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Abstract

High throughput demands under complexity- and power-efficiency has imposed numerous design challenges
for the next generation multimedia systems. Multimedia (especially video) applications impose tight throughput
constraints (e.g., frame resolutions beyond 1920x1080, at more than 30 FPS), which must be met by possibly
resource- and battery-constrained underlying hardware.

However, technology scaling in the nano-era has led to high transistor densities. On one hand, the technology
scaling provides increased resources to the application designer, to enable high throughput multimedia
processing. Contrarily, these technological advancements come with their associated challenges, like high
power densities (Dark Silicon paradigm). Furthermore, high power densities lead to elevated on-chip
temperatures that jeopardize the reliability of the multimedia system, like NBTI-induced aging. This suggests
that a next generation multimedia system which consumes low power might not be able to fulfil the throughput
constraint, while a multimedia system meeting its throughput constraints might be resource- and power-wise
inefficient. These contradictions open new frontiers for exploring software and hardware level co-design and
co-optimizations space. Since the complexity and power consumption of the multimedia system can be reduced
at both the software and hardware level, therefore, several software and hardware factors (like varying workload
characteristics, Thermal Design Power or TDP constraints, application-specific architectural optimizations and
available hardware resources) play an important role for designing high complexity embedded multimedia
systems. The state-of-the-art works, however, do not exploit the complete hardware-software design
optimization space of advanced embedded multimedia systems under Dark Silicon constraints, to fully exploit
the power-, complexity- and resource-saving, and reliability improvement potential for long-term system
deployment.

The aim of this Ph.D. thesis to design efficient multimedia (specifically image/video) systems that are easily
portable to programmable soft-cores, application-specific hardware platforms, and domain specific hardware
accelerators, while providing power-efficiency and reliability. The key design novelty is to recognizing and
mutually consider the hardware constraints and software/application-specific characteristics, and synergistically
and objectively tuning software and hardware parameters. Since image/video processing workload are power
hungry, therefore, this Ph.D. thesis targets to encompass multiple design aspects (complexity reduction,
workload balancing, power reduction, aging optimization) in an integrated manner to improve power and
reliability metrics.

Moreover, this work builds software and hardware optimizations by analyzing the applications and hardware
characteristics, and then leveraging the application- and content-knowledge for design and management of next
generation multimedia systems from both power and reliability perspective. The design-focus of our approaches
and strategies is a multi-‘/many-core system, with on-chip hardware co-processors and accelerators. A brief
summary of the contributions by this thesis are given below.

Power-Efficient Software Layer: For the multimedia systems, the software layer determines system
parameters (number of cores used by the parallel running application(s), amount of tasks offloaded to hardware
accelerators and high-end servers, voltage-frequency settings of the cores, power-gating control etc.) and adapts
them by using feedback from the hardware layer. The goal is to increase the throughput-per-watt metric of the
multimedia system. A synopsis of the software level approaches proposed in this thesis is given below.

e  Parallelization and Workload Balancing: To avoid computational hotspots and utilize the underlying
hardware, parallelization and workload balancing approaches presented in this thesis target power
reduction while meeting the throughput demands of the video applications. At runtime, a multi-objective
optimization is performed which divides the workload in either uniform or in a non-uniform manner



among the cores, and tunes the application parameters. On homogeneous cores, the proposed approaches
result in up to ~19% power savings compared to the state-of-the-art approach [1], while additional ~7.8%
power savings are obtained with non-uniform load distribution. Up to 64% throughput-per-watt
improvement is obtained compared to [2] while using heterogeneous computing nodes.

Resource Budgeting: While considering the throughput demands of multiple, multithreaded applications,
the resource budgeting approach presented in this thesis divides the available cores and the TDP among
these applications. The resources allocated to the applications are adapted at runtime, and this improves
the throughput of the system from ~1.18x to ~1.45x compared to [3], under varying Dark Silicon
scenarios.

Computation Offloading: At the software side, the video content- and throughput constraints-driven
offloading mechanisms are developed to offload computations to a high-end server, which achieves
considerable energy savings (~20%) compared to [4].

Power-Efficient Hardware Layer: The hardware layer supports video I/O, communication among
(possibly heterogeneous) compute nodes, power-efficient video memory design and aging-aware optimizations.
Further, this layer exposes some of its functionality to the software layer (for approaches like software-guided
frequency tuning of the cores, power gating and feedback of statistics to the software). A brief summary of the
architectural contributions of this thesis are given below.

Video 1/0 and Communications: To develop high throughput applications, video I/O architectures and
custom hardware for communication among computing nodes proposed by this thesis targets
communication efficiency at reduced hardware cost.

Hardware Accelerator Sharing/Scheduling: To offload workload from soft-cores to the shared hardware
accelerator, or, to share the hardware accelerator for processing multiple tasks in a round-robin fashion,
hardware accelerator sharing and scheduling approaches are presented such that the throughput of all the
soft-cores is met, hardware accelerator is fully utilized and the power consumption of the system is
minimized. Similarly, efficient hardware accelerators are designed which can provide high throughput
and power-efficiency (by selectively clock-gating parts of the accelerator) while meeting the
computational constraints of the video system. For the H.264/AVC encoding loop, the proposed
approach achieves ~4.14x hardware savings compared to [5], while the proposed edge detection
mechanism (for efficient mode computations) results in ~1.9% area savings compared to [6].

Memory Subsystem Design: A hybrid memory architecture, consisting of sectored non-volatile memory
(MRAM) based frame buffers and SRAM FIFOs, achieves high power savings at minimal latency
penalty, by adaptively turning ON the normally OFF MRAM sectors. Moreover, the on-chip SRAM
aging resiliency approach presented here exploits video content-properties to reduce the aging rate of 6T
SRAM cells, which store the data bits. A controller is proposed which adaptively performs aging-aware,
online data adaptation at different spatial and temporal granularity.

The above mentioned software and hardware approaches have resulted in several open-source contributions,
which are available for download and can be found in the free software pool of our lab’s (Chair for Embedded

Systems, CES) webpage: http://ces.itec.kit.edu/.

In a nutshell, software and hardware properties are synergistically evaluated to determine the degree of

parallelism, task offloading and resource budgeting. Moreover, the proposed approaches result in tunable,
software guided frequency and gating control of the hardware using feedback from the hardware, in order to

lower the power consumption of the system. Further, the proposed video system’s hardware layer consists of
novel accelerator design methodology, and power- and aging-efficient memory subsystem.
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Zusammenfassung

Hohe Durchsatzanforderungen unter Beachtung von Komplexitits- und Leistungseffizienz hat zu
zahlreichen Design-Herausforderungen fiir Multimediasysteme der nichsten Generation gefiihrt.
Multimediaanwendungen(insbesondere Video) haben starke Durchsatzanforderungen (z.B. Bildgrofen jenseits
von 1920x1080 bei mehr als 30 FPS), die von Hardware erfiillt werden miissen, die moglicherweise
eingeschrénkt ist in ihren Ressourcen und Batterie.

Allerdings hat die Technologie-Skalierung in der Nano-Ara zu hohen Transistordichten gefiihrt. Einerseits
hat die Technologie-Skalierung mehr Ressourcen fiir den Anwendungsdesigner bereitgestellt und damit
Multimediaverarbeitung mit hohem Durchsatz ermdglicht. Andererseits fiihren diese technologischen
Fortschritte mit ihren damit verbundenen Herausforderungen, wie z.B. hohe Leistungsdichten (Dark Silicon
Paradigma). Weiterhin fiihren hohe Leistungsdichten zu erhohten On-Chip-Temperaturen, die die
Zuverldssigkeit des Multimediasystems geféhrden, durch z.B. NBTI-induzierte Alterung. Dies legt nahe, dass
ein Multimediasystem der ndchsten Generation, das eine geringe Leistungsautnahme hat, moglicherweise nicht
die Durchsatzanforderungen erfiillen kann, wéhrend ein Multimediasystem, das seine Durchsatzanforderungen
erfiillt, moglicherweise ressourcen- und leistungsineffzient ist. Diese Widerspriiche 6ffnen neue Moglichkeiten
fir die Erkundung von Software- und Hardware-Ebene Co-Design und Co-Optimierungsrdume fiir
Multimediasysteme. Da die Komplexitdt und Leistungsaufnahme eines Multimediasystems sowohl auf der
Software- als auch auf der Hardware-Ebene reduziert werden kann, haben mehrere Software- und Hardware-
Faktoren (wie unterschiedliche Auslastungsmerkmale, Thermal Design Power oder TDP Anforderungen,
anwendungsspezifische Architekturoptimierungen und verfiigbare Hardwareressourcen) eine wichtige Rolle
um eingebettete Multimediasysteme mit hoher Komplexitét zu designen. Die State-of-the-Art-Arbeiten nutzen
aber nicht alle Mdglichkeiten des Design-Raums der Hardware-Software-Optimierung von fortgeschrittenen
eingebetteten Multimediasystemen unter Dark Silicon-Anforderungen, um das volle Potential fiir Leistung-,
Komplexitits- und Ressourcenreduzierung und Zuverldssigkeitsverbesserungen fiir  langfristige
Systembereitstellung auszunutzen.

Das Ziel diese Doktorarbeit ist es effiziente Multimediasysteme (insbesondere Bild/Video) zu erstellen, die
einfach auf programmierbare Soft-Cores, anwendungsspezifische Hardwareplattformen und doménen-
spezifische Hardwarebeschleuniger anpassbar ist und gleichzeitig Leistungseftizienz und Verldsslichkeit zu
erreichen. Die wichtigste Designneuheit ist das Erkennen und gegenseitige Beachten von Hardware-
Einschrankungen und software/anwendungsspezifischen FEigenschaften und synergistisch und objektiv
Software- und Hardwareparameter abzustimmen. Da Bild/Video-Bearbeitung eine groe Leistungsaufnahme
hat, zielt diese Doktorarbeit darauf ab mehrere Designaspekte (Komplexititsreduktion, Lastausgleich,
Leistungsreduzierung, Alterungsoptimierung) in einer integrierten Weise zu umfassen um Leistungs- und
Zuverldssigkeitsmetriken zu verbessern.

Zudem erstellt diese Arbeit Software- und Hardwareoptimierungen, indem sie die Eigenschaften der
Anwendungen und Hardware analysiert und dann das Anwendungs- und Inhaltswissen fiir das Design und die
Verwaltung von Multimediasystemen der néchsten Generation im Hinblick auf Leistung und Zuverldssigkeit
ausnutzt. Das Designziel unserer Ansdtze und Strategien ist ein Multi-’/Many-Core-System mit On-Chip
Hardware-Ko-Prozessoren und Beschleunigern. Eine kurze Zusammenfassung der Beitrige dieser Arbeit sind
folgend aufgelistet.

Leistungseffiziente Softwareebene: Fiir Multimediasysteme bestimmt die Softwareebene die
Systemparameter (Anzahl der Kerne, die von den parallel laufenden Anwendung(en) genutzt werden, Menge
der Tasks, die auf Hardwarebeschleuniger und High-End-Server ausgelagert wurden, Spannungs-Frequenz-



Einstellungen der Kerne, Power-Gating etc.) und passt sie an durch Riickmeldung der Hardwareebene. Das Ziel
ist es die Durchsatz-pro-Watt-Metrik des Multimediasystems zu erhdhen. Eine Ubersicht iiber die in dieser

Arbeit

vorgeschlagenen Ansétze zu Softwareebene ist folgend angefiihrt.

Parallelisierung Und Lastverteilung: Um Berechnungs-Hotspots zu vermeiden und die zugrunde
liegende Hardware auszunutzen, zielen die Parallelisierungs- und Lastverteilungsansitze in dieser Arbeit
auf Leistungsreduzierung unter Einhaltung der Durchsatzanforderungen der Videoanwendungen. Zur
Laufzeit wird eine Optimierung mehrerer Ziele durchgefiihrt, die die Arbeitslast entweder in einer
gleichformigen oder nicht-gleichformigen Weise auf die Kerne aufteilt und die Anwendungsparameter
einstellt. Auf homogenen Kernen fithren die vorgeschlagenen Ansdtze zu bis zu ~19%
Leistungsreduzierung verglichen mit dem State-Of-The-Art-Ansatz [1]. Wobei zusétzliche ~7,8%
Leistungsreduzierung durch nicht-gleichférmige Lastverteilung erreicht werden. Bis zu 64% Durchsatz-
pro-Watt Verbesserung wurde erreicht verglichen zu [2], wenn heterogene Berechnungsknoten benutzt
wurden.

Ressourcenplanung: Unter Berilicksichtigung der Durchsatzanforderungen von mehreren Multithread-
Anwendungen teilt der Ressourcenplanungs-Ansatz in dieser Arbeit die vorhandenen Kerne und die TDP
unter diese Anwendungen auf. Die Ressourcen, welche den Anwendungen zugeteilt wurden, werden zur
Laufzeit angepasst und das verbessert der Durchsatz von ~1,45% zu ~1,18 verglichen mit [3] unter
Beriicksichtigung von verschiedenen Dark-Silicon-Szenarien.

Berechnungsauslagerung: Auf der Softwareseite werden Auslagerungsmechanismen, die von
Videoinhalts- und Durchsatzanforderungen getrieben werden, entwickelt um Berechnungen auf einen
High-End-Server auszulagern, was erhebliche Energieeinsparungen (~20%) verglichen mit [4] ergibt.

Leistungseffiziente Hardwareebene: Die Hardwareebene unterstiitzt Video-I/O, die Kommunikation
zwischen den (moglicherweise heterogene) Rechenknoten, leistungseffizientes Videospeicher-Design und

alterungsbewusste Optimierungen. Weiter macht diese Ebene einige seiner Funktionen der Softwareebene (fiir

Ansétze wie software-gesteuerte Frequenzabstimmung der Kerne, Power-Gating und Riickmeldung von
Statistiken zur Software) sichtbar. Eine kurze Zusammenfassung der architektonische Beitrdge dieser Arbeit

folgen.

Video-1/0 und Kommunikation: Um Anwendungen mit hohem Durchsatz zu entwickeln, wurden Video-
I/O-Architekturen und benutzerdefinierte Hardware fiir die Kommunikation zwischen Rechenknoten
vorgeschlagen, um effiziente Kommunikation bei reduzierten Hardwarekosten zu erreichen.
Hardwarebeschleuniger  Teilen/Scheduling: Um  Arbeitslast von Soft-Cores zum geteilten
Hardwarebeschleuniger auszulagern oder um den Hardwarebeschleuniger zur Berechnung von
verschiedenen Aufgaben der Reihe nach zu teilen, wurden Ansétze zum Teilen und Scheduling des
Hardwarebeschleunigers vorgestellt, so dass der Durchsatz aller soft-Cores erreicht wird, der
Hardwarebeschleuniger voll ausgelastet ist und die Leistungsaufnahme des Systems minimiert wird. In
dhnlicher Weise wurden effiziente Hardwarebeschleuniger erstellt, die hohen Durchsatz und hohe
Leistungseffizienz (durch selektives Clock-Gating von Teilen des Beschleunigers) haben und dabei die
Berechnungsanforderungen des Video-Systems einhalten. Fiir die H.264/AVC Encoding-Schleife
erreicht der vorgeschlagene Ansatz ~4,14x Einsparungen von Hardware verglichen mit [5], wahrend der
vorgeschlagene Kantenerkennungsmechanismus (fiir effiziente Modus-Berechnung) in ~1,9%
Platzersparnis verglichen mit [6] fiihrt.

Speicher-Subsystem Design: Eine Hybridspeicherarchitektur, bestehend aus Bildpuffern und SRAM
FIFOs, die auf sektoriertem nichtfliichtigen Speicher (MRAM) basieren, erzielt hohe
Leistungseinsparungen bei minimalen LatenzeinbuB3en durch adaptives EIN-schalten der normalerweise
AUS MRAM  Sektoren. Dariiber hinaus nutzt der hier vorgestellte Ansatz zur
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Alterungswiderstandsfahigkeit mit On-Chip-SRAM Video-Inhaltseigenschaften aus, um die
Alterungsrate von 6T SRAM-Zellen, die die Videobilder speichern, zu reduzieren. Eine
Steuereinrichtung wird vorgeschlagen, welche adaptiv alterungsbewusst Online-Datenanpassung mit
unterschiedlicher rdumlicher und zeitlicher Granularitit durchfiihrt.

Die oben genannten Software- und Hardwareansitze haben zu mehreren Open-Source-Beitridgen gefiihrt,
die zum Download verfiigbar sind und im kostenlosen Softwarekatalog unserer Laborwebseite (Chair for
Embedded Systems, CES) gefunden werden konnen: http://ces.itec.kit.edu/.

Kurz gesagt, werden Software- und Hardwareeigenschaften synergistisch ausgewertet um den Grad der
Parallelisierung, Task-Auslagerung und Ressourcenplanung zu bestimmen. Dariiber hinaus fiihren die
vorgeschlagenen Ansdtze in abstimmbare software-bestimmte Frequenzregelung und Gating-Control der
Hardware unter Benutzung von Feedback der Hardware, um die Leistungsaufnahme des Systems zu verringern.
AuBerdem besteht die Hardwareebene des vorgeschlagenen Videosystems aus einer neuartigen Designmethodik
eines Beschleunigers und einem Leistungs- und Alterungs-effizienten Speichersubsystem.
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CLK
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CTU
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DVC
DVFS
EC

FF
FPGA
FPS
GOP
GOW
GPU

HCI

Address Generating Unit, creates addresses to write/read data to/from the memory
Adaptive Energy Management for On-Chip Hybrid Video Memories, an approach to reduce
the energy consumption of the video memory subsystem by integrating volatile and non-
volatile memories

Application Specific Integrated Circuit, high throughput low power customized circuit for
performing a specific task as opposed to a core

Application Specific Instruction-set Processor, a processor with integrated custom hardware
accelerators to increase its throughput

Bjontegaard Delta Peak Signal to Noise Ratio, measures the difference in output image
quality of two different image/video processing systems

Bjontegaard Delta bit-Rate, measures the difference in the output bit-rate of two difference
video encoding systems

Bias Temperature Instability, degradation of MOSFETs due to the voltages applied at the
gate of MOSFETs

Context Adaptive Binary Arithmetic Coding, an arithmetic entropy coder (bit-stream
generator) used in H.264/AVC and HEVC

Context Adaptive Variable Length Coding, used as an entropy coder (bit-stream generator)
in H.264/AVC

Custom Instruction, an instruction which is executed on custom hardware accelerator rather
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Hardware clock

Coder and Decoder, used to present video compressors

Coding Tree Unit, the largest block of pixels used in HEVC for encoding/decoding
Coding Unit, a square block of pixels used for encoding/decoding in HEVC CODEC
Discrete Cosine Transform, a basic encoding module used in numerous video encoders
Double Data Rate memory, a synchronous, dynamic random-access memory

Dynamic Frequency Scaling, where only the frequency of a processing core is scaled, while
the voltage supplied to the core is kept constant

Dynamic Power Management, for runtime power optimizations of embedded systems
Dynamic Thermal Management, for managing the temperature of the system

Distributed Video Coding, whereby constrained encoder offloads its workload to the high-
end decoder by temporally downsampling at frame-level

Dynamic Voltage-Frequency Scaling, adapting the voltage-frequency of the cores to adjust
the power consumption of the cores

Entropy Coder, a bit-stream generator used in video compressors like H.264/AVC and
HEVC

Fast-Fast, one of the many possible semiconductor etching process corner

Field Programmable Gate Array, a programmable integrated circuit

Frames Processed per Second

Group of Pictures or video frames

Group of Wyner-Ziv frames, used in Distributed Video Coding

Graphical Processing Unit, contains programmable cores with architecture supporting
efficient image processing functions

Hot Carrier Injection, an unwanted byproduct of the switching activity which increases the
threshold voltage of a transistor
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MPEG
MPSoC
MRAM

MRT
MUX
MV

MVD

MWT
NBTI

NVM
PG
PSNR
PU

PUMA

PUM
PVC

QoS
QP

Hybrid Distributed Video Coding, whereby a constrained encoder shares a part of its
workload to a possibly constrained decoder

High Efficiency Video Coding, one of the newest video encoding standard and also
sometimes referred to as H.265

Hadamard Transform, used to process the DC transform coefficients out of the DCT module
in H.264/AVC

Inverse Discrete Cosine Transform, generates the (approximate) input of the DCT module
by processing the output of the DCT module

Intra Frame, frames using only spatial information for processing the constituent blocks
Inverse Hadamard Transform, use to inverse transform the quantized DC coefficients in
H.264/AVC

Input and Output

Internet of Things

Inverse Quantizer, generates the (approximate) input to the quantizer module by processing
the quantizer’s output

Instruction-Set Architecture, the architectural details of the processor available to the
programmer/compiler

International Telecommunication Union

Joint Collaborative Team on Video Coding

Macroblock, basic video frame block used in H.264/AVC for video encoding

Motion Estimation, the best known video compression technique

Moving Pictures Expert Group

Multiprocessor System on Chip

Magnetoresistive Random Access Memory, a non-volatile memory that incorporates
magnetic storage

Memory Read Transducer, transforms the SRAM data after reading it

Multiplexer

Motion Vector, defines the relative motion of a video block between two video frames
Motion Vector Difference, relative difference of a video block’s motion from its
surrounding blocks

Memory Write Transducer, transform the data before writing it to the SRAM

Negative Bias Temperature Instability, BTI induced degradation on the PMOS transistor
while applying a negative voltage at its gate

Non-Volatile Memory, a RAM that will retain its contents for a large time after turned OFF
Power gate

Peak Signal to Noise Ratio, usually used for quantifying the quality of an image when
compared to an ideal reference image

Prediction Unit, the video frame block which is used as a basic entity for Intra- and Inter-
encoding in HEVC CODEC

A PU Map (PUM) created by joining the adjacent four neighboring blocks, used for
efficiently encoding a CTU in HEVC

PU Map, used for efficiently encoding a CTU in HEVC

Predictive Video Coding, employing the principles of Intra- and Inter-frame predictions
Quantizer, used to quantize the transformed coefficients out of the DCT and HT modules
Quality of Service, or throughput requirement

Quantization Parameter, a higher value denotes a bigger quantization step, therefore, a
larger QP reduces bit-rate, at the expense of reduced reconstructed/decoded video quality
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Rate-Distortion Optimization, a process to maximize the quality and minimize the output
bit-rate of the video encoder

Red Green Blue, a color space format to render a raw, colored image/video frame
ReOrder, a module used in H.264/AVC to reorder the quantized coefficients before pushing
them to the entropy coder

Region of Interest, usually used for regions within images which are of interest to the viewer
Sum of Absolute Differences

Side Information, a video frame generated at DVC/HDVC decoder using temporal
interpolation of adjacent video frames

Static Noise Margin, determines the impact of noise on an SRAM cell

Self-Organizing Map, which maps a high dimensional signal to a low dimensional map
Thermal Design Power, power that can be safely handled by the thermal dissipation
mechanisms of the chip

Video Input Pipeline, a hardware architecture to feed the video processing system with data
from the camera(s)
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present raw color images/videos, by appropriately encoding the RGB format

Same as YCbCr, but predominately for analog video
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Chapter 1  Introduction

Owing to the high-density fabrication technologies which allow assembling billions of transistors per
processing chip, multimedia systems have universally penetrated into communication, security, education,
entertainment, navigation and robotics domains. The advancement in the fabrication technology has also driven
the processing capabilities and user expectations of the next generation multimedia systems. On the contrary,
the evolution of next generation multimedia systems (with increasing throughput and connectivity requirements,
and adaptability to application, battery etc.) requires high processing capabilities and efficient utilization of the
resources, on a resource and power constraint hardware platform. Multimedia applications like latest video
encoders [7] now target high quality video content compression beyond Full-HD (like 4K Ultra High Definition,
3840%2160 pixels) at high frame-rates (> 120 frames per second). Long-term deployment of such multimedia
applications on small, battery driven autonomous systems is challenging, due to the high computational and
power requirements which must be met to fulfill the throughput constraints. Coupled with the high throughput
demands, a multimedia system must be capable of reacting to changes in the workload of the application.
Further, modern nano-era fabrication technologies have their own associated challenges (like power-wall [8]
and reliability [9]) which must be accounted for to forge power-efficient multimedia systems. This suggests that
new design methodologies for next generation multimedia systems are needed, to address the above mentioned
challenges on modern systems. This Ph.D. thesis presents some of these methodologies, both at the software
and hardware layers of the multimedia system.

1.1 Next Generation Multimedia Systems

Multimedia systems holistically store, process and output/display numerous forms of content or data (like
text, audio, image/video and others), for performing tasks like communication, entertainment, security,
computing etc. These systems have penetrated as computers, televisions and most-recently as hand-held mobile
devices. Basically, it is a union of computers, communication and signal processing domains. Typically,
multimedia systems are required to process the content within a deadline, and satisfy real-time Quality of
Service (QoS) constraints. This might become a considerable challenge for small, mobile, battery-driven
systems (like autonomous robots) as they encounter strict QoS requirements under resource and power
constraints. Interestingly, 98% of all the computing devices are embedded devices [10]. Thus, multimedia
system designers try to optimize different attributes of the system, which will lead to maximize a quality metric,
like power-efficiency, to maximize performance-per-unit of power that goes into the system (generally referred
to as throughput-per-watt). Further, the time complexity reduction (i.e., performance optimizations) of such
system will also indirectly lead to power-efficiency. This is because now, a lower clock frequency of the
underlying hardware can meet the QoS requirement, and thus, lesser power is required to meet the computational
demands.

Since the most compute intensive part of multimedia systems is usually image- and video-processing (taking
more than 70% of the total complexity [11]), therefore, image- or video-processing is commonly targeted for
optimizing the design of multimedia systems. As shown in Figure 1-1 (a), the “time spent in front of the screen”
for different viewing devices is mostly consumed by battery-driven devices (e.g. smartphones), hence, power-
efficiency is one of the main goals for implementing video systems. Further, from Figure 1-1 (b), more than
50% of the data on the internet and over the wireless channels is compressed video, suggesting that the majority
of content processed on wireless capable devices is video. It is also predicted that by 2019, about 80% of the
Internet data will be video. Moreover, many real-world critical applications embed video processing as the core
algorithm. Examples are passive tracking, radar imaging, medical imaging, localization and navigation [12, 13].
Developers are even introducing real-time communication functionalities within web browsers (see WebRTC
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Figure 1-1: (a) Distribution of screen minutes spent in front of display mediums (via Millward Brown AdReaction 2014),
(b) Global consumer internet traffic forecast (from Cisco Visual Network Index).

[14]). Furthermore, new video processing algorithms were introduced in the near past, which not only require
high computational efforts by demanding a higher QoS to maximize user satisfaction, but also incur high
power/energy penalty. Hence, it becomes essential to devise efficient video algorithms and system architectures,
to maximize the performance/throughput-per-watt metric when video processing is performed on constraint
devices.

The commonly used QoS metric in video processing is to meet the specified throughput, expressed as Frames
Processed per Second (FPS) or frame rate. A video system must be able to meet the throughput demands while
providing considerable output video quality (more on this in Chapter 2). This puts pressure on the underlying
hardware to perform with maximum efficiency, and therefore, multiple architectural novelties and
enhancements are employed by industry and research community, to maximize the throughput-per-watt for
divergent set of video applications.

1.1.1 Multimedia Processing Architectures

Multimedia systems are now available in almost every compute-domain, ranging from high-end
computational servers to small devices like smartphones. Processing devices have evolved over the past few
decades and offer more speed, with reduced area and power consumption. The evolution of x86 processor [15]
is shown in Figure 1-2. In 1978, Intel released

10000 2" Generation
the 8086 processor consisting of 29K Core2, \g
. . e® © $
transistors, capable of running at a SMHz. _, 1000 T— Atom
However, the new Core-i7 processors with 4 z o *Celeron
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. . . o 386 o
turbo boost mode. This high operating g 10 L
frequency of processing systems offers an & 8080 ‘
opportunity to sustain high throughput 1|
requirements of multimedia applications. oq L.400a
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Similarly, the number of compute cores

embedded in the processing system are
. . . Figure 1-2: Evolution of Intel processors

constantly increasing with every new
processor release. For example, Intel has
released Polaris (80-core) and Single-Chip Cloud Computer (SCC, 48 cores) [16] research chips for high-end
computing servers. AMD’s Opteron chips have up to 24 cores. Tilera Gx-Tile architecture has 100 cores, and
Oracle’s Sparc T3 houses 16 cores and can process 128 threads for web services and database applications. IBM

has launched Power and System z architectures with multiple cores. Specifically for video applications, different
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architectures like Larabee and Xeon Phi were also launched. Furthermore, it is now common for the new
smartphones to have 4 cores and these cores are fully exploited by applications. For example, Chrome web
browser (commonly used for viewing multimedia streams) tries to utilizes all available cores on an Android
based smartphone. The YouTube Android application uses 4 cores on average on an 8-core processor.
Moreover, Android games normally produce tens of threads and utilize most of the cores available on the system
[17]. In summary, the compute power of processors is increasing with every new generation, to support the high
throughput requirement of multimedia applications.

Usually, the compute power provided by software-programmable cores is not enough to meet the FPS
requirement, or, to sustain the intended throughput-per-watt metric. Moreover, their power consumption is very
high and thus, makes them unsuitable for implementation in small, constrained environments (like video enabled
wireless sensor nodes). Therefore, video systems are also implemented using custom hardware
implementations. Prominent examples are Graphical Processing Units (GPUs) [18, 19], Field Programmable
Gate Arrays (FPGAs) [20, 21] and Application Specific Integrated Circuits (ASICs) [22, 23]. Such systems not
only increase the performance of the video application by many folds, they also reduce the power considerably,
thus increasing the throughput-per-watt ratio. Unfortunately, current Compute Aided Design (CAD) tools for
custom video system hardware design and implementations do not offer low time-to-market. In addition, such
designs are inflexible and require major debugging effort, compared to the software version of the video
processing systems. To exploit the advantages offered by both software and hardware based designs, custom
hardware accelerators are designed for high complexity functions of the software and are used in conjunction
with the software [24, 25]. These accelerators can be implemented via FPGAs, and they process data in
conjunction with software programmable cores. This increases the throughput of the video application while
still maintaining the flexibility offered by the software solutions. Current industrial trends point towards a joint
future of software and hardware implementation to offer both flexibility and performance, like Intel’s
acquisition of Altera and the release of a chip (Intel Atom E600C) containing Intel’s x86 core with Altera’s
FPGA. An additional step in the same direction is to use reconfigurable fabric for implementing different types
of hardware accelerators of the applications, in a time multiplexed manner [26, 27]. However, the complexity
of the design increases accordingly.

1.2 Video Processing Fundamentals

In this section, we briefly discuss the video processing basics. Further analysis on video processing can be
found in Section 2.1. A video consists of concatenated, temporally captured images or frames of the scene under
consideration. A video frame of width w and height /4 consists of wx# pixels (or addresses), and each pixels
stores a sample (the data used for displaying) of the frame. Usually for display, a video frame sample can be
represented in 8-bits or up to 24-bits. Video algorithms perform either pixel-wise or block-based processing on
samples of the frames. Pixel-wise processing considers a single pixel at a time and may process this pixel using
information from the neighboring pixels (exploiting spatial correlation), or, using the same pixel in the previous
frames called the collocated pixel (exploiting temporal correlation). Block-based processing considers a group
of pixels at a single time and employs the same principles of spatial and temporal correlation.

Video processing can either be performed:

1. Online (or real-time), by accessing video samples directly from video cameras, or after decoding and
decrypting the video packets received via wired or wireless links. These applications are also termed as
streaming applications. In this situation, both the video processing algorithm and the system’s
architecture should be capable of handling the throughput requirement (i.e., FPS) in real-time. Hence,
such systems may require high compute power.
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2. Offline, by reading a video file from the disk. Here, the throughput requirement may or may not be
imposed. However, a highly efficient system both in computation- and power-domains is still desirable
as it will not only increase the user satisfaction, but will also lower the costs. For example, as of statistics
from December 2014, YouTube receives 300 hours of videos per minute and a faster upload and process
time at YouTube servers is desirable. However, about 4 billion videos are viewed per day via YouTube
[28], and the end-users must be provided the data with high enough throughput to increase their viewing
experience.

In both cases, the video frames are usually first stored in the external memory (DRAM) and parts of the
frame are brought to the on-chip memory (generally implemented as caches or scratchpads using SRAM
technology) for processing. This is because external memory can be large (GBits) while on-chip memories are
usually small (few MBits). However, note that the external and on-chip memories do not need to be
DRAM/SRAM, as they can also be replaced with Non-Volatile Memories (NVM) [29, 30]. The data transfer
from the external to the on-chip memory depends upon the bandwidth supported by the external memory device.
The on-chip computing devices (e.g., a multi/many-core system, ASIC or FPGA) reads the data from the on-
chip memory, processes it and transmits it back to the external memory.

1.2.1 Video Compression

One of the major video application is video compression (encoding, or just, coding) and decompression
(decoding). As shown in Figure 1-1 (b), more than 50% of data over the internet and wireless channels is
compressed video. This suggests that a video encoder (at the transmission side) and video decoder (at the
receiver side) are involved in video communication. For real-time, mobile implementation of video
encoder/decoder (jointly called CODEC) systems, different aspects of the underlying system must be
considered. For example, the throughput requirements should be reasonable, the compute power required to
sustain the throughput must be available and the algorithms and architecture of the video compression system
must not drain the battery at a high rate.

Historically, when the processing power of

compute nodes was low (see Figure 1-2), the IS0-MPEG L) MPEG-1 MPEG-4
throughput demands were also comparatively @

lower. In Figure 1-3, the developmental e & SeE NEES2 LIRS Bt
history of video encoders is shown. The most ﬁ

popular video encoding standards were ITUT £ H.261 H.263

released by ISO-Moving Pictures Expert 19|90 1993 1995 19|96 1999 2003 2013
Group (ISO-MPEG) and International

Telecommunication Unit (ITU), and their joint Figure 1-3: Video CODEC design history

effort via Joint Collaborative Team on Video

Coding (JCT-VC) [31]. As seen from the figure, numerous video encoding standards were developed,
considering the throughput demands (i.e., frame resolution and FPS) of that era. However, as the resolution of
display devices increased and the power consumed by these devices decreased, the video resolution and FPS
requirements have been steadily increasing. That is, from QCIF video frames (176%144 pixels) at 30 FPS, now
we are witnessing demands of 4K video frames (3840x2160) at more than 60 FPS. This is also supported by
the increased processing capabilities offered by the new fabrication technologies. Therefore, every new
generation of video CODECs incorporate new tools and new video processing modules, to enable better
compression, in order to consume approximately the same channel bandwidth (or bit-rate) for increased
throughput requirements. This has steadily led to increase in the computational complexity and power
consumption of these video CODECs.
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In the past decade, the current industry standard H.264/AVC [32], and next generation CODEC tipped to
overtake H.264/AVC, High Efficiency Video Coding (HEVC, also sometimes called H.265) [7] have emerged
as the most prominent video CODECs. These CODECs comprehensively outperform other parallel video coding
efforts (like Google’s VP8 and VP9, Daala) [33]. Though H.264/AVC is almost universally supported by device
vendors, both in software and hardware, HEVC is steadily finding its market. Both these CODECs use block-
based frame processing and exploit sample redundancies at both spatial and temporal granularity (details in
Section 2.2) for compression purpose. These video CODECs employ Predictive Video Coding (PVC)
algorithms at the encoder side and the decoder is a slave of encoder, i.e., the decoder follows every command
of the encoder. For minimal utilization of bandwidth, the encoder searches for the best possible way to compress
the video streams. This means the encoder is a high complexity device while decoder has a relatively low
complexity. This makes sense because the number of videos downloaded/played is more than videos uploaded
and small decoders (like tablets and smartphones) can take advantage of a lower complexity decoder.

A new paradigm for video coding has emerged which utilizes the principles of distributed source coding and
is termed as Distributed Video Coding (DVC) [34]. Here, the decoder exploits the correlation between encoded
samples to reproduce missing (unprocessed and not transmitted) encoding samples. Such schemes are helpful
in case of constraint video encoder, where the encoding pressure can be relaxed to save power at the encoder.
To combine the advantage of PVC and DVC, Hybrid-DVC (HDVC) is also proposed [35]. More information
about these paradigms will follow in Section 2.2.

1.3 Video Systems Design Complexity

Advancements in fabrication technologies are steadily increasing the number of transistors per chip. With
reducing area of the cores as shown in Figure 1-4 [36], tens of
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and ADC developments.
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increasing throughput requirements with roughly the same video quality. Further, the increasing trend of 3D
videos acquisition and display has also increased the complexity of video processing systems, as in this case,
more than one camera is used to capture a scene. The increased resolution and FPS supportable by video cameras
and displays put enormous pressure on the real-time video encoding system and introduce design complexity
challenges to the designer. Examples are super-slow motion videos, captured at high resolution. Some of these
challenges posed by the next generation multimedia systems are given in Figure 1-6. Similarly, new video
processing algorithms are much complex than their predecessors. For example, HEVC is ~2.65% more complex
than H.264/AVC in order to provide ~35% more compression compared to H.264/AVC [38]. For HEVC, the
memory access requirements are more than 2x compared to H.264/AVC [39]. The power demands of these
applications have also increased owing to fast processing requirements and increased memory accesses.
Additionally, the fabrication technology scaling introduces numerous additional challenges for the system
designer, some of which are detailed in the next sections.
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1.3.1 The Dark Silicon Problem

For new fabrication technologies, the dissipated power is not decreasing at the same rate as area (as seen in
Figure 1-4) due to the failure of Dennard’s scaling [40]. Dennard’s scaling suggested that the power density
would approximately remain constant even if the size of the transistors is reduced, i.e., power and area will
reduce at the same rate to keep the ratio of power to area almost
constant. However, designers are facing a growing number of
challenges to keep up with the voltage scaling to have constant
electric field for constant power density and reliability [37].
Moreover, Dennard’s scaling assumes increased channel
doping to enable shorter channels (for appropriate threshold
voltages). On the contrary, this causes an increase in the
leakage current. Since Dennard’s predictions are no longer

Power Density
[Watt/mm?]
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valid, therefore, the power density (i.e., power per unit area) is Figure 1-5: Power density for different fabrication
increasing with new fabrication technologies, as shown in technologies [36]

Figure 1-5 [36]. Hence, the temperature of the chip might be

elevated to a level which may not be sustainable by the Silicon and the designed cooling solution. Thus,
advanced cooling mechanisms maybe required to bring down the temperature within safe limits, or, the
transistors of the chip must be turned ON and OFF in an adaptive manner. In other words, not all of the chip’s
transistors should be kept ON at maximum capacity, at all the times [8]. This underutilization of the chip’s real-
estate is generally referred to as Dark Silicon, which refers to the inefficient consumption of on-chip resources.
Therefore, high throughput applications, like video processing, may not be able to meet their real-time
throughput constraints if implications of Dark Silicon are not considered. Even a solution designed for a
particular system may not be directly applicable to other systems, or, for the same system if there are parallel
running workloads, or, for the applications exhibiting high workload variations.

Moreover, every chip is also assigned a Thermal Design Power (TDP) [41], which is the maximum power
that can be pumped into the chip. More TDP means the cores can run faster and process their assigned workloads
quicker. TDP is limited by the physics of the device and the cooling mechanism. In addition, every core is also
assigned a TDP. This suggest that video applications cannot arbitrarily run faster and must also consider the
parallel running applications, as the TDP budget is divided among all parallel applications.

1.3.2 SRAM Aging

Some multimedia systems are employed for long durations, e.g., video processing servers like YouTube
using Google File System (GFS) [42], security cameras to provide live streams, space missions. Moreover,
video processing algorithms are generally memory intensive and require large on-chip buffers in case a high
performance is desired. However, such systems have a service-lifetime after which they no longer functional
reliably. One of the reliability concerns for modern systems is the SRAM aging, whereby the sensitivity of the
SRAM cells to the noise increases, allowing for increased rate of spurious bit-flips. This is also a direct
implication of elevated temperatures of the chip, where in addition to the Dark Silicon dilemma, the elevated
temperature also reduces the reliability of the system. Phenomenon such as Bias Temperature Instability (BTI)
become more prominent in the new fabrication technologies.

Negative Bias Temperature Instability (NBTI) is one of the foremost reliability concern for SRAM memories
[43]. NBTI-induced stress on the constituent SRAM transistors results in a higher aging rate and increased read
errors. It reduces the Static Noise Margin (SNM) of SRAM cells and thus, the impact of noise increases, which
means that the maximum supportable frequency of the system decreases. For video processing systems,
mechanisms must be devised to reduce either the impact of NBTI or eliminate conditions that increase NBTI.
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Figure 1-6: Video system design challenges addressed in this work. Here, Acc: Accelerator, Arch: Architecture, Pow: Power, Req:
Requirement, Thrpt: Throughput, Wrkld: Workload

More information about NBTI and its characteristics will be detailed in Section 2.3.2.

1.4 Design Challenges for Video Systems

The video system design challenges that are addressed in this Ph.D. thesis are outlined in Figure 1-6. These
challenges arise due to the throughput requirements melding with the problems initiated by new fabrication
technologies. The major design challenge is to maximize the throughput-per-watt metric. For this purpose, both
hardware (architectural) and software (algorithmic) layers of a video system needs to be designed while
considering the above mention paradigms, like Dark Silicon and NBTI-induced aging. In short, the design of
architectural and algorithmic layers of video systems must result in a video system consuming low
energy/power, have high throughput and can be reliably operated. These challenges can be classified under the
power-efficiency umbrella which can be summarized as:

e Either the power consumption of the system is minimized for meeting a set throughput constraint, or,
e The throughput of the system is maximized under a fixed power budget.

One of the major challenges to address for such video processing systems is to reduce their complexity such
that real-time, online operations of these video systems can be carried out. This necessitates addressing the
throughput requirements and designing processing algorithms with minimal overhead. To maximally achieve
the complexity reduction potential, these algorithms need to leverage the application knowledge. Further, if the
content properties are analyzed (either online or offline), additional complexity reduction potential can be can
be achieved. The challenge remains how to determine these properties and accordingly tune the system
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parameters to increase system’s performance. Some of these design challenges are discussed below.

Parallelization and Power Budgeting: Almost every complex video processing algorithm allows for
parallel processing, to exploit the increasing number of cores on the chip. The challenge is to design appropriate
parallelization schemes, to utilize the available number of cores and their characteristics (e.g., maximum
frequency) such that the throughput-per-watt metric is maximized. For systems employing many-cores, it is
possible that the workload of the cores differ and (abruptly) vary at runtime. Thus, an additional challenge is to
balance the workload among the cores, in order to maximally utilize the available hardware and thus, increase
the throughput. Further, the processing jobs must be appropriately packed and scheduled on these cores. In
addition, for multiple, multithreaded video applications (like multi-casting scenarios), the on-chip resources
(i.e., the number of cores and the TDP budget) must be efficiently distributed among the competing applications.
Otherwise, some applications might lose performance and miss their deadlines. In case the throughput demands
cannot be met due to constrained video systems, the video processing workload can be offloaded to a high-end
server. To efficiently do so, system parameters (like maximum throughput of the video processing system,
energy spent in communication etc.) must be considered.

Achieving Power- and Computational-Efficiency: The goal of a video system is to be power-efficient.
Thus, for a many-core system, the voltage-frequency settings of the cores must not be free variables, rather,
they must be dependent upon the throughput. One way to achieve power efficiency is to utilize the dark/gray
physical areas of the chip by implementing customized logic (like high throughput accelerators) to offload
workload from the cores. Such a design needs careful calibration, and the accelerator must be scheduled among
competing applications depending upon the processing requirements of the cores and the throughput
requirements of the threads/applications running on these cores. A failure to do so may result in unfair
accelerator distribution and deadline misses. In addition, parts of the systems can be adaptively power-gated to
save power. However, the power-gating should not hurt the performance of the system because components of
the system require a wake-up (or warm-up) time before they can be used again after gating.

Memory Subsystem Design: An intelligent memory subsystem uses the external and on-chip memory
synergistically such that the accesses to the external memory are reduced and high power-efficiency is achieved.
This subsystem can also employ hybrid memories (combining volatile memories like SRAM with NVMs) and
efficiently exploit advantages of different memory technologies, in order to reduce the power consumption.
Further, the on-chip SRAM systems will age and reduce the SNM, and the challenge is to design the SRAM
subsystem in a manner to lessen the aging rate.

The above mentioned challenges can be classified into different video system layers. The data layer is
responsible for handling the input to the video system. Software layer corresponds to the code maintained by
the system designer, OS/Kernel, and it handles the complexity of the video system software, parallelization and
its data structures. The hardware layer corresponds to the system architecture like memory, Network on Chips
(NoCs) and processors. Amalgamation of software and hardware layer relates to hardware accelerators, GPUs
etc., whereby the software and hardware share information and require a co-design.

Summarizing, the above mentioned challenges can be mapped to the software and hardware layers of the
multimedia systems as given below.

1.4.1 Software layer Challenges

The system designer must address the following challenges at the software layer:

e Selecting the appropriate number of parallel computing nodes/cores to use on possibly heterogeneous
systems, for best output video quality and maximum throughput-per-watt.
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e Distributing the TDP among applications (power budgeting) for fulfilling the throughput requirements
of multiple, multithreaded video applications.

e Runtime workload balancing of parallelized video applications, for maximum utilization of available
resources.

e Video processing algorithmic enhancements by exploiting application-specific properties, to reduce the
computational complexity of the systems.

e Adaptive computation offloading mechanisms to offload workload from the constraint devices.

1.4.2 Hardware Layer Challenges

Following challenges need to be addressed at the hardware layer:

e Appropriate voltage-frequency settings of the cores to maximize the throughput-per-watt metric at
insignificant output video quality degradation.

e Power efficient application/thread scheduling, on the competing cores and the shared devices like
hardware accelerators.

e Efficient hardware accelerator integration with the multi- or many-core system.
e Power efficient designs of accelerators and the memory subsystem.
e SRAM memory design with aging rate reduction, for long-term video system deployment.

1.5 Limitations of State-of-the-Art

The state-of-the-art techniques for increasing the computational/power efficiency of general and video
processing applications will be discussed in detail in Chapter 2. Here, a brief synopsis of their limitations is
presented to the reader for quick reference.

Most of the state-of-the-art video system design approaches do not exploit the co-design space of software
and hardware. Both software and hardware layers are developed orthogonal to each other, and are optimized
irrespective of the other’s state. These schemes do have an advantage of high applicability and portability,
because the designer is only concerned with optimization of a single layer. Moreover, such approaches may
reduce the efficiency potential of the video system, and fully exploiting this co-design space might lead to much
better power efficiency.

At the software layer, mostly, complexity reduction approaches are proposed which do not consider the
underlying hardware properties. At the hardware layer, different architectural solutions are given. Special
purpose hardware like VLIW processors, Digital Signal Processors (DSPs) and Graphics Processing Units
(GPUs) are proposed, which can be programmed by the designer. Usually, these processors are power hungry.
Customized hardware (ASICs and FPGAs) do present an opportunity for high performance under low power
consumption. Typically, these designs ignore throughput adaptation mechanisms or software level control, and
do not consider the application knowledge. The joint scheduling of cores and hardware accelerators ignores the
throughput demands of the applications under consideration. Further, an important aspect of a video system’s
power-efficiency is runtime workload balancing among possibly heterogeneous compute nodes.

Further, state-of-the-art video systems generally do not consider the implications of Dark Silicon. Little
consideration is given to application-specific optimizations, which reduces the power saving potential of the
applications. Ignoring the abrupt workload variations of the application(s), or, threads of the application(s),
reduces the power-efficiency potential even further. Generally, only TDP budgeting or assignment of cores is
presented, and workload balancing do not consider the hardware platform properties and power awareness of
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the system.

Moreover, the aging characteristics of video systems (specifically its memory subsystem) are usually not
considered. General SRAM memory aging reduction involves high power overhead, multiple memory
read/writes, inefficient aging reduction techniques and custom SRAM memory designs. In addition, these
techniques are generally not applicable to on-chip scratchpad memories (memories in control of the
programmer).

Summarizing, the complete video system design (both its software and hardware layers) is usually not
entertained. The state-of-the-art limits to either one of these layers and does not address the challenges imposed
by new fabrication technologies. If the software and hardware layers are tuned synergistically, a larger potential
of power-efficiency is attainable, because the designer can employ the application-specific optimization.

1.6 Thesis Contributions

This Ph.D. thesis contributes to the design of a video system, by jointly accessing the co-design space of
software and hardware layers. The major contributions are outlined in Table 1-1. The key-challenge addressed
in this work is to synergistically optimize both the software and hardware layers to maximize the throughput-
per-watt matric of the video system. In this way, the software considers the maximum throughput supported by
the hardware layer, and the hardware layer feedbacks information and tunes the software layer parameters. Both
layers consider the implication of Dark Silicon and SRAM aging impact. Effectively, the power-management
and efficiency is performed at a higher abstraction level (i.e., at software layer) and power configuration knobs
are provided by the hardware layer. These knobs are tuned by the software layer selectively and objectively,
both at design-time and runtime.

In this thesis, many-core systems with hardware accelerators, and application specific custom platforms are
targeted for video applications. Different software and hardware layer optimization approaches are presented,
by developing algorithms and application-specific hardware accelerators, and connection between them is
established. For power-efficiency, the determination of appropriate number of parallel computing threads (i.e.,
parallelization) and workload balancing of a video application is proposed, which considers the hardware
platform properties and throughput demands of the application. This technique is extended to distribute the
resources on the many-core system (i.e., the compute cores and the hardware accelerators) to the parallel threads,
and also the TDP budget among the competing, multiple multithreaded video applications. In these scenarios,
the voltage-frequency levels of the cores are adjusted. The workload of parallel running applications/threads on
a many-core system is also offloaded adaptively to either a high-end server or a shared hardware accelerator.
The offloading amount and scheduling is used for both power and throughput optimization.

At the hardware layer, efficient hardware architectures for video data I/O to the system, and communication
among compute nodes is discussed. Numerous hardware accelerators are developed, especially for video coding
applications (HEVC and H.264/AVC). These accelerators target high throughput at little power consumption.
Moreover, a hybrid architecture for video scratchpad memories is presented, which uses NVM in conjunction
with the SRAM, to reduce memory subsystem power with little throughput penalty. A power-efficient approach
is also presented to reduce the aging rate of SRAM memories for long-term system deployment.

In the following, we discuss these contributions in more detail with reference to Table 1-1.
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Table 1-1: A brief summary of the contributions by this thesis

Runtime Video Application Parallelization (Section 4.1)
e  Workload Balancing via DVFS (Section 4.1.1)
e  Uniform and Non-Uniform Workload Distribution (Sections 4.2.1-4.2.2.1)
5 e  Self-Regulated Frequency Modeling (Section 4.2.5)
:f Power-Efficient Application Configuration Selection (Section 4.3)
'ﬁ e  Configuration Tuning and Mapping for HEVC (Sections 4.3.1-4.3.3)
= Resource (Number of Cores and TDP) Budgeting
g e Number of Cores and Frequency Allocation for Heterogeneous Nodes (Section 4.4)
(2 e  Resource Budgeting for Mixed Multithreaded Video Applications (Section 4.5)
Hierarchical Energy Budgeting for Computation Offloading (Section 4.6)
e Multi-Granularity Energy Budgeting (Sections 4.6.1, 4.6.2, 4.6.4)
e  Region of Interest Extraction (Section 4.6.3)
Video system 1/O and communication (Section 5.1)
e  Video Input Pipeline (VIP) (Section 5.1.2)
"y e  Custom Communication Interface (Section 5.1.4)
2 Accelerator Allocation and Scheduling (Section 5.2)
.S e  Sharing Hardware Accelerator among multiple applications/threads (Section 5.2.1)
g e  Hardware Accelerator Sharing for Multicasting (Section 5.2.2)
_E Accelerator Architectures for H.264/AVC and HEVC (Sections 5.3)
5 e  Distributed Hardware Accelerator Architecture (Section 5.3.2)
= Power-Efficient Memory Subsystem Design
e  Hybrid Memory Architecture (DRAM + SRAM + MRAM) (Section 5.4)
e  SRAM Anti-Aging Circuits (Section 5.5)

1.6.1 Contributions at the Software Layer

1.6.1.1 Power Efficient Resource Budgeting/Parallelization

Power-Efficient Parallelization: Here, we consider to minimize the power consumption of a video
application, while meeting the throughput constraints imposed due to the resolution of the video frame and FPS
requirements [44]. The goal is to minimize the number of cores used and to reduce their frequencies as much as
possible. The application’s workload and hardware characteristics are used for parallelization and selecting the
frequency of the cores on a many-core system. Also, the video frame is adaptively divided into tiles and a thread
is associated with each tile. The proposed approach tries to balance the workload of the tiles among all the
running cores. At runtime, the application-specific workload is fine-tuned using a closed-loop for further
frequency (and hence power) reduction. This approach not only accounts for the hardware, but also for the
system’s load variation (due to parallel running applications) and content-dependent complexity. This
mechanism enhances the portability of the approach, as it adjusts the number of cores and frequency of the cores
at runtime. More information about this contribution can be found in Section 4.2.

