

LOFA analysis for the FW of DEMO HCPB blanket concept

Xue Zhou Jin, Yuming Chen, Bradut-Eugen Ghidersa

First IAEA Technical Meeting (TM) on the Safety, Design and Technology of Fusion Power Plants

Vienna, Austria

3 - 5 May 2016

Institute for Neutron Physics and Reactor Technology (INR)

EUROfusion WPSAE project

*** * * ***

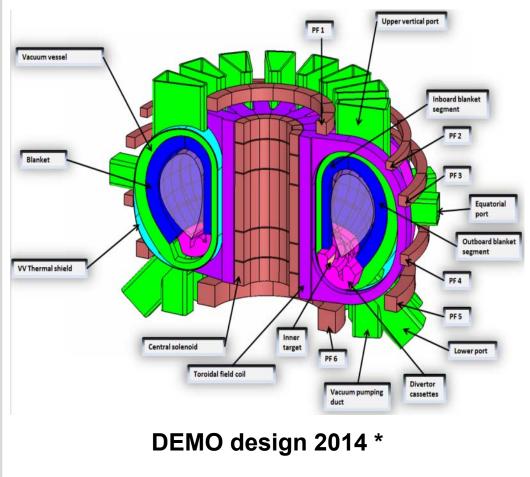
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

