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Deutsche Zusammenfassung
Die anthropogene Erderwärmung ist eine der größten Herausforderungen der modernen
Gesellschaft. Im Rahmen des Pariser Klimagipfels im Dezember 2015 einigten sich daher
195 Staaten auf eine Begrenzung der Erderwärmung auf „weit unter“ 2 ◦C im Vergleich zum
vorindustriellen Zeitalter. Zwei mögliche Maßnahmen zur Reduktion der für die Erderwär-
mung verantwortlichen Treibhausgase sind die Erzeugung regenerativer Energie durch Pho-
tovoltaik und die Reduktion des Strombedarfs durch den Einsatz elektrischer Verbraucher
mit hohem Wirkungsgrad, beispielsweise im Bereich der Beleuchtung.
Sowohl in der Photovoltaik als auch bei Leuchtmitteln sind bereits Halbleiter-basierte Bauteile
verfügbar und weit verbreitet. Diese Solarzellen bestehen jedoch größtenteils aus Kristallen,
deren Herstellung einer hohen Präzision und viel Energie bedarf, wodurch kostengünstige
Produktion großflächiger Solarzellen begrenzt wird. Ebenso schreitet der Einzug von Leucht-
dioden (LEDs) zur Raumbeleuchtung durch das begrenzte Farbspektrum des emittierten
Lichts und die Punktförmigkeit der Lichtquelle nur langsam voran.
Ein Konzept, das die Probleme in diesen Anwendungsfeldern lösen könnte, sind Bauteile aus
dünnen Schichten kleiner organischer Moleküle oder Polymerstrukturen (Organische Elek-
tronik, OE). Die sehr große Anzahl möglicher chemischer Verbindungen, die per Aufdamp-
fung oder aus der Flüssigphase kostengünstig und mittels einfacher Prozesse (bspw. Rolle-zu-
Rolle Verfahren) zu großflächigen elektrischen Bauteilen verarbeitet werden, verspricht eine
Vielzahl an möglichen Anwendungen im Bereich organischer Leuchtdioden (OLEDs) oder
organischer Photovoltaik (OPV).
Gegenwärtig verfügbare Bauteile blieben bisher jedoch aufgrund geringer Wirkungsgrade und
kurzer Lebensdauern hinter den Erwartungen zurück. Der wissenschaftliche Fortschritt ist
dadurch behindert, dass die sukzessive experimentelle Synthese, Produktion und Vermessung
kleiner Bauteile im Labormaßstab eine zeitlich und kostentechnisch ineffiziente Strategie zur
Auswahl geeigneter chemischer Verbindungen darstellt. Die theoretische Beschreibung von
OE-Bauteilen kann hier zweierlei Abhilfe schaffen: Zum einen ist ein tieferes Verständnis
der fundamentalen quantenmechanischen Prozesse notwendig, um die Ursachen begrenzter
Wirkungsgrade und schnellen Alterns der Materialien zu verstehen und zu beheben. Zum
anderen ermöglicht die Simulation makroskopischer elektrischer Eigenschaften auf der Basis
der elektronischen Struktur der einzelnen Moleküle eine effiziente Vorauswahl geeigneter
Materialien, was den Zeit- und Kostenaufwand der Laborentwicklung der Bauteile drastisch
senken kann.
In dieser Arbeit wird ein Konzept zur effizienten Modellierung der elektronischen Eigen-
schaften organischer Materialien vorgestellt. Durch die geschickte Kombination mehrerer
Methoden auf verschiedenen physikalischen Zeit- und Größenordnungen können makroskopis-
che Eigenschaften der Bauteile aus dem Aufbau der einzelnen Moleküle abgeleitet werden. Die
Anwendung auf dünne Schichten kleiner organischer Moleküle, metall-organischer Oligomere
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und metall-organischer Gitterverbindungen (Metal-Organic Frameworks, MOFs) in Kombi-
nation mit experimentellen Ergebnissen demonstriert die Verlässlichkeit und die Übertrag-
barkeit dieses multiskaligen Modellierungs-Ansatzes auch auf verwandte Anwendungsfelder.
Die insgesamt gute Übereinstimmung mit experimentellen Daten erweckt Hoffnung auf com-
putergestützte Entwicklung von OE-Bauteilen, wodurch sich Entwicklungszeit und -kosten
senken lassen und somit die schnelle Etablierung der OE-Technologie ermöglicht wird.
Genaue Kenntnis über Position, Orientierung und Deformierung der Moleküle in realistisch
großen Strukturen, die sich üblicherweise auf Zeitskalen im µs-Bereich formieren, ist essen-
tiell für die korrekte Berechnung mikroskopischer Ladungsträgereigenschaften, aus denen
sich makroskopische Größen, wie die Ladungsträgermobilität, ableiten lassen. Bisherige Ver-
fahren sind durch methodische Eigenheiten in der Systemgröße und der simulierten Zeit-
skala beschränkt. In diesem Rahmen werden zwei Verfahren zur beschleunigten Simulation
meso-skaliger (10nm - 1µm) Molekülstrukturen, einem der limitierenden Prozesse des oben
genannten multiskaligen Modellierungsansatzes, vorgestellt. Die im Rahmen dieser Arbeit
entwickelten Verfahren beinhalten die Konstruktion kollektiver, teilweise korrelierter, Sys-
temänderungen in Monte-Carlo-Verfahren. Dadurch entstehen kurze Autokorrelationszeiten
der Freiheitsgrade und eine hohe Systemdynamik, was die Simulation physikalisch langsamer
Prozesse mit atomarer Auflösung ermöglicht. Die Anwendung auf verschiedene, zunehmend
komplexe Modellsysteme und der Vergleich mit etablierten Verfahren zeigt, dass die vor-
gestellten Algorithmen zur Beschleunigung der Systemdynamik um bis zu zwei Größenord-
nungen führen. Dies ermöglicht prinzipiell die Simulation langsamer Prozesse in der meso-
skaligen Strukturbildung und trägt somit signifikant zur computergestützten Erforschung
und Entwicklung organischer Elektronik bei.
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1. Introduction

1.1. Electronic Devices Based on Organic Compounds
1.1.1. Efficient Technology against Global Warming
One of the key challenges of modern society is presented by global warming. While the role
of human activities in the increase of global temperature was originally debated, it is now a
widely accepted fact that global warming is an anthropogenic effect. Especially the emission
of green house gases into the atmosphere warms the lower atmosphere of the planet and
the oceans, causing a significant melt-down of perpetual ice at north and south poles and a
rise of the water levels, threatening the existence of whole communities. Further, extreme
meteorological perturbations such as frequent occurrences of hurricanes, floods and typhoons
observed in the past decade are expected to be a direct consequence of anthropogenic global
warming.
In context of the nuclear phase-out in Europe and the only slow switch towards renewable
energy sources, coal-fired power plants remain a major source of electrical energy, leading
to steady emissions of CO2 into the atmosphere. In line with a continuous improvement of
renewable energy resources, especially photovoltaics and storage devices for electrical power,
an overall reduction of electrical consumption in households and industry remains one of the
main challenges. The substitution of common light bulbs with power conversion efficiencies
in the lower single digit range has thus received increasing attention over the past decades.
Special energy saving lamps and silicon based light emitting diodes (LEDs) are widely avail-
able, but their radiation light spectrum is limited and often considered cold and unnatural
and their disposal remains problematic. While inorganic semiconductors are widely applied
in photovoltaic applications, the necessary manufacturing of sensitive crystalline layers pre-
vents the large-scale, inexpensive production of durable, large-area devices.

1.1.2. Organic Light Emitting Diodes and Organic Photovoltaics
A different technology promising a wide range of devices for the application in lighting
[1, 2], photovoltaics [3–5] and field-effect transistors [6] are organic electronic materials.
Novel processing techniques such as solvent processing or printing of organic compounds
promise the low-cost production of thin, flexible large-area devices manufactured in roll-
to-roll processes [7, 8]. Since the discovery of electric luminescence in thin organic layers
in 1987 by Tang and Van Slyke [9], substantial strides towards device efficiency [10–13]
and improvements regarding processing techniques were made. The originally monolayer-
structured device, displayed in Fig. 1.1.1a, was developed further towards multi-layered
structures. These devices comprise multiple doped or pure materials [14] to allow white
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2 1.1. ELECTRONIC DEVICES BASED ON ORGANIC COMPOUNDS

(a) Figure taken from [9] (b) Figure taken from [14]

Figure 1.1.1.: Since the discovery of electrical luminescence in organic electronic
layers in 1987, the Alq3 OLED (a) originally proposed by Tang and Van Slyke was
further developed into complex, multi-layered structures (b). The complex elec-
tronic structure of composite devices including bulk- and interface effects poses
a major challenge in the systematic experimental analysis and characterization
of device properties.

emission and optimized power conversion efficiencies (PCEs) by tuning bandgaps and level
alignment of neighboring layers. The setup of one of these complex devices is illustrated in
Fig. 1.1.1b.
The possibilities to synthesize materials for organic light emitting diodes (OLED) and organic
photovoltaic (OPV) devices open many as-of-yet unexplored opportunities. In principle, this
enables the specific modification of device properties on the molecular level. However, not
all processes in OLEDs and OPV are fully understood. The mapping of single-molecule
characteristics onto device properties is the consequence of several microscopic processes,
rendering an analytical transfer of properties impossible. As a consequence, the identifica-
tion of suitable organic molecules for the application in OLEDs or OPV is dominated by a
trial-and-error procedure of experimentalists. Repetitive experimental synthesis, small scale
production and device characterization is a costly search for the needle in the haystack,
impeding the progress of organic electronic devices.

1.1.3. Metal-Organic Frameworks
A different class of materials that has attracted wide attention during the past decades are
nano-porous metal-organic frameworks (MOFs). These ordered, three-dimensional structures
consisting of metallic centers linked by organic ligands have been successfully applied in a
variety of applications such as hydrogen storage [15], CO2 capture [16, 17], catalysis [18, 19],
sensing [20] and photovoltaics [21]. By mixing metal salts with organic ligands in salvato-
chemical reactions [22, 23], a variety of over 20000 different MOF structures have been ex-
perimentally realized to date. Furthermore, refined techniques on the basis of self-assembling
monolayers allow the synthesis of single-crystal surface-mounted MOFs (SURMOFs) [24]. A
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Metallic compound

Organic linkers

Functionalized substrate

Figure 1.1.2.: Schematic illustration of metal-organic frameworks

schematic illustration of MOFs is given in Fig. 1.1.2.
Like in OLEDs and OPV, the vast possible number of organic linkers that determine intrin-
sic properties, such as pore size, electrical and optical excitation and diffusion behaviour of
loaded guest molecules, open the prospect of specifically designed light-weight devices with
tunable electronic properties. However, the lack of intrinsic electrical conductance, which
results from the absence of significant band dispersion for most systems remains a major
challenge in respect to application of MOFs in electrical devices. While modification of
intrinsic properties by loading organic molecules into MOF pores was successfully demon-
strated [25], the systematic in vitro synthesis, MOF growth and characterization remains a
costly and time-consuming challenge. Moreover, experimental measurements fail to analyze
processes on the atomistic scale within the pores, limiting the development of a systematic
understanding of processes and characteristics of MOFs.

1.2. Modeling (metal-) Organic Electronics
1.2.1. Towards in silico Device Simulations
For metal-organic systems consisting of small organic molecules, polymers or metal-organic
frameworks, the huge number of possible constituents is both advantage and disadvantage
of the technology: Optimization starting at the molecular level by subsequent experimental
synthesis, small-scale production and experimental device analysis, however, is slow and
costly. Furthermore, as the macroscopic device properties are a result of several processes
on the microscopic scale, a systematic understanding of all relevant processes responsible for
e.g. limited efficiencies, short life times due to fast degradation or the insulating behavior of
MOFs cannot be gained solely from experimental observations.
A different approach that may greatly reduce both cost and time as well as accelerate the
design of (metal-) organic electronic devices is the application of predictive computational
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<ψi|H|ψf>J=σE F=ma

10nm1cm 1Å

Figure 1.2.1.: Phenomena on different time and length scales pose a major chal-
lenge in the theoretical description of OE devices. The macroscopic properties
on length scales of 1 cm and time scales of hours or days is determined by the
mesoscopic molecular structure on the scale of 10nm to 1µm, formed on time
scales of miliseconds, and microscopic quantum mechanical properties, such as
electronic coupling between neighboring molecules on the scale of 1Å.

modeling techniques. First, a bottom up simulation of devices starting on the quantum
mechanical level allows the observation and analysis of the individual processes in organic
electronic devices and is thus a systematic approach to tackle drawbacks such as degradation
and low power conversion efficiencies. Secondly, as the cost for computational power has
been steadily reduced over the past decade, established simulation approaches enable high-
throughput pre-screening of materials at low cost in comparison to experimental approaches.
Inclusion of electronic characteristics of bulk materials, organic-organic and inorganic-organic
interfaces into the modeling process enables the description of full devices in the computer-
chip, i.e. in silico design of new electronic devices.
However, while simulations contribute significantly to the development of devices in many
industrial and academic areas such as automotive and aerospace industry or the design of
silicon based electronics, molecular simulations play as yet only a minor role in the de-
velopment of novel electronic organic materials and devices. In fact, the development of
simulation methods for the description of full organic electronic devices has not yet been
fully established, but is the focus of intense current research [3, 14, 27–30].
The slow development regarding application of simulations in organic material science is a
result of phenomena occurring on multiple time and length scales in the device, as illustrated
in Fig. 1.2.1: Configurational disorder resulting from either amorphous molecular packing of
polymers or single molecules, or the atomic structure of loaded compounds in MOFs renders
analytical solutions difficult. Further, inhomogeneous environment changes the electronic
structure of the single constituents within the structure depending on their position. This
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requires the individual calculation of the electronic structure of every single constituent.
Although there are multiple methods readily available, the treatment of full devices on the
micrometer length scale on the full quantum mechanical level is not feasible. Neglecting
the quantum mechanical effects, on the other hand, will inevitably fail to capture relevant
electronic effects necessary for the proper description of the device characteristics.

1.2.2. Multiscale Modeling for Full Devices Simulations
Efforts have been made to extend the capabilities of quantum chemistry methods towards the
treatment of several thousand electrons [31], but it is apparent that present computational
resource will fail to cover full devices on the nanometer-scale consisting of the order of 104

atoms. Further, investigation of different effects on different time and length scales is essential
for the systematic understanding of microscopic processes and their influence on the overall
device performance.
Hence, the predictive full device calculations via a single method is presently infeasible. An
alternative approach lies in multiscale modeling techniques, where the treatment of different
effects with specific methods is adapted to their specific length and time scales: First, the
electronic structure of single molecules or pairs of molecules is calculated with high accu-
racy using quantum chemistry approaches with high accuracy. Subsequently the interaction
between nuclei is mapped onto classical force-field functions [32–35], parametrized by the
electronic structure, in order to generate mesoscopic models of realistic bulk morphologies
and interfaces, resulting in structures containing several thousands of atoms. Microscopic
parameters such as the electronic coupling between neighboring molecules are then extracted
from quantum chemistry calculations and fed into macroscopic charge transport simulations,
resulting in electronic device characteristics [27, 29, 36].
By applying this approach, device sample structures are calculated wile incorporating rel-
evant effects on the quantum mechanical scale. Further, it is possible to systematically
analyze the influence of microscopic effects on macroscopic device properties.

1.2.3. Meso-Scale Simulations: the Bottle-Neck of Efficient Device Simulations
One of the most challenging tasks in the multiscale modeling process is describing structure
formation on the mesoscopic scale (10nm - 1µm), where functional substructures for OLEDs
and OPV devices are formed. In the established molecular dynamics (MD) approach the
inter- and intra-molecular interactions are modeled by classical forces. Newton’s equation
of motion are then discretely integrated by updating particle velocities according to atomic
forces at subsequent time steps. Often, relevant processes in structural formation occur on
millisecond time-scales and cannot be simulated due to the inherent limitation of MD to
integration time steps on the femtosecond scale. Computational parallelization of available
programs is limited to the evaluation of energy functions and gradients, scaling well for up
to 100 CPUs. While millisecond simulations of proteins were achieved on specially designed
architectures [37, 38], the main limitation of the algorithm, namely the inherent time step,
cannot be overcome on generally available modern high-performance computing (HPC) ar-
chitectures. In fact, important issues like domain formation or even degradation which occur
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on time scales between 1 s to several hours remain inaccessible.
An alternative approach to the simulation of physical trajectories by means of MD is the
sampling of states representing thermodynamic ensembles by statistical Monte Carlo meth-
ods. Many established protocols are based on a Markov-chain of states sampled using energy
differences between subsequent steps [39, 40]. An acceptance criterion is applied between
two successive steps, resulting in thermodynamically equilibrated distribution of states. The
computational effort spent on the energy evaluation is comparable to the calculation of
gradients in MD, whereas the construction of "moves" between two successive steps of the
Markov-process does not underlie the fundamental restriction of an inherent time step. De-
velopment of methods that perform large configurational changes per energy evaluation may
therefore result in speedups by orders of magnitude in comparison to MD. However, the
widely used generic Metropolis Monte Carlo [40] protocols suffer from a lack of systematic
construction of correlated system changes with high acceptance rates. While further im-
provements to Metropolis MC include collective system changes [41–44], these methods lack
the essential feature of large, correlated moves with high acceptance rates. Therefore, the
advantages of Monte Carlo methods regarding the formation of molecular structures have to
date not been exploited to the fullest.

1.3. Structure of the Thesis
The aim of this thesis is twofold: In the first part I will present the multiscale modeling
approach sketched above and apply this protocol to organic and metal-organic electronic
materials. In a second, more method-related part, I will discuss methods to increase sam-
pling efficiency in Monte Carlo based simulation protocols for the simulation of structural
formation on the meso-scale. Hence, this work is structured as follows.
In chapter 2, the multiscale modeling protocol for the simulation of organic materials will be
presented in detail. Fundamental physical concepts, algorithms and methods for the calcu-
lation of structures, effects and processes on different length- and time-scales are discussed
and the assembling of different methods towards the theoretical description of full devices is
described.
Subsequently, chapter 3 presents four applications of the multiscale modeling approach.
First, I will analyze electronic transport properties in an amorphous thin layer consisting
of small organic molecules as used in OLED devices. Thereafter, I present a study on
the electronic properties of one-dimensional metal-organic olygomers and three-dimensional
metal-organic frameworks. In these systems, organic molecules are coordinated to metallic
centers, leading to intriguing characteristics. In each study, comparison to experimental data
is provided to demonstrate the applicability of the multiscale modeling approach to extended
(metal-)organic structures.
In chapter 4, a novel Monte Carlo (MC) based algorithm, the Acceptance Rate Optimized
Monte Carlo (AROMoCa) is developed, which ameliorates limitations of both molecular dy-
namics and other established MC protocols. In the first version of the method I use gradient
information to focus moves on regions of the configurational space that are far from the ther-
modynamic equilibrium, leading to large collective, yet uncorrelated moves with acceptance
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rates close to unity. The second, refined version of the algorithm allows the construction
of correlated moves with high acceptance probability, using a quadratic approximation to
the energy function. The application to test systems with increasing complexity demon-
strates the effectiveness of the AROMoCa approach. Concluding chapter 4, I investigate the
Model-Hopping (MH) protocol [45] regarding its applicability to the simulation of structural
formation of organic crystalline domains.
I summarize the results of all studies in chapter 5 and discuss possibilities and limitations of
the multiscale-modeling approach and the AROMoCa protocol. This chapter is concluded by
a sketch of further prospects, possible modifications and extensions to the presented methods
which exceed the scope of this thesis, but hopefully lead to the establishment of in silico
design of full organic electronic devices by predictive modeling.
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2. Fundamental Methods and Concepts

2.1. Modeling Organic Electronic Devices
2.1.1. Organic Electronics for Efficient Lighting and Photovoltaics
The reduction of the emission of green house gases by efficient photovoltaic technology and
power-saving electronic devices is one of the long term global environmental targets. In this
context, the development of long-lived inorganic semiconductor devices, so far consisting of
mostly silicon with mobilities of up to 1000 cm2/Vs [46] has been a crucial step. However,
single crystalline semiconductors require refined production by e.g. vapor deposition, ham-
pering the development of inexpensive, larg-area devices. Further, many of the crystalline
materials with band-gaps in the optical range are indirect semiconductors. Therein, addi-
tional phonon processes are required for absorption and emission of photons, which results in
reduced cross-sections and leads to rather thick layers and, consequently, to increased costs
and long payback-times [46].
Another rising technology that has been intensely investigated over the last years, is or-
ganic electronics (OE) [46–48]. The large number of possible materials, the prospect of
inexpensive, large-scale production and the promise of thin, flexible and efficient devices,
raise the ambition of a variety of novel applications in addition or as a substitute to es-
tablished light sources and PV technology. Since luminescence in thin amorphous organic
layers was discovered in 1987 by C. W. Tang and S. A. VanSlyke [9], efforts were under-
taken on the theoretical and experimental side to construct efficient organic light emitting
diodes (OLEDs). The originally monolayer-structured device was developed further towards
complex, multi-layered structures, consisting of multiple doped materials.
However, limited life times due to fast degradation and low efficiencies have limited the
production of market-ready devices. Deeper understanding of the processes contributing
to the emission of light in OLEDs is imperative for the establishment of durable devices
[48–50]. Furthermore the wide range of possible molecules that can be synthesized and used
in OLEDs turns the identification of suitable candidates into the search for the needle in
a haystack. To fully understand degradation and reasons for limited efficiencies and thus
facilitate the increasingly complex design of OLED materials, the development of an accurate
and predictive theoretical description of the devices properties and processes is necessary.

2.1.2. The Multiscale Modeling Approach
Organic devices are often composed of amorphous layers of small organic molecules or poly-
mers [51]. Unlike in crystalline semiconductors or metals, the carriers in many materials are
not delocalized and thus cannot be described by extended wave packages. Moreover, due to

9
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the amorphous packing of the molecules, each molecule has a unique electronic structure.
The energies of electronic orbitals and hence the propagation of charges through the material
depends strongly on the exact arrangement of the molecules. While there are methods avail-
able for the detailed calculation of electronic states of molecular structures (density functional
theory (DFT), Hartree-Fock, see below), the description of a device on the nanometer-scale
on the full quantum mechanical level is presently not feasible. On the other hand, a method
that neglects the quantum mechanical nature of the electronic structure will fail to properly
capture all effects necessary for the description of charge propagation in the device. Multiple
length scales in the description of the full device (i.e. the electronic structure of a single
molecule, the arrangement of several hundreds or thousands of molecules in a bulk and the
charge-transport in the full device of the size of several nm) complicate the development of
a single method for the full theoretical description of organic semiconductor devices.
A quite promising approach to tackle this obstacle is the development of a multiscale mod-
eling protocol: Instead of simulating the whole device on the level of the smallest scale
that is necessary to describe all relevant effects, the calculation is divided into multiple steps
[49, 52–55]. Each step in the protocol deals with the system on a different scale, with methods
designed to treat the effects of interest with appropriate accuracy. This multiscale method is
exemplified in Fig. 2.1.1. In the case of a device consisting small molecules, the first step of a
promising approach is the full-quantum mechanical calculation of the molecule via DFT- or
Hartree-Fock-based approaches with single electron resolution. Molecular geometry, internal
flexibility and charge density are calculated with high accuracy (section 2.3). As those meth-
ods are only applicable for systems consisting of up to 100-200 atoms, the calculation of the
geometry of a full molecular layer requires different methods: a widely used possibility is to
map charge density and intramolecular potential onto classical functions. Using those func-
tions, Molecular modeling (MM) via molecular dynamics (MD) or Monte Carlo(MC)-based
protocols is performed to generate sample structures consisting of up to several thousand
molecules [14, 36, 56, 57]. Subsequently, quantum mechanical methods are again applied in
order to calculate the energy levels of polarons and excitons on each molecule, as well as the
electronic coupling between single molecules. Using these results as an input, the transfer
rates for electrons hopping between molecules can be calculated using the Marcus theory of
hopping transport. In the last step, Kinetic Monte Carlo (KMC) simulations are performed
on a nanometer to micrometer scale to simulate the charge transport through the bulk ma-
terial or device. In this step, the individual molecules are reduced to hopping sites and the
propagation of charge carriers through the system is simulated based on previously calcu-
lated hopping rates (section 2.5). From the KMC simulations, charge carrier mobilities can
be extracted. A change on the atomistic or electronic scale, e.g. deformation of molecules or
substitution of atoms, feeds back into KMCs. This allows for example the study of doping
(adding molecules of type B to a homogeneous structure of molecules of type A), defects and
interfaces.
By applying different tools on different scales, this multiscale modeling approach fully ex-
ploits the advantages of all methods. Effects that can only be explained using a full quan-
tum mechanical model are covered, while on the other hand no computational time is
wasted by applying accuracy where it is not required. Similar approaches have been applied
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(a) (b)

+/-

(c)

+/-

(d)

Figure 2.1.1.: A multiscale modeling approach to the theoretical description of
organic electronic devices: (a) The electronic structure of single molecules is
calculated on a full quantum mechanical level. The atomic geometry and the
orbitals, mapped onto point charges at the sites of the nuclei, are extracted as
input for the classical force-field based calculations. (b) Using molecular modeling
with molecular dynamics (MD) or Monte Carlo (MC) based methods, a sample
morphology of several hundreds of molecules is generated, containing coordinates
of all atoms. (c) For each pair of molecules in this sample structure, orbital
overlap (or electronic coupling) and hopping rate of charge carriers (electrons or
holes) between the molecules is calculated. (d) For the calculation of electronic
transport properties, each molecule is reduced to a single hopping site with unique
on-site energy. The hopping rates between each pair of molecules are fed into
a Kinetic Monte Carlo (KMC) simulation. The KMC runs identify the most
likely propagation paths through the bulk and yield values for electronic bulk
properties, for example the charge carrier mobility.
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for the study of organic electronic materials, reproducing correct material characteristics
[3, 14, 27, 28, 58].

The structure of this chapter basically follows the development of the multiscale approach,
starting at the electronic scale and progressing towards the mesoscopic scale of a full device:
After an overview of the Born-Oppenheimer approximation in section 2.2, which is the basis
of the methods used on the electronic level (DFT, Hartee-Fock) as well as on the atomistic
level (MD, MC), two methods treating effects on the electronic level, DFT and Hartree-
Fock, will be introduced in section 2.3. Moving to the next level of the multiscale approach,
section 2.4 presents the approach of molecular modeling (MM), the simulation of atomistic
structures based on classical energy functions. Subsequently, the calculation of hopping rates
between molecules via Marcus theory and the kinetic Monte Carlo (KMC) approach for the
simulation of charge carrier transport through organic layers is introduced in section 2.5,
before summarizing the multiscale modeling approach in section 2.6.

2.2. Born-Oppenheimer-Approximation
The basis of the description and simulation of molecular systems is the stationary Schroedinger
equation of the system, involving nuclei and electrons:

H |Ψ({ri}, {RJ})〉 = E |Ψ({ri}, {RJ})〉 (2.2.1)

with the total energy E, the positions of electrons and nuclei, {ri} and {Rj}, and the
multi-particle Hamiltonian H:

H = −
∑
J

1
2MJ

∇2
J +

∑
J,L

ZJ ZL
RJL

−
∑
i

1
2mi
∇2
i +

∑
i,k

1
rik
−
∑
i,J

ZJ
riJ

(2.2.2)

The first two expressions in the Hamiltonian represent the nuclei with the operators for the
kinetic energy, 1

2MJ
∇2
J , the charges ZJ and the distances between two nuclei, RJL. The

third and fourth expression is the Hamiltonian of a system of electrons with the kinetic
operators 1

2mi
∇2
i and the distance rik between two electrons. The last expression is the

electrostatic interaction between electrons and nuclei, depending on the nuclei charge, ZJ ,
and the distance between electron and core, riJ in the electrostatic energy term.
The mass ratio between electrons and nuclei of approximately mi

MJ
< O(10−3) gave rise

to an approximation to Eq. 2.2.2 that was proposed in 1927 by Max Born and Robert J.
Oppenheimer: Due to the mass ratio, the velocity of nuclei is bound to be much smaller than
the electron velocity and for the calculation of electronic states, the nuclei can be treated
stationary (i.e. nuclei velocity set to zero). Then the nuclei induce a time-independent
external potential for the electrons and the electronic Hamiltonian is reduced to:

Hel = −
∑
i

1
2mi
∇2
i +

∑
i,k

1
rik
−
∑
i,J

ZJ
riJ

+ c({RJ}) (2.2.3)
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The constant c is the, in the case of stationary nuclei, time-independent electrostatic inter-
action between the nuclei and can be neglected.
The advantage of the Born-Oppenheimer-approximation is the decoupling of ionic and elec-
tronic degrees of freedom: While the solutions of Eq. 2.2.1 are dependent of all ionic and
electronic degrees of freedom, the solutions of Eq. 2.2.3 depend only on the electronic degrees
of freedom. The positions of the nuclei are merely parameters for the electronic states:

Hel

∣∣∣Ψel,{RJ}({ri})
〉

= Eel
∣∣∣Ψel,{RJ}({ri})

〉
(2.2.4)

To put it in other terms, the total wave function of the system, Ψtotal is a product state of
the nuclear wave function and the electronic wave function:

Ψtotal = Ψnucl({RJ})×Ψel,{RJ}({ri}) (2.2.5)

The Born-Oppenheimer-approximation separates the two contributions and reduces the de-
grees of freedom drastically for the stationary solutions of the Schroedinger equation.

2.3. Electronic Structure Calculations
As explained in the introduction, the detailed modeling of a molecular system consisting
of the order of O(104) atoms requires the application of methods on multiple scales. On
the smallest scale, the calculation of the electronic structures of single molecules or small
clusters is necessary to extract parameters for macroscopic calculations. Possible applications
are the parametrization of electrostatic force fields by the electron density or the simulation
of electronic hopping transport through organic layers.
In this section, two methods for the calculation of electronic structures of atoms and molecules
will be presented. Both methods are applicable for systems consisting of approximately 100-
200 atoms, depending on the required accuracy and the available computation time.
The first method, DFT, is based on the of a bijective mapping between Hamiltonian and
wave function and accordingly Hamiltonian and electron density. The calculation of the
ground state electron density is assumed to be sufficient for the accurate description of an
atomic system. A functional of the ground state electron density is constructed, describing
the energy of the system. Minimization of this functional with respect to the electron density
then yields the ground state.
A different approach to the calculation of electronic structures is based on the Hartree-Fock-
method. In this approach, the many-electron state is approximated by a product of single
electron wave functions, and the Schroedinger equation is transformed into the Hartree-
Fock equations. Further approximations, the NDDO and MNDO approximation, allow the
treatment of larger systems and will be briefly presented.

2.3.1. Density Functional Theory
The fundamental principle of DFT is the connection between electronic ground state energy
E, i.e. the Hamiltonian of the system, and the probability distribution function (also called
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electron density), ρ(r), that was established in 1964 by Hohenberg and Kohn [59]:

Hel 
 VR({ri})→ Ψel{ri} → ρ(r) (2.3.1)

The electronic Hamiltonian Hel is completely determined by the potential induced by the
atom cores, VR({ri}), as the kinetic part and the electron-electron-interaction in Eq. 2.2.4
are the same for any electronic system of the same size. The parametrization {RJ} has been
omitted for clarity. Based on this finding, Kohn and Sham showed one year later, that this
relation is indeed bijective:

H 
 VR({ri}) 
 Ψel{ri}
 ρ(r) (2.3.2)

This bijective mapping allows the expression of wave functions and ground-state energy as
a functional of the ground state electron density:

Ψ0 = Ψ0[ρ0] (2.3.3)

E[ρ0] = 〈Ψ0[ρ0]| −
∑
i

1
2mi
∇2
i +

∑
i,k

1
rik
−
∑
i,J

ZJ
riJ
|Ψ0[ρ0]〉 (2.3.4)

= T [ρ0] + Vee[ρ0] +
∫
drρ0(r)

∑
J

ZJ
|r −RJ |

(2.3.5)

=: F [ρ0] +
∫
drρ0(r)Vne (2.3.6)

Here T [ρ0] denotes the kinetic part of the electronic Hamiltonian, Vee[ρ0] the electron-
electron-interaction and the last expression describes the interaction between electrons and
nuclei. As mentioned above, the electronic Hamiltonian of different molecular systems is
defined solely by the potential induced the nuclei, while kinetic expression T and the inter-
action between the electrons Vee is system independent. It is then reasonable to combine
those parts into the system independent functional F [ρ] in Eq. 2.3.6.
The ground state density is then derived by minimization of E[ρ0] with respect to ρ0 with
the variational principle

δ

δρ(r)

[
E0[ρ(r)]− µ

∫
drρ(r)

]
= 0 (2.3.7)

with the condition that the electron density is normalized to the number of electrons:∫
ρ(r)dr = N (2.3.8)

Construction of the functional F [ρ]

The key challenge now lies in the construction of the functional, as F [ρ] cannot be derived
analytically for a many-particle system. Following the Ansatz proposed by Kohn and Sham,
an approximative functional is constructed for a system that can be solved and adding a
correction. The first step is to approximate the real orbital wave functions by a many



CHAPTER 2. FUNDAMENTAL METHODS AND CONCEPTS 15

particle wave function of non-interacting particles:

Ψs(r1, r2, ...rN ) =

∣∣∣∣∣∣∣
ψ1(r1) . . . ψN (r1)

... . . . ...
ψ1(rN ) . . . ψN (rN )

∣∣∣∣∣∣∣ (2.3.9)

In this approximation, the non-interacting electrons move in an effective position dependent
potential:

Veff (r) =
∫
dr′

ρ(r′)
|r − r′|

+ Vxc(r) (2.3.10)

where the first part is the classical Coulomb interaction between the electrons and Vxc is
the correction mentioned above that accounts for the exchange correlation of the electrons.
This Ansatz is in fact first order perturbation theory: The set of decoupled wave functions
in Eq. 2.3.9 is the exact solution to the Hamiltonian for non-interacting particles in the
Coulomb potential induced by other electrons and nuclei. This unperturbated wave function
is used to apply the first order perturbation in energy induced by the exchange interaction,
Ux. Consequently, the functional is constructed as follows:

F [ρ] = Ts[ρ] +
∫
dr′
∫
dr

ρ(r′)
|r − r′|

ρ(r) + Vxc (2.3.11)

The first part, Ts, is the kinetic functional for the system of non-interacting electrons and
the second part is the classical electron-electron interaction. The last part, the exchange-
correlation functional Vxc is the remainder that cannot be constructed from scratch. In an
ideal case, it accounts exactly for the difference between the real system and the model
system of non-interacting particles: The difference between the functionals T and Ts and the
difference between Vee and the classical Coulomb-contribution:

Vxc = T [ρ]− Ts[ρ] + Vee −
∫
dr′
∫
dr

ρ(r′)
|r − r′|

ρ(r) (2.3.12)

Vxc is called the exchange-correlation functional.

Exchange Correlation Functionals

The separation of the functional in the parts for the decoupled electrons and parts that
are not known lead to the necessity of suitable exchange correlation functionals. To date,
no explicit formulation of the exchange correlation functional has been presented and good
approximations remain a key challenge of DFT. Three widely used exchange correlation
functionals are the local density approximation, LDA, the local spin density approximation,
LSDA, and the global gradient approximation GGA.
The LDA is based on the exchange correlation of an electron gas in the environment of a
homogeneous positive charge distribution. The charge distribution of the background has to
be set such that the system is neutral. For a uniform electron gas with electron density ρ(r),
the exchange correlation energy per particle, εxc(ρ(r)), can be calculated exactly. This was
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done by Paul Dirac and Felix Bloch in 1929 way before the development of DFT [60]. Using
this approximation, the exchange correlation functional in the LDA approximation is

V LDA
xc =

∫
drρ(r)εxc(ρ(r)) (2.3.13)

where εxc(ρ(r)) comprises the contributions of exchange and correlation. For the electron gas,
the exchange energy is known exactly while the latter can only be determined approximately
[61–64].
A first refinement of the LDA includes the electron spin: the local spin density approximation
LSDA. The electron density is split into two separate spin densities, ρ(r) = ρα(r) + ρβ(r),
leading to an exchange-correlation functional:

V LSDA
x =

∫
drρ(r)εxc(ρα(r), ρβ(r)) (2.3.14)

Again, εxc(ρα(r), ρβ(r)) can be split into the exchange and the correlation contribution.
While the exchange contribution to the functional can be derived directly from the LDA
approach, the correlation is again just an approximation [61, 65].
As the correlation effects depend on all electrons in the system and cannot be represented by a
local approximation, LDA and LSDA may not refined enough for many applications [66, 67].
An approach circumventing this strong limitation is the general gradient approximation,
GGA [68].
In addition to the spin densities at the positions r, the gradients of the spin densities∇ρα,β(r)
are taken into account:

V GGA
x =

∫
drρ(r)εxc(ρα(r), ρβ(r),∇ρα(r),∇ρβ(r)) (2.3.15)

Despite immense efforts to refine the exchange-correlation functionals, certain effects such
as the Van-der-Waals interaction, are not covered by existing functionals and semi-empirical
dispersion corrections need to be applied in addition. For a good overview of exchange-
correlation functionals, their capabilities and limitations, see [69].

Implementations

There are multiple implementations of DFT available. Two of the most widely distributed
packages for the accurate treatment of small systems are Gaussian and TURBOMOLE [70].
A package that applies more approximations and thus allows the calculation of larger systems
is BigDFT [31]. The Vienna ab initio simulation package VASP [71, 72] is based on the
expansion of wave functions into plane waves and can be applied to the calculation of periodic
structures.
In the work presented in this thesis, TURBOMOLE was used for the treatment of small
molecular entities. For the calculation of periodic systems such as metal-organic frameworks
(MOFs), VASP was applied.
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2.3.2. Semi-Empirical Hartree-Fock Methods
The Hartree-Fock method

Another approach to the prediction of the electronic structure of molecules is based on the
Hartree-Fock method. For the treatment of atoms and ions, Hartree proposed to approx-
imate of the state of all electrons by the product of single-electron wave functions in the
1920’s. Later refinement by Fock in 1930 included the anti-symmetric nature of electrons
by calculating the all-electron state as the Slater determinant of the single-electron wave
functions:

Ψ(r1, r2, ...rN ) = 1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1(r1)α1 ψ1(r1)β1 . . . ψN/2(r1)β1
ψ1(r2)α2 ψ1(r2)β2 . . . ψN/2(r2)β2

...
... . . . ...