Resource-Efficiency: To reduce the number of processing nodes and balance the workload, video
processing jobs are packed into subtasks, structured in a manner that multiple subtasks can be packed and
dispatched to a single compute node, which can process these subtasks in a time multiplexed manner [45]. This
distribution process accounts for the compute capabilities of the underlying cores. A job queue is populated
with subtask threads and the available cores fetch the subtasks from this queue. Additional information can be
looked up in Section 4.2.2. Moreover, the same scheme is extended to distribute processing jobs and balance
the workload among heterogeneous computing nodes. This is further explained in Section 4.4.
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Resource- and Power-Budgeting: In addition, resource and power budgeting of multiple, multithreaded
video applications (concurrently executed on a many-core platform) is considered in this work [46]. A
hierarchical approach distributes the resources and power among the applications, depending upon their
throughput requirement, and their resource and power utilization history. At runtime, the resources and power
allocated to each application is tuned to provide fairness among the applications. For more information, reader
is directed to Section 4.5.

1.6.1.2 Power Efficient Software Design

The software layer is also used for software-guided power management. Basically, application-specific
algorithms are designed for resource-constrained device which run high complexity, deadline-conscious
applications, like HEVC and H.264/AVC [47, 38]. Here, the number of modes (or “searches”) performed for
generating the best output video quality is adapted, such that the complexity is considerably reduced with
minimal video quality degradation. If the complexity of the algorithm is reduced, one can reduce the frequency
of the hardware and thus power consumption will also reduce. Thus, application-specific properties are
leveraged to tune both complexity and power knobs, according to the design’s needs. The complexity reduction
approaches presented here are also utilized with workload tuning (see Section 1.6.2.1). More information about
complexity management can be seen in Section 4.3.

1.6.1.3 Energy Budgeting and Computational Offloading

In case the workload cannot be sustained by the computationally constrained device, offloading mechanisms
can be utilized to offload its workload to a high-end device. A typical use-case is DVC and HDVC, whereby it
is assumed that the encoder is computationally and energy-wise a constrained device, and the decoder is a high-
end device. For a single-encoder single-decoder scenario, mechanisms are proposed to determine the amount
and locality of the workload that is offloaded from the encoder to the high-end decoder [48]. A user-requested
time duration of processing the videos at the encoder, is used to determine the percentage of subtasks offloaded
to the decoder and for meeting the throughput demands of the encoder. A content-dependent, video frame based,
hierarchical energy budget distribution results in low video quality degradation under both throughput and
energy constraints, at both the encoder and decoder sides. In Section 4.6 this approach is explained in detailed.

1.6.2 Contributions at the Hardware Layer

1.6.2.1 Power Efficient Accelerator Design

Video I/0 and Communication among Heterogeneous Nodes: The hardware architecture of a low latency
design for video I/O with the processing system is presented. Similarly, a communication architecture is
presented which can be used for processing multiple subtasks of the same video based workload on custom
multi-or many-core hardware platform. The architecture is designed to support the workload distribution and
balancing decisions on this multi-/many-core paradigm. A master core assigns the workload of all the tiles to
the other secondary cores using a custom interface. The approach is functionally verified on a real FPGA, using
multiple, embedded soft-cores (i.e., programmable, compute cores on FPGA). More information is available in
Section 5.1.

Hardware Accelerator Design: Multiple hardware accelerators are proposed in this thesis, especially for
video coding applications [49, 50]. A distributed hardware accelerator design methodology is presented which
can be used in conjunction with clock-gating (or power-gating) to increase the power efficiency. These hardware
target the most computationally intensive part of HEVC and H.264/AVC, i.e., the evaluation of different modes
to determine the right compression technique. For further information, refer to Section 5.3 in this document.
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1.6.2.2 Shared hardware accelerator scheduling

Power-Efficient Shared Hardware Accelerator Allocation: The target of the approaches presented in this
domain is power-efficiency of a multi-'many-core system with shared hardware accelerator [51]. The hardware
layer provides support to the offloaded subtasks from the compute nodes to the custom hardware accelerator,
for reducing computational complexity and power consumption of the system. In addition, they provide
opportunities to exploit the Dark Silicon. Offload-scheduling mechanism are developed to minimize the system
power, by adaptively determining the subtasks assigned to the compute cores and the accelerator, while fulfilling
the throughput constraints. To maximize the throughput, the slack of each parallel running thread/application is
minimized. The approach devises an optimization problem and proposes a heuristic to find the optimal
percentage of workload offloaded to the accelerator. The goal is to maximally utilize the accelerator while
meeting the throughput demands of parallel running threads/applications. The same approach can be extended
to process multiple videos processing workloads. More information can be seen in Section 5.2.1.

Multicast H.264/AVC Encoder Design: In addition, a multicasting, fully custom, H.264/AVC video
encoder architecture is designed using area- and power-efficient building modules [20, 49]. Hardware among
different video encoders is shared (using a hardware scheduler and a re-scheduler) such that little or no penalty
is incurred. The complete system integration (along with camera input, memory access and Ethernet output) is
given in Section 5.2.2 and Appendix C.

1.6.2.3 Memory Subsystem Design

Hybrid Memory Architecture: For the proposed video system, the hybrid memory subsystem is designed
using a NVM (specifically, Magnetoresistive Random Access Memory, MRAM) in conjunction with an SRAM
[39]. The design exploits the characteristics of both NVM and SRAM such that maximum power-efficiency is
achieved at minimal or no latency-penalty. Large MRAM buffers are used for storing video frames and SRAM
FIFOs are used for input/output from these buffers. The MRAM frame buffer memory is sectored and these
sectors are normally OFF. These sectors are powered ON only in the case they are needed to be accessed. An
unsupervised learner (Self-Organizing Map, SOM) is used for predicting the next sector that needs to be
powered ON. Thus, this saves leakage power and accesses to the external memory. For further information, a
reader is referred to Section 5.4.

SRAM Anti-Aging Architecture: To reduce the aging of SRAM cells, deteriorated by NBTI-induced stress
cycles, this thesis proposes to adapt the data written to and read from the SRAM memory [52, 53]. Memory
Read Transducers (MRTs) and Memory Write Transducers (MWTs) are proposed, which adapt the video data
bits on-the-fly, read from and written to the SRAM. MRT and MWT incur minimal latency and avoid extra
read/write of the SRAM. More information about SRAM anti-aging is given in Section 5.5.

1.6.3 Open-source Tools

In order to contribute to the research and technical community and give them a head-start in designing power-
efficient video systems, several open-source tools (pertaining to the proposed novel contributions) are made
available for download. The intention is that these tools can be used for testing and extending the proposed
contributions, or, for testing new design paradigms.

Parallel HEVC Encoder: For testing the parallelization, workload balancing and resource allocation
approaches, an in-house, C++ based, multithreaded, open-source, HEVC video encoder in developed, called
ces265 [44]. This encoder is light-weight, and highly adaptable and flexible, e.g., different parallelization
settings can be introduced by the designer and different tile structures can be proposed. A thread of ces265 is
about ~13x faster than the reference software (HM-9.2). Further, the NIOS-II multi-core Altera FPGA
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implementation for this encoder is also provided. More information about this tool is available in Appendix B.

Multicast H.264/AVC VHDL: Similarly, for the multicasting solution for H.264/AVC, the complete VHDL
of the H.264/AVC encoder (functionally verified on an Altera FPGA) is provided. The VHDL is developed
using an in-house H.264/AVC encoder, which is modified to generate test vectors and simulation statistics. The
implementation includes processing a real camera input and generating Ethernet output. The MATLAB scripts
for testing and simulating the hardware designs are also provided to the video compression community. For
more information, refer to Appendix C.

SRAM Aging Analysis GUI: For video memory aging analysis and visualization, a GUI-based tool is
developed and released. Written in C#, the tool can display videos and one can implement multiple anti-aging
circuits. This tool detects memory regions under high stress, and automatically plots the stress regions,
histograms and other statistics. Refer to Appendix D for further information.

1.6.4 Thesis Association with Research Projects

This thesis contributes to the following major research projects currently carried out in Chair for Embedded
Systems (CES), Karlsruhe Institute of Technology (KIT), Germany.

SFB Transregio 89 — Invasive Computing [54]: The basic idea of Invasive computing is to provide: (a)
resource aware programming of applications by exploring their design space for possibly heterogeneous
platforms, under (b) predictable performance guaranties and, (c) modern design challenges (like Dark Silicon
and energy-efficiency). These goals are achieved by writing programming constructs, which allow an
application to “Invade” the resources, e.g., cores and memories, and then “Infect” them by copying code and
data to these resources. Once the processing tasks are finished, the application “Retreats” by releasing its
occupied resources. Invasive Computing project is itself divided into multiple subprojects:

A- Basic algorithms related to scheduling/load balancing and design-time modeling of invasive patterns.

B- Design and research of application-specific architectures, and power- and energy-efficient
Multiprocessor System on Chips (MPSoCs) within Invasive Computing platforms.

C- Runtime supports for Invasive systems, design-space exploration, code compilation and security.

D- Hardware architectures for robotics, and Invasive computing for high performance computing.

As seen, the scope of this thesis covers multiple subprojects of Invasive Computing. Several publications
originating from this thesis are in line with Invasive Computing’s methodology. Specifically, this thesis
contributes towards subprojects A (scheduling and workload balancing, modeling), B (application-specific
accelerators and enabling power-efficient designs) and C (runtime power and resource budgeting).

DFG SPP 1500 - Dependable Embedded Systems [55]: To provide reliability, dependability and aging
resilience for next generation fabrication technologies (with shrinking feature sizes), this project aims at inciting
dependability techniques for both hardware and software levels. The objective of this project is to enable cost-
effective features size reduction, which is achieved by employing efficient resiliency techniques to tackle
soft/hard errors. Moreover, dependable software/hardware design methodologies are also developed under this
project. In our lab (CES), numerous subprojects are carried out under the umbrella of SPP 1500. These projects
are Get-SURE (software level reliability approaches) [56], OTERA (test strategies for dynamically
reconfigurable architectures) [57] and VirTherm-3D (dependable hardware architectures) [58]. In general, one
of the targets of this project is device aging-modeling, aging-reduction and aging-abstractions (from circuits to
the software layer), via design- and runtime optimizations. In particular, the scope of this thesis coincides with
the VirTherm-3D project, as this thesis proposes a power-efficient architecture for reducing the NBTI-induced
aging of SRAM memories.
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1.7 Thesis Outline

This Ph.D. thesis is structured in the following manner (more information can be found in Table 1-1).

Chapter 2 provides detailed background and state-of-the-art on the challenges addressed in this work.
Essential background knowledge of video applications is provided to get the reader accustomed with the
jargon and the contributions of this work. The Dark Silicon paradigm is deliberated in conjunction with
video systems implemented on a many-core and customized hardware platforms.

Chapter 3 provides a comprehensive video system design of this work by integrating different
components of the system. The communication flow between the software and hardware layers is
discussed, and the architectural design and its assumptions are outlined. Several motivational analysis
are performed for parallelization, workload variation, and memory subsystem’s power and aging.
Chapter 4 discusses the video system software layer in detail. Power-efficient parallelization and
resource budgeting are provided for mixed multithreaded workloads. Various complexity reduction
methods are discussed. Computational offloading, specifically DVC and HDVC, are also elaborated
here.

Chapter 5 relates to the video system hardware layer. It discusses the shared hardware scheduling among
competing cores and for multicasting scenario. The hybrid memory architecture design is also given,
along with power-efficient, SRAM anti-aging circuits.

Chapter 6 provides experimental setup and discusses the experimental results for the proposed
approaches and Chapter 7 concludes the thesis with an outlook of the future extensions to this work.
The algorithms used in the proposed technical novelties are given in Appendix A. The inner workings
of the ces265 video encoder are presented in Appendix B while Appendix C discussed the HDL of
proposed multicasting H.264/AVC video encoder. Appendix D is related to the SRAM aging analysis
tool.






Chapter 2  Preliminaries and State-of-the-Art

This chapter provides details regarding the basics of video processing in general, while specifically targeting
the video coding applications. Fundamentals of HEVC and H.264/AVC video encoders are followed by their
associated challenges while designing computationally-efficient video processing systems. Modern
technological challenges that are addressed while designing such systems are also discussed. Afterwards, the
state-of-the-art approaches to meet these design challenges are given, with details targeting video processing
system’s software and hardware layers.

2.1 Video Processing Overview

As discussed in Section 1.2, the computational complexity of video processing depends upon the type of the
algorithm, along with the video frame dimensions and the FPS requirements (given by f,). From FPS
requirements, the maximum time that can be spent on processing a frame is given by #5»=1/f,. A general metric
to present the throughput requirements is given by wxhxf,, which denotes the number of pixels that must be
processed in one second, for a frame of size wx/ pixels. However, most video algorithms process a block of
pixels, i.e., all the pixels within the block correspond to a particular computational mode. An example block
division for a video frame is shown in Figure 2-1. Generally, the video is processed online or offline, and a
video frame is divided into blocks of size b,*b;. These video frames are stored in the external memory due to
the size of the video frame. A block (or a group of blocks) is brought from the external memory to the on-chip
memory for processing. Once processed, the output of the processed block is concatenated to other blocks and
written to the output.

Figure 2-1 presents an example video processing system, with pre- and post-processing modules. As an
example, an on-line gaming scenario can be considered. The application reads the data (possibly compressed
video) from the gaming server, decodes it and then applies different image enhancement techniques before
finally forwarding it to the main processing engine. The processing engine also uses data on the local disk and
video content captured using the camera(s) at the user’s end for processing. Afterwards, this data is displayed
on the display-device, using post-processing filters like light blooming, interpolation etc. Further, the video
formed at the user’s end is also encoded and encrypted, and finally sent back to the gaming server. Note that
pre- and post-processing modules themselves can be separate video processing systems, employing the same
principles as given in this figure.
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Figure 2-1: Basic video processing system. The frame is divided into blocks and logically stored in the external memory as shown in
the figure. A block of size bwxbx is processed at a time
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For block-based video processing, the throughput requirement can be written as:

w X h

) bw % bh

xf, (2-1)

=n, X
sec frm V4

Here, ny.. presents the number of blocks that must be processed per second, and 7y is the number of blocks
within a frame. As noted, a larger n.. corresponds to a more computational and power requirements.

A video sample can be stored in multiple formats. Usually, a sample is presented as an amalgamation of
three colors, red (R), green (G) and blue (B). This color space format is termed as RGB format. If each color
sample is presented by 8-bits, then a video sample is stored as a 24-bit value. Usually, R, G and B “planes” of
the frame are stored separately. Therefore, the number of addresses (or pixels) is three times more than expected.
Therefore, the size of the frame can be presented in number of bits by, by:

b,,=wxhx3xbits_per_sample (2-2)

Usually, the RGB color format carries a lot of redundancy and burdens the storage/communication. The
redundancy can be removed by transforming RGB to different color spaces while still presenting visually
distinguishable features to the human user. For example, a large number of video algorithms also work with the
YCbCr format (also sometimes called as YUV format), where Y presents the luminance component of the
sample, and Cb and Cr collectively determine the chrominance of the sample. YCbCr 4:4:4 format means that
for every luminance pixel, there are two chrominance pixels, whereas YCbCr 4:2:0 format means that the two
chrominance pixels are associated with 4 luminance pixels. Hence, both the chrominance planes are
downsampled by 2, in horizontal and vertical directions. This still results in high visual quality because the
human eye is much more susceptible to the luminance component than the chrominance components. For
YCbCr 4:2:0 case, the size of the frame can be written as:

b, =wxhx(1+0.25+0.25)xbits_per_sample (2-3)

frm

Figure 2-2 illustrates the baseline memory architecture usually deployed in a real-time camera-based
image/video processing system. The camera captures videos in real time at a certain frame acquisition rate in
terms of frames per second (typical values are 30, 60 etc.). The raw data is usually preprocessed via a Video
Input Pipeline (VIP). The streaming data,

containing YCbCr 4:2:0 samples, is [ Vip | Streaming YChr 4:2:0 FIFO + Video Memory
_ _ ) ’ Shift Reg. [M-bit data word|
converted into words of size > 8 bits using a Data valid W=
. . . . . emory
combination of a FIFO and a shift register. i | Frame
. . AGU |Write address Memory 2
Each frame is stored in a frame memory —
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store multiple video frames, and support Pipeline Frame start address request

double- or triple-buffering. Frames are
Figure 2-2: Video memory management system for storing raw video

written to these frame memory partitions ) )
samples in the video memory

using Write Address Generating Unit (AGU)

and frames are read via Read AGU. The application request a new frame once it has processed the previous
frame. Frame drop mechanism (i.e., previously stored frames are overwritten, although they are not processed)
is also supported, in case the video processing application has high complex, or, the underlying hardware is
constrained and unable support the required frame-rate. Frame drops can also occur if the output of the video
system is stalled (e.g., due to high congestion and packet loss in wired/wireless output scenarios, the output disk
is full).
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Video processing algorithms basically employ two different types of frame processing algorithms.

1- Intra frame processing, where the spatial neighborhood of the pixel (or block) under process is used for
computations. That is, the same frame is used for processing the current pixel/block.

2- Inter frame processing, where the temporal neighborhood of the pixel (or block) under process is used
for computations. That is, the frame(s) processed in the past are used in calculations involving the current
pixels/block.

The spatial and temporal correlations are used for multiple purposes, e.g., noise filtering, motion tracking.
Mostly, the spatial neighbors are not highly correlated with the current pixel or block, therefore, the video output
quality is not that high for Intra frame processing, as compared to Inter frame processing. However, the
computational requirement of Inter frame processing is much higher as a large amount of data transfer between
external and on-chip memory will occur. It will not only increase the data processing pressure but also the power
overhead. A larger complexity corresponds to searching for the best mode of computations and hence increases
the output video quality. The output video quality can be compared against an ideal output using Peak Signal to
Noise Ratio (PSNR), and Bjentegaard Delta Peak Signal to Noise Ratio (BD-PSNR) or Bit-Rate (BD-RATE)
[59]. This will become clear when we discuss video coding overview in Section 2.2.

Generally, small parts of the video processing algorithm’s code (called kernels) take a large portion of timing
complexity and power. In order to reduce the computational complexity, these kernels are optimized by
exploiting past-predicts-future paradigms and by tuning the complexity knobs. For example, the number of
modes searched for attaining the best mode can be reduced, which increases the throughput-per-watt metric, but
may reduce the output video quality. These kernels can also be implemented as custom hardware accelerators.

2.2 Video Coding Overview

This section elaborates video coding algorithms that employ the principles mentioned in Section 2.1. More
specifically, this section targets H.264/AVC [32] and HEVC [7] video encoders. The working principles of a
PVC video encoder is shown in Figure 2-3. An original block (of size b,xb;, with samples s) is brought from
the external memory, and is tested via both Intra and Inter modes. Afterwards, the best mode is forwarded for
processing using the mode decision module. The purpose of both Intra and Inter prediction modes at the encoder
is to generate a resembling representation of the original block under test, called prediction (with samples s°),
using the reconstructed video frame samples (frames generated at the decoder). The generation of prediction
either uses the spatially neighboring pixels (Intra frame processing) or temporally neighboring pixels (Inter
frame processing). Thus, if the quality of prediction (its resemblance with the original block) is high, the residual
block, i.e., the difference between the original and the prediction, has low pixel energy (samples with low
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© 5
S o .
= 3 Predicted Entropy
* .
Inter Block Coding
_Locally Decoded
I -~ Residual Block
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Figure 2-3: Basic modules of video encoder. The gray boxes are used for encoding purposes and the orange boxes denote the local
decoder modules used inside the encoder.
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Figure 2-4: Video quality comparison for Figure 2-5: Video sequence “RaceHorses” with overlaid PU structure after HEVC
HEVC and H.264/AVC processing, with a CTU of 64x64

values). The quality of prediction is usually tested using the Sum of Absolute Differences (SAD) metric:

bh—1bw-1

SAD = 3 3 |s(x. ) = s '(x, ») (2-4)

y=0 x=0

Here, (x, y) is the pixel location within the original and predicted blocks. It is evident that, if the number of
predictions that are searched and tested for the best residual, is high (i.e., a more complex encoder), the pixel
energy is lower and a lower SAD value is achieved. Afterwards, transform of residue and its quantization takes
place, before finally, the bit-stream generation (i.e., the entropy coding module) compresses the residual block
and forms a bit-stream which is sent to the video decoder. The size of the bit-stream is proportional to the pixel
energy in the residual block, because more energy in the residual block will increase the size of the bit-stream.

This bit-stream consists of the transformed and quantized residue, along with the prediction mode. The
decoder can reverse the process, by generating the (approximated) transformed and quantized residual block
from the bit-stream, by (a) inverse quantizing the block, (b) inverse transforming the block, and finally (c)
adding the prediction to generate a (lossy or lossless) representation of the original block. A version of the
decoder is also locally implemented at the encoder, because frame processing requires previously encoded
frames which will be available at the decoder for prediction generation.

In addition to video encoding/decoding algorithms (which attracts high attention from research community),
video input and output pipelines are also critical design steps. Video input pipeline involves color-space
conversion, deinterlacing, downsampling etc. More on this is covered in Section 5.1.2. Video output pipeline
usually incorporates noise reduction algorithms, color-space conversion and content-enhancement (like increase
the sharpness, correcting brightness etc.).

2.2.1 H.264/AVC and HEVC

H.264/AVC is the current video compression industry standard developed by JCT-VC [32, 60]. Here, a video
frame is divided into blocks of 16x16 pixels, called Macroblocks (MBs), and each MB is treated as a separate
entity for processing. A block is tested with Intra prediction modes using angular directions, and Inter prediction
via block matching (also called Motion Estimation, ME) [61, 62]. On the other hand, due to the trend of
increasing video resolutions and frame rates (e.g. 8K Ultra HD, 7680x4320 pixels, at 120 fps), JCT-VC has
recently developed the next generation High Efficiency Video Coding (HEVC) standard. HEVC aims at
increasing the compression efficiency by 50% compared to the H.264/AVC, however, it comes at the cost of
significantly high computational workload at the encoder side. Our experiments with H.264/AVC and HEVC
reference software denote that HEVC is ~2.2x more complex than H.264/AVC. From Figure 2-4, we notice that
the bit-rate of the video encoded via HEVC is considerably lower than H.264/AVC, for the same video quality
(PSNR). These curves are also called Rate-Distortion (RD) curves. On the other hand, HEVC time consumption
is substantially higher.
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Compared to H.264/AVC, HEVC brings two major innovations [7, 63]. Firstly, unlike the concept of MB of
its predecessor coding standard H.264/AVC, the HEVC introduces the concept of the Coding Tree Unit (CTU)
as a coding structure; see Figure 2-5. A CTU is a square block of size 16x16, 32x32 or 64x64. The CTU is
recursively sub-divided into multiple Coding Units (CUs) and Prediction Units (PUs). Each PU serves as an
independent, basic entity for compression carrying individual header data. Secondly, each PU may be predicted
using one out of many standard-defined prediction modes.

2.2.1.1 Intra-Prediction Modes

H.264/AVC and HEVC Intra compression modes generate the prediction pixels using the spatial neighboring
blocks. This is because spatially, the texture of the video samples is expected to continue from the surrounding
blocks into the original block. However, the proper direction of texture flow must be estimated with high
probability for best representation of the original block via the prediction block and therefore resulting in a
residual block with low pixel energy. As shown in Figure 2-6 (a, b), both H.264/AVC and HEVC employ
different spatial directional (or angular) modes to determine the best texture flow direction. The encoders
employ a brute-force search algorithm to get the best prediction mode. The choice of the best prediction mode
is usually the mode which corresponds to the lowest SAD (Equation (2-4)). The SAD value is computed between
the current block and the prediction block generated by the reconstructed video samples. Thus, this means that
processing video blocks cannot be pipelined because processing the current block requires the output of
processing the spatial neighboring blocks.

Table 2-1 provides a comparison of Intra prediction modes for both HEVC and H.264/AVC. It is noteworthy
that the total number of prediction modes for the HEVC is significantly higher compared to that in the
H.264/AVC. Furthermore, the selection of
Rate-Distortion (RD)-wise best PU size and Table 2-1: Comparing HEVC Intra prediction modes for 64x64 CTU

prediction mode is determined by a RD with the H.264/AVC Intra modes for a 64x64 image region

Optimization (RDO) process. Therefore, due to T Total Intra Angular Modes fung
- o Prediction Size | EVCI H.265 (64x64) | H.264/AVC (16x16
the recursive nature of best PU size selection e ” ( ) = NA( )
and RDO process, the total number of mode 32x32 35 NA
decisions in HEVC (computed using Equation 13;1;6 gg 3
(2-5) for a given CTU of size b,xb=64%64) is 4x4 19 9
TOTAL MODES w = 7808 16x(16%9+4x9+4) = 2944

~2.65x more than that in H.264/AVC. nuug
denotes to the ordered set of number of angular
modes for a particular PU size (see column 2 of Table 2-1).
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Figure 2-6: (a) H.264/AVC Intra angular modes, (b) HEVC Intra angular Figure 2-7: HEVC Inter modes.

modes.
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2.2.1.2 HEVC Inter-Prediction Modes

Similarly, for generating the Inter predictions, both H.264/AVC and HEVC encoders search for a similar
block in the previously encoded frames (called reference frames) using ME. In HEVC, ME is repeated for every
PU as shown in Figure 2-7. This search is pixel-wise and uses the SAD metric. The ME process is shown in
Figure 2-8 along with the hardware architecture of computing the SAD. In the Inter-encoding case, a predictor
is a block of pixels of the previous frame. Usually, only parts of reference frames, called the search window,
are tested for the best predictor. The search window is brought from the external memory to the on-chip memory,
and predictors are searched in this search
window. Search window is a rectangular (a)
region of size s,xs;,. For testing the
predictors to get the best match, ideally the
search window should be loaded into the on-
chip memory. Additionally, note that blocks
are processed in a raster-scan order, and two
neighboring blocks will have most of their
search windows overlapped [61], as shown Best Predictor Frame -1 Frame i SAD

(Reference Frame) (Current Frame)

in Figure 2-9. Thus, search window can be
reused and “prefetching” of new reference
samples can be done in parallel to the ME

Figure 2-8: Motion estimation process and SAD computation

process. Further, a larger search window /bi/ Search Window m
increases the probability of finding a ! .

] . Block | Block : ! Search Window
predictor with low SAD value (and thus m m+l i v m+l
increases the video quality). However, this .__,EL
also increases the on-chip memory required i Prefetch m+1

to store the search window, which increases ) . _

. Figure 2-9: Search window structure and prefetching
the power consumption of the system.
Additionally, the external memory accesses

also increase, resulting in higher power consumption [64, 65].

Moreover, a single reference pixel is written multiple times to the search window, depending upon the height
of the window. For example, a larger height (s;) denotes that a pixel will be written more times than having a
smaller search window height. A read factor 7ris defined which denotes the total number of times a pixel in the
reference frame is read and then stored in the search window. Typical value of this factor is between 3 and 12.
For the approach given in Figure 2-8, where the search window is shifted by b; for every new row of blocks
with size b, xby:

r,=s,/b, (2-6)

There are multiple ways to determine the best predictor. One method is to search every predictor in the search
window. This scheme employs a brute-force algorithm and results in the best predictor with the lowest SAD
value. However, this scheme is unreasonably complex and almost never employed in practice. Usually, fast
prediction search algorithms (like EPZS, TZ [66]) are employed, which result in considerably lower power
consumption and complexity with almost no video quality loss, compared to the brute-force search. In these fast
algorithms, not every possible predictor of the search window is searched (i.e., not all pixels of the search
window are utilized), rather the most probable predictors which will result in the lowest SAD values are
iteratively tested. However, this does not mean that the number of pixels “prefetched” will reduce. The number
of pixels fetched from external memory will remain the same, because the direction and pixels that will be
utilized by the ME algorithm are unknown. Moreover, if a part of the search window is not fully utilized for the
current block, it might be utilized for the next block.
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In HEVC, each CU is split into 13 PUs (see Figure 2-7) and ME is performed for these PUs. Mathematically,
the total number of block-matching iterations for a square CTU of width b,, can be given by:

log, bw-3 2

v =13x3 (27)
Our simulations show that block-matching in HEVC takes around 80% of the total encoding time. It is about
~2.2x complex as compared to H.264/AVC. Also, in video encoders, generally the block-matching takes about
60% of the total energy [67]. Moreover, there can be multiple reference frames (e.g., Bi-prediction in HEVC
and Multi-View Coding, MVC), and a block is searched in a window for each of these frames.

Most of the algorithms used in both H.264/AVC and HEVC can be extrapolated for other video processing
algorithms, as they exercise the same principles of computations and memory access. A vast majority of video
encoders use the same principles of Intra and Inter video encoding (e.g., Google’s VP8 and VP9, Microsoft’s
SMPTE, Cisco’s Thor, MJPEG). Moreover, the ME algorithm is also used in super-resolution techniques
(increasing the resolution of a video frame by concatenating multiple, temporally neighboring frames), in
temporal frame interpolations (used in HDVC and for reducing flicker), motion tracking, corner detection etc.

Further, almost all video processing algorithms have application configuration knobs, which can be tuned in
order to leverage the computational complexity and output quality. For example, the search window for motion
estimation in video coding, deniosing, frame interpolation and super-resolution algorithms can be
enlarged/contracted. The number of Intra angular modes tested for HEVC can be increased/reduced. Hence,
video processing applications provide opportunities for runtime adaptation of their workload. However, such
adaptation might result in lower output quality, e.g., loss in PSNR or precision of tracking.

2.2.2 Parallelization

Like all compute intensive video applications, H.264/AVC and HEVC standards allow for parallel
implementation. A system designer can utilize these specifications on a multi- or many-core system and exploit
the parallelism to gain computational advantages. To process a video sequence, a hierarchical approach for
video partitioning is employed. Video frames are divided into set of frames, called Group of Pictures (GOPs).
Each GOP can be processed independently of other GOPs, thus supporting GOP-level parallelization [68].
Within a GOP, video frames can also be processed in parallel on independent compute cores [69]. A frame is
divided into slices or tiles (see Figure 2-10 (a)), and each slice/tile can be processed in parallel [70, 71, 44]. As
discussed before, usually the image and video processing algorithms are block-based algorithms, where a set of
pixels in a rectangular region is considered as a basic processing entity. Each slice/tile is divided into blocks
and a single block is processed at one time (the blocks within the tile are processed sequentially). However,
Intra angular predictions and Inter predictions can be tested in parallel. An example video partition hierarchy is
shown in Figure 2-10 (b), where each of frame in the GOP is divided into ki, tiles. This figure also shows
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Figure 2-10: (a) Frame division into slices and tiles for parallel processing, (b) Video partitioning hierarchy. Here, fi: frame, ti: tile
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collocated tiles, which are the same video tiles but in adjacent frames.

Video Workload Balancing: Via parallelization, the workload of the whole application is divided into
chunks and thus, the workload corresponds to the compute complexity and energy consumption of a processing
core. That is, larger the workload, more computational complexity and energy consumption of the core is
expected. Generally, the workload of the complete application should be distributed to the cores in a manner
that the hardware utilization is maximized. Therefore, every core should ideally consume the same amount of
time in processing the jobs or subtasks assigned to that core. This will increase the throughput of the system and
also increase the throughput-per-watt metric.

Load balancing can be done via centralized or distributed approaches [72, 73], which gather statistics and
objectively distribute the subtasks among the compute cores. However, for fully distributed strategies, optimal
scheduling decision is difficult to make due to rapidly changing environment, randomness and unpredictability.
The communication delays in fully distributed strategies can also nullify a correct decision at a previous time,
as the state of the system might change rapidly after the distributed load balancing decision. Further, distributed
algorithms reduce the range of subtasks migration from one core to another, because physically far apart
resources, with highest and lightest workloads cannot be balanced in a single iteration of load balancing. Also,
the overhead of the scheme increase with the system size due to increased message passing, control logic,
scheduling algorithms etc. Further, the response of distributed strategies saturate after tens of compute nodes.
For the centralized scheme, the overhead of the assignment algorithm is large, and has a large communication
and storage overhead. This is due to the chip-wide information gathering and storage of statistics. Further,
centralized algorithms are vulnerable to faults and a complete system failure will occur if the central node
(running the subtasks assignment algorithm) fails. Thus, both centralized and distributed strategies for load
balancing not always produce optimal performance. This discussion is not only valid for video processing
systems, but also applies to any many-core system running parallel workloads.

Multicasting: Multicasting refers to information transfer to a set of predefined destination nodes. With
reference to video communication, a multicasting or multi-channel video encoder should be capable of encoding
concurrent [74, 75] video streams in parallel and generating appropriate compressed bit-streams for each of
these videos, as shown in Figure 2-11. Use  gay video input
cases of multicast video encoding include

security, entertainment, video logging etc.
Each video can have its own resolution,

texture/motion content dependent workload W @/ 4 ¥ ¥
Maximum

and throughput requirement (frames per > Power Budget | © ” | o ” | < ”

fpsi = 1/t max (a) (b)

second). This system can be implemented
using a many-core platform, or by designing Figure 2-11: (a) Multi-video capture and encoding on a many-core chip,
custom hardware solutions. In case of a (b) frame division into multiple tiles

many-core system, it is a design challenge to

efficiently distribute the cores and power among multiple, concurrently executing encoders, while fulfilling
their throughput requirements. Moreover, the load balancing approaches discussed above need to be applicable
to such paradigms. For a custom hardware solution, the multicast encoder should be area-efficient (due to
multiple encoders working in parallel) and must be able to efficiently access video data.

2.2.3 DVC and HDVC

As discussed, the high compression efficiency of H.264/AVC and HEVC has enabled a wide range of
applications under low-bandwidth constraints. These CODECs follow the Predictive Video Coding (PVC)
model, where the predictions are generated at the encoder side (using Intra angular modes or ME). PVC is
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typically well-suited for scenarios where encoding devices have high computational power, while decoders are
resource-/power-constrained devices, like mobile devices engaged in video streaming etc.

2.2.3.1 Distributed Video Coding

It is possible that the computational complexity of a video application is too high to be feasible on a system.
For example, the significantly increased computational efforts at the encoder in HEVC prohibits its use in
constrained encoded scenarios. Recently, Distributed Video Coding (DVC) has been emerged as an attractive
solution for scenarios where the encoding devices are resource-constrained and must use low-complexity
encoding (like in-field wireless video sensor nodes, small autonomous flying robots, mobile devices with low
processing capabilities, etc.), while the decoding devices have high computational power (like high-end servers)
and can execute high-complexity decoding tasks. DVC paradigm provides means to shift/offload the
computational workload from the video encoder to decoder [76, 77, 34, 78, 79, 80, 81].

A DVC encoder typically consumes only 7% of the total power consumed by a PVC H.264 encoder [82, 83,
84]. In DVC paradigm, instead of the encoder, the decoder performs the ME for interpolation, extrapolation,
and upsampling, while exploiting the inter-frame correlation in order to generate an estimate of the input video
sequence (see Figure 2-14 (a)). At the DVC decoder side, Slepian-Wolf decoder and ME with interpolation,
contribute towards 90% of the total decoding complexity.
To improve the estimation quality, the DVC decoder
demands auxiliary information from the encoder (i.e.,

® Transmission Energy
¥ Computation Energy

w
o

parity bits generated by turbo coding), which result in a
much higher transmission power compared to the PVC

Power [mW]
N
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case (see Figure 2-12). A DVC encoder may require ~4x
higher transmission energy compared to an H.264 PVC
encoder for a video sensor node [82]. More are the parity
bits, higher is the video quality at the decoder side and

higher is the transmission energy at the encoder-side. Figure 2-12: Comparing the computational and
transmission power for an ASIC-based video sensor [82]
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Due to resource constraints, the DVC encoder only
tests spatial predictions, i.e., low complexity Intra-encoding of Key-Frames (I-frames or just IF). Other video
frames between Key-Frames are called Non-Key-Frames or Wyner-Ziv frames (W-frames or WF). For W-
frames, encoder only sends the auxiliary
IF, IF, IF,

information, i.e., parity bits generated using Lo Lo L oo
turbo coding. The group of WFs and !
preceding IF is called the Group of W- ‘ | 2 ] IF: 1-Frame
frames (GOW) as shown in Figure 2-13. | Gow, | GOw, | WF: W-Frame
The number of frames in a GOW is denoted

as size of GOW The decoder reconstructs

the WFs using decoder-side ME and interpolation. The basic principle of decoder-side reconstruction is to
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Figure 2-13: Group of WF (GOW) structure showing IFs and WFs

exploit the correlation between two IFs. The decoder-side estimate of WFs is also called Side Information (SI),
which is generated by interpolating the two received IFs. This estimate is improved by requesting more parity
bits from the encoder side.

2.2.3.2 Hybrid Distributed Video Coding

DVC completely offloads the ME from the encoder to the decoder. The major drawback of DVC is lower
video quality compared to that provided by PVC. In short, DVC is beneficial in scenarios, where the encoder-
side devices are computationally constrained and have sufficient transmission power, while the decoder-side
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Figure 2-14: (a) Distributed Video Coding, DVC and (b) Hybrid Distributed Video Coding (HDVC)

devices have sufficient computational power. PVC and DVC become power-/energy-wise inefficient in
scenarios where both encoder- and decoder-side devices are resource-constrained and/or subjected to runtime
varying conditions of available energy levels and computational resources. In such scenarios, only one or neither
of encoder-/decoder-side devices has sufficient computational and/or transmission power to deliver the required
throughput and/or video quality. Examples of such scenarios are: (1) collaborative distributed video sensor
networks for smart energy-aware surveillance; (2) mobile devices on Internet of Things (IOT) — with
dynamically varying battery energy levels — communicating with each other or other power-constrained devices;
(3) heterogeneous communicating devices from different vendors with distinct energy consumption properties,
etc. Furthermore, DVC may not facilitate complete offloading in scenarios where multiple encoding devices
concurrently offload their computational workload to a single, shared decoding device [85].

To cope with the energy-related issues for video coding in such dynamic scenarios, Hybrid Distributed Video
Coding (HDVC) has emerged as an attractive solution. The architecture of HDVC system is shown in Figure
2-14 along with the DVC system for comparison. HDVC aims at combining the positive aspects of both PVC
and DVC, i.e., providing high video quality close to PVC and low computational power close to DVC. In
HDVC, the decoder-side ME complexity is relaxed at the cost of partial ME at the encoder side. The partial ME
at the encoder side results in better reconstruction of frames at the decoder side, that corresponds to a high video
quality and low energy consumption at the decoder side. However, it incurs high energy consumption at the
encoder side due to ME processing. Note that ME is the most energy consuming functional module. Better ME
at the HDVC encoder also reduces the number of parity bits and thus result in low transmission energy.
However, this depends upon the amount of ME to be performed at the encoder side. Complex motion sequences
may require more ME at the HDVC encoder side, which may not be feasible due to the unavailability of
sufficient computational and battery/energy resources at the HDVC encoder side.

In a nut-shell, offloading improves the performance if [86]:

e The throughput requirement of the video application are high and is not sustainable by the constrained
video processing device.

e The DVC/HDVC decoder is fast and results in computational/power benefit if the jobs are offloaded to
the decoder.

e A small amount of communication of auxiliary bits takes place.

e The bandwidth of the channel between the encoder and decoder is high.
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The key research challenge in the HDVC system with resource-constrained devices is to identify video frame
regions (or blocks) that need to be processed at encoder sides and regions that should be offloaded to the shared
decoder. The goal is to minimize the overall system energy while maintaining a high video quality. The
offloading decision needs to jointly account for the computation and transmission energies, encoder devices and
their compute capabilities, dynamically varying energy budgets, and throughput constraints.

2.3 Technology Challenges

Here, details about the technological challenges outlined in Section 1.3 are given.

2.3.1 Dark Silicon

Reduced transistor sizes in the modern fabrication technologies have led to new unforeseen challenges for
system designers. Though the chip designers are living up to the Moore’s Law challenge, it is expected that
most of the transistors etched on the chip will not be fully utilized due to the power-wall problem. Specifically,

the failure of Dennard’-s. Scaling has resultec.l in the 100 Esmaeil'll m Henkel'15
emergence of the Dark Silicon age, where the chip’s real- g5 T o
estate cannot be 100% utilized continuously, at full capacity. £ § 50 % %

In fact, current predictions (as shown in Figure 2-15) g E h“h.\ . 'Q".,-.'i I
suggest that only 30%-50% of the chip’s available resources ~*9 0 16 nm 11 nm 8 nm
will be bright (fully utilized) for 8nm technology, while the

rest will be kept dark (unutilized) or gray (partially utilized Figure 2-15: Dark Silicon prediction trends. Here,
or underutilized). This forced underutilization emerges from Esmaeil’11 is [8] and Henkel15 is [299].

the fact that power per unit of area is increasing

monotonously with increasing transistor density. Therefore, the temperature of the chip may reach levels which
will not be contained by the available state-of-the-art coolants and result in permanent damage of the chip. Thus,
power-efficient designs are of primary importance for modern systems.

A digital circuit consumes two types of power, static (ps«) and dynamic (pg»). The dynamic power is due to
switching the transistors ON and OFF, whereas the leakage power is a result of sub-threshold current through
the transistor’s channel and the gate leakage, when the transistor is OFF. The static power can be reduced by
lowering the supply voltage v4q. For a CMOS circuit, the dynamic power consumption can be written as:

2

Py = -C, vy - f (2-8)
Here, a is the switching activity level, ¢, is the capacitance of the circuit, v4 is the supply voltage and fis
the clock frequency of the circuit. This shows that dynamic power can be reduced by reducing the supply
voltage. However, reducing v will increase the time delay (#;) within the device, thus, the frequency must be
reduced. In fact, #; and vy, are related by the following equation:

t, o —— (2-9)

Here, vy is the threshold voltage. Therefore, we can rewrite Equation (2-8) as:

Py Vg = S (2-10)
Therefore, Dynamic Voltage Frequency Scaling (DVFS) can reduce the power of the circuit, owing to this
relationship. However, note that reducing the frequency of the circuit also reduces the throughput, and may
result in deadline misses. Moreover, as discussed above, the voltage and frequency of a processor scale together.
However, this relationship does not hold for the complete frequency range, because there is a certain threshold
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below which the voltage reduction results in unstable processor behavior [2]. Thus, only Dynamic Frequency
Scaling (DFS) can be employed in cases where voltage is lower than this value.

For video applications, there is a strict throughput constraint that must be met. Current trends in frame
resolution and FPS suggest that this throughput demand is increasing (Equation (2-1)) and hence puts pressure
on the hardware to perform. However, new fabrication technologies — with about half of the cores turned OFF
due to Dark Silicon constraints — require careful consideration of available TDP and its distribution among
multiple, multithreaded video applications competing for systems resources. Moreover, memory may consume
more than 40% of the total chip’s power [64]. This power includes access to external memory, read/write energy
consumption and leakage/standby power. The memory power consumption is especially of concern for video
applications which are memory intensive, and their memory demands continue to grow with the growing
throughput demands. Therefore, without considering the memory power, higher power-efficiency of the system
might not be achieved.

The discussion above suggests that the software and hardware must be power efficient to exercise the least
amount of power, while fulfilling the throughput requirements. This will not only address the Dark Silicon issue,
but will provide additional power to other parallel running applications. Further, the parallelization potential of
a video application must be exploited to speed up its execution. Also, hardware accelerators, running at a lower
frequency/power but generating a higher throughput than its software counterpart, can be strategically placed
on the die to reduce the chip’s temperature. Moreover, the advantages of the new memory technologies (like
MRAM) can be exploited to replace the on-chip SRAM, in order to reduce the leakage power of the memory
subsystem, and limit the access to the external memory.

2.3.2 NBTI-Induced SRAM Aging

Memory intensive video applications have proliferated into various critical domains like surveillance and
security, automotive, satellite imaging and video transmissions, sensor-based image/video processing over long
durations, etc. For these applications, reliable operation over life-time or an extended life-time is an important
system requirement. To provide fast read/write accesses, application specific architectures typically employ
dedicated SRAM-based on-chip memories (like scratchpads instead of caches) for storing data, thus saving the
extra power overhead of tags and other supporting circuitry. These on-chip memories are managed using
specialized address generation units and/or explicitly programmed to exploit applications’ attributes. However,
due to continuous technology scaling resulting in small feature sizes, high power densities (Dark Silicon
paradigm) and resulting temperatures, SRAM-based on-chip memories are subjected to various reliability issues
like transient errors (soft errors) and permanent errors (device aging).

This work considers SRAM aging due to NBTI, which has emerged as one of the most critical reliability
threats. NBTI occurs in PMOS transistors due to negative voltage at the gate (i.e., vgs = —vaa) that causes stress
and breakdown of the Si-H bond at the Si-SiO; interface resulting in interface traps. This manifests as an
increase in threshold voltage and reduction in noise margin (i.e., short-term aging) that may lead to timing
errors/delay faults and/or performance degradation at runtime. To encounter this threshold voltage increase
(more than 50mV [87]), the device frequency must be reduced by more than 20% over its lifetime. However,
due to escalating NBTI issues and cost/power/performance constraints, the degradation of the cell stability can
no longer be addressed by simply providing a design time delay margin [88]. This aging based phenomenon is
partly reversed in the so-called recovery mode (the Si-H bond is reformed in a few cases) once the stress is
removed from the PMOS gate, i.e., at v,=0. Figure 2-16 (a) provides an abstract view of this process for a
PMOS transistor. Such a situation occurs when a “one” stored in the SRAM cell is overwritten with a “zero”
and vice versa. However, 100% recovery is not possible and NBTI results in continuous degradation over years
(i.e., long-term aging), such that, the total aging throughout the lifetime depends upon the stress and recovery
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Figure 2-16: (a) PMOS transistor under NBTI aging with breaking Si-H bond at the Si-SiOz interface, (b) Stress and recovery phases
for a PMOS transistor, and (c) Standard 6-T SRAM cell.
cycles, see Figure 2-16 (b). For ease of discussion, the duty cycle (A) is defined as the percentage of a cell’s
lifetime when the stored value is “one”.

A memory composed of numerous 6T-SRAM cells is considered, where each cell is composed of two
inverters to store a bit value (see Figure 2-16 (¢)), and these inverters store complementary values at all times.
The Word Line (WL) is enabled to write a value, while the Bit Line (BL) is used to carry data to be stored in
the cell. The data is retained in the cell by turning off access transistors. To read data, WL is set high and the
BL value is retrieved. In case a “zero” or “one” value is stored in an SRAM cell, one of its PMOS transistors
will be under stress and the other in the recovery phase. Since the aging of an SRAM cell is determined by the
worst-case aging of one of the two PMOS transistors, the overall lowest aging is achieved when both PMOS
transistors are stressed by the same amount of time during the whole lifetime. That is, an SRAM cell contains
“zero” value for 50% of its lifetime and “one” value for the remaining 50% of time. This corresponds to a duty
cycle (A) of 50%. In short, SRAM aging depends upon the duty cycle of the transistors in an SRAM-cell. If the
duty-cycle is balanced, the aging rate of SRAM cell will reduce.

Note that NBTI is not the only deteriorating mechanism active in SRAM cells. Hot Carrier Injection (HCI,
which mainly degrades the NMOS transistor) is another aging mechanism which injects high energy (hot)
carriers inside the gate oxide, causing interface traps and thus introduce threshold voltage shift [89], which can
be presented by the following equation:
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In this equation, wucr and y; are aging rate dependent constants, s, is the switching activity and d.. is the
oxide thickness. This shows that a higher switching activity will increase the HCI-induced aging rate and vice
versa. On the contrary, higher switching activity will reduce NBTI. Studies like [90, 91] however, emphasize
that NBTT has a greater impact and is the dominating factor in limiting the life of a circuit.

2.4 Related Work

2.4.1 Video Systems Software

This section presents state-of-the-art schemes for addressing different challenges of a video system at the
software layer. These issues include parallelization, complexity reduction and power/resource budgeting.

2.4.1.1 Parallelization and Workload Balancing

As previously discussed, parallelization is a fundamental requisite of high complexity video applications,
which must be exploited on many-core systems, possibly having hardware accelerators and custom
logic/interfaces. The general classification of parallelization and workload mapping practices on many-core
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systems is presented in the literature [92]. However, one of the objectives of this thesis is to exploit application-
specific properties of the applications for workload mapping on a many-core system, and improving power
efficiency of the video systems system. Numerous works have been reported to enable parallel computations of
video applications. These works include parallel video coding/decoding [93, 94], tracking [95], image/face
recognition [96, 97], non-negative matrix factorization [98] etc. However, these works generally do not consider
resource management, hardware characteristics and workload balancing.

Workload Balancing: General load balancing of compute jobs among compute entities is discussed in [99,
72,73, 100]. For power-efficiency, either the load of an application can be distributed on a given platform (load
balancing [101, 102]), or, a platform can be synthesized for the given load (load driven synthesis [103, 104])
under throughput and/or power constraints. Most of the load balancing schemes consider homogeneous many-
core systems, jobs with almost equal complexity and do not consider load variation at runtime [99, 1]. For
example, [100] considers load balancing for distributed stream processing applications in wide-area
environment, under dynamic resource utilization. In [105], load balancing between mirror multimedia servers
is discussed for both centralized and distribution solutions. Ref. [99] deals with assigning each resource (core)
with equal number of subtasks, and reach an equilibrium state if no more jobs can be migrated from one core to
its physical, homogenous neighbors. However, the current architectural and physical challenges towards
homogenous many-core systems are not considered. Smaller feature sizes result in physical variability of
underlying transistors (also called process variation), which transforms into variable leakage power and
maximum frequency achievable for the homogenous cores on the same die [106]. Thus, compute cores can have
different characteristics, even though they form a homogenous many-core system. Research has focused on
combining the distribution and balancing of load, and Dynamic Voltage and Frequency Scaling (DVFS) and
Dynamic Power Management (DPM) of the underlying cores [107]. Ref. [108] determines a single clock
frequency for the entire chip for maximum efficiency, whereas [44, 3] independently determine the frequency
of each core while distributing application load. Authors in [44] target minimizing the power consumption for
a fixed deadline, while [3] tries to maximize the throughput of parallel running, multithreaded applications for
a given chip’s power budget.

Workload Balancing on Heterogeneous Nodes: Further, to increase the throughput-per-watt under modern
system design challenges, heterogeneous multi-/many-core systems are becoming increasingly popular [2, 109].
Using architectural heterogeneity, it is now possible for the designer to schedule a processing job on a computing
device which will increase the throughput-per-watt metric [110]. This way, maximum power-efficiency is
achieved. For example, ARM’s big.LITTLE architecture [111] incorporates high performance Cortex-A57 big
cores with low power Cortex-A53 LITTLE cores, in order to achieve maximum throughput-per-watt by
exploiting adaptive application mapping techniques. Thus, general load balancing methods are not applicable
in heterogeneous paradigms, having cores/compute nodes with unequal compute capabilities. Parallelization
and load balancing of H.264/AVC is carried out in [18], using heterogeneous CPU+GPU systems [19, 112],
without considering the impact of power which is considerable when GPUs are used. In [2], authors target
energy efficient workload allocation and voltage-frequency tuning of the underlying single-ISA computing
nodes. The goal is to minimize energy/power of the system. However, their approach does not consider the case
if the throughput of the application(s) is not met. In [113], authors propose to identify the program’s and cores’
characteristics and then appropriately match them for scheduling. Ref. [114] studies parallelized database on
heterogeneous, single-ISA architectures. These proposed workload balancing approaches do not consider
modern fabrication technological challenges like power budgeting, Dark Silicon etc. Moreover, it is not
generally true that the complexity of each subtask is equal. For example, ME can have considerable different
complexity for different blocks, depending upon the content properties and texture within the block [115, 67].
Further, the cache behavior of the application and the physical locality of the core (e.g., its distance from the
external memory controller) also determines the complexity of a subtasks. All these challenges must be
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addressed if an efficient workload mapping and balancing policy needs to be implemented. This is especially
true for video systems under throughput constraints.

Parallelization of Video Systems: Multiple parallelization schemes for video systems are available in the
literature. For example, a many-core based SIMD implementation of H.264/AVC is given in [116], but it does
not consider workload mapping and balancing. Using partial frame-level parallelism, a 12-core system for
parallel HEVC encoding is presented in [93]. Ref. [94] discusses an approach to parallelize H.264 on Cell
multiprocessor. In [117], a hierarchical parallelization of H.264/AVC is presented for low cost cluster of cores,
by combining multi-level parallelism. In [118], a parallel implementation on shared memory architectures for
the particle filter is given. Ref. [119] uses a parallel implementation of the non-local means algorithm on a GPU
for denoising 3D data. In [24], a hardware/software partitioning is targeted for a heterogeneous processor, for
MPEG-2 encoder. Parallel video super-resolution methods are proposed in [120, 121]. In general, all these
parallelization methods do not consider workload balancing on the many-core system, power reduction and
addressing the throughput requirements. Also, these approaches might require access to multiple video frames
(in the external memory) at a single time, increasing the latency of the system. Thus, they either increase the
power consumption of the system by needlessly increasing the core frequency beyond requirement, or reduce
the throughput and increase latency by burdening each cores with divergent workloads.

