~
O () + 00— =2 ar(s) + 00)
1 oug 1 1 o 1
= e e 9] + o g e o 0)
2 24,=
(B o 00 - 2t 1)) 0
(1.87)
for all s € [0, L].
We assume that the conductivity of the layer is of the form
0%(s,€) = @, (5,6) € (0,L) x (—1/2,1/2), (1.88)

]
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where 7 does not depend on §. Therefore, k3 depends only on s. From
(1.83) and (1.81) we conclude that @} is constant along the normal v. This
implies that, for each s € [0, L], a%ﬂ‘f(s, -) is constant too (see (1.84)). As
in (1.63), by the fundamental theorem of calculus and using the boundary
conditions (1.79) and (1.80), we get for the jump [@{ (-, £3)]:

ut Uo
)] = O30 (G (o) + 3+ - (o) = o))
(1.89)
Thus, (1.86) becomes
[u™ (zr(s)) + 0v]
ud Uq
= 50 (G (ar) + g+ - arle) - 30))
ud Uy
- g (gyg(xp(s) +Ov) + n%%)(xp(s) + 01/)) +0(?)
wn(Ss) 1o ud U
- % (aalj(xp(s) +0v) + ni_%f(xp(s) + Ou)> +0(5)
(1.90)

for all s € [0, L]. It remains to compute {%?(,:I:é)} From (1.85) and
(1.79)—(1.80) we get

1 [0 N c 9 5 910 s
glw )] = [ mmiten+ (5 (gn) +1)wena

_ _;;g(a(;f(ms) 30+ 2 () - )
_ ((’i <k:1586..9> + 1> (uy (zr(s) £ 5”))

for each s € [0, L].
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Thus,
out 1 Ou~
EY (zr(s) +0v) — TW(CUF(S) + 0v)

0/ 1
2 PR
’“(as(%

for all s € [0, L]. Assuming that 9k?/ds remains bounded we conclude

agy (xr(-) +0v) — n%%(:ﬂr‘( )4 0v) = O(36). (1.91)

Thus, the model with first order approximate transmission conditions for
the H—mode has the following form:

Au+k*u=0 inR*\D,

d1V< )Vu+k2u =0 in D,

+
u_,_fu_finaau =0 ondD,
v

out 1 Ou~
e S D
ov n_ Ov 0 ond

where 7 is real valued and positive.

1.2.3 Numerical Validation

In this section, by means of numerical experiments we show that the far
fields of the full model (involving the layer of thickness §) converge to the
far fields of the approximate model, as § goes to zero.
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In the following examples our data set is represented by a C32*32 matrix F,
where each entry is the far field pattern u>(6;,6;),7,1 € {1,...32}, with
0; = 2mj/32 and 6; = 2wl/32 denoting the corresponding incident direction
of the plane wave and the observation point, respectively. The data is
generated through a P! finite elements discretization using FreeFem++
[27]. The problem over R? is reduced to a bounded domain with the help
of Dirichlet-to-Neumann mapping [24].

We compute the far fields for the TM-mode for a kite-shaped object
parametrized by y(t) = (cos(t)+0.65 cos(2t)—0.65), 1.5sin(t)) T, t € [0, 27].
Further, we set n(z,y) = 0.2+ (22 +y?), k =3, R =5 and n = 0.5, where
R is the radius of the exterior disk (see also Figure 1.3).

Table 1 shows the relative error computed by

|F —F°l;

TR (1.92)

where F° is the matrix containing the far fields u>% corresponding to the
full model with § > 0. As we can see the convergence is linear.

Figure 1.3: Real part of the total field for a kite-shaped obstacle for the
full model with 6 = 0.05 (on the left) and for the approximate model (on
the right). The direction of incidence is d = [1 0]T.
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Relative error
6 =0.06 0.0655
6 =0.05 0.0532
6 =0.04 0.0410
6 =0.03 0.0291
6 =0.02 0.0164
Table 1: Relative errors computed by (1.92) for a kite-shaped domain for
the TM-mode.

0.07
0.06
0.05
0.04
0.03 o -

0.02f -

0.01
0.02 0.025 003 0035 0.04 0045 005 0055 0.06

Figure 1.4: Relative error of the far fields for a kite-shaped domain for
the TM-mode.

For the TE-mode we compute the far fields for a unit disk with the parame-
ters n(x) = 0.2+ (z¥+22), k = 3, n = 1.5. Figure 1.5 shows the real part of
the total field of the full model and of the approximation. As we can see, the
total filed discontinuous across the boundary of the object. Figure 1.5 repre-
sents the plot of relative errors for § = 0.08, 0.06, 0.04, 0.03, 0.02, 0.01.
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Figure 1.5: Real part of the total field for the unit disk for the full model
with § = 0.05 (on the left) and for the approzimate model (on the right).
The direction of incidence is d =[1 0] .

LENS

LENS

o1

005

Figure 1.6: Relative error of the far fields for the unit disk for the TE-mode.



2 Direct and Inverse Problem for
TM-mode

2.1 Mathematical Formulation of the Direct
Scattering Problem

Throughout this chapter let D represent a finite union of bounded domains
with C? boundary D and connected exterior R?\ D. Further, let v denote
the unit outward normal vector to 9D.

Assume that k > 0, n € C(D) with Im(n) >0, Re(n) >0 andn—1#0
in D, and A € C(9D) with A(xz) > 0 for all x € 9D. We consider the
following direct problem given u’ which satisfies the Helmholtz equation

Au' 4+ E*u' =0 in R?
find u® € C*(R*\D) N C1(R?\D) and u € C?(D) N CY(D) such that

Au® +k*u® =0 in R*\D, (2.1)
Au+k*nu=0 in D,
u® —u=—u' on 0D, (2.3)
aau: - % +ilu = —%15 on 0D, (2.4)
lim ﬁ(aus - ikus> =0, r=]lz|, (2.5)
r—00 or

where the last equation holds uniformly in z/|z|. We will call a solution to
the Helmholtz equation whose domain of definition contains the exterior
of some disk radiating if it satisfies (2.5).
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We also will refer to this problem in the following equivalent form: given
u® with ' _

Au' +k*u'=0 in R?
find u®|gz2\p € C*(R*\D) N C*(R*\D) and u’|z € C?(D) N C*(D) such
that

Au® +k*u* =0 in R*\D, (2.6)
Au® + E*nu® = —k*(n — u'  in D, (2.7)
ui —u® =0 on JD, (2.8)
ous.  Ou® ,
8“: - % +ilud = —iii  on  OD, (2.9)
lim \/F(auk —zk:u) —0, r=la| (2.10)
r—o00 or

Here, u5 and duf. /dv denote the limit of u® and du®/Ov from the exterior
(4+) and interior (—), respectively.

In the following we also want to account for n and A having discontinuities.
We weaken our assumptions and require only

n € L*(D), Im(n) >0, Re(n) >0 and n—1%#0 a.e. in D, (2.11)
and
A€ L*®(0D) with A >0 a.e. on 9D. (2.12)

We cannot assume anymore that u is smooth and have to specify in which
sense the equations (2.6)—(2.7) and the boundary conditions (2.8)—(2.9)
have to be understood.

Let H'(D) denote the Sobolev space and H} (R*\D) the local Sobolev
space defined as
H'(D):={u:ue L*D),Vue L*(D)}, and
H} (RP\D) : = {u:u € H'(Bg\D), for every R, such that D C Bg},
where B is a ball of radius R > 0 centered at the origin Br := {x € R?:

|| < R}. Further, we denote by H'/2(0D) the trace space of H'(D) and
by H~'/2(0D) its dual.
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(R%\ D) satisfying (2.1) and
(2.2), respectively, in the distributional sense. In the next Lemma we
show that this implies in particular that Au®|p € L?(D) and Au5|R2\5 €

L}, (R*\D).
Lemma 2.1.1. Let u € L*(D) and v € L} (R*\D) satisfy (2.6) and

loc

(2.7), respectively, in the distributional sense. Then Au € L*(D) and
Av e L} (R*\D).

loc

loc

We assume u*|p € H'(D) and us\RQ\E € H}

Proof. We show the assertion for u € L?(D). By definition, for distribu-
tional Laplacian we have:

(Au, p) = //uAga dz, forall ¢ e C5(D).
D
We require u to satisfy (2.7) in the distributional sense which implies
(Au, @) = //(—kz)(nu + (n — ') pda, forall p € C°(D). (2.13)
D
By the Cauchy-Schwarz inequality holds
(B} < Kl ey [ [ el do+ 1201 = Dlleio [ il az
D D

< B (Inll Loy lull 120y + 7 = Ul oy l1u' [ 220 12l 22
for all p € C§°(D).

Since C§°(D) is dense in L?(D) we can extend (Au,-) by the right hand
side of (2.13) for ¢ € L?(D), i.e.,

(Au, ) = //(—k‘Q)(nu +(n— 1)uz) pdr, forall e LQ(D).
D

That is, Au defines a continuous linear functional on L?(D). Thus Au is
in the dual of L?(D), which again can be identified with L?(D). Therefore,
the equation (2.7) holds in L?—sense. The case for v € L} (R*\D) is
completely analogous.

O
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By the trace theorem u®|p and u|p,, 5 possess traces in H'/2(0D). More-
over, by Theorem 5.8 in [8] (and the remarks following it), for a function
u € HY(D) with Au € L?(D) the trace du/dv € H~/2(9D) is well-defined
by
ou _ == 1

<%,v>: Auv+Vu-Vodr forall ve H (D), (2.14)

D
where (-, -) is the dual form in the dual system (H~/2(9D), H'/?(8D)).
Note that (2.14) is just the Green’s theorem [16] in a wider space. For
u € HL (R*\D) with Au € L? (R?\D) the trace du/dv € H~1/2(dD) is
defined by

9 . _
<a—z, v) = / AuT+Vu-Vodr forall ve HL.(R*\D). (2.15)
R2\D
Now we define the direct scattering problem in Sobolev spaces: let D, n €
L>(D) and A € L*(9D) be given, and let n and A satisfy the assumptions

(2.11) and (2.12), respectively. For f € L?>(D) and h € H-'/?(0D) find
uw € H} (R?) such that

Au+k*u=0 in R*\D, (2.16)

Au+k*nu=f in D, (2.17)

up —u_=0 on 0D, (2.18)

Quy _ Ou- +idug=h on 0D (2.19)
ov ov ’

lim ﬁ(gz — zku) =0, r=|z| (2.20)

Note that setting f = —k*(n — 1)u® and h = —idu® the scattering prob-
lem (2.6)—(2.10) becomes a special case of (2.16)—(2.20). The equations
(2.16)—(2.17) are understood in the distributional sense and the bound-
ary conditions (2.18)—(2.19) are assumed in the sense of traces, where
u|y,duy /Ov and u_,Ou_/Ov denote the traces taken from the interior
and the exterior of D, respectively. From the regularity theory for elliptic
differential equations [21] it is known that u is analytic in R?\D. In
particular, the radiation condition (2.20) makes sense.
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2.2 Existence and Uniqueness

The aim of this section is to show that a solution to (2.16)—(2.20) exists,
is unique and depends continuously on the source terms f and h.

Theorem 2.2.1. For any f € L*>(D) and h € H-Y2(dD), there exists at
most one solution u € HL (R?) of (2.16)-(2.20).

Proof. By the definition, the scattering problem (2.16)—(2.20) has the
following equivalent variational formulation: For given f € L?(D) and
h € H-'/2(0D) find u € H}, (R?) such that

loc

//[Vu V@ — k*up] dx + //[Vu V@ — k*nup) dx

R2\D
—i / Aupds = —// fedx — (h, o) (2.21)
D

oD

for any test function ¢ € H*(R?) with compact support. As before, (-, -)
stands for dual form in the dual system (H~/2(9D), H'/?(8D)). Further,
we require u to satisfy the Sommerfeld radiation condition (2.20).

Let now v be the difference of two solutions. Then v solves (2.21) with
h =0 and f = 0. We show that v vanishes in all of R2.

Choose a ball B centered at the origin with R > 0 big enough such that
D C Bg. Let ¢ € C*(R?) be such that ¢(x) = 1 for |z| < R and ¢(z) =0
for |x| > R+ 1. We set ¢ = ¢v and substitute it into (2.21):

// [Vv- Vg — k*vp| dz + // [Vl — k?[v|?] de

R<|a|<R+1 Ba\D

+//[|W\2 — E*nlv|*] dz —i / Av|? ds = 0. (2.22)
D

oD
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By regularity results [21] v is analytic outside D. In particular, Av+ kv =
0 holds in classical sense in R?\ Bg. We apply the Green’s first theorem
[16] to the first integral in (2.22):

- / —vder// [V — k?|v]?] dz

|z|=R Br\D
—|—//[|Vv|2 — Enlv|*] dz —i / Mol ds = 0.
D oD

From the assumptions on A and n it follows that

ov
I v—ds <0. 2.2
m /vayds_O (2.23)
OBr

Theorem 3.6 in [8] implies v = 0 in R\ D. Thus, Av + k*nv =0 in D, or
if extend n for example by 1 in the exterior of D, Av + k?>nv = 0 in R?
with v = 0 in R?\D. Then the unique continuation principle [44], which
holds for elliptic equations in 2D with coefficients in L°°, applies giving

that v is identically zero in all of R2.
O

To show the existence we will follow the approach introduced by P.Héhner
in [24], the idea of which is to consider an equivalent form of (2.16)—(2.20)
in a bounded domain Bpg. Instead of the asymptotic Sommerfeld radiation
condition a special boundary condition on the artificial boundary dBg
is imposed. We will also use this approach to solve the direct problem
numerically.

We define the following Dirichlet-to-Neumann mapping A, : HY/?(0Bg) —
~1/2(8Bg) by

ot

Ay —_—
k 9'—>8y,

(2.24)
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where @ € H} (R?\Bg) is the solution of the exterior Dirichlet problem

Al +k*@=0 in R*\Bg, (2.25)
=g onJBpg, (2.26)

. on . _
lim ﬁ((‘??‘ — zku> =0, r=]|z| (2.27)

The exterior Dirichlet problem (2.25)—(2.27) is well-posed and thus, the
Dirichlet-to-Neumann mapping Ay is well-defined and bounded.

To show the existence we will need the following important property of
the operator Ay, which we formulate as a Lemma (see e.g. Theorem 5.22

in [8]).

Lemma 2.2.2. The Dirichlet to Neumann operator Ay, is a bounded linear
operator from HY?*(Bg) to H~Y?(dBR). Furthermore, there exists a
bounded operator Ao : HY/?(0BRr) — H~'/?(0BR) satisfying

_ / Aqwids > cllwllZ o5, (2.28)
0Br
for some constant ¢ > 0 such that Ay, — Ao : H'/?2(0BRr) — H~'/?(0BR)

is compact.

Next we show the equivalence between the scattering problem defined in a
bounded domain Bg

Au+k*u=0 in Bg\D, (2.29)

Au+k’nu=f in D, (2.30)

ur —u_=0 on 9D, (2.31)

uy _ Ou- +ilug=h on 0D (2.32)
ov ov ’

% =Ayu on OBg, (2.33)

for R > 0 such that D C Bg, and the problem given by (2.16)(2.20).

An important ingredient of our proof will be the following representation
theorem (Theorem 3.1 in [8]).
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Theorem 2.2.3. (Representation Theorem). Let u® € C?(R?*\D) N
C(R?\D) be a solution to the Helmholtz equation in the exterior of D
satisfying the Sommerfeld radiation condition and such that Ou/Ov exists
in the sense of uniform convergence as x — 0D. Then for x € R?\D we
have that

*(x) = u® 0 x o x s
u(a:)—aé (10 gy @) = G t)butn) ) dsta). (230

For a solution v € C?(D) N CY(D) of the Helmholtz equation in D holds

ue) = [ (Geule) — ulo) g ulen) ) dsio), € D. (239

oD
The function ®; is called the fundamental solution to the Helmholtz
equation and is given by

i

u(a,y) = Hy (Klz — ), w#y, (2.36)

where H(gl) is the Hankel function of the first kind of order zero. For a
fixed y € R? (that is, ®; represents a point source at y) the far field of @,
is given by (see Section 4.1 in [8])

ei'fr/4
V8rk

By Remark 5.10 in [8] the Representation Theorem 2.2.3 holds also for
H'-solutions of the Helmholtz equation (in this case one has to interpret
the boundary integrals as the dual forms).

DX (2,y) = e"thEy p e ST (2.37)

Lemma 2.2.4. Problems (2.29)-(2.33) and (2.16)-(2.20) are equivalent.

Proof. We follow the arguments of Lemma 5.24 in [8]. Assume u € H} (R?)
is a solution to (2.16)—(2.20). Then the restriction u|p,, is in H*(Bg) and

solves (2.29)—(2.33).