KIT - The Research University in the Helmholtz Association

www.kit.edu

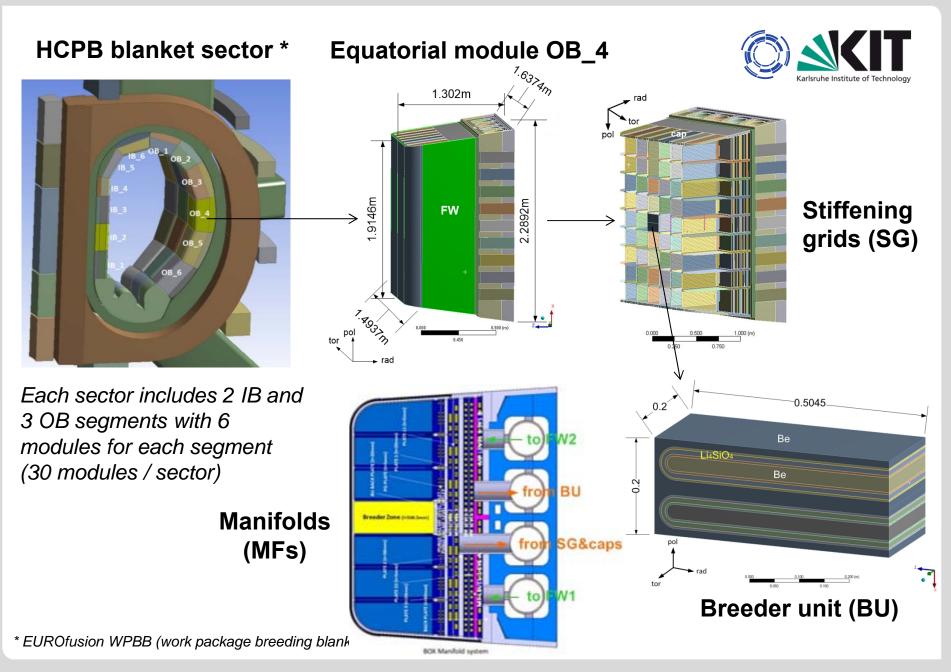
NK

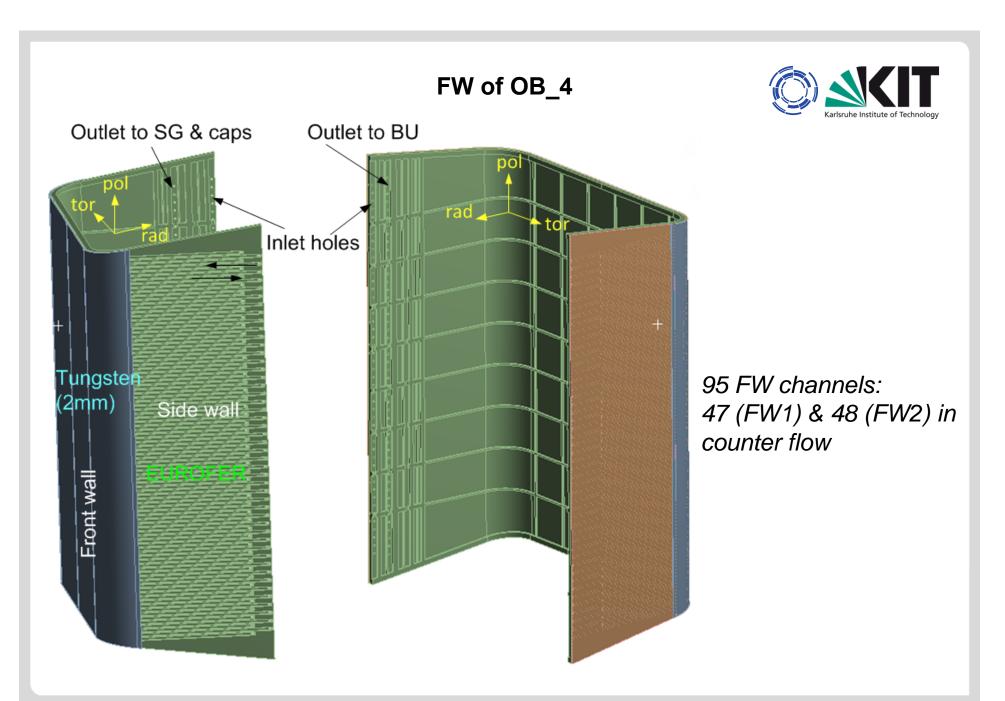
Outline

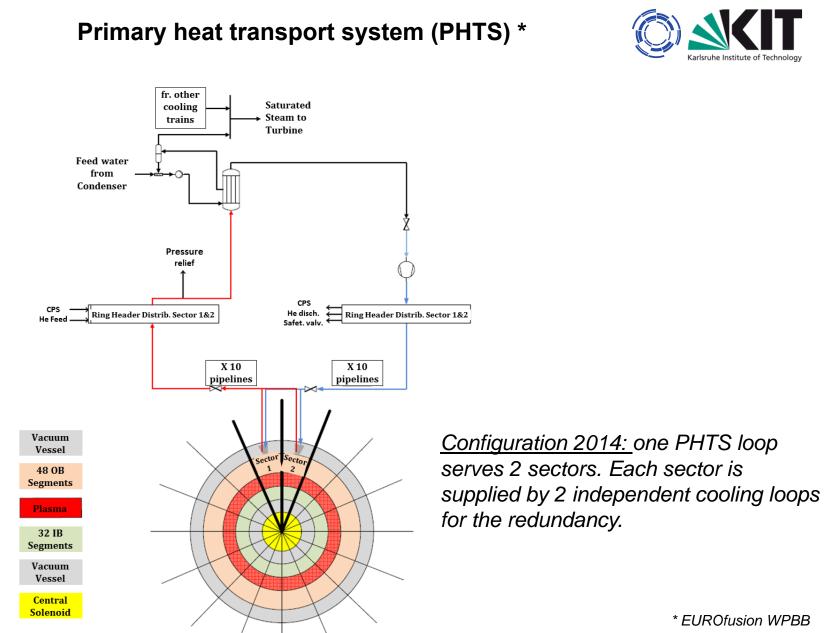


- DEMO HCPB blanket concept (2014)
- LOFA
- CFD simulation (ANSYS CFX)
 - **FW** channel geometry and numerical model
 - LOFA scenarios and results
- Simulation with system code
 - □ RELAP5-3D
 - □ Modelling
 - □ Steady state
 - LOFA scenarios and results

Conclusion


DEMO HCPB blanket concept (2014)