H.264/AVC parallelization and workload balancing is also discussed in the literature. Authors in [70] present
a history-based approach to dynamically allocate the number of slices per frame to balance workload among the
multiple cores. Here, each slice is mapped to a single compute core. A similar history-based scheme can be
found in [71] where the skipped video frame blocks determine the slice boundaries for parallel encoding. A
two-pass slice partitioning scheme for workload balancing of H.264/AVC is given in [122], where each frame
is pre-processed, prior to being assigned into slices. However, for these approaches, no adaptation of workload
and frequency of the cores (and thus, of power consumption) takes place.

2.4.1.2 Power-Efficient Video Processing Algorithms

A multitude of works in reducing the complexity of computationally heavy image/video applications also
exist in the literature. Basically, by sacrificing a small amount of output quality (e.g., a reduced PSNR or
accuracy of tracking, increased bit-rate), the workload of the application is curtailed to meet the throughput.

For HEVC encoding, numerous complexity reduction techniques exist in the literature [123, 124, 125, 126].
The work in [123] (basically inspired from [127, 128]) presents a gradient based fast intra mode decision for a
given PU size, and results in about 20% time savings. In [124], authors have also presented a fast PU size
selection algorithm for inter-frames (exploiting temporal correlations for frame compression, similar to open-
loop for H.264/AVC presented in [129]). A divide and conquer strategy for selecting the best Intra angular
prediction is given in [125]. First, 8 equally spaced modes (at a distance of 4 in both directions) are tested.
Afterwards, 6 best modes with a distance of 2 are tested. In the end, 2 best modes are left which are tested with
a distance of 1 to select the best mode. However, the number of modes selected for RD-cost determination is
fixed and rather large. Similarly in [126], to reduce the total number of Intra prediction modes tested, an open-
loop approach is utilized. Using the current pixels instead of reconstructed pixels, the total number of predictors
is reduced from 35 to 9. These 9 modes are used for computing the Rate-Distortion (RD) cost. In [130], the
CTU is downsampled and then texture complexity (via variance) is computed, leading to appropriate PU sizes.
Ref. [131] exploits the high correlation of Intra predictions modes with the neighboring blocks for determining
a highly probable Intra prediction mode for the current PU. An edge based Intra Prediction candidate selection
scheme is given in [132] to reduce the total number of modes tested by 73% and a time reduction from ~8% to
~32%. The 4%4 pixels in each PU are treated for determining the dominant direction and a set of 9 Intra
predictors is used for testing. However, the selection and truncation of Intra prediction modes is not adaptive.
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Similarly, numerous works exist to reduce the complexity and energy consumption of the ME engine. Schemes
that reduce the total number of operations in ME are also widely studied and employed [133, 66, 67]. For
example, in [134], authors have proposed a scheme to reduce the off-chip memory accesses for ME and gain up
to 56% memory access reduction. However, their scheme is tested for a very small search window size of 16,
which cannot be used for large resolution sequences.

Other approaches for H.264/AVC (e.g. [135, 136]) may not be efficiently applicable to new video encoders
like HEVC, due to its novel CTU structure and nature of its angular prediction modes. Moreover, these
approaches usually do not jointly consider power efficiency and workload balancing, and do not exploit the
speed-up achieved via parallel encoding on a many-core platform. Further, these approaches do not consider
the underlying platform properties (i.e., do not exploit the opportunities provided by the hardware) and the new
challenges introduced by the reduced feature sizes, while managing their workload.

In addition to video coding, there is a plethora of other video processing algorithms in diverse fields of
applications, where complexity knobs are tuned at the cost of output quality. For example, see [137, 138].
Libraries like “Open-Source Computer Vision” (OpenCV [139]), and standards like OpenVX [140], provide
numerous implementations of these video algorithms.

2.4.1.3 Energy Budgeting and Workload Offloading

A general overview of workload offloading methods can be found at [86, 141, 142]. The approach of [143]
explores tradeoff between energy consumption of mobile device and data transmission. The history-based
adaptive offloading approach in [144] aims at reducing the application processing time. However, no account
for content- and application-specific properties in general offloading methods may be energy inefficient.

To process videos for a specific time interval, a constraint mobile video device can be provided with a fixed
energy quota (in form of a battery). The device should spend this quota in a manner to increase the video quality
while meeting other computational constraints (e.g., duration for which the encoder is expected to work).

Mostly, DVC and HDVC solutions used H.264/AVC encoders for Intra-frame encoding. However, there are
works that access the feasibility of using HEVC encoders instead [145]. Prominent state-of-the-art techniques
in low-power HDVC (like [4, 35, 146]) determine the number of video blocks to be processed at the constrained
device (encoder) side in a raster scan order, use global motion models, send a low quality reference, or process
the block completely at the encoder side based upon block’s motion intensity. The experimental analysis in
Section 3.2.4 illustrate that objects in video sequences typically consist of blocks that do not occur on the raster
scan order [147]. In addition, these methods usually do not consider the processing duration and/or energy
budget associated with the encoder. Moreover, selection of the blocks with high motion intensity cannot cope
with constant camera motion and panning. Therefore, an inexpert selection of blocks in the raster scan order,
or, based on mere motion intensity may lead to inefficient energy distribution in HDVC. As a result, these state-
of-the-art techniques may quickly exhaust the available energy quotas for the ME of non-important blocks which
can be easily regenerated at the high-end server (also called decoder).

Summarizing, state-of-the-art approaches for HDVC and DVC may not be resource- and energy-efficient as
they do not exploit:

e Video content properties (like texture, motion, etc.).
e The relationship between video content properties, and the ME effort and parity bits produced.
e Spatial and temporal correlation of blocks.

Therefore, the energy quota distribution and control scheme need to perform intelligent partitioning of ME
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in HDVC by exploiting the video content properties while minimizing the overall energy.

2.4.1.4 Mitigating Dark Silicon at Software Level

The purpose of these approaches is to bind the maximum temperature or maximum power (TDP) consumed
by the system at the software level. The above mentioned software level techniques (i.e., parallelization,
complexity reduction, budgeting and offloading) implicitly address the Dark Silicon challenges. For realizing
these techniques, mainly, two distinct approaches are employed for this purpose:

e Dynamic Thermal Management (DTM), which involves adjusting the voltage-frequency or power of the
cores (DVFS [148]) and even severing the power to the compute nodes (via power gating, also called
Dynamic Power Management, DPM).

e Tasks/Thread/Workload Migration, which involves migrating the workload from one core to another, in
case the former core’s temperature becomes critical [149].

The frame-based energy management technique for real-time systems [150] exploits workload variations
and the interplay between DVFS and DPM, for a frame-based, real-time embedded application. It determines
the optimal voltage-frequency setting and power levels of the devices to minimize the system’s energy. In [151],
a trail-and-error based centralized algorithm determines the appropriate DVFS settings for the many-core
system, to enable maximum speed up under chip’s power constraint. A thread mapping methodology under the
constraints of Thermal Safe Power (TSP) is provided in [152]. Here, the authors argue that TDP is very
conservative and power more than TDP can be provided to the chip if intelligent task-mapping decisions are
made. The work in [153] aims at runtime PID-controller based mechanisms to efficiently utilize the TDP budget
in order to maximize performance of micro-architecturally heterogeneous cores synthesized with different
power and performance targets. However, [153] does not target power budgeting among multithreaded
applications with thread-level workload variations. In [154], a two-level closed loop power control scheme is
presented. Using voltage/frequency islands on a chip, the power distribution is adaptively divided to the working
processing elements. However, fine-grained power distribution and configuration selection using this scheme
are not possible, which are important for multithreaded applications with threads of highly varying workloads.
Furthermore, the closed loop control usually responds slowly, causing performance issues for applications
where the workload changes are abrupt. Single thread based power budgeting is discussed in [155], which is
not applicable to multithreaded applications. PEPON [156] also presents a two-level power budgeting scheme
to maximize performance within the allocated power cap. The scheme in [3] targets control-based chip level
and application level power budgeting, while accounting for the critical threads of the application.

Most of these scheme do not consider assigning cores to the applications, and the varying workload of the
applications at runtime, which might require readjustment of the resource allocation. Moreover, these schemes
do not target power allocation to dependent-applications or subtasks of a single application, where the critical
application or subtask will reduce the throughput of the system. These works also ignore the nature of the
underlying applications and the opportunity it might provide for increased throughput-per-watt. Further,
applications with throughput constraints must meet their deadlines (e.g., multimedia applications having soft
deadlines and mission critical applications with hard deadlines), which is usually not addressed by these works,
rather applications’ speed-up is targeted. This also poses additional challenges if the system load (e.g., due to
parallel running applications, delay in delivering Ethernet packets) may change at runtime.

In summary, most of these techniques do not exploit the opportunities provided by:

e Selecting appropriate operating modes (configuration of different variables) of the applications and Dark
Silicon.
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e Considering that the unadaptable application will utilize the cores powered-on at the nominal
frequency/voltage setting.

Collectively, the operating modes of the application and the Dark Silicon provides opportunities of having
multiple power modes [157], for instance:

e Powering-on more cores at low frequency settings to facilitate more applications or applications with
high thread-level parallelism.

e Powering-on less cores at high frequency to facilitate high instruction-/data-level parallelism.

e Choosing appropriate operating modes of the applications to enable higher throughput at the same power
budget.

Mostly, DTM only gathers system statistics. Since these techniques do not take the application-specific
characteristics into consideration, therefore, they lack power efficiency in cases of abrupt workload variations
and/or when multiple threads of different applications (especially with mixed workload characteristics) are
competing for the power budget. Hence, fine-grained power distribution and configuration selection is not
possible.

2.4.2 Video Systems Hardware

In this section, an introduction of the state-of-the-art approaches are provided, which targets design and
implementation of video system hardware architecture to address multiple challenges.

2.4.2.1 Efficient Hardware Design and Architectures

Numerous state-of-the-art approaches exist for designing compute- and power-efficient video systems. For
encoding HD videos, new methods and tools to administer the necessary data processing tasks and dependencies
of video encoders are required. For example, authors in [158] discuss an H.264/AVC Intra encoder chip
operating at 54MHz. However, it is only capable of handling a 720x480 4:2:0 video at 30 fps. Additionally, the
authors use a parallel structure for computing the modes that increases silicon area overhead. In [6], a fast mode
selection preprocessor based on spatial domain filtering is discussed. A four-stage pipeline for edge extraction
increases the latency of their design and processing one video block requires 416 cycles at a maximum possible
clock rate of 66MHz. The design in [159] presents a 1080p at 25 fps Intra encoder operating at 100MHz. It takes
about 440 cycles to compute the Intra predictions. In [160], a 4K UHD (3840%2160) resolution at 60 fps Intra
prediction architecture is proposed that replicates hardware for high throughput, and needs to execute at least at
310MHz to achieve 4K UHD while still using sub-optimal prediction selection methods. Ref. [161] presents a
low-latency 1080p at 61 fps Intra encoder architecture operating at 150MHz, but it tests the predictions in
parallel and takes about 300 cycles to encode one block. In [127], authors propose a fast method of selecting
the best prediction, based upon the texture flow. Ref. [129] presents an open loop (OL) method to determine the
most likely mode based upon the original image data rather than the reconstructed data. Similarly, a multitude
of novel architectural designs for HEVC are also available. In [162], the authors proposed an HEVC Intra
prediction HW for only 4x4 blocks. In addition to video coding, several other multimedia processing modules
are realized using efficient architectures. For example, deblocking filters, AES, CRC [163, 164].

Motion Estimation: Many approaches to reduce the energy consumption of the video encoding process
target the ME engine for optimization, because ME (or block matching) is the most time and energy consuming
process of a video encoder. ME energy is reduced by reducing the supply voltage and then employing error-
resiliency features in [165]. This results in an energy savings of up to 60% on 130-nm CMOS technology. But
this approach results in extra control and noise-tolerance circuitry and degrades the output video quality as well.
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Figure 2-17: Different memory technologies

Ref. [166] reduces the search space for ME and thus avoids redundant memory accesses. However, an
unnecessary brute-force full-search algorithm results in high computation effort. Furthermore, in addition to the
approach’s failure for sudden motion, their results are for CIF/QCIF videos which already require a small search
space for ME. In [167], the on-chip memory is replaced with a cache. Further, the leakage energy reduction is
not considered (which is dominant for sub-micron technology [168]). The work in [169] reduces the external
memory accesses by frame-buffer compression, but requires additional computations. In [170, 171], different
data reuse schemes for reducing the external memory accesses for video processing are categorized from levels
A to D, with highest latency (smallest on-chip memory) to the lowest latency (largest on-chip memory). There
are other extensions, like level C+ [61]. Reducing the total number of predictions (ME operations [133, 66])
also decreases the latency of execution but has little improvement for memory energy consumption and external
memory access (see details in Section 2.2.1.2).

2.4.2.2 Memory Subsystem

The leakage energy of the video frames is of more importance in the sub-micron era, as it surpasses the
dynamic power of the memory device [168]. Therefore, new memory technologies which address the issue of
density and leakage power are evolving. A synopsis of some of the memory technologies is shown in Figure
2-17. Next-generation NVMs like MRAM [30, 172, 29] and Phase-change RAMs (PRAM) [173, 174] have
shown promising results towards leakage power efficiency compared to SRAM or DRAM. Application
designers are now considering exploiting these memories by analyzing their advantages and disadvantages.
Table 2-2 summarizes the main differences between the NVM and VM technologies. NVMs provide high
capacity and low leakage power but write latency and energy is considerably larger compared to that of SRAMs.
However, their non-volatility can be sacrificed and NVMs like STT-RAM can be used as VMs.

In [175] and [176], a hybrid memory Table 2-2: Comparison between NVM and VM memory technologies
. . ’ T (‘H’ denotes high; ‘L’ denotes Low; Blue color denotes ad-vantage;
architecture is proposed comprising of PRAM Red color denotes disadvantage)
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decoder [32] and presents a tougher challenge. Ref. [65] targets the HEVC application and limits the external
memory access by storing the video samples (which are expected to be used later) in a hybrid combination of
SRAM and STT-RAM. Other approaches utilizing MRAM s as replacements and augmentation of the traditional
fast SRAMs are given in [179, 180].

Usually, most state-of-the-art hardware designs do not jointly reduce the power consumption of the system
in conjunction with meeting the throughput demands. Overall system characteristics (e.g., data transfer from
external to on-chip memory) are not considered.

2.4.2.3 Accelerator Allocation/Scheduling

In order to combine the advantages of both programmable and application-specific custom architectures,
accelerators based many-core systems are becoming increasingly popular in the industry [181, 182].
Accelerators are usually high complexity parts of programs (called subtasks) implemented in custom hardware,
and a programmable core can offload its tasks to these accelerators. For examples of accelerators, refer to
Section 2.4.2.1. Accelerators naturally lend themselves to occupy the underutilized chip’s area. In addition to
increasing the Bright Silicon, accelerators are designed to quickly process the assigned tasks. Therefore,
accelerators are fundamental to high complexity, deadline-conscious applications. Examples include video
encoding and decoding [183] (also see Intel’s Quick Sync Technology), software defined radios [184] etc.

For ease of discussion, we broadly classify accelerators into three categories, based upon their flexibility and
access mechanisms. These categories are also shown in Figure 2-18.

e First are the in-core accelerators, which are embedded as a part of the programmable core’s computation
pipeline (e.g., Nios II custom instructions [185, 50], vector instructions [186], Application Specific
Instruction-set Processors, ASIPs [187, 188]). However, note that these accelerators can only be accessed
by the corresponding core, and they are a part of the execution stage of the computational pipeline.
Therefore, these accelerators exhibit the least flexibility as these accelerators can only be accessed by
their cores.

e The second category is clustered accelerators, where an accelerator can be accessed by only a specific
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set of cores and resides in vicinity of these cores (e.g., within a computation tile). Such accelerators are
also called tightly-coupled accelerators [189, 190]. Approaches like [191, 192] are available to schedule
the accelerator’s sharing with the corresponding cores by offloading the soft-cores’ subtasks, using past-
predicts-future paradigms and dynamic programming. However, these approaches do not consider the
complete power consumption of the system, and neither do they account for the deadlines of the running
applications.

e The third and the most flexible category of accelerators can be accessed by all the cores (e.g., via a
Network on Chip, NoC, PCle) and are called decoupled accelerators or loosely-coupled accelerators. It
is evident that the clustered and decoupled accelerators are the most versatile and offer maximum
advantages. However, state-of-the-art scheduling schemes presented in the literature [193, 194, 195, 196,
197] for decoupled accelerators usually try to reduce the resources used, maximize the processing speed,
or, reuse the accelerators’ memory as cache or reconfigurable logic. No reference to the power
consumption, frequency tuning of the cores and deadlines of the applications is made.

Since the shared accelerator can only be allotted to a single compute core at a given time, therefore, some of
the applications running on these cores might miss their deadlines, or these applications might change their
workload at runtime. Further, it is possible that the accelerator is not continuously utilized (i.e., accelerators are
darkened) which defeats their purpose of providing power- and complexity-efficiency. In addition, it is also
possible that in order to meet the deadlines, higher than required power is pumped to the cores. This will increase
the power consumption of the system, and therefore, elevate the chip’s temperature.

2.4.2.4 SRAM Aging Rate Reduction Methods

In general, state-of-the-art techniques for aging mitigation primarily target aging optimization for SRAM-
based register files. However, these techniques do not target large-sized memories which have distinct access
behavior and require different architectural support. The first category of work is based on the principle of bit
rotations (i.e., moving LSB by one position) to improve duty cycle of registers [198, 199]. These techniques
perform inefficient for registers with successive zeros and are only beneficial when the bits inside a registers
are frequently modified, which is typically not the case for large-sized memories (see Figure 3-15). Moreover,
implementing bit rotations requires barrel shifters at the read and write ports of the memory. The total number
of multiplexers required to implement an n-bit barrel shifters is nlog,n, and this is in addition to the control logic
which will configure the barrel shifters. Therefore, both area and power consumption overhead of such
techniques is high.

Another category of work is based on bit flipping at every write to the memory [199, 200, 201]. The register
value inversion techniques result in additional reads/writes and power. The recovery boosting technique [201]
adds dedicated inverters in the SRAM cells to improve the recovery process. However, this incurs significant
power over-head, which may be infeasible for large-sized video memories, for instance, targeting image buffers
for high-definition (HD, 19201280 bytes) and 4K UHD (3840%x2160 bytes) resolutions. Additionally, it
requires an alteration to the SRAM 6T cell circuitry. In [88], a redundancy based SRAM mircoarchitecture is
used for extending the SRAM lifetime. Similar to [201, 202, 203], this also requires architectural modification
of the 6T SRAM cell. The work in [204] introduces algorithms for balancing the duty cycle of SRAM data
caches by exploiting cache characteristics (i.e., tag bits). A similar scheme is presented in [205, 206]. These
schemes depend upon the inherent properties of caches (like flushing, cache hits etc.) and are not directly
applicable to general on-chip SRAM memories. Moreover, some of the mentioned balancing policies are
designed for capturing the occurrence of a certain bit pattern, and thus perform inefficiently when considering
different content properties and varying stress patterns. Further, many of the reported works for aging balancing
require multiple read/write of the same data in the memory, rendering themselves to be power hungry.
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Summarizing, state-of-the-art aging balancing approaches employ bit flipping or rotation at every bit level
at every access time, and incur significant power and area overhead. These approaches do not explore the
tradeoff between power consumption and aging balancing. Moreover, most of these approaches only provide
elementary circuitry without exploring benefits of different aging balancing approaches and lack full
architectural solution with power-aware aging control and adaptations.

2.4.2.5 Encountering Dark Silicon at Hardware Level

In this section, brief details about handling the Dark Silicon at the hardware layer of the video system will
be provided. However, the above mentioned state-of-the-art approaches (for designing efficient hardware
accelerators, scheduling the shared accelerator, power-efficient memories etc.) implicitly address the problem
of Dark Silicon at the hardware layer.

At the hardware layer, different control knobs (e.g., for DVFS and DPM) are provided to throttle the chip’s
temperature within safe limits. Other approaches employ architectural heterogeneity to tradeoff performance
and power. Via heterogeneity, the system supports runtime management of tasks by providing several degrees
of freedom to the system designer. The different forms of heterogeneity can be classified as [207]:

e Functional Heterogeneity, where compute nodes exists with varying functional behaviors and
architectural details. Examples are application-specific hardware accelerators, GPUs in conjunction with
CPUs, super-scalar cores and RISC processors, reconfigurable architectures etc. Thus, using task
migrations and using scheduling, Dark Silicon can be encountered.

o Accelerator Heterogeneity, same as discussed in Section 2.4.2.3, i.e., in-core, clustered and decoupled
accelerators, providing different level of performance and flexibility of usage. Further, approximate
accelerators [208, 209] with controllable amount of approximations can also be employed to increase
the throughput-per-watt metric. This will not only increase the amount of Bright Silicon, but introduce
higher performance.

o  Microarchitectural Heterogeneity, whereby different cores on the same die have varying power and
performance properties, but employ the same Instruction-Set Architecture (ISA). An example is ARM’s
big. LITTLE architecture [111]. For example, [210] presents a methodology to design multi-core systems
while considering the Dark Silicon paradigm. The purpose is to maximize the Dark Silicon utilization.
In [103], depending upon the characteristics of parallel running applications, Dark Silicon aware multi-
processors are synthesized using a library of available core types. Special-purpose conservation cores
(c-cores) are discussed in [211], whose goal is to reduce the energy consumption of the system, rather
than the performance of the system. Device-level heterogeneous multi-cores and resource-management
are exploited in [212] to speed-up the performance, as well as save energy.

e  On-chip Interconnect Heterogeneity, where routers that connect the multiple cores of the chip are
designed with heterogeneous architectures [213]. This provides diverse power and performance design
points, which can be exploited by the system designer.

e  Process Heterogeneity, where the non-ideal fabrication process results in core-to-core and chip-to-chip
variations in the maximum achievable frequency and leakage power. This variation can be exploited to
adaptively increase the speed-up of applications [214, 215] while meeting the TDP budgets of the chip.

2.5 Summary of Related Work

A plethora of approaches to tackle challenges imposed by video system software, hardware and new
fabrication technologies are presented in state-of-the-art works. Summarizing, the state-of-the-art does not
exploit the complete design space concerning both hardware-software co-design and co-optimization. This is
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specifically important for multimedia systems, under Dark Silicon and reliability threats. For best throughput-
per-watt ratio, the designer needs to consider the full system architecture, to fully exploit complexity-, power-
and resource-savings, and reliability improvement potential for long term system deployment.

Usually, the Dark Silicon mitigation approaches proposed in state-of-the-art works do not consider the
throughput constraints and they do not exploit application-specific properties. As previously discussed,
multimedia systems have deadline constraints which require intelligent power budget distribution (i.e.,
frequency allocation) among the resources. Similarly, state-of-the-art does not consider the impact of deadlines,
and resource- and power-budgeting for shared-accelerator based systems. This results in suboptimal
performance of the system and also reduce the power-efficiency.

Similarly, for SRAM aging-rate reduction, state-of-the-art approaches employ fixed aging balancing
techniques, with significant energy overhead. Therefore, these techniques are unable to explore the tradeoff
between aging balancing and energy consumption. Moreover, due to additional power consumption, the state-
of-the-art techniques might result in a higher temperature, which will increase the aging rate in a positive
feedback cycle.

Further, exploring the application specific properties might result in high power-efficiency and high
reliability, which is mostly ignored by the state-of-the-art.






Chapter 3  Video System Design

This chapter provides the overview of the proposed video system. Details are given about the architectural
aspects, and the complexity and power control knobs of the system. Via analyzing these knobs, motivational
analysis is carried out which forms the foundation of the technical approaches proposed in this thesis (in order
to address the challenges outlined in Chapter 2).

3.1 System Overview

The overview diagram of our proposed video processing system is shown in Figure 3-1. This diagram
categorizes the major components of the system into software and hardware layers. The software layer executes
the algorithms and the hardware layer provides support to run these algorithms. Different multithreaded video
applications are concurrently executed on the system, and the system generates video outputs and runtime
statistics.

The hardware layer contains a many-core system, with in-core accelerators, and also coupled shared
hardware accelerators. The shared accelerators is fed by a gated clock. It also provides the video I/O and
communication infrastructure among the cores and the accelerators. The hardware layer also contains custom
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Figure 3-1: Software and hardware layers of the proposed multimedia system.
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NVM (here MRAM is used) and SRAM. NVM power is controlled via power gating the memory, and SRAM
aging rate is controlled adjusting the duty-cycle of each SRAM cell.

The software layer is responsible for algorithms pertaining to runtime resource- and power-budgeting,
parallelization and workload balancing. It also controls the power of the system by

e Determining the most appropriate voltage-frequency levels of the underlying hardware.

e Offloading subtasks from the cores to the loosely coupled hardware accelerators and to other devices.
e (Gating the clock of loosely coupled accelerators.

e Seclectively turning ON sectors of the MRAM.

e Reducing the complexity (and hence the power consumption) of the application.

The software layer also intakes the user information required to run the system. For example, this information
can contain the total duration for which the system must run, the number of applications that needs to be
processed in parallel. The software layer also considers the underlying hardware properties for workload
balancing and power management. In addition, it exploits the applications’ and contents’ properties to maximize
the throughput-per-watt metric.

Details about design- and runtime features provided by this system will now be provided.

3.1.1 Design Time Feature Support

As discussed above, the architectural design features of the proposed video system include a many-core
system, associated hardware accelerators and a hybrid memory subsystem.

The many-core system provides parallelization support, and allows multiple, multithreaded applications to
execute their workloads on the cores. The cores can be homogenous or heterogeneous. A per-core DVFS to
appropriately scale the voltage-frequency levels is available. Also considered in [156, 3,216, 217, 218], the per-
core DVFS is now commercially available (e.g. Opteron 12-core) and it is indispensable for fine-grain power
management. Further, software libraries like “libdvfs” [219] exposes the control of cores’ frequencies (or
“governors” of Linux) to the programmer.

Moreover, each core has an in-core, application specific, hardware accelerator (see Figure 2-18 (a)). These
in-core hardware accelerators are now available in commercial devices (e.g., Custom Instruction in Nios II
processor [185], vector-processing units in Intel CPUs like SSE-SSE4 and AVX, AMD’s 3DNow!). A
programmer can write instructions for using the in-core hardware accelerator. Moreover, each core is connected
to a global communication network using an interconnect fabric.

The subtasks from the programmable cores can be offloaded to the loosely coupled hardware accelerators,
in order to increase the throughput-per-watt metric. It is assumed that the software version of the hardware
accelerator is also available to the core, and the core decides whether to offload its tasks to the hardware
accelerator, or do the same task via its own in software. The loosely coupled hardware accelerators communicate
with the many-core system using an interconnect fabric. The accelerator scheduler receives offloading request
from the programmable cores and assigns the accelerator to process subtasks of a core, one at a time, in a round-
robbing fashion. Further, the accelerators are distributed hardware components, and these components are fed
with gated clocks, i.e., when a particular accelerator (or part of the accelerator) is not used, its clock can be
gated to save dynamic power consumption. Clock gating is available in industrial products like Open
Multimedia Applications Platform (OMAP3) processor from Texas Instruments [220], Altera FPGAs etc.

The hybrid memory unit includes a high-density MRAM NVM in conjunction with a SRAM. A programmer
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can use both MRAM and SRAM as a scratchpad memory. The MRAM is sectored memory and the sectors are
normally OFF, i.e., under normal operation, the MRAM sectors do not consume any leakage or dynamic energy.
A particular sector of the MRAM is powered ON only when it is required to read/write the data to that address.
Hence, only at that instant, a little leakage power and some dynamic power is consumed by the particular
MRAM sector tuned ON by demand. The SRAM memory’s aging rate is controlled by using aging reduction
circuits and by intelligent Address Generating Units (AGUs). The power consumed by these circuits is content
dependent, and can also be controlled by the programmer.

In addition, the software/application layer must be able to exploit the different aspect of hardware layer (e.g.,
the maximum frequency of the cores). The software layer (application or OS, or any other middleware) should
be able to adjust the voltage-frequency levels of the cores on demand of the application (see above, the
discussion about “libdvfs”). Furthermore, the applications should be able to provide an ample number of
independent subtasks such the proposed parallelization approach can pack these subtasks and determine the
number of cores to utilize at runtime, depending upon the system events or requests. These applications can also
be malleable applications [221, 222]. Note that APIs for implementing parallelism, like OpenMP [223], support
this behavior. However, the condition of being malleable is not necessary, because an application can have a
considerably large number of threads which can be packed and dispatched to individual cores. Examples of such
applications are mobile games, where games are designed with tens to hundreds of threads. Ideally, the
application also needs to have a set of operating points, whereby the complexity of the application can be traded
for a drop in the output video quality (see discussion about reducing number of predictions in Section 2.2.1).
Moreover, the application needs to know about the characteristics of the shared hardware accelerator (e.g., the
number of cycles consumed per subtask).

The above discussion shows that to save power, different approaches can be utilized. Basically, by setting
some configuration knobs, a tolerable output quality degradation can be sacrificed for gains in power savings.
In summary, the following power configuration knobs are provided by the video system architecture.

e Per-core voltage-frequency knob (or per-core DVFS), to adjust the voltage-frequency, and thus the
power consumption and the time consumed in processing a particular subtask of the application.

e Individual clock-gating of accelerator modules, to cut off the clock (and hence the dynamic power) to
the module which is not currently utilized.

e Shared hardware accelerator scheduling, by which cores can offload their subtasks to the accelerator and
can be turned OFF (or cores can run at a lower frequency to process their workloads), and hence, save
system power.

e Tunable application parameters, which can result in a lower complexity and contribute to power savings
of the system.

3.1.2 Runtime Features and System Dynamics

During runtime, the video processing system needs to do different kinds of application- and content-
dependent resource budgeting, which includes distributing number of cores and TDP among multiple,
multithreaded tasks/applications. The loosely coupled accelerators are scheduled to the processing cores and
their clocks are appropriately gated. Moreover, the voltage-frequency levels should be correctly tuned,
depending upon the throughput constraints and the shared accelerator. Additionally, if the hardware platform is
unable to meet user constraints, a DVC or HDVC encoder is used. In this case, offloading approaches needs to
be engaged with appropriate percentage of subtasks being offloaded to the decoder. In case the video system is
used as a DVC or HDVC decoder, it must assign appropriate number of cores and power budgets to the
competing encoding workloads. Furthermore, the hybrid memory subsystem needs to be properly accessed and
the aging rate of SRAM is controlled. We will now discuss these aspects in detail.



44
3.1 - System Overview

The resource budgeting approach determines the number of compute cores that are allocated to a particular
application. This resource budgeting depends upon the workload and the throughput requirements of an
application. However, the resource budgeting must be fair to all applications and should not allocate too much
resources to a particular application, which will starve the other parallel running applications and reduce the
overall system performance. Moreover, resource budgeting needs to be adaptive, and should increase/reduce
the number of cores allocated to an application (called a cluster) at runtime, taking into account all the parallel
running applications and the workload variations of all applications. If possible, the threads of a single
application can be mapped to a single processing core which can process the workloads in a time-multiplexed
manner, thereby reducing the number of cores utilized in processing the workload. Further, the resource
budgeting scheme should also allocate the loosely coupled hardware accelerator to process a part of the
workload of these applications.

The power budgeting scheme distributes TDP at runtime among the applications. The TDP distribution not
only considers the size of the cluster, but also the power consumption and the throughput generation history of
a particular application. Specifically, an application with high power requirement in the past will require more
power to be allocated to that particular application. Further, once the TDP budget is distributed among the
applications, the applications also need to distribute this budget among their parallel computing cores (Intra-
cluster power distribution). To balance the workload of each thread (and hence maximally utilize the hardware
for maximizing the throughput), power is transferred among the threads of the same application as well. This
power actually corresponds to a particular voltage-frequency level, and a higher power allocated to a particular
core means that the frequency of the core can be set to a higher value (i.e., the core will take less amount of time
to process the workload).

The power distribution (or frequency allocation) is workload dependent, which might vary at runtime, and
may be different for threads of the same application. Therefore, it is required to derive the relationship between
power/frequency required to process the workload corresponding to the application parameters (which control
the complexity and output quality). Specifically, this relationship can be derived offline using regression
analysis. However, such a relationship might not be accurate, and cannot handle the workload variations.
Further, this relationship will only be applicable to a particular core on a particular system, i.e., the portability
of the application will be an added issue. Parallel system workloads (like OS, parallel running applications on
the same core) might also render this relationship inaccurate. Therefore, the proposed video system tunes this
relationship online by getting statistics of the software and hardware at runtime. This also helps in balancing
the workload, as a more accurate relationship can result in high accuracy power and resource distribution among
the competing applications.

Runtime power control is actuated by using the hardware accelerator’s power gating signals, which are
control by a register written by the programmer. These signals depend upon the architectural as well as the code
currently executed on the architecture, thus requiring application and architectural knowledge. Further, the
sectors of MRAM that are used for read or write access are turned ON, while the others are kept OFF. This
ON/OFF decision is also code dependent and the control reduces the memory wakeup latency, by tuning its
predictions of which memory sector will be turned ON next.

The computational offloading mechanism analyzes the video content properties and determines the regions
of the video frame (location of blocks within the video frame) that should be processed at the decoder side, in
order to achieve high video quality at the expense of little energy/power consumption at the encoder side.
Moreover, the SRAM aging controller also considers the content properties that are written to the SRAM, and
adjusts the aging rate of the SRAM cells.

Regarding the discussion above, the following information passes between the layers. From software to
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hardware, the number of parallel threads, voltage-frequency levels of the cores, hardware accelerator assignment
and clock enable/disable signals are passed. On the other hand, hardware passes the time consumption, hardware
accelerator information and many-core system’s attributes (e.g., number of cores, minimum/maximum voltage-
frequency settings) information to the software layer.

3.2 Application Analysis

In this section, analysis of applications and impact of software and hardware layers on the execution of these
applications is carried out. This analysis will be later leveraged by the approaches proposed in this thesis.

3.2.1 Video Application Parallelization

Video processing applications usually consume a lot of system 140 1 - 10
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Figure 3-2: Energy and time consumption for HEVC
Intra-encoding on x86 core

The total time consumption at different clock frequencies (f) and the size of the frame in blocks (74m) is
shown in the color-coded plot of Figure 3-3 (a). Note that increasing f reduces the time consumption, and
increasing ny., increases time consumption of the core. Hence, for processing 7y, a frequency of the core can
be determined which will not consume more than a predefined (constant) amount of processing cycles. That is,
the timing constraints can be satisfied by appropriately selecting the frequency, given n.,. In fact, the surface
plot is drawn by using a bilinear interpolation of the 4 neighboring (f, 74.) points. The color-coded plot in Figure
3-3 (b) shows the dynamic power consumption of a single core in terms of n4, and f for HEVC encoding.
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Figure 3-3: (a) Average time (msec) at different frequencies, (b) power consumption for different frequencies and frame sizes, (c) at
f=2.16 GHz, average time (msec) per frame with varying number of cores and (d) PSNR Vs. Bitrate plot by using “Foreman” video
sequence (352%288) for HEVC encoding
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Increasing f results in high dynamic power consumption and vice versa. Power is independent of ., as the
basic power formula only considers the voltage and working frequency of the core. Therefore, it is possible to
select an appropriate clock frequency of the core that will limit the total power consumption below a certain
threshold. In other words, the power constraint of the core requires an appropriate selection of the core’s
frequency. Therefore, using the allocated power to a core, its frequency could be determined.

To enable real-time encoding/decoding, the HEVC standard provides inherent support for parallelization in
form of slices, tiles and Wavefront Parallel Processing (WPP) [93]. By dividing the video frame into parts such
that, each part can be processed independently of other parts by breaking the sequential coding dependencies
across the boundaries to enable parallelism, a potential video quality loss may occur [93]. To efficiently utilize
the hardware resources and to reduce power consumption in a many-core processor, there is a need to (1)
ascertain the parallel processing workload; and (2) reduce the number of active cores while fulfilling the
throughput constraints. Figure 3-3 (c) denotes the total time consumed for processing a single frame for
changing the number of processing cores (ki) at /=2.16 GHz. We notice that increasing k., reduces the time
consumption by a second degree relation. Thus, appropriate &« can be selected that can encode the video frame
within the given amount of time, i.e., for satisfying the time constraint. The output video quality for different
configurations of tiles (and also different parallelism) is shown in Figure 3-3 (d). Since tiles break coding
dependencies, therefore, increasing number of tiles also result in video quality loss and a single tile per frame
results in the best video quality. Since parallelization is indispensable, therefore, a uxu tile structure (¢ columns
and u rows) must be used with u” tiles per frame, for the best video quality. Therefore, the total number of tiles
per frame must be minimized such that it fulfills the workload of HEVC encoding, not only to increase the video
quality, but to reduce the power consumption of the system as well. If a perfect uxu tile structure is not possible,
then effort must be made to make the total tile columns and row as similar as possible.

Usually, in video applications, the 60 60
collocated tiles (same tiles of consecutive
video frames, see Figure 2-10 (b)) exhibit 40 (a) 40 (b)
high correlation. For HEVC, correlation of 20 20
complexity and the output compressed bytes . .

between collocated tiles is given in Figure
2-10 (b). This correlation is plotted as a

histogram of percentage difference in time Figure 3-4: Percentage difference histogram of (a) time and (b) bytes for
(Figure 3-4 (a)) and total bytes per tile collocated tile number 0 of “Foreman” sequence (352%288) for 300 frames
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(Figure 3-4 (b)). A high correlation is shown by larger crowding around zero. Therefore, time complexity and
output quality (bit-rate) of the current tile can be estimated from previous collocated tile(s), and this can be used
to estimate the workload of the current tile.

3.2.2 Workload variations

The workload of a thread varies at runtime, whether it is the only thread of the application or one of the many
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complexity is a direct measure of the workload. Additionally, if timing constraints are enforced, the power
consumption of the cores will also vary. Therefore, it becomes imperative to control the workload of each
compute core individually. This adaptation should depend upon the throughput requirement, as well as the
hardware resources of the underlying many-core system.

This workload variation can be due to multiple factors. Some of these factors are described below:

e Some threads are allocated more data to process than the rest. The non-uniform data allocation can
happen due to multiple reasons. Like, it may not be possible to get equal sized tiles by having odd number
of blocks within a row (or column) of a video frame, e.g., 11 blocks per row of the video frame divided
among 4 tiles.

e In many video applications (particularly video coding), the complexity of processing a block is also
content dependent. For example, more time will be spent by ME for a tile with high motion blocks
compared to a tile containing low motion blocks.

e Some video tiles may require a high quality than the rest. This is possible because Region of Interest
(ROI) based processing requires more calculations while processing the ROI within a video frame.
Therefore, a thread that processes the ROI may have more complexity than the rest. An example could
be detection of eyes within the image, whereby the face can be the ROI. Hence, face is detected first,
and then eye localization algorithm is performed on that region only. Similar examples exist for video
coding, where the ROI includes faces, moving objects like cars etc. For ROI regions, compression is
kept comparatively lower for a better visual effect, whereas the background regions (non-ROI) are
aggressively compressed.

e Parallel system workloads (due to OS, or parallel running applications) may render a thread of an
application to run slower than the others.

e Heterogeneity among the compute cores can exist which can in turn run the core slower/faster. For
example, some cores might have larger caches than the rest, some cores are designed to run at a higher
frequency (or some cores can run at higher frequencies due to process variations [224]).

The fundamental takeaway from the discussion above is that workload variation causes unequal time
consumption of threads, which reduces the throughput of the application due to load imbalance. Hence, to
achieve maximum benefit from the underlying hardware, it is necessary to balance the workload of parallel
computing jobs at runtime.

3.2.3 HEVC Complexity Analysis
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Figure 3-6: Comparing H.264-Intra to HEVC-Intra for relative (a) bit-rate and
(b) execution time for different video sequences
within an image. This iterative and

recursive behavior incurs significant complexity overhead, even for Intra-only encoders, because the RDO
decision has to recursively check each possible PU and Intra mode combination (see Figure 2-6). This enormous
decision significantly amplifies the computational complexity compared to H.264. Our experiments in Figure
3-6 show that the computational complexity of Intra-only HEVC has increased by a factor of ~1.4x for a
compression efficiency increase of around 35% as compared to Intra-only H.264. A similar analysis can be
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Figure 3-7: PU borders on the 4™ frame of “FourPeople” and 31* frame of “BQSquare” video sequence

found in [225]. This illustrates a significant challenge towards fast HEVC encoders. Therefore, it is vital to
develop fast algorithms to decrease the computational complexity of HEVC intra encoders, and to realize real-
world applications.

3.2.3.1 Texture and PU Size Interdependence

In Figure 3-7, the borders of PUs (generated via RDO decision) are plotted on top of the frame of the
“FourPeople” and “BQSquare” video sequence. The PU sizes and their corresponding locations illustrate that
PU size decision is based upon the texture (or variance) of the video frame content. Note that image regions
with high variance and texture details are usually encompassed via smaller PUs by the RDO decision. For
example, in region A of Figure 3-7, a video frame region with low texture is encoded using larger PU sizes;
whereas in regions B and D, a highly-detailed texture is encoded using small and dense PU partitioning. An
interesting case is presented in region C where it is noticed that the wire (at the top of the region) is encoded
using small-sized PUs and the uniform areas of the block are encoded using large-sized PUs. Similarly region
E denotes small and large block sizes due to varying texture within the region. This analysis illustrates that a
complexity reduction approach can be derived by estimating the sizes of PU using video content, instead of
doing a high complexity RDO decisions. The PU size generation (involving early PU size estimation, i.e., before
the RDO) needs to account for the video texture properties (i.e., variance) of frame regions in order to curtail
the RDO search-space for fast mode evaluations. If such a map is available, then users can bypass the RDO
process for improbable PU sizes and hence, reduce the complexity.

3.2.3.2 Edge Gradients and Intra Angular Modes

In Figure 3-8, a color-coded Intra angular direction map is overlaid on top of the frame (for reference, see
Figure 2-6 (b)). This color map is shown in block D of the figure, with each Intra prediction octant (each octant
has 8 angular directions) having an associated color. As seen, the angular intra mode is highly dependent upon
the gradient direction (blocks A, B and C) and
usually the texture flow angle (perpendicular to
the gradient) is also selected as the Intra
prediction. Therefore, we observe that the Intra

1tand 2"
Octant High

angular direction depends upon the gradient [115,
123] of the PU. The gradient direction is - '
perpendicular to one of the 4 octants of Intra
angular direction. With high probability, the Intra -
prediction mode lies in that octant. We can exploit Figure 3-8: Color-coded intra apgular directions per PU on 2"

this knowledge to reduce the number of Intra frame of “BasketBallDrill” with CTU of 64x64

angular modes tested for HEVC and achieving complexity savings. Depending upon the gradient of the video
frame block, a set of highly probable Intra-prediction modes can be tested, excluding the unlikely modes. A

Color Coding of
= |Pred. Directions|

similar case can be employed for Inter-encoding, whereby the complexity of ME can be reduced by observing
the video properties.
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Figure 3-9: Analyzing the energy distribution for (a) different video sequences and (b) different number of MBs processed for ME

3.2.4 Computation Offloading

A resource constrained encoder can offload its job to a high-end server, using the concepts of computational
offloading. However, offloading itself consumes transmission power and may increase the power consumed if
no offloading is performed. Figure 3-9 shows varying distribution of computation and transmission energy for
different test video sequences with diverse texture and motion properties. Note that for a given number of blocks
for which ME has to be processed at the HDVC encoder side, there is an increase in the ME energy due to
extensive ME search for fast moving blocks. Moreover, since for the remaining blocks decoder may not get
accurate matches, it results in increased transmission energy of encoder due to more parity bits. Such an increase
in the computation and transmission energy can be seen in the “Coastguard” sequence (Figure 3-9 (a)), which
contains river water with ripples and moving boats that are hard to predict. Due to low texture/motion, “Mother
and Daughter” and “Hall” sequences have reduced transmission and computation energy compared to the other
two sequences with same PSNR = 36dB. Thus, more energy quota should be allocated for encoder side ME in
case of video scenes with high texture and motion. Higher energy savings for computation and transmission at
the encoder-side can be obtained for the low-texture and low-motion video scenes, as the decoder — with a high
probability — generates good quality reconstructed video frames. The key is to leverage the video content
properties during the energy quota distribution in order to balance the ME computation energy and the parity
bit transmission energy at the encoder side, such that the video quality achieved at the decoder side is high.

3.2.4.1 Video Content Implications

Even within a video scene, due to their diverse texture and motion properties, it is important to study that
which blocks have the highest impact on the computation and transmission energy. For this, we have performed
experiments with different number of blocks processed for encoder-side ME. More encoder-side ME leads to
high ME computation energy, but reduced transmission energy (see Figure 3-9 (b)). However, for a given
number of blocks to be processed for ME, the energy consumption highly depends upon which blocks are
selected for encoder-side ME. State-of-the-art techniques in HDVC (like [4]) select blocks in the raster select
for ME processing. Since blocks of ROI typically do not lie on the raster scan order (see “Foreman” and “football
players” in Figure 3-10 (a)), such techniques may lead to high transmission energy in case of few blocks
processed for encoder-side ME; see Figure 3-9 (b). Moreover, ME of background blocks (low-texture/motion,
static blocks; see Figure 3-10 (a)) may not provide effective reduction in the parity bits, thus leading to higher
transmission energy. Since such blocks can be easily regenerated at the decoder side, there is no need to waste
energy for encoder-side ME of such blocks. Furthermore, ME of blocks pertaining to background regions may
quickly exhaust the available energy quotas. Therefore, it is beneficial to spend encoder-side energy in the ME
of the complex blocks of the ROI, because this will help the decoder in estimation the true motion of complex
blocks while performing frame interpolation. This shows that computation and transmission energy in HDVC
highly depends upon the block types selected for the encoder-side ME. Higher overall energy savings and better
video quality can be achieved if the blocks of objects in ROI are selected for encoder-side ME processing. Such
knowledge needs to be incorporated during the energy budgeting of different modules. The key challenges are
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Figure 3-10: (a) Selected blocks (BLKs) at encoder for ME, in raster-scan and ROI order, (b) Spatial and temporal correlation
among blocks of two frames (f*), (¢) Motion Vector Drift (MVD) and (d) Occurrence frequency of MVD for the “Foreman”
low-overhead ROI identification, ROI-based block selection for different video scenes, and adaptive energy
budgeting considering this knowledge.

Figure 3-10 (b-d) demonstrates that there is extensive spatial and temporal correlation between the MBs of
the same frame and neighboring frames, respectively. Typically blocks of objects with low variance have high
spatial correlation [147]. Similarly slow-moving blocks have high temporal correlation. This correlation can be
used to efficiently predict the important blocks for which encoder performs the ME to reduce the prediction
error at the decoder-side. However, the highly-correlated blocks are left for the decoder, as decoder has a high
probability to find a good approximation for such spatially and temporally correlated MBs, thus resulting in less
number of parity bits.

Figure 3-10 (c-d) shows Motion Vector Drift (MVD, motion vector difference of spatial neighbors) and
MVD between the current and collocated blocks (i.e., temporal neighbors), where:

( 1 1 \
e ) Rl IR G-D

Here, mvd denotes MVD, and it equals the />-norm of the difference between the MV mv of the current block
and its eight connected neighbors, weighted by the SAD value of the current block. This suggest that if there is
a high mvd of the current block, then it is highly probable that it lies at the boundary of a moving object. Further,
a larger SAD value denotes that the current block has high variance and texture. Thus, a block with high MVD
needs to be processed at the encoder, as this block will most probably have a very low correlation with its spatial
and temporal neighbors. Therefore, the blocks with high spatial and temporal correlation can be accurately
predicted at the decoder-side without excessive decoder-side ME. Blocks with high spatial and temporal
correlation need not to be processed for encoder-side ME, thus using the encoder-side energy budget for more
important blocks. The key challenge is to account for motion vector drift for ROI identification and ranking
ROI-blocks.

3.3 Hardware Platform Analysis

This section provides analysis about the architectural aspects of a video processing system.

3.3.1 Heterogeneity among Computing Nodes

For presenting the impact of heterogeneity on different characteristics of the system, we provide different
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Table 3-1: Attributes of cores and benchmarks
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compute cores and benchmarks, as given in Table 3-1. These numbers are obtained for 45nm x86 cores, with
32 KB L1 data and instruction caches via Sniper simulator [226] and McPAT [227]. The average cycles per
operation are obtained by running the benchmarks for the set of frequencies given in Figure 3-11. The variance
of the cycles per benchmark is negligible, and therefore, the average numbers are reported.

Figure 3-11 also provides the power profiles of the cores used in this work. For the “Quant” benchmark,
although the number of cycles consumed by the “Large” core is ~3.5% lesser than the “Tiny” core, the power
consumption of the “Large” core at the lowest frequency (i.e., 1000 MHz) is greater than the power of the
“Tiny” core at maximum frequency (3400 MHz). This discussion conveys that heterogeneous cores/nodes result
in varying complexity (in number of cycles consumed) and power consumption for the same workload.
Therefore, the workload balancing approaches must consider the complexity and power characteristics of the
underlying compute nodes. Further, the power consumption is approximately independent of the type of
application.

3.3.2 Memory Subsystem

Recent studies have shown that memory is the one of the main energy consuming system modules [228],
especially in video processing/compression systems [32, 229]. Typically, in video coding applications, large
frame dimensions and high processing rates put enormous pressure on the off-chip and on-chip memories [147].
The primary reason for this is the storage and repetitive accesses to large-sized video frame buffers [178, 177].
For instance, video coding of 4K UHD at 30fps results in a memory access rate of >356 Mega pixels-per-second,
i.e., 2.78Gbps. Also, each frame will require ~12MBytes of memory.

These video frames are usually stored in the high-capacity off-chip memory. To avoid frequent accesses to
the off-chip video memory or to alleviate the external memory transfers, state-of-the-art deploys on-chip video
memories to store parts or full video frames [61, 230]. Therefore, data must be brought from the off-chip
memory to the on-chip memory (typically SRAM) in order to reduce the access latency and external memory
bus-contention [231]. Moreover, several repetitive accesses are made to the same pixel locations in advanced
video coding standard due to multi-level filtering and excessive ME operations. Therefore, larger on-chip
memories are essential to improve the performance and energy efficiency of video coding applications. This
results in high power/energy consumption due to:

e High leakage power as a result of larger on-chip memories to store reference and current video frames.
Traditional SRAM-based on-chip memories have high silicon footprint and leakage that may even
surpass the dynamic energy. A reduction in the leakage may be obtained by exploiting emerging memory
types.

e High dynamic power due to increased data rates as a result of bigger resolutions, high frame rates, and
complex processing flow of advanced video encoders (for instance, HEVC) employs multiple filters and
a complex multi-mode ME process.

Therefore, in order to significantly reduce the overall energy (considering both leakage and dynamic) of on-
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Figure 3-12: (a) ME memory access comparison between H.264/AVC and HEVC for three search window sizes, (b) ME memory
access percentage statistics for TZ search in HEVC
chip video memory subsystem, application-specific video system architectural optimizations and energy-
management are required.

3.3.2.1 Analysis of Motion Estimation

In Figure 3-12 (a), the memory access requirements for ME algorithm, for a single reference frame are
shown. Three different search window sizes (s.xs5) are chosen for both HEVC and H.264/AVC. HEVC memory
access requirements are ~3.86x more compared to H.264/AVC. This shows that HEVC puts tremendous
pressure on the memory system by making a large amount of memory read accesses. H.264/AVC based memory
access reduction approaches thus do not scale properly if applied to HEVC. Furthermore, the search window
method requires a frame to be read at least = s,/b;, > 3 times from the external memory (see discussion in
Section 2.2.1.2). Using a single search window of size 256x256, a 4K UHD frame will therefore require
11.12Gbps fetched from the external memory. With 7, reference frames and additional read and write to the
external memory for the current frame, a total of (11.12#n,+2.78)Gbps are read and around 2.78Gbps are written.
Note that the external bus power dissipation is directly proportional to the total number of bit-toggles per
transition [232]. This enormous amount of data results in high latency and energy consumption (around 40% of
the total system energy is consumed by the external I/O [64, 169]). Therefore, saving external memory accesses
becomes vital for reducing the energy consumption of a video encoding system. Thus, using on-chip frame
buffers will reduce the total energy consumption and the external memory bus-contention.

Figure 3-12 (b) shows the histogram of percentage memory access to the search window in HEVC for
different video sequences, using the state-of-the-art ME algorithm, TZ Search [66]. A search window of size 64
(or 36 Kbytes) is taken. These graphs are averaged per frame. The box-plots for these statistics are also shown
and we notice that less than 20% of the search window is utilized (see discussion in Section 2.2.1.2), i.e., mainly
a part of the search window is utilized. The unused search window consumes leakage power. Therefore, adapting
the search window according to the needs of the block-matching algorithm can result in high energy gains.