Let now u € H(Bg) be a solution to (2.29)—(2.33). Then u can be
extended to all of R? such that u satisfies (2.16)—(2.20). Indeed, let @ be
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the solution to the exterior Dirichlet problem (2.25)-(2.27) with @ = u on
OBg. In particular, % = Agu = %. By the representation formula (2.35)
for u in the bounded domain Br\D we have

o) = [ (w0 e - w2t Jasty

oD

- [ (5 - St Jast) @39

for x € Bg\D. For simplicity of notation, in (2.38) we use integrals instead
of the the dual forms.

Let © € Bg be fixed. Then, since @ and ®(z,-) solve the Helmholtz
equation in the exterior of Bg, by the Green’s second identity we obtain

(80 25 - Sh (e Jasty

ly|=R
= [ (e - e asw )

lyl=R1

for any Ry > R, or
(ﬂ(y)(%g;’w - ?Z(y)¢(m,y))d8(y)

ly|=R
= [ (a0 " - Peep)asw). o

ly|=R

Both @ and ®(z, -) are radiating, and both |a(y)| and |®(x,y)| are O(ﬁ)
y

as ly| = oo (see e.g. in [16] for the Sommerfeld’s finiteness condition for
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the 3D case, the 2D case is analogous). Applying the Cauchy-Schwarz
inequality we get that the limit on the right hand side of (2.40) vanishes:

R— o0 81/
lyl=R

lim <a(y)w - gi(y)@(%y)) ds(y) =

lim u(y) (;j@(x, y) — ik®(x, y))dS(y)

R— oo
ly|=R
g o, y) [ Laly) — ikia(y) ) ds(y)
pis z.9)( 5, 8(9) — ikay) Jds(y
ly|=R
2
< lim (y)|? ds(y) / ‘ (z,y) — ik®(z,y)| ds(y)
R— oo
ly|=R ly|=R
8 2
— 1 2 —U —1ku =
g [ e Pasy [ ] 2 3w~ ikaty)| ds(y)
ly|=R ly|=R

Noting that v = @ and 9% = 9% on 9Bp with (2.40) we get

o) = [ (a5 - e Jast) )

oD

for x € Br. Thus, u can be extended by the right hand side of (2.41) to
all of R? to a radiating solution.

O

Now we are ready to prove the well-posedness of the direct scattering
problem.

Theorem 2.2.5. Let f € L?(D) and h € H=Y/2(9D). Then the problem
(2.29)-(2.33) has a unique solution uw € H*(Bg). Furthermore,

[ull a1 (Br) < Cr(IPIE-1/20D) + [ fll22(D)) (2.42)

with a positive constant C'r independent of f and h.
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Proof. We first write (2.29)—(2.33) in the following equivalent variational
form: For given f € L?*(D) and h € H-Y/2(9D) find u € H'(Bg) such
that

// [Vu - Ve — k*up] dz + / [Vu - V@ — k*nup] dz

Br\D D
- / Akuﬁds—i/)\uads:—/ fodx — /h@ds7 (2.43)
lz|=R oD D oD

for all ¢ € H'(Bpg). The boundary integrals have to be interpreted as the
dual forms. We write (2.43) as

a(u, ) =b(p) forall o€ HY(Bg), (2.44)
with
alu, ) = //[Vu VP — k*up]dr — / Arupds
Br\D lz|=R
+ //[Vu V@ — k*nup|de — i / Aupds,
D oD
and

b(gp):—é/ﬁpdm —aé hpds.

Further, we represent a as a sum a = a1 + as, where
ay(u, ) = //[Vu Vo + up|de — / Apupds
Br\D O0BR

—l—//[Vu-VE—Fu@] dzx —i Aupds
oD
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and

ag(u,<p)=—//(1+k2)u¢dx— /(Ak—AO)uads

Br\D |z|=R

- //(1 + E*n)up dz,

with Ag being the operator defined in Lemma 2.2.2. By the bounded-
ness of Ag and the trace theorem, the sesquilinear form a; is bounded,
ie., lai(u, 0)| < cllullgr (B l|@ll a1 (Bg) for all u,¢ € H'(Bg). Riesz rep-
resentation theorem yields that there exists a bounded linear operator
Ay : HY(Bg) — H'(Bpg) such that

a1 (u, 9) = (Au, @) (py) for all p € H'(Bg). (2.45)

By Lemma 2.2.2 and the assumptions (2.11) and (2.12) on n and A,
respectively, for all u € H*(Bg) holds
Re a1 (u,u) = ||u||2H1(BR) — / Aopuuds > ||u||§11(BR).
|z|=R

That is, a; is strictly coercive. The Lax-Milgram theorem (see Theorem
13.26 in [40]) implies that the operator A; : HY(Bg) — H'(Bg) has a
bounded inverse.

The sesquilinear form as is bounded as well, and by the Cauchy-Schwarz
inequality we have that

b(@)l < (£ |22y + Al -1200) 2l 1 (BR)- (2.46)

Riesz representation theorem yields that there exists a bounded linear
operator Ay : HY(Br) — H'(Bgr) and an element v € H*(Bp) such that

az(u, ) = (Agu, ©) () for all o € H'(Bg)
and

bp) = (U, 0)m1(By) forallpe H'(BgR).



2.2 Existence and Uniqueness 45

Moreover, |[b]| = ||0]|gr1(B,)- It holds also that Ay : H'(Bg) — H'(Bg) is
compact. From the Cauchy-Schwarz inequality and the trace theorem, for
all w € HY(Bg) we have

[ Agull3n (g, = (Ao, Agu) i () = las(u, Agu)

—| [[a+ e del 1 [ (- Aoyulzn) ds

Br\D |z|=R

+1 [+ i i
D

< (14 max{1, [n]l Lo ) o) lull L2 () | A2ull L2 (Br)
+ [1(Ak — Ao)ull g-1/2(ap) | A2ull 172 (o)
< C(llullzzsg) + [(Ax = Ao)ull g-172(0p)) | A2t 1 (B )

for some C > 0. Thus,
| Azullg1(Bry < CllullL2(r) + [[(Ax = Ao)ull gr-1/2(5p))-

Let {Uj}jeN - Hl(BR) be such that ||Uj||H1(BR) < M for all j € N
and some M > 0. By the Rellich’s embedding theorem, the embedding
T : HY(Bg) — L?*(Bg) is compact. Therefore {u;};en contains a subse-
quence {uj, }ren which is strongly convergent in L?(D). Moreover, since
Ap — Ao : HY?(0BR) — H~Y/?(9Bg) is compact, {u;, }ren contains a
subsequence, still denoted by {u;, }xen such that {(Ay — Ag)u,, }ren con-
verges strongly in H~'/2(9D). Since ||Azul| is bounded by |ulz2(p,)
and [[(Ax — Ao)ullg-1/2(9p) We conclude that {Aguj, }ren C H'(Bg) is
strongly convergent. That is, As is compact.

The variational formulation (2.44) is equivalent to the problem:
Find u € H'(Bpg) such that Aju + Ayu = 7, (2.47)

where A; is bounded and strictly coercive and As is compact. The Riesz-
Fredholm theory and the uniqueness result (Theorem 2.2.1) imply that
Aj + Ay is boundedly invertible on H'(Bg), i.e., the problem (2.43) or,
equivalently, the problem (2.29)—(2.33) has a unique solution. The estimate
(2.42) follows from (2.46).

O
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2.3 Formulation of Inverse Problem. Far Field
Operator

We consider the situation when the inhomogeneity D is illuminated by plane
waves u'(z) = e**d z € R?, in all directions d € S' = {x € R?: |2| = 1}.
As already mentioned in the introduction, the scattered field has the
following asymptotic behavior:

eik\z|
u®(x) = u™(Z) + (’)(

Vel

uniformly in & = z/|z|. We will also write u*°(-,d) to indicate that the far
field corresponds to the incident plane wave with the direction of incidence

de St

1
|[3/2

), r—o0, as |z|— oo,

In the inverse problem our data is given by the far fields u® (%, d) for all
observation points and all incidence directions #,d € S'. Our goal is to
determine the support D of the scatterer.

In fact, not all the measurements of ©> are needed due to symmetries in
the far fields. Precisely, the following reciprocity relation holds.

Theorem 2.3.1. Let u®(&,d) be a far field pattern corresponding to
the scattering problem (2.6)-(2.10) with the observation direction & € S*
direction d € S* of the incident plane wave. Then

u®(#,d) = u®(—d,—2) forall z,de S (2.48)

Proof. One can show that (see e.g. Theorem 4.2 in [8])

V8rke ™™/ (u> (2, d) — u™(—d, —7)) (2.49)
= [ g (0.9 — s () g () ds(o),
oD

where u (-, d) and Ou,(-,d)/0v are the traces of the total field (again
for simplicity of notation we keep writing integrals) corresponding to the



2.3 Formulation of Inverse Problem. Far Field Operator 47

incidence direction d € S'. Then by the boundary conditions (2.3)—(2.4)
and the definition of the trace operator in H~/? (2.14) we get

VBrke /4 (0™ (2, d) — u™ (—d, —#))

0
= [ u-(y,d)| 5-u-(y, —2) — idu_(y, —2)
[ronls: )
=) () — D () ) sl
= /uf(y,d)a%uf(y, —&) —u-(y, —f)%uf(ywl) ds(y)

oD
- / / uly, d)(—K*nuly, ~2)) — u(y, —2)(—K*nu(y, d)) dz
D

=0.
O

The reciprocity relation (2.48) is also one of the criteria to verify whether
boundary conditions of an approximate model are reasonable (in the same
way as in the proof of Theorem 2.3.1 one can see, that the reciprocity
relation holds for the full model involving the thin layer).

Next we define the far field operator F': L2(S1) — L?(S!):

(Fg)(#) = / we (i, d)g(d)ds(d)  for zeSL.  (2.50)
Sl

By the superposition principle Fg is the far field corresponding to the
scattering problem (2.6)—(2.10) with the incident wave given by

vg(x) = /e“”'ég(é) dd, zeR2 (2.51)
S1

The function v, is an entire solution to the Helmholtz equation and it is
called the Herglotz wave function with kernel g.
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Using the reciprocity relation (2.48) it is possible to show (see e.g. Theorem
4.3 in [8]) that the far field operator F' has dense range provided it is
one-to-one. With respect to injectivity of F' we have the following result.

Theorem 2.3.2. Let I' C 9D be relatively open, such that X > Ao > 0
a.e. onT and A =0 a.e. on 0D\ and let n be real valued. Assume that
k2 is not an eigenvalue of the following interior eigenvalue problem

Aw+k*nw=0 in D, Av+k*v=0 in D, (2.52)
ow v
w=wv on 0D, (2.54)
vp=0 on T, (2.55)
i.e., the only solution (w,v) € HY(D)x HY(D) of is the trivial one (w,v) =

(0,0). Then the far field operator F is injective.

Proof. Let g € L*(S') be such that Fg =0 on S!. By the superposition
principle Fg = u®°, where u® is the far field pattern of u® satisfying
(2.1)-(2.5) with the incident field given by the Herglotz function v,:

Au® +k*u® =0 in R*\D, (2.56)

Au+k*nu=0 in D, (2.57)

u'—u=—-v, on 09D, (2.58)

%f - % +idu = f% on 9D, (2.59)

lim ﬁ(aus —ilmﬁ) =0, r=a|, (2.60)
r—00 or

Since u> = 0, Rellich’s Lemma and the unique continuation principle 8]
imply that u® vanishes in R?\D. Therefore, the pair (v, w) := (vy4|p,u) is
a solution of the following problem:

Aw + k*nw =0 in D, (2.61)
Av+k*v=0in D, (2.62)
ow Ov
% =4Av on 0D, (2.63)

w—v=0ondD. (2.64)
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From (2.61)—(2.64), by the definition of trace operator we conclude

ow Ov
; 27, /oW OV
2/)\|v| ds = <8V ay7v>
r

= // |Vw|? — E*n|w|?* — |Vo|? + k2 |v]?d. (2.65)
D

Taking the imaginary part of (2.65) yields v = 0 a.e. on I'. Therefore, the
problem (2.61)—(2.64) is equivalent to (2.52)—(2.55).

If k2 is not an eigenvalue of the interior eigenvalue problem then (w,v) =
(0,0) is the only solution of (2.52)—(2.55). In particular, v, = 0 in D and,
by analyticity, in all of R?. This implies (see e.g. [8], Section 3.2) that
g=0.

O

Following the lines of the above proof we conclude that for complex-valued
n with Im n > 0 on an open subset in Dy C D no eigenvalues exist:
comparing the imaginary parts on the left and the right hand side of
(2.65) would give w = 0 on Dy and, by unique continuation [44], w = 0 in
D. Then the boundary conditions (2.63)—(2.64) become v = w = 0 and
Ov/0v = Jw/Ov = 0 on 0D. By the representation formula

o) = [ (Grwetn oy

() (x,y)) ds(y) =0 for xe€D.
oD

Remark 2.3.3. The interior eigenvalues form at most a discrete countable
set with infinity as the only accumulation point.

The case A = 0, i.e., the problem (2.52)—(2.54) is well-known, and it has
been shown that interior eigenvalues exist and form a discrete set [13],
[14]. The situation when A > 0 on some open subset I' C 9D introduces
the additional requirement (2.55) and, to the author’s knowledge, it has
not been studied yet if for general n and D the interior eigenvalues always
exist. Inspired by the problem (2.61)—(2.64) in Chapter 3 we will show



50 2 Direct and Inverse Problem for TM-mode

existence of interior eigenvalues where the boundary condition (2.63) is

replaced by

ow Ov
5—5—)\1}0118D

with A real-valued and positive.

2.4 The Factorization Method

To prove the applicability of the FM we proceed in the following three
steps: we

(1) derive a factorization of the far field operator of the form F = GT*G*;
(2) characterize D by test functions;
(3) establish a link between the test functions and the data operator F'.

In this section we put the following assumptions (cf. [41]) on the contrast
g:=n—1 in D.

Assumption 2.4.1. For g € L*°(D) holds Im q > 0, ¢ # 0 a.e. in D.
There exists co with 1+ Req > ¢o a.e. in D. Further, there exists to € (0,)
such that

Re (e7"°q) > c|q| a.e. in D (2.66)

for some ¢ > 0. One of the following assumptions is satisfied: Fither

for all y € D there is 6 > 0 such that // dx <oo, (2.67)

lz—y|<d

ZE/ @dx < 00 (2.68)

where D, = {z € D : dist(x,0D) < e}.

or
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Note, if |g| is not bounded from below, then by (2.68) the contrast can
vanish on 9D provided it decays slowly in the neighborhood of 9D such
that 1/|q| is integrable.

To study the factorization method for the general case of partially coated
obstacles, i.e., to take into consideration that A might vanish on some part
of the boundary, we introduce Sobolev spaces on an open arc. We use the
definitions and the notation of Section 8.1 in [8].

Let I' C 9D be an open subset of dD. We define the space of restrictions
to I of functions in H'/?(dD) as

HY2(T) = {u|r : uw € H/?*(OD)}
with the norm
||UHH1/2(F) = min{HUHHl/z(aD) for U € H1/2(8D) with U|F = U}

It can be shown (cf. Theorem A4 in [42]) that there exist a bounded
extension operator 7 : HY/?(T) — H'Y?(9D), i.e., for any u € H'Y/*(T)
there exists an extension 7u € H'/2(9D) such that

7wl /2oy < Cllull ey,
where C' > 0 is independent of uw. Further, we define
HY2(T) := {u € HY*(dD) : suppu C T},

where supp u is the largest relatively closed subset of D such that u =0
a.e. on dD\suppu. The space H'2(I') can be identified with the trace
space of H}(D,dD\T') where

H}(D,0D\T) = {u € H (D) : “|aD\f = 0 in the trace sense}.

The extension by zero of u € H'/?(T") to the whole boundary 9D is in
H'/2(dD) and that the associated zero extension operator is bounded.
The spaces H'/2(I") and H'/?(T') equipped with the restriction of the inner
product of H'/2(dD) (an introduction of the space H'/2(9D) is provided
e.g. in Sections 1.4 and 1.5 in [8]) are Hilbert spaces. Let

H~Y%(I') denote the dual space of HY*(I)
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and
H~Y%(I') be the dual space of HY2(I)

with respect to the duality pairing defined as follows.

A bounded functional F' € H~'Y2(T') can be seen as the restriction to T
of some F' € H~/%(9D) in the following sense: let @ € H'/?(9D) denote
the extension by zero of u € H'/2(T'), then the restriction F is defined
through
Thus, we define H=/2(T") as

H™V2(T) = {v|p: ve H'/?(0D)}
with the dual form

(e, w) g-1/2(ryx /2y = (0, @) g-1/2(0D) x H1/2(8D) -

We define the support supp F' of a bounded linear functional
F € H-'/2(0D) as the largest relatively closed subset of D such that the
restriction of F' to dD\supp F is zero. With this we identify

H™Y(I') := {v € H"Y/?(0D) : suppv C T}.