ψ1(rN )αN ψ1(rN )βN . . . ψN/2(rN )βN

∣∣∣∣∣∣∣∣∣∣
(2.3.16)

where αi and βi are spin functions [73]. The individual wave functions ψi(rj) are orthogonal
such that the whole wave function Ψ span an orthonormal basis.
The basis of the Hartree-Fock method is the application of the variational principle, to
identify the ground state wave functions ψi(rj) for which the energy is minimal:

δE = δ

∫
d3ΨHΨ = 0 (2.3.17)

H is the Hamiltonian of the Born-Oppenheimer approximation, Eq. 2.2.3. Approximating
the Hamiltonian by single-electron operators yields the Fock-operator:

F = Hnucl +
N/2∑
j=1

[2Jj −Kj ] (2.3.18)

A qualitative interpretation of this operator will be given in the following. For a detailed
derivation and interpretation see Refs. [73, 74]. The operator Hnucl represents the energy of
a single electron in the field of all nuclei. The operator J is called the Coulomb-term, defining
the Coulomb-repulsion of the charge density of two electrons. Kj is a direct consequence
of the antisymmetric definition of the product wave function as a Slater determinant. It
represents the exchange energy of the electrons.
Inserting the Fock operator into Eq. 2.3.17, the solution to the ground state problem is then
reduced to the Hartree-Fock equations:

Fψi = εiSψi (2.3.19)

Here, F is the Fock-matrix (the representation of the Fock-Operator in a certain coordinate
system). The vector ψi contains the coefficients for the wave function of electron i in the
coordinate system with 2N dimensions. The overlap matrix S is introduced to couple the
electronic functions, accounting for orbital overlap.
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The Fock-matrix depends on the states ψi and the Hartree-Fock equations can be solved
iteratively using the variational principle.
In most applications of the Hartree-Fock-method, the linear combination of atomic orbitals,
LCAO, is applied. The molecular orbitals are set up as a linear combination of the (known)
orbitals of the single atoms. The vectors ψi contain the coefficients of the single atomic
orbitals.

NDDO

A simplification to the Hartree-Fock-method is to neglect the exchange energy of atoms
centered around different atoms, called the neglect of diatomic differential overlap (NDDO)
[75]. As the exchange between the orbitals of different atoms is represented by the matrix
S, this approximation is in fact the substitution of S by the unit matrix. Specifically in the
case of a system containing many atoms, large speedups can be achieved.

MNDO

A modification of the NDDO method, the modified neglect of diatomic differential overlap,
MNDO, is a semi-empirical approximation to Hartree-Fock: Instead of calculating S, as
in the Hartree-Fock-method, or setting S to unity, as in the NDDO approach, the overlap
matrix and some integrals in the Fock-matrix are replaced by a parametric model [76]. The
parametrization is either performed using experimental data directly or by the application of
semi-empirical expressions. In the latter approach, the numerical parameters of the method
are adjusted so that results of MNDO calculations fit well to experimental data.
The MNDO-method, as well as generalized methods based on MNDO, such as AM1, PM3,
PM6 and PM7, are implemented in the molecular orbital package MOPAC [77, 78], that was
used in parts of this thesis.

2.4. Molecular Modeling: Molecular Dynamics and Monte Carlo
For the treatment of systems larger than O(102 − 103) atoms, application of quantum me-
chanical methods as described in the previous section is not feasible. In DFT as well as the
semi-empirical Hartree-Fock approaches, the calculation time for a system increases with
t ∝ N3

b , where Nb is the number of basis functions.
However, for many systems containing chemically stable compounds, the focus lies on the
ionic movement, i.e. the propagation of atoms comprising nuclei and electrons. Examples
include the folding and unfolding of proteins and polymers, the simulation of atomic fluids
or the structure prediction of amorphous layers of small organic molecules [1, 28, 79–86].
According to the Born-Oppenheimer approximation, the electronic structure will virtually
adapt instantaneously to the movement of the nuclei, resulting in a 3N -dimensional potential
energy surface for a 3D-system consisting of N atoms. This potential energy surface induced
by the electronic structure is parametrized by classical functions called "force fields" that
depend solely on the positions of the nuclei or, for the case on non-bonded interactions, on
the nuclei distances.
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As the computation time for the calculation of the interaction via position-dependent pair-
wise potentials scales quadratically with the number of atoms, t ∝ N2, larger systems can
be treated in comparison to the QM methods described above. The description of molecular
configurations via force fields is called molecular modeling (MM) and will be presented in
this section.
There are two complementary methods for molecular modeling: Molecular dynamics (MD)
and Monte Carlo (MC) based approaches. In MD, Newton’s equation of motion are solved
numerically. At each time step, the gradient of the energy functions, i.e. the forces on the
atoms in the system, are calculated 1. TheN coupled differential equations are then solved by
updating particle velocities at each time step. Atom positions are constructed by integrating
accelerations and velocities discretely using a time step δt. As will be discussed later, this
time step has to be chosen sufficiently small in order to avoid deviations from the physical
trajectory. This imposes the main limitation to the MD method. Despite those limitation,
MD is widely used for molecular modeling. Several implementations are available [88–92]
and MD has been applied successfully to a large set of systems including the morphology
prediction of thin films or glassy materials [28, 79–85]. Recently, specially designed hardware
such as ANTON [37, 38] allowed the simulation of folding and unfolding of proteins on a
millisecond scale.
The second approach is based on MC methods. In MC, a Markov-chain is constructed by
random changes, so called "MC-moves" or just "moves" [39, 40]. The transition between to
subsequent states q(t0) and q(t1) of a Markov-process depends only on the states at simulation
time t0 and t1, but are independent of previous configurations, i.e. at t < t0. Therefore,
the configurations of each step are accepted or rejected based on energetic considerations
regarding the configurations q(t0) and q(t1). The criterion for the acceptance has to be
designed in a way that, in the limit of infinite simulation time, the states are distributed
according to a thermodynamic distribution function. In the widely used Metropolis-MC
scheme [40], the principle of detailed balance is applied in order to generate Boltzmann-
distributed configurations. One of the main advantages of MC based methods is, that there
is, in principle, no limitation to the construction of the moves. Specifically, unlike in MD,
the step size (e.g. of displacements or rotations) can be chosen arbitrarily large. For small
systems with only few degrees of freedom, such as the formation of small atomic clusters,
MC methods are a promising approach [93]. However, the construction of correlated moves
remains challenging.
After a more detailed description of the modeling of atomic interactions with force fields,
both methods, MD and MC, will be presented in detail.

2.4.1. Modeling Atomic Interaction with Force-Fields
In molecular modeling, the interaction between atoms, that is based on the configuration
electrons and cores of the atoms, is approximated by semi-empirical energy functions [32–
35]. These force-fields depend on all ionic degrees of freedom of the system that is simulated

1Usually, the classical functions parametrizing the multi-dimensional potential energy surface of the nuclei
are referred to as "force-fields" also if the forces are not evaluated and only the energy of the system is
calculated, e.g. in MC-methods.
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(e.g. all atom positions in the 3D space). They are characterized by numerous element-
or compound-specific parameters. The parametrization can be performed on the basis of
empirical values, i.e. by fitting the force-field functions to experimental results. Another
approach for the generation of force-field parameters via ab initio QM calculations, such as
DFT.
The optimal parametrization of a force-field is often a compromise between accuracy and
simulation efficiency: the more approximations are made in the construction of a force-field,
the faster the evaluation of the energy of a system. This allows not only the treatment
of much larger systems, it also makes time-dependent propagation of a system affordable,
where of the order of O(106) energy evaluations have to be performed. On the other hand,
the approximations that are made omit the explicit treatment of quantum mechanical effects
and limit the applicability of force-field based approaches to systems, where the change in
the electronic structure throughout the process is negligibly small. Nevertheless, force-field
based simulations are a promising approach to the simulation of molecular systems.
In terms of force-fields, the total energy of a system comprises three parts:

Etot = Eintra + Einter + Eextern (2.4.1)

Here, Eintra is the internal interaction of a bonded unit, i.e. the interaction between atoms
induced by covalent bonds. Einter is the parametrization of the part of the non-bonded
atom-atom interaction as a consequence of the interactions between cores and charge dis-
tributions. Additional potentials, Eextern, for modeling the influence of external quantities
such as pressure, gravity or solvents (implicit treatment) can be applied in addition.
In the following, the different contributions to the total energy and their force-field functions
will be presented individually.

Intramolecular Interaction: Bonded Force-Fields

In molecules, dislocated electrons form covalent bonds between single atoms. For the de-
scription of this internal contribution to the total energy, Eintra, the relative positions of the
atoms of a covalently bonded unit are mapped onto the internal degrees of freedom: bond
lengths, angles between bonds and dihedral angles. This is illustrated in Fig. 2.4.1.
The contributions of the individual parts to the internal energy are:

Ubond(rjk) = 1
2 kjk

(
rjk − r0

jk

)
(2.4.2)

for each bond, where r0
jk is the equilibirum distance and kjk the force constant,

Uangle(αijk) = 1
2 kijk

(
αijk − α0

ijk

)
(2.4.3)

for each angle, with the force constant kijk and the equilibrium angle α0
ijk and

Udihedral(φk) = kk (1 + cos(nk φk − δ)) (2.4.4)
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Figure 2.4.1.: Internal degrees of freedoms are used to calculate the contribution
of covalent bonds to the total energy. (a) stretching of bonds, rjk (b) the angles
between two neighboring bonds αijk and (c) the relative orientation of the plains
spanned by the positions of three neighboring atoms, φk.

for the dihedrals with the respective force constant kk and two additional parameters nk
and δ (see below). It should be stated at this point, that there are different forms for the
description of single-bond-dihedrals that are approximately equivalent. However, most of
the established force-fields were derived and parametrized for a specific class of molecular
systems, mostly proteins and might thus not be applicable for any system. The specific
form as well as the parameters for dihedral potentials then need to be derived from quantum
mechanical calculations for the systems explicitly.
The form of the potentials is chosen to represent the characteristics of the energy landscape
that induced by the electronic structure: The equilibrium values of bonds and angles, r0

jk

and α0
ijk, can be extracted from experimental data or QM calculations and set accordingly.

The equilibrium angles for example are a result of the form of the atomic orbitals and
lead to different values for each element. As the stretching of a bond and the bending of
an angle (that is the deformation of electronic orbitals) requires large amounts of energy,
only small changes are possible with the kinetic energy available at relevant temperatures
(T < 1000K). In simulations that do not include chemical reactions (i.e. the breaking and
reformation of covalent bonds), this harmonic approximation of bonded and angle potentials
proved sufficient.
This is different for the dihedral angles: The cost to twist a molecular chain, e.g. perform
rotations around single bonds, is energetically cheap compared to the distortion of bonds
and angles. The approximation by a harmonic potential would be inaccurate and a periodic
potential is needed to cover the potential landscape for a full rotation around 2π, is given in
Eq. 2.4.4. The parameter δ is chosen to generate minima of the potential at correct values of
φk. The parameter nk is called the multiplicity of the dihedral and is set to nk = 1, 2, 3, 4 . . ..
It reproduces the appropriate number of minima upon rotation around 2π that are the result
of the electronic the orbital structure.
By properly parametrizing the classical force-field functions, the electronic structure which
that is the basis of the atomic interaction is taken into account properly.
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Intermolecular Interaction: Non-Bonded Force Fields

For the interaction between the atoms of different molecules or single atoms, non-bonded
force-fields are applied. Like the bonded force-fields, the potentials are chosen in a way to
reproduce the realistic behaviour induced by the electronic structure. This covers the elec-
trostatic interaction between the charge distributions of molecules, the induced dipole-dipole
attraction (van-der-Waals-attraction) of atoms and the Pauli-repulsion between electrons in
the outer shells of atoms.
The interaction between charge distributions can be modeled by mapping the electrostatic
potential to point charges on the atom positions and the Lennard-Jones-potential is a good
approximation for van-der-Waals attraction and Pauli-repulsion.

Coulomb electrostatics Upon the formation of chemical bonds, the local electron density
of the atoms is shifted from one atom towards another. While the system in total remains
neutral, an inhomogeneous charge distribution is induced. One approach for an efficient
evaluation of the interaction between the charge distributions of molecules is the mapping
of the charge distributions onto fractional charges, usually placed at atom centers ("partial
charges"). The electrostatic contribution to the interaction between two molecules A and B
is then modeled using the Coulomb interaction between the partial charges qi:

UCoulomb =
NA∑
i

qAi ΦB(ri) = 1
4π εr ε0

NA∑
i

NB∑
j

qAi q
B
j

rij
(2.4.5)

with the atom-atom distance rij and the electrostatic potential ΦB:

ΦB(r) = 1
4π εr ε0

NB∑
j

qj
|rj − r|

(2.4.6)

There are multiple methods to derive partial charges. For a couple of systems that are
widely studied, such as proteins in aqueous solutions, partial charges were constructed semi-
empirically and are tabulated in special force fields [94–96]. Another more generic approach
is the electrostatic potential fit (ESP-fit) [97, 98] fractional charges on the atom sites are
constructed in a way that (a) the electrostatic potential of the electronic charge distribution
is reproduced with minimal deviation on one or multiple surfaces around the molecule and
that (b) the total charge of the system is preserved.
In praxis, the potential on the surface(s) around the molecule is calculated using quantum
mechanical methods (e.g. DTF, Hartree-Fock, see sec. 2.3). Partial charges are then placed
on the atom positions and varied until the deviation between the QM-potential and potential
induced by the point charges is minimal. The ESP-method is implemented in various QM-
packages such as MOPAC and TURBOMOLE [70, 77, 78].
Other methods for the calculation of the electrostatic interaction between molecules, such
as the multipole-expansion of single-atom charge distributions, are computationally more
extensive without increasing the accuracy significantly.
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The main draw back of using fixed (static) point charges or static multipoles for the cal-
culation of the electrostatic interaction is the neglect of polarization effects. The charge
distribution of a molecule in the vicinity of other molecules differs from the charge distribu-
tion of the same molecule in vacuum. Partial charges, originally calculated for the molecule
in vacuum, would need to be re-calculated on the fly during the simulation. While this
is done in form of a combination of quantum mechanics and molecular dynamics [99–101],
the application of such algorithms is limited in system size and not widely used. Different
approaches, such as polarizable force-fields, have been established but are not readily ap-
plicable to any system. Classical simulations throughout this thesis were performed using
static vacuum ESP-charges, if not stated otherwise.

Van-der-Waals-attraction and Pauli-repulsion: The Lennard-Jones-potential In addition
to the electrostatic interaction, an additional force-field is needed to correctly reproduce the
interaction between atoms. This additional interaction term is motivated by two physical
observations: Firstly, neutral atoms of a noble gas, with a completely isotropic charge distri-
bution, must have an attractive interaction. Otherwise, they would not condensate below a
critical temperature. Secondly, without an additional energy term, atoms could come arbi-
trarily close to each other. This would lead to infinite energy for atoms that are not neutral.
This is, of course, not physical.
The attractive interaction described above is the van-der-Waals interaction: fluctuations in
the electron distribution of an atom, even a neutral atom, induce a temporary dipole µ1.
A second atom that is in the vicinity of the first atom is then polarized by the dipole field
D = − 1

4πε0
µ1
r3 , resulting in an induced mean-field dipole:

µ2 = c′D = −c′ 1
4πε0

µ1
r3 (2.4.7)

with a distance of r between the atoms between atom 1 and 2. The interaction between the
two dipoles is then

UVdW(r) = −Dµ2 = −c 1
r6 ≡ −

(
σ

r

)6
(2.4.8)

The repulsive potential is a result of spin statistics: According to the Pauli-principle, there
cannot be two electrons in the same state, namely with the same energy and the same spin.
If two fully occupied orbitals of two atoms with the same energy are brought close to each
other, one electron has to be transferred into a higher orbital. This requires energy and
results in a repulsive potential. As the thermodynamic occupation probability of higher
orbitals decays exponentially with the difference in orbital energies, a reasonable form of the
potential would be an exponential repulsion. In many cases, a different form is used:

UPauli(r) =
(
σ

r

)12
(2.4.9)

This potential as well as an exponential repulsion increases very strongly for small distances.
States with very small distances, where the difference between the exponential term and
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Eq. 2.4.9 is significantly non-zero, are not occupied in thermodynamic equilibrium and the
approximation of the exponential repulsion by an 1/r12-term is justified. Hence, a proper
parametrization of Eqs. 2.4.8 and 2.4.9 is a good approximation to the physical Van-der-
Waals attraction and Pauli-repulsion. The combination of the two equations is called the
Lennard-Jones-, or 12-6-potential:

ULJ(r) = 4ε
{(

σ

r

)12
− 2

(
σ

r

)6
}

(2.4.10)

The form of the repulsive part in this potential is chosen for computational efficiency and
the parameter σ can be extracted semi-empirically. Other potentials, e.g. Eq. 2.4.10 with
different exponents or the Buckingham-potential

UBuckingham(r) = ε

{
exp

(
−r
ρ

)
−
(
σ

r

)6
}

(2.4.11)

are also used. The Lennard-Jones-potential is, however, computationally most efficient and
widely used in the simulation of molecular structures.
The parameters ε and σ are usually fitted to experimental values and are tabulated for a
variety of elements and their ions. Ideally the parameters should be fitted to atoms or ions
of each pair of elements. Another, more efficient approach is to calculate the parameters for
the interaction between to constituents of the same element and then use mixing rules to
calculate the parameters for heterogeneous interaction between atoms of different types A
and B:

σAB = 1
2(σAA + σBB) or σAB =

√
σAAσBB (2.4.12)

εAB =
√
εAAεBB (2.4.13)

This induces an additional error in the approximation of the full-quantum mechanical system
by classical force-fields. However, to date, this approximation, including the mixing rules of
the Lennard-Jones parameters, proved to be sufficient for molecular mechanics simulations.
The parameters for the homogeneous interaction which are derived semi-empirically or by
ab initio QM calculations for multiple applications are stored in large look-up tables that
are accessed during the simulation by most of the widely used packages [94–96].

2.4.2. Molecular Dynamics
Integrating Newton’s Equation of Motion

A straight forward solution of the dynamics of a molecular (or atomistic) system is called
molecular dynamics. MD is based on the integration of Newton’s equation of motion for
each atom i:

F i = mi ai (2.4.14)

The force F i acting on each particle is the negative gradient of the force-field potentials
presented in the previous section. The force on each atom is calculated as the sum over
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the internal forces, e.g. the bonds to the neighboring atoms in a molecule and the forces
induced by angle and dihedral potential, the intermolecular forces, e.g. Lennard-Jones- and
Coulomb-gradients, and external forces. In general, for a system consisting of N atoms, this
leads to a set of 3N coupled differential equations. The analytic solution of such a set for a
typical system with N = O(104) particles is not possible for obvious reasons. Instead, the
equations of motion are solved discretely via step-by-step integration, as described in the
following.
The Taylor-expansions of the trajectory of a single particle i is and its velocity are

ri(t+ δt) = ri(t) + δtvi(t) + 1
2δt

2 ai(t) (2.4.15)

vi(t+ δt) = vi(t) + δtai(t) (2.4.16)

ai(t) = 1
m
F i(t) (2.4.17)

Numerical step-by-step integration then yields the time resolved trajectory of the atomistic
system: For a given initial configuration of atom positions {ri}, an initial random velocity
vector {vi} is generated and the forces for all atoms are calculated using the force-fields.
After each time step, velocities and positions are adapted according to Eqs. 2.4.15 and
2.4.16 and the new accelerations calculated using Eq. 2.4.17. This results in the physical
trajectory of the system. Thermodynamic expectation values of quantities, such as energy,
pressure, volume or temperature are extracted by averaging over the simulated time interval.
The time step δt is the critical parameter in each MD simulation. The smaller δt, the more
steps need to be performed in order to reach a certain simulation time and propagation of
the system. In each step, O(N2) atom-atom interactions have to be calculated to generate
the updated forces and energies. This leads to very large simulation times for arbitrarily
small time steps. With large values for δt, on the other hand, the numerical step-by-step
intergration in Eqs. 2.4.15 and 2.4.17 is a bad approximation, leading to unrealistic tra-
jectories: Clashes of atom, breaking of bonds or strong deformation of molecules is usually
the result of too large time step. Therefore, the time step used in MD simulations has been
hovering on the femtosecond-scale for years, although efforts to increase the time step have
been made [102, 103].

Coupling to Temperature and Pressure: Thermostats and Barostats

For the simulation of a system in a thermodynamic ensemble, e.g. the NPT or NV T ensem-
ble, the movement of the particles has to be coupled to the macroscopic quantities, pressure
or volume and temperature. In thermodynamic equilibrium, temperature and particle mo-
mentum are connected via

T = 1
3N kT

N∑
i=1

|pi|2

mi
(2.4.18)
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The pressure is related to particle momentum and particle-particle-forces via

P = 1
V

1
3

N∑
i=1

 N∑
j>i

Fij |xi − xj |+
|pi|
mi

 (2.4.19)

Barostats and thermostats are using the relations of Eqs. 2.4.18 and 2.4.19 to either rescale
particle velocities after a certain simulation time in order to adjust pressure and temperature,
or to add an extra term to Eq. 2.4.16 that adapts the momentum accordingly. Multiple
barostats and thermostats are available [104, 105].

2.4.3. Metropolis Monte Carlo
Detailed Balance and Move Generation

An alternative approach to compute thermodynamic expectation values of the system is
the sampling of the phase space by applying random changes to the system. This random
sampling is a special form of an MC protocol, a technique that was established in the 1950’s
in line with the rise of computational resources. In the most general terms, Monte Carlo
methods use random numbers to approach problems that are not solvable in an analytic
fashion. One simple example is the calculation of definite integrals. Monte Carlo methods
are widely used also in the fields of Mathematics and Physics, but also in other fields such
as Economy [40, 106].
In the most widely used Monte Carlo scheme in molecular simulations, the Metropolis Monte
Carlo approach, a Markov chain forms the basis of the algorithm: A sequence of simulation
steps is generated, where the configuration at each step n, {xi}n, depends exclusively on the
system configuration at the prior step n− 1:

{xi}0 → {xi}1 → . . .→ {xi}n−1 → {xi}n → . . . (2.4.20)

In order to calculate the system in a thermodynamic equilibrium, the Markov chain has to
be constructed in a way, that, after an infinite number of simulation steps, nmax → ∞, the
occupation probabilities of all states {xi}, Pnmax({xi}), reproduce a Boltzmann-distribution:

lim
nmax→∞

Pnmax({xi}) = 1
Z

exp (−β E({xi})) (2.4.21)

with β = 1
kB T

and the partition function Z =
∑
{xi} exp (−β E({xi}). This is achieved as

follows:
In a system in thermodynamic equilibrium, the total rate of states moving from any state q
into another state q′, equals the rate of the inverse move, q′ → q. q is the set of coordinates
describing the state of the system, e.g. the position vectors of all atoms, q = {xi}. For a
system following the Boltzmann-distribution, the transition rate Γ from a state q into a state
q′ is the product of the transition probability W and the occupation probability of state q:

Γ(q → q′) = W (q → q′) 1
Z

exp (−β E(q)) (2.4.22)
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With this, the condition of equal rates of transition and inverse transition, Γ(q → q′) =
Γ(q′ → q), results in

W (q → q′)
W (q′ → q) = exp (−β∆E) (2.4.23)

with the energy difference between states q and q′, ∆E = E(q′) − E(q). This is called the
detailed balance criterion. The probability to perform a move, W (q → q′), is the product of
the probabilities π and ρ to propose and accept a move, respectively:

W (q → q′) = π(q → q′) ρ(q → q′) (2.4.24)

In the most widely used Metropolis Monte Carlo, also called Generic Monte Carlo (GMC),
the changes from one state into another are generated completely randomly and the move
q → q′ is constructed with the same probability as the reverse move, q′ → q, leading to
π(q → q′)= π(q′ → q). Any proposed move then need to be accepted or rejected with a
probability ρ(q → q′) that satisfies Eq. 2.4.23:

ρ(q → q′)
ρ(q′ → q) = exp (−β∆E) (2.4.25)

where ∆E = E(q′)− E(q) is the change in energy induced by the move.
A possible choice of ρ that satisfies this relation is the Metropolis acceptance criterion [40]:

ρ(q → q′) =
{

exp (−β∆E) , ∆E > 0
1, ∆E ≤ 0

(2.4.26)

In practice, the Metropolis algorithm works as follows. Based on pseudo-random numbers,
a change to the system, a so called "move" is applied, leading to a change in the coordinates:
q → q′. The energy difference between the states before and after the move, ∆E = E(q′)−
E(q), is calculated. The move is then accepted with the probability

ρ(q → q′) = min {1, exp (−β∆E)} (2.4.27)

Advantages and Limitations of Metropolis Monte Carlo

So far, the detailed construction of the single moves in a Metropolis Monte Carlo simulation
was not discussed. In fact, there is no limitation to the changes that can be applied to
the system in a single MC step. The change of any coordinate (such as atom positions,
angles, bonds or dihedral angles) or even multiple coordinates can be applied. Therein lies
the main advantage of MC over MD: Whereas in MD the propagation of the system is
confined to the physical trajectory and significant changes are limited by a very small time
step, arbitrarily large variations in the coordinates can be applied to the system in MC based
protocols. Besides a possibly faster diffusion through the phase space, this induces significant
advantages in systems with a rugged energy landscape: Two specific states q0 and q1, that
are locally minimal in energy, are separated by an energy barrier, ∆Eb. If ∆Eb is larger than
the intrinsic energy of the system, ∆Eb > kB T , MD is very unlikely to propagate from q
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to q′. The probability to perform the transition between q and q′ decays exponentially with
the barrier height. This holds also true for MC based methods with limited displacements in
the coordinate separating the two states. If steps sizes in MC are on the other hand chosen
to be of the order of |q1 − q0|, a direct transition between the minima is possible. This
transition probability depends only on the energy difference ∆E = E(q1) − E(q0), not the
energy barrier of the intermediate states.
There is, however, a drawback to the Metropolis-MC based methods: For systems with
many degrees of freedom, such as a condensed layer of small organic molecules or a large
protein, the change of a single coordinate in each MC step, however large, will not lead to
an efficient sampling of the phase space. Furthermore, there are collective effects, such as
the crystallization of molecules. Moving single coordinates at a time will fail to reproduce
the collective behavior. As mentioned, there are no limitations to the construction of moves.
While it is, in principle, possible to change an arbitrary large number of degrees of freedom
in a single MC step, this primitive construction of collective movement is bound to fail:
The probability to construct a move that leads to a strong increase in energy, ∆E > kT ,
increases with the numberm of coordinates that are changed simultaneously in a single move.
However, the number of possible changes to the system leading to a strong decrease in energy,
∆E < kB T , is limited in condensed systems and the higher probability to construct a bad
move is not compensated. Roughly speaking, the acceptance probability of a move affecting
m coordinates qi is the product of the acceptance probabilities of all single changes to the
system. In condensed systems, the acceptance rate for moves affecting of the order of O(1)
coordinates lies typically in the range of 0.3 − 0.7 and converges rapidly to 0 for increased
m.
There are approaches to exploit the advantage of MC, the large step sizes, with acceptance
rates significantly larger than 0. One possibility is the reduction of the number of degrees of
freedom [57]. Another approach is the advanced construction of correlated moves, that will
be discussed in detail in chapter 4.

2.4.4. Sophisticated Modeling Methods
Impeded Modeling in Rugged Energy Landscapes

Dense atomic systems, such as layers of small organic molecules or folded protein structures,
are often characterized by very rugged energy landscape. Local minima in the energy are
separated by energy barriers of various heights. Any barrier with ∆Eb ≥ kB T is limiting
propagation of the system across the energy landscape. There are several approaches to
increase diffusion across energy barriers with ∆Eb > kB T in the multi-dimensional configu-
ration phase, preventing trapping of the system in metastable configurations for long simu-
lation times. Three methods will be presented in the following: basin hopping by simulated
annealing (SA) [107], parallel tempering (PT) [45, 108–110] and Model Hopping (MH) [111].
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Figure 2.4.2.: Increasing sampling efficiency in rugged energy landscapes. (a) In
the simulated annealing (SA) protocol, the temperature is gradually reduced from
a high temperature to the physical temperature. The hot system can cross energy
barriers before equilibrating at the final temperature, and repeating multiple
SA cycles leads to an efficient basing hopping between local minima. (b) In
parallel tempering method (PT), also called replica exchange method, multiple
replica of the system are simulated in parallel at different temperatures. Exchange
between the models with an acceptance criterion asserting detailed balance allows
increased propagation of the system simulated with the physical temperature. (c)
In model hopping approach (MH), several replica are simulated using different
energy models. At least one replica of the system with an energy model E1 is
biased towards a subset of the configuration space where the energy is estimated
to be minimal. Exchange between the configurations of the biased energy model
E1 and the physical force field E0 is performed deploying an acceptance criterion
similar to PT in order to asserts detailed balance.
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Simulated Annealing (SA)

A straight forward solution to the trapping of the system in metastable configurations is to
increase the temperature to a high value of Th, where ∆Eb ≈ kB Th for all energy barriers. In
order to reproduce configurations that are equilibrated at any desired lower temperature, Tl,
the temperature is gradually decreased throughout a simulation consisting of N simulations
steps, resulting in a temperature at step n:

Tn = cn Th, c =
(
Tl
Th

)1/N
(2.4.28)

This simulated annealing protocol [107] is illustrated in Fig. 2.4.2a. Repetition of the SA
protocol results in an efficient basing hopping [107] between local minima, enabling an fast
system propagation and an efficient search for the global optimum in the energy landscape.

Parallel Tempering

Swendsen and Wang tackled the impeded sampling in rugged energy landscapes in 1986 by
modeling multiple systems in parallel at different temperatures Ti leading to different values
for βi = 1/kB Ti. Originally developed for Monte Carlo simulations of spin glasses [108],
the method was further developed [112] and transferred to MD simulations [45, 109, 110].
The main idea is illustrated in Fig. 2.4.2b and works as follows: A system of interest is
modeled at multiple temperatures Ti, βi simultaneously. After a certain time interval ∆t the
configurations Ci (or the temperatures Ti, respectively) between the models are exchanged
with the probability:

ρexchange = min
{

1, exp (−βiEj − βjEi)
exp (−βiEi − βjEj)

}
(2.4.29)

The acceptance criterion can be derived by thermodynamic considerations originating in
the occupation probabilities: In the thermodynamic Equilibrium, the configurations Ci with
energies Ei are distributed according the Boltzmann-distribution:

π(i,i) = 1
Z

exp (−βiEi) (2.4.30)

with the partition function Z =
∑
q | exp(−βE(q))|. The probability to find configuration Ci

in a state with the energy Ei at βi and, at the same time, configuration Cj in a state with
the energy Ej at βj is then just the product of the individual occupation probabilities:

π(i,i),(j,j) = πi,i × πj,j = 1
Z

exp (−βiEi − βj Ej) (2.4.31)

Another possible outcome of the same run would be to find exchanged configurations: config-
uration Cj with energy Ej at βi and configuration Ci with energy Ei at βj . The probability



CHAPTER 2. FUNDAMENTAL METHODS AND CONCEPTS 31

for this simulation result is given by

π(i,j),(j,i) = πi,j × πj,i = 1
Z

exp (−βiEj − βj Ei) (2.4.32)

If, after the time interval ∆t, the configurations Ci in βi and Cj in βj are realized in the sim-
ulations (which happens with a probability according to Eq. 2.4.31) and the configurations
are exchanged manually with a probability given by Eq. 2.4.29, the exchanged state occurs
the with the total probability:

π̂(i,j),(j,i) =π(i,i),(j,j) × ρexchange (2.4.33)

= 1
Z

exp (−βiEi − βj Ej)×
exp (−βiEj − βjEi)
exp (−βiEi − βjEj)

(2.4.34)

= 1
Z

exp (−βiEj − βj Ei) (2.4.35)

=π(i,j),(j,i) (2.4.36)

Hence the exchange of the configurations using the probability of Eq. 2.4.29 results in a
distribution of states similar to the thermodynamically equilibrated distribution π(i,j),(j,i).
In practice, more than two models are used for efficient sampling: On the one hand, the
temperature of the hottest of the N systems needs to be chosen such that the internal
energy is of the order of the largest energy barrier, (kB T )N ≈ ∆Emax. On the other hand,
the exchange probability between two models is only significantly non-zero if there is a
overlap of the density of states of two models. This is only the case, if the difference in the
βi of "neighboring" systems i and i + 1 are sufficiently small. The total temperature range
between the highest temperature TN and the temperature of interest, T0, then needs to be
bridged by several intermediate temperatures. The configuration of the hottest system can
then be passed to the system at T0 in several exchange attempts.
The PT algorithm is implemented in several MD simulation packages (e.g. LAMMPS, Gro-
macs) and was amongst other applications, applied successfully to polymers, proteins and
solid state applications [113].

Model Hopping

In other cases efficient sampling is prevented by the fact that only a small fraction of the
configuration space has significant thermodynamic occupation probability. In other terms,
only this small part of the phase space is "relevant" for the measurement of the system’s
properties in thermodynamic equilibrium. In this case, information on the system can be
used to make an educated guess about this region in the configuration space and bias the
system towards it.
In PT, models are simulated at unphysical temperatures, and the exchange of configura-
tions into a model at the physical temperature results in thermodynamically equilibrated
structures. On the basis of the PT approach, Hansmann et. al proposed a protocol where
multiple models are simulated using different energy models [45].
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Exchange between the models with configurations Ci and energies Ei is proposed and ac-
cepted or rejected after a time interval ∆t, or, in MC, after certain number of simulation
steps. Simulation of one model with E0 being the physical force-field, i.e. an unbiased model,
asserts physical, thermodynamically equilibrated results. By applying the correct acceptance
criterion, configurations that are exchanged into the energy model E0 can be assumed to be
physical. This is illustrated in Fig. 2.4.2c.
The derivation of the exchange acceptance probability follows the same Ansatz as in PT:
Let Ci be the configuration of model i with the energy function Ei at a certain point in the
simulation. The energy in this model is then determined by the configuration, Ei(Ci). The
probability to find two configurations Ci and Cj in the models using the energy functions Ei
and Ej respectively is given by the product of the individual occupation probabilities:

π(i,i),(j,j) =πi,i × πj,j (2.4.37)

= 1
Z

exp (−βEi(Ci)) exp (−βEj(Cj)) (2.4.38)

= 1
Z

exp (−β(Ei(Ci) + Ej(Cj)) (2.4.39)

Analogously to the PT algorithm, the exchange acceptance probability between models i
and j can be derived by considering a different possible outcome of the same simulation:
configuration Cj in the model with the energy function Ei and the configuration Ci in the
model with the energy function Ej . The thermodynamic occupation probability of finding
the exchanged configurations is given by

π(j,i),(i,j) = 1
Z

exp (−β(Ei(Cj) + Ej(Ci)) (2.4.40)

As the the occupation probability of configuration Ci in model i and configuration Cj in
model j is given by Eq. 2.4.39, accepting exchange of the configurations between the models
with the exchange probability of

ρexchange = min
{

1, exp (−β (Ei(Cj) + Ej(Ci)))
exp (−β (Ei(Ci) + Ej(Cj)))

}
(2.4.41)

results in the correct occupation probability of the exchanged states as given in Eq. 4.5.1.
The Model Hopping algorithm works as follows: Starting from the same initial configura-
tion, multiple models with different energy functions are simulated. After each n steps, the
simulation is paused and exchange of the configurations between models is proposed and
accepted according Eq. 4.5.1. A reasonable approach is to generate the unphysical energy
models Ei, i 6= 0 by adding a bias potential to the physical energy model and scaling the
bias differently in each of the biased models. By proposing exchange between models i and
i+1 after n steps, configurations are successively exchanged from the model with the largest
bias into the unbiased model and can be deployed for further analysis.
Crucial to the successful exchange between biased and unbiased model is the construction
of the biased energy functions Ei, i 6= 0. A detailed analysis of the algorithm and possible
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ways to construct energy models Ei in 4.5 suggests that exchange between models is limited,
if the biased models lead to configurations Cj with bad physical energy, i.e. E0(Cj) > kB T .
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2.5. Electronic Transport in Organic Materials
2.5.1. From Band Transport to Charge Hopping
The generation of a sample morphology of organic layers was discussed in the previous
section. The subsequent and final step in the multiscale modeling approach is the transfer
of properties of small entities such as atoms or molecules, calculated on the scale of single
electrons, to macroscopic electronic transport properties of a full organic electronic layer or
device.
In crystalline metals and semiconductors, electrons are delocalized, i.e. the single electron
wave function is non-zero across large areas of the device. Transport of delocalized charge
carriers such periodic systems can be described in terms of valence and conduction bands.
This does not hold true in organic semiconductors: No conduction bands and valence bands
are formed, on the basis of which the analytical calculation of electronic transport properties
is possible. Fast decay of the electronic wave functions of the highest occupied molecular
orbitals (HOMOs) or lowest unoccupied molecular orbitals (LUMOs) in amorphous organic
materials leads to strong localization of the charge carriers on single molecules. The overlap
of the wave functions of a single electron located on first one and then a neighboring molecule
is usually quite small, inducing weak electronic coupling. For many molecular structures, this
property results in low charge carrier mobilities. However, conjugation, e.g. the formation of
π-orbitals, induces a delocalization of the HOMO and LUMO orbitals, at least across large
parts of a molecule. This intramolecular delocalization results in increased transition rates
throughout the bulk, inducing significant charge carrier mobilities.
A theory for the description of transfer in the general case of localized charge carriers was
originally proposed by Marcus in 1956 [114]. Due to the large impact on the research of
charge transfer processes in various fields, the Nobel Prize was awarded to Marcus in 1992.
For the charge transfer between molecules, the semi-classical Marcus theory yields hopping
rates between neighboring sites as a function of orbital overlap, the difference in the (free)
energy between initial and final states and the reorganization energy.
Once the hopping rates between molecules are calculated, the macroscopic bulk properties
need to be derived. Analytic approaches to this problem are available in literature [27, 115],
their general applicability and parametrization, however, is subject to current discussion. A
more generic approach that circumvents the usage of additional parameters is the numerical
calculation of macroscopic properties: Using KMC, the time dependent trajectory of charge
carriers through the system is generated. For the simulation of the hop of a single charge
that is localized on a given initial site (i.e. the molecule where the charge is located at before
the hop), all possible final configurations (i.e. the neighboring molecules where the charge
may be localized after the hop) are considered. The final state as well as the physical time
of the hopping process are drawn from a distribution on the basis of previously calculated
hopping rates. Amongst other properties, charge carrier mobilities can then be extracted
from the physical trajectories.
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Figure 2.5.1.: The relative alignment of HOMO and LUMO energy levels, EH
and EL, with the Fermi energy EF, determine the charge carrier type: (a) If the
energy level of the LUMO of the molecules is lower than the Fermi level, or the
levels are at least closer than the thermal excitation, |∆EL| < kB T , electrons
are injected into the system. Electrons are the preferred charge carrier, as long
as |∆EH| >> kB T . (b) If the Fermi level is below the HOMO of the molecules,
or, as for electrons, the difference between HOMO and Fermi level is within the
thermal excitation, |∆EH| < kB T , the material is primarily hole conducting.