3.3.2.2 Hybrid Memories

For general memory subsystems, in order to reduce the leakage energy consumption and to reduce the
latencies and dynamic energy associated with the write operation, research has focused on combining the best
of NVMs and VMs and coined the term “Hybrid Memory”, e.g., to form 2D or 3D stacked on-chip memories
[30, 233]. Nevertheless, the same principles can be applied for the video memory required by ME.

However, from Table 2-2, it is evident that straight-forward replacement of the SRAM or DRAM based
memories with NVMs is not possible. Special consideration to the memory characteristics must be involved in
the system design. We can reduce the leakage energy of a system by introducing NVMs in place of traditional
VMs (like SRAMs or DRAMSs), but at the same time, NVMs can play a major role in deteriorating system
response time and dynamic energy consumption. Therefore, the advantages and disadvantages of NVMs must
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be carefully weighed against each other. A system designer needs to consider the application behavior, usage
constraints and system dynamics before employing the correct memory subsystem, which would result in the
best benefit to cost ratio. For example, using Table 2-2, we can generate a benefit to cost technology priority by
adding the blues for each technology and subtracting the reds from it. Like, if the application requires processing
large data sets with high data reuse (high read operations and low writes in a memory), a MRAM is a better
option than SRAM etc.

The detailed design characteristics (speed, power etc.) of different memory subsystems is shown in Table
3-2. The on-chip video frame buffers can be either SRAM or MRAM based memories. From this table and
Table 2-2, the SRAM and MRAM read latencies and energies are similar, but the leakage energy of SRAM is
~21x of MRAM having the same capacity. Also,
MRAM capacity is about 4 times that of SRAM for

Table 3-2: Comparison between different memory types for a

the same area. Therefore, MRAM 1is a better 65nm technology [29]

candidate for on-chip video frame buffer. But the Speed (nsec) Energy/Power

write energy and latency of MRAM is ~20x and L oy 150 Dynamic 01 | o Are?
2.6x of SRAM respectively. Thus, feeding the Read | Write | e | write | )
MRAM from external memory is not ideal, as the SRAM @ MB) | 4659 4659 0103 0103 520 44
external memory read latency added with the write DRAM (16 MB) | 5845 5845 0381 0381 052 49
latency of MRAM can severely degrade system MRAM (16 MB) | 4.693 12272 0.102 2126  0.97 38
performance.

3.3.3 Analysis of Different Aging Balancing Circuits

In this section, we provide a detailed aging analysis, in terms of SNM degradation and duty cycle imbalance,
for different test video sequences [234, 235] and highlight issues related to image regions with distinct
properties. This analysis is leveraged for developing our aging resilient video memory.

Figure 3-13 shows the total percentage of bits (in form of a histogram) for a frame memory that are
overwritten by a complementary bit of the new frame. As noticed, for some video sequences with low activity,
this histogram is crowded towards smaller percentages, which tells us the writing new frame will only
marginally release stress on some 6T cells of the SRAM (as the duty-cycle, A, will be highly biased towards 0.0
or 1.0). Additionally, the histograms are not dispersed, showing that there is a significant correlation (in terms
of texture and motion) between temporally neighboring frames (also see Figure 3-10 (b-d)). Therefore, the
properties of the subsequent frames can be estimated from the history, such that it can be leveraged for efficient
aging balancing. Specifically, we can predict the aging impact of the current and future video frame by analyzing
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Figure 3-13: Percentage histogram of SRAM memory overwritten with new bits by video sequences. X-axis presents the percentage of
bits changed in the subsequent frames, y-axis presents the number of times a certain percentage occurs for 300 continuous frames.
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Figure 3-14: (top) Video sequence “FourPeople” (1280x720) with frame numbers written and (bottom) A stressmaps for specific bits
of the video sequence, by plotting duty cycle (A) of the specific bit on spatial scale. The higher order bits have a biased A whereas the
As of lower order bits are self-balancing

the aging effects of the previous video frames.

In Figure 3-14, duty cycle of a selected bits of the luminance component of “FourPeople” test video sequence
is plotted on the spatial scale in form of so-called stressmaps. A balanced duty cycle (A=50% or 0.5) is
represented with a light greenish color (see the scale below the pictures). For duty cycles heavily biased towards
‘0’ and ‘1°, we obtain a blue and a red colored distribution in the stressmap, respectively. It is noticed that lower
order bits (LSB bits) have a balanced duty cycle, thus, the 6T SRAM cells storing these bits have a regular
relaxations and an extended lifetime. However, the higher order bits (MSB bits) have a highly biased duty cycle,
which causes an aging imbalance in the associated 6T SRAM cells (i.e., one out of the two PMOS transistors
of the SRAM cell is under increased stress). Different critical video applications like security surveillance and
space exploration missions experience such long-duration static scenes. In summary, duty cycles of different
bits are not balanced and some bits age quicker than the others. In such cases, it becomes necessary to balance
duty cycle of each bit individually, and to leverage the knowledge of bit location before applying an aging
resiliency scheme. Therefore, it is imperative to estimate the duty cycle of each bit in addition to the balancing
mechanism.

It is also important to note that less-frequently changing data will introduce the most amount of stress on the
6T-SRAM cells, for instance, low complexity texture and large, static backgrounds. This is also shown in Figure
3-14, where the large static background regions have a highly biased duty cycle. However, the moving regions
in the video frame have a marginally balanced duty cycle. For example, the stressmaps for bit 7 has a relatively
balanced duty cycle at the locations where people are moving. Therefore, the knowledge of less-frequently and
more-frequently changing data can be exploited to distribute video samples in the on-chip memory, such that
the transistors of each SRAM cell experience some relaxation.

In order to balance the duty cycle, we extend the memory architecture of Figure 2-2 with additional aging
resiliency tools in form of Memory Read Transducer (MRT) and Memory Write Transducer (MWT) connected
to the memory read/write ports (see Figure 3-15 (a)). These transducers can be implemented using one of the
three different aging balancing circuits as shown in Figure 3-15 (b-d). As examples, we use inversion (similar
to [201]), nibble-swapping (similar to [199]) and bit-rotation (similar to [198]), which correspond to the state-
of-the-art approaches to tackle SRAM aging. For inversion and nibble-swapping, the bits of every second frame
are inverted and swapped, respectively. In the bit-rotation circuit, the video samples bits are incrementally
rotated by one with every frame, before writing to the frame memory.

In Figure 3-15 (e-h), the stressmaps of bit-7 for using no balancing (i.e., the base case) and the balancing
circuits presented in Figure 3-15 (b-d) are plotted. As noticed, the duty cycle for the inverter case is much
balanced compared to the other circuits. For convenience, the information about the duty cycles for all bits is
presented in the form of boxplots, as shown in Figure 3-15 (i-1). In the box plot, the distribution of duty cycle
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Figure 3-15: (a) Insertion of aging resiliency components (i.e. Memory Read and Write Transducers, MWT and MRT) in video memory
management of Figure 2-2, (b) Bit-inversion MWT to invert all the bits of the video sample; (c) Nibble-swapping MWT to swap MSB
bits with LSB bits; (d) Bit-rotation MWT to rotate bit locations with every frame; (e-h) Stressmaps for bit-7 (foreground) and bit-0
(background) for the above MWTs, with the bit-invert scheme outperforming bit-swap and bit-rotate; (i) Box plot legend; (j-m) Box
plots for the above MWTs, where all the bits are best-balanced for the bit-inversion.

of each bit is mapped to quartiles. In an ideal case, the spread of whiskers in the box plot should be minimal and
the median of the box plot should be at ‘0.5”. The spread biased towards ‘0’ indicates a higher number of “zeros”
at the bit location and vice versa. As noticed for the base case, for lower order bits (bits ‘0’ and ‘1), the spread
of duty cycle is limited and the median is closer to ‘0.5’. However, the spread of duty cycle is large, and the
median is not strictly ‘0.5’ for higher order bits (bits 3-7). This suggests that the higher order bits in the video
sequence need more care and resiliency features embedded into the system must account for these bits.
Furthermore, the lower order bits experience auto-balancing and the aging resiliency feature for these bits can
be turned off to save power.

By using balancing circuits of Figure 3-15 (b-d), the boxplots significantly change. For inverters, we notice
that the duty cycle is nicely balanced for each bit and the spread is limited. The nibble-swapping introduce some
improvement in balancing the duty cycle, but it is not comparable to that of the inverter circuit. Moreover, the
nibble-swapping also adversely impacts the aging of bit ‘0’ and ‘1°. Bit-rotation fits in the middle of the
inversion and nibble-swapping cases. Moreover, by keeping the inverter ON for all bits, at all the time is not
energy efficient. Therefore, the challenge is to design an adaptive, configurable controller to select the frame
inversion rate and bits to invert at runtime.






Chapter 4  Video System Software Layer

This chapter provides details about the runtime management of the video processing system at the software
layer. The main responsibilities addressed in this layer are to allocate processing nodes, realize power-efficiency
and budget power to the video system. In order to parallelize the execution of a video application, resources are
allocated to the application at runtime, by considering the hardware attributes of the system. Further, the
workload is distributed among the parallel running threads in a way that throughput-per-watt is increased. Video
application properties are also exploited at runtime and these properties are used to adjust the configuration
knobs, which leverage power/complexity with the output video quality. Moreover, resource and power
allocation to multiple applications running concurrently on multi-'many-core homogeneous and heterogeneous
systems are also discussed. In addition, owing to the resource and energy constraints on constrained video
processing systems, novel mechanisms to offload the workload from these applications to a high-end devices
are described.

4.1 Power-Efficient Application Parallelization

As discussed in Section 2.1, a video applications usually processes a block of pixels at one time. Consider
that a block of pixels processed by the application is treated as a job (e.g., a MB in H.264/AVC and CTU in
HEVC). A set of jobs is denoted by a subtask #. And a set of subtasks constitute a task #. To imagine the
hierarchy, one can consider a task being analogous to processing the complete video frame, a subtask as
processing a video slice/tile and job as processing the video frame block within the slice/tile (see Figure 2-10).
Mathematically, a task i can be composed of #; total subtask and given by:

n, = {77,"0’77,-,19.“ :77[_',,’_1} (4_1)

An application can be designed with independent threads for each job, subtask, or a task. In case each job
has its associated thread, there can be a large number of threads in the system which will result in more context
switches and communication/synchronization among the threads, leading to a large overhead. For threads per
subtask or task, the number of threads are reasonably low and so is their associated overhead. In case of video
applications, per slice/tile (i.e., subtask) thread results in higher video quality, because the dependencies among
the video blocks are exploited which can result in higher compression. A per block thread may not let a block
to maximally exploit dependencies among neighboring blocks.

Let us assume an application « is required to process all its subtask (a complete task) within a deadline 7, max,
given ry; number of resources (compute nodes/cores). A core can process one or more subtasks. Suppose a core
J, associated with a task i, takes #;; amount of time to process is allocated subtask(s). Mathematically, the
workload of a task (defined in time units) is given by:

t,= max {7} (4-2)

Viet0, k)

Here, k4 10 1s the number of cores used for processing the subtasks. In order to maximally utilize the hardware
resources and also to increase the throughput-per-watt ratio, the time taken by each core to process its allocated
subtask(s) should ideally be identical, i.e., all cores start and end their allocated subtask(s) at the same time.
This means that the workload among the cores processing these threads must be balanced. Generally, reducing
the number of subtasks (for an equivalent amount of jobs) worsens the output of workload balancing strategies
due to lesser degree of freedom, but it decreases the management overhead. Moreover, voltage-frequency levels
of the associated compute nodes can be scaled (DVFES) to achieve workload balancing among the cores. On the
other hand, a large number of subtasks will result in better workload balancing [236] at the expense of (a)
increased management, (b) communication overhead and (c) reduced output video quality.
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An additional challenge to address is that the time taken by a subtask (and thus the time taken by a task) can
vary at runtime, according to the scenarios discussed in Section 3.2.2. Moreover, the system must determine the
correct number of resources (cores) allocated to an application a (kq ot < 710:) Which will result in high power-
efficiency while meeting the application’s deadline. That is, the following optimization problem is solved:

arg min { max {tu/} < tu'max} (4_3)

ka.tor < rior \ VIE10. Jka tor}

Basically, the number of cores utilized for processing a task is reduced as much as possible. A large number
of cores will unnecessarily reduce the time consumed (considerably below #, ) in processing a task. However,
it will also increase the resource and power consumption. This optimization problem suggests to reduce the
number of cores such that they just meet the throughput requirement.

In addition, video applications need to  Table 4-1: HEVC encoding characteristics for “Exit” (640x480) video

. . sequence using [226, 227]. Frequency of all cores is kept constant
process data under tight output quality during the execution. Here, PSNR: Peak Signal to Noise Ratio.

constraints. For example, HEVC necessitates “Time” and “Bytes” denote time and bytes to encode one frame
high compression with a throughput constraint

. Encoder Enc-1 Enc-2 Enc-3 Enc-4
[237], which generates numerous challenges. Cores/ihreads 1 2 9 n
As an example, Table 4-1 shows the result of Freq [MHz] 2000 2000 2000 2000
1o . . Time [msec] 659 178 78 125
utilizing different number of Sores in order to Power [11] 4,865 18.03 40,54 18,02
encode one frame of the “Exit” sequence under Bytes 6806 7247 7262 7308
125msec. Ideally, all the parameters in Table APSNR [dB] 0 0.058 0.061 0.015

4-1 should be as low as possible. Encoder-1

with the least power consumption does not meet the throughput, whereas Encoder-3 needlessly increases the
number of cores and hence the power. Encoder-2 might be able to sustain the workload if its frequency (and
thus its power) is increased. Encoder-4 is a special case, where the application configuration (parameters) is
intelligently tuned to reduce the complexity. This results in further power reduction, at the cost of reduced
compression and quality (compare with Encoder-2). Thus, it is possible to determine a computation
configuration (the number of cores and their frequencies) and application configuration (allowing tolerable
quality degradation), which fulfills the throughput requirement while lowering the power consumption.

4.1.1 Power-Efficient Workload Balancing

For achieving balanced application execution on a many-core system, an approach is presented to adaptively
determine the computation configuration, such that throughput constraints are met at low video quality
degradation, while minimizing the total power consumption. By accounting for the resources of the many-core
system, the number of cores and their frequencies which must be used to manage the application’s workload is
determined. Further, the frequency estimation model is derived and adjusted at runtime, in order to (a) encounter
the load variations of the core and (b) make the proposed scheme portable. Afterwards, the application
configuration can be optionally applied which results in further power savings. Summarizing, the following
presents the novel contributions of this work:

o  Selecting an appropriate computation configuration that determines the number of cores and their
frequencies (power), and the number of subtasks along with their maximum workload (output quality),
depending upon the required throughput and the hardware characteristics.

e  Subtask-to-core mapping techniques to fulfill the throughput requirement, pertaining to the structure in
which task is divided in subtasks. This approach determines the optimal number of cores for sustaining the
application’s workload such that the number of cores and power consumption is minimized. A bin-packing
heuristic to allocate subtasks to the available compute cores is employed, and hence, it is made sure that
the utilization of a core is maximized, while minimizing the number of active cores.



59

Chapter 4 - Video System Software Layer

Adaptive frequency generation model, which self-regulates by adjusting model coefficients using
runtime statistics, to determine the frequency of the cores and make the proposed approach portable to
other many-core systems.

Optional application configuration, which tunes (curtails or enlarges) the workload of each subtask by
tuning their configurations independently at runtime, by utilizing a feedback mechanism to maintain the
output quality within tolerable limits. Since the subtasks are associated with their respective cores, the
frequency of the cores is also adapted. This results in reduced power consumption.

The outline of the proposed approach is shown in Figure 4-1. The computation configuration is an
independent module which requires the throughput requirement and status signals from the application, and
directly controls the frequency of the cores. This module can be implemented as a separate library, interfaced

with the OS kernel via system calls and
requires little effort from the application
designer by exposing configurations knobs
to the application. Application configuration
must tune application parameters, requiring
the application designer to modify the
source. However, since the application
designer best knows the application,
therefore, application configuration can be

o . . . Th hput
Application Computation Config. «— vt |
Application Config. # Cores & m Monitor
o Subtasks AAAN, ".. §
Application . Selection VW | 2
Param.Tuningﬁ'm B ©
o Frequency Model : 3
utput Monitor Runtime Adaptation| /. g
ot Horker saton /- | e}rfe g
TOutput quality TTime per thread

Figure 4-1: Overview of the proposed power-efficient workload balancing

approach on a many-core system

implemented via moderate effort.

The pseudo-code of selecting the proposed compute and application configuration approaches is given in
Algorithm 1 and the sketch of the video system employing these approaches is presented in Figure 4-2. Since
currently, the parallelization for a single application is under consideration, therefore, the “a” subscript for
application is omitted for readability in this section. Moreover, for better understanding, the task will be replaced
by a video frame and the subtasks by tiles. The index & is used for representing a specific core. In summary:

At start, appropriate compute configuration is determined (line 6 of Algorithm 1) whereby the number
of tiles/cores/threads is calculated (k4 1r) to support #,maer. The maximum required frequency to support
the workload of each tile is also determined (fi,, a vector having maximum frequencies f» of all cores).
Further, if the number of cores is not enough, the workload of application is self-curtailed (by
determining application configuration a,,). Throughout the execution of a core £, the frequency of (fi)
and workload (ax) cannot exceed fi» and dzm.

The optional local workload tuner per tile determines the tile’s application configuration ax (by changing
parameters) for the epoch (a set of video frames, line 9). If reducing workload has tolerable impact on the
output, the workload is reduced further.

Based upon ay, the frequency of a core £ is predetermined for a complete epoch (group of frames, line
10), and with every new frame, a new frequency is set (line 11). Afterwards, the tile processing starts
(line 12).

Statistics are fed back to the frequency estimation model for adjusting the frequency of the next epoch
(line 14). A Recursive Least Square (RLS) filter is used to adapt (or derive) the frequency estimation
model constants.

The basic steps of the proposed scheme delineated above have the purpose of: (a) meeting the throughput
demands by selecting the degree of parallelism (number of tiles), (b) appropriately balancing the workload and,
(c) reducing the power consumption by selecting appropriate frequencies of the cores by exploiting tolerance to
the output quality. In the coming text, the important blocks given in Figure 4-2 will be discussed in more detail.
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Figure 4-2: Power efficient workload balancing approach on a many-core platform.

4.2 Compute Configuration

For parallel video processing, a many-core system with per-core DVFS is used. A video frame needs to be
converted into tiles for parallel processing. The tile formation block is responsible for appropriate division of
the video frame into tiles (with n; total tiles) and also selecting the number of cores (ki) to process the tiles,
depending upon the allowable frequency of a core (available in a discrete set of frequencies fse;, from fois t0 fuax),
the total (or allowable) number of available cores (7 and the required frame-rate (f,). Specifically, the tile
formation scheme determines three attributes of the system. First, the number of cores (k) is calculated which
will collectively sustain application’s workload according to Equation (4-3). Second, the maximally sufficient
frequencies of these cores (fi») is determined for the allocated workload (discussed later). And third, the
maximum allowable workload configuration (ax ) is determined (for best output quality) which can be sustained
by the hardware platform to satisfy f,. The goal programming problem stated above can be mathematically
presented as:

{min{km}, min{f, .}, max{vkym}}
tot tot

Join S S Saunr Siw € L
Vk=0,",k -1

tor

stk <oro, tkSI/f/)

(4-4)

Here, the highest priority goal is to reduce the total number of computing cores. However, the priority can
be changed to minimize the frequency, or maximize output quality.

4.2.1 Uniform Tiling

Here, each tile (subtask 7) is associated with a single thread, and every thread is dispatched to and processed
by an individual core. This load distribution and balancing approach is termed as uniform tiling because it tries
to keep the number of subtasks equal to the cores (n; = ki) and tries to equally distribute 7., jobs to every core.
That is, the tile-based workload balancing attempts to equalize the number of blocks within every tile.



61
Chapter 4 - Video System Software Layer

The program given in Equation
(4-4) is solved by the algorithm given
in  Algorithm 2, which is

o . . : ktot < rtut?
diagrammatically shown in Figure
. . . . Max. Workload
4-3.  Primarily, this algorithm Config, for all cores Workioad
determines if a single tile/core/thread T Configuration
. Sys. Info: pa " Matrix A
would potentially  support the - Cores e
. . . - Fregs. res X
workload of video processing (line 1 l —y All Cores
in Algorithm 2). This test is carried o Reduce Workload| £ Freduencies
- . R 5% Estimate Configuration % (L
out using the maximum output quality 2E Req. Freq. ] 2 at Max
. i - T X Workload?
(or maximum possible workload, 23« Frequency All Config.
. - & Bounded? x Tested? vV
denoted by an—max(A4), line 6) at a /1
minimum possible core frequency, fim ko
(lines 7-8), while processing all
blocks in a frame, ngsn. Such an Figure 4-3: Uniform tiling, frequency and workload selection.

arrangement will results in using least

amount of resources, best video quality (see Figure 3-3 (d)) and minimal power consumption. If this
configuration is not possible due to fi,» greater than the maximum supportable frequency (fua), the workload
(and hence, the output quality) is reduced (line 14) and the frequency is brought within f,... (lines 12-13). If
there are other cores available, they are adaptively involved in the process (line 21). The algorithm repeats
selection of the minimal frequency and maximum supportable workload for each individual core. The algorithm
continues until either all the utilized cores can sustain the maximum workload (line 19) or there are no more
cores available (line 15). Once the tile structure, frequencies and maximum workloads of each tile is determined,
application processing starts.

Tile Structure Selection (u,xu;): For Table 4-2: Tile structure lookup table (can be adapted for an

. . . lication). H o is the input, and ker and w,xus is th t
enhanced video quality, the number of tiles (and ~ “PP'* ion). Here, “Kor™ is the input, and Ko and u>ur is the outpu

cores) and their structure u,¥u; is adjusted by g%,

kot ‘ uwxun | k'tor | kot ‘ uwXun | k'or | kot | uwxun

tiles/cores (k ;) is used to give the actual number
of tiles/cores (ki) by reading this lookup table.

2x2 10 12 4x3 16 16 4x4
3x2 11 12 4x3 17 18 6x3

reading a lookup table (line 3 in Algorithm 2), as 0 ! ] 6 g 32 1 }g §X§
X X X
shown in Table 4-2. The input number of 3 2 2x1 8 8 4x2 14 15 5x3
3 3 3x1 9 9 333 |15 15 53

4 4

5 6

For example, if k', = 11, a higher video quality is achieved by having 4x3=12 tiles instead of 1x11=11 tiles.
Thus, in this case, n; = ki, = 12.

4.2.2 Non-Uniform Tiling

In addition to the uniform tiling, a non-uniform tiling approach can be employed to reduce the number of
cores used to process the video application’s workload. This situation is useful in case of systems with no DVFS
capabilities (where the frequencies cannot be tuned) to balance the workload of the cores. As the name signifies,
the video tiles in this scenario are of not uniform sizes. Therefore, n; > ki and the ng., jobs are not equally
distributed among subtasks (i.e., it might occur that size(#;) # size(y;) with i # j). Figure 4-4 (a) shows the
concept overview of the proposed approach. Generating the tile structure is a two-step process where the first
step consists of determining the master tile and the second step is the determination of secondary tiles. Further,
depending upon the sustainable workload of a core, each tile might have different dimensions than the rest. An
added advantage is that a table like Table 4-2 is not required.

For generating the video tile structure, following steps are carried out (also outlined in Figure 4-4 (b)):
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Figure 4-4: (a) Non-uniform tiling and cores assignment, (b) Master and secondary tile formation scheme

Many-Core
Processor

e  Determination of the master tile (size and location) depending upon the video-content properties. The
selection of the master tile location and dimensions involves computing the variance of video blocks.

e  Formation of secondary tiles (size and location), depending upon the size and location of the master tile.
The secondary tile structure is generated by extending the information about the master tile.

e  Determining the number of cores required for video processing and assigning the master and secondary
tiles to the cores. A bin-packing heuristic is used to determine the minimum number of cores.

To determine the master tile, the sustainable throughput of a core in terms of the number of blocks and frame-
rate requirement are determined. Specifically, an equation can be derived via offline regression (or using online
RLS filtering as given in Section 4.2.5) which can relate the time consumed in processing a certain number of
blocks (n), frequency of the core (f), frame-rate requirement (f,) and other application parameters (some of
which are discussed in Section 4.3):

_gl(nsf,fpau) (4'5)
Here, o presents application configurations, discussed in more detail in Section 4.3. However, if a timing
constraint of 7. is given, then one can determine n at f/~f,... using the relationship:

n=g,(t,,. [ f,.0) (4-6)

Hence, the number of blocks in the master tile (n) are determined using the above equation. To find the
dimensions of the master tile (w,*A,), following formulas are employed:

w, (<w)=b_ x {,/n /arJ

h (<hy=b x|nxb |w,_ |

Kepe =1 Sort tiles

(4-7)

In this equation, the resolution of the video
frame is wx/ and the aspect ratio of the video

frame is given by a, = w/h. This formulation

ensures that the master tile dimensions cannot k=0 Get new tile
exceed the dimensions of the frame. Notice

that /., is generated from w,, and thus, 4, <w,
if a,<1. However, it is possible to generate wy,

supported on k =k+1

with /,,. In the proposed implementation, the
kth core?

order depends upon the resolution of the
frame. That is, if w > A, h, is generated from
wy and vice versa.

Assignvtile to
core k

Now, the size and dimensions of the master
tile are available. The next step is to determine Figure 4-5: Tile-to-core assignment heuristic for non-uniform tiling.



63
Chapter 4 - Video System Software Layer

-E- -'Wi--- SN e Sl EEE Table 4-3: Analysis of the proposed uniform

nn eSSy E TR and non-uniform tiling for HEVC.
-mm _-‘ g IHEP Fuie ERES Eabe
R D T R

L TS NS NS e FPS| Cores| Tiles | BD-Rate | BD-PSNR
FPS=5 FPS=10 FPS=15 FPS =25

Lrktorm Tling M o 0 ouo ows

e I I e ] o kel (=) v .
B e e oammm ERLTRRREE S s 35 35 LI 0067
B Caty S ESERUL MEEREIRY S | i o5 ime oiow
TR S e =5 9 9 1.5246  -0.0963
R 7 TR s i | N COR £s|10 17 20 00102 00014
FPS = 10 FPS=15 FPS = 25 Zz=|15 30 32 20505  -0.1182
Non-Uniform Tiling =25 39 48 2.8470 -0.1645

Figure 4-6: Demonstration of video tile formation in HEVC, by uniform and non-
uniform tiling approaches presented in this thesis
the location of the master tile. For this purpose, the four corners of the video frame are searched for blocks with
high variance. The corner with the highest accumulative variance has the master tile associated with it (as given
in the lower right corner of the frame in step-1 of Figure 4-4 (b)). Afterwards, the determination of secondary
tiles is straight-forward as given by steps 2 and 3 of Figure 4-4 (b).

Now, these tiles must be packed and dispatched to the individual processing cores. For this purpose, we use
a bin-packing heuristic given in Figure 4-5. A tile is taken from the sorted list of the tiles (sorted in descending
order according to the number of blocks 7 in the tiles). Iteratively, every core is tested whether the core can
additionally sustain the workload of this tile, along with the other tiles the core is assigned. If yes, then the core
will process the current tile in a time-multiplexed manner. Otherwise, a new core is introduced in to the
computations. Once all the tiles are assigned to their respective cores, the frequencies of the cores are adjusted
(f < fuax) to (a) reduce the power consumption and (b) just fulfil the workload of the tiles. The frequency
adjustment formulas are given in Section 4.2.3.

4.2.2.1 Evaluation of Non-Uniform Tiling

A demonstration of tile formation for “RaceHorses” sequence using the uniform and non-uniform tiling for
different FPS is shown in Figure 4-6. For the proposed non-uniform tiling, the master tile is marked for easy
reference. In Table 4-3, the number of cores and tiles used for HEVC processing, BD-Rate and BD-PSNR [59]
are tabulated for different frame rates. Note that uniform tiling achieves better video quality. However, the
number of computation cores required to sustain the throughput constraint (frame rate) are lower for the non-
uniform tiling technique.

4.2.3 Frequency Estimation (%)

In order to estimate the frequency of a core (fi» line 7 in Algorithm 2), the total number of cycles required
for processing a block (¢x«) is estimated (lines 4, 11). Determination of ¢, can be achieved via oftline or online
analysis. Mathematically, the number of cycles required per second on the core £, to encode tiles/subtasks having
a total of n; blocks, at a frame rate demand of f, frames per second can be defined by the expression:

fk,m = nkxék o Xfp (4_8)

tot > m

This equation exactly denotes the required number of cycles per second (Hertz) of the core to encode the
assigned tiles. Hence, one can estimate the frequency of a core (i.e., fi.») if the size of the tiles in blocks and the
require frame rate is provided.
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4.2.4 Maximum Workload Estimation (o)

Asnoted in line 13 of in Algorithm 2, the maximum allowable workload for a core £ is given by configuration
tuple (ax»). This means that once the tiling structure is defined and the processing starts, the application’s
workload must never exceed the workload defined by ax. The application configuration is selected from a
matrix 4 where:

4T

A=["a_ . . "",a_ ] (4-9)
The tuple am. has configurations for best output N
quality and hence maximum workload. The tuple an e est Configuration

is for lowest quality and workload. Both @i, and @ clJ ' 33 : ;2

can be selected by the user. For the matrix A4, the tuple 2 25 3 22
a = (ao,0,...,0,)" presents the application parameters
which can be configured and adapted at runtime. An
example 4 is shown in Figure 4-7.

- Reduced complexity
- Reduced power

ruboptimal Configurations:
- Reduced output quality

Figure 4-7: An example workload configuration matrix 4

4.2.5 Self-Regulated Frequency Model

After determining compute and application configurations (ks fi and a.), application processing can start.
In order to explain the process in detail, Figure 4-8 will be referred to in this section. Basically, each tile is
processed in epochs. For each epoch of size z, an appropriate frequency (fi<fr) is selected and adapted at
runtime. The details of selecting these attributes is now given.

4.2.5.1 Frequency Estimation

The purpose of the frequency estimator (per core) is to adjust the operating frequency of the core, fi,
according to the workload assigned to the core, ax and the number of blocks assigned to the core, 7.

The frequency of a core can be computed from Equation (4-8). However, one needs to estimate the total
number of cycles for a given workload configuration, ¢i.. The total number of cycles spent on processing a
block can be estimated by using a model:

ék,a =g(x,o)= xka (4-10)
Here, w; is the vector which holds the model constants and the vector x holds the configuration parameters.
For our implementation, we chose:

x:[ao,'“,aw,l] (4-11)
Note that x uses the configuration parameters from the tuple @ in matrix 4. The value 1 is used to encounter
the error in the estimation model. Equation (4-10) is both application and platform dependent. To derive this
model, note that:

e High complexity applications (like HEVC) are designed for specific platforms (e.g. tablets, smart
phones). Since the application designer has the best knowledge of both application and platform, it is
straight-forward for the designer to derive this model via regression analysis.

e Dummy runs of the application while setup can also be used to derive this model.

e The model is derived online, at runtime, by using the scheme presented below.
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4.2.5.2 Runtime Frequency Estimation Model Adjustment

The purpose of this scheme is to (a) determine the model constant @, accurately or (b) fine-tune these
constants at runtime. It is possible that @, derived for one platform might not be accurate for other many-core
systems if the system parameters (like processor type, cache size, external memory- and output-bandwidth etc.)
are different. Further, scheduling other applications on the same compute cores used for the video application
will also vary the total number of cycles consumed for processing. Some cores are physically located near the
external memory controller and consume lesser cycles. It is also possible that no such model for estimating the
number of consumed cycles is available. In all such cases mentioned above, it becomes advantageous to adjust
(or derive) the model constants at runtime for an accurate estimation of the frequency. Therefore, scenarios
where the system parameters are unknown or when the system load changes, adaptive model derivation or
adjustment is of prime importance.

In this work, a Recursive Least Square (RLS) filter is used to adjust/derive w; for each core at runtime, as
shown in Figure 4-9. After the end of each epoch, the RLS filter is called to regulate w;. With each frame, in a
feedback loop, the frequency adaptation scheme receives the time consumed for processing tile(s). Let # present
the average time for processing on the core k. Since the frequency of the core (f;) used for processing the tiles
is known, actual number of cycles consumed per block can be calculated (cia = fixt/ni). RLS filter adjusts the
model constants ey at iteration m by using the formulas:

H=FE | x, (1 + anlEmflxm )7I
-1

E ,=E,  —-E x x E _(1+x E_  x)

m m -1 m m m—1

(4-12)

w,, =0, t H (C

k. é/:,a )

With every iteration of RLS, the model constants @y and the estimation-error covariance matrix £ is updated.
Note that in Equation (4-12), the expression (1+x;"E;.;x;) is a scalar; hence, no matrix inversion is involved. The
takeaway from this discussion is that RLS algorithm can determine and regulate the frequency model constants

and reduce the error in frequency estimation at runtime.

4.2.5.3 Core Frequency Allocation per Epoch

Note that the f; might not be supported by the hardware platform due to quantized frequency levels. Usually,
fi lies in an interval bounded by fi; and fin (fir < fr < fir), Where fi; and fi, are supported by the hardware
platform. Therefore, we implement a frequency allocation heuristic as given in Algorithm 3 (and
diagrammatically shown in Figure 4-8). For every core k, we solve the following integer linear program:
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max {y }
(v fo,+CG=-w)fi,\
D Y ez (4-13)
fl(JS~kJJ’ W€N+

For consecutive z frames to be processed, the collocated tile £ of every frame is encoded either at fi; or fi .
In each epoch, we try to increase the number of collocated tiles associated with a lower frequency (fi; in this
case, by maximizing ). The high frequency collocated tiles (associated with f;,) are reduced as much as
possible, while keeping the average processing time below the threshold.

4.2.6 Retiling

After a specific number of video frames (1) are processed, if the frequency of all the cores is stuck to fi» or
fmax, then retiling is performed (see Figure 4-2). Mathematically:

[ true iffke{fmin,fmax},Vk={0,"',km/—1}
NT()=/ (4-14)

| false otherwise
This is given in line 3 of Algorithm 1. It suggests that the estimation model of ¢, (see Equation (4-10)) used
to initially determine the compute configuration (ks fi and @) no longer applies. This can occur due to a non-
applicable estimation model for ¢x.. Hence, the tile structure is regenerated with the latest ¢x, which is adjusted
by the runtime statistics of the encoder (see Section 4.2.5.2). Here, A=5z is taken, where, z is the number of
frames in an epoch. Basically, 5z number of frames insure that a considerable number of times the estimation
model of ¢i, is adjusted (according to Equation (4-12)).

4.3 Application Configuration

If required, the user’s tolerance to output can be exploited for further power reduction of the system. In such
a situation, any workload curtailing scheme can be added to the processing system and the frequency of the
cores can be reduced. In short, the workload fluctuation and user’s tolerance collectively translates to a
workload-driven frequency/power adaptation that satisfies the throughput requirement. The per subtask/tile
workload tuner shown in Figure 4-2 is responsible for adjusting the workload. Workload tuning is achieved by
selecting a configuration tuple from 4 (see Figure 4-7). An update of the application configuration is performed
after each epoch. And since the collocated tiles are highly correlated (see Figure 3-4), the adjusted configuration
is applied to the next epoch. Since application configuration is application-specific, HEVC will be used as a
case-study and the concept can be generalized to other applications.

4.3.1 HEVC Application Configurations

The tuple a; contains settings of different HEVC encoding of tile k. The following parameters can be used
for adjusting the HEVC workload at runtime:
o = [ao’al’az’as]r = [H’d’QP’”frm /km/:IT (4_15)

Hence, we can rewrite Equation (4-11) as:

T

x=[0.d.0P.n, [k, .1] (4-16)
Here, 60 € {1,...,35} presents the total number of HEVC-Intra predictions that are performed per PU (see
Figure 2-6 and [7, 47] for details). However, the important aspect is that increasing 6 will increase the probability
of selecting a prediction which results in the best compression efficiency, at the cost of additional workload and
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Figure 4-10: Impact of 8 and d on (a, b) time per frame, (¢, d) BD-PSNR, (e, f) BD-Rate [59] and (g, h) energy with different tile
settings using “Keiba” sequence (832x480). The anchor encoding is done with 1 tile, maximum # and d.

energy consumption. This situation is depicted in Figure 4-10 (a, c, e, g).

The HEVC parameter d € {1,2,3,4} presents the allowable depth of PU subdivision (see Table 2-1). Figure
4-10 (b, d, £, h) plots the impact of d on the time savings and bit-rate. Notice that by reducing d, the bit-rate
increases, and the energy and workload decreases. This results in reduced compression efficiency. Compared
to reducing 6, although the reduction of d causes a higher energy drop, it also incurs a higher quality loss (see
Figure 4-10 (c-f)). Therefore, our first choice of parameter tuning is 4. Using the above mentioned definitions
of 0 and d (and keeping the visual quality constant by keeping Quantization Parameter QP constant), we can
write the configuration matrix 4 (see Equation (4-9)) as:

12 35 1 o 35
A:L oo 2 4} (4'17)
Further, our simulations have shown that the cycle model is highly dependent upon the parameter #m/kioc
and this term is also included in computation of the RLS update Equation (4-12). Hence, @, and x are 5x1
vectors, and £ is a 5x5 matrix due to the five workload tuning parameters (including 6 and d) chosen here. A
similar approach can be used for other video applications.

4.3.2 HEVC Configuration Tuning

For each epoch, the application configuration parameters (6, d) are determined and remain fixed for all the
collocated tiles in the epoch, as shown in Figure 4-8. If these parameters curtail the workload, the frequency fi
can be reduced, which will result in lower power consumption of the system. For workload tuning at runtime,
the number of compressed bytes (br) generated after encoding video tiles associated with the core k are
monitored (if bx increases, this means that the output quality degrades and vice versa). If b; increases beyond a
certain threshold (73), the workload ay is increased (see Figure 4-10). This adaptive threshold is defined by:

Thk :,uk(bk)+ O-If(bk) (4-18)
Here, ui(by) is the average and o,°(bx) is the variance of by, for all collocated tiles in epoch. Using Knuth’s
formula [238], one can update the mean and variance with every frame.

For every block within a tile, if threshold in Equation (4-18) is satisfied, 6 is adjusted as:

(+y /2 ifh>0 (4-19)
—y  ifh<o0
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Figure 4-11: (a-c) Gradient generation for estimating the best Intra angular mode using [123], (d-f) proposed gradient generation with
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Figure 4-12: (a) Proposed fast Intra angular mode estimation, (b) Seed pixel extraction process for ri=4

Here, y is a user defined parameter. Note that while employing Equation (4-19), 6k (derived in Algorithm
2, ax.m) also saturates O as it is the maximum number of predictions tested for the tiles associated with core k.
Further, it is possible that impact of reducing 6y to increase the output bytes is not high and Equation (4-18) is
always satisfied. If 6; reaches a minimum possible value (6,;,=5, see Figure 4-10), the workload is reduced
further by shifting d to the next lower level. If the output bytes increase and 0x=0;, the next higher di (di <
dr.m) 1s selected.

If a certain number of frames have been processed or by exceeds a threshold (74, .m), we set (Ox,di)=(Okm,dim)
for the current epoch. This condition is mathematically given as:

b, >(+&)r,,. (4-20)

In this equation, 7 x» equals bi of the most recent tile with (0k,di)=(6km di.n). Additionally, ¢ is a user-defined
tolerance metric for b, increase. Higher tolerance will result in reduced workload and vice versa. For example,
if by of current tiles associated with core £ is larger than 7, by 5% (£=0.05), the respective tiles in the new epoch
are encoded with maximum workload and frequency (and maximum power).

4.3.3 HEVC Parameter Mapping

In the previous section, it is pointed out that the reduction in workload is achieved by curtailing a, i.e.
reducing 6, and di. However, one must intelligently include the most probable selection candidate for both 6y
and di while curtailing the workload by exploiting HEVC specific properties. In this way, the degradation of
output quality will be smaller.

4.3.3.1 Intra Mode Estimation

As pointed out in Section 3.2.3.2, the individual pixels in a PU can provide hint to the possible texture flow
direction if their gradients (generated via Sobel edge filtering kernel) are accumulated. Such a case study of a
single PU is shown in Figure 4-11 (a-c) using a 32x32 sized PU actually selected by the RDO process for the
“BasketballDrill” (832x480) sequence. Using gradient directions, each pixel is color-coded to suggest the Intra
angular mode of the PU. Notice that computing gradients is a time consuming operation and not all pixels
correctly suggest the actual direction of Intra prediction mode that is finally selected. Thus, to increase the speed
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Figure 4-13: Comparison of video quality (BD-Rate and BD-PSNR [59]) and time savings for the proposed mode estimation approach
with State-of-the-Art (SOA) [123] for (a) fixed and (b) adaptive number of angular modes

of computations, it is advisable to avoid performing gradient extractions on pixels which will not contribute to
estimate the Intra angular prediction with high accuracy.

In order to estimate the Intra angular prediction with high accuracy and to reduce the time complexity, the
procedure is outlined in Figure 4-12 (a). As seen, a complete CTU is pre-processed before being fed to the
HEVC Intra-encoder. Firstly, seed pixels and seed modes are extracted from the CTU and stored in a memory
as shown in Figure 4-12 (b). Afterwards, only the contents of this memory are used to estimate the most probable
Intra angular prediction that will be selected by the brute-force search process. Moreover, two complexity knobs
(s- and 6) are also available to the user through which a user can leverage the computational complexity with
the compression quality.

To avoid complexity due to the Sobel operator, only two pixels with largest running difference on the
boundary of s,%s, are used for generating gradient magnitudes and direction. These pixels are shown in Figure
4-11 (d-f) for the example PU. Afterwards, a gradient histogram is created using gradient magnitudes and angles,
and this histogram is sorted. The first 4 angles within the sorted list are used for Intra angular estimation. Here,
the value 6 can be selected as given in Equation (4-19).

Evaluation of Proposed Mode Estimation Approach: For evaluating the proposed early mode estimation
scheme for HEVC Intra-encoding, our in-house ces265 video encoder [239] is used (for more information, see
Appendix B). These evaluation are conducted on a Windows 7 computer, with 2.7GHz Dual-Core CPU and
8GB RAM. Only a single thread of ces265 is used for evaluations.

The resulting video quality comparison (in terms of BD-Rate and BD-PSNR), and time savings are given in
Figure 4-13. In Figure 4-13 (a), 6 is fixed for both the proposed and state-of-the-art [123] approaches, whereas
in Figure 4-13 (b), adaptivity of both approaches is enabled. Note that the proposed approach with s, =4 provides
the best time savings, but also results in the largest video quality loss. Using s, = 2 provides a good balance
between the time savings of the proposed approach compared to [123]. With a fixed 6=5, the additional time
savings of the proposed scheme compared to [123] are 18% and 32% for s, = 2 and s, = 4 respectively. For
adaptive 6, the additional time savings compared to [123] are 27% and 44% respectively. Note that the time
savings presented here also consider the overhead of the proposed approach. The time savings are obtained
using the following formula:

t Savings [%] = (¢ —1)/t,, e X100 (4-21)

baseline
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proposed PU estimation
In this equation, Zpaseiine is the time consumed by the encoder without any complexity reduction approach.
Similarly, to compute BD-Rate and BD-PSNR, PSNR for a particular QP is computed via:

4x PSNR, + PSNR .
6

+ PSNR,,

b

PSNR,, =

(4-22)

4.3.3.2 PU Depth and Size Selection

From Sections 2.2.1.1 and 3.2.3.1, we notice that HEVC tests every PU size in order to determine the PU
structure which results in the best RDO. The application configuration, however, determines that a PU should
only be tested for a selected number of depths. Unfortunately, testing PU sizes which are far off from the actual
PU size selected by brute-force processing dents the compression performance of the encoder. For example, if
allowable d = 1, then the CTU will only be tested with a PU of the same size as the CTU. For CTUs
encompassing high variance regions (see Figure 3-7), this can result in compression loss. Therefore, an adaptive
method is required to pre-determine the PU structure of the CTU, which accounts for the video-content (texture).

The proposed PU structure selection scheme works according the approach given in Figure 4-14 and
Algorithm 4. First, the complete CTU is divided into sub-blocks of size 4x4 and variance of each sub-block is
computed. Afterwards, neighboring four sub-blocks are combined/joined if they fulfill the following criteria:

e All four sub-blocks are of the same size.
e All four sub-blocks have a variance less than a threshold.
e The variance of the combined sub-block is also less than the threshold.

Once the above approach is employed for sub-blocks of size 4x4 for the complete CTU, the algorithm repeats
with sub-block sizes of 8x8, until finally it cannot combine any four neighboring blocks. This PU structure is
termed as PU Map (PUM). If the required depth for processing is set at 1, then PUM is used for encoding, and
all other possible PU structures are discarded. If the depth is set to 2, then the adjacent/neighboring four sub-
blocks of equal sizes are directly combined to form a PUM Above (PUMA), and only PUM and PUMA are
given to the CTU compressor for encoding. If it is not possible to combine any sub-block from PUM to form
PUMA, then the PUMA consists of all 4x4 PUs.

An important aspect of the above algorithm is to find the variance (v) of the combined sub-block. This will
incur additional overhead. However, this overhead is reduced by using Chan’s formula [240]:



71
Chapter 4 - Video System Software Layer

f;zl+//2 2(n—2)(v1+v2)+(,ul—,u2)2n\
(#.v) = . |
L2 4(n—1) )

(4-23)

Where two blocks, with mean and variances as (u;, vi) and (u, v;) respectively, having n/2 entries are
combined to form the resultant block of n entries with («, v). Additionally, the computational burden can be
further reduced by simplifying the Chan’s formula:

My, 2(v vy (K —uz)z\l
2 4 )

.
()= | (4-24)

This formula is derived by approximating (n-1) and (n-2) as n (for n € {32, 64, 128...}).

Evaluations: The proposed complexity reduction approach is tested for HEVC and the results are reported
in Figure 4-15. Figure 4-15 (a, b) provides the BD-Rate and BD-PSNR comparison of our approach to the RDO
for different sequences. On average, the proposed approach incurs a BD-PSNR loss of -0.048 dB, which is
insignificant compared the state-of-the-art scheme (-0.1184 dB) [126], which also uses two levels of PU size
selection.

The percentage time savings of the proposed scheme for different video sequences with diverse
characteristics is given in Figure 4-15 (c). The time complexity of the proposed approach is compared with the
reference implementation. Note that up to 57% time savings are achieved, for sequences with diverse texture
and motion properties.

4.4 Workload Balancing on Heterogeneous systems

In previous sections, the focus was mainly on distributing the jobs/subtasks to the parallel computing cores.
However, it was not mentioned how the cores can be prioritized for distribution of subtasks. Mainly, a compute
core with high power-efficiency must be allocated a larger quota of subtasks than a core with lower efficiency.
For example, a hardware accelerator might be much more computationally efficient than a core running pure
software.

Moreover, in this section, a computing element will be referred to as a node instead of a core, because the
current discussion also applies to processing elements other than soft-cores.

4.4.1 System Model

Consider an application a, which processes the task i (also termed as the application’s load) with #; subtasks,
that is scheduled to run on a heterogeneous system with multiple nodes. The application consists of multiple
independent tasks that can be subdivided into #; subtasks, and the subtasks can be executed in parallel. A node
must process its assigned subtasks within a deadline (¢ max).

The heterogeneous compute system consists of 7, total nodes. The proposed approach selects only ki, nodes
(kiot < 7101 for sustaining the throughput of the application, and selects their voltage and frequencies (f; for node
k), which determines the power consumed by these nodes (px). Basically, the frequency of the node is a function
of the number of subtasks allocated to the node (7;x) and the cycles consumed to process a job on node & (c;x)
as will be discussed later.

The compute nodes can either be soft-cores, GPUs, accelerators etc. No assumption is made about the
sustainable throughput and power consumed by these nodes. That is, each of these nodes can sustain a different
throughput than the rest, and can consume different power for equivalent throughput. Further, each node has
either a program written in software layer to process the subtask, or, has a custom hardware unit implemented
in the hardware layer to process the given subtask.
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The target of the proposed approach is to minimize the total power consumed by the heterogeneous system
(pwr) While meeting a certain throughput constraint. The optimization goal can, therefore, be written as:

rtot—1

min[pm, = z P,((f,{)j
s.t.

Loe{O) oy (Lo Sv < [ )f YEe(07 ) (4-25)
LSt Vke{0, "k, }

ktot—1
Z ny=n
k=0

This problem suggests that a node can either be power gated (with f; = 0) or its frequency range can be
between permissible limits. However, each parallel computing node must finish the tasks within #; ., while the
cumulative number of subtasks processed by individual cores should equal the total number of subtasks.

In order to solve the proposed load distribution and balancing problem, some issues need to be addressed.
First, determining ki (the actual number of nodes used for processing) is not known beforehand. Secondly, a
node frequency is permissible to have values within two distinct ranges (i.e., either it can be 0 or between fi
and fu.). Moreover, the variables used in Equation (4-25) need to be derived in terms of tunable system
parameters for optimization, which might be cumbersome. Thus, to efficiently solve these issues, a heuristic
can be used, as explained below.

4.4.2 Load Balancing Algorithm

The resource allocation and load balancing approach is given in Figure 4-16 and Algorithm 5. Basically, the
proposed load balancing approach is a two-step process:

e  Gathering the compute and power profiles of all nodes before starting the distribution of subtasks among
the nodes.

e Actual load distribution method, which distributes the subtasks among the nodes, depending upon the
metrics gathered by the first step. Further, the compute and power profiles are also used for selecting the
appropriate running frequency of the nodes.

For the first step, the power profiles (power vs. frequency of the node, p(f)) of all the nodes is collected. This
can be done using online power measurement (e.g., using Intel Power Gadget and reading MSR registers), or,
by exploring the data-sheets of the nodes. Furthermore, the average power over the available frequency range
or operation modes (px) is also computed. Also, the maximum average power for all nodes (p,,max) 18 determined
via:

Puma = MAX P, } (4-26)

Vr,, nodes

Note that in this equation, for simplicity, it is assumed that the power consumption of the nodes is
independent of the type of the task. However, task based average power calculation can also be used here. The
cycles consumed to process a job of task i on a node k (given by c¢;x) is collected for all the nodes using either
offline regression analysis or online dummy runs of the application during setup. Similarly, the maximum cycles
consumed by a node to process a job of task i (¢;max) is also determined. Using these metrics, the efficiency index
for a node k (¢x) is computed using the following cases:

Case 1 ¢;;: The efficiency index of a node £ is the ratio of the maximum cycles and power consumed to
process a task 7, for all the nodes, to the cycles and power consumed by the node £.
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i,max p;l,max
b= (4-27)
ci,k p k,u
Case 2 ¢ »: The efficiency index of a node £ is the ratio of the maximum cycles consumed in processing a

task 7 for all the nodes to the cycles consumed by the node £.

i,max

P, = — (4-28)
Ci.k

Case 3 ¢« 3: The efficiency index of a node £ is the ratio of the maximum average power for all the nodes to
the average power of the node k.

p;l,max
b= " — (4-29)
P

Index 1 shows that the node which takes the least cycles and power to process a job has higher computation
efficiency (throughput-per-watt). Therefore, it must be preferred for use if a higher throughput-per-watt metric
is desired. Similar argumentation can be made for Indices 2 and 3. Note that the efficiency index can also be
changed to account for other metrics (like network hops among the nodes etc.).

For the second step, the actual load

( Start ) k=1

distribution algorithm takes place as shown
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processing starts with only one node Figure 4-16: Workload distribution and balancing on heterogeneous nodes.
(having the highest efficiency index max(¢)

V ki) and with its minimum frequency setting (fi = fimin, line 5). That is, the entire load is allocated to this node
(nir = nwr). Then, the time consumed by a node to process the workload is given by the formula:

f,, =~ 4-30
i (430)

In case the timing constraints are not met (¢« > ;max), the frequency of this node is increased by a single step
until fi x = fimax. If fir = fimax, then the frequency cannot be increased further, and thus, more nodes are introduced
(kio: = kio: + 1). The next node is fetched from the efficiency index array g4. Now, the algorithm starts again with
minimum power configuration (fix = fimi) for all k»; nodes. The load is distributed to the node k using the
following formula:

e
ik z kvzut—l ¢ . (4_31)

That is, the node with the highest efficiency factor gets more load. Once again, the time that will be consumed
by a node while processing n; subtasks can be estimated using Equation (4-30). In case a node is unable to
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Figure 4-17: Overview of resource budgeting for mixed multithreaded loads. Figure 4-18: Proposed resource budgeting

process the allocated number of subtasks within #; .y, its frequency is increased. If any node is at its maximum
power capacity and the system still cannot sustain the workload, another computation node is introduced and
the process is repeated. If all the nodes meet their deadlines, the algorithm terminates and the computation
configuration which can sustain the application’s load is found. Further, the maximum time taken by any node
is defined as the time to process its assigned subtasks.

