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Abstract A major new release of the Monte Carlo event
generator Herwig++ (version 3.0) is now available. This
release marks the end of distinguishing Herwig++ and HER-
WIG development and therefore constitutes the first major
release of version 7 of the Herwig event generator family. The
new version features a number of significant improvements
to the event simulation, including: built-in NLO hard pro-
cess calculation for virtually all Standard Model processes,
with matching to both angular-ordered and dipole shower
modules via both subtractive (MC@NLO-type) and multi-
plicative (Powheg-type) algorithms; QED radiation and spin
correlations in the angular-ordered shower; a consistent treat-
ment of perturbative uncertainties within the hard process and
parton showering. Several of the new features will be covered
in detail in accompanying publications, and an update of the
manual will follow in due course.

1 Introduction

Herwig is a multi purpose particle physics event generator.
It is based on the experience gained with both the HERWIG
[1] and the Herwig++ [2] event generators. The latest ver-
sion of Herwig++, 3.0, marks the point at which the physics
capabilities of the HERWIG version 6 series are fully super-
seded, and thus the last point at which their development is
distinguished. Herwig++ 3.0 will henceforth be known as
Herwig 7.0. It replaces any prior HERWIG or Herwig++
versions.

a e-mail: simon.platzer@durham.ac.uk

Herwig provides highly improved and extended physics
capabilities compared to both its predecessors, in particular
the ability to perform simulations at next-to-leading order
in QCD, while keeping the key physics motivations such
as coherent parton showers (including both angular-ordered
and dipole evolution), the cluster hadronization model, an
eikonal multiple interaction model, and highly flexible BSM
capabilities.

The last major public version (2.7) of Herwig++ is
described in great detail in [2–7]. This release note summa-
rizes the major changes and improvements introduced since
then, which constitute the base for the Herwig 7 series. The
physics questions addressed by the capabilities of Herwig
7 will be covered in detail in accompanying publications,
as well as comparisons with the other well-known general-
purpose event generators, Pythia [8,9] and Sherpa [10]. A
detailed manual covering all technical aspects will be pre-
pared in due course. Please refer to [2] and the present paper
if using Herwig 7.0.

1.1 Availability

The new program version, together with other useful files
and information, can be obtained from the web site https://
herwig.hepforge.org/. In order to improve our response to
user queries, all problems and requests for user support
should be reported via the bug tracker on our wiki. Requests
for an account to submit tickets and modify the wiki should
be sent to herwig@projects.hepforge.org.

Herwig is released under the GNU General Public License
(GPL) version 2 and the MCnet guidelines for the distribution
and usage of event generator software in an academic setting,

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-016-4018-8&domain=pdf
mailto:simon.platzer@durham.ac.uk
https://herwig.hepforge.org/
https://herwig.hepforge.org/


 196 Page 2 of 8 Eur. Phys. J. C   (2016) 76:196 

which are distributed together with the source, and can also
be obtained from http://www.montecarlonet.org/.

1.2 Prerequisites

Herwig 7.0 is based on ThePEG 2.0, which is available
along with the Herwig installation sources at https://herwig.
hepforge.org/downloads. Further requirements are BOOST
[11], gsl [12], fastjet [13] and LHAPDF [14], while a
number of other dependencies are necessary in order to
fully exploit the program’s capabilities. Amongst these are
HepMC and/or Rivet [15] to analyze simulated events, as
well as some or all of the external amplitude libraries dis-
cussed in Sect. 2.2.

In order to simplify the installation process, we provide
a bootstrap script to facilitate a consistent build and instal-
lation of Herwig in a convenient way. The script requires
a python installation, and is available from https://herwig.
hepforge.org/herwig-bootstrap.

1.3 Documentation

A significant new feature is the online documentation, which
has been completely rewritten and greatly extended to reflect
the major changes introduced with this version and replaces
the wiki pages. It can be found at https://herwig.hepforge.
org/tutorials/. An update of the more detailed physics and
manual will be made available in a similar format in due
course. Code snippets are provided for a wide variety of con-
trol functions for easy inclusion into input files. Detailed doc-
umentation of the source code and input file interfaces gen-
erated with doxygen is available at https://herwig.hepforge.
org/doxygen/.

2 NLO event simulation

A key ingredient in the design and development of Her-
wig 7.0 was to provide event simulation at next-to-leading
order (NLO) accuracy in the strong coupling by default for as
many Standard Model processes as possible in an automated
way. The program, with the help of external libraries used
for amplitude calculation, is now able fully automatically
to assemble NLO QCD corrections to virtually all Standard
Model processes, including matching to both of its parton-
shower algorithms [16,17], via methods inspired by either the
MC@NLO [18] or Powheg [19] type algorithms, which we
refer to as subtractive and multiplicative matching, respec-
tively.