2.5.2. Marcus Theory of Hopping Transport
Molecular Energy Levels, Electron- and Hole-Conductors

Basis for the calculation of the charge transfer between molecules is the detailed description
of the electronic structure of the molecules. The molecular orbitals can be calculated with
different methods, e.g. DFT, Hartree-Fock or MNDO (see section 2.3). The orbitals that
contribute to the transfer of an additional charge from one molecule to a neighboring molecule
are the HOMO and the LUMO. Depending on the energy levels of electrons occupying these
orbitals, the material can be considered electron- or hole-conducting: If the level of the
LUMO is lower than (or at least close to) the Fermi-level of the injection material (i.e. the
work function of the electrode), electrons are injected into the material, occupying LUMO-
orbitals. The material is electron-conducting. If, on the other hand, the HOMO level is above
(or close to) the Fermi-level, electrons are transferred from the HOMO of the molecules into
the electrode. In other words, a hole is injected and the material is a hole-conductor. This
is illustrated in Fig. 2.5.1. While the energy levels of HOMO and LUMO are well defined
for a single molecule in vacuum, the charge distributions of surrounding molecules induces a
shift in the orbital levels. Throughout the system, the energy levels of HOMO and LUMO
have a smeared distribution rather than discrete, fixed values.

Eigenstates of Coupled Molecules

The transfer (or "hop") of a charge carrier from molecule A to a neighboring molecule B can
be formulated in terms of a kinetic reaction. The reaction equations are

M−A +MB 
MA +M−B (2.5.1)
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for electrons and
M+
A +MB 
MA +M+

B (2.5.2)

for holes. Independent of the charge carrier type, the initial (charge carrier localized on
molecule A) and final state (charge carrier localized on molecule B) of the hopping process
can be described using two wave functions, φi and φf . For a Hamiltonian of uncoupled
molecules, the eigenvalue equations are

H0
e |φi〉 =εi |φi〉 (2.5.3)

H0
e |φf 〉 =εf |φf 〉 (2.5.4)

H0
e is the electronic Hamiltonian of the dimer system. If the molecules are coupled, however,

the eigenstates of the coupled Hamiltonian in first order perturbation theory is a superposi-
tion of |φi〉 and |φf 〉,

|φ〉 = ci |φi〉+ cf |φf 〉 (2.5.5)

and the Hamiltonian can be expressed as:

He = εi |φi〉 〈φi|+ εf |φf 〉 〈φf |+ Jif (|φf 〉 〈φi|+ |φi〉 〈φf |) (2.5.6)

In the limits where the charge carriers are completely localized, i.e. ci = 0 or cf = 0, the
Schroedinger equation reproduces Eqs. 2.5.3 and 2.5.4. The mixing of the initial and final
state by ci and cf is directly coupled to the overlap matrix element, Jif , and the energy
difference ∆E = εf − εi.
The Schroedinger equation of two coupled states can be written as

Hec =εc (2.5.7)(
εi Jif
Jif εf

)(
ci
cf

)
=ε
(
ci
cf

)
(2.5.8)

This yields eigenvalues for the Hamiltonian of

ε± = 1
2(εi + εf )± 1

2
(
(εi − εf )2 + 4 J2

ij

)1/2
(2.5.9)

and eigenstates are determined by

(εi − ε±) c+−
i + Jif c

±
f =0 (2.5.10)

Jif c
±
i + (εf − ε±) c±f =0 (2.5.11)

This relation underlines that the delocalization, namely the ratio of c±i and c±f , is directly
determined by Jif and ∆E.



CHAPTER 2. FUNDAMENTAL METHODS AND CONCEPTS 37

Marcus Theory of Hopping

Using a semi-classical formulation, Marcus derived the hopping rate between two molecules
with initial and final states φi and φf :

Γif = 2π |Jif |2

~
(4π λ kB T )−1/2 exp

(
−(∆E + λ)2

4λkB T

)
(2.5.12)

The derivation will be sketched in the following, starting from Fermi’s Golden Rule:

Γif = 2π
~
| 〈Ψi|H |Ψf 〉 |2 δ(Ei − Ef ) (2.5.13)

H is the Hamiltonian of the full system, and Ψi and Ψf are initial and final states with
energies Ei and Ef respectively.
According to the Born-Oppenheimer approximation, the total wave functions Ψi and Ψf

factorize into electronic and ionic wave functions:

Ψα = φα χα (2.5.14)

with α = i, f . Inserting the Hamiltonian of Eq. 2.5.6 results in

Γif = 2π
~
|Jif 〈χi|χf 〉 |2δ(Ei − Ef ) (2.5.15)

The calculation of the overlap of the nuclear wave functions, 〈χi|χf 〉, is following a semi-
classical approach:
Putting an additional charge on a molecule is changing the molecular geometry. Bond lengths
vary slightly between a neutral and charged molecule. The charge transfer from initial to
final state needs to pass a transition state defined by electronic and nuclei configurations.
Let C = {Rk} denote the state describing the positions of all nuclei of both molecules.
Then, upon transferring the charge from one molecule to the other, the nuclei configuration
is changing from an initial state Ci to a final state Cf . At the point of the charge transfer, with
nuclei configuration Ct, two criterions have to be met: The first criterion is the conservation
of energy, i.e. εi(Ct) = εf (Ct). Secondly, according to the Franck-Condon principle, during
the charge transfer, the positions of the nuclei do not change. The change of bond lengths
of molecules can in first order approximation be modeled by harmonic functions. Hence, the
energies of initial and final state are functions of the configuration of the nuclei:

εα = 1
2K (C − Cα)2 (2.5.16)

with α = i, f . If the configuration is now considered a generalized reaction coordinate,
the transition state Ct is the configuration C where the two parabolas meet, e.g. where
εi(C) = εf (C). Keeping in mind the quantum mechanical nature of the electrons, the
existence of bound and anti-bound delocalized states with energies ε+ and ε− (Eq. 2.5.9),
leads to a gap in the energy functions εα(C). This is illustrated in Fig. 2.5.2.
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Figure 2.5.2.: Potential energy surfaces of the charge transfer in dependence of
the nuclear configuration. (a) In a classical picture, where the charge is located
either in the initial or the final state, the energies of initial and final states, εi
and εf , are - in first order approximation - a harmonic function of the nuclear
configuration. Due to conservation of energy, the transition configuration is the
intersection of both parabolas. (b) The quantum mechanical nature of the elec-
trons leads to a gap in the energy functions of 2 Jif . The eigenstates of the
Hamiltonian are a bound and an anti-bound state, ε+ and ε−. The charge trans-
fer is characterized by the energy difference ∆E between relaxed final and initial
state, the reorganization energy λ and the matrix overlap element Jif .
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Regarding the overlap of the nuclear wave functions, the δ−distribution asserting the con-
servation of energy allows only states, where the energies of initial and final wave functions
are equal. In the classical picture, this is the case when χi = χf . This is fulfilled at the
transition point, and one finds 〈χi|χf 〉 = 1 in this special case. However, the energy at the
transition point is E∗ above the initial energy, Ei. In a classical picture, thermodynamic
ensembles, the occupation probability then follows a Boltzmann distribution:

ρ(E∗) ∝ exp
(
− E∗

kB T

)
(2.5.17)

Thus, the absolute square of the orbital overlap together with the conservation of energy
can be substituted by the (normalized) Boltzmann occupation probability of the transition
state:

δ(Ei − Ef ) | 〈χi|χf 〉 |2 = 1
Z ′

exp
(
− E∗

kB T

)
(2.5.18)

Where Z ′ is a renormalized partition function. It is convenient to express the energy of
the transition state, E∗, in terms of energy difference ∆E and reorganization energy λ. For
this, it is assumed that the harmonic functions describing the dependence of initial and final
energy on the nuclear configuration, εi(C) and εf (C), have approximately the same force
constant:

εi(C) =1
2 K (Ci − C)2 (2.5.19)

εf (C) =1
2 K (Cf − C)2 + ∆E (2.5.20)

The configuration at the transition point, Ct, is where the functions intersect:

εi(Ct) =εf (Ct) (2.5.21)
1
2 K (Ci − Ct)2 =1

2 K (Cf − Ct)2 + ∆E (2.5.22)

This results in an equation for the transition state Ct:

K C2
t + 1

2 K Ct (2Cf − 2Ci) + 1
2 K (C2

i − C2
f )−∆E =0 (2.5.23)

Solving this equation and inserting into the expression for E∗:

E∗ = 1
2 K (Ci − Ct)2 (2.5.24)

results in an expression for E∗:

E∗ = (∆E + λ)2

4λ (2.5.25)
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with the reorganization energy λ:

λ = 1
2 K

(
C2
i − C2

f

)
(2.5.26)

This equation allows an interpretation of λ: Consider the case that the charge transfer
would happen instantaneously without a change in the nuclear configuration, i.e. the charge
suddenly sitting on the final molecule, but the nuclear configuration of the combined system
remaining in the initial configuration, Ci. The energy of the system is then εf (Ci) and
subsequently to the charge transfer, the system would relax to the minimum of εf (C) at
C = Cf . The energy difference that is gained by this relaxation, i.e. the reorganization of
the nuclear configuration, is εf (Ci)− εf (Cf ) = λ.
Substitution of E∗ in Eq. 2.5.18 and using the correct normalization results in [116]:

| 〈χi|χf 〉 |2 = (4π λ kB T )−1/2 exp
(
−(∆E + λ)2

4λkB T

)
(2.5.27)

While the exponent is the Boltzmann weight of the transition state, exp (−E∗/kB T ), the
prefactor is not the classical partition function. The reasons for the deviation lie in the
quantum mechanical nature of the vibrational states.
Inserting Eq. 2.5.27 this into Eq. 2.5.15 yields the expression of the hopping rates in Eq. 3.5.1.

Calculation of the Hopping Rate Parameters ∆E, Jif and λ

The energy difference between initial and final state of the hopping process, ∆E, the coupling
matrix element Jif and the reorganization energy λ are the central quantities in the formula
proposed by Marcus (Eq. 3.5.1). For each pair of molecules, i.e. each possible hopping
process, they can be derived using quantum mechanical methods. Without going into detail,
a qualitative description of the calculation of these quantities is given in the following.

Calculation of ∆E In principle there several ways to calculate ∆E for a hop from one
molecule to a neighboring site. The easiest approach is to extract the orbital energies of
the LUMOs (for electronic transport) or HOMOs (for hole transport) calculated for the
molecules in vacuum and calculate ∆E by:

∆E = EHOMO/LUMO(1)− EHOMO/LUMO(2) (2.5.28)

where EHOMO/LUMO(1/2) denote the HOMO and LUMO orbital energies of inital and final
state respectively. Calculation of the orbital energies in vacuum however does not account
for the influence of the environment that is unique for each molecule in an amorphous organic
structure. The resulting ∆E is then just based on deformation of the molecules. A slightly
more sophisticated way to calculate ∆E is to include a shell of surrounding molecules into
the calculations of HOMO or LUMO energies. While environmental effects are included,
the change of orbital energies by additional charges occupying HOMO or LUMO is still
neglected. This can be accounted for by placing an additional charge first on the initial
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and then the final molecule and calculate ∆E as the difference in the ionization energies.
Further refinement up to the point where the influence of the additional charge on the charge
distribution of the neighboring molecules is taken into account can be found in literature
[3, 56].

Calculation of Jif The calculation of the Jif is performed in first order perturbation theory:
First, the wave functions defining the orbitals of the monomers (the molecule that is charged
before the hop and the molecule that is charged after the hop) are calculated, i.e. the
monomer wave functions. Secondly, the dimer Hamilton operator is extracted from the
quantum mechanical calculations. This Hamiltonian comprises the monomer Hamiltonians
on the block-diagonal elements and the overlap Hamiltonians J on the block-off-diagonal
elements:

Hdimer =
(
Hmono,i Jif
Jfi Hmono,f

)
(2.5.29)

Each entry of this matrix is itself another matrix of the dimensionality of the basis describing
the monomer wave functions. The orbital overlap is then calculated using the states |Ψi, 0〉 =
|Ψi〉 ⊕ |0〉 and |0,Ψf 〉 = |0〉 ⊕ |Ψf 〉:

Jif = 〈Ψi, 0|Hdimer |0,Ψf 〉 =
(

Ψi

0

)(
Hmono,i Jif
Jfi Hmono,f

)(
0

Ψf

)
(2.5.30)

Calculation of λ The reorganization energy λ usually comprises two parts: λi, the inner
contribution by the ionic reorganization of donor and acceptor molecule and the energy λo,
induced by the ionic relaxation of the environment. For organic systems, λo << λi can be
assumed. The inner contribution to the reorganization energy is calculated as the sum of
the energy changes occurring due to the ionic relaxation of donor and acceptor:

λi = λdonor + λacceptor (2.5.31)

λdonor is derived by removing the charge from the donor molecule, calculating the energy
Edonor,0 of the neutral molecule, relaxing the geometry and calculating the energy of the
final, relaxed, uncharged system, Edonor,1. The donor contribution to λi, λdonor is then just
the difference between Edonor,1 and Edonor,0. The calculation of the acceptor is performed
accordingly: The acceptor is charged, the energy calculated, the donor molecule relaxed and
λacceptor calculated as the difference of the energies [117, 118].

2.5.3. Second Order Charge Transfer: Super-Exchange
The hopping processes within the original Marcus theory described above include direct
hops between neighboring sites. Exemplified by the guest-MOF-System in section 3.5, there
are systems where significant conductivity has been observed, but hopping processes are
impeded by large energy differences between neighboring sites while the hopping between
aligned orbitals is prevented by large distances.
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In the context of charge transfer in DNA an extension to the established first-order processes
presented above was proposed [119]. In this molecular super-exchange (SX), the transfer
between second nearest neighbors occurs by virtual occupation of an intermediate state.
The total electronic coupling between initial state i and final state f is then given by:

J totif = Jif + JSXif = Jif +
∑
v

Jiv Jvf
∆Esx + 0.5λv

(2.5.32)

Here, the Jif , Jiv and Jvf are the direct nearest neighbor couplings of Eq. 2.5.30, between
initial and final state, initial state and virtual state, and virtual state and final state re-
spectively. The denominator of the super-exchange contribution comprises the difference
∆Esx = Ev− 1

2 (Ei+Ef ) between virtual site energy and averaged energy of initial and final
states, and the reorganization energy of the virtual state λv. The reorganization energy is
added to the energy difference to account for the fact that the virtual occupation does not
result in an ionic relaxation of the virtual state, leading to a total energy of Ev + 0.5λv,
with the on-site energy of the virtual state after ionic relaxation, Ev. For second nearest
neighbors i and f that are aligned in energy, but experience small electronic coupling due to
large distances, this increases the transfer rate Γif significantly: The exponential expression
in Eq. 3.5.1 is close to 1 due to ∆E = 0 and the coupling Jif is increased by the virtual
occupation of the intermediate state.
This is an extension to existing charge transfer models inducing additional hopping processes.
An illustration of the problem and possible hopping processes is presented for the case of
guest-MOF systems in Fig. 3.5.1.

2.5.4. Kinetic Monte Carlo Charge Transport Simulations
Once the hopping rates between each pair of molecules are calculated, each molecule is
reduced to a point-shaped hopping site. The propagation of charges through the system is
simulated using Kinetic Monte Carlo (KMC).

The Kinetic Monte Carlo Protocol

In contrast to the MC methods described in 2.4, the quantities of interest cannot be ex-
tracted by simply sampling all possible configurations of the system. In addition to the
configurations itself, a time dependence of the charge propagation is needed in order to link
the propagation of the charge carriers with macroscopic electronic properties such as the
charge carrier mobility. This is done by identifying a physical time step with each (randomly
chosen) Monte Carlo step.
The main idea of the KMC approach is illustrated in Fig. 2.5.3. Starting from any initial
sites i, transitions to all possible (neighboring) sites are considered as a next MC step. Each
transition from i to fk is associated with a transition rate Γifk

, calculated on the basis of
Marcus formalism. The probability to perform this transition is given by the ratio of the
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Figure 2.5.3.: Schematic illustration of the a single KMC step. Starting from an
initial state i, the hop to all possible final states f0, f1, . . . fN are considered as
an MC step. The probability to perform a transition into a final state fk depends
linearly on the hopping rate Γifk

. A uniform random number aΓ ∈ (0,
∑

l Γifl
)

determines the final state k via the corresponding interval of the probability array
constructed of all Γifk

. (b) For a given set of {Γifk
}, the probability of the charge

to remain on the initial site i decays exponentially with the time. The time step
tif related to each hopping process is calculated by drawing a random number
at from a probability distribution ρ ∝ exp (−Γtot t) where the total rate Γtot is
the sum of all individual transition rates.
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transition rate to the sum of the transition rates to all neighbors:

πifk
= Γifk∑

l Γifl

(2.5.33)

To randomly draw the transitions with the correct probabilities, the Γifk
are combined into

an array. The total length of this array is then the sum of all Γifk
. A random number aΓ is

drawn from a uniform distribution with aΓ ∈ (0,
∑
l Γifl

). The transition i → fk that is to
be performed is then identified by

k−1∑
l=0

Γifl
< aΓ <

k∑
l=0

Γifl
(2.5.34)

The association of an appropriate time step with the transition i→ fk is based on statistical
assumptions. The total rate by which the state i is left, is the sum of the individual rates of
all possible transitions:

Γtot =
∑
l

Γifl
(2.5.35)

The change of the occupation of state i at a certain time t is linear in the rate and the current
occupation. Instead of using absolute occupation numbers, this can directly be transferred
to the occupation probabilities ρi(t):

∂ρi(t)
∂t

= −ρi(t) Γtot (2.5.36)

The occupation probability of state i after a time t is then

ρi(t) = exp (−Γtot t) (2.5.37)

with the occupation of the state i starting at t = 0, i.e. with a probability ρ0 = ρi(t0) = 1.
The time step associated with the hop off state i is then the time calculated following the
distribution given by Eq. 2.5.37. This is illustrated in Fig. 2.5.3b. In practice, a random
time step tif following this distribution is generated by drawing a random number u from a
uniform distribution with u ∈ (0, 1) and calculating tif via:

tif = − ln(u)
Γtot

(2.5.38)

Extracting the Charge Carrier Mobility

Running the KMC protocol for a large number of simulation steps yields trajectories con-
taining positions of electrons and time steps. Using this information, mean charge carrier
velocities can easily be calculated by averaging distance intervals over time steps. The aver-
aged charge carrier velocities are then divided by the electric field that was applied during
the KMC simulation, resulting in the charge carrier mobilities.
This concludes the principle approach of simulating charge propagation via KMC and an
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implementation seems straight forward. In practice, however, several difficulties arise, like
the fast evaluation of the Coulomb-interaction between all charge carriers in the system.
The change of the position of a single charge carrier changes the hopping rates Γif of all
charge carriers and all possible final sites f , rendering this interaction a crucial effect in
KMC simulations.

2.6. Efficient Calculation of Macroscopic Electronic Parameters in
Organic Semiconductors via the Multiscale Modeling
Approach

On one hand, the charge transport depends strongly on quantum mechanical effects on
the single molecule scale. On the other hand, large samples are needed for the simulation
of hopping transport through bulk material in order to extract macroscopic parameters
and account for such phenomena as charge percolation. As a full quantum mechanical
description of devices on the nanometer scale is not feasible, a multi-scale modeling approach
is applied. Quantum mechanical methods such as DFT or Hartree-Fock are used to calculate
the electronic structure and the ionic geometry of molecules in vacuum. The quantum
mechanical properties of the molecules are mapped onto classical functions depending solely
on the position of the nuclei for the fast evaluation of the interaction between single molecules.
Large molecular sample structures are generated using MD or MC-based protocols. On the
basis of these sample morphologies, for each pair of molecules, the orbital overlap, the energy
levels of molecular orbitals and the reorganization energies are calculated and fed into Marcus
theory of hopping transport. The resulting rates are used as an input for KMC simulations
of charge transport, yielding macroscopic quantities, such as charge carrier mobility.
Whereas the KMC simulation does not take into account the exact electronic structure of
the single molecules, the hopping rates are a direct result of the orbital overlap and the
orientation and deformation of the molecules in the sample morphology. The morphology in
turn is influenced by the molecular geometry and the electronic structure via parametrization
of the classical force-field functions. In this manner, properties of organic semiconductors on
the smallest scale, the electronic structure of the single constituents, feed into KMC. Thus,
the resulting macroscopic transport properties take into account the quantum mechanical
nature of the molecules, without having calculated the whole sample on the full quantum
mechanical level.
The methods presented in this chapter present an extensive toolkit for the modeling of
electronic properties in organic semiconductors. This toolkit will be applied to the calculation
of the electronic properties of four (metal-) organic materials in chapter 3.
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3. Electronic Structure of Organic and
Metal-Organic Materials

3.1. Organic and Metal-Organic Electronic Devices
3.1.1. Introducing Novel Properties by Organic Compounds
Metals and inorganic semiconductors are the basis of modern technology. Computer chips,
transistors, photovoltaics (PV) and light emitting diodes (LEDs) are merely examples of the
wide range of applications in everyday life. While it is possible to modify material proper-
ties using binary compounds (such as GaAs) or doped layers, the range of electrical device
characteristics such as conductivity, band gaps and emission spectra is limited. Further-
more, the sensitive and frail production process of monocrystalline inorganic layers prevents
inexpensive, large-scale manufacturing of durable, large-area devices.
A material class that offers a vast number of compounds with different properties is organic
molecules. The incorporation of organic compounds into the concept of metallic or inorganic
electronic devices promises a variety of novel materials with electrical properties tunable by
molecular design. In the past decades, this prospect motivated two approaches in nanoelec-
tronics: The construction of thin films of purely organic molecules (organic semiconductors)
and the combination of metallic and organic compounds into metal-organic devices.

3.1.2. Organic Semiconductors
Since the discovery of electroluminescence in thin layers of small organic molecules in 1987 [9],
organic semiconductors consisting of small molecules have been intensively studied and are
widely applied in organic light emitting diodes (OLEDs) [1, 2], organic photovoltaics (OPV)
[3–5] or organic field effect transistors (OFETs) [6]. The prospect of low-cost production,
scalability to large area devices and control of device properties by specifically tuning single
molecule properties has been the driving force in extensive efforts to increase device efficiency
in the past years [10–13]. Organic semiconductors consist mostly of amorphous structures
whereas organic crystals (e.g. acene-crystals) remain an exception. While amorphous layers
can be realized on a large scale by vapor deposition or solution processing, to date, established
materials are limited in stability, electric yields and life time.
Further, the large number of possible organic molecules render the identification of suitable
molecules that result in the desired device properties a costly and time-consuming challenge
to experimentalists. To circumvent this bottleneck in the development of organic materials,
efforts have been made towards the calculation of device characteristics on the basis of
the single-molecule properties [3, 14, 28, 36, 83, 120]. Computational resources are becoming
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gradually cheaper, promising a full in silico ("in-the-computer-chip") design of devices by fast
and low-cost pre-screening of materials. Additionally, the device simulation is anticipated
to give insight on processes on the electronic scale, allowing a deeper understanding of the
fundamental processes in organic electronics that are responsible for limited power conversion
efficiencies (PCE) and device degradation.

3.1.3. From Purely Organic to Metal-Organic Structures
Another approach to overcome fast degradation and limited device stability is the combi-
nation of metallic and organic materials. The coordination between metallic centers and
organic compounds via metal-organic bonds is known in natural processes: FeII centers
coordinated to the nitrogen atoms of porphyrin, for example, play a major role in binding
oxygen to hemoglobin, an essential process in physiological respiration. Another example is
ferrocene (Fe(C5H5)2), where two five-membered aromatic rings are coordinated by an FeII
center. This "sandwich compound" and its derivatives are widely applied in pharmaceutical
applications, as fuel additive and in material science [121–123].
In nanoelectronics, the prospect of combining outstanding properties of two material classes
motivates the coordination of metals to organic compounds with the objective to realize
ultra-thin, long term sustainable devices with tunable properties by molecular design.
It was shown that the encapsulation of molecular layers by carbon and copper electrodes
leads to long-lived, temperature-stable devices with high PCE [124]. Another promising
approach is the construction of extended molecular systems by combining organic linker
molecules and metallic ions into metal-organic oligomers. As we will show in this chapter,
this leads to rather ordered, tightly packed molecular structures that have demonstrated
large life-times and high yields in experiment [9].
Further, the repetitive coordination between metallic centers and organic molecules enables
the formation of three-dimensional periodic arrangements, in analogy to ionic crystals. The
modular set-up of these porous metal-organic frameworks (MOFs) promises a multitude of
applications with tunable properties and to date, MOFs were successfully applied for gas
storage, molecule separation, molecular sensing and photovoltaics [126–128]. Hence, the
vast number of combinations of metal-complexes with organic molecules opens the prospect
of specific design of light weight, mono-crystalline devices of high purity, with tunable elec-
tronic properties such as band gap, optical excitation or conductivity. To date, however,
conductivity in MOFs has been limited to values orders of magnitude below metallic conduc-
tivities and the application as electronic devices has yet to be demonstrated. Therefore, the
electronic properties of MOFs have gained increasing interest over the recent years [129–136].
Amongst other things, it was demonstrated that loading of guest molecules into the MOF
pores significantly changes the electronic properties of the hosting MOF [25].
While there are established approaches to separately study inorganic crystals or single or-
ganic compounds, the prediction of electronic properties of combined materials presents a
formidable challenge to theory. A fundamental understanding of the electronic structure
of metal-organic systems serves two purposes: first, the identification of microscopic prop-
erties and processes limiting electric yields and charge carrier mobilities and secondly, the
subsequent in silico control of device properties by molecular design.
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3.1.4. Structure of the Chapter
This chapter illustrates, how modeling tools can be applied to a variety of material classes
based on organic compounds in order to calculate realistic device characteristics. Further, the
studies intend to give a view on the electronic characteristics of (metal-) organic structures
on the basis of microscopic properties of single constituents: In section 3.2 charge carrier
mobilities in small-molecule organic layers are derived ab inito for nine different materials.
After generating sample morphologies with atomic resolution using MD on the basis of es-
tablished force-fields, electronic coupling and energy differences between pairs of molecules is
calculated along with other microscopic properties. These are fed into an analytical model,
yielding charge carrier mobilities. The dependence of the mobility on single-molecule prop-
erties is analyzed and a comparison to experimental data investigates the applicability of
theoretical models to small-molecule organic electronics.
Subsequently, section 3.3 presents a study on metal centered molecular wires (MCMW).
Repeated coordination of metallic redox centers to small organic molecules results in one-
dimensional wire-like oligomers. Using Monte Carlo based modeling approaches we show
that a set of oligomers arrange in a tightly packed manner that can be extended periodically
to form an ordered structure. Using this sample morphology, the charge carrier mobility
in an extended nanowire structure is calculated based on microscopic hopping parameters,
analogous to the previous study of small molecules, and compared to experimental data.
The second half of this chapter presents two studies of a well know MOF, HKUST-1. MOFs
comprise metallic centers and small organic molecules in form of a three dimensional periodic
arrangement. The ordered geometry induces properties that differ significantly from organic
single-molecule or polymeric structures. The electronic character of MOFs is investigated in
two steps. In section 3.4, the intrinsic electronic properties of the Metal-organic framework
HKUST-1 are studied. After a brief discussion of the suitability of various methods, band
structures and density of states (DOS) are calculated. In order to investigate the influence
of the unpaired electrons of the Cu-atoms in HKUST-1 on band structure formation and
excitation energies, Cu is substituted by Zn in a second model for comparison. As the
treatment of periodic structures goes at the expense of accuracy, excitation energies of small
entities/fractions of the MOF-unitcell were analyzed using refined DFT-based methods with
high accuracy. The resulting theoretical analysis is compared to experimental observations.
Subsequent to the study of intrinsic MOF properties, section 3.5 proposes a hopping mech-
anism for charge transfer through metal-organic frameworks as an alternative to band-like
transport of metallic or inorganic crystalline structures. In order to analyze the influence of
small molecules loaded into the MOF pores, the hopping rates between two MOF-orbitals,
between two orbitals of guest-molecules and between MOF- and guest-orbitals are calculated.
The role of second-order processes which were first presented in section 2.5.3 is investigated
and kinetic Monte Carlo (KMC) simulations are applied to calculate charge carrier mobil-
ities. Results presented in this chapter were partially published. The respective references
are referred to accordingly.
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3.2. Thin Small-Molecule Organic Layers
3.2.1. From Single Molecule Properties to Device Characteristics
As mentioned in the introduction to this chapter, organic semiconductors consisting of small
molecules are used for a wide range of applications, such as OPV or OLEDs. The large
number of theoretically synthesizable compounds with different electronic properties moti-
vates efforts to specifically design device properties. To date, the practical application of
small-molecule organic layers, e.g. in large area devices, has been limited by the low charge
carrier mobility in amorphous thin films.
In the following, the multiscale modeling approach presented in chapter 2 is applied to nine
widely used small molecule semiconductors. By disentangling the influences of different ma-
terial specific properties on the charge carrier mobility, the molecular properties influencing
charge carrier mobilities is identified. Information on the dependence of the mobility and sin-
gle molecule properties enables targeted in silico design of small molecules for the application
in organic electronic layers.
The nine materials that are studied in this section are displayed in the inset of Fig. 3.2.2a.
Alq3, α-NPD, DEPB, mBPD, NNP, pFFA and TPD form amorphous (disordered) layers,
whereas TET- and PEN- (Tetracene and Pentacene) morphologies are crystalline. As ex-
plained in section 2.5, alignment of orbital energies with injecting electrodes leads injection
or extraction of electrons into or from the system. The charge transfer between molecules
then occurs either by moving electrons or holes, which have different mobilities in the same
material. Alq3 for example is usually employed as electron conductor while the alignment of
the HOMO and LUMO orbitals of α-NPD molecules with state-of-the-art electrodes leads
to hole transport.
This work is currently prepared for publication and is presented here in full consent with all
contributing authors.

3.2.2. Generation of Atomistic Morphologies
Following the multiscale modeling approach presented in chapter 2, atomistic morpholo-
gies of the materials α-NPD, DEPB, mBPD, NNP, pFFA and TPD were generated via
force-field based molecular dynamics (MD) simulations using the simulation package GRO-
MACS [88, 89]. In order to compare with earlier work, an Alq3 morphology was taken from
[36] and the TET and PEN crystal structures from [137, 138]. Using preoptimized sin-
gle molecule geometries, Van-der-Waals attraction and Pauli-repulsion were modeled using
the Lennard-Jones potential as parametrized in the general AMBER force-field (GAFF) [34]
which is known to reproduce thermodynamic properties of structures of a wide range of small
molecules accurately [139]. The electrostatic interaction was approximated by the Coulomb
potential with AM1-BCC partial charges. Periodic boundary conditions were applied in all
three dimensions.
The initial dilute molecular structure was constructed by randomly filling a cubic box with
300 to 700 molecules. Subsequently, the box size was reduced to generate a density of
0.9 g/cm3, which is approximately 70 % of the Alq3 density [140], to generate a condensed
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Figure 3.2.1.: Radial distribution functions g(r) of the atomistic morphology
structures generated by means of molecular dynamics. Neither of the structures
shows ordering beyond the nearest neighbor.

starting structure. After smoothing atomic forces (resulting from low atomic distances) by
energy minimization over 104 steps deploying the steepest-descend-algorithm as implemented
in GROMACS, a short 10ps NVT (constant number of particles, constant volume, constant
temperature) run at T = 800K, which is well above the glass temperature of all materials,
was performed to distribute the molecules evenly in the simulation box and to equilibrate
the velocity distribution. To relax the sample at the correct pressure, a 1ns NPT (constant
pressure instead of constant volume) run with T = 800K and p = 1 bar was performed.
Equilibration of the pressure to 1bar was verified and mean square displacement of the
molecules throughout the 1 ns run was surveyed to verify that the system was in the liquid
state (in which the mean square displacement should be larger than the characteristic length
scale of the molecule). The equilibration in the liquid phase was followed by a 5ns NPT
run, cooling the sample to room temperature at a rate of dTdt = 100K/ns. A final 2 ns NPT
simulation at T = 300K was performed to ensure equilibration and to collect data. The
mean square displacement in the final run was close to zero, indicating a condensed solid
phase where movement is limited to thermal vibrations.
In order to characterize order and conformation in the sample (amorphous or crystalline), the
radial distribution function of the six materials was calculated and is displayed in Fig. 3.2.1.
No short- or long-range order is visible, clearly indicating amorphous structures.

3.2.3. Charge Carrier Mobilities
1For each pair of molecules in the morphologies that was generated as described above,
electron coupling matrix (Jif ), reorganization energy (λif ) and Gibbs free energy difference
(∆Gif ) including polarization effects and conformational disorder were calculated. The

1The calculation of the charge carrier mobilities was performed by Pascal Friederich and a brief overview is
presented in the following. Full results have been submitted for publication.
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calculation of the coupling matrix elements was based on the Loewdin orthogonalization
procedure [141, 142] and the pairwise reorganization energies were derived using Nelson’s
four point method [118, 143]. Both calculations were performed using DFT as implemented
in TURBOMOLE [70] with the B3-LYP functional [144] and the basis sets def2-TZVP [145],
def-SV(P) and SV(P) [146] for λif , Jif and ∆Gif respectively. To account for environmental
effects, i.e. the electrostatic influence of the surrounding amorphous phase on the electronic
structure of the single molecules, a self consistent iterative approach was applied [3]. Values
were obtained for enough pairs in order to reduce statistical fluctuations to an acceptable
level.
Using the generalized effective medium model (GEMM)[27], an analytical alternative ap-
proach to KMC simulations (as described in chapter 2.5.4), the charge carrier mobilities
were calculated according to:

µ = e βM < J2 r2 >

n ~λ1/2

(
π β

1 + β σ2

λ

)1/2

exp
[
−C

(
(β σ)2 − β λ

)]
(3.2.1)

Here, < J2 r2 > and λ are the statistical averages over the squared product of microscopic
hopping matrix elements Jif and the distance of the hopping sites i and f and reorganization
energies respectively, as derived above. β = kB T

−1 the inverse temperature (T = 300K was
used), n is the dimensionality, M is the mean number of nearest neighbor molecules and e
and ~ are elementary charge and reduced Planck constant respectively. σ = σ(E), the energy
disorder, is the width of the local density of states, calculated as standard deviation of the
energy differences between initial and final hopping states, σ(∆E). The parameter of the
effective medium model was set to C = 0.25, as previously used in literature [27, 147, 148].
Fig. 3.2.2 presents an overview of the charge carrier mobility calculations. In Fig. 3.2.2a,
the theoretically derived mobilities are compared to experimental values from literature.
Very good agreement (within one order of magnitude) is observed over several orders of
magnitude for the hole mobility of both amorphous and crystalline systems. Fig. 3.2.2b
shows the local density of states for the two materials NNP and pFFA as exemplification.
As the mobility depends exponentially on the width of this distribution, it is considered
a crucial parameter for the mobility calculation. Accordingly, the material NNP, with the
disorder of σ = 0.135 eV and thus 20% larger than the disorder of pFFA with σ = 0.112 eV,
has a mobility of about one order of magnitude lower than pFFA. Fig. 3.2.2c indicates the
influence of the molecular shape on the charge carrier mobility: Alq3 is of rather spherical
shape, whereas the compound pFFA is an extended complex of phenyl rings. This leads to
an overall smaller value of < J2 r2 > for pFFA due to the wider distribution of the coupling
matrix elements and the short nearest neighbor distances. However, the mobility of pFFA is
orders of magnitude larger than the mobility of Alq3, as the mobility depends only linearly on
< J2 r2 > but exponentially on σ. The better electronic coupling in Alq3 is overcompensated
by the two times larger disorder. The second parameter that enters the exponent of the
charge carrier mobility is the reorganization energy λ. In a densely packed material, the ionic
relaxation is limited by surrounding molecules. This can be taken into account by fixing the
dihedral angles (the torsion of bonds), i.e. a "frozen dihedral approximation". The influence
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Figure 3.2.2.: a) Comparison of hole mobilities of 9 different organic semicon-
ductors varying from poorly conducting Alq3 to highly conducting crystalline
materials, such as Tetracene and Pentacene. Predictions from a parameter-free
first-prinicples workflow are in agreement to one order of magnitude for all materi-
als. b) Distribution of energy difference computed in the polaron model for NNP
and pFFA. The width of the distribution yields the energy disorder, the main
determinant of the mobility. c) Distance dependence of electronic couplings for a
compact (Alq3) and a more extended molecule (pFFA). d) Reorganization ener-
gies in the fully-relaxed (yellow) and frozen-dihedral approximation (red) differ
significantly for mBPD, NNP, α-NPD, TPD and pFFA. Figure and caption were
provided by Pascal Friederich and will be published shortly.



54 3.3. NANOWIRES CONSTRUCTED FROM METAL-TERPYRIDINE OLIGOMERS

Table 3.2.1.: Microscopic input parameters for and results of the analytical ap-
proach to the derivation of charge carrier mobilities. The hole mobilities are given
for each of the nine materials and are compared to literature values in the last
column.

σ < J2 r2 > M λ µ µexp
Alq3 0.224 9.99×10-3 7.31 0.296 1.01×10-10 1.46×10-10 [149–153]

mBPD 0.110 1.52×10-3 8.52 0.143 7.38×10-4 1.49×10-5 [154]

NNP 0.135 1.64×10-3 7.65 0.160 4.31×10-5 2.99×10-5 [155]

DEPB 0.130 1.42×10-3 8.16 0.266 2.09×10-5 1.17×10-4 [156]

α-NPD 0.144 2.04×10-3 7.73 0.158 1.84×10-5 2.70×10-4 [150, 157]

TPD 0.129 1.56×10-3 8.49 0.110 1.52×10-4 5.74×10-4 [150, 152, 156, 158]

pFFA 0.112 1.46×10-3 7.70 0.134 5.70×10-4 7.60×10-4 [154]

TET 0.0 1.13×10-2 15.8 0.114 3.83 0.4 [159]

PEN 0.0 3.07×10-2 15.8 0.097 13.35 1.2 [160]

of this approximation on the values of λ is depicted in panel d of Fig. 3.2.2. Especially for
mBPD, NNP, α-NPD and TPD, λ changes significantly under the confinement of neighboring
molecules. This clearly underlines the role of the environment in the calculation of charge
carrier mobilities.
The material dependent values for the microscopic parameters that feed into the mobility are
given in Tab. 3.2.1 along with the resulting charge carrier mobilities. Experimental values
for the charge carrier mobility are available in literature and are added in the last column
for comparison.
The calculated mobility is in good agreement with experimental data within one order of
magnitude, for material specific values ranging from 10−10 cm2/Vs to 10−4cm2/Vs. As there
were no adjustable parameters in this study except for the single parameter C in the GEMM
mobility formula, the observed agreement between between experiment and theory is encour-
aging. Our results suggest that the single molecule properties, such es electronic structure
and geometry, determine the mobility to a large degree. By directly comparing the mi-
croscopic input parameters and the resulting mobilities of pFFA with NNP and Alq3, the
energetic disorder was identified as the most significant parameter. This opens the prospect
of a full in silico prediction of organic semiconductor device characteristics on the basis of
microscopic properties of single constituents.