4.5 Resource Budgeting for Mixed Multithreaded Workloads

By interchanging the goals and the constraints of Equation (4-4), the target becomes to maximize the
throughput of the system or an application, under a given power constraint (e.g., TDP, Dark Silicon). This
optimization is particularly useful for high processing computing, and offline video processing. If,
unrealistically, power constraints of the system are not specified, the techniques mentioned in Sections 4.2 and
4.4 can be extended by running each core at maximum frequency.

In such cases, it is required to determine the appropriate compute configuration (the number of cores and
their frequencies) for the given power budget (p.:). This resource distribution becomes more challenging if
multiple tasks with associated subtasks and jobs, are running in parallel. Each of these tasks can denote a
separate application, and therefore, the application index a and task index i can be used interchangeably in the
coming text, i.e., a = i. Note that in this section, the resource of a task i denotes the number of cores &; and power
pi associated with each task. For video applications, this resource budgeting is applicable to multicasting
scenarios (see Section 2.2.2), whereby every encoder is a separate application trying to encode its own video
frames (i.e., tasks), and each video frame can be divided into tiles (i.e., subtasks).

This thesis targets a multi-granularity scheme that distributes the resource budgets for multithreaded
workloads at different levels (among tasks and within tasks). The complexity of the resource distribution
problem is addressed via a hierarchical approach, which also provides performance isolation and fairness among
applications running these tasks. The distribution of resources targets the fulfillment of the minimum throughput
requirement of all tasks. Summarizing, the problem addressed in here is: How to budget resources and TDP
among different tasks/applications, such that the throughput of concurrently executing, multithreaded
applications is maximized? Since each multithreaded application will require multiple cores for executing its
workload, we denote the set of cores of a multithreaded application as a “Cluster”. The proposed scheme (Figure
4-17 and Figure 4-18) performs the following key operations:

e Selection of an Appropriate Number of Cores (i.e., Cluster): For a given task, the number of cores
required to fulfill its throughput constraints is estimated based upon the task’s workload characteristics
and performance constraint.

e Cluster-Level Power Budget Distribution: Given a power budget per chip and considering the
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Figure 4-19: Details of the proposed multi-granularity power budgeting scheme. For simplicity, only one task is shown.

unpredictability in power demand by different tasks, a global cluster-level power distributer manages the
power budget allocation to the clusters at a coarse-granularity, where the budget allocation depends upon
cluster’s information and the feedback error in power budgeting.

e Intra-Cluster Power Budget Distribution: An intra-cluster, local power distributer allocates the
cluster’s power budget to its individual cores at a finer-granularity. The intra-cluster power distribution
depends upon the workload of the specific core. The cores can then adjust their operating frequencies to
satisfy the upper limit on the power consumption of the cluster.

For this approach, a homogenous many-core chip with per-core DVFS and uniform tiling is considered. The
global Inter cluster resource and power distribution takes into account (a) the execution history of the
application, (b) the throughput requirement of the application and (c) the operating mode of the application.
Further, this allocation is tuned at runtime after every epoch (a set of tasks like GOP, or time) based upon the
tasks’ requirements and the allocated budgets. Once the Inter cluster resources and powers have been distributed,
the Intra-cluster budgeting commences and determines the best frequency (f;;) of each core under cluster power
budget. Each cluster is responsible to process a task i (;) within the time #; ... Each tasks consists of multiple
subtasks (#;). Each core in the cluster is responsible for processing a subtask. A task is deemed processed if all
cores within the cluster finish processing their respective subtasks. The technical challenge is to determine the
right number of cores and their frequencies within a cluster, in order to sustain the throughput requirement (#;
processing time < #; nqc) under the power budget (pro:).

4.5.1 Hierarchical Resource Budgeting

The detailed operational flow of the proposed hierarchical resource budgeting is shown in Figure 4-19. After
each epoch, the Inter-cluster resource and power distribution scheme is triggered to adjust resource allocation
per cluster. The Intra-cluster power budgeting is executed to adjust the power of each core after every task (#;).
Here, multiple tasks form a single epoch. This approach distributes power among @, concurrently executing
multithreaded tasks/applications, competing for 7, total cores and p.: total power budget. An task i is
constrained with user defined #; ».x seconds for processing #; with n; total jobs. This corresponds to each core in
the cluster 7 trying not to take more than #; .. seconds to process a subtask (7). The number of jobs within a
subtask j of task 7 is denoted by 7;; The optimization problem solved in this work is given by:
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The basic processing steps for allocation of compute resources and power budget are (also given in
Algorithm 6):

1- Determining the size of a cluster i (the number of cores, &;) that are allocated to a particular multithreaded
application, in order to satisfy the service quality constraint (line 2). The cluster size is constrained by
the available cores.

2- Performing cluster-level power budgeting such that the total power of the system does not exceed the
TDP budget (line 3). Not all cores run at maximum frequency-voltage setting.

3- Fine-grained (Intra-cluster) power budget distribution among the cores within a cluster (lines 4-5) by
only considering discrete set of frequencies of the cores.

4- Adjustment of power/frequency of individual cores within the cluster, depending upon the input data
and power consumption (lines 10-12). The voltage of the cores is scaled accordingly.

Note that the overall management (selecting cluster-sizes, power distribution etc.) can be performed by OS
or a specialized core within a cluster after a control period. In the following, each key component of the proposed
approach will be explained with reference to Figure 4-19 and Algorithm 6. For ease of explanation, discussion
will start from Intra-cluster power distribution and adjustment (step 3-4) and end with the selection of
appropriate cluster size (step 1).

4.5.2 Intra-Cluster Power Distribution p;;

Assume that the number of cores within the cluster i (£;) and the power (p;) allocated to the cluster (which
process the task #;) are specified. p; is distributed among the constituent cores of the cluster. Each core processes
a single subtask j (7), 1.e. ; is divided into £; subtasks. However, it is possible that the workload of each subtask
differs from the rest. For example, in video applications, a video tile might have high motion content, which
will result in larger workload than the rest (see Figure 3-5). This subtask can then become a critical and will
hurt the throughput of the application. Therefore, the proposed Intra-cluster power budget distribution is based
upon workload of the subtasks, by budgeting more power to critical subtasks.

For the first iteration of Intra-cluster power budget distribution (Fig. 4, lines 4-5), the j core of the cluster i
is assigned power p;; using the equations:

pi,j.AIIoz = (pi + pi,d)X ni./‘ /ni

[pi,,/,Allo' if pi,j,AI[oc < pmux

P, =3 ‘ _ (4-33)
[ P otherwise
Pia = Pijanoe — Py

This equation shows that each core is allocated power based upon the number of jobs within its respective
subtask. Given the power of a core, frequency of the core (f;;) can be determined using approaches similar to
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[3, 156]. The relationship between power and frequency of a core can be approximated with a linear equation
(4p=wAf, where y is a design time parameter). However, since the frequency set (fs.r) is quantized and a core
cannot run at a power greater than pj.., therefore, only a particular frequency can be selected for the core. This
particular frequency will actually consume a specific power, p;;. Therefore, the difference (p;s) between the
allocated (i i) and consumed (p;;) powers is added for power allocated for the next core. Note that it is
possible that p;; < p;; 410 because the power consumed by a core j might be less than the actual power allocated
to the core.

Once the power of each core and a particular frequency associated with it is determined, the application can
start (Algorithm 6, lines 9-11). Due to varying workload of each #;;, it is possible that the time consumed of a
subtask (#,) differs from the rest and varies at runtime. For every subtask, a variable n,,; is used to determine
the offset associated with the power/frequency of each core:

n,i; = t[,‘/ 4 max (4-34)
Further explanation about n,;; can be found in Figure 4-20. As noted, a large positive value of n,;; denotes
more power should have been allocated to the core and vice versa.

Frequency Adaptation: If the workload
characteristics of subtasks are changing or the
system load varies due to parallel running
applications at runtime, it becomes essential to
transfer power among cores within a cluster.
After a data frame is processed, n,;; for all
threads of the application i are collected. The

cores with larger 7, ;; require their frequencies to
be lifted. However, since there is a power quota

Figure 4-20: Concept of misprediction or offset used in this work. An

R L. example 4-core cluster is shown, where each core processes a single
allocated to the application, a priority based subtask and gives subtasks offset 71o,i,.

scheme is utilized for increasing or reducing the
power of the cores. This procedure is outlined in Algorithm 7. At first, the subtasks are sorted by their 7,

values (Algorithm 7, line 17). The algorithm iteratively checks if there are some subtasks with 7,;; > 0. This
subtask is termed as Thign and this is the critical subtask of the application, which consumes the most time. In
case such subtasks exist, the remaining subtasks are searched having n,,;; lesser than the critical subtask and are
called Tiow. The algorithm tries to take power from the Ti,w and give that power to Thien. This corresponds to an
increase the frequency of Thign While reducing the frequency of Tiw by a single frequency step. By using
downward frequency scaling for Tiow and upward for Thig, if the power consumption of the cluster is lower than
the allocated power to the cluster, the change in frequencies is accepted and the algorithm searches for other
subtask pairs. This algorithm will only continue if n,;; of at least one of the remaining subtasks is greater than
0 and greater than n,;; of at least one other subtask.

4.5.3 Inter-Cluster Power Distribution p;

If the cluster size (k;) is already determined, the total TDP budget of the many-core system (p:o:, which is less
than the sum of maximum power consumption of all the cores, thus determining the amount of Dark Silicon) is
distributed among the a;, concurrently executing tasks with every epoch (Algorithm 6, line 3). The Inter-cluster
power distribution is a two-step process approach. In the first step, the power allocated to a cluster i (p;) after
every epoch is given by the following relation.
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(k,+u(p)))

atot—1 atot—1
i ,u(r))

(Z j=0 k-f * Z j=0

In this equation, the k; dependent factor tries to budget more power to the cluster with larger number of cores.
However, it is possible that the power of the cluster varies under workload demands. Thus, another factor u(p;)
is used to account for the task i’s power consumption history in the previous five epochs. In this equation, u(p;)
denotes the expected (average) power of the i task for the previous epochs and acts as a feedback to the Inter-
cluster power budgeter. Therefore, a task with high power consumption history is allotted more power. For the

P = P (4-35)

first epoch, average power of all tasks is zero, and hence each core of the many-core system gets an equal
amount of power. Further, at any time instance, the summation of powers of all clusters will result in power <
Pior- Note that our Inter-cluster power distribution is different than the control based power adjustment approach
discussed in [3], which requires a feedback loop and a tuning parameter.

Power Adjustment: In the second step of power distribution, the actual power of allocated to a cluster (p;)
is determined by using the offset information of all the task (., see Figure 4-20). For each task i, n,; is
computed by:

k. —1
n,,=> ,,-’:0 n,.. (4-36)
For the complete epoch, n,,; of each task is accumulated in x,,; as shown in Figure 4-20. If there is a task a@uqx
with maximum x,; > 0 among all tasks, a part of the power from the task @, with minimum x,; is taken and
given to this task. Mathematically:

Ap = pamin /l//l’ pamax = pamax + Ap’ pamin = pamin - Ap (4_37)
Here, y; is a user defined parameter and determines the amount of power shifted from the low complexity
task to the high complexity task.

Throughput Adjustment: If the maximum x,; among all tasks is negative, it means that all tasks are meeting
their initial throughput requirement. Therefore, it is possible to increase their throughput demand to speed up
processing. In our case, f;mqx for the next epoch is decreased using:

(o= -
e (4-38)
The user defined factor > denotes the amount of change in # .. A higher value of . will reduce £ max

quicker and vice versa.

4.5.4 Selection of Cluster Size

Unlike [3, 154, 156], which only target the increase in average instructions executed per second of all single
threaded applications, the proposed approach introduces a timing constraint (deadline, #; ) Which the resource
distribution scheme tries to meet for every task. The deadline can be specified for the whole run of the task, or,
for processing individual tasks. The concept of task based deadline is a more realistic approach, especially for
streaming and image, video and audio processing applications.

For selecting k;, the proposed approach considers maximum allowable time (#;qx) 0f the task i for processing
a single #; (Algorithm 6, line 2). In order to keep the processing time below #;uqx, only the available bright cores
(ki:) that can be distributed among different tasks are considered, such that all cores execute at frequency f at
the startup time. Using this frequency, it is possible to estimate the total number of cores required for processing
a subtask within #
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;2 g (1, -t S) (4-39)
This equation relates ¢; .4y, the characteristics of d; and the minimum number of expected cores (£’;) which
will sustain the workload of the application i. This equation can be generated via offline statistics or regression
analysis [44, 241]. Or, this equation can also be derived using the same approach as outline in Equation (4-10).
For example, using a core i7 at 3.4GHz (fixed) frequency, the time consumed for HEVC encoding, for
processing a video frame/task with 7., jobs and 4; subtasks is given by:
lirso = —1.844+0.01827n, +0.5441n, [k, (4-40)

This equation can be scaled to account for any other frequency fvia:

. |(3.4 x10° \\t,-.mg (441

C 7 )
Typically, in a performance-constrained application, the average-case required number of cores for the given
deadline can be derived at the setup stage (offline), which can then be updated at runtime (online) depending
upon the input data frame properties (see Section 4.2.5). Since the proposed approach adapts ¢;mqx (see Equation

(4-38)), therefore, k’; also adapts at runtime.

In addition, at runtime, the workload characteristics of the tasks might change, therefore, our proposed
approach also adapts the size of the cluster. Specifically, for a task i with x,; > 0, k’; is incremented by one. This
way, the proposed approach tries to allocate more resources to the task requiring more computations.

The number of cores (the cluster size) which is actually allocated to the task i is derived by the following
formula:

atot—1 ' ‘

k= bk, 12 (4-42)
And afterwards:
[k, .k, >k
k, =4 _ (4-43)
[k‘_ , otherwise

From Equation (4-42), even if summation of k’; is greater than k. (see discussion above regarding x;,),
summation of k; will still be in bounds (< k«:). This also suggests that if the collective workload of all the
concurrently running tasks exceeds the global power budget and resources, the system will still continue to run
at a degraded quality (time per frame > #; nax). Equation (4-43) shows that it is possible that not all of the k.
bright cores are utilized and there are unused cores which can be kept dark.

4.6 Computational Offloading

Owing to user constraints like duration of processing, it might not be possible for a battery-driven and
constrained video system (with limited number of cores, cache, power/frequency etc.) to process assigned tasks
while maintaining the required throughput requirement and unnoticeable video quality degradation. On the other
hand, the number of tasks and the required throughput requirements might make it infeasible to implement the
video processing applications, especially on small systems. For example, a platform can only process a finite
set of jobs within a second (7.) and thus, the workload with higher requirements cannot be scheduled on this
platform. Moreover, the required frequency might not be supportable by the hardware, and no DVEFS is
available, i.e., the compute configuration is fixed and unchangeable. Thus, resource budgeting proposed above
in these scenarios is nontrivial and infeasible. In such cases, offloading subtasks to high-end processing nodes
and utilizing energy-efficient application-configurations can enable the application to meet its throughput
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demands on constraint systems.

Offloading of subtasks pertaining to multimedia, vision, graphics, gaming, text processing etc., from mobile
systems (like smartphones, robots, embedded boards) to high end servers, must consider the communication
layers as well as the application layer properties. The task is to reduce the system energy consumption. As
pointed out in Sections 2.2.3 and 3.2.4, Hybrid Distributed Video Coding (HDVC) provides a solution to utilize
low complexity and resource constrained devices in the video coding landscape. A use-case scenario of HDVC
is outlined in the Figure 4-21. For HDVC, both the encoder and decoder are battery-driven, constrained devices,
and, in contrast to PVC, the decoder has a higher complexity/power than the encoder. In such cases, the encoder
can offload some of the subtasks (workload of video processing) to the decoder. Such a paradigm has possible
applications for video transmission by wireless sensor nodes or IOT devices to a high-end server, battery-driven
security cameras encoding and transmitting the compressed video for storage/ analysis to the high complexity
processing node, video transmission by autonomous batter-driven robots (e.g., drones) etc. However, efficient
utilization of resource and energy under
dynamically varying scenarios requires an
adaptive energy quota distribution at the encoder
and decoder. The goal should be to determine the
processing effort at both ends of the system such
that the overall energy of the system (computation
and transmiSSion) is minimized, while satisfying Figure 4-21: Video capture and wireless transmission scenario with
the user constraints, like encoding duration or resource constrained video encoder(s) and decoder(s).

FPS.

To address the above-mentioned challenges, this thesis proposes hierarchical control approach for HDVC
that performs video content-aware adaptive energy quota distribution and control at multiple hierarchical levels
(i.e., among GOWs, frames within a GOW, and blocks within frames, see Figure 2-13) for both HDVC encoder
and decoder. This approach reduces the overall energy consumption by jointly considering for the computation
and transmission energy under scenarios of dynamically varying energy levels and user constraints. The
proposed approach accounts for video content properties (i.e., texture and motion) for selecting blocks from
image Regions of Interest (ROIs) to perform selective processing per block, while efficiently utilizing the
allocated energy quotas. Figure 4-22 shows the energy quota distribution mechanism. Here, a task actually
represents a video frame to process, while a Available GOW Frame/Task Block/Subtask
group of consecutive tasks to be processed are  Battery Energy Energy Energy
equivalent to processing a GOW. Each video
frame consist of blocks, and each block of the
video frame is an independent subtask. At both

. . . Considers: Considers: Considers:
the encoder and decoder, Motion Estimation History ROI
. . . —J Frame location —J Application config.
(ME) 1S performed fOI‘ each Subtask_ F]gure 4-23 ¢ History :  Frame properties : Feedback controller
shows the proposed HDVC system with the
novel contributions. Figure 4-22: Energy quota distribution at different hierarchical levels

In summary, the proposed approach employs the following steps:

GOW-Level Energy Quota Distribution and Control: First, user defined constraints of total processing
duration and available energy from the battery level are used to determine the potential processing duration. If
the potential processing duration is less than the user-defined constraint, the processing rate and GOW size are
re-adjusted to fulfill the user constraints in the available battery level. This processing duration along with the
offline subtask energy analysis is used to derive the initial target energy quota for each GOW. Since the
consumed energy of a GOW may differ from the allocated energy quota, the target of the upcoming GOW is
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Figure 4-23: Operational flow of the proposed hierarchical energy budgeting for HDVC. Here, Blk: Block.

recomputed using a feedback control mechanism. This approach employs a PID controller to control the target
of the upcoming GOWs. In case of a deviation (i.e., a significant change between two I-frames, for instance,
due to a scene cut), the initial target for a GOW is reset for the controller. The GOW-level energy quota is
forwarded to the frame-level energy quota distributor.

Frame-Level Energy Quota Distribution and Control: At the frame level, the energy quota is distributed
among the I-frame and z W-frames. The energy quota of the I-frame is computed by performing a history-based
prediction using the energy consumption of previous I-frames. Afterwards, the energy quota of z W-frames is
obtained. This quota is distributed among z W-frames considering the temporal distance of a given W-frame
from the preceding I-frame and relative variance difference of two [-frames at the borders of the current GOW.
The temporal distance based energy quota distribution accommodates the changing temporal correlation inside
a given GOW due to the longer temporal distance.

ROI Identification and Extrapolation: In order to intelligently distribute the frame-level energy quota
among different blocks of a frame, the proposed employs a ROI-based block selection and ROI-driven energy
quota distribution. The ROI is identified for I-frames considering the motion drift of a given block with respect
to its neighboring blocks. Since blocks in the ROI have high spatial and temporal correlation, the proposed
approach selects the ROI blocks with high rank value, which is quantified as the motion vector drift (see
Equation (3-1)). It is based on the analysis of Section 3.2.4.1 that decoder can generate the estimates for W-
frames for highly-correlated blocks. Typically, blocks at the object boundaries are selected by the proposed
approach. An ROI map contains the ROI blocks sorted with respect to their rank values in a descending order
(starting with the highest rank value). This facilitates generating a high-quality SI at the decoder side that leads
to reduced energy at the encoder side. Note that the proposed approach does not waste energy for the
homogeneous and slow-moving blocks at the HDVC encoder, because decoder can generate high quality
estimates of these blocks with a little effort. Instead, the energy is spent on complex block with high texture and
fast motion, such that the SI generation at the decoder side can be improved that leads to less transmission of
bits and consequently low transmission energy.

Block-Level Energy Quota Distribution and Control: First the maximum number of selected blocks is
computed based on the available frame-level energy quota and best case application configuration (i.e., ME
configuration with the least energy). Since in a resource-constrained scenario, sufficient processing power may
not be available to meet the throughput constraints, the number of selected blocks is readjusted. For the number
of selected blocks, ROI blocks from the ROI map are extracted starting with the highest rank value. The energy
quota of each block is computed and controlled in a feedback manner. Depending upon the allocated energy
quota, an appropriate application configuration (i.e., ME configuration) is selected and the block is processed.
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The consumed energy is monitored. This consumed energy may differ from the allocated energy quota.
Therefore, the target of the subsequent block is adjusted by back-propagating the error between the consumed
and target block energy in a weighted fashion. The total consumed energy is fed back for controlling the frame-
level and GOW-level energy quota distribution.

At the encoder side, the block-level energy quota is used to determine the ME configuration of the selected
blocks. At the decoder side, the allocated energy quota is used for determining the ME/SI configuration for the
blocks that are not selected for the encoder-side block. In the following, details about the above mentioned steps
are given with reference to Figure 4-23.

4.6.1 GOW-Level Energy Quota Distribution and Control

This is the first step of energy quota distribution approach and is given in the left part of Figure 4-23.
Algorithm 8 illustrates the pseudo-code for computing the GOW-level target energy quota for both encoder and
decoder sides. Each GOW has z W-frames and one I-frame. When HDVC is initialized, the encoder and decoder
side target GOW energy quotas (e;6om,enc dec)) are computed considering the available battery levels (s, enc,dec))
and user constraints of total encoding duration (z,). First the potential encoding or decoding durations are
computed considering the available battery levels (line 3). These durations are computed using the formula:

ts = (o G+ D) (s + 25 ey )% 1))

ie {enc,dec}

(4-44)

Here, eiravg and ewrag are the average energy consumption of I-frames and W-frames respectively, that are
obtained using an offline analysis for various test video sequences [242]. The minimum of the two durations is
selected to determine the overall potential processing duration (line 4).

If the potential processing duration is less than the user-defined processing duration constraint (z), the
required duration is set (line 5) and the frame rate (f,) and GOW size (z+1) are readjusted to accommodate the
required coding duration in the available battery levels (lines 7-8). Afterwards, the target GOW energy quotas
are computed (lines 9-10). Since the consumed energy of a GOW may differ from the target GOW energy quota,
our approach adapts the target GOW energy quotas in a feedback control mechanism (lines 13-16). The error
between the consumed energy and target energy quota is computed after for each GOW. Our approach employs
a simple PID controller to control the target energy quota of the next GOW. y,, y; and y, are the proportional,
integral, and derivative gains. y, reduces the error, y; eradicates the steady error effects, and y, ameliorates the
stability. These gains are computed using the Ziegler-Nichols Method [243] using the settings given in the
following equation (K,=0.8, T,=2):

v,=06K, v, =057, v, 6 =0125T, (4-45)

4.6.2 Frame-Level Energy Quota Distribution and Control

Encoder-Side Energy Quota Distribution: The GOW-level energy quota is distributed among the I-frames
(e.rr) and the W-frames (e, wr) depending upon size of GOW (i.e., z+1). The energy quota at the encoder side is
distributed to the I-frame for H.264/AVC Intra-encoding and ROI identification (e, = e + eror), and to the
W-frames for selective subtask processing (ME of blocks), transmission, channel coding, and ROI
extrapolation: e, wr = eur + erx + ecc + €roiex.

The energy quota for the I-frame in the GOW (e, rr) is allocated based on the consumed energy of the previous
I-frames (e, /r) using:
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€oiF -1 + medlan(eC’IF([iz), )

€ = (4-46)
2
In order to avoid noise in the energy consumption, median operator is used for previous I-frames in the

history, while the immediately previous I-frame’s energy is used to compensate for the sudden error effects.

The target energy quota for z W-frames (e, wr = e,cow — e,ir) is computed and distributed among individual
W-frames (indexed by j) considering their temporal distance from the I-frame of the GOW:

( (1-v) v \I ( ! )
e wr = - + — K| e - > e |

lz-G-n 3 ") ) (4-47)
v = (l —min (0,0, )/max (0 iV iy ))

The amount of temporal correlation for a given W-frame with respect to its preceding [-frame decreases
depending upon its temporal distance. For offloading scenarios involving video coding, this means that it is
difficult to efficiently encode the video frames farther away from the preceding I-frame. This is due to the fact
that objects in farther video frames have more temporal distance and may not be captured by ME under a given
search range and energy quota constraints. Therefore, extensive search is required for farther W-frames, and
less motion search may be sufficient for the closer W-frames. To facilitate this, the proposed approach
adaptively distributes the e, wr energy quota among W-frames depending upon their temporal distance from the
preceding I-frame and variance difference (v) between the bordering I-frames. The variance difference v of two
consecutive I-frames hints towards the quality of the temporal correlation. Depending upon the variance
difference, a part of e, pr (first addend without v in Equation (4-47)) is equally distributed to keep the fairness
of allocation, in order to compensate for the energy consumption other than ME computations (like ez, e., and
erorex). However, the other part (second addend with v in Equation (4-47)) is distributed based on the temporal
distance to compensate for the temporal correlation changes. In summary, the W-frames farther away from the
I-frame get more energy quota. Therefore, the application configuration of subtasks/blocks in farther W-frames
can be set to exercise high output quality processing.

After processing each W-frame, the energy quota of the next W-frame is controlled depending upon the
consumed energy of the previous W-frames (e, wr). For instance, for z =4, the energy quota of WF, WF,, WF3,
and WF, can be computed as follows:

Cowra = ((l - U)/4 + U/IO)X (eL,WF )
Cwr2 = ((1 - U)/3 + 0/6)X (er,Wf' T € o wra )

4-48
€ wr 3 :((1_0)/2+U/3)X(61,WF_(e(,WF,l+e¢,WF,2)) ( )

€ ypa = (e,,w —(Comrn T Cmrn s ))

Decoder-Side Energy Quota Distribution: For offloading scenarios, the decoder needs to estimate the
missing information using the correlation between the missing information and the neighboring frames. For
video encoding, our approach distributes the energy quota mainly among the key I-frames in order to perform
the bi-directional ME in order to interpolate the frames and form SI. For i GOW, the W-frames are allocated
an average energy quota based on the history considering the energy consumption for SI
generation/interpolation and Slepian-Wolf decoder. The size of history is ‘/” previous GOWs each having z W-
frames. This is given by:
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The remaining quota of the i GOW is allocated to the decoding of I-frames (esr4.) and bi-directional ME
(eME).

€r = Ccow T Cwrs Cup T (61,1F T CF dec )/2 (4'50)

4.6.3 ROI Identification and Extrapolation

Although selecting the appropriate application-configuration at the encoder-side is important for energy-
efficiency, selecting the right blocks to apply this configuration is also important, because a block may differ
significantly from the neighboring blocks depending upon its texture and motion. As previously discussed in
Section 3.2.4.1, encoder side processing of selective subtasks (ME of blocks) may lead to significant energy
improvement, due to improved SI and reduction in the channel coded parity bits. Typically, the decoder cannot
perform a good estimation for the blocks with high motion and/or variance, especially at the object boundaries.
Therefore, it is of key importance in HDVC to spend energy at the encoder side to perform ME of the ROI
blocks. Note that if the boundary of the moving region is extracted, the HDVC decoder can exploit the
correlation of blocks belonging to the same object to predict the other blocks of the moving objects/regions.
Therefore, the key focus of the proposed approach is to accurately extract the ROI-blocks at the object
boundaries as given in Figure 4-24. These blocks are ranked according to their mvd value (see Equation (3-1))
and stored in a hash table, like the one given in Figure 4-24. Thus, blocks with high mvd have a higher motion
difference with their surrounding blocks, and hence form the boundary of moving object with high probability.

This approach exhibits an integrated motion-based algorithm for ROI identification and ROI-block selection.
Further, to reduce the ROI overhead, the I-frame ROI blocks are extrapolated for W-frames. The extrapolation
is considered by fitting the projected ROI blocks location to the nearest block boundary. The ROI map is
generated only at [-frames and extrapolated as shown in Figure 4-25. For the current W-frame, the ME of a ROI
block (shown in black) is performed and the final motion vector is achieved. The same block in the next frame
is obtained by reflecting the motion vector and then selecting the nearest neighboring block as shown.

4.6.4 Block-Level Energy Quota Distribution and Control

Once the energy quota for the task/frame is specified, it can be distributed among the subtasks/blocks. The
underlying concept is that energy is first distributed among the blocks of ROI and then non-ROI blocks, and the
energy quota allocated to a block determines the application configuration used for processing a block.
Algorithm 9 shows the ROI-driven block selection and energy distribution approach. Note that this quota
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distribution is only applied to the blocks of W-frames. The input is the frame-level energy quota of the W-frame
and the ROI map sorted with respect to the rank values of the blocks in a descending order. First, the maximum
number of selected blocks (7 mav) that need to be considered for encoder-side ME is computed using the frame-
level energy quota and the energy required for transmission, channel coding, and ROI extrapolation (line 1).
Note that the transmission energy is a function of the transmission distance d [244]. In several cases, the
underlying platform may not be able to provide the required throughput due to limited computational resources
and/or limited processing power. Therefore, the maximum number of blocks per frame (7/,) that can be
processed by the underlying platform needs to be computed (line 2) and the maximum number of blocks which
will undergo processing at the encoder-side (#;) is determined as the minimum of 7yEmex and ng., (line 3).
Afterwards, nror blocks are extracted from the ROI map starting from the highest rank value (line 4). If ngoy is
greater than the number of blocks in the ROI, additional blocks are extracted from the non-ROI map (line 7-8).

The target energy quota for one block is computed depending upon the number of selected blocks (line 9).
Afterwards, all the blocks in the selected block list are processed for ME starting from the highest rank blocks
first (lines 11-17). An appropriate application-configuration (ME configuration) is selected considering various
ME configurations that provide energy vs. quality tradeoffs (line 12). Multiple ME configurations can be
formulated depending upon the search window size, search pattern types, termination rules, initial search point
prediction and others as given in [67]. After the ME is done for the block, the consumed energy (ews) is
monitored (line 13). The consumed energy can be different from the target energy or the average energy of the
selected ME configuration. Therefore, we adjust the energy quota of the block and the average energy value of
the ME configuration in order to have a better ME configuration selection for the subsequent blocks. Depending
upon the error between the target and the consumed energies (line 15), the target of the next block is readjusted
by back-propagating the energy error (line 16). The weighting factor w controls the strength of back-
propagation. The total consumed energy of the W-frame is returned to control the frame-level energy quota (line
14-18).

Note that the decoder-side block-level energy distribution and ranking are very similar to that at the encoder
side, except that the energy quota for the I-frame includes the energy for forward and backward ME.

4.6.5 Evaluation of the Offloading Approach

For evaluating the proposed offload approach’ the Table 4-4: Performance, area and energy overhead of our proposed

. h (z=4 =120) for 90nm technol
proposed control approach is implemented on a approach (z=4, nxor=120) for 0nm technology

90nm technology node and the area and energy Latency Area Energy

results are reported in Table 4-4. The implementation [Cycles) GE [nJ]

. .. .. . GOW-Level | 5/23 11,103 18.4

includes one divider and three multipliers, which are  prame-Level | 2+12 8327 1.1

shared among the different calculation steps. For the = MB-Level | 6+360 14,238 2922
Total 1501 62,638 1211.2

GOW-, frame- and block-level calculations, 4
cycles/23 cycles (depending on s; or 54 signals in Algorithm 8), 2+2z+4 cycles and 6+3nro; cycles are required,
respectively (see parameters in Algorithm 9). Table 4-4 shows that the energy overhead is insignificant
compared to the savings of our approach. Moreover, the ROI extrapolation requires only 2 additions and a
search for minimum magnitude vector within 4 vectors. This is a negligible overhead compared to the encoding
process and our energy savings. Further, an H.264/AVC encoder is considered for encoding the [-frames.

Video Quality: Figure 4-26 illustrate the observations for video quality when using our approach. Figure
4-26 shows that our approach tends to increase the relative quality if the value of z increases, where z is the
number of W-frames between two I-frames. This observation is shown for “Foreman” sequence encoded with
Quantization Parameter (QP) = 18 (high video quality) and QP = 36 (low video quality) for the I-frames. The
later W-frames in the GOW are usually of lower quality compared to the earlier W-frames because of the
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Figure 4-26: Difference in PSNR for the propose approach and Figure 4-27: Proposed and consumed energy per (a) frame and
that of [4] for different quantization levels (b) GOW

increased temporal decorrelation with the I-frames. Since our approach allocates these later W-frames a higher
energy quota, a better estimate (or match) of the current block in I-frames can be found. This leads to a quality
increase even for these frames, which will not be possible when allocating energy without consideration of
temporal distance, i.e., equally allocating energy to all W-frames.

Energy Control: Figure 4-27 shows the energy quota adaptation at the (a) frame-level; and (b) GOW-level.
It shows that the proposed approach keeps the energy quota distribution close to the target energy; thus leading
to a reduced controller error (less than 1% for both frame- and GOW-level allocation). Figure 4-27 (a) shows
that over the period, the controller error (i.e., difference between the target and consumed energy) is reducing.
This is due to the adaptation of the controller output. Note that in Figure 4-27 (a), results for only W-frames are
shown, because the variance in the energy consumption for I-frames insignificant and are adapted using a
different equation (Equation (4-46)). An interesting observation in Figure 4-27 (b) is that the error between the
target and consumed energy at the GOW-level is almost insignificant. This is due to the hierarchical control of
the target energy quota which minimizes the risk of target energy quota violations.



Chapter 5 Video System Hardware Layer

The software layer approaches for computation- and power-efficient video processing system given in
Chapter 4 do not require any custom hardware. However, custom hardware architectures for video processing
systems are in wide use because they can result in high throughput, and high complexity and power reduction
potential. This chapter outlines some of the novel hardware architectural enhancements and custom accelerators
for highly efficient video processing systems. Efficient I/O and inter-node communications for video processing
system is discussed in detail. Hardware architectures of the systems and accelerators, specifically pertaining to
H.264/AVC and HEVC encoders, is given. Furthermore, the hardware accelerator allocation or workload
management (whereby the accelerator provides its services to multiple nodes) is also discussed, which can be
useful in shared hardware accelerator paradigms. Targeting the memory subsystem, power-efficient hybrid
memory architectures and SRAM aging mitigation are also presented.

5.1 Custom Video Processing Architectures

The approaches outlined in Chapter 4 can be employed on a given multi-/many-core system with little or no
modification. However, if a custom platform is implemented, with embedded soft-cores (cores that run
software), and hardware coprocessors or accelerators, an architectural support is required to achieve efficient
communication mechanisms among the computing nodes. A communication scheme must be adequate enough
to fulfill the computation requirements, as well as it must not bloat the performance of the system.

In case of heterogeneous many-core systems, with in-core, tightly or loosely coupled hardware accelerators
(see Figure 2-18), soft-cores with external memory and I/O ports, the data input/output to/from the system can
become challenging. Specifically for video encoders, the data from the camera can be analog, in non-standard
compliant format (e.g., instead of YCbCr 4:2:0 required by the HEVC encoder, the camera provides RGB), may
require clipping/chroma resampling etc. To address these issues, this section will present an analysis of video
memory, and an architecture to support reading/writing video samples to and from the video processing system
is discussed. Afterwards, the discussion about data communication is generalized and extended to multi-/many-
core heterogeneous systems.

5.1.1 Memory Analysis and Video Input

As seen from Figure 2-1, blocks of video needs to be fetched from the external memory or camera and fed
to the video processing system. This communication must consider the bandwidth between the video generating
source and the video processing system. A 16-bit DDR3 on Altera’s DK DEV 2AGX260N FPGA development
kit, running at 300MHz can theoretically support a maximum bandwidth of 16x300Mx2 = 8. 9Gbps. Taking a
conservative memory efficiency of 70% for a typical DRAM [245], this bandwidth reduces to 6.23Gbps. From
the discussion given in Equation (2-3), a system processing FullHD frames (1920x1080 pixels) would require
~0.58Gbps to read the video frame at frame-rate of £,=25. For video encoders, this frame also needs to be written
back to the external memory, and therefore, the total bandwidth requirement becomes ~1.16Gbps. However, if
Inter encoding is used, in that case, additional reference frame(s) must also be read from the external memory.
And from our discussion about Equation (2-6), a reference frame must be read at least 7, times (usually, /> 3)
for processing a single frame. With only one reference frame and =3, the bandwidth requirement swells to
~1.74Gbps. To generalize, the bandwidth requirement for 8-bit per sample, YCbCr 4:2:0 video encoder, with
n, number of reference frames, can be written as:

wxhx8x f,x(3+r,n,) (5-1)

However, it is possible that more than one video is processed concurrently by the video processing system.
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Such a paradigm is usually encountered in multicasting [74, 75] or multiview, 3D video processing [119, 241].
Assume that n, FullHD views/videos are processed in parallel by the video application. For n,=4, the total
external memory bandwidth required for Intra encoding of is ~4.6Gbps which can be supported by the FPGA
development kit discussed above. Additionally, note that external memory data transfer results in high-energy
dissipation. As seen in [169, 64], ~40% of the total system power is consumed by the external I/O and the total
bus power dissipation is directly proportional to the bus toggles [232]. Thus, increasing 7, not only increases
the external memory bus contention but also results in a larger energy consumption.

5.1.2 Video Preprocessing

Video samples provided by the cameras may be filtered before placing these samples on the external
memory. Usually, a Video Input Pipeline (VIP) is required to preprocess the samples, making them compliant
to encoder’s specification. For multicasting with 7, views, n, individual VIPs and n, base address in the external
memory (to store the video frames) are required.

The streaming video data from a video camera is fed to a VIP. The preprocessing pipeline consists of a
clocked video input sampler, a video frame clipper, a color plane-sequencer and an optional deinterlacer, as
shown in Figure 5-1. The video input sampler is used to synchronize the byte-serial data stream from the camera
by handling clock-domain crossings. Clipper
adjusts the resolution of the input video —)[Clocked Video In]—)[ Clipper ]—)[ Color Plane Sequencer ]
according to the specifications of the encoder.
Plane-sequencer converts a serial video stream (_[ 4:2:2 to 4:2:0 Chroma Resampler ](_[ Deinterlacer ]

(with one luminance and two chrominance

components) into a parallel stream for parallel Figure 5-1: Video Input Pipeline (VIP)

processing of luminance and chrominance components. The deinterlacer is used if the input is from an analog
video source. If the chrominance sampling does not match the encoder’s specifications, an additional chroma
resampler (e.g., 4:2:2 to 4:2:0) is used.

5.1.3 DDR Video Write-Master

This module is shown in Figure 5-2. Streaming YCbCr 4:2:0 pixels from VIP are routed to a 4:2:0 pixel
FIFO. A packet detection circuit detects the arrival of video samples and generates write enable signals to the
pixel FIFO. These pixels are forwarded to shift-

. . . Streaming Data (4:2:0)
registers, where every luminance and chrominance %

component has a .separ.ate shift-register. The backet Detection AGU Address
luminance shift-register is a 128-bits wide and oo z
chrominance shift-register is 64-bits wide. The T3 Wr'te¢Master EU’Stt g
write master controller determines when to push Buffer Controller | <= C:)ntroller nd >,§v
the data from the shift-registers to the external v | 72— Data gf:
memory. Depending upon the size of the video, the I v Lumma"cf LS = :5
Address Generating Unit (AGU) determines the [ Chrominance Shift Register | =
writing address. The write master controller also

directs the AGU by selecting appropriate address Figure 5-2: Frame writer hardware

in luminance address space or chrominance
address spaces in the DDR3 memory. The buffer controller provides the information whether a Cb or Cr address
space needs to be written. The software configures the AGU to assign starting address of the frame.

The current frame data in the external memory is stored in a triple-buffering order (called the ring-buffer).
This ordering facilitates frame droppings, because if the video system gets slower or stalls (due to DDR
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bandwidth or Ethernet constraints), frames can be dropped. Only the current frame under process is retained
and the last-written current frame in the buffer is updated, hence the name.

Moreover, to optionally write back the reconstructed block, an external memory write master is used. For
H.264/AVC and HEVC Intra-encoding, this write-back to the external memory is not required. However, for
Inter-encoding, reconstruction write-back is required. The memory write master is also configured via software.

5.1.4 Heterogeneous Computing Platform

As discussed earlier, for heterogeneous nodes, a communication mechanism must be employed whereby the
master node can communicate with secondary nodes. This mechanism must be efficient and should result in
minimal resource and communication overhead. For the proposed load balancing approaches presented in this
thesis, one requires a synchronization and

o2
load distribution mechanism, possibly on Master Node Interface Secondary Node | 1-2
accelerator  based multl—/many—c.ore JTAG UART [+ AR Save |, | Vaster g
heterogeneous system, where multiple Interval || | Port [ Port Port =
Timer
3 Compute <

heterogeneous cores process the input data Master Elonrent | |5
together with hardware accelerators. The Custom pocels =

& . Logic (c)) | Compute | | |3 EE g ci
architectural diagram of the proposed emen 2 3 =

system is shown in Figure 5-3. The cores H i j] -1

can be architecturally different, and these H 1
cores can also have in-core hardware -

S [Master | Readand
accelerators (in addition to the loosely- External ,f,’l‘;‘:gf", $g [ Port Write Logic
: Memory Controller g% | Arbiter
coupled hardware accelerators). The in- g 3 chc_ H,

core accelerators can be accessed via
Custom Instructions (Cls), e.g., as in Nios- Figure 5-3: Heterogeneous system with custom hardware components

I processor [185]. Thus, these cores

consume different amount of cycles to process the same job. A master node is used to distribute the jobs among
the other cores and accelerators. This node is also responsible for setting the frequency of all the other nodes in
the heterogeneous system (according to the algorithm given in Algorithm 5). Processing jobs can be assigned
to the loosely coupled hardware accelerator block, in which multiple accelerators pertaining to different
functionalities can reside. All the nodes (including both the soft-cores and the custom hardware accelerators)

are connected with the external memory via an external memory controller.

For this architecture, the data is processed as frames, which resides in the external memory. Each frame (can
also be called as a task) is divided into constituent tiles (or subtasks), and the tiles can be processed in parallel
by the nodes. The subtasks contain multiple jobs and each job contains a data block to be processed. Thus, the
master node has information about the number of jobs within a task, and determines the number of jobs within
a subtask for each secondary node. Further, the master node is also fed information about the deadlines, and the
compute and power profiles of the secondary nodes.

The custom interface for communication among the nodes consists of a register file, which is filled by the
nodes to exchange information. The master node writes information to specific addresses within the register
file, associated with a specific secondary node. For example, the master node writes the start and end addresses
of the data blocks in the external memory for a specific secondary node (corresponding to jobs associated with
the data blocks processed by the secondary node). This is done by the master node for all the secondary nodes.
A secondary node sends read request for its associated registers to a bridge controller (not shown), which aligns
the read requests from all the secondary nodes. If the master node has allocated a valid address and number of
jobs to process, the node starts fetching this data from the external memory and starts processing. Once all the
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jobs have been processed, the secondary nodes write to the appropriate status registers in the custom interface.
The master node, when receives this “jobs done” signal from all nodes, signals end of frame and gathers
statistics. Afterwards, the master node sends new memory addresses to the secondary nodes, for the new frame.

5.2 Accelerator Allocation and Scheduling

This section provides details about sharing a hardware architecture among different compute nodes, and
concurrently processing multiple video streams.

5.2.1 Accelerator Sharing on Multi-/Many-Core

One of the major technological challenges discussed in Section 2.3.1 is Dark Silicon. A method to solve this
issue is to introduce highly efficient, custom hardware accelerators, which while running at lower frequencies
(and hence resulting in lower spatial temperatures) can meet the throughput requirements. The hardware
accelerators can be coupled to the compute nodes as shown in Figure 5-3. However, efficient allocation of the
shared, loosely-coupled hardware accelerator to multiple threads/applications requires properly weighing the
computational capabilities of the nodes and their available frequencies.

In this section, the following problem is addressed: How to allocate the shared hardware accelerator among
the competing cores, such that the hardware is fully utilized, all application deadlines are met and the power
consumption of the complete system is minimized under a specific set of running frequencies? For this purpose,
an adaptive accelerator allocation scheduling approach is proposed, for using a shared hardware accelerator by
multiple, concurrently running independent threads, tasks or applications. This schedule not only accounts for
meeting the deadlines of the tasks/applications, it also helps to reduce the dynamic power by determining the
voltages and frequencies of the soft-cores. Once a soft-core offloads its tasks to the accelerator, the core can go
into sleep state which further reduces the power/temperature of the system. Summarizing, the following
contributions are made by the proposed allocation and scheduling approach:

e Shared hardware accelerator allocation schedule, which allocates the shared hardware accelerator
among the competing soft-cores such that the hardware accelerator is maximally utilized when the soft-
cores offload their tasks to the accelerator.

e Voltage-frequency tuning of the cores, such that given throughput deadlines are met by all running
tasks or applications, by distributing the workload on the programmable soft-cores and the hardware
accelerator, and the power consumed by the multi-/many-core system is minimized.

The outline of the proposed heterogeneous _4 Voltage-Frequency Generator (PLL) ‘

computing architecture is shown in Figure 5-4. 1£5 1f | frtots
As seen, the “System Monitor and Control” C C C
. . . ! 0 1 00 rtot-1
generates the appropriate signals to determine 3 ry ry External
. v 1 1 Memory
the frequencies of the cores and the accelerator Controller
allocation by deriving and solving an Interconnect Fabric (Network)

!

Accelerator Pool

optimization problem based upon the system

parameters. Cores, accelerator and the external

’ System Monitor and Control ‘

—
memory are connected via interconnect fabric. Arbiter Read/ £ |

. : . xterna
The accelerator consists of an arbiter to Write | [SRAM- Memory
determine the core accessing the accelerator,  f,—»| | Accelerator Masters

read write control circuitries to access on-chip
or off-chip memories, and internal SRAM
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the subtasks which can be offloaded to the accelerator can also be done locally by the core (via software).
Further, it is also assumed that the frequencies of the cores can be independently adjusted and the clock
frequency of the accelerator is constant and very low (i.e., the accelerator is always bright).

For the following discussion, assume that several independent tasks are concurrently running on each
compute core. In the coming text, only tasks will be used for demonstrating the proposed approach. However,
the proposed approach is equally applicable to concurrently running applications, or, threads of an application.
Each task has an associated set of subtasks, which must be finished within the given deadline. These subtasks
can either run on software or hardware. The objective is to offload the appropriate number of subtasks to the
accelerator, such that the total power is minimized and system meets the deadline(s). The discussions begin with
modeling the system, and then presenting a scheduling scheme to determine the best accelerator allocation.

5.2.1.1 System Modelling and Objectives
tt

| tho | tso

Consider that the many-core system has 7, nodes,
competing to offload their subtasks to the shared hardware

accelerator. The task i consumes #,; seconds and #,; seconds | ts 11 | th1 | to12
when its corresponding task is run in software and hardware |

|
|
|
diagrammatically shown as in Figure 5-5. This figure shows the | to 3 | ths3 | '4

. . . t 5,21 th,Z (g 5,22
respectively. An example accelerator allocation is & | | S

time consumption of each application on the programmable t=totton ts2
core and the hardware accelerator. Notice that for an epoch of the

t;max S€CONds, the total time for which the accelerator is engaged | t, | t, | t,, | t, s |

by the cores is given by #,; < timax. Further, a task is run on a
single core, therefore, n; = ki, and the index i (for tasks) and &

& ’ > T e ) ] ( ) Figure 5-5: Breakdown of an example execution time
(for cores) can be used interchangeably (i.e., i=k). on a 4-core system and a shared accelerator

The objective of the accelerator allocation approach is to minimize the power consumption of the complete
system. If the power of a core k (px) is a function of its frequency f, then, mathematically, the objective is:

. [
min (37, v, (1)) (5-2)
At the same time, it is required to maximize the hardware utilization, i.e., the difference between the epoch
time and the time for which hardware is engaged (;ma-tr: € R", positive real) should be as small as possible. In

order to do so, we proceed by writing the total cycles processed per second on the accelerator, by all the cores
to be equal to:

k11)771
Chioleeno T Cnalscena T T Chi Meecnk,, 1 T Z ieo SnaTlsecn.k (5-3)

In this equation, ¢, is the number of cycles per task and 7.5 is the number of subtasks per second for task
i on the shared hardware accelerator. Therefore, if the difference #; q-t1, needs to be minimized, the number of
cycles processed per second on the accelerator must be matched to its clock frequency f;. Note that the hardware
is running at a fixed frequency. Mathematically, this constraint can be written as:

-1

L%
Z k=0 Ch,knsec,h,k = fh (5_4)

Additionally, since the deadlines should be met, therefore, the additional constraint is:

+ n >n Vke{0, Lk

sec,s,k sec,h .k sec,k

tor L} (5 -5)
This equation shows that the number of tasks per second on the hardware (s;ec,5,;) and software (7;ec,s,;) should
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at least equal the number of total tasks of the task i=k per second (#ec ).

Moreover, the clock frequencies of the cores should be bound. Thus, an additional constraint is:

f/c,min = f/c = k.,max (5_6)

5.2.1.2 Optimization Algorithm

In order to optimize the above function given in Equation (5-2), we are required to derive pi(fi) in terms of
the system parameters which can be tuned. If the cycles per task (cx) and the number of tasks per second (7ec,.4)
on accelerator by task i=k are known, one can determine the time spent by task 7 on accelerator in the epoch #
by using the formula:

n
Liw = 7 (5-7)

Thus, the time consumed on core & (#x) can be determined by using the following relation:

[ ChMens )
Ly =t =0, =1t 1_;| (5'8)
K f/l )
Using the above equation, the frequency of the core can be determined by:
CS,'(nSEC,( - nsec, ,')
fk _ k k h,k (5-9)

s,k
In this equation, ¢, is the number of cycles per task of task £ on the associated soft-core. Here, the identity
given in Equation (5-5) is used.

Now, by inserting Equation (5-9) in Equation (5-2), the power consumed by a core can be written as:

( )

Cvk(nscck_nscchk) (‘/ll_l/lznscchk\
p/c(fk):pkl ~ — — |:pk I E— (5'10)
Ltt(l_(ch,knsec.h,k / fh))J 1_W3nsscyh«k

In this equation, v, > and w3 are constants given by:

Vi = Co e /tr Vi, =Cx /tr V3= Chk / fh (5-11)

Therefore, the complete objective function with constraints can be collectively written as:

) ( ktot—1 (‘//1 Yok \\
min Z ‘-0 pk
1 - V3l een .k

subject to:

(5-12)

ktot—1

oo Snaseeannx = S

Vi =V o
fk,min = = fk,max Vk € {O’ ’k/o(-l}
-y 3 secon i
As noted, the optimization objective given in Equation (5-12) is to find an appropriate number of tasks which
are offloaded to the accelerator (s x), for all applications. However, the optimization algorithm presented in
the above equation is non-linear, even if power and frequency approximately forms a linear relationship for the

given set of frequencies.
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fps=120.

In this case, the optimization (finding the value of nq.., i« for all applications) is achieved using Nelder-Mead
method [246]. Nelder-Mead is a greedy heuristic that iteratively determines the value of the given objective
function (v) for the given inputs and moves towards an optimum. The advantage of using Nelder-Mead method
is that it does not require the derivatives of the objective function to be calculated.

In each iteration of the Nelder-Mead algorithm, the objective function is evaluated for the set of inputs (#sec, ik
in this case) to determine the “cost” of these inputs. That is, for the given 7ngecn, the value of v=>pi(fi) is
computed. Since in this case, constraints bound the search trajectory to find the optimum, therefore, the original
constrained optimization problem is modified into an unconstrained problem. Specifically, penalty function
method is used [247]. The function is evaluated as given in Algorithm 10. Here, the cost of the function increases
if the difference between #, and ¢, increases (maximum accelerator utilization, line 6). Since we require
maximizing the accelerator utilization, therefore, we introduce an additional penalty, depending upon the
difference between the number of hardware operations and the total operations (lines 8-9). Further, if the core
frequencies that will support 7.« are lesser than the minimum frequency (fi min), or larger than the maximum
frequency (fimar), it Will also result in increasing the cost of the function (bounded frequencies, line 10-11,
Equation (5-6)). Once the cost of the function v is determined, it is compared with the previous costs and
algorithm moves in the direction of the lowest cost.

Note that in the proposed approach, the accelerator populates its scratchpad by fetching the data directly
from the external memory. Further, even if the size of data processed by a core and the accelerator is equal, the
accelerator will still generate higher throughput, due to its custom logic implementation.

5.2.1.3 Evaluation of Accelerator Allocation

For illustrative purposes, the mean and variance computation application is considered. This application will
fetch a block of 4x4 pixels from the image and generate the mean and variance of the region. This type of block-
based variance computation is significant for texture classification and efficient image/video compression (e.g.,
see Section 4.3.3.2, where the CTU is divided into 4x4 blocks, and the mean and variance of each 4x4 is
calculated).