Parameter	Quantity				
Plasma power (MW)	1572				
Thermal power including n-	1972				
multiplication in blanket (MW)					
Plant electricity output capability (MW)	500				
Lifetime neutron damage in steel in the	20+50				
FW (dpa)	20+30				
Major radius, R ₀ (m)	9.0				
Minor radius, a (m)	2.25				
Plasma current (MA)	14				
Toroidal field, B_0 at R_0 (T)	6.8				
Elongation, κ ₉₅	1.56				
Triangularity, δ ₉₅	0.33				
Plasma volume (m ³)	1453				
Plasma surface area (m ²)	1084				
Auxiliary heating power, P _{inj} (MW)	50				
Auxiliary ramp-up power, P _{ramp-up} (MW)	>60				
Average neutron wall load (MW/m ²)	1.067				
Nuclear heating in blanket (MW)	1380				
Power to divertor (MW)	180				

* C. Bachmann: "Plant Description Document", Version 1.2, EFDA_D_2KVWQZ, 2014.

Main design data of OB_4

F	value		
Fluid	Не		
Surface heat flux	on the	front wall	0.5
FW (MW/m ²)	on the	BU to front wall	0.06
		BU to side wall	0.035
Neutron power (N	5.142		
Mass flow rate m	6.323		
Pressure at inlet	8.0		
Temperature	inlet	300	
(°C)	outlet	500	
Material	W thickn	2.0	
	EUROFE	3.0	
FW	Cross s	15 x 10	
	No. of c	95	

LOFA

Causes

- Circulator seizure
- Malfunction of valves
- Clogging in cooling channels
- Instrumentation & Control failure

Possible consequences

- □ Increase of temperature and pressure in the blanket & PHTS
- Reaching the critical conditions of the materials
- □ Failure of the FW => in-vessel LOCA

Mitigation

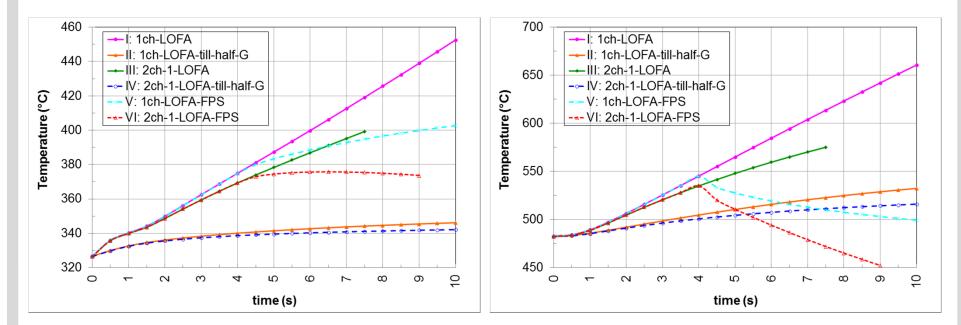
- Cooling circuit redundancy
- Circulator redundancy
- Plasma shutdown

CFD simulation (ANSYS CFX V15) FW channel geometry and numerical model 35kW/m² 651.3 inlet 274.0 35kW/m² R=182.1 a = 86.2° 7.5 5 60kW/m² 12 500kW/m² L=2885.7 FW.BU 1120.5 Tungsten-top-center Channel-middle \mathbf{V} Tungsten-top-1-1 wall-top-2-1 wall-top-1-1 Α Α wall-top-2-2 vall-top-1-2 k-ω SST model Channel-cr hannel-center-Steady state * **Data sampling locations** mesh sensitivity 35kW/m • 274.0 outlet effect of the surface roughness 565.9 wall-bot-2 wall-bot-center wall-bot-35kW/m Coarse mesh (y+=14) Transient for LOFA

* Y. Chen: "Transient Analyses on The cooling channels of the DEMO HCPB blanket", Fusion Engineering and Design, in press, 2016.