3.3. Nanowires Constructed from Metal-Terpyridine Oligomers
3.3.1. From Amorphous Organic Layers to Ordered Metal-Organic Wire

Structures
The encapsulation of functional organic materials into nanoscale electronic devices open
the prospect of small-scale devices with properties tunable on the molecular level and lead
to extensive studies over the past decades [161, 162]. Although test systems have been
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Figure 3.3.1.: Growth of FeII -terpyridine oligomers: By iteratively coordinat-
ing FeII redox centers to TPT units, extended metal centered molecular wires
(MCMW) are formed. The wires are framed by MPTP groups for the attach-
ment to functionalized substrates and electrodes. Note that the pyridine units
flip during the coordination of the (M)TPT units to the Fe2+ ions.

realized [163], the construction of stable, durable devices remains challenging. The damage
of molecular structures by the deposition of metal electrodes is one of the major challenges
in constructing thin film junctions [164, 165].
To overcome this hurdle, different electrode deposition methods were proposed [166–168]
and, more recently, intermediate layers were introduced to protect the fragile molecular layers
[169–171]. However, while preserving the molecular structure, both approaches prevent direct
access to intrinsic material properties due to additional layers. A solution to this hurdle
has been proposed where molecular layers are encapsulated between copper and carbon
electrodes, producing stable films with high yields [172].
Another promising approach towards the construction of durable and sustainable devices
with tunable electronic properties is to utilize metal-organic bonds to stabilize organic mate-
rials. This study aims at the construction of a theoretical model for an extended system con-
sisting of FeII -terpyridine-oligomers to analyze microscopic properties and device stability.
As illustrated in Fig. 3.3.1, the iterative coordination of FeII redox centers to 1,4-di(2;2’;6’;2”-
terpyridine-4’-yl)benzene (TPT) leads to the formation of 1D-oligomers, referred to as "nano-
wires" or "metal centered molecular wires" (MCMW). 4’-(4-mercaptophenyl)terpyridine (MP-
TP) groups are used to attach the MCMWs to the electrodes. Triflate ions are added to the
structure to compensate the positive charge of the FeII redox centers. Molecular mechanical
simulations are performed in order to generate a sample morphology of stacked wires, on the
basis of which electronic properties, i.e. charge carrier hopping matrix elements and charge
carrier mobilities, are analyzed. The results are compared to experimental data.
The results of this section were already published in [9] and are presented here in consent
with all contributing authors.
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3.3.2. Parametrization of a Single Molecular Wire
In order to extract force-field parameters for the simulation of an extended wire structure
on the basis of Metropolis MC, geometry optimization was performed on a molecular model
of the wire chosen such that a full wire can be constructed by periodic extension: The 4’-(4-
mercaptophenyl)terpyridine (MPTP) unit including a sulfur atom at the bottom (saturated
by hydrogen), which is attached to a substrate in experimental setups, is coordinated to a
FeII redox center, which is then linked to a 1,4-di(2;2’;6’;2”-terpyridine-4’-yl)benzene (TPT)
nanowire unit. This unit is illustrated in Fig. 3.3.2a. The geometry of this molecular model
and the geometry of the triflate counter ion depicted in Fig. 3.3.2b was optimzed using DFT
with the BP86 exchange-correlation functional [173–175] and the def-SV(P) basis set [146]
as implemented in the TURBOMOLE program package [70]. Using TURBOMOLE, the
Kollman fit procedure [98] was applied to generate a set of point-charges located on the
atom positions to reproduce the electrostatic potential of the moieties. For the construction
of an extended wire unit, atom positions and partial charges were extracted from the atoms
in the black brackets displayed in Fig. 3.3.2a. The distance between two redox sites, i.e. the
length of one TPT-unit in the wire, was set to 1.55nm according to the distance between the
centers of the two phenyl rings of the optimized structure depicted in Fig. 3.3.2a. Extended
structures were constructed by translation of 1.55nm along the wire and rotation of the unit
around the wire-axis to represent the alignment of the two phenyl rings of the optimized
wire subset.
To determine relevant degrees of freedom for the classical simulations, the rotational flexibil-
ity of two adjacent wire units along the chain was analyzed. Therefore, the first TPT-unit in
the MCMW was rotated in respect to the MTPT-moiety in steps of 9◦. The geometry of each
resulting configuration was optimized and the energy calculated using the semi-empirical Ne-
glect of Diatomic Differential Overlap (NDDO) formalism as implemented in the package
MOPAC [77, 78]. During the relaxation, the relative orientation of the groups was preserved
by partially fixing the coordinates of three atoms nearest to the FeII center in both TPT and
MTPT-unit, i.e. atoms spanning a plane perpendicular to the wire-axis. This is illustrated
in Fig. 3.3.3a. The resulting energies are displayed in Fig. 3.3.3b. Even small distortions
of less than 20◦ lead to energy penalties of approximately 0.1 eV. As kB T ≈ 0.025 eV at
room temperature, a significant distortion is very unlikely and flexibility within single wires
is neglected in the following classical simulations.

3.3.3. Wire Interlocking: Formation of a Robust Layer
The optimized units were replicated as described above in order to generate a sequence of
four TPT-units (see Fig. 3.3.3b) with copies of MTPT-units saturating the nanowires. A
triplet of MCMWs was constructed with an initial angle of 50◦ between wire-axis and z-axis.
This angle was chosen to account for the influence of the top and bottom electrodes aligned
to the x-y-plane, as the bonds electrode-sulphur and sulphur-carbon are expected to span
an angle close to 130◦. A total of 30 triflate counter ions was distributed amongst the wires
to compensate the positive charge of the 3× 5 FeII redox centers.
In order to produce a thermally equilibrated configuration, the triplet including the triflate
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(a) (b)

Figure 3.3.2.: Parametrization of nanowires and counter ions for the morphology
generation: The geometry of the structures was optimized using DFT before ex-
tracting partial charges for the electrostatic force-field. (a) For the parametriza-
tion of the nanowires, a MPTP-unit (including a sulfur atom at the bottom)
coordinated to a (TPT) nanowire unit via a FeII redox center was optimized in
DFT. For the parametrization of extended wires, the atom positions and partial
charges were extracted from the atoms within the black brackets. (b) Triflate
counter-ion are added to the simulation for compensation of the FeII redox sites.
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Figure 3.3.3.: (a) To estimate the rigidity of two adjacent wire units, a TPT unit
is rigidly rotated in steps of 9◦ in respect to the MTPT unit. During the subse-
quent geometry optimization using MOPAC, the relative orientation is preserved
by partially fixing the atoms highlighted in green, i.e. allowing only relaxation
parallel to the wire axis. The resulting energies in panel (b) show an increase
of approximately 0.1 eV for a distortion of less than 20◦ from the rest position,
indicating strong rigidity.

counter-ions was optimized using Metropolis MC as implemented in SIMONA [86]. To
approximate the global optimum in the configurational space, basing hopping simulations
where the optimization step was performed by simulated annealing (SA) was performed
using ten SA-cycles consisting of 50000 MC steps each, annealing from Ti = 4000K to Tf =
300K. The electrostatic interaction between the charge distributions of the constituents was
modeled using the Coulomb potential with partial charges as derived above. The Lennard-
Jones potential was applied to account for Van-der-Waals attraction and Pauli repulsion,
using standard parameters of the GAFF force-field [34]. During the rigid body relaxation of
wires and counter-ions, only the centers of geometry of the wires were fixed to the x−y−plane
(z = 0) to account for the confinement between the electrodes. 3D rigid body rotation and
2D rigid body translation of the wires in the x−y−plane as well as 3D rigid body rotation
and 3D rigid body translation of the triflate ions was performed during relaxation. In order
to avoid the detachment of the triflate ions at high temperatures (e.g. at the beginning of
the basing hopping cycles), the molecules were confined to a box of 70×70×70nm3 using an
attractive harmonic potential acting on molecules outside the volume. The box was chosen
large enough in order to have no influence on the relaxed structure.
As the packing of the nanowires is expected to be determined by the strong cohesion energy
induced by Coulomb interaction between FeII redox centers and counter-ions, the influence
of the upper and lower electrode is assumed to be comparably small except for alignment
in z-direction and is accounted for by initial placement of the wires as described above and
constrained wire movement to the x-y-plane. The simulation resulted in a tightly packed
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 46.6±0.6°
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Figure 3.3.4.: (a) Side view of the optimized triplet. Optimized configuration of
a triplet of nanowires consisting of four TPT-units enclosed by two MTPT-units.
The center of geometry of the wires was fixed along the z-axis and the triplet
was relaxed using 3D rigid body rotation in and rigid body translation in x-y-
direction. Counter ions were included explicitly to compensate the FeII charges,
and optimized without restriction. The optimization resulted in a tilt-angle of
46.6±0.6◦ between wire axis and z-axis. (b) Top view of the optimized triplet. In
order get an estimate on the periodicity of an extended wire structure, the vectors
between the centers of geometry of the triplet wires were calculated, resulting in
a rombic unit-cell with lattice parameters of a = 16.3 Å, b = 16.3 Å and an angle
α = 41◦. Periodicity is illustrated by placing images of the triplet (wire-frame
representation) on the lattice positions in the x-y-plane.
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arrangement of the molecular structure, as displayed in Fig. 3.3.4a. The wires are arranged
almost parallel (1.4◦, 1.5◦ and 0.4◦ between each pair) and the molecular structure shows
an orientation of 46.6 ± 0.6◦ between molecular axis and z-axis. The latter angle almost
reproduces the initial angle induced by the substrate, underlining the stability of the wires.
More precisely, a difference between the angle resulting from the simulation of free wires
and the angle induced by the substrate would decrease structural stability due to competing
energy contributions of inter-wire-locking and of the covalent bond between the MTPT unit
and the substrate. The vectors between the centers of geometry of the wires were calculated
in order to estimate the prospect of periodic extension, resulting in unit cell-parameters of
a = 16.3 Å, b = 16.3 Å and a unit cell angle α = 41◦, as illustrated in Fig. 3.3.4b. In order
to emphasize the role of the counter ions in the formation of the densely packed film, we
calculated the average distance between the counter ions and the nearest FeII redox centers
to be 6.4 ± 0.5 Å. The narrow distribution indicates a rather symmetric distribution of the
counter ions between the FeII centers, and a strong electrostatic interaction between wires
and counter ions. In fact, the counter ions compensate the Coulomb repulsion between the
wires, facilitating dense packing and mechanical stability by strong cohesion.

3.3.4. Electronic Structure of the Wires
2As the angle between two adjacent units in the wire connected via an FeII redox center
is fairly rigid (see Fig. 3.3.3b), it is reasonable to assume that neighboring units stack with
an angle of 90◦. Furthermore, it is known that the delocalization of electrons in organic
semiconductors is directly influenced by the (geometrical) alignment of π-orbitals of aromatic
substructures. The orthogonal arrangement between neighboring aromatic substructures
thus prevents delocalization of charge carriers across more than a single TPT-nanowire-unit
and charge transport is expected to occur on the basis of charge carriers hopping between
localized states on neighboring wires or adjacent units in a single wire.
In order to estimate the charge carrier mobilities for hopping transport through an extended
nanowire thin film, the matrix coupling elements between different hopping sites in the
molecular wire structure were calculated based on the relaxed molecular model. Each wire
was cut into subsets containing a single TPT-nanowire-unit and half of both adjacent neigh-
boring units, forming two "Cardan-joints" (i.e. connections between wire units via a FeII
redox center). Based on these substructures displayed in Fig. 3.3.5a the coupling matrix el-
ements between neighboring TPT-units were approximated by the coupling matrix element
between the half-TPT-units and the central-TPT-unit. The orthogonal stacking of neighbor-
ing wire-units and the corresponding low electronic coupling form the bottle-neck for hopping
processes along the wire, justifying this choice of atomic subsets. The coupling matrix ele-
ments were calculated by deploying the Löwding orthonormalization of neutral dimers. The
underlying DFT calculations were performed using the DFT-package TURBOMOLE [70]
with the B3-LYP exchange correlation functional [144] and the def2-SV(P) basis set [145].
For the DFT calculation, the Fe2+ ion substituted by an effective core potential (ECP, Zn

2The calculation of hopping matrix elements and mobilities was for the most part performed by Pascal
Friederich.
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(a) (b)

Figure 3.3.5.: (a) In order to calculate the coupling matrix elements for hop-
ping processes between two adjacent TPT units, the wires were cut into single
TPT-units including the neighboring half TPT-units. (b) Illustration of possible
hopping processes along and between neighboring nanowires. Hopping between
LUMOs (red, blue) but also between LUMOs and the second lowest unoccu-
pied molecular orbitals, LUMOs+1 (cyan, pink) is considered. Figure (b) was
provided by Pascal Friederich and was published in [9].
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Figure 3.3.6.: Comparison of the LUMO (red/blue) and LUMO+1(pink/cyan)
orbitals for an "Cardan-joint" (a) including the Fe2+ ion and (b) with the Fe2+

ion substituted by an effective core potential (Zn ECP) and a q = 2+ point
charge. As the change in the orbitals is acceptably small, the substitution of
Fe2+ by ECP and a point charge is reasonable. The figures are published in [9]
and were provided by Pascal Friederich.

and K)[176] and a point charge of q = 2+ as the redox site has a vanishing contribution
to the LUMO orbitals. This was verified by comparing LUMO and LUMO+1 orbitals for
both structures including the Fe2+ ion and a Zn-core potential and a point charge q = 2+.
As illustrated in Fig. 3.3.6, orbitals with Fe2+ and combined charge and core potential are
comparable. The resulting coupling matrix elements are displayed in Tab. 3.3.1 and an il-
lustration of hopping processes between wires and along a wire is presented in Fig. 3.3.5b.
First, the choice of ECPs for the calculation of the hopping matrix elements along the wire
influences the results by less than a factor two, indicating that the concept is sound. Second,
the hopping matrix elements for hopping along the wire and off wire hopping processes are
quite comparable. This indicates that, despite the robust 1D-arrangement of adjacent wire
units, the transport through an extended layer occurs through both on and off wire hopping.
Subsequently, an analytical approach to the calculation of charge carrier mobilities in the
hopping regime [27] was applied for the case of negligible disorder:

µ = e β fM
2n exp

(
−βλ4

)
M
< J2 r2 >

λ2 (3.3.1)

Here, e is the charge of an electron, β the inverse temperature, n the dimensionality, λ the
reorganization energy (see section 2.5), M is the average number of hopping sites (i.e. the
number of possible final hopping sites from any initial site) and < J2 r2 > the average of the
squared hopping matrix elements weighed with the distance of the hopping sites. The factor
fM = (π β)0.5

~ λ3/2 contains several important system parameters. The reorganization energies
were calculated to λe = 0.214 eV for electrons and λh = 0.242 eV for holes. In the periodically
extended structure, displayed in Fig. 3.3.4b, each hopping site hasM = 24 neighbors, as each
wire is surrounded by six wires, and for each hopping site, four orbitals on every neighboring
wire are within hopping range. Using the averaged matrix coupling elements in the last
row of Tab. 3.3.1, the mobilities are calculated to be µe = 2.23 10−2 cm2/Vs for electrons
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Table 3.3.1.: Coupling matrix elements for hopping processes along a single wire
(on-wire) and between the wires (off-wire). HOMO coupling elements are in-
cluded for sake of completeness. The on-wire hopping matrix elements are cal-
culated using two different ECPs (K and Zn) and off-wire values are given for
the largest and second largest coupling. The LUMO couplings are considerably
larger than the HOMO couplings and the hopping matrix elements for on- and
off-wire hopping are comparable.

hopping process HOMO / eV LUMO / eV
Along wire (K-ecp) 4.19× 10−3

Along wire (Zn-ecp) 6.85× 10−8 2.44× 10−3

Off wire (largest) 3.03× 10−4 4.62× 10−3

Off wire (2nd largest) 3.32× 10−5 1.03× 10−3

Off wire (average) 6.01× 10−5 2.42× 10−4

All coupling (average) 5.93× 10−5 3.03× 10−4

and µh = 3.06 10−4 cm2/Vs for holes. We note that the values for both hole and electron
mobilities are an upper bound, as disorder was neglected completely and the GEMM model
overestimates the charge carrier velocities [27].

3.3.5. Comparison to Experimental Mobilities
3In order to estimate the quality of the theoretical calculations, the results derived above
were compared to experimental data. Only the major results will be given, for details on
methods and further results, see [9].
The system of condensed metal center molecular wires (MCMW) was produced by alter-
nately depositing TPT wire units and coordinating FeII redox centers to the TPT-units.
Samples were produced using 15, 20, 30 and 40 deposition cycles. Using AFM (atomic force
microscopy) the layer thickness of the four samples was measured, resulting in an average
thickness of 43/40 =nm per wire unit, as displayed in Fig. 3.3.7. With the length of a TPT
unit in the nanowire of 1.55nm (as derived above), this thickness dependence results in a
tilt angle of the wires of θ ≈ arccos(1.08/1.55) = 46◦ from the surface normal, which is in
perfect agreement with the results from the molecular simulations, θ = 46.6± 0.6◦.
The J-V-characteristics of the devices was measured and the experimental mobility calculated
using the model of the Richardson-Schottky emission. This model takes into account the
injection barrier at the electrodes and results in a relation between current and mobility:

J = 4
(

1
f

+ 1
f1/2 −

(1 + f1/2)1/2

f

)2

N0E µ exp(−φB/kB T ) exp(f1/2) (3.3.2)

Here, E is the electric field, f = e3 E
4πεε0(kB T )2 the reduced electric field and N0 the hopping

site density. With an average of N0 = 1 (one hopping site per cubic nm), this results in a

3Experiments were performed by Dr. Florian von Wrochem, MSL Sony Deutschland GmbH.
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Figure 3.3.7.: Layer thickness in dependence of the coordination number, i.e. the
number of deposition cycles. A linear fit to the data results in a specific layer
thickness of 1.08nm per deposition cycle. This figure was provided by Dr. Florian
von Wrochem and is published in [9].

mobility of µexp = 0.1 cm2/Vs, not far from the theoretically derived estimate for the electron
mobility. For details on the derivation of the experimental mobility, see [9, 177].

3.4. The Electronic Structure of HKUST-1
3.4.1. From 1D to 3D: Metal-Organic Frameworks
Organic molecules have a variety of interesting electronic properties and their encapsulation
into established inorganic materials presents a promising approach towards the development
of novel materials. In this context, formation and electronic properties of one-dimensional
metal-organic wire-like structures were investigated in the previous section. Another ap-
proach that was widely studied in the past decade is the construction of three-dimensional
periodic structures by repetitively coordinating organic molecules to metallic clusters, similar
to the formation of salt crystals via ionic bonds.
While these metal-organic frameworks (MOFs) are widely used, e.g. for gas storage or
molecular separation [15–21], to date the binary combination of two material classes with
completely different electronic properties resulted in insulating structures. The large number
of possible material combinations and the modification of MOF properties by loading with
guest molecules, however, open the prospect of light weight devices with tunable electrical
properties. To overcome current limitations, fundamental understanding of the electronic
properties of MOFs is essential.
In this section, the electronic structure of the well-known MOF Cu3BTC2 (HKUST-1) is
analyzed. HKUST-1 consists of Cu-ions coordinated to BTC (1,3,5-benzene tricarboxylate)
linker molecules, as depicted in Fig. 3.4.1. Monocrystalline HKUST-1 structures can be
synthesized in form of surface mounted metal organic frameworks (SURMOFs) [24] and
have been studied intensively in the past decade [178–181]. This work aims at a better
understanding of the intrinsic electronic properties of HKUST-1 that are expected to play a
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Figure 3.4.1.: Copper ions and C6O6H3 (BTC) arrange in a paddle-wheel like
arrangement. The combination of several paddle-wheel subunits leads to the
formation of small cages, resulting in the metal organic framework Cu3BTC2,
also known as HKUST-1.

role in the limitation of electric conductivity, such as band-gap, dispersion of bands and the
role of open-shell orbitals.
Results presented in the following were already published in [182] and are presented here in
full consent with all contributing authors.

3.4.2. Methods and Models - a Tricky Choice
Density functional theory (DFT), presented in chapter 2, is an established method for the
calculation of electronic properties of both organic molecules and metallic clusters. De-
pending on the system size and effects of interest, different DFT-based protocols can be
applied. The plane wave approach with the projector augmented wave (PAW) method
[183, 184] was developed for the calculation of periodic structures and can be applied to
full MOF unit cells. However, such ground-state DFT methods using the local-density-
approximation(LDA)- or generalized-gradient-approximation(GGA)-functionals are known
to underestimate band-gaps because of the self-interaction error and it is difficult to treat
open-shell orbitals accurately.
An extension to DFT for the calculation of excited states is time-dependent DFT (TD-DFT)
[185]. While TD-DFT band-gaps are expected to be closer to experimental values than plane-
wave results, computation of periodic structures is not possible and extensive computation
times set a limit to the system size. This requires the restriction to a subset of the periodic
system and it is unclear, if the calculated cluster excitation spectra are representative for
the whole MOF unit cell.
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In the following, we combine both approaches in order to minimize method dependent errors
in the calculation of the electronic properties of HKUST-1. First, the complete MOF unit
cell is studied using the plane wave approach with the PAW method for the calculation of
band dispersion. Subsequently, excitation spectra of two different subsets of the HKUST-1
unit cell are calculated using TD-DFT at high level of accuracy to estimate the band-gap.
The section is concluded by comparison of the theoretical results with experimental data.

3.4.3. Density of States and Band Structures of Zn-HKUST-1 and HKUST-1
4In order to get an estimate of the electronic structure , the density of states (DOS) and
the band structures along high symmetry lines in the FCC-unit-cell were calculated for two
MOFs: the well-known HKUST-1 and a hypothetical HKUST-1 structure where Cu was
substituted by Zn (Zn-HKUST-1 or Zn3(BTC)2). While Zn-HKUST-1 has not been realized
experimentally yet, it is a useful model to highlight the influence of the open-shell character
of the Cu-3d-orbitals on the electronic structure of HKUST-1.
The plane-wave package VASP [71, 72] with PAW-method [183, 184] was applied to calculate
the electronic properties of periodic structures. The cutoff of the plane wave basis set was
set to 550meV. The calculation of the density of states was performed using a Γ-point
calculation, i.e. a (1x1x1) Monkhorst and Pack k-point mesh [186]. The band structure was
derived on 10 points along each line between the high symmetry points of the Brillouin zone
of the Fm-3m-space group: the L-point (0.5, 0.5, 0.5), the Γ-point (0,0,0), the X-point (0,1,0)
to the W-point (0.5,1,0). The Brillouine-zone and the points of high symmetry are displayed
in the left inset of Fig. 3.4.2a. The Brillouin zone for the band-structure calculation was
sampled on a (6x6x6) Monkhorst and Pack k-point mesh [186].
The total DOS of HKUST-1 as well as the contributions of the Cu-3d-orbitals are displayed
in Fig. 3.4.2a. Spin-up and spin-down contributions are represented by opposite signs and
different colors. The gap between the highest occupied orbital below the Fermi energy and
the lowest unoccupied orbital above the Fermi level is approximately 2 eV. The highest occu-
pied levels comprise states from both Cu-3d-orbitals and linker molecules, whereas the lowest
unoccupied states are dominated by the empty Cu-3d orbitals. The second excitation at ap-
proximately 3.2 eV above the Fermi level comprises only contributions of the linker molecules.
In order to further analyze the role of the open-shell character of the Cu-3d-orbitals, the Cu-
atoms were substituted by Zn. The resulting DOS is displayed in Fig. 3.4.2b. Again, the
highest occupied levels just below the Fermi energy comprise both metal- and linker-states.
The first excitation is approximately 3.2 eV above the Fermi level and shows no contribution
of the Zn-orbitals. We note that DFT calculations are known to give inaccurate results for
the band gap, but produce the right character of the electronic structure, allowing a direct
comparison between HKUST-1 and Zn-HKUST-1 for the analysis of the role of the open-shell
character of the Cu-3d-orbitals: The highest occupied states are quite comparable in both
systems, i.e. they show contributions from both the linker molecules and the metal orbitals
while being mainly dominated by the linker-orbitals. The second excitation of HKUST-1 and

4 Theoretical results of DOS and bandstructures were derived by Qiang Li (HKUST-1) and myself (Zn-
HKUST-1).
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(a) DFT calculation of the total density of states
and contribution of the Cu-3d orbitals of HKUST-
1. The total DOS is displayed in black, the copper
contributions are illustrated as red lines for spin-
up and blue lines for spin-down. Spin-up and spin-
down contributions are represented by opposite
signs. Both contributions are virtually identical
and show a bandgap of 2eV. The Fermi level was
shifted to zero energy. The lowest-energy states
in the conduction band are dominated by empty
Cu-3d orbitals.
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(b) DFT calculation of the total density of
states and contribution of the Zn-orbitals of Zn-
HKUST-1: The Zn-contribution to the DOS is
displayed separately for all Zn-orbitals and the
Zn-d-shells. A band gap of 3.2 eV is observed and
the lowest excitation has no contributions from
the Zn-orbitals, indicating that the Zn-3d-orbitals
are fully occupied.

(c) Valence and conduction band of HKUST-1 along
the high symmetry lines of the FCC-lattice. The
Brillouin-zone and the high symmetry points are il-
lustrated in the right inset. The bands show hardly
any dispersion (left inset) due to the large size of the
unit cell.
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(d) The valence and conduction bands of Zn-
HKUST-1 show a band-gap of 3.2 eV, in good agree-
ment with the DOS in panel (b). The bands close
to the fermi level are rather flat, as displayed in the
inset.

Figure 3.4.2.: Calculation of the electronic structure of HKUST-1. In order to
investigate the role of the open-shell character of the Cu-3d-orbitals, Cu was
replaced by Zn in a hypothetical model system. Figure taken from [182].



68 3.4. THE ELECTRONIC STRUCTURE OF HKUST-1

Figure 3.4.3.: As full TD-DFT treatment on a high level of accuracy is not feasible,
two different clusters were extracted from the HKUST-1 unit-cell. (a) A BTC3+

linker ion, neutralized by three point charges, and (b) a Cu2-O8-paddle-wheel
unit attached to a single BTC-linker. Figure taken from [182].

the first excitation of Zn-HKUST-1 basically coincide, indicating that the mid-gap states of
HKUST-1 in Fig. 3.4.2a are indeed caused by the Cu-3d-open-shell orbitals. These orbitals
are expected to play a major role in the electronic properties of HKUST-1 as they lower the
band-gap by a factor two.
Subsequently, the band structures of both HKUST-1 and Zn-HKUST-1 were calculated along
the high symmetry lines as described above and are displayed in Fig. 3.4.2c and Fig. 3.4.2d.
HKUST-1 shows a bandgap of 2 eV in agreement with the calculated DOS. A close-up of the
conduction bands is displayed in the inset. As can be expected for a very large unit cell of
26.3 Å, the bands show weak dispersion and a band-width of approx. 0.1 eV. The same holds
true for the Zn-HKUST-1 system with a band-gap of approx. 3.2 eV and a band-width of
0.9 eV.

3.4.4. Excitation Spectrum of HKUST-1
5As the treatment of the full HKUST-1 unit cell using TD-DFT is not feasible with available
resources, two different clusters were cut from the unit cell, as displayed in Fig. 3.4.3. The
first cluster is the isolated BTC3− linker-ion with six point charges of q = +0.5 elementary
charges each to neutralize the system. The second cluster comprises the BTC-linker and a
full Cu2-O8-paddle-wheel-unit.
The def2-TZVP basis set was used and different functionals were employed: the PBE func-
tional was used for direct comparison to the plane wave calculations of the complete unit cell
and, the B3-LYP and B3-LYP35 (with 35 % Hartree-Fock exchange) functionals [69] were
applied for high accuracy.
For model (a), the excitation energies were calculated using the package TURBOMOLE [70]
to be 3.41 eV (PBE), 4.41 eV (B3-LYP) and 4.93 eV (B3-LYP35)[69, 144]. While the PBE-
result approximately matches the band-gap of the Zn-HKUST-1 and the second excitation of
HKUST-1 of approx 3.2 eV, all three results exceed the band-gap value obtained for HKUST-
1.

5Excitation spectra were calculated by Dr. Karin Fink.
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Figure 3.4.4.: Calculation of the excitation spectrum for a cluster extracted from
HKUST-1, comprising a Cu2-O8-paddle wheel and a BTC-linker ion. The insets
show the change of the electron density at the respective peaks in the excitation
spectrum. Each excitation changes the electron density from the blue to the white
regions. The first excitation is approximately 2 eV above the fermi level and is
an excitation within the Cu-orbitals. In the excitations at 3.6 eV and 4.3 eV,
the electron is excited from the BTC linker onto the Cu-atoms. The spectrum
and density differences were visualized with the program PANAMA provided by
Kühn and Weigend [187]. Figure taken from [182].

As the first excitation in the DOS-calculations of HKUST-1 is induced by the open-shell Cu-
3d-orbitals (see Fig. 3.4.2a), Cu-atoms are included explicitly in the calculation of excitation
energies in model (b), comprising paddle-wheel and BTC-linker. The resulting excitation
spectrum is displayed in Fig. 3.4.4. The lowest excitation is at about 2 eV. The change in the
electron density displayed in the insets shows that this excitation is a local d-d excitations at
the individual Cu centers. However, these transitions are expected to have low intensities in
optical measurements as d-d transitions in centrosymmetric systems are actually forbidden
by the Laporte rule [188]. This excitation is thus not expected to be observed by ellipsometry
measurements. The next excitations indicate energy gaps between 3.6 eV and 4.8 eV. They
result from the transfer of electrons from the BTC linker molecule into the empty 3d orbitals
of the Cu centers, as illustrated in the insets. This is in excellent agreement with the
observations from the VASP calculations, where the first states above the Fermi level have
the character of Cu-3d-orbitals.
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3.4.5. Comparison with Experimental Measurements
6In order to verify the calculated electronic properties, the results are compared to ellipsom-
etry measurements of HKUST-1 SURMOFs on a silicon substrate, performed with a spectral
range from 0.7 to 5 eV, i.e. from 250 nm to 1800 nm. Ellipsometry characterizes the change
of the polarization of light being reflected by a material using the amplitude ratio, Φ, and
the phase shift, ∆. A Cauchy-model was fitted to the measured wave-length dependence
of Φ and ∆, resulting in the dielectric function of the material. The imaginary part of the
dielectric function then directly yields the wave-length dependent absorption of photons and
thus the band gap. For background information, see [182].
The experimental results are displayed in Fig. 3.4.5. The imaginary part of the dielectric
function in panel (c) shows an absorption of light with an energy above 3.6 eV.

In summary, we find that the calculation of the excitation spectrum for model (b) reproduces
the measured band gap quite accurately with excitations starting from 3.6 eV. The lowest
calculated excitation of Cu-d-d-states at 2 eV cannot be excited by light and is thus not
visible in experiment. Calculation of model (a) resulted in excitations within the right order
of magnitude between 3.41 eV and 4.93 eV. However, the result is strongly method dependent
and experimental excitations cannot are not observed due to the lack of Cu-orbitals.
The periodic VASP-calculations yield excitations of 2 eV and 3.2 eV for HKUST-1 and 3.2
eV for the model Zn-HKUST-1. In HKUST-1, the lower excitation is, analogous to the clus-
ter calculation, dominated by the Cu-3d-orbitals and thus not visible in the Zn-HKUST-1
calculation. While the absolute values differ by 20%, the general characteristics match exper-
imental observations in terms of large band-gaps and flat bands. Furthermore, the electronic
bands calculated for HKUST-1 and Zn-HKUST-1 are quite flat. This indicates that, even if
electrons were excited into the valence band due to a smaller band-gap, conduction would
be limited due to the comparably large effective mass of the quasi-particles.

3.5. HKUST-1 Loaded with TCNQ and F4TCNQ
3.5.1. A Model for the Charge Transfer in Guest-MOF Systems
From Electronic Bands to Hopping Transport

The analysis of the intrinsic properties of HKUST-1 in the previous section showed a large
bandgap of 3.2 eV and thus a basically insulating nature of the MOF. However, an increase of
conductivity of HKUST-1 by orders of magnitude was observed upon loading the pores with
small organic guest molecules [25]. The flat electronic bands around the Fermi-level of the
intrinsic HKUST-1 suggest that the increased conductivity is induced by electrons or holes
hopping between localized electronic states in the guest-MOF system. This is supported
by prior experimental observations, which indicate that charge transport through HKUST-1
loaded with guest molecules is an activated process [25].

6Experiments were performed by Ovidiu Gordan, Zhigang Gu and Lars Heinke at the Institute für Funk-
tionale Grenzflächen, KIT.
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Figure 3.4.5.: Spectroscopic ellipsometry, the experimental data (circles) of Φ (a)
and ∆ (b) are fitted by a model (lines). Angles of incidence are 65 (black), 70
(red), and 75 (blue). (c) The real part (ε1, black) and the imaginary (ε2, red)
part of the determined dielectric function of the HKUST-1 SURMOF. Figure and
caption were provided by Ovidiu Gordan and Lars Heinke, as published in [182].
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In this section, a model for the charge transfer through the guest-host systems HKUST-1
loaded with tetracyanochinodimethane (TCNQ) and tetrafluoro-tetracyanochinodimethane
(F4TCNQ) is presented. Marcus hopping rates are calculated and the influence of second
order transfer integrals (molecular super-exchange) on charge carrier mobilities is analyzed
using kinetic Monte Carlo (KMC) simulations.

Second Order Hopping Processes: Super-Exchange (SX)

In order to construct a model that explains the high measured current densities in HKUST-1
loaded with TCNQ and F4TCNQ [25], possible hopping processes throughout the material
need to be considered. In section 2.5, a fundamental model to describe hopping processes,
the Marcus theory of charge transfer, was presented. In this theory, the hopping rate between
initial state i and final state f is given by

Γif = 2π |Jif |2

~
(4π λ kB T )−1/2 exp

(
−(∆E + λ)2

4λkB T

)
(3.5.1)

Jif is the transfer integral between initial and final state, λ the reorganization energy and
∆E the difference between the molecular orbital energy levels of initial and final state. The
transition rate is completely determined by those three parameters. For states that are not
aligned in energy, the transfer rates decay exponentially with ∆E. The increase in con-
ductivity of HKUST-1 upon loading [25] indicates either weak coupling between localized
electronic states in the intrinsic MOF or level misalignment between HKUST-1 and inject-
ing electrodes, whereas the guest states are close enough to the electrode work-functions to
facilitate significant charge injection. In the first case, guest molecules induce additional
hopping sites, increasing the overall electronic coupling. The second case indicates large gap
between MOF and guest orbital energies and the charge transfer between guest molecules
and HKUST-1 will be dampened exponentially by ∆E � kB T . Transfer channels consisting
of subsequent guest-MOF and MOF-guest hopping processes will thus not contribute sig-
nificantly to the current. On the other hand, the nearest neighbor distance between guest
molecules is approximately 1.3 nm (half size of the HKUST-1 unit-cell), leading to small
electronic coupling Jif between guest molecules. Thus, direct guest-guest transfer processes
cannot be responsible for large current densities either, and an additional transfer process
is required to explain the experimentally observed conductivities [25]. This is illustrated in
Fig. 3.5.1a.
One possible explanation for effective charge transfer between guest molecules is the rele-
vance of second-order processes, where charge transfer between initial and final state occurs
via virtual occupation of an intermediate state. As explained in section 2.5.3, the energy dif-
ferences between initial and virtual state, ∆Ei,v, and virtual and final state, ∆Ef,v, modify
the transfer integral JSXif as 1/∆Es,v (for s = i, f), leading to Γ ∝ 1/∆E2

s,v, whereas only
the energy difference between initial and final state enters the exponent in Eq. 3.5.1. Hence,
good alignment between initial and final state, i.e. ∆Eif ≈ 0, may result high transfer rates.
A detailed explanation of the super-exchange mechanism is presented in section 2.5.3.
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Figure 3.5.1.: Charge transfer processes in guest-MOF systems. (a) Large en-
ergy differences ∆E between MOF (orange discs) and guest (blue bars) orbitals
and large distances between guest molecules induce limited first charge transfer
between guest molecules (direct or as a subsequent guest-MOF-guest transfer).
A different mechanism is necessary to explain observed current densities. (b)
Overview of charge transfer processes in guest-MOF systems: First order trans-
fer processes (solid lines) in a MOF-guest system are the subsequent hopping
between guest and MOF sites (1, green) and the direct ransfer between guest-
guest or MOF-MOF sites (2, blue; 4, orange). In order to explain high current
densities in the MOF-guest system, additional second order-processes (super-
exchange, dashed lines) are considered (3, blue; 5, orange).

3.5.2. LUMO and HOMO Alignment of TCNQ, F4TCNQ and HKUST-1
In order to get a rough estimate on the characteristics of the hopping processes in the guest-
MOF system, LUMO levels of TCNQ, F4TCNQ and HKUST-1 were calculated using DFT
as implemented in TURBOMOLE with the B3-LYP functional and the SV(P) basis set [144,
176]. Open shell calculations were performed to account for the antiferromagnetic nature
of HKUST-1. As treatment of a complete HKUST-1 unitcell is not feasible with standard
computational resources in a reasonable amount of time, calculations were performed on a
subunit of the unit-cell, consisting of two paddle-wheel units (two Cu-atoms attached to
eight O-atoms each) saturated by phenyl rings. The structures of TCNQ, F4TCNQ and
the MOF subunit are displayed in Fig. 3.5.2 alongside the orbital energy diagrams. Work
functions of Pt and Al electrodes are included as an upper and lower bound for common
metallic electrode work functions for reference.
The energies of the HOMOs of TCNQ, F4TCNQ and the HKUST-1 subunit (each in vacuum)
are −7.40 eV, −7.69 eV and −6.98 eV respectively. The energies of the lowest unoccupied
molecular orbitals (LUMOs) were determined to be −4.89 eV, −5.33 eV and −3.47 eV for
TCNQ, F4TCNQ and the HKUST-1 subunit (each in vacuum) respectively. This trend is
in rough agreement with values given in literature [189]. While the vacuum energy levels
of molecular orbitals are in general shifted in electrostatic environment (i.e. the charge
distribution of surrounding molecules), we assume that the order of the vacuum orbital
levels of the guest molecules is maintained when loaded into the MOF.