Thus, the extension by zero & € H~'/2(9D) of v € H~/2(T') is well-defined.
The dual form between H~/2(I') and H/?(T) is given by

(v, ulr) g=1/2(0y, mr/2ry = (0, W H-1/2(9D),11/2(9D)
where u € H'/?2(9D). Note that the embeddings
HY2(I) — HY*(I') — L*(T') — H Y*(I') = H~Y*(I)

are continuous. Moreover, Rellich’s embedding theorem (see Theorem 1.32
in [8]) and Theorem 1.36 in [8] imply the embeddings

HY*(I') < L*(T) — H~Y*(I)

and R
HY*(I') — L*(T) — H-Y*(I)
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are compact.

In the following we assume
A>XN>0 ae. onT

and
A=0 a.e. on OD\T,

where I' C 9D is relatively open in 9D.
Theorem 2.4.2. The far field operator F has a factorization of the form

F= iGT*G*.
v
where v =exp(in/4)/V8rk and T : L?>(D) x L*(T') — L*(D) x L*(T") is
given by
gp1 _ /
T (wl) = (¥ — Viallo) (2.69)
P2 —iA(p2 + w)
with w € H} (R?) being the radiating solution of the following problem
Aw + k*w = —p1+/]q| in R*\OD, (2.70)
wy =w_  on dD, (2.71)
owy  Ow- . owy  Ow-

Proof. We rewrite the problem (2.6)—(2.10) in the following way: Let
f € L*(D) and h € L*(T) be given. Find u € H] (R?) such that

Au+k*u=0 in RAD, (2.73)
Au+ K1+ q)u = ka\%lf in D, (2.74)
q
uy—u_=0 on 8D, (2.75)
ouy  Ou_ .. Ouy  Ou_
B By +i\u=—h onT, oy = 0 on OD\I', (2.76)

lim \/7:((;3 - iku> =0, r=|x| (2.77)

T—00
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Next, we define the data-to-pattern operator G : L?(D) x L*(T') — L?(S')
by

G: <£> = u™, (2.78)
where u™ is the far field pattern of the solution to (2.73)—(2.77). By
the well-posedness of the direct problem G is well-defined. Further, let
H : L*(S') — L%D) x L*T) be given by Hg = <le>, where H; :

2
L?(SY) — L?(D) and H, : L*(S') — L*(T') are defined as

(Hi)(z) = v/]q /¢ etk ¥ ds(9), x € D, (2.79)

and

(Hap)(x) = iA(x) / ©(0)e** % ds(9), z € T. (2.80)
Sl

By the superposition principle follows F' = GH. The adjoint H* : L?(D) x
L?(T) — L*(SY) of H is given by

H( ) 2) //901 Via(y)le™ ””ydy—z/wz(y)k(y)e‘iki'y ds(y),
T

for & € S

From the asymptotic behavior of the fundamental solution (note that the
far field of ®(-,y) is given by

OF(2,y) =ye Y, for y € R? fixed),

it follows that YH*(¢1,p2) " is the far field w™ of the function w, which
is the sum of the volume and the single layer potentials with the densities
¢11/]q] € L*(D) and @2\ € L2(OD) (where ¢y € L?(0D) denotes an
extension of ¢o):

z) = / o1 )V Ta@) Bk (2, y)dy — i / () () @i (2, ) dy,
D oD
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for x € R2\@D. By properties of the volume [31] and the single layer

potentials [42], w € H} (R?), is radiating and satisfies
Aw + k*w = —p14/]q| in R*\OD, (2.81)
wy =w_ ondD, (2.82)
owy Ow- . owy  Ow_
5 " oy iApg on T, 5 " oy =0 on OD\T, (2.83)

where (2.81) is understood in L?—sense and the boundary conditions
(2.82)—(2.83) in the sense of traces. It can be shown, analogous to the
case of (2.6)—(2.10), that the radiating solution to (2.81)—(2.83) exists, is
unique and depends continuously on ¢; and ,.

Writing (2.70)—(2.72) as

Aw + E*(1+ q)w = —k:2q( a w1 — |q|w) in R2\0D, (2.84)

Vgl \k?[q|
wy =w_  on dD, (2.85)
owy  Ow_ ow, Ow_
oy —a——&—z)\w—z)\(wg—&-w) onl, 7 — == =0 on OD\T,
(2.86)

since (2.73)—(2.77) is well-posed, we immediately see that
VH*(SOM ) =w> = (,fQT;| [q|w, —iX(p2 + w)) for all
(8017 802 E L? D) ( )

Then yH* = GT, or ¥H = T*G*, where T : L?*(D) x L*(T') — L*(D) x
L?(T) is defined by (2.69). Thus, the far field operator F' can be represented
as F = (1/7)GT*G*.

O

The next theorem provides a link between D and the range of the data-to-
pattern operator G.

Theorem 2.4.3. For any z € R? define ¢, by
¢.(2) := e = 7 S (2.87)
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Then
z€ D<= ¢, € Z(G), (2.88)

where G : L*(D) x L*(T') — L?(S') is the data-to-pattern operator defined
in (2.78).

Proof. Assume z € D and let B[z,¢] be some closed ball centered at z
with radius € > 0 such that Blz,e] C D. We choose a cut-off function
¢ € C*(R) with ¢(t) =1 for |t| > € and 9(t) = 0 for |t| < /2, and define
v € C*(R?) by

v(z) = Y(|lz — 2|)Pp(z, 2), © € RZ

Since v and ®y(+, z) coincide in the exterior of B[z,¢], Rellich’s Lemma
implies v>° = ®%°(+, 2) = v¢,. Also, v solves (2.73)—(2.77) with

f= —%ﬁ(mﬂﬂl +q)v) in D

q
(by Assumption 2.4.1 f € L*(D)) and h = —iX\v|p. Thus, G(f, h) = 7¢..

Let now z ¢ D and assume on the contrary that there exists (f,h) €
L?(D) x L3(T") such that G(f,h) = ¢,. Let u be the solution of (2.73)—
(2.77) determined by f and h, and u> = G(f, h) be its far field pattern.
Since ¢, is the far field pattern of ®(:,z)/vy, by Rellich’s Lemma and
analytic continuation we have u(x) = ®(z,2)/v for all x € R?\(D U {z}).

But |V (z,2)| = §|H1(1)(kz\m —z|)| is in O(1/|x — z|) as © — z, where
H 1(1) is the Hankel function of the first kind of order one. Thus, for any
disk B(z,¢), € > 0, containing z, we have ®(-,z) ¢ H'(B.). This implies
(regardless if z € R*\D or z € dD) that ®(-,z) ¢ H. (R*\D). However,
u € H} (R?\D). We arrive at a contradiction.

O

A crucial step in proving the applicability of the factorization method is
to establish a relation between the range of the (not explicitly known)
operator G and the range of on operator which incorporates the given
data, that is, the far fields. We will use the most general range identity
result, which was first formulated by A. Kirsch [29] and further refined by
A. Lechleiter [41].
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Theorem 2.4.4. (Range Identity [41]). Let X C U C X* be a Gelfand
triple with Hilbert space U and reflerive Banach space X such that the
embedding is dense. Furthermore, let V be a second Hilbert space and
F: VsV, H:V->XandT: X — X* be linear and bounded operators
with

F=H'TH.

We make the following assumptions:
(a) H is compact and injective.

(b) ReT has the form Re T = Ty + T with some coercive operator Ty
and some compact operator Ty : X — X*.

(¢) ImT is non-negative X, i.e., (Im T, ) >0 for all p € X.

Further we assume that one of the following conditions is fulfilled
(d) T is injective.

(e) Im T is positive on the finite dimensional null space of Re T, i.e.,
for all ¢ # 0 such that Re T¢ = 0 it holds {Im T, p) > 0 for all
peX.

Then the operator Fy := |Re F| + ImF is positive definite and the ranges

of H* : X* =V and Fﬁl/2 1V — V coincide.

Remark 2.4.5. If the imaginary part of the middle operator T : X — X*
is mon-positive, one sets (see Section 2.5.1 in [32])

Fy:=|ReF|+ |[ImF|.

The real and the imaginary parts of an operator F' on a Hilbert space are
given by

1 1
F=_(F+F~ ImF = —
Re 2( +F*) and Im 5;

(F_F*)7

respectively. By the spectral theorem, a compact self-adjoint and positive
definite operator A : H — H on a Hilbert space H possess a complete
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eigensystem {\;,1;},en with strictly positive eigenvalues \; and corre-
sponding normalized eigenfunctions ; € H. With this eigensystem A has
the following diagonalization:

Ap =N, miy,  forall € H.
J

We define the square root of A as

AV ="/ (W, ) iy, € H. (2.89)
J

In following we collect properties of G and T and show that the operators
appearing in the factorization of F satisfy the assumptions (a)—(d) of the
Theorem 2.4.4.

Theorem 2.4.6. (a) G* is compact and injective.

(b) The real part of the middle operator e®®°T, with ty € (0,7) chosen
such that (2.66) is satisfied, has a decomposition of the form ReT =
To + T4, where Ty is coercive and Ty is compact.

(¢) For ImT holds

<]mT (g;) , (:2>> <0 for all (g;) € L2(D) x L3(I),

where (-,-) is the dual product between L?(D) x L?(T") and L?*(D) x
L3(T).

(d) T is one-to-one.

Proof. (a) By Schauder’s theorem, G is compact if and only if its adjoint
G* is. To show the compactness of G : L?(D) x L*(I') — L*(S') we
follow the arguments of Lemma 1.13 in [32]. Choose a ball By centered
at the origin with radius R > 0 such that D C Bg. We decompose G as
G = GG, where Gy : L?(D) x L*(T') — C(0Bgr) x C(0BRg) is a bounded
linear operator given by

o

Gr(f,h) = (wlosg, 5 ~|5x)
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with w € H} _(R?) being the solution to (2.73)—(2.77). Note that w is
analytic outside D. From the Representation Theorem 2.2.3 and the
asymptotic behavior of the fundamental solution ®; (Section 4.1 in [8])
we have for the far field of w:

im/4 Helkdy 9 o
%0 (A) — e € _ow —ikd-y | q 2.90
we() = [ (w005 - Gre Jast) (290
8BR
We define Gy : C(0Br) x C(0Br) — L?(S*') by the right hand side of
(2.90). The kernels in (2.90) are smooth and therefore G5 is compact.
Thus, G is compact as a composition of a bounded and a compact operator.

Now we compute the adjoint of G. Let v be the solution of the boundary
value problem defined in (2.6)—(2.10) with the incident field u’ given by
vy where v, is the Herglotz wave function

wly) = [ *o1g(@)ds(a), v e R,

S1

Here and in the following, Z denotes the complex conjugate of z € C. We
now define w € H} (R*\dD) by

v+7v, inD
w = —
v in R?\D

Thus, w satisfies

Aw+Ew=0 in RD, (2.91)
Aw+k*(1+¢w=0 in D, (2.92)
wy —w- =-7, on 0D, (2.93)
6U]+ 8’[0_ . o 3@
W - 8V + z)\w_ = —E on aD, (294)
lim ﬁ(aw —um> —0, r=|al. (2.95)
7—00 or

We claim that the adjoint operator G* : L2(S') — L2?(D) x L?(T') is given

by
k2w
G'g= ( la] ) . (2.96)
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Indeed, let f € L?(D), h € L*(T') and g € L?*(S') be given and let

u€ Hlloc( 2) be the solution to (2.73)-(2.77). Then

(G 1 = [ w(@)5(E) ds(2)

J
([ w2 sy @ asa
J

- [ur 2 5 e asgy)

oD
= [ur) (P52 - 2 i)
oD

- (wf(y) - w+(y)) 8ugy(y) ds(y)

= [ww (8%‘” ~ i) v ) 2 as(y)
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For convenience we write boundary integrals instead of dual forms. In
the forth and the sixth equality we have used the conductive boundary
conditions (2.93)— (2.94) and (2.75)—(2.76) for w and u, respectively. The
fifth equality holds because both u and w are radiating solutions. In the
eighth equality we have applied the Green’s theorem, (2.92) and (2.74).

T
Thus, G*g = (kjw\/q?l,w_hﬂ) for all g € L?(S1).
We proceed by showing that the adjoint operator G* is injective. Let g €
L?(S1) be such that G*g = 0, i.e., since |g| # 0 a.e. in D, (w|p,w_|p)" =
(0,0)". From (2.91)(2.95) we conclude that w satisfies

Aw+kw=0 in RAD, (2.97)
Aw+E*w=0 in D, (2.98)
wy —w_ =—-7, on 0D, (2.99)
owy  Ow-_ 0vg
— =__39 1
5 5 5, OO oD, (2.100)
lim \/F(aw - ikw) =0, r=lxzl (2.101)
r—o00 or

As in the Section (2.2) we can show, that (2.97)—(2.101) has at most one
solution. It is not hard to see that w|p = Ty| and w|R2\B = 0 solves the
problem above. Therefore, vy = 0 in D and, by unique continuation, in
R2. Jacobi-Anger expansion (see e.g. Section 3.2 in [8]) implies g = 0.

_9_
(b) We decompose T into the sum T = Ty + T} with Tp (901) = <k2|q| SOI)

P2 —iAp2
o1\ _  (Vl]gw
and T} (@2) = ( N )

By the well-posedness of (2.70)—(2.72) the mapping (¢1,¢2)" — w|p
from L?(D) x L*(T") into H'(D) is bounded, and the trace theorem implies
w|p € HY?(T). Since the embeddings H'(D) «— L?(D) and HY/?(T) —
L3(T") are compact, it follows that T3 : L?(D) x L*(T') — L*(D) x L*(T)
is compact as well.
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Let (-, ) denote the dual product between L?(D)x L?(T') and L?(D)x L?(T).
By the assumption (2.66), we have:

e (gg;) | (:g;)} “regeny (%), (%))
// ?dz + Im (e ”")F/AledS

> ﬁnmm(m + Ao Im () 0272 r)

tminf @ o e (2]

(c) Let (i;) € L2(D) x L(T). Then

<T (Zﬁ;) ’ (22>> N é/<k?q|q|“”1 - q“”)‘“dx - F/sz +w)pzds

// \<P1| dx—l/)\\<ﬁ2|2d5
T
—// \/Hwﬁdx—i/)\w@ds,
D r

We examine the last two terms. From (2.70)—(2.72) and the definition of
the trace Ow/dv we see:

//|Vw|2 E*w|* — 3,/]d| wdx—/a—w ds

oD

I \%

LQ(D)XLQ(F)'

= aiw+ ds+z//\w@ds
v

oD r
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(here we again use integrals instead of dual forms). Application of the
Green’s theorem in Br\D, the radiation condition and the asymptotic
behavior of u (that is, |u(z)| € O(1/+/|x|) as |z| — o0) yield

/—w+d8——1m //|Vw| k*|w|? dz + Im / —wds

Br\D lz|=R
=Im (—ik / |w|?ds) + Im / < —zkw)wds
|lz|=R |z|=
— —27Tk/ lw>?ds as R — ooc.
S1

Thus,
P2
1 Imq E o0 |2
— 12z — [ Ngo|?ds — 27k \w |- <0.
lq|

r

0

(d) Let (£1> € L*(D) x L*(T') such that T (:ﬁ;) - (0

solution w € H} (R?) of (2.70)(2.72) becomes

) . Then the

Aw + k*(1 +¢)w =0 in R*\0D,
wy =w_ on 0D,
owy  dw-

By By + 2 w = 0 on 9D.

From the uniqueness of the solution to (2.6)—(2.10) we conclude w = 0 in
2
all of R?%. Thus, %gpl =0in D and Ap2 =0 on I'. Since |q| # 0 a.e. in

D and A # 0 a.e. on I' we conclude (o1, p2) = (0,0).
O

Now we can state the first main result of this section.
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Theorem 2.4.7. Let the Assumption 2.4.1 hold. For z € R? define
¢, € L*(S?%) by (2.87). Then

oo } 2
zeED Y —K@’%/\)Lz(sl)' < 00,
i=1 ]
where Fy = |Re F| + |Im F| and (X\j,v;) is its eigensystem. In other words,
the sign of the function

~1

J

(2.102)
j=1

is the characteristic function of D.

Proof. Theorem 2.4.6 and the range identity (Theorem 2.4.4) yield
’R(Fﬁl/Q) = R((Fu*)l/Q) = R(G) (note, Fy is selfadjoint). Picard’s theorem
[31] implies 9 € L*(S") belongs to R(F,;’?) if and only if

Z \(¢a¢j3\é2(sl)|2 < 0.

J

Jj=1

Finally, Theorem 2.4.3 completes the proof.

2.5 Numerical Results

In this section, we study the applicability of our method through some
numerical simulations in R2.

In the first example the forward data was generated for a kite-shaped object
by coupling of the finite element and boundary integral equation method
as suggested in [37], [38]. For the numerical treatment of the integral
equations we applied the Nystrom method with 128 quadrature points, for
the finite element method we used the MATLAB PDE toolbox.