CFD simulation (ANSYS CFX V15)

□ LOFA scenarios


Scenarios (CFX)	Cooling circuit redundancy	Circulator redundancy	FPS	ṁ (g/s) (ṁ ₀ = 66.6 g/s)	Pressure decrease
I: 1ch-LOFA	no	no	no	ṁ₀ to 0	
II: 1ch-LOFA-till half G	no	yes	no	\dot{m}_0 to $G_0/2$	
III: 2ch-1-LOFA	yes	no	no	ṁ ₀ to 0	
IV: 2ch-1-LOFA-till-half-G	yes	yes	no	ṁ₀ to ṁ₀/2	0.2MPa
V: 1ch-LOFA-FPS	no	no	yes	ṁ₀ to 0	
VI: 2ch-1-LOFA-FPS	yes	no	yes	ṁ₀ to 0	

- Fast plasma shutdown (FPS) is activated at 4s after the LOFA. Plasma disruption is not considered.
- The mass flow rate and inlet pressure are assumed to decrease exponentially, at a pace 1/t².

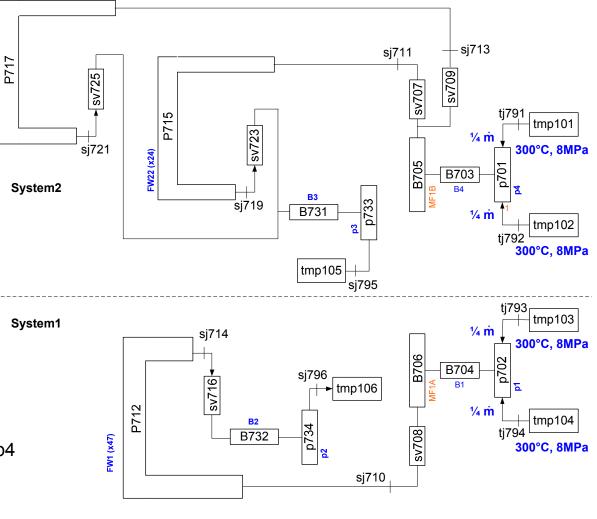
CFD simulation (ANSYS CFX V15)

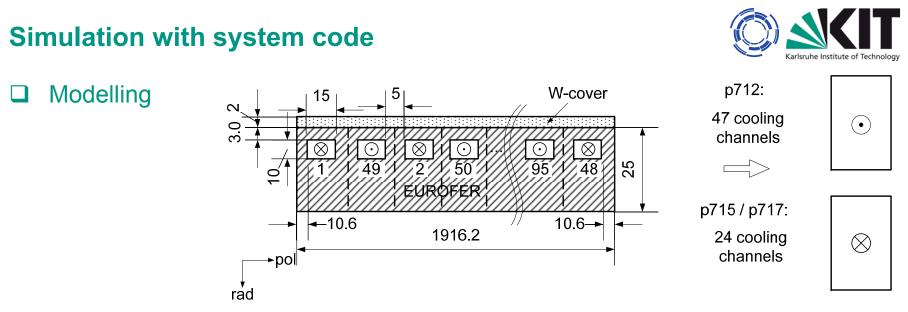
□ LOFA results

He temperature channel-center-1 (channelmiddle) FW temperature wall-top-1-1 (channelmiddle)

□ RELAP5-3D (V4.2.1)

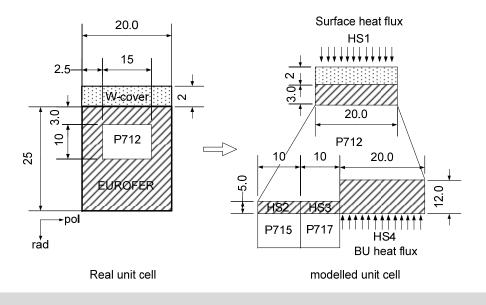
- Best-estimate transient simulation of light water reactor coolant systems during postulated accidents
- Cope with controlled steady state and cyclic operation
- Model of gas compressor
- Helium as working fluid
- Modelling of all components (helium circulator, economizer, electrical heater, cooler, filter, piping, mixers, valves and the test section) in the cooling circuit and control mechanisms.
- Application for ITER HCPB TBM, HCS, HELOKA-HP & -LP in normal operation & accidents.