74 3.5. HKUST-1 LOADED WITH TCNQ AND F4TCNQ

E
 /

 e
V

-4.0

-5.0

-6.0

-7.0

-8.0

Al-workfunction

Pt-workfunction

-3.47eV

-6.98eV
-7.40eV

-4.89eV
-5.33eV

-7.69eV

Figure 3.5.2.: Calculation of vacuum HOMO (black) and LUMO (red) energies
for a HKUST-1 subunit (left), TCNQ (middle) and F4TCNQ (right). The work
functions of commonly used electrode materials usually range from −4.2 eV (Al)
to −5.7 eV (Pt), displayed by dashed lines for reference. The LUMO energies
of TCNQ and F4TCNQ are closest to the work functions, indicating electron
transport via the guest LUMOs in the guest-MOF systems. Hole transport via
the HOMOs is prevented by large injection barriers.
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As work functions of commonly deployed electrode materials range from −4.2 eV (Al) to
−5.7 eV (Pt) [190], hole transport is impeded by large energy differences between HOMOs
and electrode work function. Further, the ∆E between HKUST-1-LUMO and guest-LUMO
leads to an occupation of mainly guest orbitals, giving rise to the assumption that charge
transport through the guest-MOF system is dominated by electrons transfer between guest
molecules, using LUMOs of HKUST-1 as (virtual) intermediate state (see section 2.5 for
details). Those assumptions are in agreement with observations reported in literature [189]
7.

3.5.3. Binding Mechanism of TCNQ and F4TCNQ in HKUST-1
In order to accurately calculate microscopic parameters for charge transfer, namely the elec-
tronic coupling between the molecular orbitals, J , and the reorganization energies, λ, detailed
information about the atomic structure of the guest-MOF system is essential. The configu-
ration of the guest molecules in HKUST-1 was optimized using DFT as implemented in the
package TURBOMOLE [70] using the B3-LYP functional and SV(P) basis set [144, 176].
Excitation calculations in the previous section indicated that limitation to a subset of the
MOF unit cell provides representative results. Hence, only the relevant subset of the MOF
unit-cell was used (Fig. 3.5.2). A molecular model of the HKUST-1 unit-cell was generated
in accordance with experimental XRD-results. To account for the anti-ferromagnetic nature
of HKUST-1, open shell calculations were performed. The anti-ferromagnetic state was ver-
ified using the resulting spin density. Three different optimized configurations as illustrated
in Fig. 3.5.3 were analyzed, including previously proposed arrangements [25]. The first con-
figuration (1) includes a guest molecule with all four nitrogen atoms are bound to a copper
site. The second configuration (2), as proposed previously [25], comprises two covalent bonds
between two nitrogen atoms of the guest molecules and HKUST-1. The third configuration
(3) is an extension of configuration (2) and includes an additional molecule bound to the
opposite side of the cavity, inducing pi-pi stacking between the two guest molecules near the
cavity center.
The binding energy of each configuration was calculated according to

Eb = Ebound − Eguest,vac − EMOF,vac (3.5.2)

Here, Ebound is the energy of the optimized configurations (1),(2) and (3), and Eguest,vac and
EMOF,vac are the vacuum energies of the geometry optimized (F4)TCNQ and the respective
MOF-subset. For TCNQ in HKUST-1, we observed Eb of 1.97 eV, −0.99 eV and −1.25 eV per
molecule for configurations (1), (2) and (3) respectively. The binding energies for F4TCNQ
in HKUST-1 were 1.84 eV, −0.91 eV and −1.18 eV per molecule for configurations (1), (2)
and (3) respectively.
For both TCNQ and F4TCNQ in HKUST-1, configuration (1), with bond formation between
all nitrogen atoms and Cu-atoms, is energetically favorable by 0.72 eV and 0.65 eV. This

7Unfortunately, most recent studies imply that the charge transport is dominated by hole transfer between
HOMOs [191]. The study presented in the following is based on the previous assumption of electron
transport and the role of hole transport is currently being investigated.
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Figure 3.5.3.: Three possible binding mechanisms for TCNQ and F4TCNQ in
HKUST-1: Each nitrogen atom of the guest molecule is bound to a copper site
(left panel, in the following denoted as configuration (1)), only two nitrogen
atoms are bound to a copper site (middle panel, denoted as configuration (2))
and (previously proposed in literature [25]) guest molecules bound on opposite
sides of the cavity induce pi-pi stacking in the middle of the cavity (right panel,
denoted as configuration (3)). The geometries were optimized using DFT, for
TCNQ and F4TCNQ, resulting in binding energies for TCNQ in HKUST-1 of
-1.97 eV, -0.99 eV and -1.25 eV per molecule for configurations (1), (2) and (3)
respectively. Loading with F4TCNQ resulted in binding energies of -1.84eV, -
0.91eV and -1.18eV per molecule for configurations (1), (2) and (3) respectively.

exceeds kB T at T = 300K by an order of magnitude and the system is primarily realized in
configuration (1).

3.5.4. Electronic Coupling and Reorganization Energies
Subsequently, the electronic couplings J between individual hopping sites (LUMOs of guest
molecules and HKUST-1) and the reorganization energies λ were calculated using configura-
tion (1). The transfer integrals of LUMO orbitals was determined using the Löwdin orthog-
onalization method [141] based on orbitals calculated with the Quantum Patch method [3]
using the def2-SV(P) basis and the BH-LYP functional, as implemented in TURBOMOLE
[70, 145]. Nelson four point method was applied for the computation of λ [118, 143], using
TURBOMOLE with a def2-TZVP basis and the B3-LYP functional [144, 145].
For the MOF-MOF transfer, values for J and λ between nearest neighbors and second nearest
neighbors with distances of 0.93nm and 1.32nm, respectively, were calculated (MOF-LUMOs
are centered on Cu-atoms of the paddle-wheel strucutres). For guest-guest molecules in
adjacent cavities connected via a paddle-wheel, two arrangements were analyzed due to the
symmetry of HKUST-1: one where the phenyl rings lie in plane (‖) and one where the phenyl
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Table 3.5.1.: Electronic coupling between molecular orbitals in the systems
TCNQ@HKUST-1 and F4TCNQ@HKUST-1. Values for HOMO orbitals are
included for comparison only. The coupling between the MOF-LUMO orbitals
located on the copper sites were calculated for nearest and second nearest neigh-
bors (1st / 2nd). Guest molecules in neighboring cavities connected to the same
HKUST-1 paddlewheel can be aligned either parallel or orthogonal (defined by
the normal vectors of the phenyl rings, ⊥/‖).
J [eV] HOMO LUMO
TCNQ-HKUST-1 1.7·10-3 1.4·10-3
F4TCNQ-HKUST-1 1.4·10-3 2.4·10-3
HKUST-1-HKUST-1 (1st / 2nd) 6.0·10-4 / 7.3·10-6 5.7·10-2 / 3.0·10-5
TCNQ-TCNQ (⊥/‖) 2.0·10-6 / 4.3·10-6 1.7·10-8 / 4.1·10-9
F4TCNQ-F4TCNQ(⊥/‖) 2.0·10-8 / 4.8·10-9 2.0·10-8 / 5.0·10-9

Table 3.5.2.: Reorganization energies λ for the hopping sites in HKUST-1 loaded
with TCNQ and F4TCNQ.

λ [eV] HKUST-1 TCNQ F4TCNQ
HOMO 0.664 0.129 0.166
LUMO 0.580 0.266 0.271

rings are orthogonal to each other (⊥). The resulting values for J and λ are displayed in
Tab. 3.5.1 and Tab. 3.5.2. Guest-MOF transfer was considered for nearest neighbors only.
Couplings between LUMOs of guest molecules and HKUST-1 are comparable with 1.4 10−3

for TCNQ and 2.4 10−3 for F4TCNQ. The direct coupling between guest molecules in neigh-
boring cavities is orders of magnitude lower, J = O(10−8), and is thus expected to play a
minor role in the charge transport of either system. The coupling between the LUMOs of
HKUST-1, 5.7 10−2, is quite large. However, level misalignment of the HKUST-1 LUMO with
the electrode work functions and previous studies (see section 3.4) indicate injection barriers
larger than kB T at room temperature and a weak contribution of MOF-MOF-hopping pro-
cesses to the overall conductivity (except for very small energy differences between guest and
MOF LUMOs). Values for HOMO orbitals are included only for reasons of completeness.
The reorganization energies λ for the transfer between sites of the same type (i.e. MOF-
MOF or guest-guest) are displayed in Tab. 3.5.2. For transfer between different types, the
arithmetic mean is deployed. Notably, λ is of the same order of magnitude for both guest
molecules but slightly larger for F4TCNQ. Bearing in mind the dependence of Eq. 3.5.1 on J
and λ, the higher value of λ for F4TCNQ will be to some extent compensated by the higher
coupling, J , indicating comparable mobilities for both guest-MOF systems.

3.5.5. Hopping Rates and Charge Carrier Mobilities
Using the electronic couplings J and reorganization energies λ derived above, transfer rates
for charges hopping between neighboring guest sites were calculated using Marcus theory of
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charge transfer (see section 2.5). The quantitative computation of HOMO-LUMO gaps with
present state-of-the-art methods using (hybrid) (TD-)DFT approaches is difficult and derived
electronic properties of MOFs have been shown to strongly depend on the applied method
[182]. Hence, calculations of ∆E between MOF-states and guest-states with any of these
methods result in rather large method, essentially XC-functional, dependent uncertainties.
In order to demonstrate that our results are largely independent of this parameter we will
treat ∆E as a free parameter in the following discussion. Accordingly, hopping rates and
mobilities were calculated for a wide range 0 eV≤ ∆E ≤ 4 eV.
As we assume the LUMOs of the guest molecules to be lower in energy than the HKUST-
1 LUMO orbitals, the charge transfer is dominated by occupation of guest orbitals. The
transfer rates of Marcus theory for hopping between guest molecules were calculated using
the processes (1), (2) and (3) illustrated in the right panel of Fig. 3.5.1b. The rate of
the successive process guest-MOF-guest is calculated via the inverse rates of the individual
processes:

Γ−1
guest−MOF−guest = Γ−1

guest−MOF + Γ−1
MOF−guest (3.5.3)

The resulting rates calculated using Eq. 3.5.1 are displayed in the top panels of Fig. 3.5.4a
for TCNQ in HKUST-1 and 3.5.4b for F4TCNQ in HKUST-1. For small ∆E < kB T (for
T = 300K), there is significant probability of guest-MOF hopping and the successive transfer
from guest to MOF and from MOF to guest is predominant due to the large couplings. The
direct first order process between guest molecules is vanishingly small in comparison to the
competing processes. For values of ∆E, where the process (1) is dampened exponentially by
the energy difference between guest and MOF LUMOs, the super-exchange transfer between
guest molecules (3) is mainly responsible for charge transfer through the system for both
TCNQ and F4TCNQin HKUST-1. In direct comparison, super-exchange transfer rates are
about one order of magnitude larger for the F4TCNQ-system than for TCNQ in HKUST-1,
for the same ∆E.
For the calculation of the charge carrier mobilities, HKUST-1-supercells of 8 × 8 × 8 unit
cells were constructed. A single guest molecule can bind into the HKUST-1 pore in 12
different configurations of the same binding energy. To account for configurational disorder,
each cavity was filled with two guest molecules with random arrangement, reproducing the
configuration (1) displayed in Fig. 3.5.3. For the extended system, the Master equation was
solved using kinetic Monte Carlo (KMC) simulations (see section 2.5) yielding values for
the charge carrier mobility. Therefore, each pair of Cu-ions of a HKUST-1 paddle-wheel
structure was mapped onto a single MOF-hopping site and the guest-hopping sites were
placed in the middle of the phenyl rings of the guest molecule. Five independent model
systems were constructed for both TCNQ and F4TCNQ in HKUST-1 and the resulting
mobilities were averaged. For each configuration, ten KMC simulations were performed
with 20 electrons injected into the system and the electric field was set to 0.035V/nm.
The electrons were distributed onto the orbital sites according to a fermi-distribution. The
resulting mobilities in dependence of the energy difference ∆E between the LUMO orbitals
of MOF and guest molecules are displayed in the bottom panels of Fig. 3.5.4a and Fig. 3.5.4b
for TCNQ and F4TCNQ respectively. KMC simulations were performed with and without
the super-exchange process.
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The resulting mobilities reflect the Marcus hopping rates, displayed in the respective upper
panels: For small ∆E = 0 eV, the mobility is quite large with µ = O(10−3) eV but drops
quickly for energy differences of up to ∆E ≈ 0.4 eV. This effect occurs in both KMC simula-
tions with and without super-exchange, indicating that the large mobilities for small ∆E are
a result of charge transport via guest-MOF-guest hopping and direct MOF-MOF-hopping.
For ∆E > 0.4 eV, charge transfer is dominated by the super-exchange mechanism, as mo-
bilities calculated with super-exchange (µ = O(10−10) eV) exceed mobilities without super
exchange by three orders of magnitude (µ = O(10−13) eV).
In order to directly compare the results for both guest molecules, mobilities for F4TCNQ were
shifted by 0.6 eV along the x-axis, an estimate based on the energy difference of the vacuum
LUMO orbitals of TCNQ and F4TCNQ (Fig. 3.5.2). The results are displayed in the
Fig. 3.5.4c. In the regime where the super-exchange transfer is the predominant process,
mobilities of both systems are quite comparable. We note that a KMC simulation of the
empty MOF was omitted as alignment of orbital energies and electrode work functions
suggests that charges cannot be injected into the empty HKUST-1. This is supported by
experimental findings of low current densities in pristine HKUST-1 structures.
Vacuum calculations suggest that the energy difference between LUMOs of MOF and guest
molecules exceeds ∆E = 0.4 eV and the calculation of rates and mobilities indicate that
the super-exchange mechanism is the predominant charge transfer mechanism in HKUST-
1 loaded with TCNQ and F4TCNQ. Further, within the accuracy of the applied methods,
Fig. 3.5.4c indicates comparable conductivity for HKUST-1 loaded with TCNQ and HKUST-
1 loaded with F4TCNQ.

3.5.6. Comparison to Experimental Data
8The comparable mobilities for both guest-MOF systems derived above contradict previously
published experimental current densities [25], extensive experimental studies were performed.
An overview of the results is presented in the following. Samples of single crystal SURMOF
(surface mounted MOF) structures of HKUST-1 loaded with TCNQ and F4TCNQ were pre-
pared and I-V-characteristics were measured using the Hg-drop method. For each system,
three different samples were prepared and currents measured at five different spots on the
sample in dependence of the applied voltage. The resulting currents were averaged over all
measurements and are displayed in Fig. 3.5.5. The loading of TCNQ and F4TCNQ leads to
an increase in the conductance of approx. four orders of magnitude. Notably, the TCNQ-
HKUST-1 system and the F4TCNQ-HKUST-1 system have similar experimental conductiv-
ity, which is in good agreement with the calculated mobilities.
In order to directly compare experimental data and theoretically derived electron mobilities,
the following relation was applied:

J

E
= J

U/d
= σ = n eµ (3.5.4)

where σ is the conductivity, J the current density and the E the electric field that can be

8Experimental data was obtained by Jianxi Liu at the Institute für Funktionale Grenzflächen, KIT
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Figure 3.5.4.: Marcus transfer rates and electron mobilities of HKUST-1 loaded
with TCNQ and F4TCNQ as a function of the energy difference between guest
and MOF LUMOs. Marcus rates are calculated for three different transfer pro-
cesses between guest molecules: (1) the direct first order charge transfer between
guest molecules, (2) the transfer rate of two successive first order charge trans-
fers from guest molecule to HKUST-1 and from HKUST-1 onto the subsequent
guest molecule and (3) the second order process (super-exchange) between guest
molecules with virtual occupation of HKUST-1 orbitals. Marcus rates and mobil-
ities for TCNQ (a) and F4TCNQ (b) in HKUST-1 show similar characteristics:
For low energy differences, rates and mobilities are dominated by the successive
guest-MOF-guest transfer. For ∆E > 0.4 eV , rates and mobilities including the
super-exchange process exceed first order processes by orders of magnitude. (c)
For direct comparison between both guest molecules, mobility of F4TCNQ is
shifted by 0.6 eV along the x-axis. Calculated Marcus rates and mobilities gen-
erated via KMC indicate that both guest-MOF-systems conduct equally well.
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(a) (b)

Figure 3.5.5.: Experimental measured J-V-curves of (a) TCNQ and (b) F4TCNQ
loaded into HKUST-1. Red dots show the I-V of the pristine HKUST-1, the
currents measured in the loaded systems are displayed as blue triangles. Both
systems show an increase of approximately four orders of magnitude in the current
upon loading. CMMT is used to connect HKUST-1 to the bottom electrode and
pristine CMMT-curves are added for reasons of completeness. This figure was
provided by Jianxi Liu.

calculated by voltage over device thickness. Conductivity σ and charge carrier mobility µ
are connected via charge carrier density n and elementary charge e. At voltage of U = 0.4V ,
current density was measured to be J = 10−4 A/cm2 with a device thickness of d ≈ 50nm=
50 × 10−7 cm (estimate from AFM measurements) for a 7-layer MOF-structure results in a
conductivity of

σexp = 1.25× 10−7 S/m (3.5.5)

The maximum value of the electric field applied in the measurements is Emax = U/d =
0.008V/nm and of the same order of magnitude as the electric field in the KMC simulations
(0.035V/nm), allowing a direct comparison. Assuming one electron per unit cell, i.e. n =
2.6343−1 nm−3 = 3.8× 1020 cm−3, Eq. 3.5.4 yields an experimental mobility of

µexp = 1.42× 10−10 cm2/Vs (3.5.6)

In comparison with the theoretically derived charge carrier mobility in Fig. 3.5.4 we observe
the following: First, for ∆Eguest−MOF > 0.4 eV, experimental mobility is of the same order
of magnitude as the theoretically derived mobility including the super-exchange mechanism,
exceeding the electron mobility without this additional second order process by three orders
of magnitude. This indicates that super-exchange is the dominant process of charge transfer
in the guest-MOF systems. An alternative explanation using first order processes only would
require ∆Eguest−MOF ≈ 0.3 eV for both TCNQ and F4TCNQ, which can be excluded on the
basis of the calculations above. Second, having identified super-exchange transfer as domi-
nant charge transport mechanism in the combined guest-MOF systems, the experimentally
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derived mobility in line with the ∆Eguest−MOF dependence of calculated mobilities indicates
a lower bound for the disaligment of guest and MOF LUMOs of 1.0 eV< ∆Eguest−MOF .
As TCNQ and F4TCNQ are evidently aligned well enough with the work functions of the
injecting electrodes to allow charge injection into the guest-MOF-systems, this indicates an
injection barrier for an empty HKUST-1 of more than 1 eV. This barrier is consistent with the
vacuum HOMO and LUMO energy calculations (see Fig. 3.5.2) and is potentially responsible
for the insulating nature of HKUST-1.

3.6. Summary and Outlook
In this chapter, studies of three different types of (Metal-)organic electronic structures were
presented. In section 3.2, the properties of amorphous organic semiconductors consisting of
small molecules were analyzed. Atomistic morphologies of nine different materials were gen-
erated using classical force-field based methods and microscopic parameters were extracted
in order to calculate charge carrier mobilities. For all nine materials, the resulting mobilities
matched experimental values remarkably well. Furthermore, the energetic disorder, i.e. the
width of the distribution of the orbital energies, was identified to be the limiting microscopic
property towards high charge carrier mobilities.
In an approach to combine advantages of both organic and inorganic electronic structures,
FeII redox centers were coordinated to organic terpyridine (TPT) units, resulting in ex-
tended, rigid one-dimensional metal-centered molecular wires (MCMW) in section 3.3. Force-
field based Monte Carlo simulations of well-parametrized MCMWs resulted in a tightly
packed arrangement that can be extended periodically. Charge carrier mobility was cal-
culated on the basis of microscopic hopping parameteres derived ab initio. Within the ap-
proximations of the theroetical model, the calculated mobility showed very good agreement
with experimental data.
Systems of even higher degree of symmetry were subject to the study of 3.4: The intrinsic
electronic properties of the metal-organic framework (MOF) HKUST-1 were studied using
DFT-based methods. Density of states, electronic bands and excitation energies were calcu-
lated, showing remarkable agreement with experimental data. In summary, flat electronic
bands close to the Fermi-level due to the size of the unit cell and the large band-gap way
beyond the thermal energy impede conductivity in pristine HKUST-1. Furthermore, the
results highlight the impact of applied methods on accuracy of electronic properties. While
correct characteristics can be reproduces using less accurate methods applied to full MOF
unit-cells, quantitative predictions require computationally intensive TD-DFT calculations.
However, expensive methods are limited to small entities of the unit-cells while yielding
accurate quantities.
In order to increase conductivity in MOFs, HKUST-1 was loaded with TCNQ and F4TCNQ
molecules. Marcus transfer rates and charge carrier mobilities were calculated using geometry
optimized guest-MOF structures. The impact of second-order processes (super-exchange) on
the charge carrier mobility was studied by means of kinetic Monte Carlo. The results strongly
suggest that super-exchange is the dominant charge transfer mechanism in the guest-MOF
systems, leading to an increase of three orders of magnitude in the charge carrier mobility.
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TCNQ and F4TCNQ perform comparably well and absolute mobilities are in good agreement
with experimental data for both materials 9.
In summary, charge carrier mobility in amorphous organic small-molecule layers is limited
by large energetic disorder that is circumvented by constructing highly ordered structures
such as MCMWs and MOFs. While MCMWs show remarkable mobilities that promise high
PCE values, band-like conduction in MOFs is limited by flat bands and large band-gaps
and charge hopping is prevented due to injection barriers. Loading of MOFs with small
organic molecules can solve this issue by inducing additional hopping sites with energies
close to the Fermi-level. Notably, we showed in this chapter that theoretical models are
capable of predicting not only the correct characteristics of (metal-)organic materials, but
also absolute charge carrier mobilities with a precision of up to one order of magnitude. Thus,
the multiscale modeling approach is a promising toolkit towards in silico device simulations.

9Again we note that recent studies imply that the charge transport is dominated by hole transfer between
HOMOs [191]. The presented results are based on the previous assumption of electron transport and the
role of hole transport is currently being investigated.
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4. Advanced Monte Carlo Based Algorithms

4.1. Limitations of Molecular Dynamics and Metropolis Monte
Carlo

Computer simulations are a well established tool for the investigation of a variety of chemical
and physical processes on the atomic, molecular or nanoscale [192]. Molecular dynamics
(MD) or Monte Carlo (MC) simulations, where the interactions between the constituents of
the system can be represented by classical force fields for many problems, can be applied for
the simulation of time evolution of the system or its thermodynamic properties, respectively.
Molecular simulations are often referred to as “virtual experiments” and are routinely applied
to many problems, such as protein folding, morphology prediction of thin film or glassy
materials [1, 28, 79–86]. With increasing computational power and continued efforts in the
development of force fields and simulation protocols, molecular simulations have contributed
significantly to the development of many scientific disciplines, ranging from astrophysics to
biology and medicine.
Nevertheless there remain limitations to the system size and time-scale of the problems that
can be sensibly studied with readily accessible computational hardware using these methods.
Development of special-purpose computers, such as ANTON [37, 38], have shown that efforts
to improve the range of applicability of molecular simulation methods can offer insights into
complex phenomena that are presently difficult to access experimentally. For these reasons
it remains both challenging and interesting to investigate the fundamental limitations of the
present-day molecular simulation methods. The main limiting factor in molecular dynamics
simulations is the inherently small time step that arises as a result of the discretization
of Newton’s equation of motion. For most generic molecular dynamics simulations with
atomic resolution, the time steps of an individual integration step has been limited to the
femtosecond-scale, despite extensive efforts in this field [193, 194].
Monte Carlo simulations are an alternative approach to compute thermodynamic expectation
values for many problems. In the most widely used Metropolis MC approach [40], a Markov
chain is generated by repeatedly applying a random modification to the system, usually
called a “move”, which is either accepted or rejected according to an acceptance criterion
that generally satisfies detailed balance. As the random changes are not limited in size,
MC simulations do not suffer from small configurational changes due to short time steps -
their limitation lies in the move construction which severely limits MC based protocols in
many applications. In principle, arbitrary modifications of the system can be proposed in a
single “move”, but as the acceptance rate typically falls exponentially with increasing energy
(compared to the present state of the system) the acceptance rate for arbitrary modification
of complex systems is typically exponentially small. As a result, MC protocols are generally
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efficient for problems with smooth or discrete potentials or with weakly correlated degrees
of freedom, but fail when collective effects play a role in the evolution of the system. It is
generally possible to define “local” moves, which modify only a small fraction of the degrees
of freedom of the system in a single step, but it is clear that such moves become inefficient
for large system sizes.
Especially in condensed systems with thousands to hundreds of thousands of particles, the
construction of collective moves with high acceptance rates is difficult. A notable exception
are specialized Monte Carlo protocols, such as those proposed by Swendsen and Wang [195,
196] for discrete spin systems, which construct large-scale moves with zero energy change. For
systems with continuous variables and complex potential functions (in particular with hard-
core potentials), however, such methods are not generally available. In the absence of such
moves the number of steps and computational effort required to generate an uncorrelated
conformation, measured by the autocorrelation “time”, increases rapidly with the system size.
This is the equivalent of the short time step in molecular dynamics, which results in a large
number of energy/gradient evaluations to propagate the system as a whole along a relevant
macroscopic reaction coordinate. In both MC and MD the computational time is dominated
by the energy/gradient evaluation, and it should be noted that for most classical potentials
the evaluation of the gradient is not significantly more expensive than the evaluation of the
energy. As a result, the number of steps required to decorrelate a macroscopic variable is
the measure of the computational efficiency of the method.
In MC methods one might therefore attempt to reduce the autocorrelation time by combin-
ing many uncorrelated “local” moves to a “collective” move before evaluating the energy.
Unfortunately this straightforward approach fails, as the acceptance probability, which is
then the product of the acceptance probabilities of the individual moves decreases rapidly, if
there is an admixture of a few energetically unfavorable moves in a such a “collective” move
(again typical for hard-core potentials). Generalized Monte Carlo algorithms, such as replica
exchange [108], simulated annealing [107] or multiple try Monte Carlo [197, 198] increase the
efficiency for specific applications but do not overcome the fundamental bottleneck described
above.
Thus, both MD and MC based methods are limited: While MD is in principle capable of
sampling relevant parts of the phase space, large-scale study of processes on the micrometer
scale is not feasible on purchasable architectures. MC on the other hand is capable of
arbitrary large step sizes and does not suffer from slow propagation. Large autocorrelation
times, however, lead to low acceptance rates or uncorrelated moves, failing to capture relevant
correlated effects.

4.1.1. Increased Acceptance and Correlated Moves
As described above, the construction of "local" or "correlated" moves with non-vanishing ac-
ceptance rates is one of the key challenges in the MC based simulation of condensed systems.
On that account, there have been many propositions to increase the efficiency of Monte Carlo
simulations since their introduction in the 1950s [199], for example the force biased move
construction for the simulation of water [41, 200], cluster MC algorithms [201, 202] and ap-
proaches using feedback effects and generalized ensembles [203]. The fundamental principles
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of many of these methods is exemplified by the famous Swendsen-Wang algorithm. Here,
unit acceptance is achieved by constructing collective moves with a zero energy change that
affect a large fraction of the total system. As this approach requires an efficient calculation
of the exact energy change of the proposed move, it is only applicable for discrete systems
with short-range interactions.
However, this special case of Monte Carlo simulations of discrete systems can be generalized
by biasing the move construction with an energy estimator and changing all degrees of
freedom simultaneously [41, 43, 44, 200]. This approach to efficient move construction was
originally proposed by Rao and Pangali in 1979 [41] and later taken up in 1992 by Dereli et
al. [42] and Timonova et al. for the modeling of diffusion and phase transitions [43]. The
general idea was further investigated [44] and extended to associate a time scale with the
MC algorithm [41, 204].
All these methods share the concept of biasing moves towards decreasing energy. Detailed
balance is asserted by tuning the strength of this temperature-dependent bias. As the es-
timate of the energy change of the proposed move is not exact in general, the methods
obey detailed balance only asymptotically in the limit of vanishing step size. Accuracy and
efficiency of the method is dominated by the ‘critical’ step size that can be chosen for a
particular system without a violation of detailed balance, that would result in inaccurate
thermodynamic averages. In other words, the methods become computationally inefficient if
the critical step size below which the violation of detailed balance may be tolerated is small
compared to characteristic length scales. This problem is circumvented by other advanced
MC methods such as the cluster algorithms proposed by Liu and Luijten [205] or Krauth
[206]. However, these methods are not applicable to molecular simulations.
In the scope of this chapter, a generic Monte Carlo protocol [41, 200, 207], called Acceptance
Rate Optimized Monte Carlo (AROMoCa) is developed. In AROMoCa the constructed
moves are composed of many degrees of freedom and have acceptance rates close to unity
while preserving detailed balance exactly. Two different approaches to overcome the limited
step size in the biased move construction are analyzed.
The first approach is applicable to continuous systems and avoids the limitation of the ’crit-
ical’ step size by applying an acceptance criterion that corrects the error of the estimate of
the energy change. This way detailed balance is guaranteed for any step size. As explained
in section 2.4, the application of an acceptance criterion impedes the over all acceptance
probability with increasing number of degrees of freedom, resulting in vanishingly small ac-
ceptance rates for realistic systems with several thousand degrees of freedom. In order to
limit the number of degrees of freedom without constructing uncorrelated moves, relevant
parts of the phase space, i.e. degrees of freedom that are far from thermodynamic equi-
librium, are identified. Changes are then applied to those degrees of freedom with higher
probability, resulting in system changes with high acceptance rates.
In previously proposed protocols as well as in the first approach presented in the following,
the change in energy induced by a MC step is estimated by the first order Taylor expansion,
i.e. the atomic forces. The second approach includes second order Taylor expansion, thus
improving the energy estimator quality and increasing acceptance rates significantly. Similar
to the first approach, detailed balance is preserved by an acceptance criterion. The improved
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energy estimator, however, allows the simultaneous change of all degrees of freedom in a sin-
gle Monte Carlo step. Further, the second derivatives of the energy in different coordinates
lead to direct coupling of degrees of freedom. This results in the construction of real corre-
lated moves. While this approach is basically applicable to any type of system, this study
focuses on the application to macro-molecular structures. Especially in multidimensional
bonded systems such as peptides, proteins or polymers, simultaneous, correlated movement
of several degrees of freedom is necessary in order to sample the relevant parts of the config-
uration space. Application of generic Metropolis MC requires the limitation to O(1) degrees
of freedom that are changed simultaneously in a single MC step to achieve significant ac-
ceptance rates. While small proteins have been studied successfully using Metropolis MC
based protocols [86, 208] applying changes to only a single degree of freedom per MC step,
movement was limited to dihedral angles in these simulations. Furthermore, to avoid huge
translations of the end of the chain upon the change of a single dihedral, step sizes have to be
chosen vanishingly small. In order to efficiently model bonded units, correlated moves affect-
ing also bonds and angles are necessary. Consider for example the case where only a small
fraction of the back bone of a protein is flexible. A configurational change of this fraction
that does not affect the positions of the initial and final atom requires the specific combi-
nation of changes in multiple coordinates. The construction of such a move via completely
random generation of a set of independent coordinate changes occurs with vanishing proba-
bility. Hence, the acceptance rate would in fact be zero for generic Monte Carlo protocols.
However, the application of the second order AROMoCa protocol allows the construction
of correlated changes to all degrees of freedom while promising high acceptance rates and
preserving detailed balance.

4.1.2. Biasing Molecular Simulations by Artificial Potentials
In other applications, such as the nucleation of molecular crystals, efficient simulation is not
prevented by inefficient construction of single moves, but merely the fact that the area of the
global minimum of the energy landscape occupies only a small fraction of the configuration
space that is usually delimited by an energy barrier. The simulation time needed for a system
to converge towards this subspace by mere diffusion in MD is again limited by the femtosec-
ond time step, while large autocorrelation times in MC based protocols mentioned above
prevent collective convergence of multiple degrees of freedom towards the global optimum.
However, there are systems where information about the structure is available (e.g. the ar-
rangement of previously deposited molecules or the substrate configuration), on the basis
of which the subspace of configurations for which the global potential is minimal can be
estimated. By exploiting this information and proposing an educated guess, the propagation
of the system can be biased towards configurations that are estimated to be energetically
favorable, reducing the computational effort spent on the sampling of local minima and the
diffusion towards the global optimum significantly. This can be exemplified by molecular
crystals: for the formation of new crystalline layers on existing surfaces, information on pre-
ferred positions and orientations can be extracted by analyzing the geometry of the existing
structure. A newly deposited particle can then be biased towards similar configurations.
Especially in the case of molecular crystals, organic-anorganic or anorganig-anorganic inter-
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faces, or the interface between crystalline and amorphous regions of a homogenous molecular
structure, the phase space is increased by a factor 2N (for a system of N particles) due to the
rotational degrees of freedom. Therefore, geometry optimization upon diffusion is impeded.
Obviously, pushing to system towards a desired final configuration via brute force is bound
to result in unphysical structures for arbitrary bias potentials. In fact, the final configu-
rations of a biased and an infinite unbiased simulation have to coincide. In other words,
the bias is to induce a (maybe infinite) speedup of the system, not influence the resulting
structures. A method to check the realization of thermodynamically reasonable states on
the fly throughout the biased simulation is the Model Hopping (MH) approach proposed by
Hansmann et al. [111]. MH is a variant of the Parallel Tempering (PT) method [45, 109, 110],
where multiple models are simulated in parallel at different temperatures and the models
are interchanged after a certain simulation time. Analogously, Model Hopping deploys bias
potentials of different strengths to the different models, of which one is simulated using the
physical force field only. Exchange between the models is attempted after a certain number
of simulation steps and is accepted or rejected based on thermodynamic considerations. This
acceptance criterion asserts the realization of only thermodynamically stable configurations
in the unbiased model, i.e. states that would be realized anyway in infinite simulation time.
This method can be combined with both MD and MC based protocols. When combining
MH with MD, random diffusion in the phase space is superimposed by a drift towards the
global optimum, reducing the overall simulation time. In MC based methods, biasing multi-
ple degrees of freedom reduces the autocorrelation time tremendously, leading to collective,
correlated system changes.

4.1.3. Structure of the Chapter
In sections 4.2, 4.3 and 4.4, an algorithm is presented that uses an estimator for the energy
change of possible moves to construct collective moves with near unit acceptance probability.
Two variations of this AROMoCa protocol will be presented: In the first version, a first
order approximation to changes in the system energy is used to identify regions far from
thermodynamic equilibrium and to construct collective moves with high acceptance rate.
The second version of the algorithm deploys a more refined second order approximation
of the change in energy, resulting in real correlated simultaneous changes of all degrees of
freedom.
First, the detailed derivation of the AROMoCa algorithm is presented in section 4.2. The
physical principles of AROMoCa are discussed and the construction of moves and accep-
tance criteria obeying detailed balance are derived in detail for both first and second order
AROMoCa. For the latter, a detailed derivation of first and second order estimators in
internal degrees of freedom is presented for the application to bonded macro-molecular sys-
tems. After a detailed derivation of the protocol, the first order AROMoCa is applied to four
systems with increasing complexity in section 4.3 in order to demonstrate the effectiveness
in comparison with MC and MD simulations. Additionally, the algorithm is compared to
previously proposed methods such as force-biased-MC (fbMC) [43, 44]. Section 4.4 presents
the analysis of the second order AROMoCa approach. A polymer-like model system is in-
troduced and the performance of AROMoCa in comparison with generic MC and MD will
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be studied in detail.
In the final section 4.5, the MH approach is briefly presented and possible choices for energy
models are discussed. In order to get an estimate of the functionality of the algorithm, the
influence of two main parameters, namely the choice of bias potential and number of models
on the exchange probability is analyzed. Subsequently, in order to check its applicability
to molecular systems, a model mimicking the growth of a molecular crystal is developed.
A study of the transferability to realistic systems using the example of pentacene crystals
concludes this section.
The algorithm based on the first-order energy estimator presented in 4.2 and the correspond-
ing results of section 4.3 were already published in [5]. They are presented here in full consent
with all contributing authors.