Based on extensions of the previously developed Match-
box module [20], NLO event simulation is now possible
without the requirement of separately running external codes
and/or dealing with intermediate event sample files. Slight

changes have been made to improve Herwig’s steering at the
level of input files, and significant improvements are provided
to integration and unweighting, including parallelization to
meet the requirements of more complex processes.

2.1 The matchbox module

The design of the Matchbox modules closely resembles the
structure of the NLO QCD cross section calculated within
a subtraction paradigm, including the matching subtrac-
tions required to consistently combine such calculations with
parton showering downstream. Subtraction terms are avail-
able in a flexible way, though only Catani–Seymour dipoles
[21,22] are provided so far, including both massless and mas-
sive QCD as well as the subtraction terms required for super-
symmetric QCD corrections.

Parton-shower matching subtractions are provided on an
equally flexible footing, including those required for the
angular-ordered shower [16], the dipole shower [17], as
well as matrix-element corrected showers forming the basis
of Powheg-type matching. For the latter, we provide addi-
tional functionality to sample the matrix-element correction
Sudakov using the adaptive method outlined in [23]. In order
to simplify the calculation of matching subtractions for the
angular-ordered shower, the kinematics reconstruction used
to work out the final shower kinematics has been changed
to avoid additional Jacobian factors when compared to the
dipole parameterization in the case of a single (or in general,
the hardest) emission.

2.2 External amplitude providers

In order to set up the full calculation of a cross section,
Matchbox requires plug-ins to provide the respective tree
and one-loop amplitudes. These plug-ins can be interfaced
either at the level of matrix elements squared (or tree-loop
interferences, respectively), or at the level of helicity, colour-
ordered subamplitudes with both trace- and colour flow bases
provided within theMatchbox core through adapted versions
of the ColorFull [24] and CVolver [25] libraries.1 While we
provide built-in amplitudes for a limited number of processes,
the bulk of Standard Model processes can be simulated using
external amplitude plug-ins.

Based on extensions of the BLHA standard [26,27], Her-
wig currently supports interfaces to GoSam [28], Mad-
Graph [29], NJet [30], OpenLoops[31] and VBFNLO
[32,33]. Amplitudes for a limited number of LHC relevant
processes are directly provided along with the release, and
amplitudes for electroweak Higgs plus jets production are

1 Other choices of colour bases are straightforward to implement
through a very transparent interface.
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available from the Matchbox plug-in HJets++, which is
available in the Contrib section of the Herwig 7.0 release.

2.3 Electroweak corrections to VV production

Electroweak corrections to the production of heavy vector
boson pairs have been computed [34,35] and implemented
into the program, as outlined in [36]. The corrections are
applied as an event reweighting factor K (ŝ, t̂). In order
to apply this correction in a meaningful way one has to
ensure that additional QCD corrections are not too large and
apply reasonable cuts to the final state, as detailed in [36].
The reweighting is straightforward when applied together
with Powheg-matched QCD corrections. If subtractive QCD
matching is going to be applied one should rather apply the
matching on information extracted directly from the leptons
in the final state, this is detailed as an alternative method
in [36]. In order to apply the method, one has to download
grid files for the actual K factors from a public archive at
hepforge.

3 Improvements to the angular-ordered parton shower

This release includes a number of improvements, which
finally bring the default angular-ordered parton shower to
the same level of accuracy as that in HERWIG 6.

3.1 QED showering

The emission of QED radiation was not included in Her-
wig++. In Herwig 7.0 it is included in the following way:

– A maximum scale is selected for QED radiation in the
same way as for QCD radiation, although selecting from
the other charged particles in the process rather than the
colour partner in order to determine the scale. This scale
need not be the same as the maximum scale for QCD
radiation.

– Trial QCD and QED emissions are generated and the one
with the higher scale selected, as required by the com-
petition algorithm. This branching is generated as before
and then any subsequent emissions of the same type are
required to be angular ordered2 while those of a differ-
ent type are only required to be ordered. For example if
we generate a q → qg emission at an evolution scale q̃1

and the quark has light-cone momentum fraction z1 then
any subsequent q → qg emissions must occur at a scale
q̃2 < zq̃1, as required by angular ordering. However, any

2 With the proviso discussed below for g → qq̄ branchings or in the
QED case γ → f f̄ splittings.

QED q → qγ branchings need not be angular ordered
and therefore can occur at an evolution scale q̃2 < q̃1.