For this evaluation, the Sniper x86 simulator is considered along with the McPAT power simulator [226,
227]. For this task, our simulations show that the number of cycles per job on the soft-core ¢, =492 and ¢y =
70 ¥ k cores. The video frame is stored in the external memory. The cores process different sized parts of the
same video frame and the hardware accelerator partially shares the workload of each core, by allocating its
resources according to the proposed approach. A part of video frame is brought to the internal SRAM scratchpad
of the accelerator. Further, if the size of the video frame a core needs to process, or, FPS requirement increases,
the number of jobs per second (7.+) also increases, and thus, more power and/or accelerator schedule should
be allocated to that task.
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Figure 5-8: Overview diagram of the multicast H.264/AVC Intra-only encoder

Figure 5-6 shows the relationship of the power consumed by the system, by changing the FPS and the total
number of cores competing for the hardware accelerator. For this evaluation, a FullHD image of size 1920x1080
pixels is considered, and regions of this image are distributed among the applications. This way, the total number
of jobs per second (n,..) of each task are different, and thus, the accelerator demand varies for all these tasks.
Further, we consider #=2sec and f;=100MHz.

Figure 5-7 (a) shows an example distribution of the hardware accelerator to the tasks. Notice that some of
the tasks (e.g., 2-4) mostly run their jobs on the software. Further, summation of the time consumed by the
hardware accelerator will be almost equal to #, which shows that the accelerator is 100% utilized. Figure 5-7
(b) shows the corresponding frequencies of the cores for the proposed offloading to the hardware accelerator.
As noticed, the tasks with considerable accelerator allocation are usually running at a much lower frequency on
the soft-cores. Additionally, the frequency of a core also depends upon #ecix and a larger ng..« either requires
more offloading or a higher core frequency, determined by the optimization program given in Equation (5-12).

5.2.2 Multicast Video Processing Hardware

In Section 5.2.1, the details about sharing a hardware accelerator among different soft-cores is presented.
The hardware accelerator would process the subtasks of the soft-cores in a round-robbing fashion. However, for
certain types of workloads (like video encoding), processing a job or a block of video data depends upon the
output of the previously processed job(s) of the same task. Therefore, the hardware needs to adapt for every
application (context-switching), as would be the case in the multicasting scenario. Similarly, the data associated
with different jobs can be coming from different tasks, and therefore, a mechanism is required to efficiently
provide this data to the hardware accelerator.

In the same direction, an efficient hardware architecture to realize concurrent processing of multiple videos
on the same device is presented in this section. The goal is multicast scheduling of the H.264/AVC encoding
loop using hardware replication and reutilization, to process multiple video sources in real-time, area-efficient
manner. Using a single device results in lesser cost and easier management of the system.

A high level overview of multicast H.264/AVC Intra-encoder is shown in Figure 5-8. The target of this
encoder is to encode at least four FullHD frames at 25 FPS. Before encoding the individual views, the input
video is preprocessed and written to the DDR3 memory. The encoder reads video frames from the DDR3
memory and compresses them. Encoding is achieved using custom hardware which will be further discussed in
Section 5.3. A single soft-core is used to initialize the control registers of the VIPs and the 1/O ports. It also
commences the encoding, whereby the hardware co-processors start fetching video samples from the external
memory. Notice that only a single H.264/AVC encoder is used for multiple video inputs.

Once the current frame buffer is ready, encoder fetches the data from the external memory, using the external
memory read master. The encoder collects burst of data from the external memory and rearranges them in a
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Figure 5-9: (a) Block processing scheduler and (b) example schedule with n,=4

“MB-FIFO”, where each entry in the FIFO is one MB-row width (256-bits) wide. Note that there is a separate
FIFO for each of the n, views. Every “MB-FIFO” is a set of three separate FIFOs; one for luminance and two
for chrominance components (Cb and Cr). The luminance FIFO is of size 16x16 and the each chrominance
component is 16x16/4. Note that these MB-FIFOs are also used for clock-domain crossing as the DDR3 and
the encoder can run on separate clocks. When the data in MB-FIFO is available, it is pushed in the H.264/AVC
Intra-encoding loop.

Now, the mechanisms by which video data of distinct video sources is forwarded to and collected from the
video encoder are discussed.

5.2.2.1 Video Block Scheduler and Re-Scheduler

As mentioned earlier, Intra-encoding a block of video frame cannot be pipelined and a block must wait for
the previous block in the encoding loop to finish (see Section 2.2.1.1). Further, blocks must be processed in
raster-scan. Thus, the building modules of the encoding loop are free if not in use and only one module of the
loop is active at one time, giving rise to the so-called bubbles (< 100% hardware utilization). Considering the
impact of these bubbles on the multicast video encoder, large latency, area and energy overhead is incurred, as
the loop is idle most of the time.

Thus, it is proposed that instead of using n, encoding loops in parallel to process n, independent frames,
encoding loop’s modules be reutilized in a time-multiplexed manner. This is accomplished by a block-level
scheduler, which is used to push blocks of each view into the encoding loop in round-robin fashion. The
scheduler is shown in Figure 5-9 (a) and an example schedule for n, =4 is shown in Figure 5-9 (b). This helps
in increasing the hardware utilization and reducing Silicon area. Additionally, the total energy consumption of
the encoder decreases. However, note that in order to generate the bit-streams, a separate Entropy Coder (EC)
unit for each view is required. In the proposed approach, a Context Adaptive Variable Length Coder (CAVLC)
[32] is used as an entropy coder. The CAVLC units are fed via a re-scheduler. Using a single CAVLC unit for
the multicast encoder is difficult to realize due to two factors.

e Firstly, a separate CAVLC unit per video stream is essential because the CAVLC unit requires at least
16x16+2x8x8 = 384 cycles to process a full luminance and two chrominance blocks. This is because
each quantized coefficient (see Figure 2-3) must be coded using the previous quantized coefficient, and
hence the name context adaptivity. Further, the bits generated by these coefficients must be pushed into
a bit-buffer in serial. This is larger than the 183 cycles/block cycle budget required to process a 4K Ultra-
HD frame (3840%2160, i.e., four 1920x1080 frames) at 25 FPS, if the hardware is running at 150MHz.

e Secondly, the context adaptivity required in CAVLC can only be realized by using independent data
buffers for each view, which is very hard to maintain by a single CAVLC unit and will incur large
latency.

Note that the output of the scheduler is registered because of a MUX in front of the I16MB loop. Contrarily,
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re-scheduler’s output is directly connected with all CAVLC units. Only a “valid” signal is required which
determines the CAVLC unit to which data is directed.

It is possible to insert block-based CABAC units [248] seamlessly in the proposed multicast encoder, instead
of the block-based CAVLC units. The proposed multicast video encoding scheme is independent of the type of
entropy coder used. CABAC provides better compression efficiency compared to CAVLC (up to 15%).
However, note that up to 15% bitrate savings by using CABAC instead of CAVLC will only occur in ideal
scenarios. Further, the latency incurred by CABAC will be higher compared to CAVLC, as CAVLC is the low
complexity entropy encoding alternative in H.264/AVC.

Although the presented multicasting scenario is explained with the help of H.264/AVC, it is also applicable
to HEVC and other state-of-the-art video encoders.

5.3 Efficient Hardware Accelerator Architectures

In Section 5.2, different schemes for allocating the shared hardware accelerator to multiple threads or
applications is proposed. This section deals with efficient design of some hardware accelerators, specifically for
video encoding applications (H.264/AVC and HEVC).

5.3.1 Low Latency H.264/AVC Encoding Loop

A multicast solution for H.264/AVC is given in Figure 5-8. The architectural details about the H.264/AVC
video encoder used in this design are further discussed here. The goal of the architecture is to provide high
throughput, low latency and area-efficiency, and be capable of encoding FullHD views in real-time. H.264/AVC
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sequential dependencies, which limit the (')DC; ('“Vterée),
. X AC Iscrete Cosine
throughput of the encoder. A high-level i ) Transformation
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values of the left, upper, and upper-left Figure 5-10: H.264/AVC Intra processing loop architecture. The current MB is
MBs (Intra prediction generator in Figure labelled as X, the predicted and residue MBs are labeled X* and X; sequential

5-10). The residue X" (i.e., the pixel-wise data dependencies are shown by dashed arrows (@ and @)
difference of the predicted MB X" and the actual MB X) is sent to the transform block. There, the residue is
processed by the Discrete Cosine Transformation (DCT), Hadamard Transformation (HT), Quantization (Q)
and forwarded to the Entropy Coding. Additionally, the data is locally decoded, i.e., processed by Inverse
Quantization (IQ), Inverse DCT (IDCT), Inverse HT (IHT), and Reconstruct. The reconstructed MBs are
required as a base for the next predictions. There are various data dependencies inside this loop and those with
the highest significance for encoding performance are explained in the following.

e Dependency 1: The main performance degrading dependency comes from the fact that MB processing
cannot be pipelined. Before entering the encoding loop, the current MB has to wait for the previous MBs
in the loop to be fully encoded and then locally decoded. The dashed arrow labeled O in Figure 5-10
depicts this dependency.



97
Chapter 5 - Video System Hardware Layer

[ Alt
, Altera SDRAM era NIOS I
600 Mbytelsp> *" ¢ troller MB-level | | Multicast and Embedded CPU
Y Scheduler External [« Frame-based
1 Memory control of
DDR3 DDR3 Read Configuration Cointrol----> Encoder
SDRAM Master € i Avalon MM,
Input \ 4 600 MByte/s
Frames e Prediction-, [h " 4RO =oded
i | SAD-, and X N————
. Residue- T6x16 L 4x4 [HT/DCT| On-Chip
Video Inputs| [ Generator EB)R;“"!
co —& ata
> §§ | Snoop —_Code
& - )
. =9 X Likely Context i
: at —— qug Adaptive .
£ Prediction % Entropy || Gigb>
@ 3 %’ & Control vV Vv Coding
ke To DVI
S O TFrame Buffer TG Reconstruct
Proposed Encoding Loop ALTERGAXAI‘-IS&:

Figure 5-11: Proposed hardware accelerator architecture for multicast H.264/AVC Intra video encoder. This design also shows the
connections of the multicast encoder with the I/O ports of the system

e Dependency 2: The transform block consists of two paths, one processing the AC part of the spatial
frequencies, the other processing the DC part. The outputs from the DCT are fed both to HT in the DC
path and Q in the AC path. However, HT cannot start execution until the whole MB is processed by
DCT, but the Q and IQ blocks in the AC path can start processing earlier. This dependency is shown as
arrow labeled @ in Figure 5-10. Additionally, to compute IDCT, data from both DC and AC paths is
required. Therefore, IDCT has to stall and wait for data from the DC path.

e Dependency 3: The entropy-coding (CAVLC or CABAC) processes the DC output coefficients before
the AC coefficients, but the DC coefficients are generated later. Label @ denotes this dependency. In
addition, the entropy coding scheme also requires to reorder the data before processing it. This adds to
the latency of the output generation.

o Dependency 4: Video frame samples in the form of MBs are brought from camera or off-chip memory
to the encoding modules (shown by Label @). This transmission incurs high latency if the encoding
loop’s workload and efficient reshaping of video samples into MBs are not considered.

Low latency and high throughput for H.264/AVC encoder are obtained by addressing the dependencies
presented above. The resulting architecture with hardware co-processors is shown in Figure 5-11. This figure
elaborates the design of H.264/AVC hardware accelerators, and their interconnections with the video I/O
(Section 5.1) and multicast enabling modules (Section 5.2.2.1). Area- and computational-efficiency is obtained
by designing fast, area-efficient hardware accelerator circuits. Instead of a single module of the encoding loop,
the focus of this section is on the complete H.264/AVC Intra-encoding system. In short, the contributions of
this section are:

e Adaptive H.264 Intra prediction scheme by utilizing a small and speedy edge extractor for scheduling
the calculation of different Intra prediction modes. The user can configure the number of predictions to
increase the throughput of the encoding loop.

o Area-efficient transform module design where AC and DC path of the encoding loop are decoupled
to reduce latency. Moreover, folding DCT/IDCT and utilizing the same hardware resources and
interlacing of Q/IQ blocks reduces the total silicon footprint of the platform.
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5.3.1.1 4x4 Reordering and HT Lookahead

To decrease the latency of the transform stage (Dependency 2 in Section 5.3.1), a method is proposed to
decouple the AC path from the DC path in the transform block. The inner blocks of the transform unit work at
a 4x4 granularity. Thus, the residue 16x16 block is subdivided into 16 4x4 blocks using the 4x4 ReOrder (RO)
stage as given in Figure 5-11. The residue generator stage provides one line of X’ (16 pixels in 1 cycle, i” line
of the MB given by X;). Whenever four X'”; are accumulated in the input registers of the 4x4 RO stage, RO
generates four 4x4 blocks and pushes them to the input FIFO of the 2D-DCT stage. As mentioned in Section
5.3.1, HT cannot commence until all 4x4 blocks are processed by the DCT. However, by simplifying the DCT
formula, it is observed that the n™ output DC value (which is the »” HT input value HT";,) obtained from the
DCT by processing the n” 4x4 residue block (X") can be calculated by:

4 4
HT, =3 ZX,,"_’/,’”, n=1,...,16 (5-13)

i=1 j=1
This shows that HT";, can be generated by adding all the entries in the 4x4 block. Thus, the DC outputs are

generated at RO stage instead of the DCT stage, effectively decoupling DCT from HT. This process is shown

in Figure 5-12. A residue line can add to the MB Residue line X"

current accumulators (shown as registers R) of

the lookahead HT memory or it can trigger a
new DC coefficient generation, controlled by
the counter administering the MUXes M. Using
our proposed scheme by generating HT
transformed coefficients ahead of DCT

transformed coefficients results in reduce

latency, as the entropy coding can start earlier.

. . : v
Since IDCT requires IHT transformed data i | Int‘érmediate HT look-
(Section 5.3.1), therefore, the output of AC ’ ’ Address registers ih?fad
. . . . . N > er
Quantization (i.e., 16-bits per pixel, 256-bits ety Counter " !

per 4x4) must be stored in for the complete MB

in an intermediate memory (256x16 = 4096 Figure 5-12: HT-Lookahead buffer filler responsible for pre-computations
bits). However, this scheme eliminates the need of this buffer as DC path is executed first and the IDCT can
fetch the data directly, without the need of an additional storage memory.

The entropy coding requires the arrival of 4x4 blocks in a Z-fashion [32]. The proposed RO unit generates
the 4x4 blocks for the 2D-DCT unit as required by the entropy coding on the fly, eliminating the need for an
extra RO unit in front of entropy coding. This reduces the latency of the whole encoder (addressing Dependency
3 from Section 5.3.1).

5.3.1.2 Transform and Quantization Stage

In order to save area, DCT and HT are employed in the same hardware block, in a time-multiplexed manner.
DCT and HT equations are similar, and these transforms can be implemented using butterflies [249, 183]. HT
and DCT butterflies are composed of two stages (one for horizontal and the other for vertical transform). Each
butterfly can process four inputs simultaneously, and eight butterflies are required to process a 4x4 block. In
order to save area, the architectures are folded and the butterflies are reused for both horizontal and vertical
transform in HT/DCT and IHT/IDCT. This arrangement is shown in Figure 5-13, where a MUX in front of the
butterflies determines whether to provide new or previously computed values to the butterflies. Further, the
horizontal/vertical transformation is implemented via rewiring the output. Therefore, the output is generated
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with a single cycle delay. As seen in Figure 5-13 (b), the IHT/IDCT module is also Inter-ready (as it can also
discard inputs from the IHT buffer using an additional MUX).

The data-flow-graph of the HT/DCT butterflies’ output till the input of CAVLC is shown in Figure 5-14.
From Point A to Point B, the flow graph denotes the rewiring as explained for Figure 5-13, in the first iteration
of the folded HT/DCT. In the next iteration, the rewire function again transforms the data from Point B till Point
C. The quantizer does not rearrange data, and hence is not shown in this figure. Since the data is jumbled,
therefore, before feeding this to the CAVLC FIFO, it is rewired from Point C to Point D because the CAVLC
unit requires the output data organized in the frequency-scan manner [32]. Thus, an additional latency is saved
by avoiding the rewriting of the 4x4 quantized coefficients.

Similar to reusing hardware in HT/DCT and IHT/IDCT, the proposed architecture combines the Qunatizer
(Q) and Inverse Quantizer (IQ) in DC and AC paths as shown in Figure 5-15 (a). The quantization and inverse
quantization relationships, both for DC and AC paths, are given in Equation (5-14). Depending upon the QP
value, quantization coefficients (¢;), inverse quantization coefficients (dg;) and other values (g .cons> Gibits> i per)
are selected. Since the goal is to reuse hardware for maximum area efficiency, the multipliers and barrel shifters
are shared by interlacing Q and 1Q. This scheme is shown in Figure 5-15 (a).

Ope. = (|DC1|>< q9; + Zqi.cansl ) > (q‘,bm + 1)

QA(-_; = (|A C[|>< q,+ qi’w}m)>> ;e
(5-14)
IQDC"‘ - (((QDC«’ x dqi)<< qi,/?er ) + 2) > 2

IQAC,i = (QDC‘,t x dqi)<< 9 per

Note that the one cycle latency in the DCT’s output is exploited in Q/IQ unit as shown by the schedule in
Figure 5-15 (b). This schedule represents how Q and IQ units process DCT output. Multipliers are costly in
terms of area (usually implemented via DSP blocks in a FPGA and there is a limited number of DSPs available).
Further, the shift operation requires barrel shifters where each shifter requires 64 multiplexers for a 16-bit input.
However, in the proposed architecture, an extra output buffer (Delay Buffer) is required for assisting in
scheduling. Moreover, as required by IDCT, the folded architecture of IDCT is also provided with valid inputs
in alternate cycles by the 1Q stage. In the proposed implementation, a single-bit register circuit that mimics the
registers generates the output valid signal.

In short, using the proposed HT/DCT (IHT/IDCT) architecture given in Figure 5-13, we can effectively
reduce the area by half compared to the standard H.264/AVC transform stage implementations (see Figure
5-10). First, due to the folded structure, only four butterflies are used instead of eight, per transform. Since the
4x4 output of DCT is delayed by a single cycle, we allow Q and IQ to share the multipliers and the barrel
shifters. Therefore, only 16 multipliers and 16 barrel shifters are used, instead of 32 multipliers and 32 barrel
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shifters.

Further, the proposed folding and interlacing of Q and IQ results only in a penalty of two increased
computational cycles. This is shown in Figure 5-15 (c). In the nominal case, the DCT and AC quantization takes
place for the complete MB (i.e., 16 DC coefficients are generated). Afterwards, the DC path can commence,
which is followed by pipelined AC inverse quantization and IDCT. However, in the proposed approach, DC
path is executed first due to the HT lookahead scheme (see Figure 5-12). Afterwards, the DCT, quantization,
inverse quantization and IDCT are executed in a pipelined manner.

5.3.1.3 Mode Decision

The Mode Decision module has to select one mode out of the four available modes for H.264/AVC (which
are usually termed as V, H, DC, and P for 16x16 MB). It can apply full search to select the best mode (i.e., the
best X") using either SATD or just SAD between X and X'. The best mode decision is rather slow if the
generation of X” and the cost calculation for every mode is computed sequentially using one hardware unit. On
the other extreme, the parallel implementation of all four modes would demand a significant amount of
hardware. Therefore, it is proposed that only 16 adders/subtractors are to be used and thus, SAD of a luminance



101
Chapter 5 - Video System Hardware Layer

MB can be generated in 16 cycles. A full-reconstructed 16x16 MB is available from the reconstruction block
(generating one reconstructed MB line) after 20 cycles.

Figure 5-16 shows the proposed Mode Decision module. FIFOy; contains X and this data is then written to a
shared on-chip memory that stores line-by-line MB. The pipelined Edge Detector (discussed in Section 5.3.1.4)
unit predicts the order of the modes to test by finding the most-dominant edge for X. Using this order, predictions
X' are generated by the prediction generator and

the residual data X is evaluated by calculating the X_ro_|v|v—by—row X[ Eioe Dotocta 1.0O™ e
SAD and stored in the same on-chip buffer as X at FIF_OI L= |
distinct address space. The residue calculator ) = _ X"to4x4RO |
generates X; and passes it to both the SAD unit ) X0 XXX X | Addr v

and the residue memory block. After all residues X | : L — ' Mode
are stored into this memory, the residue resulting |—| Reidue P{sanhy Dzdcstign
in the lowest SAD value is written to the 4x4 RO . | X |
stage. Note that if the amount of cycles needed for MH Prediction Generator [<— — —
encoding does not comply with the resolution and e — — — — -

frame rate requirements, the proposed SAD unit
can be configured to use the down-sampled version
of the current MB for residual calculation, where the down-sampling factor denoted by dy means that every d;
line of X is used for the SAD computation. When d; > 1, then the number of cycles for one SAD computation

Figure 5-16: Mode decision module for Intra 16x16

decreases. For example, for one luminance MB with d; = 2, it takes 8 cycles for the SAD computation rather
than 16 with d; = 1. However, if d; is larger than 1, then X’ is also downsampled and thus it must be updated
with the full residue after final mode selection.

5.3.1.4 Edge Based Mode Prediction

If the encoding loop cycle latency does not comply with the allotted budget, it becomes necessary to sacrifice
some encoding efficiency to meet the performance goals. As the transform loop is essential to the encoding
process, usually less cycles of the overall budget are available to the Mode Decision block. Unlikely predictions
are not selected as candidates for residue generation by using a preprocessing stage. This procedure is not
required for parallel SAD implementations but it is useful for a sequential mode decider. Various algorithms
are proposed in literature for mode prediction and elimination of unlikely modes [6, 127], where texture-based
edge extraction information is used to determine the probable modes. Once the reconstructed data is available,
the most suitable modes are applied first and the other modes are either delayed or even skipped. However, an
edge extraction procedures for a 16x16 block will require 256 iterations (requiring a tan”’ function and a divider)
plus dominant mode search cycles. Therefore, it cannot be embedded as a stage in the encoding loop or parallel
to the encoding loop for 4K-UHD sequences (encoding loop must finish within 183 cycles for 150MHz at 25
fps). It can, however, be implemented as a separate pipeline stage outside the encoding loop. This introduces
latency and limits the throughput of the encoding process. In addition, the area overhead might become too large
if parallel edge extractors are employed. Moreover, the edge-threshold is decided at design time but it is not
applicable to every video scene. In contrast to this, the proposed approach uses a lightweight and efficient mode
prediction process with a modified version of edge extraction procedures, but can still extract the dominant edge
information from the input MB and does not require an edge-threshold, which would have to be adapted to the
scene conditions.

For the current MB X,, the proposed method can run in parallel with the residue calculator and transform
stage and can generate the likely modes before the reconstructed previous MB X,,.; is available for the prediction
generation stage. The crux of the method involves the estimation of edge pixels at the borders of the MBs by
computing a sequential running-difference rd. This means that only one subtractor and one ABS (absolute)
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modules is used for both the top and bottom borders, and one subtractor and one absolute module each for the
left and right borders to detect the dominant edge direction. For example, at the vertical border b or ¢ of the MB
in Figure 5-17, rd; is computed as:

rd, = |X, - X Vi=1,..,15, je{l, 16} (5-15)

i+,

The pixel location i where rd; is maximum is declared as the point where the edge passed. Let E£,=i be the
location of the edge passing through b at 7, generating the maximum rd; given by rd,. Similarly, edge E and
running-difference rd at each border is found and the two borders with maximum rd are declared to have a

passing edge. This comes up with six distinct I 17 a )
possibilities, as shown in Figure 5-17 where only one \I/ H T vV 6 N
edge out of the six can occur. Using this edge detection 7 S b 5 c
approach, the probabilities of modes for every line for /DC /DC/ l \3\ | J /4/

various HD sequences are computed, and Algorithm 11
is devised for selecting the precedence order m of
prediction generation. When the difference between all
rd; are less than some threshold (currently, it is kept constant at 5 as there were no observable dependencies on
the input data), it is concluded that there is no edge and hence the algorithm detects Liney, or no line. Note that
the hardware works on a single line of input, i.e., X;. In addition, in the proposed Algorithm 11, the planar mode
(P) is never selected first and intermediate values for P [32] can be generated in parallel to the other modes
preceding it, therefore, P mode prediction/residue computations take the same amount of cycles as the other
modes. A parameter 6 is defined as the number of allowable prediction (i.e., SAD) computations. The value of
0 can be altered to compute SADs for the most likely modes, in order to meet the cycle budget of the encoding
loop. With 6 = 1, there is no need of SAD computations and the most probable mode is used to generate

Figure 5-17: Strongest edge detection approach

prediction and its residue is forwarded directly to the transform stage. For 1 < <4, the proposed approach start
with the most probable mode in m and computes the SADs.

5.3.1.5 Evaluating the Proposed H.264/AVC Architecture

Here, some evaluations of the proposed H.264/AVC encoding loop are presented. For comprehensive details,
refer to Appendix C.

Encoding Loop: In the proposed encoding loop, the transform stages are merged to save area and power,
while resulting in minimum cycle-penalties. In [5], authors have also designed a multi-transform engine, which
merges all transforms (HT, IHT, DCT, IDCT) in the transform loop. Our proposed scheme only merges
HT/DCT and THT/IDCT. However, the total area Table 5-1: Area comparison of the transform unit for TSMC 65nm
consumed by our two separate transform units is technology [264], power consumption via Altera [288].
lesser, because [S] implements large multiplexers. |

) ) Baseline | This work | [5]
See Table 5-1. Further, the increase in the proposed TR T 21.68 15.04K 21.39K
merged Q/IQ unit is due to the delay buffer used by Q1Q 67.32K 60.52K 51.62K
. . . Total 129K 106.45K 110.29K
our approach for interlacing Q and IQ (see Figure Power (mW) 103923 088,38 1015.93

5-15). The complete transform unit proposed in [5]

uses 110.29K gates, while our approach uses 106.45K gates. For a throughput of 16 pixels per cycle, this
corresponds to 6.89K gates per pixel and 63.5mW per pixel via [5], and 6.65K gates per pixel and 61.77mW
per pixel using our proposed approach. Note that the proposed encoding loop is merged within the multicast
H.264/AVC video encoder with n, parallel videos as given in 5.2.2. Therefore, the area and power consumption
of [5] should actually be multiplied with n,, as [5] does not provide hardware sharing for multicasting solutions.
On the other hand, we use the same hardware for all the encoders. Thus, with n,=4, our schemes reduces the
area of the transform unit by ~4.14x.
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Edge Based Mode Prediction: For the
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suggest that the PSNR curve for likely mode Figure 5-18: Hit rates in percent (avg. over QPs 18...32, step size=2) for
predictions matches the full search Intra mode various sequences; H: priority of full search within mode schedule
(also called Closed Loop (CL)) selection closely. As a comparison to the likely mode selection procedure
presented in this paper, the PSNR curve for Open Loop (OL) algorithm [129] with 8 = 1 is also plotted. Notice
that our scheme outperforms the OL algorithm.

Further, the edge detection approach presented in [6] uses 8.4K gates, while our proposed edge detection
scheme only uses 4.4K gates for TSMC 65nm technology. Moreover, [6] requires testing at least two Intra
modes (0 > 2), whereas our scheme allows for testing a single mode as well (0> 1).

5.3.2 Distributed Hardware Accelerator Architecture

Although the power-efficiency (i.e., the amount of work per unit of power) of hardware accelerator is high
compared to a software based solution, it is still possible to further reduce the power consumption of the
hardware accelerator. As discussed in Section 2.2.1, HEVC uses PU sizes from 64x64 down to 4x4. Generating
Intra prediction in hardware would thus require implementing Intra prediction circuitry for each of these PU
sizes. However, this will incur large area overhead and also a large power penalty. This thesis proposes to
distribute the hardware of the largest Intra prediction generating unit in HEVC, and clock- or power-gate
individual components of the large hardware accelerator. This way, only a selected few constituent components
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Figure 5-19: PSNR vs. Bitrate plot for proposed and open loop #=1; each value represents the average results for QP sweeps from 18
to 32 (step size = 2)



104
5.3 - Efficient Hardware Accelerator Architectures

Offline . .
Analysis Variance On-chip Read External <
Variance Computer CTU Mem. Master Mem. Access
1 Map [k
r
g Esptlijn?;i L " :"I Reference 3
2 - b l:recti. y : Register 3‘;‘:\'2:‘{
o W|t<——{ Detector
& 1 Histogram I
3 ode | Cow, ]
2 Selector ' [haw, ||| Mode HEVC
3 S L Clock | _____ > Selection Transform
§ Registers Enabler :
¥
. Status [
I Registers ji—%:l:)__nL Custom Output
Software Hardware Bitstream

Figure 5-20: Hardware-software collaborative control for complexity and power reduction of HEVC Intra encoding

of the hardware accelerator will be consuming power while the rest would be turned off.

The proposed distributed hardware accelerator architecture is outlined in Figure 5-20. This figure shows a
hardware-software collaborative complexity and power reduction approach for HEVC Intra encoder. Following
the standard hardware-software partitioning trends, high complexity jobs with minimal conditional jumps are
processed via hardware accelerators, whereas low complexity processing containing mainly control decisions
happen at the software layer. A block of pixels (i.e., a CTU) is fetched from the external memory for processing.
In order to reduce the computational complexity, edge histogram is generated at the hardware layer, whereas
the software layer uses this information to determine the most probable Intra prediction mode (Section 4.3.3.1).
Similarly, the variance of all 4x4s within the CTU is computed in hardware, whereas the PU maps (PUM and
PUMA, Section 4.3.3.2) generation for reducing HEVC complexity are generated in the software. Based upon
the size of the PU, its location and the prediction mode, appropriate video samples are generated for the
prediction block.

Intra Prediction Generator: The prediction generation is carried out using a distributed hardware
accelerator. The prediction generation hardware is capable of generating a prediction of the largest possible PU
(i.e., 64x64) in a single cycle. However, this is achieved by concatenating the output of its eight constituent,
individual 8-sample prediction generators. The

value of 8-samples per individual prediction Table 5-2: Percentage distribution of PU sizes

generator is chosen because by our analysis in Table ~ pu RaceHorsesC BQSquare FourPeople

5-2 of various video sequences, having different —SiZ¢ | QP=22 [ Qp=37 | Qp=22 | QP=37 | QP=22 | QP37
) i . i 64 | 0049 0043 0 0 0.102 0.539

resolutions with varying motion and texture denotes 32 | 2257 3217 | 0023 0985 | 3.126 6.155

: : : : 16 | 13.168 22.523 | 2386 8802 | 17295  26.749

X

that 8x8 PU is th.e'h%ghest oceurnng PU size. 8 | 54463 64085 | 35967 5087 | 56727  58.71

Moreover, note that it is impossible to have a PU not 4 30.064  10.131 | 61.623  39.344 | 22.75 7.793

at the 8x8 boundary because the minimum CU size

in HEVC is 8x8.

Clock Gating Logic: As discussed previously, 8 pixels of a full CTU row are associated with a single
component of the Intra prediction generation hardware. Thus, when a PU is processed, it is possible that output
from some of the Intra prediction generators is not required. Therefore, the software can clock-gate these
generators to save energy. The clock-gating circuit is controlled by the control register, whose individual bits
are the set by the software, depending upon the PU size and location of the PU within the CTU.

5.3.2.1 Energy and Resource Evaluation

For the proposed architecture given in Figure 5-20, the area and frequency results of individual blocks are
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Table 5-3: HW consumption for a 64x64 CTU (1 PLL, ~205K 150.00 No Gating [ Clock Gating '
ALUTs, ~205K Registers, 736 DSP blocks)

32.15%
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Figure 5-21: Average Energy consumption for one frame

tabulated in Table 5-3. The Altera FPGA (EP2AGX260FF3513) used for evaluations is a mid-range FPGA.
Hence, by using a complete custom design, it is expected that an ASIC can improve the throughput and area
savings even further.

In Figure 5-21, the energy consumption comparison between (a) no clock gating, single prediction hardware
and (b) proposed approach for 1 frame is performed (with energy savings percentage on top of the bars). The
stimuli data generated by the HEVC reference software and ModelSim [250] is provided to the Altera’s
Powerplay Power Analyzer tool (for determining signals’ static probabilities and transition densities) and the
energy numbers are reported.

5.4 Hybrid Video Memory Architectures

An integral architectural focus of any hardware accelerator based design is power- and compute-efficient
implementation of the memory subsystem. As discussed in Sections 2.2.1.2, 3.3.2.1 and 3.3.2.2, the high access
rates of external memories and high leakage power of on-chip video memories (e.g., by ME algorithm) can
increase the energy consumption of the video processing system considerably. A hybrid memory architecture
can therefore, be employed to exploit the advantages offered by both volatile and non-volatile memories. Basic
idea is to push the video data which will be read more often (i.e., will remain valid in memory for a long
duration), into memory regions within NVM, and thus save leakage power. The converse is true for\ VM,
whereby the data which is overwritten considerably should be placed in low-write energy memory. Similarly,
fast block-matching algorithms usually follow a fixed pattern (e.g., TZ search implemented in the HEVC reference
software). This pattern can be used to determine the highly likely area of the search window where the next
predictor under test should lie. Turning OFF un-accessed memory regions also saves leakage energy.

To realize the above, an Adaptive Energy Management for On-Chip Hybrid Video Memories (AMBER) is
proposed. It is a novel hybrid memory architecture with an integrated energy management for video processing
application. The memory architecture comprises of hardware accelerators for fetching video frames from the
external memory and storing them in the on-chip high-capacity hybrid memory. The adaptive energy
management approach then power gates specific hybrid memory regions/sectors to save energy. AMBER
leverages the characteristics of different memory types (e.g. read/write latencies, leakage energy etc.) and the
application specific knowledge to reduce the total energy consumption and processing latency of the video
processing system. Moreover, AMBER can be seamlessly integrated with other orthogonal approaches that
reduce dynamic power consumption of video processing systems. In a nutshell, AMBER targets:

e Design of on-chip hierarchical video memory subsystem, using hybrid memories (specifically, SRAM
and MRAM) to exploit the advantages offered by each memory type, especially for video applications.

e Runtime adaptive power gating of selective memory sectors by using an adaptive energy manager,
which exploits the video application- and video content-specific properties to reduce leakage energy
consumption of the system.

As a proof of concept, AMBER methodology is applied for energy management of the memory subsystem,
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Figure 5-22: AMBER system architecture for HEVC video encoder

for the HEVC encoding system. In the following, the details about the memory subsystem architecture will be
followed by the specifics of controlling the power consumption of the video processing system.

The proposed memory energy management scheme for HEVC hybrid memories is shown in Figure 5-22.
The oft-chip or external memory holds only the current video frame data. Using the external memory controller
and hardware accelerators, this data is brought to the on-chip SRAM CTU buffer. This buffer is used for motion
estimation where the motion estimation (block-matching algorithm) takes place. The motion estimation process
is controlled by the HEVC controller. After block-matching, best predictor is forwarded to the HEVC encoder,
which generates the reference CTU, used as a reference for the next frames. The reference CTU is pushed into
the SRAM CTU FIFO. This FIFO is read by the MRAM reference frame buffers, which are power-gated by the
power-gate control module. In the following, we discuss the basic components of our system in detail.

5.4.1 AMBER Memory Hierarchy

As shown in Figure 5-22, in the AMBER framework, external memory holds only the current video frame.
Since high-density and low read/write latency is required for the external memory, DRAM is a suitable
candidate for the external memory. It can be replaced by a PRAM but writing this memory by the video camera
is both energy- and latency-wise expensive.

The current read-master accelerator reads the current CTU data from the off-chip memory and places it in
the on-chip CTU memory of size b, xb;, with b, by € {16, 32, 64} and each sample of size 8-bits. Due to a
small amount of data (maximum 64x64 pixels) being written to this memory from the external DRAM, the CTU
memory is composed of SRAMs. Thus, motion estimation can start as soon as data is available. The output of
motion estimation is processed and fed to the reference frame buffers via a SRAM FIFO, also of size b, *xbj.
Since SRAM has the fastest read/write characteristics, these SRAM memories hide the latencies from the
external bus system and the HEVC processing engine.

The SRAM FIFO feeds the on-chip MRAM reference frame buffers. These buffers hold either 7, reference
frames (in case of multi-frame prediction) or a single large frame (for example 8K UHD, 7680x4352) in n,
separate video frame buffers. The reference read master reads the predictors from these buffers and forwards it
to the motion estimation engine.

5.4.2 MRAM Reference Buffers Architecture

The MRAM reference frame buffers consist of memory banks and sectors. Each bank is reserved for one
reference frame of size wxA. Banks are divided into sectors where individual sectors are MRAMs of size b, xh
and can be independently power-gated using the power-gate control. These memories are “normally off” and
only awakened for reading or writing. The reference data generated by the HEVC encoder is fed to the SRAM
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FIFO. A reference write master component, with an internal address generating unit writes this data to the
appropriate bank and sector. The write master also collaborates with the power-gate control logic. Moreover,
all sectors require only one address and data port that can be used for reading and writing. Moreover, the data
ports of individual MRAMSs can be accessed in parallel, thus, reducing the read/write latency.

The motion estimation engine requests a particular predictor from the reference frame. Its request is handled
by the reference read master. Actually, motion estimation engine provides the row and column addresses of the
reference frame. Read master appropriately translates these addresses to banks and sectors and cross-checks if
the sector is turned ON. If not, then a turn ON request to the power-gate control unit is generated, resulting in
latency. Afterwards, a row of the predictor is written to the row buffer which forwards this data to the motion
estimation’s SAD accelerators. Note that the concept of search window is now replaced by the full video frame
buffer and there is no need to fill a memory structure repeatedly with frame data (see Figure 2-8). Thus, in the
following, a search window will actually mean a region in the on-chip frame buffer.

For the AMBER architecture, the write latency of an MRAM sector should be lesser than or equal to the
average motion estimation computational time. Thus, for wx/ dimensions of frames and f, frames per second,
the write latency of on CTU, #,,,crv must hold the following:

tW,m,CTU S(wabh)/(thxfp) (5-16)
The dynamic power in the AMBER architecture is the power consumed by:

Writing into CTU SRAM twice
Reading from CTU SRAM twice
Writing to MRAM buffers
Reading from MRAM buffers

Therefore, we can write the total dynamic power pay, as:

pdyn = wX h x fp x (edyn,w,m + 2edyn,w,s) (5'17)

Here, eayn,w,m and egym, s are the dynamic write energies of MRAM and SRAM respectively. The total leakage
POWEr piear is then:

Pileak = Pleak,m X(bw X h + Sy Xh)+2pleak,s wa th (5-18)

Here, pieakm and prears are the leakage powers of MRAM and SRAM respectively. While the reason for
SRAM leakage power term is obvious, for the MRAM, it is more involved. During write phase, only one sector
is turned ON and during read phase, a set of sectors is turned ON, denoted by s,,, the width of the search window
(details in Section 2.2.1.2).

The advantages of on-chip MRAM reference buffers are now compared with the usual search window based
external memory fetching. With low-leakage and high capacity, these MRAM on-chip video buffers are feasible.
Given n, reference frames, for a current monochromatic/luminance frame, and search window read factor ry, the
total reads and writes directly from the external memory results in the total pixels accessed equal to:

WXhx8x f,xrpxn, +2xwxhx8x f, (5-19)

Thus, using the MRAM on-chip reference buffers, total number of external memory accesses is reduced by
the factor 2+#»m, which is more than three times external memory access savings. Moreover, on-chip memory
latency is much better as compared to the off-chip latency. Furthermore, the contention on the off-chip external
memory bus is reduced.
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Again, consider that n, reference frames are stored in the external DRAM memory. The total leakage power
of the can be therefore written as:

Pleak = Pleak.d X WX hxn, (5-20)

Here, pieara is the leakage power of DRAM. On the other hand, the MRAM buffers can be switched OFF to
dissipate no power (see the leakage of MRAM reference buffers in Equation (5-18)). In fact, AMBER will only
turn ON set of sectors at a time, depending upon the predictor location. Thus, the total leakage power is reduced.

Note that power-gating is only advantageous for MRAM reference buffers and not for DRAM or on-chip
SRAM. DRAM and SRAM will lose their contents as soon as the power is cutoff. Moreover, once the design is
fixed (chip is fabricated), the size of the search window cannot be altered. A scheme requiring smaller search
windows (e.g., low resolution, low motion video coding) employing DRAMs or SRAMs reference buffers will
consume the same leakage power, regardless of the search window size. However, this is not the case with the
proposed MRAM based memory subsystem. Due to the non-volatility property of the MRAM, reference frames
will still be available, once the MRAM is turned back ON. Thus, AMBER adapts the leakage power
consumption at runtime to save energy.

5.4.3 MRAM Reference Buffers Energy Management

In the “sliding” search window based video block-matching architecture, note that whether or not the current
CTU accesses all the data in the search window, the next CTUs may use this data. Therefore, search window
data cannot be discarded. Moreover, from Figure 3-12, we notice that most of the search window is wasted.
Considering this knowledge in the proposed hybrid memory architecture, motion estimation algorithm accesses
only a small percentage of sectors. However, since on-chip full frame buffers are employed, a search window
is actually the full frame (or a full bank). Therefore, multiple writes to this search memory are not required. This
saves dynamic write energy. Since the search window in AMBER case is very large, it has a high leakage power
associated with it. It is denoted in the previous section that the leakage energy of AMBER can be reduced (as
compared to the external memory based reference buffers). This is achieved by appropriately power-gating the
unused memory sectors. For a particular bank, the power gating control unit turns on a set of sectors between
1 and f> (collectively represented as (5, f2)) and power-gates the rest. The values (f;, f2) are predicted and
adapted by analyzing the search window memory access patterns. Power-gate control unit actually controls the
sleep transistor associated with a memory sector.

5.4.3.1 Memory Access Based Self-Organizing Map

The estimation of (5, 2) is served by a small and energy-efficient Self-Organizing Map (SOM) [251], which
keeps a record of the memory access pattern and updates its map whenever there is a change in the pattern
search procedure.

Fast block-matching algorithms for the CTU in HEVC always follow a pattern. Therefore, some
simplifications can be made for designing the SOM. SOM can be represented by a table with neurons as the
keys as shown in Figure 5-23. Further, training the SOM is quite fast, as we do not need to test each input against
every neuron, rather, the neurons can be updated in sequence. Each neuron of the SOM holds the minimum and
maximum search window memory sector for the current CU in the form of a vector (Sumin, fmax). This vector is
called the weight of the neuron. Based upon the weight of the neuron, the power-gate control bits are set or
reset. The power-gate unit powers ON the sectors between:

Bi1=CU = Bom:  B2=CU.,+ P (5-21)
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Figure 5-23: Neuron weight update feedback and SOM table.

ﬂmin = Lﬁmin t7 (ﬂre/ - ﬁmin )J
(5-22)
ﬂmax = lrﬂmax +7 (ﬂre[ + bw - ﬁmax )—‘

The learning coefficient (y) takes the value of 1 or 0.5 for simplicity in the implementation, as shown in
Figure 5-23. If the search window size is increasing, a faster expansion of the search window is allowed, by
keeping y =1. Else, for compressing the search window, AMBER takes y =0.5. In the formula above, b,, is the
width of the CU under test.

Usually, the memory access pattern for motion estimation does not change throughout the HEVC encoding
(reference software is used for experiments). Therefore, the offline-trained SOM does not change during the
runtime for a given motion estimator. However, changing the memory access pattern will require the neurons
to adjust first and latency will be encountered. Even with a threshold-based early termination of the motion
estimation, AMBER still outperforms the search window approach because search window will always require
pre-fetching new CTU column from the external memory on every CTU-iteration. Moreover, for slow-varying
motion sequences with adaptive motion estimation, the number of MRAMs turned ON will reduce and hence,
further reduction in the leakage power. It will be opposite for high-varying motion sequences.

5.4.4 System Computation Flow

Algorithm 12 shows the high-level algorithm of AMBER for HEVC. For the current CTU, we wait before it
is completely written to the CTU SRAM and the banks are ready for reading (line 3). Afterwards, the Motion
Estimation (ME) for the current CTU commences (line 5). Before the ME begins, we forecast the bits of power-
gate control lines (lines 8 and 9) given by Power Gate Control Register PG. PG bits must be set to turn ON the
specific MRAM memory sectors. Excess memories turned ON due to previous CU computations are also turned
OFF (line 10). Once the block matching for the PUs of the current CU starts, it is checked whether correct MRAM
sectors are turned ON (lines 15 and 16). In case a misprediction in the forecasting has occurred, we need to turn
ON the MRAM sectors which were mistakenly kept OFF (line 17) and in parallel, we update the estimator (line
18 and Eq. 8). Afterwards, ME can start (line 19) and we repeat the procedure to the next location in the block-
matching pattern for the current PU. Once the current CU is processed, it is sub-divided recursively into 4 equal
CUs (line 22 and 23) and the process is repeated.

In the following, the impact of the wrong decision latency on the performance of HEVC is examined. For a
frame with total 74, CTUs, the total number of PUs searched is (see Equation (2-8)):

log, bw-3 27

é‘:n/’_mxl’j‘xz_io

i=

(5-23)
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Therefore, for a 30 FPS video, total number of PUs searched in 1 second is equal to 30, Now consider we
turn OFF memory forecasting and the wakeup time for a MRAM is supposedly y cycles, a total of 30&y cycles
per second are wasted. For a CTU of size 64x64 of a Full-HD frame (1920x1088), it will incur an additional
latency of about 16.9y Mega-cycles per second of video. Therefore, guessing the correct location of the
predictor is important in managing the energy consumption of the prediction process.

5.5 Energy-Efficient SRAM Anti-Aging Circuits

This thesis targets aging analysis and configurable aging optimization of SRAM-based on-chip memories
deployed in application-specific architectures (like camera-based video processing architectures). The proposed
configurable design explores the tradeoff between aging resilience and the associated power overhead. In order
to reduce the aging-rate of the SRAM video memories (Sections 2.3.2 and 3.3.3), we employ microarchitectural
enhancements at the memory subsystem, which modulates or transduces the video data written to and read from
the SRAM memory. Some of these circuits were also discussed in Section 3.3.3. In this section, the details of
the proposed aging resilient architecture for a memory composed of 6T-SRAM based cells are given. The
memory is assumed to have capacity sufficient enough to store a large chunk of data, e.g., multiple images/video
frames. However, the configurable aging resiliency concepts are orthogonal to the number of memory ports and
memory size. Figure 5-24 illustrates the overall architecture of the proposed aging-resilient memory. The basic
operational steps are:

e Data is written to a FIFO, controlled by the FIFO Controller, which also provides appropriate valid
signals (e.g. data valid) to the memory subsystem.

e The aging controller snoops the data from the data FIFO and generates appropriate control signals for
the best aging resilience and power reduction tradeoff (see details in Section 5.5.3).

o The signals generated by the aging control configure the memory write transducer (MWT; see details in
Section 5.5.1) to adapt input data samples before they are written to the memory. Specific bits of the data
samples are selected for inversion by setting the appropriate enable signals of the Inverter Switches. In
addition, the address of the data written to the memory is changed at runtime using the Write AGU (see
details in Section 5.5.2), to fully utilize the memory address space and introduce stress-relaxation at the
SRAM cells holding less-frequently changing data samples (e.g., pixels of static background regions in
an image).

e Before the data is read by the application, it if readapted by the memory write transducer (MRT; an exact
replica of MWT) and the logical address is appropriately converted to the physical address by the Read
AGU.

In the following, the memory write modules are discussed in detail. The working principles of the memory
read modules can be easily deduced as they perform the exact opposite operation of the writing modules.

5.5.1 Memory Write Transducer (MWT)

The MWT is used to invert specific bits of the raw data samples in order to toggle less-frequently changing
data samples and release stress on the 6T-SRAM cells storing these bits. The data bits are grouped in pairs and
each bit-pair can be configured separately. The higher order bit-pairs (containing bits 2-7) are passed through
controlled Inverter Switches. Figure 5-24 shows that the first two bits (0 and 1) are not adapted. This is due to
the fact that the first two LSB bits always have the lowest degree of stress, due to high degree of variation and
hence a balanced duty cycle (as shown in the case study of Figure 3-15 (j)). Therefore, the proposed anti-aging
architecture only specifies three Inverter Switches to control six MSB bits of a data sample. The input control
lines (E) act as clock-gating signals to the registers R» and R; and as a “select” signal to the multiplexers My and
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Figure 5-24: Overview of the proposed SRAM memory anti-aging architecture. Note the Memory Write Transducer, Write AGU,
Read AGU and Memory Read Transducer connected to the SRAM. The aging controller configures these units by generating
appropriate signals to adapt input data at read and write ports of the memory
M;. All the registers store the original bits (by and b;). The registers Ry and R; are directly connected to the
multiplexers, whereas R, and R; are inverted and fed to the multiplexers. For every bit-pair, five 1-bit registers,
two inverters and two 1-bit multiplexers are required. For example, for 8-bit data samples, a total of 15 1-bit

registers, six inverters and six 1-bit multiplexers are required.

If the control signal E of an invert switch is high, registers R, and R; latch the bits by and b; and thus, the
inputs and outputs of the inverters are updated. Both input bits are inverted and the inverted bits are generated
at the output. If the “enable” signal is low, bits by and b; will be forwarded to the shift register unaltered.
Therefore, no dynamic energy will be consumed by R: and R; and the inverters. The signal E is controlled by
the aging controller.

5.5.2 Aging-Aware Address Generation Unit (AGU)

The Write AGU is responsible for selecting the appropriate memory partition (e.g., for writing an incoming
video frame from a camera device) and generating
addresses for writing the data words stored in the
shift register. Selection of the appropriate frame
memory partition for writing a complete video frame
follows a round-robin approach. In addition, before
overwriting a memory partition, it is required that
frame memory partition is no more required by the
executing application(s). An application signals this
by requesting the address of a new data set (see

Section 3.3.3 for details). A signal (“New data-set
Figure 5-25: Write AGU frame writing scheme with 04=65. The

request” in Figure 5-24) prompts to deliver a new moving region (players and the basketball) are overwriting the static
starting address to the Write AGU. background (basketball court) with every frame.

As discussed earlier, less-frequently changing data will introduce the most amount of stress on the 6T-SRAM
cells. If the most-frequently changed data words are identified, they can be distributed in memory in a spatial
round-robin fashion. However, this requires further information from the application and additional analysis at
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Figure 5-26: Inverter Switch enabling decision logic. In the proposed anti-aging memory, there are three such circuits, one for each
Invert Switch

runtime, which is power- and area-wise inefficient. Therefore, a simple approach is suggested for introducing
spatial aging resiliency. For every new data set written to the memory partition, the data set is circularly shifted.
This corresponds to changing the starting address of the data set. For every new data set, an offset in the starting
address (04) is given (by the aging controller) to the Write AGU as the starting address of the data set. With
every data set, 04 is accumulated and the starting address is shifted. This will ensure that the memory partitions
containing less-frequently changing data are interchanged with the more-frequently changing data at regular
intervals, thus relieving stress from the SRAM cells holding bits of the less-frequently changing data. Figure
5-25 illustrates the example of video frame writing in the memory with 0,=65.

5.5.3 Aging Controller

As shown in Figure 5-24, the aging controller configures the control signals of the MWT and supplies the
start addresses of the data set (e.g., the starting address of a video frame) in the Write AGU. Figure 5-26 shows
the detailed flow of the proposed aging controller for enabling Inverter Switches. Note that such a controller
exist for each Inverter Switch, therefore, three such controllers are used in the proposed SRAM anti-aging
system. In order to generate the control signals for MWT, two decisions need to be made: (1) at what time
instant the circuit should be activated, and (2) on which SRAM cells aging balancing should be applied.

Decision — 1: Activation of Aging Balancing Circuit at a Particular Time Instant: For this, the Inverter
Switches are activated for a complete data set after specific time period, i.e., a certain number of video frames
are written without adaptation and are processed by the application. For example, consider that a specific bit-
plane of a data set 2i is stored without inversion (£=0) and for the data set 2i+/, it is stored with its bits inverted
(E=1). This corresponds to the data adaptation rate (fz) equal to 1, i.e., the respective bit-planes in every second
video frame are inverted. Formally, fz denotes the number of data sets stored in the memory without adaptation
for every inverted data set. In the definition above, a bit-plane is defined as the collection of the bits at the same
bit location, in all the samples of a data set. In case two data sets have correlation (e.g., two neighboring video
frames), it is expected that the inversion of data set 2i+/ will overwrite most of the bit locations of data set 2i
with inverted bits. Thus, relieving stress on the SRAM cells and reducing the NBTI introduced aging. Note that
there is a separate fz for each Inverter Switch, and each Inverter Switch is independently activated. Additionally,
fr also plays an important role in deciding about the power consumption and aging rate of the SRAM memory.
A high fz will reduce the power consumption but will be less resilient to aging. On the other hand, a low fz will
reduce the aging rate, but will also increase the power penalty.
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Decision — 2: Selecting SRAM Cells for Aging Balancing: At runtime, the MWT enable signals can be
turned ON or OFF, depending upon the expected aging and the power constraint of the system, which can be
generated based upon fz. When all the enable signals are inactive (N=0), power penalty of the proposed approach
is the lowest because no inversion takes place. This is because no toggling activity occurs at the inputs of the
inverters as the associated registers are unchanged. However, the rate of SRAM aging is the highest because fz
number of data sets are to be written with adaptation and thus, increase the amount of stress a single transistor
of'a 6T cell will endure. Similarly, when all the enable signals are active (N=3), SRAM aging rate is the lowest
at the cost of the highest power penalty. Basically, when only one enable signal must be active (N=1), the
proposed anti-aging architecture inverts the two MSB bits (bit 6 and 7) as the SRAM cells storing these bit
encounter the most stress (or aging). If the power configuration allows for two enable signals to be active (i.e.
N=2), the four MSB bits (bits 4-7) are inverted.