4.2. Methodology of Acceptance Rate Optimized Monte Carlo
4.2.1. Detailed Balance and Biased Move Construction
As mentioned above, many MC algorithms are based on the construction of Markov chains
describing the evolution of a fictitious system where each new element depends only on
its predecessor: In each extension of the chain a trial change to the system of interest
(move) is proposed which is either accepted or rejected according to a method- and system-
specific acceptance criterion. A sufficient but not necessary condition to compute proper
thermodynamic expectation values is the detailed balance condition which postulates that
the move construction and acceptance has to be chosen in a way that the total rate of states
moving from initial state qi into final state qf , Γ((qi) → (qf )) equals the rate of the inverse
move from qf to qi. For a system following a Boltzmann distribution, which we will describe
without loss of generality in the following, the transition rate from a state qi to a state qf is
the product of the transition probability, W ((q)→ (q′)), and the occupation probability for
state q:

Γ((qi)→ (qf )) = W ((qi)→ (qf ))× 1
Z

exp(−βE(qi)) (4.2.1)

where E(qi) is the potential energy of the state qi, β = 1/(kB T ) is the inverse temperature
and Z =

∑
qi

exp(−βE(qi)) is the partition function. The transition probability is the
product of the probability to construct the move π((qi) → (qf )), and to accept the move,
ρ((qi)→ (qf )):

W ((qi)→ (qf )) = π((qi)→ (qf )) ρ((qi)→ (qf )) (4.2.2)

A sufficient condition to reach thermodynamic equilibrium (Γ((qi)→ (qf )) = Γ((qi)→ (qf )))
is the detailed balance criterion:

π((qi)→ (qf )) ρ((qi)→ (qf ))
π((qf )→ (qi)) ρ((qf )→ (qi))

= exp (−β∆E) (4.2.3)

with the change in energy induced by the proposed move, ∆E = E(qf )− E(qi).
In the case of completely uncorrelated random moves drawn from a given distribution (e.g.
the cartesian coordinates, the orientation of a non isotropic particle, or internal degrees of
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freedom) where the probability to construct the move is equal to the probability to construct
the inverse move, π((qi)→ (qf )) = π((qf )→ (qi)), the probabilities of the move construction
in Eq. 4.2.3 cancel out. From this Metropolis et al. [40] derived the Metropolis acceptance
criterion:

ρ((qi)→ (qf )) =
{

exp (−β∆E) , ∆E > 0
1, ∆E ≤ 0

(4.2.4)

which is widely used for the simulation of physical and chemical systems. While the con-
struction of such moves is conceptually and technically simple, it often leads to inefficient
simulation protocols. Consider a system consisting of N particles with a total of 3N degrees
of freedom. If only one or O(1) degrees of freedom are changed in one move, the algorithm
will become inefficient in the thermodynamic limit and underperforms in comparison to MD
simulations which change all degrees of freedom simultaneously. The evolution of the system
in the thermodynamically relevant ensemble often requires collective changes of degrees of
freedom which are exponentially unlikely to be proposed as a sequence of “local” moves.
This problem arises both when the moves are proposed in sequence (which is often better in
practice) or as collective moves composed of uncorrelated “local” moves. For many relevant
potentials the acceptance rate will decrease exponentially with the number of uncorrelated
“local” moves in the collective move. In either scenario, the acceptance probability is low
and the autocorrelation time high.
If the existence of steep energy rises in local moves is limiting the autocorrelation time of
the method, one should aim to construct collective moves that reduce the fraction of such
events in the move construction. At this point it is important to note that the Metropolis
algorithm is only one particular choice to realize the more general condition of Eq. 4.2.3. An
alternative interpretation of Eq. 4.2.3 is to postulate an ideal algorithm where each proposed
change in the configuration will be accepted, i.e. ρ((qi) → (qf )) = ρ((qf ) → (qi)) = 1. In
such an algorithm detailed balance must be fulfilled by constructing the probabilities π to
select a move from all possible moves. The moves then need to be constructed such that

π((qi)→ (qf ))
π((qf )→ (qi))

= exp (−β∆E) (4.2.5)

To exactly satisfy this criterion, the energy difference ∆E of all considered moves has to
be known for all possible moves before each MC step in order to compute the probabilities
π((qi) → (qf )). In the Swendsen-Wang family of methods this is possible due to the local
nature of the Hamiltonian, but this type of approach is unrealistic for most systems with
continuous degrees of freedom and long-range potentials. For processes with a time inde-
pendent energy function one can assume ∆E((qf ) → (qi)) = −∆E((qi) → (qf )) (which is
not true for example for metadynamics simulations [210–212] where an additional bias is
applied to the system depending on its prior trajectory and the energy model thus changes
with simulation time) and the relationship in Eq. 4.2.5 is met by proposing moves with a
probability

π((qi)→ (qf )) = 1
A

exp
(
−β∆E

2

)
(4.2.6)
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where ∆E = E(qf ) − E(qi) is the change in energy by moving from initial state qi to final
state qf and the normalization factor A =

∑
qf

exp
(
−β∆E

2

)
is calculated by summing over

the moves to all possible final states qf .
In order to illustrate this idea, let us consider an idealized system where the energy change
∆E is known for every possible move. The system consists of many particles where every
particle has only two possible states, e.g. the adsorption of a gas of non-interacting particles
on a surface. In this case there are only two possible states and moves (from the adsorbed
state into the gaseous state and vice versa) for which the energy change is known exactly
prior the move. Let us assume that the adsorbed state is energetically favorable by an energy
∆E0 > 0. Then, according to Eq. 4.2.6, the probability to adsorb a particle from the vacuum
onto the surface is

πa = 1
A
Nv exp

(
β

∆E0
2

)
(4.2.7)

while the probability to do the inverse move, the release of a particle, is

πv = 1
A
Na exp

(
−β∆E0

2

)
(4.2.8)

Here, Na and Nv are the number of particles in the adsorbed and vacuum state respectively
and A = Nv exp (β∆E0/2) +Na exp (−β∆E0/2) is the normalization factor.
In the standard Metropolis Monte Carlo protocol a particle is selected at random, and a
move to the other state is proposed and accepted or rejected according to Eq. 4.2.4. This
leads to the rejection of most moves of particles which are already adsorbed on the wall,
since ∆E = ∆E0 > 0 for this move. The biased protocol on the other hand picks a particle
according to the Boltzmann probability of the energy change induced by its change of state
and every move is accepted.
For realistic systems, the computational costs to compute the exact change in energy for
every possible move is unacceptably high. However, a suitable estimator for the energy
difference ∆̃E ≈ ∆E can be used to construct the move probabilities and accelerate the
performance of the method. This estimator of the energy change for possible moves has to
meet two criteria: First, it should be cheap in comparison with the real energy function.
Second, the difference between estimated energy change and real energy change has to be
smaller than kB T , i.e.

|∆̃E −∆E| < kB T (4.2.9)

Using this estimator, moves qi → qf leading to an estimated energy change of ∆̃E are
constructed with a probability according to Eq. 4.2.6, i.e.

π((qi)→ (qf )) = 1
A

exp
(
−β ∆̃E

2

)
(4.2.10)
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with A =
∑
qf

exp
(
−β ∆̃E

2

)
analogously to Eq. 4.2.6. Considering Eq. 4.2.3, this results in

ρ((q)→ (q′))
ρ((q′)→ (q)) = π((q′)→ (q))

π((q)→ (q′)) exp (−β∆E) (4.2.11)

= A

A′
exp

(
−β

(
∆E − ∆̃E

))
(4.2.12)

This relation for the acceptance probabilities of move and inverse move clarifies the impor-
tance of a good quality energy estimator ∆̃E. For a perfect estimator of the energy, the
exponent of Eq. 4.2.12 vanishes and the acceptance rate is close to unity.

4.2.2. First Order Energy Approximation
For systems with classical interactions (e.g. molecular or atomistic systems), the obvious
approximation of the change in energy is the first order term of the Taylor expansion of the
energy function in the generalized coordinates qj , where j denotes the degree of freedom:

∆̃E =
∑
j

∂E

∂qj
∆qj (4.2.13)

For a system with only translational degrees of freedom, the change in energy can be ex-
pressed by the atomic forces F j and displacements ∆xj :

∆̃E =
∑
j

∇jE|xj ∆xj = −
∑
j

F j(xj) ∆xj (4.2.14)

Here, ∇j is the derivative of the energy function in the coordinates of atom j. For the inverse
move with ∆x′

j = −∆xj , we find:

∆̃E′ ≈
∑
j

∇jE|x′j ∆x′j = −
∑
j

∇jE|x′j ∆xj =
∑
j

F j(x′j) ∆xj (4.2.15)

Inserting this into Eqs. 4.2.6 and 4.2.3 results in the modified acceptance criterion for the
change of a single degree of freedom x:

ρ

ρ′
= A

A′
exp

(
β

2 (∇E|x +∇E|x′) ∆x
)

exp ((−β∆E) (4.2.16)

with A and A′ being the sums over all probabilities for the moves and inverse moves. The
acceptance criterion is modified, if more than a single degree of freedom is changed during
one Monte Carlo step:

ρ

ρ′
=
(
A

A′

)m  m∏
j

exp
(1

2
(
∇jE|xj +∇jE|x′j

)
∆xj

) exp (−∆E) (4.2.17)
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wherem is the number of simultaneous system changes per simulation step. As the estimated
energy change that is taken into account during the move construction (Eqs. 4.2.6 and 4.2.14)
is corrected by the real change in energy, this acceptance criterion asserts detailed balance
exactly.
As explained in the introduction to this chapter, the simultaneous random change of all
degrees of freedom in large systems inevitably leads to vanishingly low acceptance rates in
standard MC simulations. In fact, the acceptance rate is expected to drop exponentially
with increasing number of simultaneous random changes. The considerations above are
thus used to construct an algorithm based on the first order energy approximation that
concentrates on relevant parts of the system: First, the regions of the system that are far
from thermodynamic equilibrium are identified. Subsequently, moves are proposed to such
regions with higher probability and the individual displacements are constructed according
to Eq. 4.2.10. Most MD/MC simulations are performed for molecular systems and the
derivation of the protocol will focus on these applications. For simplicity, only translational
degrees of freedom are considered, but without loss of generality (e.g. a system consisting of
interacting spherical particles). Extension to other degrees of freedom, such as rigid rotations
or changes applied to internal degrees of freedom of molecules are straight forward by using
torques and internal forces. Each Monte Carlo step is divided into four parts: First, for each
degree of freedom (in our case: every particle and every direction) a probability to perform
a displacement of any size between −∆xmax and ∆xmax is calculated:

πk,j = 1
Ak,j

∫ ∆xmax

−∆xmax

dx exp
(
Fk,j x

2 kB T

)
(4.2.18)

= 1
Ak,j

2 kB T
Fk,j

[
exp

(
Fk,j ∆xmax

2 kB T

)
− exp

(
−Fk,j ∆xmax

2 kB T

)]
(4.2.19)

using a normalizing factor:

Ak,j =
∑
k

∑
j

∫ ∆xmax

−∆xmax

dx exp
(
Fk,j x

2 kB T

)
(4.2.20)

Here k denotes the particle index and j = 0, 1, 2 the direction index for movement in x, y and
z direction. The larger the force acting on a particle in a certain direction the larger πik,j
for this specific move. In a second step, m ∈ N moves are picked from the probability array
constructed of all πk,j . Neither are moves picked completely randomly nor are all degrees
of freedom changed simultaneously. On the contrary: degrees of freedom that are far from
equilibrium (having a large force and large value of πk,j) are more likely to be changed than
those near local equilibrium. After identifying them different particle-direction combinations
the displacement ∆xk,j = ∆xmax × ξk,j is calculated by drawing ξk,j from the probability
distribution:

π(ξk,j) = 1
B

exp
(
Fk,j ξk,j ∆xmax

2 kB T

)
(4.2.21)
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which is the equivalent of Eq. 4.2.6. Again there is a normalizing factor

B =
∫ ∆xmax

−∆xmax

dx exp
(
Fk,j x

2 kB T

)
(4.2.22)

for the probability π(ξk,j). B also appears in Eq. 4.2.19 and cancels out when calculating
the total move probability as the product of πi,j and π(ξi,j), leaving A as only relevant
normalization factor. Numerically the displacement ξi,j is derived by drawing a random
number η between 0 and 1 from a uniform random distribution and calculating ξi,j using:

∆xi,j = 2 kB T
Fi,j

ln (η (exp (|γi,j |)− exp (−|γi,j |)) + exp (−|γi,j |)) (4.2.23)

with γi,j = Fi,j ∆xmax

2 kB T
. It can be shown that this results in the correct probability distribution

in Eq. 4.2.21 for the displacement [43]. After displacing each (i, j)-combination the forces
F ′

i,j and the normalization factor A in Eq. 4.2.20 of the new configuration are calculated.
The new configuration is then accepted according to Eq. 4.2.17.

4.2.3. Second Order Energy Approximation
Towards Correlated Moves

Approximating the energy change by the first order Taylor expansion limits the range where
the estimator can be applied. Hence, in rugged landscapes, the deviation from the real energy
change in comparison to kB T is only small for small step sizes, i.e. step sizes of the order
of a fraction of the typical interaction length scale (e.g. σ of the Lennard-Jones force-field).
Hence, the method described above leads to a limited number of changes that can be applied
to the system in a single MC step while having non-vanishing acceptance rates.
To overcome this limitation, it is straight forward to increase the quality of the estimator by
including the second term of the Taylor expansion:

∆̃E =
∑
k

∂E

∂qk
∆qk +

∑
k,l

1
2
∂2E

∂qk∂ql
∆qk ∆ql (4.2.24)

where k and l are indices of degrees of freedom. While for the first order estimator given
in Eqs. 4.2.14 and 4.2.13 the individual degrees of freedom are completely decoupled, the
second order term in Eq. 4.2.24 leads to a correlation between the coordinates and allows the
construction of real correlated moves. This is neither possible using generic Metropolis MC
nor AROMoCa deploying a first order energy estimator. The construction of moves {∆qk}
with a probability π(∆̃E) according to Eq. 4.2.10 however is not as straight forward as in
the case of the first order approximation described above. The solution to this hurdle is a
coordinate transformation into the eigen modes of the system.
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Decoupling the Degrees of Freedom

Let q = (q0, q1, . . . , qn)T be the vector comprising all n generalized coordinates qk. The
estimated change in energy is then of the form:

∆̃E = ∆qT W ∆q + bT∆q (4.2.25)

∆q = qf − qi is the vector of all changes of the generalized coordinates, i.e. the difference
between final and initial states, f and i. The matrixW contains the second order derivatives
and the vector b the first order derivatives:

bk = ∂E

∂qk
(4.2.26)

Wkl = 1
2
∂2E

∂qk∂ql
(4.2.27)

In general, the matrix W is not of diagonal shape. While the off-diagonal entries in W are
in fact responsible for the desired correlation between coordinates, the construction of the
moves in the basis of {qk} is not possible.
In order to decouple the degrees of freedom, two subsequent transformations are performed.
First, a translation of the vector ∆q:

∆u = ∆q + 1
2 W

−1 b (4.2.28)

whereW−1 is the inverse of the matrixW . This leads to a form of ∆E that does not contain
a linear term of ∆q

∆̃E = ∆uT W ∆u+ d, d = −1
4 b

T W−1 b (4.2.29)

In this form, the internal degrees of freedom are still coupled via the matrix W . According
to the eigen decomposition theorem, a possible representation for any square matrix W is

W = PDP−1 (4.2.30)

Here P is the matrix composed of the eigenvectors of W and D is the diagonal matrix
comprising from the corresponding eigenvalues λk. Inserting Eq. 4.2.30 into Eq. 4.2.29
results in

∆̃E = ∆uT PDP T ∆u+ d (4.2.31)

A final coordinate transformation
∆ξ = P T ∆u (4.2.32)

decouples the internal degrees of freedom ∆ξ:

∆̃E = ∆ξTD∆ξ + d =
∑
k

λk ∆ξ2
k + d (4.2.33)
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Move Construction

Once the correlated degrees of freedom are decoupled via the coordinate transformations,
a move can be constructed analogously to the algorithm presented in the previous section:
The acceptance rate of moves approaches unity, if a certain move with change in energy of
∆̃E is proposed with a probability of

π(∆̃E) ∝ exp
(
−β2 ∆̃E

)
(4.2.34)

Applying the second order estimator in the decoupled space given by Eq. 4.2.33 leads to

π({∆ξk}) ∝
∏
k

exp
(
−β2λk ∆ξ2

k

)
(4.2.35)

The constant d disappears due to normalization and the probability distribution π is just
a decoupled multidimensional Gaussian function with σk =

√
kB T/λk. The displacements

∆ξk following this distribution can be constructed by generating pseudo-random numbers rk
from a standard normal distribution and multiplying with σk:

∆ξk = rk

√
kB T

λk
(4.2.36)

Reverse transformation of Eq. 4.2.32 and subsequently 4.2.28 result in the moves for the
internal degrees of freedom, ∆q, with the proper probability given in Eq. 4.2.34. For a
perfect energy estimator, this leads to unit acceptance.
While based on the same approach as the first-order estimator AROMoCa protocol pre-
sented in the previous section, this algorithm differs significantly in two aspects: First, there
is real correlation between the degrees of freedom in the mixed derivatives of the matrix
W . The first AROMoCa approach is merely a collection of individual moves with high ac-
ceptance probabilities. Second, the decoupling of the degrees of freedom via the coordinate
transformation requires the simultaneous change of all degrees of freedom in a single step.
Detailed balance demands that the inverse step is possible. However, as the eigenvectors of
the matrix W change from step to step, the basis in which the step ∆ξ is constructed is
different for move and inverse move. Changing only a single decoupled degree of freedom
per step thus violates detailed balance, as the inverse move is impossible, if the matrices
W of two subsequent steps differ. This can be exemplified using a two-dimensional model
system: Let w.l.o.g. the orthogonal eigenmodes m0 and m1 of the system be aligned with
x- and y-axis before a move, m0 = (1, 0)T and m1 = (0, 1)T . Consider a MC move during
which the system is changed only along a single eigenmode, e.g. a step of ∆x along eigen-
mode m0, (∆x, 0)T . In general, the eigenmodes after the move, i.e. the eigenmodes for the
inverse move, are rotated by an angle α around the normal to the x − y−plane in respect
to the original eigenmodes, resulting in m′0 = (cos(α), sin(α))T and m′1 = (sin(α), cos(α))T .
Obiously, any change of a single degree of freedom along either of the new eigenmodes will
fail to construct the inverse move, (−∆x, 0)T , thus violating detailed balance.
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Algorithm Overview

The algorithm then works as follows:

1. For a given configuration, construct vector b and matrixW via first and second deriva-
tives of the energy.

2. Calculate eigenvalues and eigenvectors of W

3. Construct the displacements of the decoupled coordinates, ∆ξk using Eq. 4.2.36

4. Transform the vector ∆ξ into ∆q via Eqs. 4.2.32 and 4.2.28.

5. Calculate the real change in energy, ∆E and accept the move with a probability that
accounts for the error of the estimator:

ρ = min

{
1, A
A′

exp
(
−∆E − ∆̃E

kB T

)}
(4.2.37)

Here, A and A′ are norming constants of the probability distributions for the move
construction and ∆̃E is the energy estimator. Notably, if the function of the energy
estimator changes between two subsequent steps, the acceptance criterion has to be
adapted, as ∆̃E

′
6= −∆̃E. Eq. 4.2.11 then results in an acceptance criterion:

ρ = min

1, A
A′

exp

−∆E − 0.5
(
∆̃E − ∆̃E

′)
kB T

 (4.2.38)

4.2.4. Bonded Systems and Internal Degrees of Freedom in AROMoCa
Internal Degrees of Freedom

While atomic forces can be applied as the first order estimator, the construction of the
second order estimator is far from trivial. More precisely, the second order estimator needs
to be constructed for every system specifically. In the following, the treatment of bonded
macro-molecular systems is presented and the estimator functions for the systems studied in
section 4.4 are derived in detail.
For bonded units, if rigid translation and rotation of the whole complex are neglected, the
degrees of freedom qi of the system can be mapped onto the space spanned by internal coor-
dinates {ηi}: bond lengths rk, angles αl, and dihedral angles (short: dihedrals) φm. Different
variables for the indices, k, l,m are used for clarification. An illustration of the internal de-
grees of freedom is displayed in Section 2.4, Fig. 2.4.1. The system energy comprises an
internal contribution of the bond, angle and dihedral force-fields and external potentials ac-
counting e.g. for electrostatic and Lennard-Jones interactions1. Additionally, solvent models

1Usually, the expression ”external potential” is used to describe non-intrinsic force fields, i.e. potentials
other than the interaction between the systems constituents. However, we will in the course context of
AROMoCa refer to any potential other than the intra-molecular interactions (bond, angle and dihedral
force fields) as ”external potentials”.
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may be applied, resulting in a total energy of:

Etot = Eint({ηi}) + Eext({xi}) + Esol (4.2.39)

While the external and solvent contributions are easily expressed in cartesian coordinates,
the internal contributions are usually calculated in terms of angles, bonds and dihedrals.
The potentials for deflection of the internal coordinates from their rest positions are given
by:

Vb,k = 1
2kb,k (rk − rk,0)2 (4.2.40)

for bonds,
Va,l = 1

2ka,l (αl − αl,0)2 (4.2.41)

for angles, and
Vd,m(φ) = kd,m [1− cos(n(φm − φm,0))] (4.2.42)

for dihedrals. k, l andm denote the bond, angle and dihedral indices respectively, the index 0
the value of the degrees of freedom in the rest position. The parameter n ∈ N in the dihedral
potential is called multiplicity and depends on the orbital configuration of the atoms defining
the rotation axis. While the dihedral potential is often parametrized differently:

Vd(φ) = kd (1 + cos(nφ− δ)) (4.2.43)

we find the equivalent parametrization of Eq. 4.2.42 to be more convenient and intuitive.
For the harmonic potentials of bond and angle contributions, the change in energy for a
coordinate change q → q′, q = η − η0 is:

Vharmonic =1
2 k q

2 (4.2.44)

∆Vharmonic =1
2 k

[
q′2 − q2

]
(4.2.45)

=1
2 k

[
(q + ∆q)2 − q2

]
(4.2.46)

=1
2 k

[
∆q2 + 2 q∆q

]
(4.2.47)

=1
2
∂2Vharmonic

∂q2 ∆q2 + ∂Vharmonic
∂q

∆q (4.2.48)

≡∆q Aharmonic∆q + bharmonic ∆q (4.2.49)

Notably, this change in energy equals the second order Taylor expansion and the estimator
for the energy change as given in Eqs. 4.2.24 and 4.2.25 is exact, leading to unit acceptance
for bonds and angles.
For the dihedral potential, the second order energy estimator is only an approximation. In the
middle between a minimum and a maximum of the dihedral potential given in Eq. 4.2.42,
i.e. at φ − φ0 = 2π

4n , the second derivative is zero, leading to singularities in the inverse
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Figure 4.2.1.: Approximation of the cosine-dihedral potential by parabolas defined
on intervals: The second derivative of the cosine-potential vanishes at the point of
inflection, leading to problems in the move construction. This can be prevented
by approximating the potential on parabolas defined on intervals between the
points of inflection.

interaction matrix W−1 in Eq. 4.2.28. A different approach that circumvents singularities is
the piece-wise harmonic approximation of the dihedral potential:

Ṽd = 1
2 k̃d (φ− φ̃0)2 + c kd (4.2.50)

Here, the approximated harmonic constant k̃d is given by

k̃d = ±8n2

π2 (4.2.51)

and c = 0, 1 depending on whether φ is in a segment of positive or negative curvature. φ̃0
is the middle of the interval on which the approximation is defined, i.e. a minimum or a
maximum of the dihedral potential. This is illustrated in Fig. 4.2.1. As the internal potential
Eint is the sum over the contributions of the individual internal degrees of freedom, {ηi},
there is no coupling between the internal coordinates. The matrix Wint for the internal
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potential is of diagonal form:

Wint = Diag({αi}) =



kb,0 0 . . . 0
0 kb,1 0 . . .
... 0 . . .

... 0 ka,0 0

0 ka,1 0
...

. . . 0
...

. . . 0 k̃d,N−4 0
0 . . . 0 k̃d,N−3


(4.2.52)

For a system consisting of N atoms, the entries for the vector b are calculated according to

bint,k = kb,k (rk − rk,0) (4.2.53)

for N − 1 bonds (k = 0, . . . , N − 2),

bint,l = ka,l (αl − αl,0) (4.2.54)

for N − 2 angles (l = N − 1, . . . , 2N − 4), and

bint,m = k̃d,m (φm − φ̃m,0) (4.2.55)

for the N − 3 dihedrals (m = 2N − 3, . . . 3N − 7) with k̃d,m as defined in Eq. 4.2.51 and
φ̃m,0 being either a maximum or minimum in the potential, i.e. the middle of the interval
for which the parabolic approximation of the dihedral potential is defined.

Treatment of External Potentials

External potentials such as non-bonded or solvent force fields are usually expressed by dis-
tance dependent functions, i.e. they are defined in cartesian coordinates. In order to expand
the simulation beyond the bonded force fields, the change of such external potentials for a
system with 3N −6 internal degrees of freedom (i.e. a chain of N atoms connected via single
bonds) needs to be expressed in terms of internal coordinates {∆ηi}:

∆Eext ≈ ∆̃Eext ({xk = xk({ηi})})) (4.2.56)

=
3N−6∑
i=1

(
N∑
k=1

3∑
d=1

∂Eext
∂xk,d

∂xk,d
∂ηi

)
∆ηi (4.2.57)

+ 1
2

3N−6∑
i,j=1

 N∑
k=1

3∑
d=1

∂Eext
∂xk,d

∂2xk,d
∂ηi ∂ηj

+
N∑

k,k′=1

3∑
d,d′=1

∂2Eext
∂xk,d ∂xk′,d′

∂xk,d
∂ηi

∂xk′,d′

∂ηj

∆ηi ∆ηj

(4.2.58)
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i

Figure 4.2.2.: The derivatives of the position of atom i with respect to internal
coordinates is calculated by analysing the change of vectors from atom k to atom
i, from atom l + 1 to atom i, or atom m + 2 to atom i for bonds, angles or
dihedrals, respectively.

This results in the following entries for matrix Wext and vector bext in Eq. 4.2.25:

Wext,i,j = 1
2

 N∑
k=1

3∑
d=1

∂Eext
∂xk,d

∂2xk,d
∂ηi ∂ηj

+
N∑

k,k′=1

3∑
d,d′=1

∂2Eext
∂xk,d ∂xk′,d′

∂xk,d
∂ηi

∂xk′,d′

∂ηj

 (4.2.59)

bext,i =
N∑
k=1

3∑
d=1

∂Eext
∂xk,d

∂xk,d
∂ηi

(4.2.60)

Notably, only by including external potentials, non-zero off-diagonal elements enter the ma-
trix, leading to real correlated MC moves.
The derivatives of the cartesian coordinates with respect to internal coordinates, ∂xk,d

∂ηi
, and

∂2xk,d

∂ηi∂ηj
, need to be derived specifically for any system of interest. In case of a chain of bonded

atoms, the following notation will be used:

xi position of atom i
∆xi change of the position of atom i
rk length of bond k
vk vector of bond k, between atoms k and k + 1
v̂k normal vector of bond k
vl+1,i vector from atom l + 1 at angle l to atom i
n̂l+1 normal vector of angle l at atom l + 1
αl angle l
φm dihedral angle m
R(n̂l+1, αl) Matrix for the rotation around normal vector of angle l by the angle αl
D(v̂m+1, φm) Matrix for the rotation around the bond m+ 1 by the dihedral angle φm

The indices are chosen such that ids for atoms, bonds, angles and dihedrals start with 0
each. E.g. the bond with id 0 is between atom 0 and atom 1, the angle with id 3 (i.e. the
fourth angle) is at atom 4, i.e. the angle between the bonds 3 and 4. An illustration is given
in Fig. 4.2.2. The derivatives can be extracted by considering the change of the position of
any atom i upon a finite change of any other internal degree of freedom located at atom l.
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Therefore, the position vector of atom i is expressed as the sum of the position vector of
atom l and the vector between atoms l and i:

xi = xl + vl+1,i (4.2.61)

which results in:
∆xi = ∆vl+1,i (4.2.62)

Let us now w.l.o.g. consider the change of angle l. The vector between the atom l and any
subsequent atom i after the change is then given by:

v′l+1,i =R(n̂l+1,∆αl)vl+1,i (4.2.63)

=vl+1,i + ∂

∂αl
R(n̂l+1, αl)|αl=0 ∆αl vl+1,i (4.2.64)

resulting in the first derivative of the position of atom i in angle l:

∂

∂αl
xi ≈

∆xi
∆αl

= ∂

∂αl
R(n̂l+1, αl)|αl=0 vl+1,i ∀ l < i− 1 (4.2.65)

The subsequent change of another angle m modifies Eq. 4.2.64 to be of the form:

v′l+1,i = vl+1,i + cl ∆αl + cm ∆αm + clm ∆αl ∆αm (4.2.66)

and the first and second order derivatives can be extracted from the cl, cm and clm. Following
this approach, first and second derivatives for a bonded system were calculated and are
given in Tab. 4.2.1. A detailed derivation of the first order derivatives and the second
order derivative for the case of angles is given in appendix C. Hence, the calculation of the
derivatives is reduced to the calculation of rotation matrices and their derivatives:

∂aR(n̂, α)
∂αa

= (S(n̂))a R(n̂, α) (4.2.67)

with the matrix S:

S
(
n̂ = (n1, n2, n3)T

)
=

 0 −n3 n2
n3 0 −n1
−n2 n1 0

 (4.2.68)

Where R(n̂, α) is the matrix for a rotation around axis n̂ by an angle α. While the compu-
tation of all derivatives leads to computational costs of O(N3) for a system with N atoms,
cutoffs can be applied to the estimator in order to reduce the number of derivative evalua-
tions.
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Table 4.2.1.: First and second order derivatives of the cartesian position of atom
i in internal coordinates. Derivatives for indices not listed explicitly are zero.

coord(s) derivative index range
bond ∂xi

∂rk
= v̂k ∀ k < i

angle ∂
∂αl
xi = ∂

∂αl
R(n̂l+1, αl)|αl=0 vl+1,i ∀ l < i− 1

dihedral ∂
∂φm

xi = ∂
∂φm

D(v̂m+1, φm)|φm=0 vm+2,i ∀ m < i− 2
b.-b. ∂2

∂r2
k
xi = 0 ∀ k

a.-a. ∂2

∂α2
l
xi = ∂2

∂α2
l
R(n̂l+1, αl)|αl=0vl+1,i ∀ l = m < i− 1

∂2

∂αl ∂αm
xi = ∂

∂αl
R(n̂l+1, αl)|αl=0

∂
∂αm

R(n̂m+1, αm)|αm=0 vm+1,i ∀ l < m < i− 1
d.-d. ∂2

∂φ2
m
xi = ∂2

∂φ2
m
D(v̂m+2, φm)|φm=0vm+2,i ∀ m < i− 2

∂2

∂φlφ2
m
xi = ∂

∂φl
D(v̂l+1, φl)|φl=0

∂
∂φm

D(v̂m+1, φm)|φm=0 vm+2,i ∀ l < m < i− 2
b.-a. ∂2

∂αl∂rk
xi = ∂

∂αl
R(n̂l+1, αl)|αl=0 v̂k ∀ l < k < i

b.-d. ∂2

∂φm∂rk
xi = ∂

∂φm
D(v̂m+1, φm)|φm=0 v̂k ∀ m+ 1 < k < i

a.-d. ∂2

∂αm∂φm
xi = ∂

∂αl
R(n̂l+1, αl)|αl=0

∂
∂φm

D(v̂m+1, φm)|φm=0 vm+2,i ∀ l − 1 < m < i− 2
∂2

∂αm∂φm
xi = ∂

∂φm
D(v̂m+1, φm)|φm=0

∂
∂αl

R(n̂l+1, αl)|αl=0 vl+1,i ∀ m < l − 1 < i− 2

4.3. Application of the First Order AROMoCa to Model Systems
In the following a sequence of investigations of increasingly complex systems will be pre-
sented. Throughout these studies, advantages and limitations of the AROMoCa approach
are analyzed and discussed in detail. The computational cost of a single step comprises
different contributions depending on system parameters, and a comparison of the efficiencies
of generic (Metropolis) Monte Carlo (GMC), molecular dynamics (MD) and AROMoCa in
terms of computational cost proves difficult. Hence, the number of simulation steps will be
used as a measure for efficiency, as this quantity is independent on system size or hardware
specification. While the AROMoCa approach is expected to be slightly more expensive than
GMC and MD in terms of a single simulation step, the major contribution to simulation
time in molecular systems is the evaluation of the long-range particle-particle-interactions.
Those interactions (forces and energies) have to be calculated for every step in all methods
and is O(N2), N being the number of particles in the system. The additional characteristic
cost of the AROMoCa algorithm is a result of the evaluation of the estimated acceptance
probabilities for the possible moves and is only O(N). As this is typically much smaller
(<10%) than the cost of the energy/gradient evaluation, the number-of-steps comparison
gives a good estimate of the performance of the AROMoCa approach. All simulations re-
ported below were performed with a Python-based implementation of AROMoCa using the
OpenMM package [92] for the calculation of forces between the atoms and system energies.
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Non-Interacting Particles in a Double-Well Potential

In the first set of simulations the efficiency of AROMoCa with respect to the simultaneous
movement of many particles at the same time was analyzed. As discussed above, the efficiency
of MC as compared to MD decreases rapidly with the number of degrees of freedom for
systems where the energy landscape is simple if only single particles are moved. Therefore,
non-interacting particles in a double-well were investigated. Therefore N = 104 particles
were initially placed with the positions uniformly distributed in an interval between xmin =
−10.0 nm and xmax = 10.0 nm and the potential was given by

UDW = c0
(
a x4 + b x2 + c x

)
(4.3.1)

with a = 0.0005 /nm4, b = 0.04 /nm2 and c = −0.05 /nm (see inset Fig.4.3.1a). The potential
strength was set to c0 = 5 kB T
The system is a good application for a primary analysis of the AROMoCa performance, as
the dynamics of the system comprises two phases: First, in the relaxation phase, each particle
will quickly relax to its nearest local minimum, while the distribution of the particles amongst
the minima (initially approx. 50:50) will remain far from the thermodynamic equilibrium
of the system. Only in the second phase, on a much slower time scale, will the system
equilibrate between the minima. This relaxation is characterized by the transfer rate of
particles crossing the barrier from either left or right and the characteristic time scale is
determined by the barrier height. In thermodynamic equilibrium the transition rates from
right to left and from left to right will equal after equilibration for any method. However,
methods differ in their absolute rates, by which efficiency can be measured. It is therefore
a key goal of the development of accelerated simulation methods to increase the total rate,
measured as function of the number of energy evaluations. This will control the accuracy of
the determination of thermodynamic expectation values.
AROMoCa and GMC simulations were perfomed comprising 10×106 MC steps with a fixed
displacement of 1.0 nm to either the right or left. The particles were equidistributed in the
beginning between xmin = −10.0 and xmax = 10.0 and the temperature was chosen such
that kB T = 1.0 kJ/mol. The height of the barrier in this system is 2.54 kB T for particles
in the shallower left minimum and 5.70 kB T for particles in the deeper right minimum.
The distance between the minima is approx. ∆xminima = 13 nm, hence 13 consecutive
steps in the same direction are required to move a particle from one minimum to the other.
AROMOCA simulations with collective moves for m = 1, 2, 4, 8, 16 and 32 independent
particle displacements per step were performed. The average energy per particle as a function
of the number of steps is displayed in Fig. 4.3.1a. The different slopes in the energy relaxation
clearly indicate the two phases of the simulation. GMC and AROMoCa with m = 1 result
in approximately equal energy relaxation, whereas for m ≥ 2 AROMoCa converges much
faster in energy (up to a factor of 20 for m = 32) than GMC.
The final distribution of particles was computed and compared to the Boltzmann distribution
in the given potential. In the long-time limit both methods converge to the Boltzmann
distribution (inset of Fig. 4.3.1b), but the AROMoCa simulations converge much faster, even
though the particles are moved independently, i.e. there are no collective effects. Fig. 4.3.1b
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Figure 4.3.1.: Comparison of generic Metropolis MC (GMC) and AROMoCa sim-
ulations with m = 1, 2, 4, 8, 16 and 32 multiple displacements per MC step. a)
Energy convergence in an one-dimensional double-well potential (inset). While
AROMoCa with m=1 and GMC perform equally, equilibration accelerates with
higher m and the equilibrium state is reached up to 20 times faster using ARO-
MoCa with m=32 than in the GMC simulation. b) The number of particles that
reach energies within kB T of the global optimum converges faster in AROMoCa
for larger values for m. The inset shows the final distribution function of the
particles after the 107 MC steps in GMC and AROMoCa (with m = 32) sim-
ulations compared to the exact distribution function. c) As the particles were
initially equidistributed between xmin = −10.0 and xmax = 10.0 the convergence
is measured by the transition rate of particles across the barrier. The particle
current across the energy barrier at x = 0 is shown as a function of the number
of simulation steps. A linear function is fitted to the transition values of the last
2 × 106 MC steps to determine the transition rates (table inset). The results
clearly show a strongly increased relaxation rate in the system for AROMoCa
with m ≥ 2 in comparison to GMC, leading to an overall increased performance.
Figure and caption published in [5].
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shows the fraction of particles that are within kB T of the global optimum. As for convergence
of the energy per particle, plotted in Fig. 4.3.1a, AROMoCa withm ≥ 2 outperforms GMC by
far. As explained above, the total transition rate of particles crossing the barrier determines
the sampling speed and hence the efficiency of the algorithm. The sum of the left-to-right
and the right-to-left particle currents crossing the barrier at approximately x = 0 is shown
in Fig. 4.3.1c. Linear fits to the last 2×106 MC steps result in the currents, displayed in the
inset. As the transition rate of AROMoCa increases with nearly unit slope almost linearly
with m, AROMoCa proves much more efficient for m ≥ 2.
Recalling the AROMoCa algorithm, this result appears counter-intuitive at first: Particles
that are not in equilibrium are much more likely to be selected and moved by AROMoCa
than particles near the minimum. Furthermore, the move selection criterion (left or right,
see Eq. 4.2.19) will favor relaxation to the nearest local minimum over crossing of barriers,
which is in fact a sequecne of steps uphill. Nevertheless, AROMoCa performs much better
than GMC because of its high acceptance rate (inset table Fig. 4.3.1c): On the one hand,
the local relaxation (moving with the gradient of the potential) must take precedence over
barrier crossing due to detailed balance being preserved by AROMoCa. On the other hand,
relaxation dynamics is increased, as many particles are moved with near unit acceptance
rate in every single step. This is demonstrated by direct comparison between AROMoCa
with m = 32 with an MC protocol that moves 32 particles at random with the standard
Metropolis acceptance rate: Here, the current across the barrier is approximately 30 times
higher in AROMoCa in comparison to generic MC.