The computed data set is represented by a C%4*%4 matrix F, where each

entry is the far field pattern u>(0;,6;),7,1 € {1,...64}, with 0; = 275 /64
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and 0; = 27l/64 denoting the corresponding incident direction of the plane
wave and the observation point, respectively. Further, we compute the
matrix Fy = |Re F| 4+ |Im F'| which represents a discretized version of the
operator Fy. The real and imaginary part of a matrix A € CN*N s given
by

A+ A* A— A*
= and Im (A) = ,

2 (4) 2

respectively. We define the absolute value of a matrix A €
singular value decomposition A = UAV* as

Re (A)

CN*N with a

[Al = U[A[VT,

with |A| = diag|A;|,j = 1,...N. For our reconstructions we used a grid G of
200 x 200 equally spaced sampling points on the rectangle [—4,4] x [—4, 4].
Let {(opn, ¥n) : n =1,...,64} represent the eigensystem of the matrix Fj.
Then the analogous W of the indicator function in (2.102) is given by

64 | 12]
W(z) := Z [#29] , 2 €G,
=1 o]
where ¢, = (e 01z e=thb2rz  o=ikler)T €64 Although, the sum
is finite we expect the value of W (z) to be much larger for the points
belonging to D then for those lying outside of the domain.

Figure 2.1 (a) shows the real part of total field for a kite-shaped obstacle,
corresponding to the plane u'(x) = e**d x ¢ R? with k = 2, d =
[cos(m/3) sin(n/3)]T. The scatterer is given by a kite-shaped domain
with the boundary 0D parametrized by ~(¢) = (cos(t) + 0.65 cos(2t) —
0.65), 1.5sin(t)) T, t € [0,27]. Refractive index is n(x) = 1+ 10i|sin(zy)| +
(22 + 23), for z € D, and n(x) = |z1| + 22 for z € ID.

For the second example to compute the far field for the same objects with
the parameters n(r) = 1.2 + (22 +23), k = 3 and n = 1.5 with the help of
FreeFem++ package [27] with P! finite elements. This time we take only
32 incidence and 32 observation directions. Let Fso € C32%32 denote the
data matrix. Figure 2.2 shows the real part of total field corresponding to
the plane with the incidence direction d = [1 0] and the reconstruction.
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Figure 2.1: On the left: Real part of the total field of a kite-shaped obstacle
corresponding to the incidence direction d = [cos(r/3), sin(r/3)]T. On the
right: reconstruction by the Iy Method.

In the next example we keep the parameters n and k the same and compute
the far fields for the kite shaped object coated by a highly conductive
layer of thickness 6 = 0.07 with the conductivity ¢? = 1.5/0.07. Let
F¢, € C32%32 denote the data matrix. Figure 2.3 shows the total field
corresponding to the plane with the incidence direction d = [1 0]T and the
reconstruction.
The relative error of the approximation F:fQ on Fj3y is approximately 10
percent:

[ P52 — Fg |2

5
IE521,

~ 0.1039.

Still the FM gives a good reconstruction.
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Figure 2.2: On the left: Real part of the total field of a kite-shaped ob-
stacle corresponding to the incidence direction d = [1 0]T. On the right:
reconstruction by the Fy Method.

Figure 2.3: On the left: Real part of the total field of a coated kite-shaped
obstacle corresponding to the incidence direction d = [1 0]T. On the right:
reconstruction by the Fy Method.






3 Interior Eigenvalue Problem

3.1 Introduction

In Chapter 2 we have shown that the support of the scatterer can be
determined by the Factorization Method. Having localized the scatterer it
is desirable to retrieve information about its material properties. Recent
studies on the interior transmission eigenvalues suggest the latter carry
additional information about the scatterer. For example, [15] and [22]
show that constant and piecewise constant refractive indices, respectively,
can be reconstructed with the knowledge of the interior eigenvalues. In
[11], [19], and [26] the interior eigenvalues are used to detect cavities (that
is, the subregions in the scatterer where the contrast is zero). Furthermore,
it has been shown that the interior eigenvalues can be determined from
the far field data (see e.g. [10], [26], [35], and [48]). This suggests that the
interior eigenvalues can have practical applications in engineering areas
such as non-destructive testing.

In the previous chapter, while proving the injectivity of the far field operator
F in Theorem 2.3.2 we encountered the following interior problem

Aw + k*nw =0 in D, (3.1
Av+k*v =0 in D, (3.2)
ow Ov |
Eir iAv on dD, (3.3)

w=v ondD. (3.4)

We showed that F' is injective if and only if there does not exist a Her-
glotz wave function vy such that (w,v,) is a solution to (3.1)—(3.4) with
v = vg. There is at most a discrete set of values of k such that (3.1)—(3.4)
has a non-trivial solution (see Remark 2.3.3). We call such k’s interior
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eigenvalues. Due to the presence of an imaginary term in the transmission
conditions (3.3) the well-established techniques cannot be used to prove the
existence of interior eigenvalues and, to the author’s knowledge, (3.1)—(3.4)
is an open problem. However, in [18] D. Colton and Y-J. Leung studied
(3.1)—(3.4) for the case where D is a unit ball in 3D and n is spherically
stratified. In this work the authors showed that complex eigenvalues exist,
accumulate on the real axis, and determine uniquely the index of refraction.

In this chapter we study (3.1)—(3.4), where the boundary parameter is
real-valued, i.e., we replace (3.3) by

% — % =nv on 0D,

with real-valued 7. For this problem, which is rather of academic interest,
we show that the interior eigenvalues exist and form a discrete set with
400 as an accumulation point. Further, we show that the first interior
eigenvalue is a monotonic function of the refractive index n and the
boundary parameter 7. Later we obtain a uniqueness result for constant
n and 7 (this result is thanks to I. Harris, who is one of the co-authors
of [3]). Finally, we present some numerical examples which confirm the
theory.

3.2 Problem Definition and Variational
Formulation

Let D C R™, m € {2,3}, represent a bounded simply connected domain.
We define the Sobolev space

Hy(D) ={ue L*(D): |Vu| € L*(D) and u=0 on 0D}
and 3
H{(D)={ue H*(D): ue H*(D)NH}(D)}.
Since HZ(D) is a subspace of H?(D) we equip with the H?(D) norm
defined as

lullmrzpy = > IID%ullz2(p), (3.5)

lor]<2
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a:=(o,...,am), ¢ €ENg, j=1,....m, |a|=a1 + -+ .

The interior transmission eigenvalue problem is defined as follows: for
given functions n € L>°(D) and n € L*>(dD) find k > 0 and nontrivial
(w,v) € L*(D) x L*(D) such that w — v € HZ(D) and (w,v) satisfies

Aw + k*nw = 0 in D, (3.6)
Av+k*v=0in D, (3.7)
ow Ov
5, "B, —"von oD, (3.8)

w—v=0on 0dD. (3.9)

We put the following assumptions on n, i, and dD.
Assumption 3.2.1.
1. The boundary 0D is of class C?.

2. n is real-valued. It holds either 0 < Ny, <n <1 orn>1 a.e in
D.

3. n € L*(0D) is real-valued such thatn >0 a.e. on dD.
The pair (w,v) € L?(D) x L*(D) is assumed to satisfy (3.6)—(3.7) in the

distributional sense. We now let u € ﬁg(D) denote the difference w — v.
Then u satisfies

Au+ E*nu = —k*(n — 1)v in D (3.10)
or

1
(A+k2)—1(Au+k2nu) =0inD (3.11)

n —

in the distributional sense.

Since we only require v to be in L?(D), we need to specify, in which sense
the boundary condition (3.8) has to be understood. We first note that by
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(3.7) the Laplacian of v is also in L?(D) (see Lemma 2.1.1). To this end,
let

LA(D) ={w € L*(D) : Aw € L*(D)}
be equipped with the graph norm [[wl|zz (p) = [wllz2(p) + [|Aw]|L2(p),
and let

H'?(0D) = {go € HY?(dD) : ‘Z—f = forw e FIS(D)}.

Further, we denote the dual space of H'/2(9D) by H~/2(dD). Since
H1/2(8D) C H'Y?(0D) we have that H-'/2(dD) ¢ H-*/?(dD). In the
following theorem, we show that elements from L2 (D) possess a trace in
the dual space H~'/2(dD).

Theorem 3.2.2. The mapping v : u — ulpp defined in C>(D) can be
extended to a linear continuous mapping from LA (D) to H=/?(9D).

Proof. Let u € C*(D) and ¢ € C*°(D) such that ¢ = 0 on dD. By the
Green’s second theorem [16] we have

/u— ds = /u@—aAudx. (3.12)

The Cauchy-Schwarz inequality yields

3

50| < Clulg oo (313)

with some C' > 0, for all w € C°°(D) and all ¢ € C*(D) with ¢ =0
on 0D.

Since C§°(D) is dense in H{ (D), and, in particular, in H3(D), (3.12) can
be extended for ¢ € HZ(D):
0o\ — = R
u,— ) = [ uA¢p — pAudz forall we C®(D), (3.14)

" v
D

where (-, -) denotes the duality pairing between H~'/2(0D) and H'/?(dD).
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Now, let f € H'/?(OD). Then there exists ¢ € HZ(D) with % = f such
that (see e.g. Theorem 8.8 in [47]) | fllg1/2(op) > cll@|lmz(p)y for some
¢ > 0. Thus, (3.13) implies that

(u, )] < Cllullz ()| fll /2oy for all f e HYV*(OD)
and all u € C°*°(D). Therefore, the mapping
[ f)

defines a continuous linear functional on H'/?(dD) and

lellg-eopy = sw  Iw £ <Cllullzz .
fed/?(oD), ”
||fHH1/2(@D):1

Thus, 7 : u+ ulsp defined on C°°(D) is continuous with respect to the
norm of LA (D). Since C°°(D) is dense in L% (D) (see [23] page 54), v can
be extended by continuity to a bounded linear mapping from L2A (D) to
H~'/2(dD).

O
By the previous theorem, equations (3.7) and (3.10) imply that
1 .
= (A4 K H~Y%(0D).
v k2(n—1)( +E*n)u € (0D)
We write the boundary condition (3.8) as
10 1
g ————(A+k*n)u on ID. (3.15)

nov  k2(n—1)

Since %% € L*(dD) c H~'Y%(9D), the equality (3.15) is understood
in H='/2(0D) sense. Combining (3.11), (3.14), and (3.15) we arrive
at a variational formulation of (3.6)—(3.9), which reads as follows: find

u € H3(D) such that

o g 22\ _ 100 00
< kQ(n—l)(Au+knu)’8y><7761/’61/

1 _ 1 _
— / 7m(Au + kznu)Acp — m(Au + k2nu)cp dx
D

(3.16)
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for all ¢ € ﬁgQD). Again, (-,-) denotes the duality pairing between
H'2(0D) and H~'/2(9D). Taking into account the regularity of u and
¢, and multiplying both sides by k? the identity (3.16) becomes:

k% Ou 0p
oD D

(Au + k*nu)(AP + k*) dz = 0 (3.17)

n—1
for all p € H3(D).

The functions v and w are related to u through

v=— Au+k’nu)  and w= Au + Eu).

1 1
kz(n—n( _k2(n—1)(

Definition 3.2.3. Values of k > 0 for which the interior eigenvalue
problem (3.6)-(3.9) has a nontrivial solution v € L?(D) and w € L?*(D)
such that w —v € ﬁg(D) are called interior eigenvalues. If k > 0 is
an interior eigenvalue, we call the solution u € HZ(D) of (3.17) the
corresponding eigenfunction.

3.3 Discreteness of the Interior Eigenvalues

In this section, we will prove that the set of interior eigenvalues is at most
discrete. To this end, we will write the interior eigenvalue problem as a
quadratic eigenvalues problem for k2. From the variational formulation
(3.17) can be written as

Tu + k*Tyu 4 k*Tou = 0, (3.18)

where the operator T : HZ(D) ~— HZ(D) is the bounded, self-adjoint
operator defined by means of the Riesz representation theorem such that

1 J— -
(Tw, ) g2 (py = /ﬁAu Apdr  forall ¢ e H3(D). (3.19)
D
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By Theorem 8.13 in [21] (note 9D € C?), there exists a constant C' > 0
such that

||u||§{2(D) < C(Hu”%zw) + HAuH%z(D)) for all u € H2(D).

Since the trace of u is zero we even have that ||ul|z2(py < c[|Au| 2 (py for
some ¢ > 0. Indeed, by the definition of the trace operator

ou B
0= <$’u>H*1/2(8D),H1/2(3D) = // |Vu|2 + Auudx
D

for all u € ng (D). The Cauchy-Schwarz inequality yields
IVullZ2(py < l1Aull L2y lull 2oy for all u € H(D).
By the min-max principle [43]

IVull7zp)

M (D) < for all u € H} (D),

||UH%2(D)
where A\1(D) is the first Dirichlet eigenvalue of —A in D. Therefore,
M(D)[ullzzpy < IVullZapy < lAullr2(pyllull r2(n)

or
lullz2(py < (1/AL(D))]|AullL2(p)

for all u € fIO(D).

Thus, the operator T, for n — 1 > 0, (or —T, for 0 < n < 1) is coercive
on Hy(D) and, by the Lax-Milgram Lemma [40], has a bounded inverse.
Next, we define the operator Ty : HZ(D) — HZ(D) by means of the Riesz
representation theorem such that for all p € Hg(D)

1 . _
(Tru, ©)r2(p) = —/E@AUJFUAW) dx—l—/Vu~V<pdx
D D

1 0u O¢

oD
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The operator T, is selg—adjoint and compact. Indeed, let us define the
auxiliary operator A : HZ(D) — HZ(D) such that

1
(Au, o) 2Dy = / n_ 1UA<Pd$
D

and )
D

It is easy to see that ||Aul|g2(p) is bounded by |u||z2(py. By Rellich’s
embedding theorem, this implies that A, and therefore, by Schauder’s
Theorem A*, are compact. The compactness of T; follows from the
compactness of A and A* along with the fact that H'/2(0D) and H?(D)
are compactly embedded in L?(0D) and H'(D), respectively. At last, we
define Ty : HZ(D) — HZ(D) by means of the Riesz representation theorem
such that

(T2U’ @)H?(D) = /

D

n

n—1u¢d$ for all o € Ha(D).

T is compact and self-adjoint.

We are now ready to prove the discreteness of the set of interior eigenval-
ues.

Theorem 3.3.1. Assume thatn >10r0<n <1la.e. inD andn >0 a.e.
on OD then the set of interior eigenvalues is at most discrete. Moreover,
the only accumulation point for the set of interior eigenvalues is +00.

Proof. Let c =1whenn—1>a>0and c =—1whenl—-n2>a>0.
We write (3.18) as

u+ ok*(oT) *Tyu + ok*(oT) ' Tou = 0

or, equivalently (since 0T is a positive self-adjoint operator), as

(K - ];]1) U =0 (3.20)
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with U = (u, k2(0T2)"/?u) " € HZ(D)x H2(D) and K : H3(D)x H3(D) —
H2(D) x H3(D) given by

~ [o(eT) Ty (6T)~! (0To)"/?
K= <_ (UT2)1/2 0 > .

The square root (ng)l/ 2 of the compact self-adjoint operator ¢Ts is

oo
defined by (0T2)1/2 = / A/2dE,, where E, is the spectral measure

0
associated with oTo. The operator (a’ﬂ‘g)l/ % is compact and self-adjoint.

Thus, (3.20) yields that the interior eigenvalues k are the inverse of the
eigenvalues for the compact-matrix operator K. Therefore, the interior
eigenvalues form at most a discrete set with +o00 as the only accumulation
point. Moreover, by the First Riesz Theorem [40] the eigenspaces for each
eigenvalue have finite multiplicity.

O

3.4 Existence of the Interior Eigenvalues

We prove the existence of infinitely many interior eigenvalues using the
Theorem 2.3 in [13]. We recall this key result in the following lemma.