3.2 Spin correlations in the shower

There are correlations between the azimuthal angle of a
branching and both the hard scattering process and any pre-
vious branchings that occurred in the parton shower. There
are two types of correlation:

1. The soft correlation from the eikonal current, which cor-
relates the direction of the emitted gluon and the colour
partner.

2. Spin correlations in the collinear limit between the
azimuthal angle of the branching and the hard process
and any previous emissions.

Both of these effects are included in Herwig 7.0 using the
algorithm of [37–39]. Now that the full spin correlations are
incorporated in the parton shower there is no requirement
that unstable decays are generated before the parton shower in
order to generate the spin correlations between the production
and decay of the particles as described in [40,41]. The decays
of unstable fundamental particles are now handled as part of
the parton-shower stage of the event generation including all
the spin correlations, both between the production of particles
and the parton-shower emissions, the production and decay
of particles, and the decay of particles and any parton-shower
emissions. The spin correlations are switched on by default
and can be switched off using

set /Herwig/Shower/Evolver:SpinCorrelations No

While the soft correlations can be switched off using

set /Herwig/Shower/Evolver:SoftCorrelations No

we do not recommend this as the soft correlations affect the
cluster mass spectrum and therefore this change requires a
retuning of the parton-shower and hadronization parameters.

As the spin correlations are currently not implemented in
the shower subtraction terms used at next-to-leading order the
spin correlations are switched off by default when using NLO
matching. However, as we use the same formalism internally
as MadGraph for the calculation of helicity amplitudes [42]
the interface to MadGraph can fill the spin-density matri-
ces used in the spin-correlation algorithm and therefore the
correlations can be correctly generated at leading order.

3.3 g → qq̄

The branching g → qq̄ is only singular in the collinear limit
for massless quarks and does not have a soft singularity. It
therefore should not be angular ordered in the parton shower,
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although given the nature of the parton shower algorithm it
must continue to be ordered in the evolution variable. We
therefore relax the constraint on this branching so that if a
gluon is produced at a scale q̃1 with light-cone momentum
fraction z1 the maximum scale of a subsequent g → qq̄
branching is now q̃1, the maximum allowed by ordering of
the evolution variable, rather than z1q̃1 as required by angular
ordering. The maximum evolution scale for other branchings
remains unchanged.

Similarly, the arguments presented in [2,43] that the scale
used in the strong coupling for a branching should be the rel-
ative transverse momentum, p⊥, do not apply, and therefore
we have changed this scale to be the invariant mass of the qq̄
pair for this branching only.3

4 Perturbative and shower uncertainties

Perturbative uncertainties in all of the hard processes pro-
vided by the Matchbox module can be assessed by variation
of the renormalization and factorization scales, respectively.
When fixed-order predictions at leading or next-to-leading
order are combined with subsequent parton showering, vari-
ations of the renormalization and factorization scales in the
parton shower ( i.e. variations of the scale arguments of αs

and the parton distribution functions) should be performed
in a correlated way along with variations in the hard pro-
cess. While independent variations are technically possible
to assess patterns of scale compensation, the default uncer-
tainty settings will perform a consistent variation.

In addition to estimating unknown higher-order correc-
tions by variation of the renormalization and factorization
scale, genuine parton-shower uncertainties due to missing
higher logarithmic orders and phase-space constraints can
also be estimated by varying the hard scale in the par-
ton shower. There is no unique definition of such a scale,
and the relevant quantity is a specific detail of the parton-
shower algorithm and varies considerable between different
approaches. We provide variations of the relevant scale in
both the angular-ordered and the dipole shower algorithms,
which can be used to assess these uncertainties, which are
expected to be reduced by use of NLO matched simulations.
Specifically for this purpose, easily usable settings of strict
leading-order simulation to be compared to improved NLO
simulation are provided within the new steering formalism
summarized in Sect. 6.

5 Tuning

The improvements to both shower modules, as well as
the inclusion of next-to-leading order cross sections, have

3 A similar change has been introduced in the dipole shower.

required a new tune to e+e− data; this tune has been carried
out using standard methods based on the Professor frame-
work [44] using a representative set of e+e− data as pre-
viously described in [2]. Similar parameters and an overall
reasonable description of the data have been obtained for
both the angular-ordered and the dipole shower. The results
of these tuning efforts are the default for the Herwig 7.0
release.