The parameter N depends upon fz of all Inverter Switches. If fz of all Inverter Switches is selected such that
adaptation is active for all Inverter Switches for the same data set, then N=3. Otherwise, if two Inverter Switches
are active for the same data set, then N=2 etc. Selection of appropriate fz is a control problem, which must be
computed at runtime by analyzing the characteristics of the input data (i.e., computation of duty cycle for
different bits). In the proposed approach, we specify a simple and efficient microarchitectural technique to
estimate duty cycle online, as shown in Figure 5-26. This circuit is used to determine fz for a single bit-plane.
A bit-plane is divided into »; parts, and the corresponding bits are accumulated for each part. For every part, if
the number of 1s differs significantly than its previous stored value (depending upon the lower sz, and upper
smi» threshold), the part has changed and a difference counter d is incremented. Afterwards, d is tested and fz of
the bit-plane is increased or decreased. The thresholds z;, 7> and 73 (7; > 7> > 73) determine the change in fz and
can be set at design time.

However, computation of duty cycle online incurs a power penalty. In the proposed approach, a counter
logic is used to activate the duty cycle generation circuit. The set bit counter’s register and the input bit to the
adder are only updated if the enable signal is high. Thus, this will save dynamic power consumption. If online
duty cycle computations are more frequent (finer control with smaller F), the power consumption of the
proposed approach will be high and vice versa.

5.5.4 Generalization and Applicability

In general, the proposed aging-mitigation design methodology and architecture are orthogonal to the type of
application and the low-level aging models. For instance, different data-parallel applications will also benefit
from this. However, this may require several design optimizations to get the best power-efficient aging-
mitigation design, for example:

e In addition to inverter, some rotation or swapping hardware blocks can also be integrated in the Memory
Read and Write Transducers
e The values of controller parameters to adapt the aging-balancing also need to be re-evaluated.

This will require an application- and content-aware analysis, as performed for the camera-based application
in this thesis. To illustrate the varying duty factor behavior of a non-frame-based application, an audio samples
storage is evaluated, as discussed below.

In Figure 5-27, a 16 KHz, 16-bit Linear Pulse Code Modulated (LPCM) audio signal and the duty-cycle box-
plot of the memory used for storing this signal are shown. Note that without using any aging balancing circuit,
the duty cycle of all the bits will already be balanced for most of the cases, which is visible from the concentrated
spread of the boxplot. This is due to the fact that audio signal swings around 0, and the number of negatives
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Figure 5-27: (a) A 16-bit/sample 16 KHz audio signal and (b) aging profile as box plot

(with MSB bits storing 1s) and the number of positives (with MSB bits storing 0s) is similar, unlike the video
data. Moreover, the temporal correlation of audio data is low, meaning that it is highly probable that the new
audio data which overwrites the previous one will have different characteristics. However, this is the not the
case with video data, which will have high temporal correlation (for example, the background region, which
will be static in many consequent frames), leading to biased duty cycles and therefore, higher stress on the 6T
SRAM cells.

5.5.5 Sensitivity Analysis of SRAM Anti-Aging Circuits

The information on the duty cycles can be transformed to respective SNM over time using any available data
mapping of duty cycle (A) to SNM degradation. However, the proposed approaches presented in this thesis are
independent of such a mapping. In fact, any table which relates the A to SNM degradation can be used, because

a balanced A will always result in lower SNM Table 5-4: Duty cycle (A) to aging map
degradation. For evaluation purposes, we have T A o [
. . uty Cycle ging map (6 = |0.5-
deﬁned another variable called aglng- map (J) A =0050r 55005 045
which connects the A ranges to respective values A<0.10rA>09 0.4
as shown in Table 5-4. As seen, if the duty cycle is A<020rA>0.8 0.3
highly balanced, (0.4 < A <0.6), the value of ¢ is A=030rAz07 02
. . A<0.40rA=>0.6 0.1
low. This should be the purpose of an aging A=05 0

balancing approach (i.e., reduce 6 as much as

possible). Moreover, all the 6T SRAM cells with A more than 0.95 or less than 0.05 result in high SNM
degradation and therefore are represented by a higher 0 value. The ¢ for the complete video frame can therefore
be represented in form of a ¢ histogram (e.g., see Figure 6-18). The information contained in this histogram can
be concisely presented in form of a metric 7 given as:

Z Vbins[(vbi" ~ Vobin,min ) X nhin:|

(Vbin,max ~ Vbin,min ) x nsamples

7 (5-24)

In this equation, v, is the value of a bin of the histogram (on x-axis, ), 1 is the number of values in the
bin (on y-axis, total number of bits for the particular ), and Viin,min and Vpimmex are the minimum and maximum
values of the bins, respectively. 7gmpies corresponds to the total number of samples in the histogram (for SRAM
storing an 8-bit per pixel video frame, this equals wxAx8, i.e., the size of the frame memory). Thus, if the number
of values in the bins are closer to Vpiumin (0 = 0 in our case), we would expect 7 closer to 0. Otherwise, 7 will
have a larger value. Therefore, an aging resiliency scheme should strive to reduce z as much as possible. Further,
in our calculation of 7, we consider the distance between the local degradation and the least possible degradation

(i-e-, Vbin — Vbin,min)-

The aging analysis of SRAM cells for different video sequences (details given in Table 6-4) is given in Table
5-5. The column “Base” denotes the amount of aging without using any MWT, i.e., without applying any aging
balancing techniques. Since different video sequences lead to different amount of stress as a result of varying
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distribution of “zeros” and “ones”, the aging imbalance results in undesirable varying degradation of different
SRAM cells. Sequences with large static structures in video frames (e.g. “Johnny”) introduce the most amount
of stress on the SRAM cells because of static sample values. These sequences are common for video security
and communication applications. Camera panning and zooming sequences (like “BQTerrace”, “FlowerVase”
and “Keiba”) usually have a low aging impact on SRAM cells. Largely static video sequences exhibit high aging
due to less frequently changing data values (e.g. “Basketball”, “ChinaSpeed”, “FourPeople”, and “Johnny™).

In addition, the aging parameter after Table 5-5: Aging parameter (z in 1072) for different video
employing the MWTs given in Figure 3-15 are sequences, with no inversion (fz=), no controller
also tabulated. For a comparison with these S fil N=0, fi=o0
. . eq. Base — — —

MWTs, results for using N=0 (no Inverter Switch L ‘ S ‘ Lz | o=y | o=l | ol
active) and only using the proposed Write AGU to ~ Basketball | 37.9° 3.9 2 37145 144 144

. . : : BQTerrace| 141 00 93 06 06 06 06
circularly write the frames in the frame memory in

. _ ChinaSpeed| 389 0.0  30.1 221 213 213 213

the proposed architecture are also tabulated. This
. . . . . FlowerVase| 14.5 0.0 11.8 6.4 10.4 10.4 10.4
is achieved by having 0,#0. Using three different FourPeople| 498 00 329 74 02 92 902
values for o4, we notice considerable aging Johnny | 526 00 348 56 255 255 255
balancing achieved by only adapting the start Keiba | 84 0.0 6.1 0.1 7.0 6.5 6.5
addresses of the video frames. Specifically, People | 276 01 189 27 74 72 71
largely static sequences get the most benefit. Traffic | 426 01 294 80 88 89 85
However, an interesting observation for the
“Johnny” sequence can be made where we notice Table 5-6: Aging parameter (z in 10-2) for different video
low aging improvement as compared to a sequences, with 0,0, no controller.
sequence with similar aging profile (i.e. S . Tl =) =T
“FourPeople™). This is due to the fact that the static i e IN=1 {N =2 {N =3|N=1 IN =2 IN =3|N=1 {N =2 {N=3
regions in the “Johnny” video frames are similar Keibaly 84 1.1 00 00 39 29 29 5% 52 52

Johnny | 52.6 299 11.8 1.1 399 29.6 232 45.1 39.2 35.7
BQTerrace| 14.1 43 04 00 80 52 49 11.0 95 93
Traffic | 42.6 239 88 09 32.0 233 185 36.6 31.8 294

throughout the height of the frame and the video
samples of the new frame which overwrite the

video samples of the previous frame have similar
values, thus, not contributing to stress relaxation.
Hence, inversion is a better option in such a case. Further, o4 adaptation results in better aging resiliency as
compared to nibble-swapping, with negligible power penalty. Note that 04 is chosen as a prime number to make
the cycle of offset to be as large as possible.

The impact of parameter fz and N on aging for different video sequences is given in Table 5-6. Note that
increasing fz causes more frames to be inserted between two adapted frames. However, for static sequences like
“Johnny”, aging is accelerated due to increase in duty cycle bias. Sequences with camera panning, zooming and
frequent scene changes exhibit lesser sensitivity to changing fz, mainly because of the video memory overwritten
continuously with changed video samples. For example, the sequence “Keiba” and “BQTerrace” exhibit lower
sensitivity to increasing fz. Similarly, introducing more inverters by enabling the control signals of the Inverter
Switches in the MWT will largely balance the aging of video memory. For slow moving, static sequences like
“Johnny” and “Traffic”, N=3 results in a considerably better aging profile compared to N=2 or 1. Highly
dynamic sequences can still achieve the same aging with N=2 or N=1.

Our experiments also reveal that using multiple frame memories result in almost the same aging balancing
with the proposed scheme. This is because frames are highly correlated, and instead of always overwriting the
frame memory with the next frame, writing the second or third frame results in nearly the same statistics.






Chapter 6 Experimental Results

The experimental evaluation of the approaches presented in Chapter 4 and Chapter 5 for the software and
hardware layers of the video system are given in this chapter. The sensitivity analysis of the individual parts of
the proposed algorithmic and architectural novelties is already outlined in their respective sections. Here, the
major results and comparison with the state-of-the-art approaches is given. Major emphasis of the results is
video encoding, specifically H.264/AVC and HEVC video encoders. It must be noted that these encoders have
much higher complexity than many benchmark applications available in Parsec [252], MediaBench [253],
Cosmic [254] and MiBench [255] benchmark suites. Further, since many contributions by this thesis are open-
sourced, therefore, it is easy for other researchers to employ and compare their own enhancements.

The outline of the benchmarked evaluations are as follows. First, the parallelization of video application is
evaluated by testing the proposed compute and application configurations. Afterwards, the resource budgeting
(i.e., compute configuration) for multiple, multithreaded applications is carried out. This is followed by
presenting the results of the computation offloading approaches. At the hardware layer, the hardware approaches
for implementing highly efficient memory subsystem of the video system (including AMBER and SRAM anti-
aging circuits) is evaluated.

6.1 Parallelization and Workload Balancing

This section provides detailed results regarding parallelization approaches and workload balancing schemes
for multithreaded, video processing benchmarks.

6.1.1 Software Architecture and Simulation Setup

The simulation setup and  design

o | Application Top |
methodology of our proposed parallelization [ [ [

scheme for video applications is shown in Figure || TileFormation Video A
i . and Workload Read st tppt
6-1. A C++ library for generating the compute Curtailer GOP Processor Write atisucs

configuration is designed which generates the I
compute configuration (Section 4.2) and sets the

Tile Proce ssing
Threads

Frame Processor Block Proce ssor

Workload
Queue

application configuration (Section 4.3) given the

Video Frequency Manager{ £

initial configuration matrix 4 (Figure 4-7). This | Application [ Tile Statistics Workload Manager
ensures that there is little or moderate effort from _
. . . . *.cpp sources : $
the application designer to incorporate the X~ g+t 4
proposed approaches in the video application @ L = Output (traces)
: XA Linux (Ubuntu)

Thls library also handles the frequency System Configuration files, AMD, 24 cores, 4 sockets,

. . video attributes, fps 64 kB SL1,512 kB $L2,
generatlon and frequency model adaptatlon requirement, allowed cores 5 MB $L3, 16GB DDR3

(Section 4.2.5.2) at runtime. Similarly, another
C++ library handles parallelization. A workload
queue is implemented in this library, which is filled with the callback function (i.e., the tile processing function)

Figure 6-1: Simulation setup and multithreaded video application design

and the associated arguments to that function. Afterwards, a start signal initiates the parallel processing where
all the callback functions are executed. This library uses “pthread” API [256].

The applications can embed these libraries with minimal effort. For our application configuration case study
of HEVC, the reference encoding software (named HM encoder [257]) does not provide parallelization and has
a large memory footprint. Therefore, we have developed our in-house C++ based open-sourced multithreaded
HEVC Intra encoder, ces265 (for Windows/Linux), where a single thread of ces265 is ~13x faster than HM
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software (more information in Appendix B). Other open-source HEVC encoders (e.g. x265 [258]) are also
available, however, they do not include the adaptations required and do not lend themselves to the extensions
planned for this work. Further, due to a small memory footprint, no intrinsic and SIMD instructions, ces265 can
be employed and tested for small embedded systems.

A 4xSix-Core AMD Opteron processor [259] (also called “Istanbul” processor) is used for experiments. For
generating results, frequency scaling of all cores is disabled and using a fixed frequency, the number of cycles
per block (crq, see Equation (4-12)) can be calculated given the computation time. Note that multiple programs
are running on this computer, therefore, it is expected that the load on the computer fluctuates. This corresponds
to the changing workload of the system running the application. The set of supported frequencies (fi.;) used in
this work is given by:

[ =11.0,1.2,7,3.04 (6-1)

The frequencies of the cores are used to estimate the power consumed by the application, by running the
application on the Sniper many-core simulator [260] and McPAT [227]. Afterwards, an approach similar [3]
[156] is used to estimate the final power consumption of the system. For our approach, we assume that no prior
knowledge about the frequency estimation model constants @y and estimation-error covariance matrix £ is
provided (see Equation (4-12)). Hence, at start of encoding, all elements of @y are arbitrary chosen and £ is
initialized with 999/ where [ is an identity matrix.

6.1.2 Compute and Application Configuration for Uniform Tiling

In Table 6-1, different test sequences with Table 6-1: Given (r1wr) and used (kw:) number of cores, and average time

Varying dimensions, the number of given (l’tm), per frame (favg, in msec) for different video sequences, using f,=5.
act}lal .used cores ({c,.(,t) 'after frequency Sequence| ¢ » Cores Cores o
estimation model stabilization, and average Number | °¢ i Given (1) | Used (ki) | [msec]
time per frame (#;») are tabulated using the A Ballroom | 640x480 4 2 180
.. . B BOMall | 832x480 8 3 197

HEVC application. As notice, kw; becomes < C | BOTerrace|1920x1080 24 16 206
o after model stabilization, denoting that the D |ChinaSpeed| 1024x768 8 3 191
: : E FourPeople| 1280%x720 12 6 193

proposed RLS scheme will determine the e Johnny | 1280x720 5 p 193
correct number of parallel tasks/cores of a G Keiba 832x480) 4 2 183
many-core system to sustain the workload, H___ |RaceHorses| 832x480 16 2 177

irrespective of initial settings. Average 190

Power Savings: Figure 6-2 denotes the power and video quality comparison of the optional runtime
adaptation of the workload (application configuration in Section 4.3) using f,=5 and ¢=0.05 or 5% tolerance to
the compressed output bytes. As seen in Figure 6-2 (a), significant power savings (up to 42.48%, average
39.21%) are obtained if the proposed workload tuning is active at runtime. This shows that our proposed
application configuration by leveraging the application knowledge results in high power savings. For this graph,
the power savings are computed by using the formula:

PowSave[%]:(l—Pow / Pow

AppConfig NoAppConfig ) x100% (6'2)
Video Quality Comparison: For the sequences shown in Table 6-1, Figure 6-2 (b,c) also present the BD-
Rate and BD-PSNR [59], with and without application configuration. BD-Rate denotes the percentage increase
in the average bit-rate compared to an anchor encoder, and BD-PSNR denotes the reduction in PSNR (in dB)
against an anchor encoder. To compute BD-Rate and BD-PSNR, PSNR at a specific QP value, the following

formula is used:
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Figure 6-2: Using f,=5, £=0.05 or 5% for the video sequences given in Table 6-1, (a) power for application configuration, and BD-
Rate and BD-PSNR for (b) without application configuration and (c) with application configuration

PSNR,, = (4x PSNR, + PSNR_ + PSNR_.)/6 (6-3)

For the case of Figure 6-2 (b) using no application configuration, the anchor encoder is the baseline encoder,
using only a single tile per frame. However, this single-tile encoder is unrealistic as it is not possible to support
large HEVC workload by using a single core. Therefore, the BD-Rate and BD-PSNR for the encoder of Figure
6-2 (b) only show the unavoidable overhead that must be paid while satisfying the throughput constraints (frame
rate), i.e., quality degradation due to mandatory tiling. On average, BD-Rate increases by 2.22% and BD-PSNR
degrades by 0.11dB. For Figure 6-2 (c), i.e., using application configuration, the anchor encoder is the multi-
tile encoder used for generating the plots in Figure 6-2 (b). The degradation in bit-rate and PSNR shown here
accounts for the degradation produced due to workload tuning (Section 4.3.1). However, note that the encoder
give in Figure 6-2 (c) has both the BD-Rate and BD-PSNR expressed in 107, which means that there is
negligible video quality degradation produced by our proposed workload tuning scheme. On average, the BD-
Rate is reduced by 0.13x10~ % and BD-PSNR reduces by 1.4x10° dB.

Comparison with State-of-the-Art: Figure 0.4 ‘ D Proposed ISOA‘

6-3 compares the power-efficiency of the § 0.3 13.60
. : 60 3319
proposed scheme and that presented in [1]. In[1], g 0.2 19.20
. o 18.99

authors maximize the throughput of a divisible & 0.1 140 lé'" ?fo I gl El
workload and adapt the number of cores to o 1o

. A B € D E F G H Apg
process this workload, on a many-core system,
whereas our approach tries to meet the Figure 6-3: Comparing the power-efficiency (fps per watt) of the
application’s deadline. Therefore, Figure 6-3 proposed workload balancing approach employing compute and

application configuration compared to State-of-the-Art (SOA) [1]. The

compares the FPS supported per unit of power percentage improvement of our scheme is written on top of the bars.

(FPS per watt) for both schemes. As seen, for

sequences given in Table 6-1, our proposed scheme results in significant improvements. For this analysis, the
power consumption and FPS (reciprocal of average time to process a frame) are taken after the first retiling
event. On average, our approach increases the FPS per watt metric by 19.20% compared to [1].

Runtime System Dynamics: Figure 6-4 plots the power, time consumption (#) and frequencies (f) of all
cores. For these experiments, 1/f,=1/5=200msec, £=0.05 and z=8 (see Sections 4.2 and 4.3 for more
information). Since in the first few epochs, the frequency estimation function is stabilizing (see Section 4.2.5.2),
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Figure 6-5: HEVC Frequency and workload tuning with the output bytes, for (a) Tile 1 of “ChinaSpeed”, (b) Tile 0 of “Keiba”, (c)
Tile 0 and (d) Tile 7 of “BQTerrace”

therefore, the number of subtasks/cores (ki) and the initial estimated frequency is off by a large amount and #
is unnecessarily small, resulting in high power consumption (Figure 6-4 (a-d)). The extra power consumption
comes due to the frequency model’s constants regulation via RLS filter at runtime. However, the advantages of
determining the constants online outweigh the disadvantage of small power wastage that occur only in the initial
processing stage. Our simulations show that only about 2.8usec and 133uJ energy is spent in calling the RLS
filter once after an epoch, which is negligible overhead when compared to processing a single frame
(“Ballroom” sequence, single core, 858msec with 16.81J of energy). Moreover, this power wastage can be
avoided by determining the constants offline and then tuning them online (via RLS). In addition, the overhead
of retiling itself is negligible, because it is invoked only after 80 frames are encoded via HEVC. We note that f;
gradually moves towards a stable value, due to the adjustment of frequency estimation model constants (e,
Equation (4-12)). After retiling, the number of cores used for encoding (k«:) and frequencies are adjusted, and
thus, # is now considerably closer to 1/f, as shown in Figure 6-4 (e-h). This results in a steady power
consumption.

Note that retiling is done when frequency of all the cores are stuck at maximum or minimum (Figure 6-4 (j)
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Figure 6-6: Cores’ time, frequency and maximum configuration, per frame for frame interpolation with allowed number of cores (7o)
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and (k), see Section 4.2.6). An interesting case is demonstrated by the “ChinaSpeed” sequence, where retiling
is done twice. Further, the workload of “Keiba” sequence is highly fluctuating and it results in large variations,
both in frequency and power. For the “FourPeople” sequence, the average power before retiling is 99.08W and
after retiling it reduces to 48.32W (an improvement of ~2.05x).

In Figure 6-5, fi, Ok, di and by of tiles in HEVC, for different sequences are shown. The optional tuning of
workload (6x and di) due to the allowable increase in bitrate (¢=0.05) causes a change in the allocated
frequencies of the cores, and in the size of compressed output b. Note that the large jump in by is due to retiling,
because retiling results in a larger tile (and hence more b;). Further, in Figure 6-5 (c), bi is progressively
increasing, thereby resulting in the increase of the workload (6 and di) and increasing amount of f 5 in the epoch
(see Figure 4-8 (a)). Figure 6-5 (d) is the opposite case, and the workload is minimized, with increasing number
of fi; in the epoch.

In order to exhibit the impact of changing throughput requirement, Figure 6-6 demonstrates increasing FPS
(f») of the frame interpolation application, only using compute configuration with 4 available cores (r,~4) and
retiling test after every 80 frames. At start, the frequency estimation model does not apply to the current
application scenario, and thus, the number of threads and the frequencies of the cores are higher while supporting
a lower maximum workload (axm). As seen, the frequency estimation function is gradually stabilizing, and the
execution time of the threads is steadily reaching to fulfill the required throughput demands. In addition, the
maximum supportable workload is also increasing. Different fps requirement however do play a role, whereby
we notice that Figure 6-6 (d) with highest FPS = 20 does not get its workload increased due to the limitation of
resources.

6.1.3 Compute Configuration with Non-Uniform Tiling
Simulating the HEVC video encoder via Sniper many-core simulator [260] and McPAT [227], the power

Table 6-2: Core-Tile mapping, BD-Rate, BD-PSNR and power savings (AP) at 45nm, 2.6GHz for the uniform and non-uniform
tiling scheme.

Non-Uniform Tiling Uniform Tiling
Seq. FPS - - AP
Cores | Tiles | BD-Rate |[BD-PSNR| Cores | Tiles | BD-Rate | BD-PSNR
Ballroom (640x480) 20 30 32 8747  -0.4381 35 35 8.961 -0.449 +10.5
Flamenco (640x480) 20 30 32 12078  -0.682 35 35 12.756 -0.719 +10.3
Vassar (640x480) 15 20 20 6.895 -0.238 20 20 6.904 -0.237 -0.30
Vassar (640x480) 20 30 32 9.862 -0.336 35 35 11.375 -0.387 +10.3
Keiba (832x480) 15 30 32 7.452 -0.382 35 35 9.069 -0.464 +14.0
RaceHorses (832x480) | 15 30 32 2.050 -0.118 35 35 1.167 -0.067 +14.4
BasketballDrill (832x480) | 10 17 20 6.120 -0.286 20 20 5.896 -0.276 +4.0
BasketballDrill (832x480) | 18 33 40 10.524  -0.487 35 35 8.580 -0.400 -0.70
Average 17 | 2750 30 7.966 -0.371 31.25 31.25 8.088 -0.375 +7.81
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and resource utilization of both uniform and non-uniform tiling (Section 4.2.2) is reported in Table 6-2. This
table presents BD-Rate, BD-PSNR and the total power savings in percentage for both tiling approaches. For
this case, a many-core system with no DVFS and with the following model (derived via regression analysis) is
used:

t=29.65-1.280P +0.05n 4, +3.38n (6-4)

Here, 7 is the time (in msec) to process n CTUs of a video frame with 7., total CTUs, encoded with the
quantization parameter QP, at 2.6GHz. Using this equation and the ones given in (4-5)-(4-7), one can determine
the tile structure. Afterwards, the bin-packing heuristic proposed in Figure 4-5 can be employed to determine
the number of cores actually utilized.

As seen, various sequences with different frame rates are tested, which can mimic multiple encoding
scenarios. Notice that non-uniform tiling, in average, saves three compute cores as compared to the uniform
tiling. Further, the average video output quality is better, number of tiles is reduced and power savings are
obtained when non-uniform tiling is used. Additionally, rising frame rate or increasing resolution of video
sequences results in higher power savings by the non-uniform scheme. This is due to the fact that better
workload balancing is obtained in case of non-uniform tiling approach.

6.1.4 Workload Balancing on Heterogeneous Platforms

Using the same heterogeneous cores
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of-the-Art (SOA) [2] approach.
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per-watt and is given by the relation 1/(¢m Xpio:), Wwhere ., is the time to process a task and p, is the total power
consumed by the heterogeneous multi-core system.

The average throughput-per-watt for multiple runs of the benchmarks, with varying number of subtasks (7;)
is given in Figure 6-8. As noticed, for these benchmarks, the efficiency indices ¢« ; and ¢, > outperform the state-
of-the-art load balancing scheme [2] which uses a bin-packing heuristic to distribute the load among cores.
However, the efficiency index ¢ 3 does not perform as well as the other indices. Hence, this shows that only
power-aware load distribution will not result in high performance. It does performs well for the “HEVC”
benchmark, because n; for HEVC are considerably lower (from 1 to 10) as compared to the DCT and Quant
benchmark (see Figure 6-7). When 7; increases considerably, the freedom to map these jobs also increases and
the performance of the load balancing also improves [236]. Thus, compared to ¢ 3, the performance of [2]
improves for DCT and Quant benchmarks.

Figure 6-7 (a) breakdowns the throughput-per-watt performance for the DCT benchmark, for all efficiency
indices and the approach proposed by [2], for increasing number of subtasks (i.e., #;). The number of DCT
operations performed for different image resolutions are also presented in this figure. As seen, the performance
of efficiency index ¢ ; and ¢y > is considerably better than ¢, ; and [2].

For the Quant benchmark, Figure 6-7 (b-d) shows the power, time (i.e., throughput) and number of cores
actually used for processing (kw:). As seen, for efficiency index ¢ ; and specially for ¢, the load is not
distributed only based upon the power of the node. Index ¢; uses the combination of power and cycles
consumed in processing the load, while ¢, > uses only the number of cycles. Therefore, these two indices and
[2] always result in throughput being satisfied (#x < #;ma = 30 msec) as shown in Figure 6-7 (c). However, ¢ ;
starts to miss the deadline once the load on the system increases considerably. Moreover, as shown in Figure
6-7 (d), the number of cores used for processing by ¢, ; and ¢« > are also lesser than ¢, 3 and [2].

6.2 Resource Budgeting

Following the discussion above, whereby power is minimized while meeting the throughput, this section
provides experimental evaluation of resource (cores and power) budgeting for mixed multithreaded
applications, while maximizing the throughput. For these experiments, the focus is on software level
multicasting (see Section 2.2.2) of HEVC encoders. However, it should be noted that the proposed resource
budgeting approach is also applicable to other parallelizable applications.

6.2.1 Experimental Setup

In our simulations, we have chosen epoch size as one second. Therefore, the Inter-cluster resource and power
adaptation takes place after every fps; frames have been processed. Following the methodology of [261], the
22nm results are scaled to 11nm using ITRS-provided technology scaling factor [262] to have representative
Dark Silicon scenarios. We consider a many-core chip with number of cores ki = 24. In our implementation:

Foovon. =11.0,1.2,77 3.0} (6-5)

The power of a core at 3.0GHz is 4.94W. Hence, the chip’s maximum power is 118.56W. The power
exchange in Equation (4-37) uses w;=8 and w>=2 in Equation (4-38). These parameters are obtained using
empirical analysis of HEVC video encoding. For other applications, similar application-specific numbers can
be derived.
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In order to evaluate our approach, we have used a trace-based simulation scheme. By disabling the frequency
scaling on a real system (core-i7, 3.4 GHz, 16 GB RAM, Linux), HEVC encoding is executed and the actual

time consumed for encoding each subtask (i.e.,

Table 6-3: Test video sequences sets. The video sequence format is:

video tile) 7;; is written to a file. While simulating, “Name (fpsmin) (wxh)”
this file is read to extract the time associated to T e e S—
process a data tile. For multi-channel encoding (g, ;| Ballroom (20) | Basketball (10) Exit (20) Vassar (10)
. . . ) ) (640%480) (832x480) (640%480) (640x480)
scenarios, online-available and Wldely used video Set-2 Ballroom (10) Football (10) Foreman (20) FourPeople (5)
. . . 21 (640%480) (352x288) (352%288) (1280x720)
Sequence's _Wlth 'c'hvers.e texture and motion Set-3 Bubbles (10) Coastguard (20) Keiba (10) RaceHorses (5)
characteristics utilized in our experiments are (416x240) (352x288) (832x480) (832x480)
. . BOMall (5) ChinaSpeed (10) | Flamenco (10) Vassar (5)
given 1 Table 6-3. Here, the term “set” refers to Set-4 (832x480) (1024x768) (640x480) (640%x480)

the set of video sequences which are encoded

concurrently on the same chip. An encoder processes a single video sequence in the set. These experiments are
performed using the open-source ces265 [44] HEVC video encoder. Equation (4-40) is used for determining
the initial cluster size.

In this work, the scheme proposed in [3] is chosen as a comparison partner. Note that [3] does not consider
resource allocation to the applications and assumes cluster sizes are available. Further, there is no adaptation of
cluster size at runtime. In addition, the two-level, temporal power budgeting (among applications after epochs,
and among threads after processing a data frame) proposed in this work is not implemented by [3]. Moreover,
[3] allocates more power budget to the cluster with high relative performance to power ratio, i.e., the video
encoder which generates the highest fps is allocated more power. This can result in the following case. If all the
cores of the cluster are running at minimum frequency and a lower power is allocated to the cluster in the next
epoch, it will not be possible to reduce the frequencies of the cores further. Therefore, the power budget of the
complete chip (p.:) will be exceeded. However, this is not the case with our approach.

6.2.2 Results and Discussion

Figure 6-9 shows the total achieved FPS by the proposed scheme and the scheme of [3] for different Dark
Silicon (DS) configurations. Every bar shows the stacked FPS for each set of Table 6-3, for a specific power
budget. When a larger power budget is available (e.g., at p,=100W or 15% DS), the frequencies of the cores
have a higher degree of freedom and therefore, our proposed scheme achieves 30.86% higher FPS than [3].
However, reducing power budgets (e.g., when p,,~=42W or 65% DS) also reduces the degree of freedom, and
therefore, the FPS improvement is not that high (still 15.6% higher than [3]).

Figure 6-10 and Figure 6-11 breakdowns cluster size k; and Inter-cluster power p; for all video encoders at
100W (~15% DS). As seen, encoders which process video sequences having a larger resolution and fpsuin
requirement requires more &; and p; allocation to the particular cluster. For example, Video-4 (Enc-4) of Set-2
is allocated higher k; and p; compared to the other encoders in the set. Note that the proposed algorithm will
adapt the size of the cluster (i.e., include or exclude cores from a cluster). This is shown in the runtime adaptation
of both k; and p; in these figures, where the clusters can exchange cores and power. Further, note that kz,; and pio
of the system never exceed the thresholds (ki: < 24 and pi; < 100) and pso is immediately fully utilized unlike
the control based scheme of [3].

The Intra-cluster power profiles of the encoders associated with videos of Set-4 at 100W (~15% DS) are
shown in Figure 6-12. The impact of increasing the number threads/cores is shown in Figure 6-12 (a). Figure
6-11 (d) and Figure 6-12 (b) collectively show the result of Inter-cluster power exchange, whereby Encoder-2
transfers its power to Encoder-1. Figure 6-12 (¢) shows the allocated power to the Encoder-3 (p;3) changing at
runtime. Therefore, the allocated power to the individual threads (p3,) are also adapted as shown. The ripple in
Figure 6-12 (clearly visible in Figure 6-12 (d)) is due to Intra-cluster power exchange (frequency adaptation)
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Figure 6-9: Fps achieved using proposed resource budgeting approach and State-of-the-Art (SOA) [3] for different amount power
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Figure 6-10: Runtime allocation (per epoch) of number of threads/cores for encoders at p~=100 Watts (~15% DS) of (a) Set-1, (b)
Set-2, (c) Set-3,(d) Set-4.
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Figure 6-11: Stacked area plot for Inter-cluster, runtime power (in Watts) for encoders at p=100 Watts, (~15% DS) of (a) Set-1, (b)
Set-2, (c) Set-3, (d) Set-4
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given in Algorithm 7.

6.3 Computation Offloading Evaluation

In case the resources (number of computation nodes and power) is not enough to sustain the workload, or
the video processing device is constrained, computation offloading mechanisms (HDVC, discussed in Section
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4.6) should be used. In the following, evaluation of HDVC system is presented.

6.3.1 Experimental Setup

In order to evaluate the energy efficiency of the proposed computation offloading approach, a complete
HDVC system is developed with five different ME configuration classes at encoder and two ME configuration
classes at decoder. The configuration of ME classes are borrowed from [67]. The Intra-frame encoder for I-
frame coding is based on H.264/AVC standard. For W-frame coding and estimation, the algorithms for side
information, parity-bits generation, and the quality matrix Q4 are based on [263]. For transmission energy
estimation, the model of [244] is employed. For transmission energy estimation, the distance of 100 meters is
assumed. Based on this model, the energy for one bit transmission is ~1pJ/bit. The computation energy results
are obtained from the synthesis results using a 90nm technology as given in Table 4-4.

The proposed ROI-based energy quota distribution and control approach is compared with Raster-scan based
scheme of [4]. For fairness of comparison, the same I-frame coding algorithm, same ME algorithm, and same
SI generation unit is employed. The coding is performed under target PSNR constraints. The energy results
illustrate the benefit of the proposed energy distribution and control scheme and ROI-based decisions. Note that
the overhead of the proposed approach is included in the energy results.

6.3.2 Comparison with State-of-the-Art

Evaluations in Figure 6-13 illustrate the energy consumption comparison of our scheme with state-of-the-
art for different video sequences. Figure 6-13 shows that the proposed offloading approach provides on average
20% energy reduction (maximum 25%) compared to state-of-the-art [4]. Higher savings are obtained for
“Coastguard”, “Foreman” and “Hall” sequences, because they exhibit more motion. Note that the savings for
“Mother & Daughter” and “News” sequences are relatively less due to limited motion content in the sequences.
In such scenarios, adaptive ME already terminates earlier as it quickly determines the best match. This result
also demonstrates that in case of high-motion and high-texture, the proposed approach exhibits a higher potential
for energy savings compared to state-of-the-art.

Figure 6-14 depicts the quality (PSNR) comparison at frame-level between the two schemes for the cases of
same transmission energy. For the frames number 0 and 5, the deviation between the two key-frames (i.e., Intra
frames starting the GOW) is high, thus resulting in a higher variance between the two frames. Our proposed
approach allocates more energy to the frame farther away from the Intra frame 0 and thus provides better PSNR
compared to state-of-the-art. The raster-scan based scheme fails to allocate energy quota to important blocks,
thus the results in PSNR loss. Our approach achieves 2 dB higher PSNR in these cases. For low variance key-
frames (i.e. frames at 20 and 25 in Figure 6-14), the energy distribution among the W-frames is nearly constant
and therefore, the PSNR of the W-frames between frame 20 and 25 is almost identical for both approaches.
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Note that both approaches achieve the same quality at the I-frames, as we provide the same I-frame coding
algorithms to both schemes and the difference only lies in the energy quota distribution and control for W-
frames. Therefore, the PSNR for [-frames is same for both schemes, while PSNR difference only occurs for W-

frames in this case. This is to ensure a high fairness in the comparison to highlight the benefits of only our
approach.

6.4 Memory Subsystem Evaluation

This section deals with the experimental evaluation of the memory subsystem of a video processing system.
Firstly, the impact of hybrid memories on the system performance will be provided. Afterwards, power-
efficiency SRAM aging balancing approach is given.

6.4.1 AMBER: Hybrid Memories

This section provides evaluation reports of conjugating MRAM based NVMs with SRAM based memories.
In order to test the AMBER approach of using hybrid memory structures, we augmented the HEVC reference
software (HM-9.2 encoder [257]) to include the latency, energy and power numbers. The AMBER architecture
is implemented via SRAMs and MRAMSs for which the numbers are taken from Table 3-2for a 65nm technology
[29]. Since the MRAM and SRAM read energy and latency numbers are similar and dependent upon the motion
estimation algorithm, therefore, we do not include them in the results.

Figure 6-15 illustrates AMBER simulation setup. The inputs to the AMBER memory simulator are:

e Memory traces generated using the HEVC Memory Memory HEVC
Characteristics Table Organization Encoder
reference software, ¥
. . . Video
e Memory architecture/organization, and % »  AMBER % Memory  Input
.. . Output | Memor Access
e  Memory characteristics table that contains JJ SimulatZr JJ Traces

power, latency, and area of different

memory types. Figure 6-15: Hybrid memory simulation setup.

In Figure 6-16, the power consumption of the search window based approach and AMBER is presented for
three different search window sizes, used in ME for encoding HEVC Inter frames. For evaluation, various test
video sequences recommended by the JCT-VC [234] are used. Details about the video sequences are given in
Table 6-1and Table 6-2. The small search window size is 129x129, medium search window size is 193x193
and for large search window, 257x257 size is chosen. Note that these search sizes produce best results according
to the video frame dimensions. That is, a larger frame requires bigger search window and vice versa.

For only a single reference frame (Figure 6-16 (a)), the energy consumption of the search window approach
is better. This is because only a single search window is used, and the total dynamic read and write power is
small. An increase in frame dimensions causes more leakage power consumption in AMBER because the sector
height increases. However, increasing size of the search window introduces more leakage and dynamic power
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Figure 6-16: Comparing power consumption for the search window approach and AMBER, using (a) one reference and (b) four
reference frames for ME of HEV Inter-encoding
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consumption, and the power of search window based approach increases and surpasses that of AMBER.

On the other hand, AMBER produces better results for a bigger number of reference frames (Figure 6-16
(b)). The reason is that the power consumption of search window increase due to multiple reference frames
being written and read. On average, AMBER based approach results in 43% energy savings.

6.4.2 SRAM Anti-Aging Circuits

This section provides the details results of estimating and analyzing the aging of SRAM based memories,
using different state-of-the-art architectures and the proposed SRAM anti-aging architecture.

6.4.2.1 Experimental Setup

Hardware Synthesis and Aging Estimation: The experimental setup used for evaluations is given in Figure
6-17. We have implemented our aging resilient architecture in VHDL with different aging balancing circuits
(inverter, bit swap, and bit rotate) as the basic building blocks and other architectural components like MWT,
MRT, etc. The architecture is synthesized for a
65nm TSMC technology [264] (0.9 Volt, 25°C | wemory smumor | vseoSEfivan) oeries 1) MSion”
junction temperature, FF corner) using Synopsys (5 "":'mli’ Jestbench) r
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presented in Section 3.3.3.

P]otting Aging Results: For fast analysis and Figure 6-17: Experimental setup showing different hardware and
. .. . software components for analyzing aging of SRAM circuits.
visualization of memory aging, we have
developed a GUI-based tool in C# which is made open-source [266]. This tool can accept user configurations
like memory size, location of test data sets, total number of years the memory will be used etc. Using this tool,
not only memory analysis and aging impacts can be visualized with ease, but also basic image and video
processing applications (like filtering, color conversion, etc.) be executed for aging analysis. This tool
automatically generates stressmaps, box plots, and duty cycle histograms for different input data sets (examples

are shown in our motivational analysis; Section 3.3.3). For further information, see Appendix D.

Test Video Sequences: For our experiments, we employed various test video sequences recommended by
the Joint Collaborative Team on Video Coding (JCT-VC) [31] and are available for download and testing [234,
267]. Some representative video sequences used in our experiments are presented in Table 6-4 along with their
key attributes. These videos have diverse characteristics, and they can comprehensively represent various video

Table 6-4: Video sequences and their attributes

Name Basketball  Flowervase Keiba FourPeople Johnny ChinaSpeed BQTerrace  Traffic People
Attributes 832x480 832x480 832x480 1280x720 1280x720 1024x768  1920x1080 2560x1600  2560x1600
Medium Luminance Large motion,  Very low Very low Large Large static Large static Medium
Resolution, motion, changes, camera motion, motion, motion, region, region, motion,
Motion, no camera camera panning no camera no camera  no camera camera no camera  no camera
Camera annin zooming in i pannin:
zooming/ | M
panning, b —m. |
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capture scenarios.

6.4.2.2 Results and Comparison with State-of-the-Art

Table 6-5: Comparison Partners

In Figure 6-18, the percentage duty cycle
histograms are plotted for different MWTs (given

MWT/MRT | Description
in Table 6-5) with a single frame memory for ~gaee No MWT or MRT used
different test video sequences. Except for the Swap Swap Lower and upper nibbles of the complete frame [199]
“base” and “controller” case, these histograms are  Rotate Rotate bits of every sample by 1 with every frame
generated with fr= 1, i.e., every second frame is = Proposed, with only Inverter Switch 6-7 always ON
adapted. The base case (Figure 6-18 (a)) hasa high  n=3 Proposed, with Inverter Switches 2-7 always ON
distribution of SRAM cells with a biased duty Controller Proposed, with Inverter Switches controlled
cycle. Majority of these cells are responsible for  vert Invert all bits of the complete frame [88, 201, 202]

storing the higher order, low activity bits and thus

exercise the largest amount of stress on the SRAM cells. For the inverter MWT (Figure 6-18 (g)), almost all
SRAM cells have the best possible duty cycles. Comparing with [88, 201, 202], the usage of bit-inverter MWT
in the proposed architecture will have the same aging impact. However, the aging balancing in [88, 201, 202]
are achieved by employing additional hardware and architectural changes to SRAM cells. This requires the
designer to only use customized SRAM memories with added enhancements. Further, the leakage energy
consumed and the area-overhead by these SRAMs is much higher than proposed approach because each cell
will have additional transistors associated with it.

The nibble-swap MWT (Figure 3-15 (c)) does not perform well as compared to the inverter and the rotator.
For the proposed architecture without adaptive controller and Write AGU, and with only selected bits inverted
(N=1 and N=3 in Figure 6-18 (d, ¢)), we notice that N=3 has almost the same impact on aging as the inverter.
This is because bits 0 and 1 are self-balancing themselves while bits 2-7 are adapted (see the box plot in Figure
3-15 (j) for bits 0 and 1). However, N=1 will only invert bits 6 and 7, whereas from Figure 3-15 (g, h), we notice

(a) Base (b) Swap (c) Rotate (d) N=1 (e) N=3 (f) Controller (g) Invert
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Figure 6-18: Histogram of duty cycle per bit, for a single frame memory partition with different comparison partners as given in Table
6-5. Values on x-axis denote the value 0 as given in by Table 5-4. The y-axis denotes total number of bits in millions. The best aging
balancing is achieved when the histogram is crowded towards 0. For all (excluding the base and adaptive controller case), every
second frame is adapted (fz = 1).
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Figure 6-19: Runtime adaptation of fz by the proposed aging controller with n=5, (z1, 72, 73) = (0.75n:, 0.50n;, 0.25n;), F=20. Minimum
fr=1, maximum fz=8. sz=(1-g)Xsmir and suz=(1+€)xsmir where ¢ for bits (3,5,7) = (1/64, 1/32, 1/8).
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Figure 6-20: (a-c) Energy consumed per frame of MWTs and MRTs at different frequency and FPS configurations. (d) Total area (in
cells) for different MWTs/MRTs. Inv.= 0 denotes that the Invert MWT/MRT is inactive while Inv.= 1 denotes active Invert
MWT/MRT. Rot. denotes Rotate MWT/MRT

that bits 4 and 5 may also have highly biased duty cycles, which contributes to the worsening SNM degradation.
Still, N=1 considerably balances duty cycle, as compared to the base and swap case.

For testing MWT with the adaptive controller (Figure 6-18 (f)), in these experiments we have chosen (z;, 7,
73) = (0.75n;, 0.50n;, 0.25n,) where n; =5 is the number of parts in which a bit-plane is divided (see Figure 5-26).
The runtime adaptation of f by the proposed controller is shown in Figure 6-19 for different test sequences. For
highly static sequences like “FourPeople”, fz of each Inverter Switch is lowered to the minimum possible fz, in
order to adaptively encounter the aging that such a sequence will induce. For high activity sequences or
sequences with camera panning (like “BQTerrace”), fz of each bit is increased, as it is not required to
aggressively invert the frame. In addition, the aging impacts of the proposed schemes with multiple frame
memories are almost identical.

The energy consumption per frame and area of different MWTs, for different running frequencies and FPS
are given in Figure 6-20. This data is generated by annotating the input to MWTs using ModelSim simulation.
The signal annotations are then queried by the Synopsys Design Compiler to estimate average signal activity
on each pin and generate the leakage and dynamic power. As noticed, the proposed MWT with no invert switch
active (N=0) consumes the smallest amount of energy, whereas the bit-rotate MWT consumes the largest amount
of energy and area. From Figure 6-18, we also notice that aging balancing achieved by the bit-inverter and our
proposed adaptive bit-inversion can easily surpass the performance by bit-rotate MWT. Therefore, it is
reasonable to use inverters in MWTs for aging resiliency instead of bit-swapping and bit-rotation logic. Further,
when the scheme presented in [199] is applied to SRAM memories, it requires testing for leading zeros,
read/write of infrequently accessed memory addresses and additional information storage. On the contrary, our
approach does not require such tests because it adaptively generates addresses to span the whole memory space
in a circular fashion to introduce activity in low-activity cells. Compared to [200], the proposed approach does
not require additional reads and writes to the SRAM memory, which itself consumes high dynamic energy.

Further, depending upon the application scenario and the allowable energy budget, our approach enables the
application designer to select the best fz and N configuration, suitable for the application. For example, from the
Figure 6-20, a designer can achieve up to ~15% energy savings by turning off all the invert switches at the cost
of SRAM aging. Therefore, a tradeoff between energy and SRAM aging can be established to select the best
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Figure 6-21: Duty-cycle and toggling statistics for (a) “Basketball” and (b) “Four People” video sequence, for different MWTs. The x-
axis on all the graphs presents the bit-planes of the memory. The y-axis on the duty factor plots shows the average duty factor per bit-
cell. The y-axis for the toggle graphs shows the box-plot of average toggling rate for each bit-cell, i.e., the average number of times a
write to a cell results in a bit-flip. For best results, the duty factor box-plots should be crowded around 0.5, while the toggle box-plots

should be crowded towards 0.

configuration.

6.4.2.3 HCI-Induced Aging

In this section, the duty-cycle (relevant for NBTI) and switching activity (relevant regarding HCI) are
discussed. For this purpose, Figure 6-21 plots the duty-cycle and toggling rate for two video sequences, using
different MWTs. The baseline and swap MWTs will incur the highest NBTI-induced aging, but with partial
HCl-induced aging. The Rotate MWT balances the duty-cycle but with enlarged maximum duty-cycle value in
the box plot: It also uplifts the toggling rate of the most significant bits (as shown by the concentration around
0.5-0.6 and a high maximum value), and hence the corresponding cells have a higher HCI-induced aging. The
duty-cycle is considerably balanced by the inverter MWT thus encountering NBTI-induced aging. However, it
also increases the toggling rate due to aggressive switching of every bit for every input, which will result in a
higher HCI-induced aging.

In contrast to the state-of-the-art fixed techniques, the proposed anti-aging controller adapts the spatial and
temporal granularity of applying the aging-balancing techniques. Therefore, it can provide improved
distribution profiles for duty-cycles and switching activity across different bits.






Chapter 7 Conclusion and Future Outlook

This chapter presents a synopsis of this thesis. Afterwards, a brief prognosis of future extensions related to
the complexity- and power-efficiency in relation to multimedia applications will be carried out.

7.1 Summary of the Thesis

Targeting multimedia systems under high throughput, resource and power constraints, this thesis provides
efficient software/application level approaches and hardware/architectural level designs for the multimedia
(video) system. The goal is to maximize the throughput-per-watt metric of the system, by addressing the modern
design challenges. The challenges undertaken in this thesis include multimedia application parallelization on
possibly heterogeneous systems, load balancing, resource (number of cores and power) budgeting and efficient
design of the multimedia system’s memory architecture. In a broad perspective, these problems can be combined
and collectively represented as the Dark Silicon challenge for the next generation video processing systems.

7.1.1 Software Level Approaches

The proposed multimedia system parallelization approaches address the throughput demands of the video
processing system and the attributes of the underlying hardware, while being power-efficient and providing
high output video quality. The approaches presented here determine an appropriate compute configuration,
whereby they divide a video frame into tiles, and then these tiles are packed and processed on the underlying
cores, depending upon the workload characteristics and properties of the cores. For this purpose, uniform and
non-uniform tiling approaches are employed [44, 45]. Uniform tiling assigns a video processing tile to a core,
while non-uniform tiling may assign multiple tiles to a single core. Both these approaches are designed to
balance the workload on the cores. Further, depending upon the workload of the associated tiles, the voltage-
frequency levels of the computing cores are set to address the throughput demands (FPS) and provide high
output video quality. The voltage-frequency levels are determined using a frequency estimation model. In case
the frequency estimation model is inaccurate (or not derived), runtime adjustment/derivation of frequency model
constants is carried out using a Recursive Least Square (RLS) filter.

Furthermore, appropriate application configuration is derived which will select the application’s workload
configuration (by tuning application parameters), while meeting a quality constraint set by the user. As a proof
of concept, this thesis presents HEVC application configuration by selecting HEVC parameters and bargain
computational complexity with the output video quality. Moreover, techniques to map these parameters
appropriately are presented, which considerably reduce the degradation of output video quality. By
appropriately reducing the number of Intra angular predictions used for HEVC encoding, 18% to 44% on
average time savings is achieved against the state-of-the-art approach [123], for different configurations.
Further, the depth of HEVC block subdivision (to determine the best PU configuration) is reduced, and hence
up to ~57% time savings are obtained, with negligible video quality loss (-0.048dB compared to -0.118dB for
the state-of-the-art approach [126]). Employing the proposed HEVC Intra angular and depth adaptation for
application configuration on uniform tiling based compute configuration results in ~42% power savings, and
~19.2% power savings compared to a state-of-the-art approach [1]. On top of this, the non-uniform tiling results
in additional ~7.8% power reduction compared to the uniform tiling.

In order to exploit the advantages of heterogeneity, workload distribution and balancing on
heterogeneous systems is also discussed in this thesis. Here, the compute configuration selects the compute
nodes and their frequencies in a manner to increase the throughput-per-watt of the system. For this, the workload
distribution approach considers the power and computational efficiency of the underlying compute nodes (even
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hardware accelerators), before distributing the workload of the task. In this thesis, three different efficiency
indices are provided and an optimization problem is derived. The performance of these efficiency indices are
tested using a heuristic. Compared to a state-of-the-art approach (which also derives the optimization problem
and then proposes a heuristic) [2], the proposed approach can result in up to ~64% increase in the throughput-
per-watt of the heterogeneous system. The approach in [2] allocates subtasks/video tiles to the cores in bin-
packing fashion, and the core which results in minimum power is allocated the next tile.

Furthermore, considering multiple mixed multithreaded tasks/applications on the same hardware platform
(e.g., as is the case with video multicasting), the resource budgeting problem becomes more challenging. This
thesis outlines this problem and allocates compute configurations (i.e., cores and frequency/power) to individual
clusters, used for processing a task. Each task gets a share of the computing cores and total system power (TDP),
by considering the compute characteristics of the tasks, the available frequency levels of the underlying cores
and the resource history of the tasks. Once the number of cores and power allocated to a cluster is determined,
the power is divided among the cores of the cluster and adapted at runtime. The number of cores and power
budgeted to the clusters is also adapted. When tested for HEVC multitasking, this approach results in up to
~18% additional throughput against a state-of-the-art resource budgeting scheme [3], for the same power
utilization of the system.