Lemma 3.4.1. ([13], Theorem 2.3) Let k — Ay, be a continuous mapping
from (0,00) to the set of self-adjoint positive definite bounded linear opera-
tors on the Hilbert space U and assume that B is a self-adjoint non-negative
compact linear operator on U. We assume that there exist two positive
constants ko and kq such that

1. Ay, — k¢B is positive on U
2. Ag, — k3B is non-positive on a m—dimensional subspace of U

then each of the equations \;(k) —k* =0 for j =1,...,m has at least one
solution in [ko, k1] where \;(k) is such that Ay — \j(k)B has a non-trivial
kernel.
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Recall the variational formulation of the interior eigenvalue problem
(3.17):
k2 — 1 _
—%aﬁder/7(Au+k2nu)(Agp+k2¢) dz =0, (3.21)

n Ov v n—1
aD D

for all p € ffg (D). We define the following bounded sesquilinear forms on
HG(D):

1 R
Ai(u, @) = / — (Au+t k2u)(Ag + k°P) + kup dz
D

o [ 10udp
- .22
+k/7751/31/ds’ (3.22)
oD
Au(u, ) = / o (Aut ) (AP + ) + Audpdr,  (3.23)
D
B(u, ¢) = /Vu -Vodz, and (3.24)
D
~ _ 1 0u dp
_ . Loudp o 2
B(u, @) /Vu Vedz + 00 oy s (3.25)
D oD

Now, we write the interior eigenvalue problem either as
Ai(u, @) — k*B(u,9) =0 forall ¢e H3(D), forn>1, (3.26)
or as
Ap(u, 0)—=k*B(u, ) =0 forall ¢e H3(D), for 0<n<1. (3.27)

Using the Riesz representation theorem we can define the bounded linear
operators Ay, Ay, B, and B : H3(D) — HZ(D) such that

(Art, ©) oy = Ak, 9),  (Ar, @) 2 (py = Ar(u, 9),

(BU7<P)H2(D) = B(u,) and (@UNP)H%D) = g(“#ﬁ)
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Since n and 7 are real valued the sesquilinear forms are Hermitian and
therefore the operators are self-adjoint. Due to compact embeddings of
H?(D) into H'(D) and H'/?(8D) into L?(dD) the operators B and B are
compact. Also since 7 > 0 both operators B and B are positive (note that
the trace of w on 0D is zero).

For the case when n > 1 it has been shown in [14] that

1]oul?
As) > 8l + 2 [ L2 s > Cllaulig,

oD

where C' > 0 only depends on the refractive index n. Also for ./Tk, for the
case 0 < n < 1, we have

Ao (u, ) :/%\Au+k2u|2+|Au|2dx > ||AulZ2p)-
D

Therefore, for both A and A holds
Ag(u,u) > Cllullgzpy  and  Ag(u,u) > cllul| g2(p)

for all k£ > 0, where the constants C' and c are positive and independent
of u € H3(D). In the next theorem we summarize the properties of the

operators Ay, A, B, and B.

Theorem 3.4.2. Assume that eithern >1 or0<n <1 a.e. in D and
that n > 0 a.e. on 0D then

1. the operators B and B are positive, compact, and self-adjoint.
2. the operator Ay is a coercive self-adjoint operator provided thatn > 1.

3. the operator &k is a coercive self-adjoint operator provided that
0<n<l.

Therefore, the operators Ay — k*B and Ar — k°B satisfy the Fredholm
property.
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Note that the interior eigenvalues are the solutions to \;(k) — k* = 0
where \;(k) = Aj(k;n,n) are the eigenvalues for the generalized eigenvalue
problem

Agu=\j(k)Bu for 1<n or Azu=Xj(k)Bu for 0<n<1.
(3.28)

From the above discussion we have that Ay, &k, B, and I@k satisfy the
assumptions of Theorem 2.3 of [13]. To prove existence it remains to show
that the operators A, — k2B and Ak — k2B are positive for some k¢ and
non-positive for some k; on a finite dimensional subspace of HZ(D).

Theorem 3.4.3. Assume that eithern >1 or0<n<1 a.e. in D and
n >0 a.e. on dD then for k sufficiently small for all u € HZ(D) there
exists 6 > 0 such that

A (u,u) = K2 B(u, u) > 6|| Aul|72(py
or

-Avk(uau) - ng(%U) 2 6HAUH%2(D)‘

Proof. We first consider the case where 0 < n < 1 and since n > 0 we have
that

T 23 1 |0ul?
Ar(u,w) = K*B(u, u) > || Aul[fap) — k° HVUII2L2<D>+/7 | %
oD

n|Ov

1|0ul?
> 1Al (el + [ 7|5
oD

Recall that the for all u € H3(D) we have that there exists C; > 0 such
that
lullZ2 () < CrllAullZzp)-

Now let mf N = Nmin > 0, then we have that 1 < for almost all
x € 0D. Usmg these estimates yields that

Ag(u,u) — K*B(u, u)

> HAUHL2(D) — k2 (OI|AU|L2(D) + — ||8u/8y||L2(8D )
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By the trace theorem we obtain

Combining this with the previous estimates we conclude

)}mmam

Since fmin > 0 we have that Ay (u,u) — k2B(u, u) > (5HAu||2L2(D) for all
k > 0 sufficiently small.

2

ou
Y < Collul[3r2(py-

L2(dD)

&

min

Ap(u,u) — k2 B(u, u) > [1 — O1k? (1 +

For n > 1, since n > 0 a.e. on 0D, we have

Ak (u,u) — k2 B(u, u)
2

1
ds

1 0
= [ s i R ar = 82 [ [vupas+i [ 1100
D oD

n |Ov

D
> CllAulZap) = K[ Vulfap)
> CllAulzapy = K llullzep)

> (C = K*Cy) | AulZz p),

where again C; is the constant such that Hu||§12(D) < C1||Au||2L2(D) for
all u € H3(D) and C is the constant where

1 N
/m\Au + k?ul? + k*|ul* dz > C[|Au||72(py forall e Hi(D).
D

Hence, for all k? sufficiently small we have that Ay (u,u) — k*B(u,u) >
5||Au||2L2(D), proving the claim. -

We are now ready to prove the main result of this chapter.

Theorem 3.4.4. Assume that either n >1 or 0 <n <1 a.e. in D, then
there exists infinitely many real interior eigenvalues.
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Proof. We will prove the result for the case of n > 1 and the other case is
similar. Let B; = B(zj,¢) :== {x € R : |x — zj| < ¢} where z; € D and
e > 0. Define M(e) as the number of disjoint balls B, i.e., B; N B; = 0,
with € small enough such that Fj C D. It can be shown by using separation
of variables [17] that there exists infinitely many transmission eigenvalues

to

Aw; + anmmwj =0 and Av;+ k‘21}j =0 in Bj, (3.29)
ow;  Ov;
w; —v; =0 and 8—; - 3—; =0 on0B;. (3.30)

where N, = infn(z) for z € D. Let u; denote the difference u; =
v; —wj € H3(B;) and let i; be the extension of u; by zero to D. We
note that @; € HZ (D) C H3(D). Since the supports of i, are disjoint we
have that @; is orthogonal to @; for all ¢ # j in ﬁg (D). This implies that
Wht(ey = span{iy, g, -+ ,Up)} forms an M(e) dimensional subspace
of HZ(D). Further, for any transmission eigenvalue k of (3.29)-(3.30) we
have

1 _ . — —
0= /m(Auj + k:2uj)(Auj + kgnmmuj) dx
D
1 . . — —
= /71(Au] + kQuj)(Auj + anmmuj) dx
B

1
= /71|Aaj + k2 4+ k*ag)? dz — k2 [ |V, de.
Nmin —
B;j B;
Now, let k. be the first transmission eigenvalue of (3.29)—(3.30) in some
ball B; with the eigenfunction u;. Then, for the extension 4; we have
1
Ay (g, 05) — K2B(a;, ;) = / A+ k2 + k2|, de
D

_ 1 |0,
—k?/Vudex—i-k?/n‘a;
D oD

1
:/H\Aaj+k§aj\2+k§|aj|2dxfk§/|vaj\2dx
D D

2
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1
= /ﬁm@j+’€?ﬂj\2+k3|ﬂjl2dw—k§ Vit |2 dz = 0.

Thus, for all u € Wy (., we have Ay_(u,u) — k2B(u,u) < 0. By Lemma
3.4.1 this gives that there are M(e) transmission eigenvalues in the interval
(0, k.]. Now, note that as e — 0 that M (e) — oo. Since the multiplicity
of each eigenvalue is finite we conclude that there are infinitely many
transmission eigenvalues.

O

From the proof of Theorem 3.4.4 we have the following upper bound
on the first transmission eigenvalue of (3.6)—(3.9), which we denote by
kl (na 7, D)

Corollary 3.4.5. Let sup,cp n(z) = Nmaz and infyep n(x) = Nupin. Let
Bpr be a ball of radius R > 0 sufficiently small such that Br C D. Then

1. if n > 1 for almost every x € D, then
kl (na 7, D) S kl (nminy BR)a

where ki(Nmin, Br) 1s the first transmission eigenvalue of (3.29)—
(3.30) for the ball Bg.

2. if 0 < n <1 for almost every x € D, then
kl (TL7 m, D) S kl (nmaz» BR)v

where ki(Nmaz, Br) is the first transmission eigenvalue of (3.29)—
(3.30) for the ball Br with Ny, replaced by Nppaq -

The bound in Corollary 3.4.5 becomes better if By is taken to be the
largest ball such that B C D.

3.5 Monotonicity of the transmission
eigenvalues

For this section we turn our attention to proving that the first transmis-
sion eigenvalue can be used to determine information about the material
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parameters n and 7. To this end, we will show that the first transmission
eigenvalue is a monotonic function with respect to the functions n and 7.
From the monotonicity we will obtain a uniqueness result for a homoge-
neous refractive index and homogeneous conductive boundary parameter.
Recall that the transmission eigenvalues satisfy

Nj(ksn,m) — k*(n,m) = 0 (3.31)

and the first transmission eigenvalue is the smallest root of (3.31) for
A1(k;m,n). Note that A\ (k;n,n) satisfies for u # 0

Ak(% u)

A(k;n,n) = min for n>1 3.32
1( 77) weH3 (D) B(’U,, U) ( )

or ~
A(k;n,n) = min M for 0 <n <1, (3.33)

uef2(D) B(u,u)

where the sesquilinear forms on H3(D) are defined by (3.22)(3.25). It is
clear that Aq(k;n,n) is a continuous function of k € (0,00). Note that the
minimizers of (3.32) and (3.33) are the eigenfunctions corresponding to
A1 (k;m,n). We will denote the first transmission eigenvalue by ki (n,n).

Theorem 3.5.1. Assume that 0 < ny < ny and 0 < 11 < 19, then we
have that

1. if ny > 1, then ki(ng2,nm2) < ki1(n1,m).
2. if ng <1, then ky(ny,n) < ki(n2,n2).

Moreover, if the inequalities for the parameters n and n are strict, then
the first interior eigenvalue is strictly monotone with respect to n and 7.

Proof. We start with the case n > 1. Let k1 = ki(ni,m) and ky =
k1(n2,m2). Therefore, for all u € H§(D) such that ||[Vul[z2(p) = 1 the
assumptions ny < ng and 1y < 19 yield

2

1 1 |0u
Al(kl;m’m)S/m|Au+k%u|2+kf|u|2dx+k%/% D
A oD

2
ds.

1 1 [0u
S/ﬁ|Au+k%u|2+k‘f|u|2dx+kf/77—1 B
oD
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Choose u = wu; where u; is the normalized eigenfunction such that
[[Vui|[z2(py = 1 corresponding to the eigenvalue k;. From (3.32) we
have

1
Ak, m) = / ﬁlAul + kfuy |” + ki lui | da
=

D
1
+ ki / —
m
aD

since u; is the minimizer of (3.32) for n = ny and n = n;. Thus
)\1(/€1;n2,772) é )\1(/€1;7’L1,T]1) = k%, i.e., )\1(/€1;TL271’]2) - k% S 0. In
Theorem 3.4.3 we have shown that for all k? sufficiently small holds
A (u,u) — k2B(u,u) > 0. This implies that there is a § > 0 such that for
any k% < 6 holds A\;(k;na2,7m2) — k? > 0. By the continuity we have that

A1 (k;ng,ma) — k2 has at least one root in the interval {\/5, kl}. Since ko

is the smallest root of A\ (k;na,1m2) — k% we conclude that ko < ki proving
the claim for this case.

2

Oy ds,

v

For the case where ny < 1 we let k1 = k1(n1,m1) and ke = k1 (n2,n2) and
the corresponding sesquilinear forms

Ap(u, ) = / . o (Au + E*u) (AP + k°P) + AuApda,

-n
D
~ _ 1 0u d0p
B(u,(p)—/Vu-V(pdx—F ;%ads
D aD
Recall that _
Ak(u, u)|

Ar(ksne,m) = min — =
weH2(D) B(u,u)|n:m
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where we h@ve assumed that n; < ns and n; < 9. For any value k and
for all u € H3(D) holds

/ M |Au + k?ul? + |Auf* dr < / 1 12 |Au + k*ul? + |Au|? d,

].—’le — N2y
D D
1 ? 1 2
/\Vu|2dx—|—/— Ou ds§/|Vu|2dm+/— Ou
12 | OV m |Ov
D oD D oD
Thus ./LLC(UW)LL:”1 < Ar(u, u)}n:712 and g(u,uﬂn:nz < lg"v(u,u)|n:771

for all u € }NIS(D). Let now u = ug, where up is the eigenfunction
corresponding with interior eigenvalue ko. Then

Ay, (ug,u2)| Ap, (u2, us)|

E(UQ,U2)| E(UQ,UQ)’

n=ni n=n __ k2
= K3,

A1(k2sni,m) <

n=mn n=nz

i.e. A\j(k2;n1,m1)—k3 < 0. Similar arguments as in the previous case yield
ki1 < ko.
O

By the proof of the previous result we have the following uniqueness result
for a homogeneous media and homogeneous boundary parameter 7 from
the strict monotonicity of the first transmission eigenvalue.

Corollary 3.5.2. 1. If it is known that n > 1 or 0 < n < 1 is a
constant and 1 is known and fized, then n is uniquely determined by
the first transmission eigenvalue.

2. If n>1or0<n<1is known and fized and n is a constant, then
the first transmission eigenvalue uniquely determines 1.

It is known (see [13]) that for a every fixed k € (0,00) there exists an
increasing sequence A;(k;n,n) of positive generalized eigenvalues of (3.28)
that satisfy

Aj(k;n,m) = min  max A (u, u)

— = > 1,
Uet; ueU\{0} B(u,u) or
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or

Aj(k;n,m) = min  max M for 0 <n <1,
Uel; ueU\{0} B(u7u)

where U; is the set of all j-dimensional subspaces U of HZ(D). Tt is clear
from the proof of Theorem 3.5.1 that if k; is a transmission eigenvalue
such that \j(k;n,n) — k? = 0, then k;j(n,n) satisfies the monotonicity
properties given in Theorem 3.5.1.

Corollary 3.5.3. Assume that 0 < ni < ng and 0 < n1 < o and that k;
is a transmission eigenvalue such that \;(k) — k* = 0, where \;(k) is a
positive generalized eigenvalues of (3.28), then we have:

1. if nq > 1, then we have that k;j(ng,n2) < kj(n1,m).
2. if ng < 1, then we have that kj(ni,m) < k;j(n2,n2).

3.6 Numerical Results

In this section we present numerical examples which confirm the mono-
tonicity results of the previous section. All computations are done for the
3D case. These results are thanks to A. Kleefeld, who is a co-author of [3].
The chosen objects for which the interior eigenvalues are computed are
represented by a unit sphere centered at the origin, a peanut-shaped object,
and a cushion-shaped object (see Figure 3.1). In all cases we assume that
the refractive index n and the boundary parameter n are constants.

Numerical calculation of the interior eigenvalues for a sphere of radius
R > 0 is done with a series expansion. One can show that the interior
eigenvalues correspond to the values of k such that the determinant of the
following matrix is zero [3]:

~Ip(kR) Jo(ky/iR)
( —kjh(kR) —njp(kR)  ky/nj,(ky/nR) ) ) (3.34)

where j,,p > 0, denotes the spherical Bessel function of the first kind of
order p.
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Figure 3.1: Left to right: Unit sphere centered at the origin, peanut-shaped
obstacle, and cushion-shaped obstacle (at the bottom).

In Table 3.1, we list the first five interior eigenvalues for a unit sphere
using the index of refraction n = 4 and various choices of 7.

As we can see, for the limiting case n = 0 the interior eigenvalues are close
to the ‘classic’ eigenvalues 3.141593, 3.692445, 4.261683 (see for example
Table 12 in[39]). The limiting case for n — oo gives the union of the
interior Dirichlet eigenvalues for a unit sphere and a sphere of radius two
which can easily be seen by considering the limit n — oo in (3.34). The
values are given by the zeros of j,(k) and j,(2k), respectively. The first
four interior Dirichlet eigenvalues for a unit sphere are 3.141593, 4.493408,
5.236630, and 5.763441 (see also [39, Table 11]). The first four interior
Dirichlet eigenvalues for a sphere of radius two are 1.570796, 2.246705,
2.881730, 3.493966.
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n 1. 2. 3. 4, 5.

0.0 | 3.136675 3.140531 3.141593 3.691542 4.260901
0.1 3.109444 3.130912 3.141593 3.683405 4.253868
0.25 | 3.059806 3.114638 3.141593 3.669807 4.242177
0.5 2.974096 3.086914 3.141593 3.647091 4.222806

1 2.798386 3.029807 3.141593 3.601813 4.184685
2 2.458714 2914716 3.141593 3.514484 4.112257
3 2.204525 2.809294 3.141593 3.435429 4.046733
10 1.743402 2.467800 3.138749 3.141593 3.779199

100 1.586662 2.269209 2.910355 3.141593 3.528384
1000 | 1.572369 2.248952 2.884610 3.141593 3.497455
10000 | 1.570953 2.246929 2.882018 3.141593 3.494315

Table 3.1: The first five interior transmission eigenvalues for a unit sphere
using the index of refraction n = 4 and various choices of 7.