Liquid-Crystal Transition for Lennard-Jones Systems

Subsequently the analysis of AROMoCa performance was extended to a system of interacting
particles. Therefore, AROMoCa was applied to a two dimensional Lennard-Jones model for
Argon (Lennard-Jones parameters ε = 0.99601 kJ/mol and σ = 0.3405 nm) at T = 50K
which is below the melting point. As initial configuration, 526 particles were distributed
randomly on a square surface of 9.5× 9.5 nm2. The system size was chosen based on initial
estimates on the convergence time for GMC. The limitation to the two dimensional case
was applied for easy visualization of domain growth and a 3D model is studied in the next
section. Simulations of AROMoCa with m = 1, 2, 3, 4, and 5 were performed and compared
to GMC. The maximal displacement was set to ∆xmax = 0.75nm in all simulations. To
evaluate the convergence of AROMoCa and GMC, the total system energy per step and
the q6 -bond-order parameter were monitored. The q6-parameter is based on the parameter
proposed by Steinhardt et al. [213], which is defined as:

ql(a) =

√√√√√ 4π
2l + 1

l∑
m=−l

∣∣∣∣∣∣ 1
n(a)

∑
NN(a)

fc(r)Ylm(θφ)

∣∣∣∣∣∣
2

(4.3.2)

Here,
∑
NN(a) is the sum over the nearest neighbors of atom a, n(a) = 6 is the number of

nearest neighbors taken into account, (r, θ, φ) are the spherical coordinates of the vectors
from atom a to the nearest neighbors and Ylm are the spherical harmonics. The cutoff
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Figure 4.3.2.: Liquid-to-crystal transition of a two dimensional Lennard-Jones
liquid. The convergence speed in terms of total system energy (left) and the
q6-bond-order parameter (see text) averaged over all particles (right) of generic
Metropolis Monte Carlo is compared to AROMoCa using different m. Exponen-
tial fits of the decay in energy indicate that AROMoCa converges up to six times
faster than generic MC. The rate of convergence increases with the number of
simulataneous displacements per MC step m for up to m = 4. The trends of the
q6 -bond-order parameter verify that the total order of the system is increased
througout the simulations faster in the AROMoCa simulation than using GMC.
Figure and caption published in [5].

function:
fc(r) =

(
1 + exp

(
r − r0
t

))−1
(4.3.3)

with t = 0.15Å and r0 = 5.451Å (1Å larger than the equilibrium distance) was used to
ensure that the six nearest neighbors contribute to the order parameter only if within a
certain limit.
The dependence of the average system energy and bond order parameter on the simulation
step is displayed in Fig. 4.3.2. The energy relaxation in the liquid-to-crystal transition is
well represented by an exponential function, E(step) ∝ exp(−step/τ). Comparison between
the fits for GMC and AROMoCa, also displayed in Fig. 4.3.2, results in an energy decay that
is eight times faster in AROMoCa than in GMC (τ = 559 vs. τ = 4316). Measurement of
the bond order parameter in the right panel of Fig. 4.3.2 indicates an increase in the local
order of the system induced by crystal transition. As for the energy, the order parameter
increases much faster using AROMoCa than GMC. Fig. 4.3.3 shows snapshots at step 0,
100, 1000, 2500 and 5000 of the GMC trajectory and the trajectory of AROMoCa with
m = 4, respectively, to further illustrate the ordering of the system. This visualization
clearly suggests a fast reduction of the fraction of disordered atoms, i.e. the particles not in
crystalline environment, to a constant fraction that arises from thermal fluctuations within
the first 2500 MC steps of the AROMoCa simulations. The same degree of order is not
reached in the GMC simulations after 5000 MC steps.
Subsequently the growth of crystalline domains in the sample was investigated in order to
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Figure 4.3.3.: The q6-bond-order parameter of each atom and step was calculated
to analyse the behaviour of the 2D Lennard-Jones model throughout the simula-
tion. The color code indicates the degree of order for each particle as indicated
in the top right. Snapshots for steps 0, 100, 1000, 2500 and 5000 are displayed.
First in AROMoCa the system reaches a nearly crystalline configuration after
less than 2500 steps and defects (red particles) occur afterwards to a constant
fraction due to thermal fluctuations, while GMC does not reach the same degree
of crystallinity after 5000 MC steps. Figure and caption published in [5].
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Figure 4.3.4.: Analysis of the growth of crystalline areas in the 2D system: For
each particle and step, ζ, the distance to the nearest particle that is not in a
crystalline environment (defined by q6 < 0.418) is measured (left). The central
panel shows the distribution of the GMC simulation and the AROMoCa simula-
tion using m = 4 at step 5000 and the right panel the moving average of < ζ >
for AROMoCa with m = 1, ...5 and GMC. < ζ > reaches an Eq.ilibrium value
of 40Å (just below half the system size) much faster with ARMoCa even when
using m = 1 than with GMC. Additionally AROMoCa performance improves
with increasing m. Figure and caption published in [5].

further analyze the mechanism of the ordering process. The distribution of the distance ζ
of each atom to the nearest "disordered" particle (defined by q6 < 0.418 ), i.e. the nearest
particle not in a crystalline environment, was measured on the basis of the q6 values occurring
in the simulation. ζ was calculated for snapshots taken every 100 simulation steps over a
simulation of 10k MC steps. The definition of ζ, its distribution and the evolution of its mean
value < ζ > are illustrated in Fig. 4.3.4. A moving average over up to 20 subsequent frames
of the simulation (a lower number was averaged in the first 20 frames) was computed in order
to compensate for the quite large fluctuations induced by a small size of the system. This
trend again illustrates the advantage of AROMoCa over GMC: < ζ > reaches an equilibrium
value of 40Å , which is just below half the system size, much faster for all values of m in
AROMoCa in comparison to GMC. Furthermore, the performance of AROMoCa improves
with higher m.
Finally a three dimensional LJ liquid consisting of 216 particles was studied. The results of
AROMoCa and GMC simulations were compared to a molecular dynamics (MD) simulation
of the same system. AROMoCa simulations were performed using m = 1, 2 and 4 displace-
ments per MC steps with a maximal step size of ∆xmax = 0.75nm. Again, Argon paramters
were applied and a temperature of T = 50K well below the melting point was used. The MD
simulation was performed deploying the Langevin integrator as implemented in the OpenMM
toolkit [92]. A time step of ∆t = 1.0 fs was used. In all simulations periodic boundary con-
ditions were applied in all three dimensions. The system energy was computed throughout
the simulations and is plotted in Fig. 4.3.5 as a function of the number of simulation steps.
Two plateaus in the energy are observed in the MD and AROMoCa simulations for m = 4,
corresponding to the supercooled liquid and crystalline phase, respectively. To verify the
phases, radial distribution functions were calculated and are displayed in Fig. 4.3.5b for the
two plateaus in Fig. 4.3.5a. As indicated by the analysis of the radial distribution functions,
all simulations first converge to a supercooled liquid state (encircled by dashed lines, dashed
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Figure 4.3.5.: Liquid-to-crystal transition of a three-dimensional Lennard-Jones
liquid. The radial distribution functions show distinct peaks after the transition
process (solid lines) in comparison to the super cooled liquid phase (dashed lines)
indicating a crystalline phase. The transition to a crystal is not observed at all in
the standard Metropolis Monte Carlo simulation. AROMoCa relaxes the system
with approximately the same rate as the MD simulation. The right panel shows
radial distribution functions for the encircled regions in Fig. (a) by averaging over
200 frames of the trajectories. The radial distribution functions were plotted for
the MD run and the AROMoCa run with m = 4. Figure and caption published
in [5].

RDF plots) before the crystal transition takes place in a subset of the simulations: Upon
crystal transition the RDF change their shape and show additional distinct peaks (encircled
in solid lines, solid RDF plots). Crystal transitions was observed for the MD simulation and
for the AROMoCa simulation with m = 4 between the simulation steps 4× 105 and 6× 105

at approximately the same number of function evaluations. No phase transition occurred in
the GMC runs and with AROMoCa using m ≤ 2. This result indicates that some collective
processes can be modeled using AROMoCa with comparable computational efficiency as by
deploying MD simulations.

Detailed Balance and Acceptance Rates: Limits of fbMC

The following section aims at a direct comparison of AROMoCa with a similar approach
to apply gradient-driven collective moves in MC methods, especially with force-bias MC
methods (fbMC) [44]. In fbMC and other previously developed methods [41, 43, 44, 200] the
gradient acting on single particles is used to determine the step size by which every single
degree of freedom is to be changed in one simulation step. By constructing displacements
such that the ratio between the probabilities to perform a move and the corresponding back
move is approximately the Boltzmann weight, i.e. by using ∆E ≈ ∇E|x∆x = −F (x)∆x,
detailed balance is preserved approximately. Different versions of this approach have been
proposed: Some methods apply an acceptance criterion that asserts detailed balance exactly,
while in other approaches, all proposed steps are accepted under the assumption that de-
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tailed balance is only weakly violated. In the latter approach, the acceptance rate is unity by
definition, i.e. every move is accepted, while the computation of thermodynamic expectation
values may be incorrect. This is not the case for methods deploying an acceptance criterion,
for which, however, the efficiency depends on the acceptance rate for a particular system.
In the following, both variants of the fbMC method are investigated and compared to ARO-
MoCa for simple test system, in order to analyze the impact of an acceptance criterion on
thermodynamic expectation values, such as the mean energy of the ensemble and on the
acceptance rates.
A small system of Argon with 216 atoms with Lennard-Jones interactions was considered.
To generate relaxed ensembles in gaseous, liquid and solid phase, the system was first equi-
librated at three different temperatures (T = 200K, T = 80K and T = 40K). Subse-
quently, fbMC and AROMoCa simulations were performed at each temperature with 106

MC steps each. Random displacements in all three dimensions were applied with step sizes
ranging from 0.005 nm to 0.075nm. A 100ps MD run at each temperature was performed
for reference, resulting in averaged energies of −1715.1 ± 7.0 kJ/mol, −1192 ± 11 kJ/mol
and −165.7 ± 9.8 kJ/mol for solid, liquid and gaseous system respectively. For fbMC and
AROMoCa, mean energy and standard deviation plotted over the step size are displayed in
Fig. 4.3.6.
The energies of the ensemble simulated with the fbMC method resemble the reference en-
ergy for small steps in the gaseous and liquid systems. However, the deviation is increasing
strongly with steps larger than 0.025 nm: While, in the gaseous system, the relative devi-
ations from the energy averaged over the MD simulations are relatively small for the step
sizes between 0.01nm and 0.025nm (deviations ranging from 1.2 % to 3.3 %), the deviations
amount to 25 % and even 155 % for step sizes of 0.05nm and 0.075nm respectively. The liq-
uid system shows similar behaviour, with a relative deviation of less than 2.5 % for step sizes
of up to 0.025 nm but deviations of already 50 % for step sizes of 0.05 nm. In the simulation
of the condensed system fbMC without acceptance criterion leads to a strong violation of
detailed balance: the physical ensemble is not well represented and the expectation values
of the energy increase drastically with the step size. Although the relative deviation is less
than 4 % for step sizes of up to 0.025 nm, the absolute difference of about 7.166 kJ/mol even
for the smallest step of 0.01nm is more than 21 times kB T at the simulation temperature
of T = 40K. This strongly hints at an incorrect computation of thermodynamic expectation
values and points out the necessity to use an acceptance criterion in fbMC to obtain proper
thermodynamic averages: Adequate results are obtained only for very small step sizes by ap-
proximating the change in energy by the product of gradient and displacement. In contrast,
using AROMoCa with the acceptance criterion derived in Eq. 4.2.17, the physical ensemble
is simulated without observable deviations, resulting in correct energies for all temperatures
and step sizes up to 0.075 nm. Notably, in the crystalline system, the absolute deviation is
only 1.55 kJ/mol for the largest tested step size of 0.075nm and the highest deviation of all
step sizes in all systems/temperatures is lower than 1 %.
Subsequently, the influence of an acceptance criterion applied in fbMC was analyzed by
studying acceptance rates for a system consisting of 1728 Lennard-Jones particles (same
parameters as above). Similar to the previous studies simulations consisting of 1000 MC
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Figure 4.3.6.: Analysis of detailed balance and acceptance rates of fbMC and
AROMoCa in different phases of the simulations. Left: Energy averaged over 105

snapshots of a 106 step simulations of an Argon system in the gaseous (T = 200K,
top), liquid (T = 80K, middle) and solid state (T = 40K, bottom) for different
methods (AROMoCa and fbMC) as a function of the step size. No acceptance cri-
terion was applied to the fbMC simulations. MD simulations of the same systems
were performed for comparison. AROMoCa reproduces the MD energy distribu-
tions (−1715.1±7.0 kJ/mol, −1192±11 kJ/mol, and −165.7±9.8 kJ/mol respec-
tively) very well. Right: Acceptance rates of AROMoCa and fbMC runs with
1000 MC steps of gaseous, liquid and solid Argon (1728 particles at T = 200K,
80K and 40K from top to bottom) for different step sizes. AROMoCa simulations
were performed using 64 < m < 1024 system changes per MC step. Especially
for larger step sizes (> 0.1 nm) AROMoCa reaches much higher acceptance rates
than fbMC. Figure and caption published in [5].
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steps were performed for the gaseous, liquid and crystalline phase (T = 200K, T = 80K and
T = 40K) after initial equilibration at each respective temperature. The acceptance criterion
of Eq. 4.2.17 was applied for fbMC with the product over all particles and directions and
acceptance rates were calculated for step sizes between 0.005nm to 0.025nm. AROMoCa
simulations were performed for m = 64, 128, 256, 512 and 1024 parallel displacements per
MC step. The resulting acceptance rates are displayed in the right hand side of Fig. 4.3.6.
The AROMoCa acceptance rates are close to 1.0 for up to m = 512 parallel displacements
for all step sizes in the gaseous state, where the fbMC acceptance rate becomes vanishingly
small for step sizes close to 0.025nm. In the liquid and solid phase acceptance rates larger
than 0.5 can be achieved in AROMoCa: By reducing m, movement is basically limited to
the most important regions of the system: As explained above, the smaller m, the larger
the probability to only move those parts of the system that are far from the equilibrium.
High acceptance rates are then achieved by increasing the probability to improve the total
system energy. As in fbMC, there is no distinction between the regions of the system close
to equilibrium and the regions farther away from equilibrium and the acceptance rate is
reduced drastically in this approach.

4.4. Application of the Second Order AROMoCa
4.4.1. A Model for Macro-Molecular Systems
In the following, the study of model systems of bonded macro-molecules is presented in
order to test the applicability of the AROMoCa version including the second order energy
estimator to peptides, polymers and proteins. I will discuss a simplified model of a chain
of atoms, resembling e.g. the back bone atoms of a protein, which nevertheless comprises
all relevant internal degrees of freedom and can easily be adapted to test applicability and
performance of AROMoCa to realistic systems. Additional features, such as side chains or
hydrogen atoms, are neglected for reasons of simplicity as their influence on the generation
of large-scale moves is expected to be negligible. The system energy is invariant under
translation and rotation and the position of the initial atom and the direction of the bond
between first and second atom were fixed in all simulations. As a simplified model for an
external potential that induces the construction of correlated moves, the final atom of the
chain was attached to the surface of a sphere using a harmonic potential:

Ufix(r) = 0.5 c (r − r0)2 (4.4.1)

Here, r is the distance to the center of the sphere located 3.1Å in x-direction from the rest
position of the last atom of the chain. The equilibrium radius was set to r0 = 3.0Å (in the
range of realistic LJ length scales) and a strong force constant of c = 100 kJ/mol/Å2 was
chosen in order to investigate the AROMoCa performance under a strong constraint. An
illustration of a setup comprising 20 atoms is given in Fig. 4.4.1. To avoid any systematic
error in the observations, the structures were constructed randomly at the beginning of each
simulation with realistic values for the rest positions, i.e. bond lengths of rk ∈ [1.35Å, 1.45Å],
angles of αl ∈ [1.35Å, 1.45Å] and values for the dihedral angles of φm ∈ [5

6 π,
10
6 π]. Internal
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Figure 4.4.1.: A chain of atoms is used as a model to analyse the application
of AROMoCa to polymeric or protein-like structures. Bond lengths, angles and
dihedrals are used as coordinates. Throughout all simulations, the first atom
(bottom right) is kept fixed. The last atom is attached to the surface of a sphere
with radius 3.0Å, depicted in blue, with an harmonic potential in order to study
the application of AROMoCa to external potentials.

potentials were calculated according to Eqs. 4.2.40, 4.2.41 and 4.2.42. Force constants were
set to kb = 50× 104 kJ/mol/Å2, ka = 500 kJ/mol and kd = 4.0 kJ/mol for bonds, angles and
dihedrals respectively, similar to realistic force-field values.

4.4.2. Preservation of Detailed Balance
To verify that detailed balance is preserved by AROMoCa, simulations were performed at
different temperatures T = 100K, T = 200K, T = 400K and T = 600K using a chain
of N = 30 atoms. The distance r between the last atom and the center of the artificial
harmonic potential was recorded over the course of 104 simulation steps. The distribution
of r was compared to the analytical occupation in thermodynamic equilibrium, calculated
according to:

ρ(r) = 1
Z

exp
(
−Ufix(r)

kB T

)
(4.4.2)

where Z is the partition function and Ufix(r) the artificial potential as defined in Eq. 4.4.1.
The results are displayed in Fig. 4.4.2. For each of the studied temperatures, the simulated
occupation matches the analytical distribution almost perfectly. This indicates that detailed
balance is indeed preserved by AROMoCa and that the correct thermodynamic ensemble is
sampled. Restricting this analysis to the single quantity r is sufficient, as this value is not
a system coordinate, i.e. it is not drawn by the AROMoCa algorithm directly. In fact, it is
a function of all internal degrees of freedom that need to be distributed properly to achieve
the correct distribution of r.
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Figure 4.4.2.: To verify the preservation of detailed balance by AROMoCa, a
chain of N = 30 atoms was simulated over 104 AROMoCa steps at different
temperatures. The occurance of the distance of the last atom to the center of the
artificial harmonic potential was recorded for different temperatures (bars) and
compared to the analytic occupation distribution.
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Figure 4.4.3.: Root-mean-square-deviation (RMSD) of the atoms in the system
with N = 30 over the simulation steps for AROMoCa, GMC and MD at three dif-
ferent temperatures. The rapid changes in RMSD in both MC based simulations
in comparison to MD indicate that the configurational change per simulation step
is larger in MC methods. Further, AROMoCa reaches large RMSD values faster
than MD, while the RMSD of the GMC simulations is limited to smaller values,
especially in the case of T = 500K.

4.4.3. Sampling Efficiency
Subsequently, the AROMoCa algorithm was compared to the well established protocols of
MD and generic Monte Carlo (GMC). MD simulations were performed using a python code
with OpenMM interface [92]. The Langevin integrator was used and the time step was set
to the standard value of ∆t = 1 fs. In GMC, only a single coordinate was changed per
MC step to achieve significant acceptance rates and the step size was drawn from a random
distribution between −0.1 and 0.1 (units in radian for angles and dihedrals or Å in the
case of bonds). The root-mean-square-deviation (RMSD) from the initial rest position was
calculated for every 10th frame using the gromacs toolkit (g_rms) [88, 89] and is displayed
for three different temperatures T = 100K, T = 300K and T = 500K for GMC, AROMoCa
and MD in Fig. 4.4.3. GMC as well as AROMoCa show fast fluctuations on a small scale
in the RMSD, while the course of the MD-RMSD is rather smooth. This is a not quite
surprising consequence of the methods: in MC, large changes to the system are applied
in each step (in the case of GMC only to a single coordinate), whereas MD is a sequence
of small steps limited by the 1 fs time step. Moreover and more important, the RMSD of
AROMoCa is superimposed by fluctuations on a larger scale of the order of half the maximal
observed RMSD. These fluctuations are not observed in either MD or MC. This indicates
a fast sampling of the phase space by AROMoCa, induced by large correlated changes to
all degrees of freedom in every single simulation step. In fact, especially for T = 300K,
AROMoCa reaches the maximal RMSD (> 0.3) three times within 104 simulation steps,
compared to a single occurrence in MD. GMC fails to reproduce high values of the RMSD
within the simulation time for T = 300K and T = 500K.
In order to quantitatively compare the sampling performance of AROMoCa and MD, the
distribution of each single degree of freedom was measured. As illustrated in Fig. 4.4.4a,
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Figure 4.4.4.: Quantitative comparison of the sampling efficiency: (a) The occupa-
tion distribution of any internal coordinate broadens throughout the simulation.
The width of the distribution is a measure for the sampling speed. Therefore,
the width σ of each individual internal coordinate is normed to the value of the
coordinate where the corresponding potential eqals 0.5 kB T , resulting in σ̂. The
average of σ̂ over all internal coordinates of the system is plotted over the sim-
ulation step in panel (b). Each harmonic degree of freedom contributes 0.5 kB T
to the inner energy in thermodynamic equilibrium, and the number n of steps
where 〈σ̂〉 equals 1.0 indicates thermalization of a system with only harmonic
potentials. As the dihedral potential is not harmonic, we find 〈σ̂〉 < 1.0 in many
runs and the number n of steps where 〈σ̂〉 = 0.8 is extracted as a measure for
sampling efficiency. This number of steps for MD, nMD, and AROMoCa, nAR,
is plotted over the temperature for different system sizes N in panel (c). Each
datapoint is the average over three independent runs. For small systems or small
temperatures, the speedup of AROMoCa compared to MD is two to three orders
of magnitude. For high temperatures, the speedup remains of the order one to
two orders of magnitude for N = 10 and N = 30, whereas MD and AROMoCa
perform comparable for N = 50 at T ≤ 300K. (d) The AROMoCa acceptance
rates are plotted in dependence of temperature for the respective systems.



CHAPTER 4. ADVANCED MC BASED ALGORITHMS 119

the distribution of a single coordinate broadens throughout a simulation. The width of each
coordinate can be used to measure sampling speed. In order to make the widths for bond
lengths, angles and dihedrals comparable, the width σi recorded for every coordinate at every
simulation step is normed to the value of the coordinate, where the corresponding potential
equals 0.5 kB T . For angle l, for example, this would result in

σ̂l = σl
(αl,kB T − αl,0) (4.4.3)

where αl,0 is the rest position and αl,kB T is defined via:

ka (αl,kB T − αl,0)2 = 0.5 kB T (4.4.4)

Here, ka and αl,0 are the force constant and equilibrium angle, respectively. For every simula-
tion step, the σ̂i are averaged over all coordinates. The resulting dependence of the averaged
〈σ̂〉 on the simulation step for N = 30 atoms at T = 300K is displayed in Fig. 4.4.4b.
Subsequently, the number n of steps where 〈σ̂〉 = 0.8 is extracted as a measure for sampling
efficiency. This value is used as indicator for thermalization of the system: In thermodynamic
equilibrium each harmonic degree of freedom corresponds to an inner energy of 0.5 kB T but
〈σ̂〉 = 1.0 is not always achieved as the dihedral potential is not harmonic. The correspond-
ing values nMD and nAR for MD and AROMoCa respectively were recorded for different
temperatures between T = 100K and T = 600K and three system sizes, N = 10, N = 30
and N = 50. To account for statistical fluctuations, three independent systems were sampled
for each data point. As GMC failed to reach 〈σ̂〉 within 105 simulation steps for all setups,
only MD and AROMoCa results are considered in Fig. 4.4.4c. At low temperatures, ARO-
MoCa outperforms MD by several orders of magnitude. While the speedup of AROMoCa
over MD is maintained at high temperatures for the smaller systems N = 10 and N = 30,
AROMoCa and MD performance becomes comparable for N = 50 at high temperatures.
Notably, AROMoCa performance is temperature independent but is decreasing with system
size, while MD performance is almost system size independent but is decreasing towards low
temperatures.
The tuning of MC simulation parameters usually presents a fine line between high acceptance
rates and significant system changes of individual MC steps: Moves affecting a limited
number of degrees of freedom per MC step allow high acceptance rates when the step size is
sufficiently small, whereas large, collective system changes usually dampen the acceptance
rate exponentially. The comparison to MD above however indicates, that AROMoCa indeed
manages to circumvent this dilemma. In addition to the large configurational changes per
MC step, indicated by the results above, the acceptance rate was recorded. For the three
systems N = 10, N = 30 and N = 50, the acceptance rate averaged over three independent
runs in dependence of the temperature is displayed in Fig. 4.4.4d. The acceptance rates drop
with increasing temperature and with increasing system size, and are thus an explaining for
the decreasing speedup of AROMoCa over MD for increasing N and T . We recall that
the AROMoCa algorithm has exactly unit acceptance for systems where all potentials are
harmonic in the degrees of freedom, as the estimator in Eq. 4.2.38 is exact for harmonic
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potentials. However, the dependence of the external coordinate r on the internal coordinates
is not linear and the estimator quality for the external potential decreases with increasing
configurational changes. As the step size drawn from the AROMoCa algorithm is increasing
with the temperatures, acceptance rates decrease consequently. However, regarding the
results of Fig. 4.4.4c, this is compensated by larger configurational changes per simulation
step. While the acceptance rate decreases with increasing number of degrees of freedom (i.e.
with N), we note that acceptance rates are still remarkably large, considering that every
single degree of freedom is changed simultaneously in every MC step.

4.5. Model Hopping
4.5.1. Controlled Biasing of Molecular Simulations: Model Hopping
A different approach to increase sampling in rugged energy landscapes is to bias the propa-
gation of the system towards those parts of the phase space where the potential is expected
to be minimal. While any infinite simulation at finite temperature will result in a major oc-
cupation of those regions, there are systems where the global optimum only occupies a small
fraction of the phase space and may in addition be separated by a large energy barrier from
other parts. As a result, a large fraction of the simulation time is spent on the propagation
of the system into this region, before thermodynamic expectation values can be calculated.
As explained in section 2.4.4, information about the system can be extracted e.g. from
previously formed substructures in order to gently bias the system towards regions of the
phase space where the potential is minimal. In order to preserve detailed balance, N systems
are modeled in parallel using different energy functions E0, E1, ... Ei, ... Ej , ... EN for
every model. The correct density of states in thermodynamic equilibrium is reproduced,
when exchange of two configurations Ci and Cj between models i and j is proposed after a
certain number of simulation steps and accepted with a probability of

ρexchange = min
{

1, exp (−β (Ei(Cj) + Ej(Ci)))
exp (−β (Ei(Ci) + Ej(Cj)))

}
(4.5.1)

Here, Ei and Ej are the energy functions of models i and j, respectively. In general, these
energy functions comprise the physical force field and a scaled bias potential. Unphysical
results, possibly evoked by a badly chosen bias potential, are ruled out by scaling the bias
potential to 0 in one of the models. The trajectory of the unbiased model can then be
used for the calculation of thermodynamic properties, as exchange of thermodynamically
unstable configurations into the unbiased model is prevented by applying Eq. 4.5.1. A
detailed description of the MH approach and the derivation of Eq. 4.5.1 is given in section
2.4.4.

4.5.2. Choice of the Energy Functions Ei

The overall speedup gained by the Model Hopping approach is mainly dominated by the
choice of the energy models Ei: While a strong bias leads to a fast propagation of the config-
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urations in the biased energy models, the exchange probability between models is dampened
by the strength of the bias, as we will show in the following. However, as thermodynamic ex-
pectation values can only be calculated on the basis of states realized in the unbiased model,
the simulation only profits from the additional simulation time induced by the parallel mod-
eling of multiple systems in the case of frequent exchange between the model. Otherwise,
modeling multiple models results in increased computational cost without any benefit.
Hansmann et al. [111] originally proposed to add a bias potential EB, scaled by a different
factor ai ∈ [0, 1] for every model i, to the physical Hamiltonian EA:

Ei = EA + aiEB (4.5.2)

The exchange probability between two models i and j is then given by

ρexchange = min {1, exp (β∆a∆EB)} (4.5.3)

with ∆a = aj−ai and ∆EB = EB(Cj)−EB(Ci). This exchange probability is independent of
the physical energy model EA. The impact of the bias strength on the exchange probability
can be exemplified by considering a simulation of two models i and j: W.l.o.g., let ai = 0,
aj = a0 > 0, EB(Ck) > 0 ∀k. Model i is completely unbiased whereas the propagation of the
configuration is biased towards a desired state in model j. After a certain simulation time
the configuration Cj will be closer to the desired state than Ci, resulting in bias energies
EB(Cj) < EB(Ci) and thus ∆EB < 0. The exchange probability is then given by

ρexchange = exp (−β a0 |∆EB|) < 1 (4.5.4)

In this choice of energy models Ei as given in Eq. 4.5.2, the acceptance probability between
models is exponentially dampened by the bias strength, a0. Unlike in the PT approach,
this cannot be circumvented by increasing the number of models N : Indeed, decreasing
∆a = a0/N between neighboring models leads to an increase in the exchange probability
between each pair. However, the total number of exchange attempts to "hand down" a
configuration from the model with the strongest bias into the unbiased model is increased
in equal measure and the total exchange probability as a product of the single exchange
probabilities remains that of Eq. 4.5.4.
Thus, a different choice of energy models will be used in the course of this work, where both
the physical energy function and the bias potential are scaled in all models according to

Ei = (1− ai)EA + aiEB (4.5.5)

with ai ∈ [0, 1.0]. For two systems i, j, inserting Eq. 4.5.5 into Eq. 4.5.1, results in

ρexchange = min {1, exp (β∆a(∆EB −∆EA))} (4.5.6)

with ∆a = aj − ai, ∆EB = EB(Cj)− EB(Ci) and ∆EA = EA(Cj)− EA(Ci).
Accordingly, consider a simulation deploying two models with ∆a = a0 > 0 and assume
∆EB < 0 after a certain simulation time. According to Eq. 4.5.6 acceptance probability
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of an exchange attempt is increased if ∆EA < 0. In other words, if the configuration of
the biased system, Cj , is energetically favorable compared to the unbiased configuration,
Ci, exchange is accepted with high probability. Furthermore, if the gain in physical energy,
∆EA, upon exchange overcompensates the "loss" in bias energy, ∆EB, exchange is accepted
with unit probability, independent of a0. This consideration highlights the role of the bias
strength: An arbitrary large bias potential, resulting in ∆EB � 0, exponentially dampens
exchange acceptance. Only if ∆EA and ∆EB are comparable in magnitude, the exchange
probability differs significantly from zero. Hence, the strength of the bias potential needs
to be tuned with consideration, as it is always a trade-off between fast convergence in the
simulation periods between the exchange attempts and exchange acceptance probability.

4.5.3. A Model for the Nucleation of Molecular Crystals
The main aim of this study is to test the applicability of Model Hopping to the growth of
molecular crystals. Unlike in single atom crystals, where the ordering is determined by the
translational degrees of freedom, the orientations of the molecules play a key role in the
ordering process.
In order to limit computational time and thus allow for a thorough analysis of the MH
algorithm parameters, simple models are used. All models comprise non-interacting particles
in an artificial energy landscape that is adapted to mimic the key challenges of the growth
of a molecular crystal: The filling of defects in a crystalline layer, the continuous growth of
a step edge and the nucleation of several molecules as the starting point of a new layer.

Step 1: Filling of a Defect Repairing a single defect in a crystalline layer is dominated by
the particle position and orientation of molecules plays a minor role. Hence, this process is
mimicked by a single isotropic particle in a slightly rugged substrate potential. To account
for the site of the defect, a potential well is added at the center. The composite substrate
potential is given by

Usubstrate = Z(z)Uxy(x, y) (4.5.7)

The potential in z-direction is a LJ-like potential inducing adsorption of the free atom on
the surface:

Z(z) = 4.0 ε
((

σz
z

)12
−
(
σz
z

)6
)

(4.5.8)

Here, ε was set to ε = 1.0 kJ/mol. In order to reproduce a rugged energy surface, Uxy(x, y)
was set to

Ux,y(x, y) = c+ εx,y(cos(αx) + cos(αy)) kJ/mol + Upit (4.5.9)

where Upit emulates the defect site:

Upit = εpit exp
(
−x

2 + y2

2σ2
xy

)
kJ/mol (4.5.10)
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Figure 4.5.1.: Model Hamiltonian for the simulation of the growth of molecular
crystals. (a) A periodic potential in x-y-direction with an additional binding
site in the middle mimics the binding of a molecule in a single defect site on a
rugged surface. (b) The binding site surrounded by an energy barrier is used to
model activated processes such as the continuous growth of an existing step edge.
The parameters were adapted to reproduce the energies of a single particle on a
physical LJ-substrate using standard carbon LJ parameters.

We used c = 4.0 kJ/mol, εx,y = 0.5 kJ/mol and εpit = 7.5 kJ/mol in order to reproduce
the energy landscape of a realistic Lennard-Jones surface with standard carbon force field
parameters, where the binding energy in the defect position was measured to be −11 kJ/mol
and the energies on the rugged surface varied between −4.13 kJ/mol and −2.81 kJ/mol. This
artificial potential is illustrated in Fig. 4.5.1a.
A simple bias potential of

EB = c0 r, r =
(
(x− x0)2 + (y − y0)2 + (z − z0)2

)1/2
(4.5.11)

was applied and the substrate potential of Eq. 4.5.7 was used as physical potential EA.
Deploying this model, the dependence of the convergence speed on the number of models nM
and the bias strength c0 was analysed. Obviously, computational effort scales linearly with
nM , and the number of models should be reduced as far as possible. While PT simulations are
known to require multiple intermediate models, this assumption is questionable for MH, as
explained previously. The model mimicking the single defect in the crystalline surface via the
model Hamiltonian given by Eqs. 4.5.7 – 4.5.10 were simulated using nM ∈ [2, 10] models.
Four independent runs per value of nM were performed at T = 35K. Ten independent
GMC runs were performed for comparison and the number of steps to repair the defect was
averaged. Convergence in MH was reached once the single atom was at the site of the defect
in all models in MH.
The results are displayed in Fig. 4.5.2 and promote the following conclusions: First, there is
no significant dependence of the convergence on the number of models nM . Consequently,
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Figure 4.5.2.: Dependence of convergence speed on MH parameters nM and c0:
a) Number of MC steps necessary to converge the MH runs in dependence of the
number of parallel models. The bias strength was set to c0 = 1.0 kJ/mol/nm
for all runs and results were averaged over independent runs. Ten independent
Generic MC runs were performed for comparison (label inset). No significant
dependence of the convergence on nM is visible. b) Using nM = 5 the con-
vergence was averaged over 5 independent runs for each value of c0. For c0 =
4.0 kJ/mol/nm some of the five independent runs and for c0 = 8.0 kJ/mol/nm all
of the five independent runs did not converge at all as the exchange probability is
decreasing with increasing bias strength. For further analysis the acceptance rate
of the exchanges between the physical model and the model with the weakest bias
was also plotted as a function of the bias strength. As expected, the exchange ac-
ceptance decreases if c0 exceeds a certain value (in this case, c0 = 1.0 kJ/mol/nm).
The simulation with c0 = 0.25 kJ/mol/nm did not converge after 500× 103 MC
steps. For the system studied, values up to c0 = 2.0 kcal/mol/nm are reasonable.
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unlike in PT, nM = 2 is the optimal setup for efficient sampling. This supports the hypothesis
that exchange probabilities are solely determined by the choice of the energy models and
not by the number of models, as discussed in section 4.5.2. Second, the average number of
steps needed for convergence in GMC is about ten times as large as the number of steps
necessary in a MH simulation (see inset in Fig. 4.5.2a). As the computational effort in MH is
nM × nMC with nMC being the number of MC steps, only nM ≤ 8 is computationally more
efficient than GMC. Using nM = 2 induces a speedup of approximately 7. Keeping in mind
that GMC relies on complete random diffusion for short range interaction (which is also
indicated by the large standard-deviation of the convergence speed of GMC), the speedup
can be expected to increase with size and complexity of the system at hand.
The number of steps necessary to converge the MH simulation with nM = 5 models in
dependence of the bias potential are displayed in Fig. 4.5.2b. The averaged exchange rate
is included. Exchange is radically impeded for bias strengths of c0 = 4.0 kJ/mol/nm and
c0 = 8.0 kJ/mol/nm and not all systems were fully converged. While the weakest bias
(c0 = 0.25 kJ/mol/nm) shows significant exchange rates, it is too weak to bias the system
efficiently and convergence is not reached at all. However, simulations using bias strengths
of c0 = 0.5 kJ/mol/nm, c0 = 1.0 kJ/mol/nm and c0 = 2.0 kJ/mol/nm show exchange rates
significantly larger than zero and good convergence.

Step 2: activated processes For the second challenge in the deposition of molecular crys-
tals the potential was modified to mimic activated processes. In activated processes the
system has to overcome an energy barrier in order to reach a thermodynamically stable
state. Examples for activated processes include the binding of small molecules to proteins
or, as explained above, the continuing growth of the step edge of a molecular crystal. In the
latter, a deposited molecule has to undergo a reorientation into an energetically unfavorable
state, before attaching itself to molecules in a crystalline phase. The potential given by
Eqs. 4.5.7 - 4.5.10 was modified by adding a potential barrier around the defect site:

Upit = −7.5 exp
(
−x

2 + y2

2σ2
xy

)
kJ/mol + cb exp

(
− x2 + y2

2(3σxy)2

)
(4.5.12)

The potential is illustrated in Fig. 4.5.1b. MH and GMC runs with 100×106 MC steps were
performed using this potential with different values for cb, leading to energy barriers of up
to 7.63 kJ/mol (which is more than 25×kB T at T = 35K). In MH, two parallel models with
a bias strength c0 = 2.0 kJ/mol/nm were used and the number of MC steps that are needed
for the particle to reach the binding site in both models was averaged over three independent
runs for the MH simulations and five independent runs for GMC. The averaged results are
displayed in Tab. 4.5.1.
While the performance of MH and GMC is comparable for the lowest barrier, cb = 1.0 kJ/mol
(1.76 × 106 energy evaluations with MH vs. 2.4 × 106 energy evaluations with GMC), MH
outperforms GMC for cb = 2.0 kJ/mol with a speedup of 1.86. For higher energy barriers,
the defect site was not reached in GMC, as the probability to cross the energy barrier drops
exponentially with the barrier height ∆Eb. MH on the other hand is capable of reaching the
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?

Figure 4.5.3.: Schematic illustration of the deposition of crystals consisting of
planar molecules. Only when a certain number of molecules is deposited on a
smooth layer, the new layer can form in a crystalline orientation. Up to this
critical number, the flat orientation is energetically favorable.

defect site nevertheless, as the bias potential is pushing the system across the energy barrier
in the biased model and exchange is accepted.

Step 3: Nucleation events A possible approach to the simulation of molecular crystal is
layer-by-layer growth using single molecule deposition [1]. A major challenge in this protocol
is the nucleation of crystalline seeds consisting of several molecules: single molecules that
are newly deposited on top of a perfect crystalline layer are often arranged in a configura-
tion that is different from the crystalline orientation and position (surface reconstruction).
Only when the number of molecules exceeds a certain value, the crystalline state becomes
energetically favorable and nucleation takes place. To achieve nucleation, single molecules
need to first leave their stable single-molecule-configuration, which requires energy, and sub-
sequently arrange in the crystalline position and orientation to reach the global optimum.
The time scale for such correlated activated processes often exceeds the limits of MD, while
GMC fails to construct the necessary correlated moves with a significant probability. This is
illustrated in 4.5.3 for the case of planar moleculesFneg. For a limited number of molecules,
the flat orientation is favorable. For nucleation to take place, they have to be brought in
upright orientation, which costs energy, before the system gains energy upon nucleation into
the global optimal state.

Table 4.5.1.: Convergence of activated processes using MH, modeled by a binding
site surrounded by an energy barrier. GMC and MH runs were performed for
different values of cb (see Eq. 4.5.12) resulting in different barrier heights.

cb / kJ/mol barrier ∆Eb / kJ/mol convergence MH / 106 steps convergence GMC / 106 steps
1.0 0.52 0.88± 0.44 2.4± 2.2
2.0 1.11 0.97± 0.34 3.6± 3.0
4.0 2.37 2.1± 1.5 > 100
8.0 4.97 5.4± 0.5 > 100
12.0 7.63 > 10 > 100
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(a) (b)

Figure 4.5.4.: Schematic illustration of a nucleation event: a) before the critical
number of nucleation partners is in a state similar to the nucleation state (stand-
up configuration of pentacene, etc) this state is energetically not favorable. b) As
soon as the number of particles in the for single particles energetically unfavorable
nucleation state exceeds a certain value, nucleation can take place, leading to a
very stable configuration. As soon as there is one micro-crystal, other particles
can easily attach to it.