5.1 Tuning of the multi-parton interaction model

It was shown in Ref. [45] that a good description of both
underlying event and double parton scattering data [46] can
be obtained if one includes the latter in the data being fit to
with a sufficiently high weight. We followed the procedure
described in Ref. [45] using the MMHT2014 LO parton dis-
tribution function [47]4 and obtained a tune consistent with
double parton scattering data (σe f f ≈ 15 mb) that also gives a
good description of the underlying event data from the Teva-
tron’s lowest analysed energy point [50],

√
s = 300 GeV to

the LHC’s highest [51],
√
s = 7 TeV.

Herwig 7.0 is released together with the tune H7- UE-
MMHT, which it uses by default. More information and other
related tunes can be obtained from the Herwig tunes page.

6 Steering, integration and run modes

Owing to the complexity of the processes that can be sim-
ulated with Herwig, this version introduces some new run
modes as well as highly simplified input files to ease steering
the event generator. Two alternative integrator modules are
provided in addition to the old default, ACDC of ThePEG,
providing superior performance especially for more com-
plex processes. One of the algorithms is based on the stan-
dard sampling algorithm contained in the ExSample library
[23], while the other is based on the MONACO algorithm, a
VEGAS [52] variant, used by VBFNLO [32,33].

Since both of these algorithms require an integration grid
to be set up prior to generating events, two levels of run
mode have been introduced in addition to the old read and
run steps, to meet the requirements of more complex pro-
cesses. The new integrate step performs the grid adap-
tation; it is possible to parallelize this step in a way that does
not require inter-process communication and the individual
tasks in this parallelization can easily be submitted to stan-
dard batch or grid queues. The integrate step is to be
preceded by a build step,5 which will assemble the full

4 In the near future we also plan to provide tunes using CT14 [48] and
NNPDF3.0 [49] parton distribution functions.
5 The old read step is still available, representing the subsequent exe-
cution of both the build and the integrate steps in one step.
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fixed-order or matched cross section, including subtraction
terms and the possibility of external amplitude libraries gen-
erating dedicated code for the process of interest. As this step
may also require considerable computational resources, the
integrate and run steps both support reading in addi-
tional input files, so-called setup files, to modify run param-
eters independently of the process of building an event gen-
erator object. Detailed examples of these various new work-
flows are given in the new documentation.

Event generation itself can be parallelized either through
submitting runs with explicitly set random seeds or through
the newly introduced feature of forking several event gener-
ation jobs on multicore nodes.

7 Herwig contrib projects

A number of related codes have been developed along with
the main Herwig 7.0 development; while these libraries are
not supported at the same level as the core Herwig release,
they are provided along with it. Amongst other tools, the new
program version provides the following plug-ins:

7.1 Electroweak Higgs plus jets production

A dedicated Matchbox plug-in providing amplitudes for the
calculation of electroweak Higgs plus jets production at NLO
QCD is available along with the release. This library has
been used in the calculation reported in [53]. It provides a
full calculation of pp → h + n jets at O(α3αn−2

s ) for n =
2, 3, 4 at leading, and n = 2, 3 at next-to-leading order QCD.
All relevant topologies of either VBF or Higgs-Strahlung
type are taken into account along with all interferences. The
technical details of the library will be described elsewhere; its
use is the same as for all other Matchbox-based calculations
and a corresponding input file snippet to enable this class of
processes is provided.

7.2 FxFx merging support

Herwig 7.0 contains interface support for FxFx merging [54],
a method for merging multi-jet NLO samples with a par-
ton shower. The interface allows usage of samples generated
from MadGraph 5/aMC@NLO [55]. The module has been
tested for W + jets and Z + jets events, and compared against
LHC data at 7 and 8 TeV [56]. Other processes will be sup-
ported in future releases.

7.3 Higgs boson pair production

TheHiggsPair andHiggsPairOL packages offer production
of Higgs boson pairs via gluon fusion. The former uses code

from HPAIR [57,58] whereas the latter uses theOpenLoops
one-loop generator for the matrix elements [31].

HiggsPair describes leading-order Higgs boson pair pro-
duction, either in the Standard Model or in its D = 6 effec-
tive field theory extension. The original implementation was
described in [7] and its D = 6 EFT extension was examined
in detail in [59].

HiggsPairOL describes SM Higgs boson pair production,
with the optional use of Higgs–Higgs+one jet matrix ele-
ments merged to the parton shower via the MLM method.
See [60] for a detailed description.

8 Sample results

With so many new features, it is impossible to show the full
spectrum of results that have been improved, but in Figs. 1,
2, 3 and 4 we show a small sample.

