KIT | KIT-Bibliothek | Impressum | Datenschutz

Metastable energy strata in numerical discretizations ofweakly nonlinear wave equations

Gauckler, Ludwig; Weiß, Daniel

Abstract:

The quadratic nonlinear wave equation on a one-dimensional torus with small initial values located in a single Fourier mode is considered. In this situation, the formation of metastable energy strata has recently been described and their long-time stability has been shown. The topic of the present paper is the correct reproduction of these metastable energy strata by a numerical method. For symplectic trigonometric integrators applied to the equation, it is shown that these energy strata are reproduced even on long time intervals in a qualitatively correct way.


Volltext §
DOI: 10.5445/IR/1000055097
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2016
Sprache Englisch
Identifikator ISSN: 2365-662X
urn:nbn:de:swb:90-550978
KITopen-ID: 1000055097
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 23 S.
Serie CRC 1173 ; 2016/13
Schlagwörter nonlinear wave equations, trigonometric integrators, long-time behavior, modulated Fourier expansion
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page