The interior eigenvalues for the peanut- and cushion-shaped objects are
computed numerically from a boundary integral formulation of the interior
eigenvalue problem (cf. Cossonniére and Haddar [20]). Table 3.2 lists
the first five interior eigenvalues for a peanut-shaped object for n = 1/2
and n = 4 and different choses of 7 (recall, in Section 3.5 we distinguish
between the cases n < 1 and n > 1). The peanut-shaped object is
parametrically given by the spherical coordinates @ = gsin(¢) cos(f),
y = psin(¢)sin(f), and z = pcos(¢) with azimuthal angle ¢ € [0, 7] and
polar angle 6 € [0, 27].

(n,n) 1. 2. 3. 4, 5.

(1/2 1/2) | 1481359 1.754289 2.080586 2.106238 2.245421
(1/2,1) | 1.889608 2.245548 2.713844 2.727860 2.934707
(1/2,3) | 2.482082 2.947498 3.640550 3.695166 3.997 475
(
(4,
(4,

4,1/2) 2.754035 2987131 3.460241 3.517669 3.583455
1) 2.678956 2.930558 3.404815 3.456156 3.534 554
3) 2.391812 2.723728 3.196562 3.198664 3.291749

Table 3.2: The interior eigenvalues for a peanut-shaped obstacle using the
index of refractions n = 1/2 and n =4 for n =1/2, n =1, and n = 3.
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Figure 3.2 shows that for fixed n = 4 the first interior monotonically
decreases for increasing 7).

Figure 3.2: The monotonicity of the first interior eigenvalues for the
peanut-shaped obstacle using n = 4 for increasing 7.

As shown in Figure 3.3 for n = 1/2 and increasing 7 the first interior
eigenvalue increases as well.

3.5 T T T T

3r i

25 1

Figure 3.3: The monotonicity of the first interior eigenvalues for the
peanut-shaped obstacle using n = 1/2 for increasing 7.

In Table 3.3 we list the first five interior transmission eigenvalues for a
cushion-shaped object that is given parametrically by spherical coordinates
with o = 1—cos(2¢)/2. We consider the same parameters as in the previous
case. As we see, the monotonic behavior of the transmission eigenvalues is
the same as in the case with the peanut-shaped object.
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(n,m) 1. 2. 3. 4. 5.

(1/2,1/2) | 1.359283 1.6904494 2.012440 2.087716 2.110396
(1/2,1) 1.730859 2.164577 2.595767 2.732528 2.979526
(1/2,3) 2.273696 2.834967 3.439393 3.651267 3.766 782
(
(
(

4,1/2) 2.863595 2.878783 3.144915 3.159434 3.469001
4,1) 2.762018 2.818074 3.087199 3.099157 3.431516
4,3) 2.384383 2.611343 2.841059 2.945477 3.305505

Table 3.3: The interior transmission eigenvalues for a cushion-shaped
obstacle using the index of refractions n = 1/2 and n = 4 for n = 1/2,
n=1,and n = 3.






4 Factorization Method for
TE-mode for n =0

4.1 Introduction. Problem Definition

In this chapter we consider the case, where the scattering object is not
coated, i.e., n = 0. The problem reads as follows: given an incident field
u? with

Au' +k*ut =0 in R?

find v € H} (D) and u € H} _(R*\D) such that

V-AVv+k*v=0 in D, (4.1)
Au+k*u=0 in R*\D, (4.2)

ou  Ov
% — m =h on 3D, (43)
u—v=f on 0D, (4.4)

Thﬁn;o ﬁ(g:f — zku) =0, r=|z| (4.5)
where (4.5) holds uniformly in = z/|z|. In (4.4) and (4.3) we set f = —u’
and h = —0u'/dv, respectively. Further, D C R? is a union of bounded
domains with C? boundary and connected exterior R*\D, A = (a;;) is a
2 x 2 matrix defined on D with complex-valued entries a;; € L>°(D) and
k > 0 is the wave number. As in Section 2.1 the equations (4.1)—(4.2) are
understood in distributional sense and (4.3)—(4.4) in the sense of traces.
Following the arguments of Lemma 2.1.1 one can show that (4.1) and (4.2)
hold in L? sense. The trace of the conormal derivative Ov/dv4 for H(D)
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functions such that V- AVv € L?(D) is in H~'/2(0D) and is well defined
by

Ov — _

<7,<p>= V- AVv+9V - AVudx
aI/A
D

for all ¢ € H*(D). Throughout this chapter we denote by (-, -) the duality
pairing between H~1/2(9D) and H'/?(dD).

In [36] A.Kirsch and X.Liu showed that, under physically relevant assump-
tions on complex-valued A, the Factorization Method works for this case.
However, the proofs in [36] are rather technical such that taking the same
approach for the case with transmission conditions (1.4) would result in
even more involved arguments. In this chapter we restrict ourselves to the
case when A is real-valued and prove the factorization method in a more
simple way. In Chapter 5 we follow the same approach to study the FM
for the problem with conductive transmission conditions. By the physics
of the problem, we require A to satisfy the following assumption.

Assumption 4.1.1. The matriz-valued function A : D — R2*2 with the
entries (a;;) € L>°(D) is symmetric. For almost all x € D holds

€ A(2)€ > cle]* for all € € C2,

where ¢ 1s a positive constant.

The well-posedness of (4.1)—(4.5) was established in [24] for A with entries
in C1(D) for 3D case. In two dimensions, with the unique continuation

result from [1] it is enough to assume that the coefficients in (4.1) are in
L>(D).

Theorem 4.1.2. Let D C R? and A : D — R?*2 satisfy the assumptions
above and let f € H'/?(OD) and h € H='/2(OD) be given. Let B denote a
disk of radius R > 0 centered at zero such that D C Br. The transmission
problem (4.1)-(4.5) has a unique solution v € H'(D) and u € (Br\D)
which satisfy

lollszs (o) + el s 15y < Collflarssaomy + IRl r-27200my),

with Cr > 0 independent of f and h.
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4.2 Factorization Method

Throughout this section we assume that k2 is not a Dirichlet eigenvalue of
—A in D and not a Dirichlet eigenvalue of —V-AV in D. Next we define the
interior Dirichlet-to-Neumann operator A; : HY/2(9D) — H=/2(0D):

ov

Akff'—)a,

with v being a solution of the Helmholtz equation in D: Av + k?v =0 in
D with v = f on dD. Further, let A}, H'?2(dD) — H~'/?(dD) denote
the interior Dirichlet-to-Neumann operator:

v

A;Lk:f’—> M7

where v is a solution V - AVv + k*>v = 0 in D with v = f on 0D.

Under the assumptions on k, the interior Dirichlet problems are well-
posed which yields that the operators A,  and A;Lk are well-defined and
bounded.

Further, we define the exterior Dirichlet-to-Neumann operator
Af : HY?2(0D) — H~Y/2(aD),

v
o’

where v is the radiating solution of the exterior Dirichlet problem

Af i fe

Av + E*v = 0 in R?\D.
v=fondD.

We also will refer to this problem in the following equivalent form (the
equivalence can be shown with the same reasoning as Lemma 2.2.4)

Av + k*v =0 in Bg\D.
v=fondD,
v

s = Ayv on |z| = R,
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where Bp, is a disk of radius R > 0 centered at the origin such that D C Bp
and Ay is the Dirichlet-to-Neumann operator (2.24).

The exterior Dirichlet problem is well-posed and therefore the operator
AZ is well-defined and bounded.

The subscript & in the definitions stays for the wave number k. In the
following we will also use operators Ali and A;l, ;» which correspond to the
wave number k = i.

We define the far field operator F : L%(S') — L2(S1) by

Fo(3) = / (B> (2,8) ds(d), (4.6)
Sl

where 4> (&, 0) is the far field pattern of the solution to (4.1)-(4.5) corre-
sponding to the incidence direction 6 € S* and the observation direction
# € S'. In the next theorem we show that F has a factorization of the
form F'= H*TH.

Theorem 4.2.1. The far field operator F : L*(S') — L?(S!) defined by
(4.6) has a factorization of the form F = yH*TH, where v = \‘;;% and
H:L*(SY) — H1/2(8D) 1s the Herglotz operator

Hg(x) = /eikx'dg(d) ds(d), xe€dD
S1

and T : HY?(D) — H~/2(dD) is given by
Tf= Ay = A4 p)v-,

where v_ is the trace of the radiating solution v|p € H*(D), Vlga\5 €
Hlloc(RQ\b) to

V-AVo+k*v=0 in D, (4.7)
Av+ k2w =0 in R?\D, (4.8)
ovy  Ov _
=t 7 _ A D 4.
ov Ova k f on 9 ’ ( 9)
vy —v_=f on OD. (4.10)



4.2 Factorization Method 97

Proof. We define the data-to-pattern operator G : H'/2(9D) — L?(S') by
Gf = v>, where v™ is the far field pattern of the solution to (4.7)—(4.10).

Let H : L?(S") — H'/?(0D) denote the Herglotz operator
Ho(z) = / e*7dg(q) ds(d), @ € aD.
Sl

Since Hg = vy|lap and A, Hg = Ovy/0v|sp, where v, is the Herglotz wave
function, by the superposition principle it follows that F = —GH.

The adjoint operator H* : H=/2(9D) — L?(S) is given by

H* (&) = /w(y)e*m'yds(y), & e St (4.11)

where for simplicity of notation we use the integral instead of the dual
form.

From the asymptotic behavior of the fundamental solution (2.36) to the
Helmholtz equation it follows that vH ™1 is the far field of the single layer
potential

(Spv)(z /w VO (z,y)ds(y), z € R*\ID.

It is well-known [42] that the single layer potential can be continuously
extended to the boundary 0D, i.e.,
Sile =S¥ on D,

where S : H=Y/2(9D) — H'/?(8D) is given by

/w ®(z,y)ds(y), =€ dD.

Furthermore, the following jump condition hold on 9D [42]:

AF Sy — A Sy = —.
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The single layer potential S;v with density ¢ € H~1/2 (0D), solves the
Helmholtz equation in R?\D and satisfies the radiation condition. There-
fore, we can view vH* as the data-to-pattern operator YH* : ¢ — w™,
where w is the far field operator of the solution of the following trans-
mission problem:

Aw+k*w=0 in D, (4.12)

Aw+k*w=0 in R*\D, (4.13)

Afwy —Ajw_=—¢ on 0D, (4.14)

wy —w_=0 on 9D, (4.15)

lim ﬁ(aw — zk‘w) =0, r=|z| (4.16)
r—00 or

Now, let f € H'/2(9D) be given and let v>° = G'f be the far-field pattern
of the solution v to (4.7)-(4.10) with the source f. We define w € H}. .(R?)

by
o in D,
w = J—
’U|R2\5 in RZ\D,

where @ € H'(D) is the solution to
Ai+k*a=0 in D,
4 =wvy on 0D.

Then w solves (4.12)—(4.16) with ¢ = —(A, — A )vy. Applying A; to
(4.10) and subtracting (4.9) yields

(Ay = Aoy = (Ay — AL v (4.17)
Thus ¢ = —(Ap — Ay ).
Since v = w in R?\D, by the Rellich’s Lemma, the far fields of v and
w coincide, ie., Gf = v>® = w> = yH*(A, — Ay, )v—. This holds

for all f € HY/?(0D). Thus, Gf = yH*Tf for all f € H'/?(9D) with
T : H'/2(0D) — H~Y2(dD) given by

T:fs (A — AL v, (4.18)

where v_ is the trace of the solution to (4.7)—(4.10).
O
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Next we show that the scattering domain D can be characterized by the
range of H*.

Theorem 4.2.2. For any z € R?, let ¢, € L*(S') be defined as
i /4

8k

Then z € D if, and only if, ¢, € R(H™).

$.(2) = e"tk&z g e gl (4.19)

Proof. We first show that for z € D holds ¢, € R(H*). Let f € H'/?(0D)
be given by f = ®.(-,2) on D, where ®; is the fundamental solution
(2.36). Let u € H. _.(R*\D) be the radiating solution of the exterior
Dirichlet problem
Au+k*u=0 in R*\D,
u=f on O0D.
The exterior Dirichlet problem is uniquely solvable. Therefore u = ®(+, 2)

in R*\D. In particular, the far fields u> and ®$°(-, z) coincide, i.e.,
u™® (%) = O°(%,2) = ¢,(#) for all & € S,

We define w € H}, (R?) by

_Ju in D,
v u|R2\5 in R2\D,
where @ € H'(D) is the solution of the interior Dirichlet problem:
At +k*u=0 in D,
u=f on OD.
Then w is the radiating solution of the following transmission problem:
Aw+k?w=0 in R*\D,
Aw+k*w=0 in D

wy —w_ =0 on 9D
Afwy —Ajw_=—(A; —Af)f on 0D,

)
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with the far field pattern w™ = u*> = ¢,. Since w™ = vH*(A; — A{)f,
we get ¢, € R(H™).

We prove the other direction by contradiction. Let z € R?\ D, and assume
there is ¢ € H='/2(dD) such that H*1) = ¢,. That is, we assume that
the far field of the solution w € H} (R?) to (4.12)-(4.16) with boundary
data 1 coincide with the far field of the fundamental solution ®(-,z). By
Rellich’s Lemma and the unique continuation principle, w and ®(, 2)
coincide in R?\(D U {z}). But for any disk B, containing z in its interior,
by assumption, w € H'(B,). At the same time, for any disk B, containing
2 for the fundamental solution ®; we have ®(-,2) ¢ H'(B,). We arrive
at a contradiction.

O

In the next Lemma we collect some properties for the auxiliary operators
Ay AL, and AL

Lemma 4.2.3. (a) The difference of the operators Aj, — A, Ay — Ay,
and A — A is compact from H'/2(9D) to H=Y/2(0D).

(b) For all f € HY/2(OD) holds

and
(A £ ) =0

(c) Assume that there is a constant ¢ > 0 such that

E-(I—Ax)€ > cl¢f? forall € € C* and for almost all x € D,
where I : R2 — R? is the identity matriz. Then

Re((A7 = AL ) f. ) = éllfllzom)

where ¢ > 0 is a constant. If

E-(A(x) = DE > c|¢]* forall € € C* and for almost all x € D.

then
—Re((A; = A3 ) F F) = Ellf 13 20p)-
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Proof. (a) We consider the case A, — A; : HY/?(0D) — H~1/2(dD). Let
f € H'Y?(0D) be given and let uy,u; € H'(D) denote the solutions of
the Helmholtz equation in D with the Dirichlet data given by f and wave
numbers k and 7, respectively. Then (A, — A7) f = % where @ € H!(D)
solves

At +ka=—(k*+1)u; in D, @=0 on OD. (4.20)

By an application of the Lax-Milgram Lemma it is easy to show that
(4.20) is well posed for the right hand side in L?(D). The compactness
of A, — A; follows from the boundedness of the mapping f — u; from
H'?(dD) into H'(D), the compact embedding H'(D) < L*(D), the
boundedness of u; + @ from L?(D) into H'(D) and the trace theorem.
The case A; r — A, is completely analogous.

The compactness of A$ — A can be shown in a similar way. Let f €
H'/2(0D) and k > 0 be given and let uj, € H}. (R?\D) be the solution to

loc
the exterior Dirichlet problem with the wave number k:

Aug + k‘2uk =0 in BR\ﬁ,
up,=f on 0D
Ouy,

ov
Further, let u; € H (R?\D) denote the solution to the exterior Dirichlet

problem with wave number i:

= Agup, on |z|=R.

Au; —u; =0 in Bg\D,
u;=f on 0D
ou;
ov
Here, Ay and A; are the Dirichlet-to-Neumann operators (2.24) and Bg

is a disk of Eldius R > 0 centered at zero such that D C Bgr. Let
w € HY(Bg\D) denote the difference uj, — u;. Then w satisfies

=MNu; on |z|=R.

Aw+ k*w = —(k* + D)u; in Bg\D, (4.21)
w=0 on 0D (4.22)
9w =Agw+ (A — Aju;  on |z| =R. (4.23)

ov
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This problem is well posed for arbitrary right-hand-side L?(Bgr\D) and
H~'2(0Bg) in (4.21) and (4.23), respectively. By compact embedding
H'(Br\D) — L*(Bgr\D) and, by compactness of Ay — A; = (Ag —
Ao) + (Ao — A;) from H'/2(0D) into H=/2(8D) (see Lemma 2.2.2) it
follows that f + dw/dv is compact from H'/?(0D) into H~'/2(0D), i.e.,
A — Af  HY2(0D) — H=1/2(9D) is compact.