To emulate this behaviour, multiple non-interacting particles were simulated and the surface
potential of Eqs. 4.5.7-4.5.10 was changed as follows: All particles in the system are biased
towards a certain region. The occupation of this region is energetically unfavorable, as long
as the number of particles in the region is below a critical value. This corresponds to the
unfavorable reorientation of single molecules (e.g. molecules being forced into the upright
position). As soon as the number of particles in this "nucleation zone" exceeds a certain
value – being the equivalent of enough molecules in the crystalline configuration – nucleation
takes place and the occupation of the nucleation zone becomes energetically favorable. This
corresponds to the nucleated state being stable, when the number of molecules exceeds a
critical value. This is illustrated in Fig. 4.5.4.
To achieve this behavior, the potential mimicking the defect site, Upit, is modified to

Upit =

−chill/
(
e(r−µ)/σ + 1

)
, nnucl < ncrit

+cnucl/
(
e(r−µ)/σ + 1

)
, nnucl ≥ ncrit

(4.5.13)

Here, chill > 0 and cnucl > 0 represent the energetical cost for reorientation of single molecules
and the gain per molecule upon nucleation, respectively (negative sign will be compensated
by U(z)-LJ-like potential). µ is the size of the nucleation zone and r the distance from the
middle of the nucleation site. In this model, the distance to the nucleation zone emulates
the orientation of a molecule in a realistic molecular system. nnucl is the number of particles
already inside the nucleation zone and ncrit the number of particles necessary for nucleation
to take place. σ is a measure for the slope of the potential at the edge of the nucleation
zone. For chill = 2.0 kJ/mol and cnucl = 20.0 kJ/mol, MH simulations using 5 × 106 steps
were performed using the bias potential given in Eq. 4.5.11 with c0 = 2.0 kJ/mol/nm. GMC
simulations for comparison were omitted as the simulation of activated processes suggested
that an energy barrier of chill = 2.0 kJ/mol cannot be crossed without bias potential. The
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Figure 4.5.5.: Simulation of a nucleation event for different numbers of particles.
For 2, 4, 8 and 16 particles nucleation was observed in less than 5 × 106 MC
steps. The time needed for complete convergence scales approximately linearly
with the number of particles in the system squared, n2

p.

critical number of particles needed for nucleation was set to np =2, 4, 8 and 16. Exchange was
attempted every 100× np steps. Convergence was reached once nucleation was observed in
all models. The convergence behaviour is displayed in Fig. 4.5.5. For all systems, nucleation
was observed in less then 5 × 106 MC steps. As this simple model system contains all
relevant features of a nucleation event, this indicates that nucleation events can in principle
be modeled using the Model Hopping approach.
Subsequently, in order to investigate the behaviour of the MH algorithm in dependence of
barrier heights, the simulation of this nucleation event was attempted using Model Hop-
ping for different combinations of values for chill and cnucl. The strength of the bias
was kept at 2.0 kJ/mol/nm and the simulation was performed with 8 (non-interacting)
particles. Parameter combinations of chill = 2.5 kJ/mol, 4.0 kJ/mol and 8.0 kJ/mol and
cnucl/chill = 1.0, 2.0, 4.0, 8.0 and 16.0 for value of chill were applied. Regarding the simu-
lation result, there are three possibilities: nucleation is successful in the biased model and
exchange between the biased and the unbiased model leads to nucleation also in the unbiased
model (3/3); the energy barrier is crossed in the biased model but exchange is not realized
(3/7); nucleation occurs in neither the biased nor the unbiased run (7/7). The results for
the MH runs are displayed in Tab. 4.5.2. GMC results are included for comparison. While
nucleation is not observed at all in GMC (as was expected due to chill > kB T ), nucleation
occurred in all biased simulations independent of chill. However, exchange between the mod-
els leads to an increase in the bias potential of the biased model, if the configuration that
was simulated in the unbiased energy function is farther from the desired state than the
configuration simulated with the biased energy function. Only if this is overcompensated
by the energy gain upon nucleation, which occurs due to the fact that the physical energy
model is scaled by 0.5 in the biased energy model, exchange is accepted and the application
of Model Hopping successful. This was the case for ratios of cnucl and chill larger than 2.0.
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Table 4.5.2.: Nucleation results for different energy barriers chill and ratios of
cnucl/chill. The MH simulations were performed using two models and 8 × 106

MC steps. For comparison, GMC simulations were performed for every value of
the energy barrier using 7 × 107 MC steps. Results are divided in three cate-
gories: Nucleation was successful in all models (3/3), the energy barrier could
be overcome but exchange did not occur (3/7) and nucleation was not observed
at all (7/7).

XXXXXXXXXXXcnucl/chill

chill 2.5 kJ/mol 4.0 kJ/mol 8.0 kJ/mol

1.0 3/7 3/7 3/7

2.0 3/7 3/7 3/7

4.0 3/3 3/3 3/3

8.0 3/3 3/3 3/3

16.0 3/3 3/3 3/3

GMC 7/7 7/7 7/7

4.5.4. Transfer to Realistic Systems: Pentacene
The results above strongly suggest that it is, in principle, possible to apply MH for the
fast deposition of molecular crystals, where the orientation of the molecules is essential to
the ordering of the structure. To verify the applicability to real systems, the first challenge
discussed above, namely the filling of a defect site in the smooth layer of the molecular
crystal, will be analysed using a molecular crystal of pentacene.
In addition to the position dependent bias potential introduced above, a second bias is
applied affecting the orientation of the pentacene molecules:

Uorientation = −cz
∣∣∣∣cos

(
pz
2.0 (φ− φ0)

)∣∣∣∣ (4.5.14)

A periodicity of pz = 2 is used and the equilibrium angle is set to φz = 5.74◦, as extracted
from a perfect crystalline pentacene structure.
The bias potentials are illustrated in Fig. 4.5.6. In order to increase diffusion, basin hopping
by simulated annealing (SA) was applied using cycles using 50 SA cycles with 4 × 103

MC steps each, annealing from T = 3500K to T = 500K. Exchange of the configurations
between the unbiased and the biased energy model was attempted after each SA cycle.
After some rough pre-tuning of the bias strength, MH was applied to the system using
c0 ∈ [0.5, 1.0] kcal/mol/Å and an orientation strength of cz = 30.0 kcal/mol.
Exchange was accepted in 33 out of 50 attempts for c0 = 0.5 kcal/mol/Å and in 32 out of 50
attempts for c0 = 1.0 kcal/mol/Å. The distance of the molecule to the hole in both energy
models after each exchange attempt is displayed in Fig. 4.5.7. Especially the simulation using
c0 = 0.5 kcal/mol/Å illustrates quite well how the MH algorithm works: In the beginning,
no exchange is performed. Model 1 (containing the biased energy function) converges quite
fast to the defect position. Once the defect position is reached in the biased model, exchange
is accepted almost every attempt and the defect is repaired after less than 80×103 MC steps



130 4.6. SUMMARY AND OUTLOOK

(a)

x,y

bias

(b)

θ
θ

bias

0

(c)

Figure 4.5.6.: Fixing a defect in a smooth pentacene surface: (a) in order to
repair the defect, the molecule has to be put into an upright position and placed
at the defect position. A position (b) and orientation (c) bias potential are used
to achieve the correct position and orientation of the pentacene molecule in the
biased model in the MH run.

in both models.
For comparison, three independend GMC runs were performed with the same number of SA
cycles as in the MH simulations. The number of steps per SA cycles in GMC was increased
to 10 × 103. As diffusion is pretty high at the temperatures in the simulation, the starting
point of one SA cycle is de facto irrelevant. Hence, the three simulations are comparable to
one large GMC run consisting of 150 MC cycles.
The defect was not repaired in any of the simulations, suggesting a speedup factor of at least
150
19

10
2·4 = 9.87 of MH compared to GMC for this specific problem - in fact, it is not clear

that the defect will be repaired in GMC in any feasible simulation time at all.

4.6. Summary and Outlook
Towards Unit Acceptance Rates
Molecular simulations are presently limited in system size and time-scale by the computa-
tional effort required to overcome long autocorrelation times. In this chapter the AROMoCa
algorithm as a generic approach to generate complex collective and correlated moves with
high acceptance rates in Monte Carlo simulations was investigated. By performing changes
to the system based on an estimator for the change in energy induced by a potential move,
higher acceptance rates for collective and even correlated moves can be achieved.
Two versions of the AROMoCa approach were presented. In the first version, the forces
were used to identify degrees of freedom far from equilibrium and to construct collective,
uncorrelated moves with high acceptance rates. AROMoCa using the first order energy
approximation converged important physical observables, such as order parameters, faster
than Metropolis MC methods for all of the systems studied in this chapter. Moreover,
the performance of AROMoCa was comparable to molecular dynamics simulations for the



CHAPTER 4. ADVANCED MC BASED ALGORITHMS 131

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45 50

di
st

an
ce

 / 
Å

step / 4k

model 0
model 1
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(b) c0 = 1.0 kcal/mol/Å

Figure 4.5.7.: Distance of the single molecule to the defect position in the sub-
strate before each exchange attempt. Once the molecule is in the defect position
in both models, the simulation is converged. Model 0 started in the unbiased
force field and Model 1 in the force field including the bias. Exchange happens
frequently once the desired configuration is reached in the biased system.

crystallization of a three dimensional Lennard-Jones liquid. Protocols similar to the first
order AROMoCa, which moves a single particle, has been previously investigated, amongst
others for the equilibration of water [41, 200]. The results in this chapter however imply that
the change of a single coordinate per MC step is often insufficient to significantly accelerate
the simulation convergence. Rather, a balance between the number of particles moved in
a single MC step and the displacement of each degree of freedom is essential to obtain
an optimized algorithm. The computation of gradients incurs roughly a factor of three in
computational effort compared to the energy evaluation alone and efficient computationally
optimized implementations are available in many MD programs. In the first order AROMoCa
algorithm the total computational effort is therefore still dominated by the evaluation of
gradients and energy. Accordingly, the cost induced by the move construction was below
10 % in the simulations reported above. Although similar ideas have already been explored
in fbMC (force biased Monte Carlo) or uniform-acceptance force-bias Monte Carlo [43, 44],
previously established methods lack one key feature: the identification of the degrees of
freedom with values far from the local equilibrium, which is the central element of the first
order AROMoCa method, is the essential new ingredient that generates acceptance rates
close to unity for collective moves, while exactly preserving detailed balance at all times.
In the second part of this chapter the second order AROMoCa approach was applied suc-
cessfully to macro-molecular systems. Our results indicate that detailed balance is preserved
exactly while achieving large acceptance rates. A measure for the sampling efficiency of the
macro-molecular system was introduced and the performance of AROMoCa compared to
the gold standard MD. We found that in small systems, thermalization happens basically
instantaneously in AROMoCa, while this process is limited by the femtosecond time step in
MD. Depending on system size and temperature, AROMoCa outperformed MD by several
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orders of magnitude. While the calculation of the energy estimator applied in the second
version of AROMoCa exceeds the calculation of atomic forces and thus induces additional
computational costs, the second order energy derivatives therein lead to a coupling of single
degrees of freedom. This is the key feature to the construction of correlated moves that are
necessary for the efficient simulation of many molecular systems, but cannot be realized in
previously presented accelerated MC based protocols such as fbMC. In these methods, like
in the first order AROMoCa algorithm, multiple uncorrelated moves are combined into a
collective, yet still uncorrelated change to the system. A major issue to address in future
studies is the system size dependence of the AROMoCa acceptance rates. In fact, the map-
ping of cartesian coordinates onto internal degrees of freedom and thus the estimator for the
energy change is only accurate for small changes. Furthermore, the absolute error in this
mapping increases with the distance between cartesian coordinate and internal degree of
freedom, i.e. the size of the system. An improvement of the mapping accuracy will therefore
increase the acceptance rate and hopefully remove the system size dependence of the overall
performance.
In summary we found that AROMoCa is a generic MC based algorithm that can accelerate
the simulation of many systems. The large speedup of the second order AROMoCa in
comparison to MD simulations for small systems makes it a promising tool for the study
of polymeric films, which are of high interest in organic electronics presented in the next
chapter. Further, AROMoCa can be combined with or embedded in other methods such
as simulated annealing (SA) [107], Multiple Try Monte Carlo (MTM) [197, 198], parallel
tempering (PT) [108] or Model Hopping methods [111] that presently are based on generic
Metropolis Monte Carlo or MD methods. This opens many possibilities for improvement of
computational efficiency for a variety of applications.

Model Exchange in Molecular Simulations
In addition to the derivation of AROMoCa, the applicability of the Model Hopping approach
[111] to the growth of molecular crystals was analysed. Therefore, a model system mimicking
the key challenges in this process was constructed. The study of this model system suggested
that, unlike in PT, the application of only two models, a biased and an unbiased one, is
sufficient for the effective application of MH. Further, the choice of the bias potential and
its strength is crucial for the exchange probabilities. In all three applications, namely the
filling of a single defect in a smooth crystalline layer, activated processes and the model
for nucleation events, convergence was reached where generic MC protocols showed limited
performance or failed to produce the desired result completely. Notably, activated processes
with activation barriers of ∆E > kB T were overcome by the MH approach. Moreover, the
collective activation of multiple degrees of freedom that is necessary for nucleation events
was achieved. Here, the global energetic minimum occupies only a tiny fraction of the
configuration space. As a result of the large physical time scales of these processes, long
simulation times are required in MD, while the probability to collectively activate the relevant
degrees of freedom at the same time in GMC is vanishingly small due to large autocorrelation
times. Successful application of MH to a realistic molecular crystal using the example of
pentacene concluded this study.
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In summary, the MH approach is a promising tool for the simulation systems where conver-
gence is impeded by correlated effects or configuration space characteristics such as energy
barriers or small volume fractions of global minima. MH can be applied to induce a drift
towards relevant parts of the configurational space in MD and, in addition, to reduce auto-
correlation times in MC based protocols.
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5. Summary and Outlook

Inorganic semiconductors are well established and frequently used in a variety of present-
day technological applications, such as lighting or electronic and photovoltaic devices. As a
complementary technology with promising prospects, organic semiconductors have been in-
tensely investigated for applications in energy conversion and electronics for several decades.
On account of this, organic electronic devices have already reached the market for some
applications, such as displays in mobile devices and TV-sets. Further, materials on the basis
of organic small molecules or polymers have been successfully employed in large area OLED
and OPV technology, promising inexpensive, large scale production of efficient and durable
devices.
Nevertheless, there remain many challenges in the realization of inexpensive, market-ready
thin-film devices. In principle, thin layers of amorphous organic compounds can be generated
via solution processing, instead of small scale, troublesome vacuum vapor deposition. Besides
jet-printing of customized electronic devices, this allows large-scale roll-to-roll processing of
organic materials and thereby the production of large-area multi-layer OLED or OPV devices
in a time- and cost-efficient manner. The power conversion efficiency (PCE) of solution
processed devices, however, is significantly lower and their degradation much faster than in
devices generated using vacuum vapor deposition.
The reasons of observed limitations in OLED and OPV devices are to date not fully under-
stood. For instance, there is an active debate on the fundamental mechanisms of exciton
dissociation at interfaces in OPV devices. Similarly it is generally acknowledged that the low
mobility of charge carriers and excitons in OLED materials prevent large-area applications
and it remains a mystery, how charge carriers are transported in guest-host systems, where
the guest molecules (typically emitters) trap charge carriers in concentrations way below the
percolation limit. In summary, despite decades of research, many fundamental functional
principles in organic devices are not fully understood, in part owing to the complexity of the
systems.
While experimental analysis and characterization of organic materials is essential for the
development and enhancement of organic electronic devices, computer-based analysis of or-
ganic material properties and in silico device development may contribute significantly to the
overall progress of organic electronics: First, device level simulations could give insight on
microscopic processes that are responsible for limited PCE and fast degradation. Second, the
identification of suitable materials by the presently practised trial-and-error approach, involv-
ing experimental synthesis, small scale production and characterization of organic electronic
devices, is both costly and time-consuming. Efficient pre-screening of organic compounds
via modeling of device characteristics on the basis of single molecule properties may speed
up the search for novel, efficient and durable materials.
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However, the amorphous arrangement in many organic materials renders ab initio calculation
of material properties challenging, as the amorphous phase induces charge carrier localiza-
tion and disorder in the electronic structure of each individual constituent. While DFT or
Hartree-Fock methods can be applied to the calculation of molecular electronic structures in
the gas phase, the treatment of organic materials on the nanometer-scale using these methods
is presently not feasible. In fact, although computational resources become more powerful,
there is no single method available that covers all necessary length- and time scales for the
simulation of organic electronic devices. Therefore, a promising approach is the combination
of multiple methods designed for the calculation of effects and processes on specific time and
length-scales.
In this work I presented a multiscale modeling approach that allows the simulation of organic
electronic materials including morphology and electrical properties on the electronic scale,
aiming at the in silico design of organic electronic devices: In this approach the geometry
of organic compounds is optimized using quantum-mechanical calculation methods in a first
step. Subsequently, molecular modeling methods, i.e. molecular dynamics or Monte-Carlo
simulations, are applied to generate atomistic morphologies on the nanometer scale using
force-fields parametrized from QM. Rates for charge transfer between localized orbitals can
then be calculated using Marcus theory of hopping transport, and Kinetic Monte Carlo
simulations or analytical models yield macroscopic observables, such as the charge carrier
mobility. Details on this multiscale protocol were given in chapter 2.
In chapter 3, this approach was applied to a variety of materials: First, I studied the elec-
tronic properties of thin layers of small organic molecules to demonstrate the power of the
multiscale modeling approach. Using molecule specific force-fields, I generated atomistic
morphologies for nine different materials with experimental mobilities ranging over several
orders of magnitude. Microscopic hopping parameters were extracted from the electronic
structure and the charge carrier mobilities were calculated in good agreement with experi-
mental values. This indicates that macroscopic bulk-properties can be calculated from first
principle using the multiscale modeling approach, which is an important step towards in
silico material design.
While amorphous layers of organic compounds are widely investigated and realized in exper-
iment, the encapsulation of organic materials in solid state junctions remains challenging.
Due to limited layer stability, the materials are damaged when electrode material is deposited
on top and sophisticated methods have to be applied to realize electronic contacts. However,
these approaches either include specialized electrodes such as Hg-drops or require additional
intermediate layers, increasing complexity or costs and thus hampering the development of
thin and flexible large-area devices. Therefore, in a second investigation, I studied a system
where layer stability is increased by coordinating FeII redox centers to terpyridine units,
resulting in rigid, extended one-dimensional molecular wires (MCMWs). The geometry of
the MCMW-units was optimized and force-field parameters were extracted on quantum-
mechanical level. Monte Carlo simulations yielded a densely packed arrangement of a set of
wires that could be extended into thin periodic layers. Further structural analysis shows that
high stability is induced by strong electrostatic interaction between the components of the
material. QM calculations yielded high electron mobilities in agreement with experimental
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observations, showing that transport can proceed off-wire.
Subsequently, I studied the electronic properties of three-dimensional porous metal-organic
frameworks (MOFs). MOFs have been intensely studied over the past decade and the com-
bination of organic compounds with metal centers opens the prospect of thin, light-weight
devices with intriguing properties. To date, over 20000 different MOFs have been real-
ized and employed successfully in a variety of applications, such as CO2 capture, hydrogen
storage, sensing and photovoltaics. Despite continuous efforts, only insulating MOFs have
been reported to date, impeding their application in electronic devices. Recently, loading of
HKUST-1, a prototype MOF, with TCNQ and F4TCNQ, however, was reported to increase
the MOF conductivity by several orders of magnitude, but an explanation for this radical
change in the electronic properties of HKUST-1 had yet to be established. Therefore, I inves-
tigated the electronic structure of HKUST-1 using different methods. DFT calculations on
the periodic HKUST-1 yielded the band-structure along the high symmetry lines. A band-
gap beyond the optical range and weak dispersion for bands close to the Fermi-level were
found to be the fundamental reasons for limited charge transport in HKUST-1. Excitation
energies extracted from refined DFT cluster calculations verified the value calculated for the
band-gap, in agreement with experimental data. In the last study presented in chapter 3
I analysed the impact that small molecules loaded into the pores of HKUST-1 have on its
electronic structure in order to explain the increased conductivity of HKUST-1 loaded with
TCNQ and F4TCNQ. I first studied the loaded state by optimizing the geometry of TCNQ
and F4TCNQ in HKUST-1 and found a configuration of host and guest molecules that ex-
plains the formation of additional charge channels through HKUST-1 via MOF-guest bonds.
Electron mobility was calculated for first-order and second-order charge transfer processes
using Marcus theory and Kinetic Monte Carlo simulations. The results indicate that electron
transport through the combined MOF-guest-system is dominated by second-order effects for
which an increase in the mobility of several orders of magnitude was observed in agreement
with experimental data.
In the last part of this thesis, I investigated a method to accelerate molecular simulations
using molecular dynamics or Monte Carlo methods. These molecular modeling techniques
are frequently used in a wide range of scientific problems concerned with structure formation
on the scale between 1 nm and 1µm, such as the folding of proteins, phase transition of glassy
films and prediction of amorphous organic structures. Therefore, they are also an important
component of the multiscale modeling approach. Despite continuing efforts to develop better
methods and increased computational power, standard methods where structure formation is
relevant suffer from intrinsic limitations, such as the femto-second integration time-step (MD)
or low acceptance rates and long autocorrelation times (MC). In chapter 4 I developed a novel
approach to generate complex collective and correlated moves with high acceptance rates in
Monte Carlo simulations. In this Acceptance Rate Optimized Monte Carlo (AROMoCa)
method, correlated MC moves are constructed on the basis of an estimator for the change
in energy that is induced by potential moves, thus increasing system dynamics by achieving
high acceptance rates for large step sizes.
In a first version of the method, energy gradients were used to focus system changes on
regions of the phase space far from equilibrium. Collective moves with high acceptance
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rates were achieved by biasing the move construction with an energy estimator based on
the atomic forces, while preserving detailed balance exactly. This approach was applied to
several systems of increasing complexity. In a direct comparison of AROMoCa and MD
simulations of the crystal transition of a three-dimensional Lennard-Jones liquid, the well
established MD protocol and the novel MC method were competitive for the first time.
In a second version of the algorithm, I included the second-order Taylor expansion in the
energy estimator to allow larger system changes and induce correlated moves affecting all
degrees of freedom in a single simulation step. This algorithm was applied to a model
system mimicking macro-molecules in order to test its applicability to proteins and polymers
and to allow comparison to MD simulations. Comparison of coordinate distributions in the
simulations of MD and AROMoCa demonstrated a speedup of AROMoCa over MD. However,
results indicate that MD outperforms AROMoCa for larger systems at high temperature.
This indicates that the advantage of AROMoCa can be fully exploited in setups where system
dynamic is hampered, e.g. near phase transitions.
In many applications of molecular modeling methods, the thermodynamically stable configu-
ration covers only a small fraction of the multidimensional configuration space. Additionally,
the region of the phase space where the potential is minimal may be surrounded by an energy
barrier, rendering the progress towards global equilibrium an activated process. The simu-
lation of such correlated activated processes, e.g. molecular nucleation events, is infeasible
with standard MD or MC based protocols due to millisecond-time-scales and long autocorre-
lation times, respectively. Concluding chapter 4, I therefore investigated the Model Hopping
(MH) approach regarding its applicability to the growth of molecular crystals. In the MH
protocol, information on the system of interest can be used to bias replicas of the system
towards the global minimum in the potential energy surface. Exchange between replicas and
the unbiased system is restricted by an acceptance criterion and allows enhanced sampling
while preserving detailed balance. Three critical aspects in the growth of molecular crystals
– the filling of a defect in a perfectly smooth layer, the continuous growth of a step-edge
and the nucleation on top of a smooth layer – were investigated using model systems. For
all three systems I found that the MH simulations outperformed the established Metropolis
MC method, indicating that MH can help to increase sampling efficiency of correlated or
activated processes.
The work presented here is thus one step towards the development of multi-scale modeling
methods for device level simulations and opens the prospect of efficient characterization and
prediction of organic material properties, and the in silico design of OE devices. The meth-
ods presented can be applied for pre-screening of materials, limiting laborious experimental
trial-and-error device characterisation and thus facilitating the development of novel organic
materials.

Thanks to intensive research over the past decades, organic materials have been used success-
fully in a variety of interesting applications including market-ready devices, such as mobile
displays. Nevertheless, there are many open questions regarding the properties of organic
electronic devices, e.g. the structural formation and the behaviour of charge carriers near
organic-organic interfaces. Most present-day OLED devices comprise several layers and it is
unclear how molecules arrange near these interfaces and, further, how the molecular packing
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and the resulting molecular electronic structure in these regions influence the device proper-
ties. Furthermore, the formation of excitons by electron-hole recombination in the emission
layer of OLED devices, the diffusion of excitons and the radiative decay need to be analyzed
for a full explanation of OLED device characteristics. Similar questions arise in the structural
formation of OPV devices. By phase separation, a binary mixture of e.g. a polymer and a
small molecule form domains of bulk-hereojunctions. Size and arrangement of these domains
directly determine the electrical device properties. Neither structural domain formation nor
electronic properties such as exciton generation and diffusion within the domains, exciton
separation at the interfaces between the domains or the transport of electrons and holes to
the electrodes are to date fully understood.
In addition, both OLED and OPV technology comprise organic-inorganic interfaces that
pose a twofold challenge. First, the deposition of electrode material can damage the organic
material, and novel electrode materials and processing techniques are required for inexpensive
large-scale production. Second, the electronic processes at these organic-inorganic interfaces
are to date not fully understood but play a crucial role in the device efficiency. Furthermore,
in both OPV and OLED devices, the fast degradation of organic materials produced by
solution processing is one of the major draw-backs in the realization of inexpensive large-area
devices. Therefore, a fundamental understanding of the dependence of molecular packing on
the production method, the ageing of material due to charge transport and the sensitivity
of charge transport properties to defects is a major goal in the establishment of organic
materials in electronic applications.
The results of chapter 3 demonstrate that multiscale simulation methods are able to com-
pute macroscopic properties of organic semiconductors, indicating that multiscale modeling
is a promising approach toward device calculations from first principle. In regard of the
limitations described above, the extension of the multiscale modeling approach toward the
theoretical description of complete devices is a prominent goal in current research. The
charge transport calculations, as presented in these studies, however, were limited to the
simulation of either holes or electrons in the bulk material. To capture all physical effects,
device level simulations require the description of additional processes in the bulk material
as well as at organic-organic and organic-inorganic interfaces as mentioned above. A full
description should therefore include the quantum-mechanical simulation of exciton genera-
tion via photon absorption or thermal activation, excition diffusion through bulk material,
exciton separation at interfaces and radiative exciton annihilation.
In order to simulate exciton processes, charge transfer at interfaces and electronic proper-
ties on the device level, atomistic morphologies on the micrometer scale need to be gener-
ated to capture effects, such as the molecular packing at rough organic-organic interfaces in
OLEDs or the formation of heterojunctions in OPV. The most straight-forward approach
is the development of accelerated MD and MC methods. Advanced methods and increased
computational power may help to overcome fundamental bottle-necks in the simulation of
structural formation on the micrometer scale. The developed AROMoCa algorithm and the
MH method aim in this direction. However, all studies to date investigated model systems,
and while these models were selected to mimic relevant features of realistic systems, the per-
formance of AROMoCa and MH when applied to realistic systems such as proteins, polymers
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or small flexible organic molecules has yet to be tested.
An alternative approach to the atomistic simulation of microscale structures is the application
of coarse grained models. In these models, several atoms or molecules are combined into a
single unit, thus limiting the number of degrees of freedom. This allows the simulation of
large systems up to the device scale, but adequate parametrization of the interaction between
coarse units and the re-mapping onto atomic resolution that is needed for electronic transport
calculations remains ambitious.

Despite various achievements over the past decade, the development of efficient, inexpensive
applications of organic electronics still poses a challenge to theory and experiment. In this
context, the establishment of device level simulations is a crucial goal in the progress of
OLED and OPV technology, as these simulations promise to deliver insight on fundamental
limitations of current devices and may support the development of suitable materials as an
alternative to practised experimental trial-and-error approaches.



A. Programs and Tools

In addition to programs and packages mentioned in the respective results sections, the fol-
lowing tools were used throughout this thesis:

A.1. Data Analysis
Data analysis was performed using python with the numpy and scipy libraries.

A.2. Graphics and Illustrations
• PyMOL, Version 1.4.1, was used for rendering molecular systems.

• Scientific data was plotted using gnuplot.

• Inkscape was used for post-processing graphs, rendered pictures and the construction
of illustrations

• Povray was applied for the construction of rendered objects in the introduction
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B. Abbreviations, Figures and Tables

Frequently Used Abbreviations
LED Light emitting diode

PCE Power conversion efficiency

OLED Organic light emitting diode

OFET Organic field effect transistor

OPV Organic photovoltaic

MOF Metal-organic framework

QM Quantum mechanics/mechanical

MD Molecular dynamics

MC Monte-Carlo

GMC generic Monte-Carlo (Metropolis-MC)

AROMoCa Acceptance Rate Optimized Monte Carlo

MH Model Hopping

DFT Density functional theory

KMC Kinetic Monte-Carlo

MM Molecular modeling

ESP Electrostatic potential

NDDO Neglect of Diatomic Differential Overlap

SA Simulated Annealing

PT Parallel Tempering

HOMO Highest occupied molecular orbital

LUMO Lowest unoccupied molecular orbital
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SX super-exchange

MCMW Metal centered molecular wire

LJ Lennard-Jones

RMSD Root-mean-square-deviation
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C. Calculation of the Derivatives of Cartesian
Coordinates with Respect to Internal
Coordinates

C.1. Indexing
In order to apply AROMoCa with the second order estimator to bonded macromolecules, it
is necessary to express changes in potentials defined in cartesian space in internal coordinates
(bonds, angles, dihedrals). Therefore, the derivatives of cartesian coordinates with respect
to internal coordinates need to be calculated for the application of Eqs. 4.2.59 and 4.2.60.
To allow a straight forward implementation, all indices (i.e. indices for atoms, bonds, angles
and dihedrals) start at 0. Accordingly, the bond with index k is the bond between the atoms
k and k + 1, the angle with index l is defined by the vectors from atoms l to l + 1, vl, and
from atoms l+ 1 to l+ 2, vl+1, and the dihedral angle with index m is defining the rotation
around the bond between the atoms with indices m + 1 and m + 2. This is illustrated in
Fig. 4.2.2. Further, the rotation axis of a rotation around this angle is the vector normal to
vl and vl+1 at the atom with index l+ 1, denoted n̂l+1 by the corresponding rotation matrix
R(n̂l+1, αl). The rotation matrices for dihedral angle m is D(v̂m+1, φm). For more details
on indexing and definitions, see main text, section 4.2.4.

C.2. First order Derivatives
C.2.1. First Order Bond Derivatives
The position of atom i, xi, can be written as:

xi = v0,k−1 + vk + vk+1,i = v0,k−1 + rk v̂k + vk+1,i (C.2.1)

where vk = rk v̂k is the bond vector from atoms k to k + 1 with bond length rk. As the
vectors preceding and following vk are independent of rk, the first derivative of xi in rk is

∂

∂rk
xi = v̂k ∀ k < i (C.2.2)
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l l+1

l+2
αl

i

nl+1

vl+1,i

Figure C.2.1.: For the calculation of the first order angle derivatives, the change
of the vector from atom l+1 to atom i upon a change of the angle αl is analyzed.

C.2.2. First Order Angle Derivatives
An illustration for the calculation of first order angle derivatives is presented in Fig. C.2.1.
Using the left hand rules for cross products as learned in high school1 and the illustration
in Fig. C.2.1, a rotation of ∆αl around the vector v̂l × v̂l+1 would decrease angle αl. Thus,
the normal vector for the rotations of the angles αl at atoms l + 1 is chosen as

n̂l+1 = −v̂l × v̂l+1 (C.2.3)

The derivative of position xi with respect to angle αl is calculated by splitting the vector
into two parts:

xi = v0,l+1 + vl+1,i (C.2.4)

As v0,l+1 is independent of the change of angle l, only the second contribution is considered.
Rotation of vl+1,i around rotation axis n̂l+1 by an infinitesimal angle ∆αl results in a modified
vector v′l+1,i:

v′l+1,i =R(n̂l+1,∆αl)vl+1,i (C.2.5)

≈(1 + ∂

∂αl
R(n̂l+1, αl)|αl=0 ∆αl)vl+1,i (C.2.6)

The change of the atom position xi, ∆xi then equals the change of vector vl+1,i:

∆xi = v′l+1,i − vl+1,i ≈
∂

∂αl
R(n̂l+1, αl)|αl=0 ∆αl vl+1,i (C.2.7)

resulting in the first angle derivative:

∂

∂αl
xi ≈

∆xi
∆αl

= ∂

∂αl
R(n̂l+1, αl)|αl=0 vl+1,i ∀ l < i− 1 (C.2.8)



APPENDIX C. CALCULATION OF THE DERIVATIVES OF CARTESIAN
COORDINATES WITH RESPECT TO INTERNAL COORDINATES 149

ϕm

m

m+1

m+2

m+3

vm+2,i

Figure C.2.2.: For the calculation of the first order dihedral derivatives, the change
of the vector from atom m+ 1 to atom i upon a change of the dihedral angle φm

is analyzed.

C.2.3. First Dihedral Derivative
Accordingly, the derivative of xi in dihedralm is calculated by measuring the change of vector
vm+2,i from the atom position at the end of the bond that is rotated, atom m + 2, to the
atom i, upon rotation of dihedral m by ∆φm around the rotation axis of the corresponding
bond, v̂m+1:

v′m+2,i =D(v̂m+1,∆φm)vm+2,i (C.2.9)

≈
(

1 + ∂

∂φm
D(v̂m+1, φm)|φm=0∆φm

)
vm+2,i (C.2.10)

This results in:

∂

∂φm
xi ≈

∂

∂φm
D(v̂m+1, φm)|φm=0 vm+2,i ∀ m < i− 2 (C.2.11)

Notably, the derivative of cartesian coordinates with respect to bonds is exact, whereas the
angle- and dihedral derivatives are only an approximation.

C.3. Second Order Derivatives
C.3.1. Second Order Derivative Bond Bond
As the unit vector of each bond is independent of all other bond unit vectors, this is fairly
easy:

∂2

∂r2
k

xi = ∂

∂rk

∂

∂rk
xi = ∂

∂rk
v̂k = 0 ∀ k (C.3.1)

1 (thumb × index finger) is parallel to middle finger (when pointing in 90◦ away from thumb and middle
finger); rotation around an axis aligned to your left hand thumb rotates in direction of all other fingers
while doing the "thums up" sign).
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C.3.2. Second Derivative Angle Angle – Same Index
From the considerations above, we get:

∂2

∂α2
l

vl+1,i = ∂2

∂α2
l

R(n̂l+1, αl)|αl=0vl+1,i (C.3.2)

C.3.3. Second Derivative Dihedral Dihedral – Same Index
... and the same for dihedrals:

∂2

∂φ2
m

vm+2,i = ∂2

∂φ2
m

D(v̂m+2, φm)|φm=0vm+2,i (C.3.3)

C.3.4. Second Derivative Angle Bond
If the bond is preceding the angle (k <= l), the two degrees of freedom are independent and

∂2

∂rk∂αl
xi = 0 (C.3.4)

as a change in the bond length does not influence the rotation of vl+1,i around the normal
vector n̂l+1.
If, however, the bond is after the angle in the construction of the chain, k > l, the second
derivative is non-zero, as the change of rk along the rotated vector v′k induces a different
shift in the position of atom i:

v′l+1,i =v′l+1,k + v′′k + v′k+1,i (C.3.5)
=R(n̂l+1,∆αl)vl+1,k +R(n̂l+1,∆αl) (v′k) +R(n̂l+1,∆αl)vk+1,i (C.3.6)
=R(n̂l+1,∆αl)vl+1,k +R(n̂l+1,∆αl) (vk + ∆rkv̂k) +R(n̂l+1,∆αl)vk+1,i (C.3.7)
=R(n̂l+1,∆αl) (vl+1,k + vk + vk+1,i) (C.3.8)

+R(n̂l+1,∆αl) (∆rkv̂k) (C.3.9)
=R(n̂l+1,∆αl) (vl+1,k + vk + vk+1,i) (C.3.10)

+ (1 + ∂

∂αl
R(n̂l+1, αl)|αl=0∆αl)(∆rkv̂k) (C.3.11)

=O(∆η1) + ∂

∂αl
R(n̂l+1, αl)|αl=0 ∆αl ∆rkv̂k (C.3.12)

The second derivative in bonds and angles is the expression containing two ∆ηm:

∂2

∂αl∂rk
= ∂

∂αl
R(n̂l+1, αl)|αl=0 v̂k ∀ l < k < i (C.3.13)
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m+1
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nm+1

vm+1,l+1 vm+1,i

Figure C.3.1.: For the calculation of second order angle derivatives, first the
change of the vector from atom m + 1 to atom i, vm+1,i upon change of angle
αm and subsequently, the change of vector vl+1,i from atom l+ 1 to atom i upon
a change of the angle αl is analyzed.

C.3.5. Second Derivative Bond Dihedral
Without going further into detail: This is the same as the angle-bond case. I have it written
on some paper but right now I am too lazy to tex it. We get:

∂2

∂φm∂rk
= ∂

∂φm
D(v̂m+1, φm)|φm=0 v̂k ∀ l + 1 < k < i (C.3.14)

C.3.6. Second Derivative Angle Angle – Different Indices
Let l and m be the indices of two angles and let w.l.o.g. be l < m. Then there are two
possible approaches:

1. first, the second angle along the chain, m, is changed and then the first angle l

2. the first angle along the chain, l, is changed first, followed by the change of angle m

While it is possible to calculate the derivatives using both ways, both are expected to repro-
duce the same result in the infinitesimal limit, as derivatives commute:

∂

∂x

∂

∂y
f(x, y) ≡ ∂

∂y

∂

∂x
f(x, y) (C.3.15)

We expect the first approach to be slightly less intensive, as the normal vectors of the rota-
tion remain fixed; following approach 2, the normal vector n̂m+1 will change upon rotation
of vl+1,m+1 around the first normal vector n̂l+1, leading to a extensive calculation of the
dependence of n̂m+1 on αl. Therefore, we will focus on the first approach, changing angle m
first and subsequently modifying angle l. A supporting illustration is given in Fig. C.3.1
Change of angle m modifies the vector from atom m + 1 to atom i, vm+1,i → v′m+1,i,
therefore inducing a modification of the vector from atom l + 1 to atom i, vl+1,i → v′l+1,i =
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vl+1,m+1 + v′m+1,i. An additional change of angle l results then in:

v′′l+1,i =R(n̂l+1,∆αl)(vl+1,m+1 + v′m+1,i) (C.3.16)
=R(n̂l+1,∆αl)(vl+1,m+1 +R(n̂m+1,∆αm)vm+1,i) (C.3.17)

≈
(

1 + ∂

∂αl
R(n̂l+1, αl)|αl=0∆αl

)
× (C.3.18)(

vl+1,m+1 +
(

1 + ∂

∂αm
R(n̂m+1, αm)|αm=0∆αm

)
vm+1,i

)
(C.3.19)

=vl+1,m+1 + vm+1,i (C.3.20)
+O(∆η1) (C.3.21)

+ ∂

∂αl
R(n̂l+1, αl)|αl=0

∂

∂αm
R(n̂m+1, αm)|αm=0 vm+1,i ∆αl ∆αm (C.3.22)

and the second derivative can be extracted:

∂2

∂αl ∂αm
x

(1)
i = ∂

∂αl
R(n̂l+1, αl)|αl=0

∂

∂αm
R(n̂m+1, αm)|αm=0 vm+1,i (C.3.23)

C.3.7. Remaining Derivatives
The derivatives for angle-dihedral and dihedral-dihedral are calculated accordingly and are
given in the main text in Tab. 4.2.1.
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