FW21 (x24)


Modelling

FW inlet: B1 connected to p1 & B4 to p4 SG&cap outlet: B2 to p2 BU outlet: B3 to p3

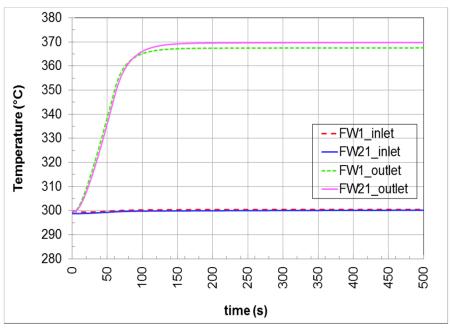
Inlets & outlets of module OB_4


Modelling in 2 systems

Cooling channels of the FW (dimensions in mm)

HS modelling for the front wall (dimensions in mm)

Surface heat flux, nuclear heating and decay heat assumed as 1.7% of the full power in the heat structure (HS) for the FW. Power ramps up to the full power within 60s.



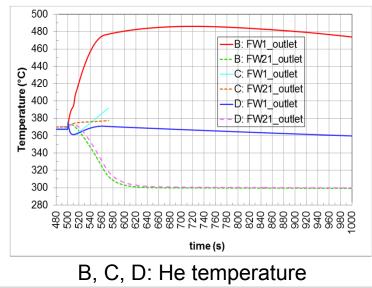
□ Steady state (500s)

Parameter	RELA	P5-3D	CFX single	
Parameter	FW1	FW21	channel	
T_outlet (°C)	367.5	369.8	370.1	
T_FW (°C)	497.0	502.0	453.0	
T_W (°C)	554.0	559.0	522.0	
dp (MPa)	0.111	0.109	0.086	
dp/L (MPa/m)	0.0375	0.0357	0.0374	
V_outlet (m/s)	76.7	75.5	77.0	
HTC_HS1 (W/m²K)	4254	4182	6166	
Channel L (m)	2.9529	3.0520	2.8857	

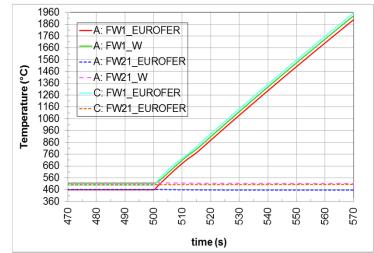
Comparison of the results at the steady state

He temperature

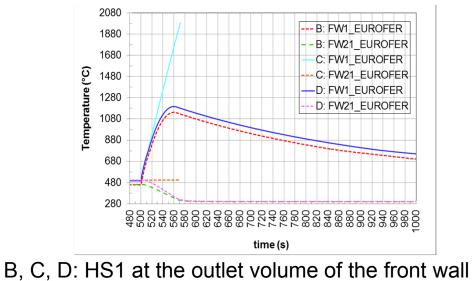
□ LOFA scenarios

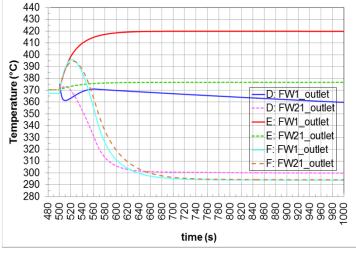

Scenarios (RELAP5-3D)	Cooling circuit redundancy *	Circulator redundancy	Soft plasma shutdown	ṁ	Pressure decrease	нтс
А	yes	no	no	from scenario III (CFX)		
В	yes	no	yes			
С	yes	no	no	\dot{m}_1 to 0 within 1s	0.2MPa	
D	yes	no	yes	\dot{m}_1 to 0 within 1s 0.2M		
E	yes	yes	no	\dot{m}_1 to 50% within 1s	0.1MPa	calculated
F	no	yes	yes	<i>ṁ</i> ₁ & <i>ṁ</i> ₂ to 50% within 1s	0.1MPa	
G	yes	yes	yes	\dot{m}_1 to 50% within 1s 0.1M		

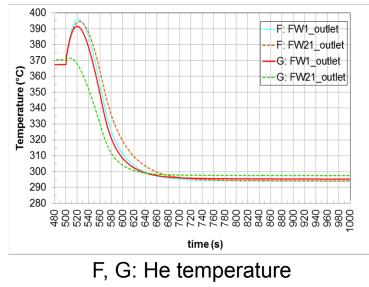
* LOFA in system 1.