(b) Since A is positive definite and by the definition of the trace operator
it follows (A5 ,f, f) > 0 for all f € HY?(9D). The case with A; is
analogous. 7

We show the assertion for —A;". Let f € H'/2(9D) and let u € H'(Br\D)
satisfy

Au—u=0 in R?\D,
u=f on 0D,

0
lim \/F(u +u> =0, r=]|z,
r—00 or
uniformly in & = x/|z|. Note that the radiation condition with k = i

implies exponential decay of |u(x)| as |z| — oo. Then by the Green’s
Theorem (precisely by (2.15)) we have

ou ou
WD) =~y = [[IVuP s ade - [ Slaas
Bgr\D |z|=R

:/ |Vu|? 4 |u|® dz + / lul?ds +o(1) as R — oc.

Thus, —(AS f, f) = ||UHH1(R2\5) z 0.

(c) Let u € H'(D) denote the solution to
Au—u=0 in D, u=f on 0D, (4.24)
and let w € H'(D) be the solution to

V-AVw—w=0 in D, w=f on 0D. (4.25)
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We assume first that for all £ € C? and for almost all = € D
holds & - (I — A(x))& > c|¢]?. Thus,
(A7 = AL )N = //W-VU—%EU—W-AVU)—dex
D
://W-(I—A)Vu—s—W-AVu—W-Adex
D
+//ﬂu—2ﬂw+@wdx+//ﬂw—@wdx
D D
://W~(IfA)Vuder//(Vusw)~A(Vu7Vw)dx
D D

—//W~AVw+Ewdx+/ Yw - AVu 4 gw dx
D D
+//Eu—2ﬂw+ﬁwdx.
D

Re((A7 ~ A5 )ff) = [[ Va- (1= )Vuda

Then

D
+// (Vu — Vw) - A(Vu — Vw) dx + ||ufw||%2(D)
D

— Re //W~AVU}+Ewdz+Re//AVw~VquEudx

> | VullFzipy + Re(—=(Maif, f) + (Aaif, £)) = el Vulli2 py
>0 forall f#0.

The last inequality is shown as follows. Assume Re ((A; — Ay ;) f, f) =0
and therefore Vu = 0. Then from (4.24) we have

f5) D
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By a density argument ||u||z2(py = 0 and consequently ||u|| g1(py = 0. The
trace theorem yields f = 0.

To show that there exists ¢ > 0 such that

(A7 =AZ )L 2 Ellf 3 20py for all f € HY2(DD)

we use a contradiction. Assume that there is no such ¢ > 0. Then there is
a sequence { f;}jen with || fjl|g1/2(9p) = 1 for all j € N such that

(A7 = AL )f5:f5) =0 as j— oo

This implies that for corresponding sequence of the solutions {u;};en to
(4.24) holds ||Vu;|z2(py — 0 as j — oo. Moreover, by the well-posedness
of (4.24), since || fjl| gr1/2(9py = 1 for all j € N, there is M < 0 such that
llujllg1(py < M for all j € N. Further, for all j € N holds

// Vu; Vg +upde =0 for all p € C3°(D).

By compact embedding of H!(D) into L?(D) it follows that {u;};en has
a strongly convergent subsequence in L?(D). We denote the subsequence
again by {u;}jen and assume u; — h in L? sense for some h € L?(D). By
the continuity of the inner product in L? we have

lim // Vu,; Vo +u;pdr = / hpdz =0 for all p € C5°(D).
J—00

D
A density argument yields h = 0. This gives that |lu;||gz1(p) — 0 as
Jj — oo. By the trace theorem, the latter implies f; — 0 for j — oco. But
by assumption || f;||g1/2(9py = 0. We arrive at a contradiction.
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Now we assume that there is ¢ > 0 such that & - (A(x) — I)€ > c|¢|?
for all ¢ € C?2 and for almost all = € D.
Then

(Az, = ADEF) = //W.Avw+ wl? — Vi - Vi — |uf? d
D
= //W (A—D)Vw + |Vw|? — 2Vu - Vw + |Vul* dz
D

+/ lw|* — 2uw + |u|* dx

D
+2//W-Vw+ﬂwdxf2//W'Vu+ﬂudo:
D D

Thus,

Re (A7, — A7), f) = / / Vo (A - DVwdz + |V — Vull2(p)
D

+ [Ju —w| g2(py + 2Re ((A] f, f) — (A7 f, f))
> ||Vl r2(p)-

By the same argument as in the previous case we conclude that there is
¢ > 0 such that

—Re ((A; — A;i)fa f)=z 5Hf||?_11/2(3D)

for all f € H'/2(0D).
O

In the following we introduce the notion of the interior eigenvalues for the
problem (4.1)—(4.5). We call k > 0 an interior eigenvalue corresponding
to (4.1)—(4.5) if there exists a non-trivial solution (u,v) € H(D) x H(D)
to

V-AVu+k*u=0 in D, Av+k*v =0 inD, (4.26)
Ou  Ov

u=7v on dD, o on 0D. (4.27)
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With this Lemma we can show that the operators H and T appearing
in the factorization of F' satisfy the assumption of the Range Identity
Theorem 2.4.4.

Theorem 4.2.4. Assume k? is not an interior eigenvalue corresponding
to (4.1)-(4.5), not a Dirichlet eigenvalue of —A in D and not a Dirichlet
eigenvalue of —V - AV. Then

(a) H is compact and injective.

(b) Re(=T) has the form Re(-T) = Ty + T1, where Ty is coercive
and Ty is compact, provided & - (I — A(z))¢ > c|¢|? for all € € C?
and for almost all x € D. If £- (A(x) — )¢ > c|¢|? forall € €
C? and for almost all x € D then ReT has a representation
ReT = TO + Tl, with coercive TO and compact Tl. By coercivity we
mean that there exists a constant ¢ > 0 such that

(Tof, )= el fll}20p)  for all f € HY/?(OD).

(c) (Im —=Tf, f) >0 for all f € H/?(8D), f # 0.

Proof. (a) The injectivity of the Herglotz operator (note k2 is not an
Dirichlet eigenvalue of —A in D) for three dimensional case is shown
e.g. in Theorem 5.21 in [16]. The same arguments apply for the two
dimensional case. Further from the regularity of the kernel it is easy to
see that g — vg| By, where v, is the Herglotz wave function (2.51) and Bgr
is a ball of radius R > 0 such that D C Bpg, is a compact mapping from
L?(S') into H'(Bg). From this and the trace theorem we conclude that
H :L?*(S') — H'?(dD) is compact as a composition of a bounded and a
compact operator.

(b) Consider the case when £ - (I — A(z))¢ > ¢|¢|? for all € € C? and for
almost all x € D. We will use the following identity

(Ay = A f = (AL = AL v,
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which can be derived by applying A, , to (4.10) and then subtracting (4.9)

from it. Let f € H'/2(9D). By self-adjointness of A; and Ay . (note A
is real-valued) we have

(Tf, f) =7, = A,k)vﬂf>
—((Ag = AL T)

—((Ay = AL D)

—((A = AL 1)

—((Ag = AL

By well-posedness of the problem (4.7)—(4.10) the mapping B:f—uvyis
bounded from H'/2(0D) to H'/?(0D). From (4.28) we see that T can be
written as T' = (A, — Ay ;) + B*(Af — A )" B, where B* denotes the
adjoint of B. We write now 1" as a sum 17" = Ty + T} where

*(Ai_ - AZ,Z-) + B*(AT - A;x,i)B

(Mg = AL ) (v = 1), /)
(Mg =AY pves f)

(v, (Mg = AL f)
<U+a( AA })U+)

(

n
+
n
+ (A = AL ) ve, vp) (4.28)

and
(A A+ (AL — AL+ B ((Af = A" - (Agp— A;x,i)B

Lemma 4.2.3 (a) yields that T is compact. Furthermore, by part (b) and
(c) of the Lemma we have

—Re(Tof, f) =Re ((A; = AL ) ) + (Mg, — AD)vg,vy)
> 2| f1 %1720

for some é > 0. Assume now ¢ - (A(z) — I)€ > ¢|¢|? for all € € C? and for
almost all x € D. For this case we will use the identity (4.17):

(A = A = (AL = AJvs
If we apply A, to (4.10) and subtract (4.9) from it we get the equation
above.
Let f € H'/?(0D). Then
(Tf, 1) = ((Ay = Ay v vy —v)
—((Ay = AL o o) + (A = A v, vyp)
—((Ay = A )v— o) + (A — A Jvg, vy) (4.29)
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Let A : H'/2(0D) — H'/?(0D) denote the mapping f ~— v_, which is
well defined and bounded by well-posedness of (4.7)—(4.10). Then T can
be written as T = Ty + 1) with

To = A*(Ay, — A7)A+ B*(A; —Af)B
and
Tr= A((Ma = A + (A7 = ADA+ BT (A, — A7) = (A - AT)B
Again, Lemma 4.2.3 yields that T, is compact and
Re (Tof, f) = Re (A, — A vy v-) + (A7 = AT)oy,v4)
> &lo_ 220
for some ¢ > 0. The boundary conditions (4.9)—(4.10) imply
(Af = AL v = (A = AD)f.

The operator (A, — A}) : HY/2(0D) — H~1/2(dD) is an isomorphism,
which can be deduced by examining the extension of the single layer
potential to D (see Theorem 7.3 in [8]). Thus

1 20y = 1Ay = AL THAL = AL vl 12 (ap)
< (A, = ADTHIAE = AL DHlv-llm1720D)

which gives that Re T} is coercive.
(c) Let f € H'/2(OD). Then
(Tf, f) = (N = Ay o, ) = (o, A f) = (A o, f)
(oA D) — A = (G )+ )
— o) - (GE1).
Thus,

(T ) = <f, 8”+> — (A} f,v4). (4.30)
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Also,
<Tf7 f> = <(A]; - A,Z,k;)v—vf> = <v—7Ak_;f> - <A27kv—7f>
0
= (0o, S5) = (0= A7 0=} = (A7 0- s va) + (A7 oo, 0o)
0
= <U_, av;_> — (A;Lkv_, U+>. (431)

Adding (4.31) to (4.30) yields

2iIm (T, f) = < + 1, a”+> — (AL e + A fvs)
(o) ()

) ov
= —2@1m<a;,v+>.

m(Tf, )= —Im<86v;,v+>.

Let Bgr be a ball centered at the origin with radius R > 0 such that
D C Bgr. Then by the definition of the trace in H~/2(9D) and the
Sommerfeld radiation condition we have

Im <8v+’v+> = Im (—/ |Vol? — k2|v|2dx)
v 2

Therefore,

Br\D
v
+Im ( / 8Vvds)
|lz|=R
=1Im (zk‘ / lv|ds + 0(1)) as R — oo.
|lz|=R

Thus, Im ((=T)f, f) > 0. Assume there exists f € H'/?(0D) such that
m ((=T7)f, f) = 0. Then limp_o0 f‘w‘:R |u|>ds = 0. Iiellich’s Lemma
and the unique continuation principle imply u = 0 in R?\D. Thus, vy = 0
and Ov, /Ov = 0. Since k? is not an interior eigenvalue, i.e., the only
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solution to (4.26)—(4.27) is the trivial one, we conclude f = 0. Thus,
Im ((=T)f, f) >0 for all f#£0.
O

The Range Identity Theorem 2.4.4 and Theorem (4.2.4) yield R(Fﬁl/Q) =
R(H*), where Fy = |Re F| 4+ |[Im F'|. Applying Theorem 4.2.2 we now can
state the main result of this chapter.

Theorem 4.2.5. ¢, € L?(S?) by (2.87). Then
oo 2
(¢2,¥5)L2(s)|
z€D = E — < 00,

j=1

where (Aj,1;) is the eigensystem of Fy.



5 Direct and Inverse Problem for
TE-mode

5.1 Direct Problem

Now we turn to the model for the coated scatterer. Let D C R? be a finite
union of bounded domains with C? boundary such that the exterior R?\ D
is connected. Let n represent the real-valued (scaled) surface conductivity
on 0D and A be a matrix-valued function defined on D. The direct
problem reads as follows: given k > 0 and an incident field u’ with

Aut +K*u' =0 in R?

find v € H} (D) and u € H} (R*\D) such that

V-AVu+k*v=0 inD, (5.1)
Au+k*u=0 inR*\D, (5.2)

% - 8672 =h on 9D, (5.3)
ufvfin% =f ondD, (5.4)
Tim. \/;(Z:f - zku) =0, r=|z| (5.5)

In (5.4) and (5.3) we assume f = —u’ and h = —9u'/dv, respectively. We
assume A € L°°(D,C?*?) and denote by Re A and Im A the matrices with
the real and the imaginary parts of the entries of A, respectively. By the
physics of the problem it holds that Re A and Im A are symmetric, and
Re (€ A(x)€) > ¢|¢|? and Im (€ - A(z)€) < 0 for all £ € C? and for almost
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all z € D, where c¢ is a positive constant. Due to the symmetry of A it
follows Im(& - A¢) = £ Im(A)¢ and Re(€ - A¢) = £-Re(A)¢. Further we
allow 1 to have discontinuities and assume n € L*°(9D) with n > ng > 0
a.e. on 0D.

We understand the equations (5.1) and (5.2) in the distributional sense
and the boundary conditions (5.3) and (5.4) in the sense of the trace
operator. Regularity theory for elliptic differential equations [21] implies u
is analytic in R?\ D and therefore the radiation condition (5.5) makes sense.

In the following we show that the problem (5.1)—(5.5) is well posed. The
uniqueness result shown in Lemma 3.1 in [9] can be extended for A with
L>(D) coeflicients by the unique continuation principle stated in [1]. To
prove the existence we again follow the approach of [24]. First we formulate
(5.1)—(5.5) in a bounded domain.

Let R > 0 be big enough such that D C B, where Bp is a disc of radius
R > 0 centered at zero. Then (5.1)—(5.5) is equivalent (the justification for
the equivalence is the same as in Lemma 2.2.4) to the following problem
in BR:

V- -AVuo+k*»=0 in D,

Au+ku=0 in R?\D, (5.7)

% - % =h on 9D, (5.8)
u—v— in% =f  on 8D, (5.9)
% = Ayu on OBg, (5.10)

with h € H-'Y/2(0D) and f € H'Y?(OD), and A, : H'Y/?(0Bg) —
H~'/2(0Bg) being the Dirichlet-to-Neumann mapping (2.24).
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We also will consider (5.6)—(5.10) in the following equivalent variational
form: find w € H'(Bg\dD) such that

//Vicp-Awak2¢wdx+//VgaoVw—kzawdxf/E[E][w]ds
n
D oD

Br\D

(A, = / L ti@lds — (. o). (5.11)

for all ¢ € HY(Bg\OD), where [p] and [w] denote the jumps ¢ — ¢_ or
wy — w_, respectively, across dD. Here and in the following, we denote
by (-, -) the dual form in the dual system (H~'/2(0U), H/?(dU)) with
U = D or U = Bg, depending on the context.

One readily sees that, if v and u solve (5.6)—(5.10) then w|p := v and
W] g5 = Ulp,\p satisfy (5.11). And vice versa, if w is a solution of (5.11)
then v := w|p and u|BR\5 = w|BR\5 satisfy (5.6)—(5.9) and Ju/0v = Apu
on 0BpR.

Theorem 5.1.1. For every f € HY?(dD) and h € H~'/2(dD) the
conductive transmission problem (5.1)-(5.5), or, equivalently, (5.11) is
uniquely solvable. Moreover, the solution w € H'(Br\OD) depends con-

tinuously on the boundary data, i.e., there exists a constant Cr > 0,
independent of h and f, such that

w1 (pvopy < Cr(If N a1r20py + 10l r-12(0D)) -

Proof. We define the following continuous sesquilinear forms on
HY(BR\0D) x H*(Bg\0D):

a1 (w, p) //V<p Aw+<pwdx—|—/ Vo - Vw +pwdx
Br\D

y g ~fglfulds — (Aow.¢)
and

as(w,0) = —(K + 1) / / Guwdz — ((Ax — Ao)w, ),
Br
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where Ag fulfills the property (2.28) form Lemma (2.2.2). The right-
hand-side of (5.11) defines a bounded conjugate linear functional L on
HY(Br\OD):

L(p) = —i / %f[@] ds — (1, o4).
oD

Let n, = ess infyp 1. By the Cauchy-Schwarz inequality and the trace the-
orem there exist positive constant ¢ and a positive constant C, dependent
on 7, such that

L6l < Wl om el o) + ellblla-vaon el o
< C(I1flmrzapy + Wl g-1/200)) 1€l 51 (Br\0D)
for all » € H'(Br\OD). Thus,
LI < CULf 12 ap) + P E-172(5)-
We write (5.11) as the problem of determining w € H*(Bg\dD) such that
ar(w, ) +az(w, @) = L(p) for all p € H'(Br\OD). (5.12)

By assumption, for the matrix A we have Re & A(x)¢ > c|¢|? for all € € C?
and almost all x € D and some ¢ > 0. Thus,

Re a1(w,w) = Re // Vw - AVw + |w\2dm+// |Vw]? + |w|? dz

Br\D
— (Aow, ¢)
> Re // Vw - AVw + |w* dz + // IVw|? + |w]? dz
Br\D
> min{L e}l + 0l%0 55

> min{1, ¢}|[wl| 31 s 0m)-

By the Riesz representation theorem we define the bounded linear operators
.A1 : HY (BR\aD) — Hl(BR\aD) and .AQ c HY (BR\aD) — H! (BR\GD)
by

(AlwaSD)Hl(BR\aD) =a1(w,p) and (AQU)’SD)Hl(BR\aD) = az(w, ¢).
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Then, in terms of the operators A; and Ay (5.12) can be written as
Ajw+ Ayw =F (5.13)

with F € H'(Br\0D) also defined by the Riesz representation theorem
through (F,¢) g1 (\op) = L(p). In particular, ||[F||g1(s\0p) = [|L]] <
CU|f 200y + 1Bl E-1/2(0D))-

Since Re a1 (w,w) > c||w\|§{1(BR\3D), by the Lax-Milgram Lemma [40],
the operator A; is boundedly invertible on H'(Br\0D). By compact-
ness of Ay — Ag and the compact embedding of H'(Br\dD) into L*(Bg)

we conclude that A is compact. Riesz-Fredholm theory yields that for
all F € H'(BRr\) the solution of (5.13) exists, provided .A; + .43 is injective.