In case the required workload cannot be fulfilled by the hardware platform, a part of the workload can be
offloaded, which is considered for HDVC by the proposed content-aware computation offloading approach.
To maximize the video quality, a hierarchical energy budgeting and control mechanism enables ~20% energy
reduction compared to [4]. This energy reduction results from the intelligent energy distribution at group of
frames, frame and block level while addressing the user constraint of processing time. A ROI within the video
frame is extracted and selective/objective processing of the frame blocks at the encoder side is used to reduce
the energy consumption of the system, and facilitates high quality reconstruction at the decoder side. Due to its
high energy efficiency and adaptivity to provide higher quality for ROlIs, the proposed approach enables HDVC
in resource- and energy-constrained devices subjected to dynamically varying scenarios, involving complex
motion and longer GOW lengths.

7.1.2 Hardware Level Approaches

The software level approaches are applicable to multi-'/many-core systems, possibly heterogeneous and with
hardware accelerators. To increase the throughput and power-efficiency of multimedia systems, the hardware
level approaches discussed in this thesis target hardware accelerators’ design, their allocation to tasks and the
memory subsystem of the system.

In this regard, efficient architectures to support video I/O and communication between computing nodes
on the hardware accelerators is discussed. The efficient video I/O implements Video Input Pipeline (VIP), video
frame read/write to the external memory and provides the block based data to the video processing system,
which can be a soft-core, co-processor or a hardware accelerator. This design is implemented and functionally
verified for a real FPGA system (see Appendix C). For communication among nodes, an architecture is proposed
which employs a register-file based custom interface. This interface is used to exchange data (e.g., memory
pointers) and status signals (like “start”, “done” etc.) among the nodes. The proposed interface is implemented
on a multicore Nios-II based FPGA system, which can encode the video frames in HEVC format (see Section
B.4).

In order to utilize the high power-efficiency of the hardware accelerators, an optimization problem is derived
and a Nelder-Mead based heuristic is proposed to schedule the shared hardware accelerator for processing
subtasks of individual tasks in a round-robin manner. The proposed heuristic determines the frequencies of the
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computer cores, and the fraction of the subtasks of each task/application that must be offloaded to the hardware
accelerator to fulfill the throughput requirement of all the tasks at reduced power consumption. Additionally,
the soft-cores can be powered OFF once they offload their subtasks to the accelerator, reduce their temperature,
and hence address the issues related to Dark Silicon. Moreover, a multicasting system based on H.264/AVC,
employing a shared hardware accelerator is also implemented and functionally verified. The hardware
accelerator is shared among different video encoders in a round-robin fashion. For this purpose, custom
hardware scheduler and re-schedulers are used for utilizing the shared hardware accelerator. The functional
verification of the design is carried out using an FPGA (see details in Appendix C).

Moreover, this thesis also presents novel, highly efficient architectures for hardware accelerators,
specifically for video encoders (H.264/AVC and HEVC). For H.264/AVC, a low latency Intra-encoding loop
is designed, which addresses multiple dependencies to permit high throughput of the encoding loop. Firstly, an
area-efficient design of the transform module of H.264/AVC including (I)DCT and (I)Q is proposed for both
AC and DC paths. This design incorporates a HT lookahead buffer that calculates the HT input coefficients at
the 4x4 reorder stage instead of being generated by the DCT module in the AC path, effectively decoupling the
AC and DC paths. Both (DHT and (I)DCT architectures are merged and folded to reduce area. The one cycle
latency by folding of (DHT/(I)DCT is exploited in merging the Q/IQ stages together, thereby reducing the
number of multipliers and barrel shifters. A hardware architecture of the H.264/AVC mode decision circuit is
also provided, along with an efficient approach to determine the most probable Intra mode that will be selected
by the mode decision module. This approach utilizes a novel, hardware based edge detection architecture, which
determines the precedence order of the modes. This way, in case the cycle budget of the encoding loop is reduced
(due to increased resolution or 1/O stalls), the number of modes actually tested by the precedence order can be
reduced. The state-of-the-art encoding loop architecture [5] utilizes 6.89K gates per pixel and 63.5mW per pixel,
whereas 6.65K gates per pixel and 61.77mW per pixel are used by our proposed approach. Further, the proposed
edge-based algorithm outperforms the Open Loop (OL) algorithm [129] for early estimation of the Intra mode.
For HEVC Intra angular mode estimation, a hardware and software collaborative scheme is presented, which
uses the software for control and hardware for computations. The hardware unit is composed of multiple sub-
accelerators, and therefore, it is called a distributed hardware module. Each sub-accelerator can be turned OFF
independently, and thus save power. This results in up to ~42% energy savings for HEVC Intra-encoding.

The hardware accelerators usually employ on-chip scratchpads for efficient computations. This thesis
proposes an approach to use NVMs (MRAM) in conjunction with VMs (SRAM) as hybrid scratchpad
memories for video applications, and thereby reduce the power consumption of the system. Large MRAM
buffers are used for storing the video frames, while small SRAM buffer are used to (a) store the immediately
fetched data from the external memory and (b) act as input and output buffers to the video processing hardware
accelerators. Specifically, power consumption related to external memory access and leakage energy is reduced
by adaptively turning ON the normally OFF MRAM memory sectors. The turning ON/OFF pattern is learned
by an unsupervised learner (SOM). Compared to the widely utilized search window updating approach [61], the
proposed hybrid scratchpad based methodology results in ~43% power savings.

Moreover, to enable reliable operation of video processing system over long deployment durations, this
thesis analyzes the SRAM aging profiles for storing different video sequences. Based upon this analysis, power-
efficient SRAM anti-aging circuits are proposed. Instead of the state-of-the-art approaches [88, 201, 202] for
mitigating SRAM aging which (a) employ reading data from SRAM buffers, modifying that data and writing it
back to the SRAM, or, (b) design custom SRAM cells which result in high leakage power, this thesis modifies
video data on-the-fly while it is being written to the SRAM memory, using a write transducer. Further, when
the application reads this data, the data is again transformed to its original state using read transducers. The
microarchitecture of write and read transducers is designed such that the energy consumption is reduced while
enabling high SRAM aging-mitigation. Specifically, certain bits of the video samples are adapted while others
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are left unchanged. This decision in spatial and temporal locality is taken by the proposed aging controller.
Moreover, the starting address for writing every new video frames is changed, and therefore, the data of the 6T
SRAM cells is self-adapted.

7.2 Future Enhancements

The encouraging evaluations of proposed approaches put forth by this thesis at software and hardware
abstraction levels demonstrate that high power-efficiency of a video system must jointly consider the co-design
space of both the application and the hardware. Comparing with the state-of-the-art approaches, a considerable
complexity, power and area improvements are achieved. However, there are some research frontiers which are
not explored by this thesis but can be considered an effective means for resource and power-efficiency. Some
of these future directions can be orthogonally added to proposed algorithm/architectures with minimal effort. In
the following, a few of these possible future enhancements are outlined.

Approximate Computing: Approximate computing [268, 269, 270, 271, 272] exploits inherent resiliency
of applications like image/video processing to gain power savings. Since for these applications, multiple
outcomes are acceptable, the most power-efficient mechanism that still results in acceptable output quality is
selected for processing. These mechanism can be inserted at the software level or at hardware level. At the
software level, approaches using “iteration skipping” (similar to the one presented in Section 4.3) can be
employed. However, the hardware level functional approximations have gathered considerable interest over the
last decade. The main idea being, that by tolerating errors at the microarchitectural level, computing machines
can reduce the accuracy of their computations (i.e., output is approximated) and thus save energy. Mainly, the
focus of recent research about approximate computing has been to target small kernels for approximation to be
implemented as hardware accelerators. Approximation schemes are employed at the basic arithmetic units like
adders, multipliers etc. For example, [273, 274] explored transistor-level addition approximations. The authors
of [275] proposed a runtime Accuracy Configurable Adder (ACA), while [276] implements efficient but
approximate multipliers.

These microarchitectural approximations can be used to design power-efficient hardware architectures for
the next generation multimedia systems. For example, the SAD unit (see Figure 2-8) can be implemented via
approximate adders, the image/video processing filters can use approximate multipliers. Further, the hardware
accelerator sharing approach presented in this thesis (Section 5.2) can also embed a relationship to account for
the output quality/approximation level, and the hardware accelerator itself can consists of multiple
approximation units. Similarly, the workload balancing and distribution approaches for heterogeneous systems
can also utilize the approximation levels of these accelerators.

GPU Based Systems: GPUs are universally employed for image rendering and application benefiting from
large degree of parallelism, where a small compute kernel is employed at pixel-level computations [18, 112,
119, 277]. GPUs are specifically suited for video output pipelines, like the ones used in videogames. A GPU is
a heterogeneous chip-multiprocessor that can incorporate hundreds of parallel executing threads, and requires a
specialized source. Another concept popular now-a-days is General Purpose Graphics Processing Unit
(GPGPU), which can also perform non-specialized execution, typically conducted by a CPU.

In many cases, a GPU can be considered as a completely separate computing node (in conjunction with soft-
cores) and the workload balancing and distribution schemes proposed by this thesis can be used here.
Specifically, the scientific challenge to address will be division of a task into subtasks, such that the subtasks
allocated to the GPU (or GPGPU) can be efficiently run on the GPU. Another important goal of workload
distribution should be the power management of GPU, because GPU is one of the largest power consumer in
the current desktop and laptop based systems. In addition, implementing the proposed workload balancing for
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heterogeneous system on a real hardware, employing multiple GPUs, FPGAs and soft-cores, via OpenCL [278]
is a scientific and engineering challenge.

Reliability and Workload Management: Adding the reliability constraints, the software and hardware
layers of the multimedia system must be adapted in case the proposed approaches are to be used under soft-
and/or hard-errors. For example, to process a given task, multiple computing nodes are used for Dual or Triple
Modular Redundancy (DMR or TMR), the power consumption of the system will increase [279] and therefore,
the resource budgeting needs to adapt. That is, the number of cores allocated to process a task and the power
allocated to the task must consider the impact of reliability-aware processing. Similarly, the subtasks of the
image/video processing application which needs reliability and protection needs to be identified, because
usually, image/video applications are inherently resilient to errors in some parts of the computation pipeline.

Others: In addition, applications other than multimedia (databases, bio-technology, radar, signal processing
for wireless communications etc.) can be tested and evaluated by the proposed parallelization, workload
balancing, compute- and application-configurations, and resource budgeting. Similarly, hardware units for these
applications can be designed and integrated into the heterogeneous processing system architecture proposed in
Sections 5.1.4 and 5.3.2. The proposed approaches for video systems can be easily extended to 3D video
processing paradigms. For example, 3D-HEVC [280] and MVC [281] used for encoding 3D video streams,
Scalable Video Coding (SVC) [282] and Multiple Description Coding (MDC) [283] involving multiple layers
of video content, can extend the proposed parallelization and workload balancing approaches, because the 3™
dimension of the video (i.e., the view or the layer) is added as a separate dimension to the problem. Mostly, this
thesis targets the application and hardware layer for resource budgeting and optimizations, however, the kernel
level optimizations and efficient utilization of available resources may result in high complexity and power
savings. Moreover, it will be interesting to observe how these approaches can also be extended for reliable, hard
real-time systems involving strict guarantees of fulfilling the timing constraints.






Appendix A Pseudo-Codes

A.1. Computation and Application Configuration

ParallelProcessing ( ):

Input:

Allocated number of cores rw:; Allowable frequencies of the core fser; Image dimensions
wxh; Frame rate in frames per second fy;

QOutput:

Processed video;

1. NewTiling <« true;

2. while(FramesRemaining) {

3. if (A frames processed And NT( )){

4. NewTiling < true;} /INew compute configuration
5. if (NewTiling){

6. (ktot,fm ,oom ) <~ GenerateTiles( ); NewTiling <« false;}

7. Vk e {l to kot tiles} { /I[For all tiles in parallel |
8. if (EpochFinished){

9. ok < ApplicationConfig(k,om);

10. fk <« AllocEpochFreq(k,ok);}

11. ChangeCoreFreq(k);

12. tk <« ProcessTile(k,ak); /ITile processing

13. if (NewEpochStart){

14. FreqModelTuning(k, fk 0k );}

151 1

Algorithm 1: Parallel processing and workload management of video application
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A.2. Computation Configuration

A.2 - Computation Configuration

GenerateTiles ():
Input:

Allotted number of cores r1r; Available frequencies fier; Minimum frequency of a core
fmin; Maximum frequency of a core fmax; Image dimensions WxH; Quantization Parameter

QOP; Frame rate in frames per second f»; Workload matrix 4;
Qutput:

Total tiles/cores/threads kwr; Maximum frequency of each core fi.»; Initial axn per tile;

1. CoreAvail « true;k "ot « 1; /lnitial configuration

2. while(CoreAvail){

3 Ktot < TileMap[kiot]: /lActual number of tiles

4 Ck,a < g(omax,kiot, W x H); /|Estimate cycles per CTU

5 Vk,k € {0, ,ktot} { /[For each core/tile/thread

6. ak < max(A); /IStart with maximum workload

7 f < ntot x Sktota X fp; /|[Estimate frequency

8 fim < Quantize(f.fser); //Supported frequency

9 if (fk.m = fmax){ /IRequired frequency is too high
10. while(ax > min(A)){ /ITest every workload configuration
11. Ck,a < g(ok,Ktot, W x H);

12. fi,m < Quantize(nk x ¢k,a X fp,fset);

13. if (fi,m < fmax ) {@k,m < ok;break;}

14. ak < NextLowerWorkload(ak,A);}}}

15, if(ktot = rrot){ //All allotted cores utilized

16. Vk,k € {0, ,ktot} {

17. if (ak,m < min(A)){WarnExit( );}} //Workload not supportable
18. CoreAvail < false;}

19.  elscif(ak.m = max(A) Vk.k € {0, .ktot}){

20. return;} /IMaximum workload supportable
21, K'tot < kot + 13} /IRetest with increased cores

Algorithm 2: Total tiles, frequency and workload initialization

AllocFreqToCore():
Input:

Suggested core frequency fi; Allowable frequency set fier; Frame rate in frames per

second fp; Epoch size in frames z;

Qutput:
Core frequency for all tiles in one second f;

1. fin « GetNextHighFreq(fk, fset);
fk,1 < GetNextLowFreq(fk,fset);
for(i in O to z-1){

&« (fp —i)xfig+ixfin;

if (& = z x fx ){break;}

}

Vjeto to i} (j) < fk.1;

e i

Vjeti+1 to z-1} () < fk,n;

Algorithm 3: Core Frequency Allocation
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A.3. PU Map (PUM) Construction

PUM_Generator ():

Input;

Frame block /cu; CTU size by, Variance Thresholdvi;

Qutput:

PU map PUM

L. VieaxdorcTu

2. [sbi.x,sbi.y] <~ GetLocationCTU (4 x 4);

3. sbi.PUsize « 4; /IInitially set the PU sizes to 4x4
4. sbi.m < Mean(CTU4x4);sbi.v < Variance(CTU4x4);

5. PUM (sbi.x,sbi.y) = sbi.PUsize;}

6. blksize < 4;

7. while(blkgse <bw) {

8. Vh e {sb of blksizexblksize } { /ILook for sub-blocks of the required size
9. Vic (4 Neighbors of blksizex blksize } 4 //Four sub-blocks of the same size found
10. Merge < true;

11. Vi,mi < CombineVar(Vi,mi,sbi);

12. if(Vi > ven or sbiv > vin) Merge < false;break; |

13. if(Merge = true)  §

14. sbh.m <« mi;sbh.v < Vi;

15. sbn.PUsize < blksize x 2; //Four blocks merged

16. PUM (sbh.x,sbn.y) = sbn.PUsize; } }

17. blksize < blksize x 25 } //Start with the next sub-block size

18. return (PuM);

Algorithm 4: PU Map (PUM) construction algorithm
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A.4. Workload Balancing on Heterogeneous Nodes

HeterogenousLoadBalancing ():

Input:

Task processing deadline # mqx, Number of subtasks per task 7;; Number of available
nodes r1or; Power-frequency/configuration relationship of all nodes p(f); Efficiency
indices of all nodes ¢; Cycles for a subtask per node c;

Qutput:

Total number of used nodes k:wr; Frequency of nodes f;

l. g4 < SortNodesDesc(¢); // Sort nodes according to u

2. ktot < 1;k < 03

3. LoopIf(ktot < rtot){

4. Y ke {0 to kot -1 nodes} {

5. fic < fi.min; / Start with min. frequency
6. nik < DistLoad(ni,);} //Load distribution

7. ThrptMet < true; // Assume throughput is met
8. V' ke{0 to kiot -1 nodes} {

9. tik < TimeOnNode(cik,nik,fik): / Time spend on processing
10. NodeThrptMet < true; // Assume node throughput met
11. if (tik > timax){ / Throughput not satisfied
12. NodeThrptMet < false;

13. Y fije{fk,min to fk,max of node k} {

14. ti.j « TimeOnNode(ci,j,ni j.fi,j); / Time spent on processing
15. if (ti,j > ti.max ){NodeThrptMet «— true;break;} }

16. if (NodeThrptMet = false){ThrptMet < false;}}

17. /1 All kor nodes tested with every possible frequency
18.  if(ThrptMet = false){ / Throughput not satisfied
19. Kot < IncrementNode(gy): s/ Introduce additional node
20.  clse{break;} // Configuration met, break
21.}

Algorithm 5: Workload distribution and balancing on heterogeneous cores



143
Appendix A - Pseudo-Codes

A.5. Resource Budgeting for Multithreaded Applications

AdaptiveResourceAndPowerAlloc ( ):

Input:

Total number of cores kzwr; Total applications/tasks arr; Total available power pror;
Deadline per data frame #;max;

Output:

Power quota allocation per core of the many-core system

1. do{

2 Vie{0, " atot—1} ki <= EstimateCores(ti,max); // Estimate cores per cluster

3 Vie{0, " ,atot-1} pi < AllocatePower( ); // Allocate power to each cluster

4 if (ConfigChanged){Vic{0, " atot-1}{

5. Vje0,",ki-1} pij < CorePowerAlloc( );}} // Allocate power to each core

6 while(1){

7 Vie{0," atot—1} { // For every application

8 GetNewDataFrame( ); I

9 V jeto,.ki-1} ProcessDataTile() /] Process thread

10. no,i < DataFrameOffset( ); // Determine the offset from the constraint
11. Xo,i < UpdateAppOffset(no,i);

12. FreqAdjust(); // Adjust frequencies of the cores
13. if (EpochExpired) break; // Start new epoch

14. . 1 //A task finished

15. |1 // All tasks within the core finished

16. }while(Tasks remaining);

Algorithm 6: Distributing resources (cores and power) among different tasks

FreqAdjust ():

Inpur:

Total number of cores for the application ki; Core offset no,i5; Core frequency set fse={/| f
€ allowable core frequencies}; Total power for the applicationp;;

Qutput:

Core frequency fi;

1. noitist < SortThreadsByno.i,j(); //Sort in descending order
2. Zmax < 0;Zmin < ki —1; //Indices of the sorted list
3. if(FreqAdjustAllowed){

4. while(no,ilist (Zmax ) > 0 AND no,i list (Zmax ) > No,ilist (Zmin )){

5. Thigh < GetThread(no,i,list,Zmax );

6. Tiow <« GetThread(no.i list,Zmin);

7. if (Power(fset[Tiow .f — 1], fset[Thigh.f + 1]) < pi){

8. Tiow .f < fset[Tiow .f —1]; //Decrease frequency

9. Thigh .f < fset (Thigh.f +1);} //Increase frequency

Zmax <= Zmax *+ 1;Zmin <= Zmin — 1;

—_
—_ O
—

Algorithm 7: Frequency adjustment among cores after processing a task
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A.6. Computation Offloading

GOWEnergyControl ():

Input:

Initialization Signal s;; Deviation Signal sq; User defined duration 74, Battery levels
€batt,enc, €bardec; Frame rate fp; Size of GOW z+1; Energy consumed by GOW
€c,GOW, (enc, dec);

Output:

Target energy of GOW e;,Gow enc, dec); Adjusted frame rate and GOW size f;', z
1. if(si OR saq) { // (Re)compute duration
2. fp' <« fp; esum.,i < 0;

3. Vie{enc,dec} td,i <~ CalcDuration(evatt,i,Z,fp,€IF,ave.,i,€WF.avg.i);

4. ta < min(td.enc,td,dec);

5. tdreq < max(td,td);

6. if(ta > ta") {

7. o'« | (fpxta)/ta s

8. 7« [((z+D)x )/t |- 15}

9. Vie{enc,dec}etarget,i <~ (eban,i X (Z + 1))/(td,req X fp );

10. Vic{enc.dec}€1,GOW.i < €target.i}

11. }  else

12. Viefenc,dec}

13. Aei < ei — (et,.GOW.,i — €c,GOW.i);

14. ei <= €LGOW.i — €c,GOW.i}

15. €sum.i <= €sum.i + €i}

16. eLGOW,i ¢ €targeti + ((Wp x i)+ (Vi x ewti)+ (yd x Aei));

17. 3

18. return (et,6Gow ,(Ene,Dec), Ty '52)3

Algorithm 8: GOW level energy quota distribution for single-encoder, single-decoder model
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ROI-DrivenMBEnergyDistribution( ):

Input:

Hardware throughput constraint nsec; Rank-wise sorted map of ROI ROI; List of MBs
outside the ROI nonROI; Energy quota of the current W-frame e, wr; Energy for
transmission for a given transmission distance erx; Energy of channel coding ecc; Energy
of extrapolating ROI erorex;

Qutput:
Consumed Energy of W-frame, e wr
€t,WF — €Tx — €cc — €ROIl,ex
L e« — =) ; // MEs per WF
AvgMBEnergy(LowQualityME)

Nirm <= nsee/Tp // Sustainable MEs per WF

ni < min(NME,max, Nfrm);

nrol < NumMBs(ROI);

if(ni = nror) ListmBs <~ MBs(ROI,all);
if(ni < nroi1) ListmBs < MBs(ROI,ni);
if(ni > nro1){

ListMBs <~ MBs(ROI, nror) U MBs(nonROIL,(ni — nro1));}

A A o

e < (eWF — eRes — €Tx — Ccc — eROI)/ni;

10. ec,wr < 0; eyMB < €

11, Vibicrismps  § //'loop over all MBs in the list of selected MBs
12. CurrM EConfig <« MEconfig(et,mB);

13. emB < PerformME (CurrMEConfig,mbi);

14. Cc,WF $— €c,WF + EMB

15, Ac<« et—cwms;

16.  eymB < et +y x Ae;

17. 3

18. return(ec,wr);

Algorithm 9: Block-level energy quota distribution in W-frames

A.7. Hardware Offloading Cost Function

NelderMeadFunctionCost ( ):

Input:
Epoch time #;; nsec.ik, sec,k, Csk> Chk, for all tasks; Accelerator frequency fi; Minimum core
frequency fimin; Maximum core frequency fi max;

Output:
Cost of the objective function for the given inputs v;

v« 0;

Vke{0 to kot -1 soft»cores}{
th,k < ComputeTimeOnAcc(tt,nsec,h,k,Ch,k,fh);
ts,k <= tt — th,k;

fk « ComputeCoreFreq(nsec.k,Nsec.h.k,Cs.k,ts.k);}

);

Ve v+ exp(‘tt - > thik

V' ke{0 to kot -1 soft-cores} {

® N AR =

V& vt ‘Hscc‘k — Nisec,h,k

5

o

if (nsec,h.k < 0){vV < v + [nsec,h.k|;}

10.  if(fi > 0){v « v + fk;}

11. if (fk > fkomax ) {V < Vv + (fk — fk,max );}

12, if(fk < fk.min AND tsk > 0){v < v+ (fk.min — k );}

13.}

Algorithm 10: Function used in the Nelder-Mead optimization for shared hardware allocation
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A.8. Edge Detection in 16x16 MB

DominantMode ( ):

Input:
MB X;

Output:
Dominant prediction mode m;

1.

NN LD

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

rdy, E,, < EdgeFeature( X), Vw=a, b, ¢, d
Line yyy < DominantLine( Ry, E\v)
switch Line,,; do // there is an implicit ‘break’ after each case
case Line
m «— (DC, P, H, V) // No edges found
case Line;
If E,-E, > s/2 then m «— (DC, H, P, V)
elseif £, > E; then m < (DC, P, H, V)
elseif E£,-F, <s/2 then m — (DC, P, V, H)
else m «— (DC, V, P, H)
case Line;
If E,-E. > s/2 then m «— (H, DC, P, V)
elseif £, > E. then m «— (DC, H, P, V)
elseif E.-E, <s/2 then m — (DC, P, H, V)
else m < (DC, P, V, H)
case Line;
If E)-E; > s/2 then m — (DC, V, P, H)
elseif £, > E; then m «— (V, DC, P, H)
elseif £4-E» < s/4 then m «— (DC, V, P, H)
else m «— (DC, P, H, V)
case Liney
If E.-E; > 3s/4 then m — (DC, V, P, H)
elseif £.>FE; then m «— (DC, P, V, H)
elseif £;-E. <3s/4 then m «— (DC, P, V, H)
else m < (DC, H, P, V)
case Lines
m « (V, DC, P, H)
case Lines
m «— (H, DC, P, V)

Algorithm 11: Edge based likely mode selection for H.264/AVC Intra 16x16
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A.9. Motion Estimation via Hybrid Memory Subsystem

PowerGatedME( ):

Input:

Video frame F; Reference frame Search Window sw; Memory access pattern for ME
Engine MEpan;

Qutput:

Search window MRAM power gate control register PGsw;

1.

A A o

_ =
N o= o

_
B w

—_ = = =
® N

N =
e 0

N9
—

22.
23.
24.

Vilie{CTU in F} {
wait(ReadBankReady); //Block-matching is ready for CTU
CU « CTU;;

Perform ME(CU);

}

Function PerformME (CU) {
[B1 B2]« EstmMRAMAddr (MEpau,CU);
PG < TurnONMem (B1.B2); //Preemptive turn ON
TurnOFFExcessMem (ME pau,CU,PG);
v jljiet{PU incu} {
V n|n e {Search number in MEp,} {
[bw bn] <« GetDim (PUj);
WaitMEReady( ); //ME not ready yet
[Xrefsyrer ] <~ GetRefAddr (n,MEpaw);
if (Bt > Xrer or B2 < Xrer+bw ) {
PG < TurnONMem (xrer.xrer+by );  // latency
UpdateEstimator (xrer,CU); }

MotionEstimation (n, ME patt, Xref, Yref, PU )3 }

}

if (CU = SmallestCU) return: //8x8 CU, don’t divide further
Vv k |k € {0,1,2,3} { //Split the CU in 4 equal sub-CUs
CUk.Cw « CU.Cw /2;CUx.CH « CU.CH /2;CUg « CU;

PerformME(CUy); } //Recursive function call

}

Algorithm 12: AMBER pseudocode for motion estimation search in HEVC video encoder






Appendix B ces265 Video Encoder

Due to the high workload of video compression and the advent of the power-wall, video encoding standards
now allow for multithreaded (parallel) encoding possibilities, which can be exploited on multi- and many-core
systems. This work proposes an open-source software architecture for parallel video encoding, and demonstrates
the proposed concepts using a case study on High Efficiency Video Coding (HEVC). By simultaneously
encoding video tiles on independent cores, time complexity and power savings are obtained, especially for large
workload (like encoding of video with high frame-resolution). The proposed architecture is flexible and allows
for easy integration, runtime adaptation and extension.

B.1. Introduction and Motivation

New video standards, like High Efficiency Video Coding (HEVC) [229] and VP9 [284], permit parallel
encoding of video frames by breaking coding dependencies across boundaries of independent coding regions.
This allowance gains more significance because of the increasing trend of encoding videos with high
resolutions, at high frame rates. Although current industry standards like H.264/AVC [32] and VP8 also allow
for parallel encoding, their compression efficiency is not high compared to their successors HEVC and VP9.
On the other hand, the large compression efficiency offered by HEVC and VP9 is accompanied by high
computational complexity and workload. For example, HEVC consumes about 40-70% more time as compared
to H.264 [285]. Therefore, it is vital to parallelize the newest video encoding standards if they are to replace the
current industry video encoding standards.

In addition, current trend of designing programmable processing chips is to have multiple low-frequency,
low-power cores instead of a single, fast and power-hungry core. This is because as already explained, the
dynamic power (pay) of the compute core is related to its frequency (f) with the following relation:

Payn © Vg f (A-1)

In this equation, c is the capacitance and v, is the device voltage. Further, increasing the frequency of a core
requires a linear increase in v44, which concludes that dynamic power is roughly proportional to the cube of the
frequency. Further, for every chip, there is a power cap, which must not be violated, otherwise, we risk damaging
the chip. Hence, a compute core’s frequency cannot be arbitrarily increased. This constraint is usually termed
as the power wall which suggests that increasing the frequency of the compute cores in order to sustain the
quality of service demand (i.e., encoding frame rate) is not advisable. Hence, chip designers have steadily moved
towards having multiple compute cores, which has resulted in software designers to develop parallelization
mechanisms, in order to fully exploit the available potential of multiple compute cores.

The HEVC software can divide a video frame into rectangular regions, termed as tiles. These tiles can be
independently encoded (in parallel). However, to satisfy the encoding frame rate demand, the software needs to
distribute tiling workload by considering (a) the total number of available compute cores and (b) the frequency
of the core. In addition, it is possible that HEVC video encoding takes place on a heterogeneous multi- or many-
core system. In such a scenario, some compute cores have lower resources/capacity (e.g., lower frequency,
smaller caches etc.) then the rest. On the contrary, workload of video tiles may not be similar due to non-uniform
tile structure or due to change in the video content at runtime. Thus, tiles may consume different amount of
compute cycles and the workload of cores is unbalanced, which may result in computational hotspots and thus
decrease core utilization. The proposed software architecture of HEVC, termed as ces265 [44], targets the above
mentioned challenges by providing adaptability and flexibility to HEVC video encoding, and adept integration
and extension possibilities.
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B.2. Technical Description of ces265

The proposed software architecture of ces265 is shown in App-Figure B-1. There are multiple classes used
in ces265, each performing a specific purpose. The Encoder’s Top class is used to access YCbCr 4:2:0 planar
video data, create tile structure for encoding video frames and write encoder statistics. The main compression
class is the Group of Pictures (GOP)

= 7 .
Compressor class. A group of video 3o AT RO —[HEVC Headers: VPS, SPS, PPS|
f . . . . £« Tile Struct YCbCr 4:2:0
rames is provided to this class, and it Formation | | Functions < GOP Compressor
tputs compr: it-streams of each ;
OP puts compressed bit-streams of eac Encoder Statistics and File Per Slice/ Compresse_d
video frame to the Encoder’s Top class. Writing Functions Al S]] B e 2l

The GOP Compressor calls the Slice

Compressor class to compress video Thread Handler Slice Compressor
frames. The Slice Compressor class i’* FThread BP(;Jwer + 9
. . ormation|(Budgeting| | 3 &
calls functions of the Tile Compressor start] () | Stop | 7[[["]]]]]< : BEE s2
. m Job Queue Tile Jobsand Core (|3 ®
class, and each Tile Compressor class Assignment Th

has an associated Coding Tree Unit
(CTU) Compressor class. The CTU
Compressor class is the main class Tile Compressor | CTU Compressor
where the Intra and Inter encoding Tf:r:i?{g Nf;’r"g’éfn’:i;‘r"t Encode ,l':;ﬁﬁ'{,‘;ﬁ';
functions of HEVC are executed and

: : | Core Model || statistics |
bit-stream is generated. -

With reference to the challenges

App-Figure B-1: Software architecture of ces265. The Encoder’s Top object can

o ) have multiple GOP Compressor objects. Each GOP Compressor object can have

scientific and technical aspects of access to multiple Slice Compressor objects. With each Slice Compressor object, a

ces265 will now be briefly discussed. Workload Queue object is associated, with can be accessed by multiple Thread
Handler objects.

mentioned in Section B.1, some

Tile Formation: In ces265, the user

can assign a tile structure of a video frame via three options. In the first option, if the multi- or many-core system
is homogeneous (i.e., all the computing cores have the same resources e.g., frequency, cache size), the user can
opt for a uniform tile structure. This requires providing the software with width and height on the frame in tiles.
For the second option, the user can declare the exact width and height of each tile in CTUs. This scheme is
suitable for workload balancing on heterogeneous systems with diverse set of compute cores, or, when it is
required to reduce the number of compute cores [45]. If this option is used, the user is required to provide the
exact width and height of tiles in CTUs. For the third option, the software itself determines the number and
location of uniform tiles, depending upon the number of available/allotted compute cores and frequency of the
cores [44]. These parameters (number of cores and frequency) can be directly provided to ces265 using
command line parameters.

Multithreading: Multithreading is achieved by three entities; a processing thread, a job queue (or FIFO)
and a manager to fill the job queue. Manager fills the job queue from one side and the independent threads pulls
the jobs from the other side. To encode multiple tiles simultaneously in ces265, the Slice Compressor class
creates a pool of parallel threads before start of encoding. These threads (defined in Thread Handler class) wait
for the arrival of jobs allocated to the threads. Tile compression jobs are also created by the Slice Compressor
class. These jobs are pushed to a Workload Job Queue (also a class). A processing thread which is currently idle
and waiting for a processing job pops a tile compression jobs from the queue. A video frame is deemed encoded
when all the processing threads are idle and there are no more jobs left in the Workload Queue.

Consider the case of uniform tiles encoded via a homogeneous many-core system. In such case, all the
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threads will approximately take the same amount of time and the number of threads must equal the number of
tiles. In case of non-uniform tiling (with some tiles smaller than the others), the number of parallel threads
created can be less than the total number of tiles. This is because a single thread can process multiple smaller
tiles in the same amount of time as a thread processing a larger tile. However, for both uniform and non-uniform
tiles, the software does not require any changes. Larger and smaller tile jobs will enter the same workload queue
and will be treated by the threads all the same. An idle thread will start processing the tile as soon as there is a
job available in the queue.

Note that the Workload Queue and the Thread Handler classes are independent of ces265 tile encoding.
These classes can be reused in ces265 (or other programs) as they only need to know which function to call as
a parallel computing entity and a structure containing input arguments to this function.

Power Management: As discussed in Section B.1, power consumption of a device will be a major concern
in the future systems. The proposed ces265 is designed with the idea of application-level power management.
If the platform allows the application to change the working frequency of the compute core, then the additional
functionality of core’s frequency tuning can be embedded into the software. By changing the frequency, the
application can reduce the power consumption of the system by not running the core too fast, or satisfy the
quality of service demand (frame rate) by not running the core too slow. The ces265 allocates such frequency
control function in the Tile Compressor class, whereby just after the core starts executing the Tile Compressor
class, the frequency of the core is adapted to compress the corresponding tile. The frequency of a core depends
upon the total power budget allocated to the many-core system.

B.3. Implementation and Uses of ces265

ces265 is written in C++, without using any architecture specific Intrinsics [286] or SIMD [287] instructions.
Multithreading is achieved by using pthread API. Using the same source, ces265’s binary can be compiled on
both Windows and Unix/Linux based operating systems. In summary, the aim of writing ces265 is to be:

e Easily understandable and readable, for getting started with HEVC and attaining video encoding
concepts.

e Portable to multiple platforms, by using only standard C++ libraries and function calls.

e Easily extendible to include additional functionalities, such as parallelizing GOP and Slice compression.

e Portable to small systems with limited fast memories, by having a small memory footprint.

e Runtime configuration possibility, by presenting the user multiple encoding options and configuration
knobs.

e Extensive analysis of encoder’s workload and parameters, by dumping encoder’s statistics at multiple
levels of hierarchy (e.g. at CTU- and Tile-level).

Sniper x86 Many-Core Simulator
The ces265 is open-source software (available for download, Configuration T ces265
http://ces.itec.kit.edu/ces265/) under GNU General Public license Files Brecurable 1G

(http://www.gnu.org/licenses/). To test tiling, multithreading and power

management (by frequency scaling) of ces265 on a many-core system, |MCPAT Simulator || _Sim. Statistics
. . . . . Power, Energy, Timing, IPC, Cache,
Sniper x86 many-core simulator [217] is used, as shown in App-Figure B e e Branch Predictor

2. This simulator allows for frequency scaling within the running
appllcatlo.n, which is exploited by ces265 to reduce the power App-Figure B-2: Sniper simulator setup to
consumption of the system. run ces265

B.4. FPGA Implementation of Multi-Core ces265

The proposed ces265 is also ported to an Altera’s FPGA based soft- core system as shown in, which
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App-Figure B-3: Multi-core implementation of ces265 on an Altea’s FPGA

illustrates the multi-core hardware architecture (an extension of the single core ces265 encoder design). For this
purpose, the soft embedded cores called NIOS-II (provided by Altera) are used to process HEVC encoding.
Each core is used to process a single tile of the video frame. One of the core called Master core prepares the
data to be processed by the other cores, called Daughter cores.

The multi-core ces265 implementation on FPGA involves efficient arbitration and sharing of peripherals. In
the present system, all the cores share:

e SDRAM Controller Core for storage of software and processed data.
e A Custom peripheral for efficient communication among the cores.

e System ID peripheral for successful debugging the software in multi-core environment.

Sharing the peripherals is another challenge of the multi-core system. There is no guarantee to which core
peripheral will be assigned for accessing. Sharing of external memory via the SDRAM controller is one of the
toughest challenges of a multi-core system. Since the memory contains the program and data for each core, it is
important to use separate area for code execution of each processor. It should be noted that cores sharing the
same program memory space will result in erroneous results as one core might overwrite other cores’ memory.
Each processor is given its own unique .text, .rodata, .rwdata, .heap and .stack sections. These are usually the
five default linker sections that are defined as:

e .text contains the executable code.
e .rodata is the read only data used for execution of the software.

e .rwdata is used for storage of read and write variables, along with pointers that have been used in the
software.

e _heap is used as a storage for dynamic memory allocation (using “malloc” in C or “new” in C++).
e _stack is used for storing function call parameters and other temporary data.

Another valuable inclusion to the multi-core systems is the implementation of Custom Instructions (CI) or
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in-core hardware accelerators. These accelerators are user defined macros that are designed and implemented
in hardware. Its sole purpose is to accelerate time critical software algorithms. With the help of in-core
accelerators, software algorithms which might take a large number of clock cycles to execute can be replace
with custom macros which usually take far lesser number of cycles (minimum of just one cycle), thus further
decreasing the total computation time of the ces265 encoder. In this implementation, the SAD function (which
usually takes about 80% of the processing time) is implemented as a hardware accelerator.

Further, note that the proposed architecture is not limited to ces265. Any parallelizable application can be
implemented on custom hardware like FPGAs, using the above architecture.

Working: The Master core governs the processing flow of the proposed architecture. It knows about the
addresses of the data frames written to the external memory, the tile structure which must be generated for
Daughter cores to properly work, and the details of the custom interface used for communication.

Depending upon the number of Daughter cores, the Master core first determines the exact dimension of the
video tiles, as well as the starting and ending pixel locations of these tiles. For this purpose, it can employ
uniform or non-uniform tiling approaches. The Master core also allocated memory for bit-stream handlers and
other associated data structures, for all the tiles (which will be processed by the Daughter cores). Afterwards, it
starts writing the tile addresses and other memory pointers to the custom interface (which is basically a set of
registers associated with each daughter core). Afterwards, the Master core sets a “go” signal which commences
the tile processing. In this case, the Master core also processes a single tile. Once it finishes processing its tile,
it starts collecting status signals of all other Daughter cores (which fill the appropriate registers within the
custom interface to inform the Master core about the compute status). If all cores have finished processing their
workload, the Master core initiates processing the next frame.

B.5. Conclusion and Future Direction

Here, ces265, a software architecture for multithreaded HEVC encoding is presented. Using the proposed
multithreading support, a user can select different tiling configurations depending upon the characteristics of
the many-core system, suitable for the needs of the user.

In future development, it is planned to extend ces265 by including vector processing instructions (or SIMD
instructions). Parallelizing the GOP and Slice compression (in addition to parallel tile compression) is a logical
step towards hierarchical resource and power management of ces265. This can be achieved with minimal effort,
because as previously pointed out in Section B.2, the Job Queue and Thread Handlers can be replicated and
inserted before GOP Compression and Slice Compression classes. In addition, it is planned to use ces265 for
real-time 3D-HEVC for efficient compression of 3D videos.






Appendix C H.264/AVC Prototype

To functionally verify the proposed hardware accelerators for H.264/AVC and multicasting, the complete
H.264/AVC encoder is prototyped on an Altera’s FPGA. This encoder includes:

e Parallel processing of up to four parallel FullHD (1920x1080) video frames at 25 fps.

e Capturing raw video samples from real-world analog camera inputs, and converting them into
appropriate video format, i.e., YCbCr 4:2:0.

e  Writing and reading video frame samples to/from the external DDR3 memory of the FPGA development
board.

e Processing the video frame samples on the FPGA and compressing them to H.264/AVC standard-
compliant bit-stream.

e Displaying the locally decoded bit-stream via DVI for quick debugging.

The design challenges include for implementing the prototype include:

e Debugging the hardware board.

e Integration of video cameras to the FPGA board via the daughter board.

e Converting analog streams into digital YCbCr 4:2:0 interpretation.

e Interfacing the DDR3 memory with the FPGA, by appropriately tuning the timing parameters.
e Setting the clock frequencies of the DDR3 and the video encoder.

e Integrating Gigabit Ethernet with the video encoder.

e Setting up the DVI output.

In the following, brief details about the working principles of the prototype will be provided.

C.1. Simulation and Design Workflow

The simulation and design workflow of the proposed multicast encoder is shown in App-Figure C-1. The
multicast H.264 Intra encoder is developed using an in-house C-based H.264/AVC Intra encoder, MATLAB
and ModelSim co-simulation framework. Altera’s

Quartus together with Synopsys Design Compiler MATLAB
" Analysis and

are used for design analysis and implementation.
Encoding configurations are provided to the C- |\=2mt=ne
based H.264/AVC encoder, which is used to
generate bit-streams and test vectors to be used in S\I')"e‘;:’gsr\‘fs
Compiler
used to visualize the impact of the proposed [ Altera [Analysis'&][ Power ]
hardware accelerator via MATLAB’s plotting and | Quartus Lomess Ay

analysis tools. The VHDL files (for H.264/AVC W Pins-, Clock- Constraints, GX FPGA
entities and related test-benches), test vectors and Y VHPLFiles Fitter, Fmax Settings b

the Executable and Linkable (elf) file of the . . . .
App-Figure C-1: Simulation and design methodology of the proposed
embedded NIOS-II CPU [288] are used for RTL- multicast H.264/AVC video encoder.

level ModelSim simulations and debugging.

These VHDL files are also forwarded to the Altera Quartus 12.1 software to generate the hardware bit-stream,
which is burned on the FPGA. The Synopsys Design Compiler is used to generate area and power logs for the
H.264/AVC VHDL entities using a 65nm TSMC library.

Plotting

Encoder Configuration

ModelSim simulation. These test vectors are also

NIOS I
Download

Arriall

DVI
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App-Figure C-2: Prototype architecture on Altera’s Arria II GX FPGA. For complete system implementation of H.264 Intra-only

C.2. FPGA Prototype

For functional verification of the architecture, the H.264/AVC encoder and the multicast video gather and
display separately is implemented on a real-world FPGA. These are prototyped on Altera’s DK DEV
2AGX260N FPGA Development Kit containing a cost-effective Arria II GX EP2AGX260 FPGA. The
architecture for the proposed encoder is shown in App-Figure C-2. The development kit used in this work
features a 64-bits wide DDR2 dual inline memory
and a 16-bits wide single chip DDR3. For
functional verification, the video data is fed from
an SD camera to the proposed FullHD encoder
pipeline and the output bit-stream (generated by
CAVLC [289]) is passed to the output node as
AVB packets [290] via Gigabit Ethernet. The
camera is connected to the FPGA prototyping
board as shown in App-Figure C-3. The whole
encoder uses a single clock domain of 150MHz.
DDR3 is clocked at 300MHz. NIOS II embedded CPU is used for frame-by-frame control signaling and for
future extensions of the prototype. The NIOS II is also used to configuring the video input, DVI and Ethernet

App-Figure C-3: Prototype implementation on Altera’s Arria II GX
FPGA.

module at startup (not shown in the figure). Note that the video output path is not required in the actual
implementation, it is used to view the reconstructed video frames. Similarly, the mixer component is optional
as it is used only to stack the frames together. This is also helpful for background generation.

As a service to the research community, the VHDL of the proposed H.264/AVC encoder is open-sourced,
which can be downloaded at [291]. Writing and testing custom hardware for a large and complex project (like
H.264/AVC) is a highly time-consuming process. Therefore, with this release, the research community will
gain a head start in developing video compression schemes due to fast evaluation and simulation. Moreover, it
will help the VLSI and video-system architecture community to implement and test their novel algorithms and
architectures in an efficient manner.

C.3. Prototype Evaluation

On the FPGA prototype, the total time taken by the trans-form module is 56 cycles. Each prediction (X")
generation requires 17 cycles, including the P prediction mode. Compared to the state-of-the-art approaches,
the different attributes of our encoding scheme are tabulated in App-Table C-1. The state-of-the-art schemes
here do not consider multicasting. Therefore, we have given the resolution supported by a single encoder for
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the pro-posed architecture. In contrast to the
others approaches, our proposed encoder can be
adjusted to balance the workload and encoding
methods. Moreover, hardware is saved by: (a)
reusing the same structure for SAD computations
of all the four modes, (b) by realizing only one
DCT folded butter-fly [249] and (c) reusing same
hardware for quantization and inverse
quantization. Further, compared to [160], our
approach only uses one prediction unit (instead of
two parallel units) at 150MHz instead of
310MHz. However, our approach can also be
extended in a similar fashion and is more flexible
be-cause the parameters d, and & are controllable.
Area usage and maximum frequency of important
modules of the encoding loop implementation are
given in App-Table C-2. The M9K embedded
SRAM block memories are used as FIFOs to
connect the encoding stages and the total area of

the encoding loop also includes these FIFOs.

In App-Table C-3, the results for compiling
the VHDL of the proposed encoder on a TSMC
65nm technology [264] are shown. Synthesis is
carried out using Synopsys [265], with medium
effort mapping and automatic hold time violation
correction. The total number of gates present the
2-input NAND equivalent of the 65 nm TSMC
technology. Note that we target hardware
frequency of 310MHz.

In order to determine the total number of MBs
nsm that can be processed by the encoder, given the
total cycles allocated per MB c in the loop clocked
at fi MHz with a target FPS of f,,, we calculate nx
as shown in Equation (A-2). Using ngm, We can
calculate the maximum image dimensions for
given dimension ratios. In App-Table C-4, we
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App-Table C-1: Comparison of the proposed encoding system with
State-of-the-Art Schemes (NI: Not Implemented, Tf: Transform)

[158] [161] [300] [5] This work.
MHz 54 150 140 114 150
Size 720480 1920x1080 1920x1080 1920x1080 4068x2288
4:2:0 4:2:0 4:2:0 4:2:0 4:2:0
FPS 31 61 30 30 25
14MB, 14MB, 14MB, 14MB, 116MB
Mode I16MB  116MB 116MB 116MB Serial
Parallel  Parallel Serial Parallel
e TSMC TSMC TSMC TSMC Altera
250 nm 180 nm 130 nm 130 nm  FPGA 40nm
11K ALUS,
Area 89K 201.8K 94.7K 2653K 8K Regs,
Gates Gates Gates Gates 562 Kbit
BRAM
Entropy o yic N CAVLC CABAC  CAVLC
Coding
LR R No No No No Yes
Support
Cam. input  No No No No Yes
Tf Folding No No No No Yes
Tf Merging  Yes Yes* Yes Yes Yes
Q Merging No No No Yes Yes

App-Table C-2: Synthesis results for our [16MB encoding loop. The
total area (last row) exceed the sum of the components, because there
is further glue logic between the components (e.g. FIFOs)

Module MHz Aluts Regs Nfle(‘;:’éy
4% 4 RO+HT 321.34 438 1,604 0
Transform 167.87 7,901 3,958 5.34
Mode Pred. 171.14 1,426 747 256
Edge Detector 385.8 283 525 0
Reconstruct 475.74 460 969 0
Total - 10,583 8,088 562

App-Table C-3: Synthesis results for TSMC 65 nm at 310MHz. The
total gates denote the total logic equivalent of a 2-input NAND gate

44 Choma  Edge Scheduler
Module RO+HT Luma Tf TF Deteotor Reconstruct =)
Gates 5.83K 106 217.2 4.38 1.14 1.56
SRAM 0 5.34K  10.69K 0 0 0

App-Table C-4: 16:9 resolution supported by the proposed encoder for
25 fps operating at 150MHz

=1 0=2 @=3 0=4
ds=1 4894x2752 4564%2568 4294x2416 4068x2288
ds=2 4894x2752 4564%2568 4416x2484 4280%2408

show the maximum sustainable frame dimensions at 16:9 for different encoder configurations. We use f; of 150

MHz at 25fps. As seen, the maximum dimensions supporting all 16x16 modes at 25 fps with no row down-

sampling is 4068x2288.

(A-2)






Appendix D Memory Aging Analysis Tool

This appendix details a GUI-based tool (YUV Aging-Simulator, Analyzer and Viewer, YASAV), to simulate
aging and analyze the impact of video content on different regions of the SRAM memory. While the main focus
is to develop SRAM aging resilient schemes for video memories, the tool can also be used to visually present
the impact of aging. This tool can display YCbCr 4:2:0 videos, perform and present SRAM aging analysis if
the same video is written to that memory, analyze the impact of different aging balancing circuits and provide
opportunity to the viewer to access the impact of video-content on the aging of SRAM. This is an open-source
tool and available for download at [266], and the major contributor is Mr. Orcun Tufek.

D.1. The YASAYV Tool

The screenshot of the proposed YUV Aging-Simulator, Analyzer and Viewer (YASAV) tool is given in
App-Figure D-1. This screenshot shows the tool after opening the “Kimono1” YCbCr 4:2:0 sequence. As seen,
there are three tabs (“File”, “Base” and “Aging e e oxm
Analysis”) in the ribbon at top of the screen. The 2 % ==« ww e T
user can open video files, provide video resolutions
and get help documents by using the “File” tab in
the ribbon. The “Base” tab is used to visualize the
file, as well as put block-based grids on the images
(for understanding block-based video processing).
“Aging Analysis” tab provides different
configuration settings for aging balancing and
generates plots (boxplots, histograms, stressmaps
etc.) for the user. These plots can also be saved to

files for later analysis. App-Figure D-1: A screenshot of YASAV tool.

File Handling: The tool is capable of opening raw YCbCr 4:2:0 videos, images with .bmp, .jpeg and .png
extensions, and all other files types. The opened images/videos can be zoomed or panned using keyboard
shortcuts of the mouse control. It can directly guess the resolution of the video sequence using the name of the
sequence (because usually for raw video streams, the resolution of the video is a part of the name of the video).
The tool is capable of displaying all combinations of the luminance or the chrominance components of the
YCbCr 4:2:0 video and overlay grids of different square sizes (in accordance with the HEVC standard, like
64%64, 32x32 etc.). YASAV can also be used to extract different frames of the sequence and save them in a
bitmap file. Further, it can also be used to extract only the luminance component of the video and store it
separately.

Aging Analysis: For aging analysis of SRAM memory to which the image/video/data-content is written can
be configured by the user. Specifically, a user can define the size of the SRAM and the width of a word in bits.
However, if no file size is defined, the video resolution is used to define the size of SRAM such that the size
corresponds to the number of bits which will be used to present the video frame. And it is assumed that
successive video frames overwrite these SRAM locations, causing different duty-cycles for each 6T SRAM
cell. In addition, the number of years for which the SRAM will be employed under the given content
characteristics and the reference Static Noise Margin (SNM) can be set by the user. Once these values are set,
the user can select the aging balancing strategy. Currently, four different aging balancing strategies are
embedded in the YASAYV tool. One is the base, which means that no aging balancing should be employed. The
other three are Circular Swap, Circular Shift and Inversion as given in Figure 3-15. Moreover, the balancing
frequency of these circuits is also set by the user. Further, the granularity of the aging histograms can also be
set by the user and afterwards, the processing can start.
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Tool Output: Once the processing is done, different files are generated and are available for the user to
view. A file which contains information about the distribution of duty-cycles, for each bit of the data is
generated. This file is used to draw the box-plots within the tool for visualization of the impact of the aging
balancing circuits. Moreover, another file which contains the duty cycle of each 6T SRAM cell is generated,
and this file is used to create the stressmaps within the YASAYV tool. Moreover, the SNM degradations of all
the cells are also saved and used for creating SNM degradation histograms.

D.2. Tool Development

The YASAV tool is developed on a Windows system, using C# and Windows Presentation Foundation
(WPF) graphical rendering system [292]. To make the tool interface easy to navigate and access, the “Ribbon”
interface is added, which is a graphical representation of multiple tabs to replace menus of a GUI, for increased
management and reduced complexity. The “Ribbon” library specifically used in this tool is the “Fluent Ribbon
Control Suite” [293]. To create plots and histograms, the “OxyPlot” [294] library is used.

D.3. Screenshots

Some screenshots of the YASAYV tool are given below.

(a) (b)

Box-And-Whisker Plat
0

App-Figure D-3: (a) Box-plot of duty-cycles for all bits and (b) SNM degradation histogram.
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