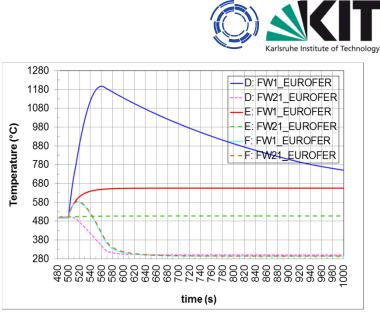

No plasma disruption, soft plasma shutdown in 60s from ITER.

LOFA results 580 -Tf outlet 1 (CFX) 560 Tf_outlet_2 (CFX) 540 A: FW1_outlet **Lemberature (°C)** 500 480 460 440 420 - A: FW21_outlet C: FW1 outlet -- C: FW21 outlet 400 380 360 470 490 500 510 520 530 540 550 560 570 480 time (s)

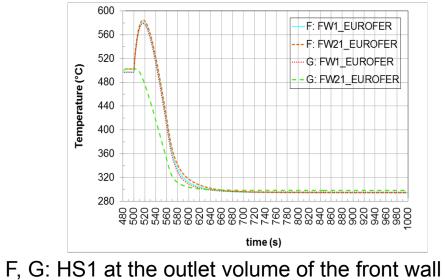

CFX, A, C: He temperature




A, C: HS1 at the outlet volume of the front wall



□ LOFA results



D, E, F: He temperature

D, E, F: HS1 at the outlet volume of the front wall

Summary of the scenarios

Nr.	Cooling circuit redundancy	Circulator redundancy	FPS / soft plasma shutdown	T_FW vs. T_limit (550°C)	Scenario
1	no	no	no	T_FW > T_limit in 4s	CFX I
2	yes	no	no	T_FW > T_limit in 5.5s T_FW > T_limit in 4s, 2s	CFX III & RELAP A, C
3	no	yes	no	T_FW < T_limit within 10s	CFX II
4	no	no	yes	T_FW < T_limit within 10s	CFX V
5	yes	yes	no	T_FW < T_limit within 10s T_FW > T_limit in 6s	CFX IV & RELAP E
6	yes	no	yes	T_FW < T_limit within 9s T_FW > T_limit in 4s, 2s	CFX VI & RELAP B, D
7	no	yes	yes	max. T_FW: 585°C T_FW < T_limit in the long term	RELAP F
8	yes	yes	yes	max. T_FW: 579°C T_FW < T_limit in the long term, 50% FW is affected.	RELAP G

Conclusion

- ❑ LOFA scenarios have been investigated for the FW of DEMO HCPB blanket concept using CFD and system codes. Transient time for 3D-CFD simulation is very limited due to high CPU time.
- □ Steady state
 - The RELAP5-3D results are well comparable with the CFD results (He temperature, pressure drop & velocity).
 - The FW temperature of the RELAP calculation is ~44°C higher than it from the CFX due to the 1D-HS modelling in RELAP.

Conclusion

LOFA

- > No mitigation: T_FW increases up to the structure melting point rapidly.
- One mitigation action in priority: FPS, circulator redundancy, cooling circuit redundancy.
- > Two mitigation actions: *plasma shutdown is mandatory.*
- Three mitigation actions: T_FW < T_limit in the long term, 50% FW is affected.</p>
- Heat exchange between two systems for the cooling circuit redundancy is not effective enough with the 1D-HS modelling in RELAP.
- Soft plasma shutdown cannot stop the temperature increase at the beginning of the shutdown.
- Temperature behaviour considering the plasma disruption following the FPS in DEMO should be studied.
- Future work for the FW integrity: structural analysis to withstand the thermalmechanical and electro-magnetic loads following loading categories and criteria.