Assume, Ajw + Asw = 0. This is equivalent to
ar(w, ) +as(w, ) =0 for all ¢ € H'(BR\OD),

or to (5.1)—(5.5) with » = 0 and f = 0. By Lemma 3.1 in [9] the problem
(5.1)—(5.5) has at most one solution, and therefore w = 0. Thus, (5.13) is
uniquely solvable and for the solution w holds

lwllzr srvony < 1AL+ AT CIfllirz0p) + Rl a-17200)), (5:14)

or

w1 (spvopy < CrR(If /200y + 1Bl r-1200)) 5 (5.15)

where Cr > 0 depends on 7, R, D and the matrix A, and does not depend
on f and h.
O

Remark 5.1.2. Since n € L>=(dD) and f,u,v € H'Y?(0D) C L*(0D)

the boundary condition (5.4)
o
81/A

implies that Ov/dva € L*(OD). From the trace theorem and Theorem 5.1.1
we have the following estimate on the norm of Ov/dva:

= (f+v-u)

h||g-
HaVA L2(5D) c(||f||H1/2(aD)+|| ||H 1/2(8D))7
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with ¢ > 0 independent of f and h. As we will see in the next section the
reqularity of Ov/Ova will play an important role in proving the factorization
method.

5.2 Far Field Operator. Interior Eigenvalue
Problem

Let u*(#,0) denote the far field pattern of the solution to (5.1)-(5.5)
corresponding to the incident plane wave u’ with the incidence direction
6 € S and the observation direction # € S'. As in the previous chapter
we define the far field operator F : L?(S') — L%(S) by

Fo(é) = [ o0 (2.0)ds(d).
S1
Note that also for this case, the far-fields u° satisfy the reciprocity relation
(2.48) which can be shown by substituting the boundary conditions (5.3)—
(5.3) into (2.49). With respect to injectivity of F' we have the following
result.

Theorem 5.2.1. Assume that k? is not an eigenvalue of the following
interior eigenvalue problem

Aw + k*w =0 in D, V- (AVv) +k*v=0in D, (5.16)

ow ov
= 0 on 0D, e 0 on 0D, (5.17)
w=wv on 0D, (5.18)

i.e., the only solution (w,v) € HY(D)x HY(D) of is the trivial one (w,v) =
(0,0). Then the far field operator F' is injective.

Proof. Let g € L?(S') be such that Fg =0 on S'. By the superposition
principle F'g = u®°, where u° is the far field pattern corresponding to the
incident field given by the Herglotz function

vy(2) = / eikrdg(d) ds(d), o € R2. (5.19)

S1
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Thus, u is the far field pattern of the function v which satisfies:
V- -AVu+k?’u=0 1in D,
Au+k*u=0 in R?\D,
Ou  Ou Oy,

— === oD
Ov  0Ovy Ov on ’
0
Uy —U_ — inﬁ =—v, ondD,

ou
lim ﬁ(—iku) =0, r=|z|.
r—oo ov

Here, uy and u_ denote the traces of u taken from the exterior and interior
of the domain D, respectively. By assumption, u> = 0. Rellich’s Lemma
and the unique continuation principle imply that u vanishes in R?\D.

Therefore, the pair (w,v) := (vq4|p,u|p) is a solution of the following
problem:

V-AVv+k*v=0in D, (5.20)
Aw + k*w =0 in D, (5.21)

ow  Ov
— —— =0 oD 5.22
ov aVA on ’ ( )

0

w—v= ini on 0D. (5.23)

We show that for a (w,v) € H'(D) x H'(D) which solves (5.20)—(5.23),
the traces of w and v on dD coincide. Indeed, let (w,v) € H'(D) x H'(D)
be a solution of (5.20)-(5.23). By Green’s first theorem we have

v P Z//AVU- Vo — kg dr
61/A
D
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for all ¢ € HY(D). We set ¢ := w — v. Furthermore, using the boundary
conditions (5.22)-(5.23) and the Green’s first theorem we get

1 — ov
/m(w—v)(w—v)d5—<6%4,w—v>
oD
v S 120,12
=(=—,w)— AVv - Vv — k*|v]* dz
aI/A
D
ow o 121,12
=(—,w)— AVv - Vv — k%|v|* dx
ov

D
://|Vw\2 —k:2|w|2d33—//AVU~W—k2|v|2dm.
D D

This implies that

Im/ l\w —v|*ds = —Im//W-AVvdx (5.24)
i
6o " D

Since Im € - A(x)¢ = £ -Im (A(x))¢ < 0 for all ¢ € C and all x € D,
the equality (5.24) is possible only if [, |w —v|*ds = 0. That is, the
traces of w and w coincide on OD. The boundary conditions (5.22)—(5.23)
imply Ov/0vs = Ow/0v = 0 on OD. Thus, (5.16)-(5.18) is an equivalent
formulation of (5.20)—(5.23).
If k2 is not an eigenvalue of the interior eigenvalue problem then (w,v) =
(0,0) is the only solution of (5.16)—(5.17). In particular, v, = 0 in D and,
by analyticity, in all of R?. This implies (see e.g. [8], Section 3.2) that
g=0.

O

Remark 5.2.2. The interior eigenvalues form at most a discrete countable
set with infinity as the only accumulation point.

By the definition of the problem (5.20)—(5.23), the interior eigenvalues
belong to a subset of the intersection of Neumann eigenvalues of —V - AV
and —A in D. Tt can be shown that if £ - ITm(A(z))¢ < 0 for all £ € C\{0}
at a point g € D then there are no eigenvalues of —V - AV, and, therefore,
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no interior eigenvalues. However, as we show below, if Im A = 0, the
interior eigenvalues can exist.

Assume D = B is a unit disk. Let A = diag(,1) be a real-valued
diagonal matrix with a € Rg. Then the problem (5.16)—(5.18) reads as

1
Aw + k?w = 0 in By, —Av+Ek*v=0in By,
a
ow ov
EZOOHaBl7 EZOOHaBl,

w = v on 0By,

Let w be given in polar coordinates as w(r, ) := J,, (kr)e™? for r € [0, 1],
¢ € [0,27) and some n € Z, with J,, being the n—th Bessel function.
Then w solves the Helmholtz equation in By. We choose k € R~ such
that J) (kr)|,=—1 = 0. In this way, w is a Neumann eigenfunction of
—A in B; corresponding to the eigenvalue k?. Let kp = ky/a and let
v(r,p) = J‘i’lg)(}n(k[)r)ei”‘/’. We choose a so, that J) (kpr)|.=1 = 0.
Then v is a Neumann eigenfunction of —A in B; corresponding to the
eigenvalue k%. Moreover, on the boundary r = 1 holds:

In (k)
Jn(kD)

Thus, k2 is an interior eigenvalue.

w(l,¢) = Ju(k)e'™? = Ju(kp)e™ =v(1,¢) forall ¢ € [0,2m).

5.3 Factorization Method

To derive the factorization of the far field operator F' we follow the approach
of Section 4.2.

Theorem 5.3.1. Assume that k? is not a Dirichlet eigenvalue of —A in
D. Then the far field operator F : L2(Sl) — L%(SY) has a factorization

of the form F = yH*TH, where v = f;;% and H : L*(S') — H'/?(dD)

is the Herglotz operator

Holz) = / ¢ikrdg(d) ds(d), € D

S1
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and T : HY?(0D) — H~/2(dD) is given by
Tf= (A, — A,

where, A, and A;: correspond to interior and exterior, respectively,
Dirichlet-to-Neumann operators defined in Section 4.2, u is the trace of
the solution v € H'(D), u € H} ,(R?*\D) to

V- -AVv+k*v=0 inD, (5.25)
Au+ k*u=0 in R*\D, (5.26)
ou  Ov

ufvfin% =y on 0D, (5.28)

lim \/;(87: —iku) —0,  r=lal. (5.29)

Proof. The proof follows exactly the lines of the proof of Theorem 4.2.1
with the difference that we do not use (4.17).
O

In the following theorem we show that the middle operator T in the
factorization of F' satisfies the assumptions of the Range Identity Theorem
2.4.4.

Theorem 5.3.2. Assume k2 is not an interior eigenvalue and not Dirichlet
eigenvalue of —A in D. Then

(a) (=T) has the form (=T) = To+T1, where Ty is a coercive self-adjoint
operator and Ty : HY/?(0D) — H~'/2(0D) is compact. By coercivity
we mean that there exists a constant ¢ > 0 such that

(Tup.¢) = ol eopy  Jor all o € HY(D).

(b) (Im (=T)p, ) > 0 for all p € H/2(OD),p # 0.
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Proof. (a) First, we write Ty = (A;, — A} )u as
To= (A —ADu+ (A = ADu+ (A7 = Af)u.

The differences (A, — A;) and (A — A}) : HY2(0D) — H~Y2(0D)
are compact, which is shown in the Lemma 4.2.3. Let A : H'/?(8D) —
H'/2(9D) define the mapping ¢ — u. By well-posedness of the direct prob-
lem and the trace theorem A is bounded. Thus, T can be written as T =

Ti+(A; — A}) A with compact operator T := (A —A; )A+(Af —A))A.

We write the equation (5.27)
v

+ _Yv —
Au 90 Ao
as o
Afu=(AF = ADu+ 35—+ (A7 = A ) + AT .
81/A
Thus
w= ()~ A+ () () A - A (5:30)
A

+(A) AT e (5.31)

Let B : HY/?(0D) — H~'/?(0D) represent the mapping ¢ + dv/0v4. By
the well-posedness of the problem we get that ¢ — (u — v — ) is bounded
from H'/2(0D) to H'/?(9D). The boundary condition (5.28)

ov _ 1(u—v—ap)

vy  in
yields that ¢ ~ Ov/dv, is bounded as a mapping from H'/2(9D) to
L?(0D). Parameterizing dD and using Rellich’s embedding theorem [8]
we conclude that L?(8D) is compactly embedded in H~'/2(9D). Thus,
the operator B is compact from H'/2(0D) into H~'/?(0D). Now, using
(5.30) we can write (—T) as the sum (—T) = Ty + T, where

Ty =Ty — (A; —AD)(AH)™? ((Aj —AD)A+ B+ (A, — A;))
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is compact, and
Ty = (A = AD)(AH) AT

Since A; is self-adjoint and coercive and —(A;)~! is positive [36], the
coercivity of Ty : H'/2(0D) — H~'/2(8D) follows immediately:
(Toe, o) = (=A7 (AD) T AT 0, 0) + (A7 0, )
> (—(A) AT @ A ) + C||‘PH%11/2(3D)

2 C||‘PH?{1/2(3D)
for all p € Hz(dD).

(b)To show that Im((—T)p, ) > 0 for all ¢ € HY2(OD),p # 0 we
will use of the boundary condition (5.27), which in terms of Dirichlet-to-
Neumann operators Af has the form

ov

We write ((—=T)p, ) as

(=T, ) = (A = A )u, ) = (Afu, 0) = (u, A )

_,0v _ L ov
- <Ma§0> =+ <Ak 90390> - <U7Ak U> + <7.L, M>

Then
20 Im{(=T)p, ) = (=T)p, 0) = (=T)p: ¥)
= () = A + )
~ (40 ) = (A + ()
= 20 (A, + (e ) — (= )
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=2 Im(AZ,'u, u) + 24 IIH<;TZ, Y- U>

= 2i Tm(Au, u) + 2i Im(av, —mav>
(9Z/A (91/,4 L2(9D)
— 21 Im< 6(1)/1,)4 U>.

In the last step we the boundary condition (5.28). Thus,

Ov ov v
g — Im(— v
vy 775‘1/A>L2(8D) <8VA >

+ Im(A:u,u> - Im<aaTU,v>,
A

Im{(=T)p, @) = Im(Azu,u> + <

s
= o vy

L2(dD)

with 1y =ess infsp . We compute the imaginary parts of (A;w u) and

< v
Ova?
tion yield
m <Azu,u> = Im <gu,u> = Im (—/ |Vl — k?|u)? dx)
v
Br\D
ou
+Im < / 81/Ud8>
|z|=R
=1Im (zk‘ / u|2ds—|—0(1)) as R — oo,
|z|=R

and, by assumption on A,

Im<8v > Im //AVU Yo — k?|v|* dz
Ovy
://(Im A)Vv-Vodz <0.
D

Thus, Im ((=T)¢, ) > 0. Assume there exists ¢ € H'/2(dD) such that Im
((=T)¢,¢) = 0. Then [|0v/0va| L2(9p) = 0 and limp_o fm:R |u?ds =
0. Rellich’s Lemma and the unique continuation principle imply u = 0 in
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R?\D. Thus, du/dv = 0. The boundary condition (5.27) yields A; ¢ = 0.
Since k2 is not an interior eigenvalue, we conclude ¢ = 0. Thus, Im

(=T, ) > 0 for all p #£ 0.
O

With the previous theorem combined with Theorem 4.2.4, Theorem 4.2.2
and the Range Identity Theorem 2.4.4 we get the main result of this
chapter.

Theorem 5.3.3. Assume that k? is not a Dirichlet eigenvalue and not

an eigenvalue of the interior eigenvalue problem (5.16)—(5.18).

For z € R? we define ¢, € L*(S) by (2.87). Then

2 €D ¢, € Z(F,), (5.32)

and consequently

¢Zawj)L2(SQ)| < 00

zeD:»Z oW

Jj=1

where (\j,1;) is an eigensystem of the operator Fy : L*(5%) — L?(S?)
given by

Fy=|Re F|+ |Im F)|. (5.33)
The sign of the function
-1
[e.e]
Z | ¢z7¢])\L2 (S2) ‘ (534)
2y

is the characteristic function of D.

5.4 Numerical Results

In this section we present a numerical example to demonstrate the appli-
cability of the factorization method. We compute the forward prob-
lem for a peanut-shaped scatterer with 0D parametrized by ~(t) =
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(—1.5¢/cos2(t) + .25sin?(t) sin(t), 1.84/cos2(t) + .25 sin?(t) cos(t))

t € [0,2x]. Further, ¥ = 3,7 = 0.5 and n = 0.5. For the solution
we used P! finite elements discretization. For the matrix A we set
A(z) =diag(z? + 3 + 1.2, 23 + 23 + 1.2) for 2 € D, the wave number is
k = 3 and the conductivity n = 3.5. We reduce the scattering problem
over R? to a problem over a bounded domain with the help of Neumann-
to-Dirichlet mapping [24] (see Section 2) and solve the forward problem
using a P! finite elements discretization with the help of FreeFem++
package [27]. Figure 5.1 on the left represents the real part of the total
field corresponding to the incident field with incident direction d = [10] .

Our data set is represented by a matrix F € C32%32) where Fj =
u>®(6;,6:),5,1 € {1,...32}, and u>(0;,0;),7,1 € {1,...32} are the far
fields corresponding to the incident direction of the plane wave 6; = 27;/32
and the observation point 6; = 27l/32.

In Figure 5.2 we plot the real part of the total field for the full model
with § = 0.6 with the corresponding reconstruction by the Factorization
Method (to the right). Despite the large error (||F' — F?||/||F°|| ~ 0.23,
where F? is the matrix 32 x 32 matrix with containing the far fields of the
full model) the reconstructions of the full and the approximate models are
very similar.

Figure 5.1: From left to right: Total field of a peanut-shaped obstacle
with the transmission conditions corresponding to the incident direction
d=[10]". Reconstruction by the Factorization Method.
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Figure 5.2: From left to right: Total field of a peanut-shaped obstacle
for the full model with § = 0.6 corresponding to the incident direction
d =[10]". Reconstruction by the Factorization Method.
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