The Monte Carlo results shown are from Herwig++ ver-
sion 2.7 using leading-order plus parton shower simula-
tion and from Herwig 7.0 with the angular-ordered parton
shower (LO ⊕ PS), the angular-ordered parton shower sup-
plemented by the internally implemented Powheg correction,
which includes QCD and QED corrections for the case of
e+e− → qq̄ (QCD ⊗ QED ⊗ PS), by the automatically cal-
culated by Matchbox subtractive (MC@NLO-type) match-
ing (NLO ⊕ PS) and multiplicative (Powheg-type, NLO ⊗
PS) corrections and, finally, the dipole shower supplemented
by a subtractive matching to NLO cross sections (NLO ⊕
Dipoles).

In Fig. 1, we show the most well-studied event shape from
the LEP era, the thrust distribution, in comparison with data
from the ALEPH collaboration [61]. A long-standing prob-

Fig. 1 The thrust distribution in e+e− annihilation at
√
s = Mz , in

comparison with ALEPH data [61]
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Fig. 2 The distribution of photon-jet energy fraction in three-jet e+e−
events at

√
s = Mz defined with a cutoff in the k⊥ algorithm of y = 0.1

in comparison with ALEPH data [62]

Fig. 3 The distribution of separation in azimuthal angle between the
Z boson and the hardest jet in Z + jets events in pp collisions at

√
s =

7 TeV in comparison with CMS data [63]

lem of Herwig++ producing too many very hard events,
whether or not NLO matching was used, is seen to have been
solved by the improvements to the angular-ordered shower
algorithm. All of the variants of NLO matching then give a
similar description of the data, with the dipole shower giving
a somewhat better overall description.

In Fig. 2, the effect of the inclusion of photon emission
in the angular-ordered parton shower is shown. Events at
zγ = 1 are isolated photons (“jets” for which all of the jet
energy is carried by a single photon), while events at lower

Fig. 4 The fraction of events that have less than Qsum transverse
energy in the rapidity region |y| < 2.1 in top quark–antiquark events
in pp collisions at

√
s = 7 TeV in comparison with ATLAS data [64]

zγ come from hard collinear photon emission from the final
state quark jets. We see clearly that the results from Her-
wig++ have no component at large zγ at all, while all of the
Herwig 7.0 variants are much closer to the data with that
including matching to NLO QED as well as QCD giving the
best agreement. QED radiation within the dipole shower is
subject to ongoing development and will be available in a
future release.

In Fig. 3 we turn to results for Z + jets events at the LHC.
We show the distribution of separation in azimuthal angle
between the Z boson and the hardest jet. The region �φ ∼ π

corresponds to leading order kinematics, in which the Z
boson gains its transverse momentum by recoiling against
a single hard parton, whereas the broad spectrum of events
down to �φ = 0 corresponds to events in which the Z boson
recoils against two or more jets. The need for NLO correc-
tions is clearly seen. An important cross-check of the two
different automated NLO matching schemes and the two dif-
ferent shower algorithms both using subtractive matching can
also be seen.

Finally, in Fig. 4 we show the jet activity in tNt events at
the LHC, as revealed by the gap fraction, i.e. the fraction of
events for which the sum of the transverse momenta of all
additional jets in the prescribed rapidity region is less than
Qsum. Herwig++ 2.7 is seen to have far too little jet activity
(too many gap events). While Herwig 7.0 with the shower
alone is somewhat closer to the data at small Qsum, a clear
deficit is seen for hard jet events at high Qsum, while both
the NLO matching schemes describe the data well.

This is of course just a very small selection of the large
number of distributions that have been checked against data
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in the final preparations of Herwig version 7.0, and more will
be shown for specific processes in a series of forthcoming
papers.

9 Summary and outlook

We have presented version 7.0 of the Herwig event gen-
erator, based on previous Herwig++ development and the
experience gained with the HERWIG event generator. The
new program features significant improvements as compared
to both the Herwig++ 2.x series and the HERWIG 6 event
generator, amongst them a powerful framework for NLO cal-
culations and a number of improvements to both shower mod-
ules. Several accompanying publications containing detailed
coverage of both physics and technical aspects will follow in
due course, as well as an updated large and detailed manual
to replace [2]. A completely new documentation system is
already in place for Herwig 7 to allow the user to exploit the
full capability of the new program. The methods and code
developed within this release will also form the basis for
ongoing and future development such as multijet merging
at both leading and next-to-leading order, and electroweak
corrections.
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