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CHAPTER1
Introduction

1.1 Motivation
Atrial fibrillation (AF) is the most common sustained arrhythmia in humans [1].
Although not being lethal itself, AF is associated with severe complications, such
as cerebral stroke and increased mortality. 25% percent of all strokes are ac-
counted to AF [2]. With more than 8 million people affected in the European
Union alone, AF represents a huge socio-economic burden. Besides the higher
mortality and impaired quality of life, AF causes estimated costs of ≈26 billion
¤ in the European Union [3, 4]. As an age-related arrhythmia, the number of
patients is estimated to double within the next decades [4, 5]. Therefore, good
therapeutic and preventive strategies are of paramount importance.
Despite considerable research efforts and progress regarding the understanding
of mechanisms driving AF, state-of-the-art therapy comprising pharmacological
treatment and catheter ablation is not effective in up to 50% of patients in the long
run [6, 7]. The development of post-ablational atrial flutter (AFlut) poses a par-
ticular problem [8]. Besides further clinical and wet-lab research, computational
models of atrial electrophysiology are a promising complement and might serve
as a remedy for the AF burden [9, 10].
Mathematical representations of the cardio-vascular system spanning multiple
spatio-temporal scales and levels of integration provide means to gain mechanistic
insight [9, 11, 12]. Therefore, computational modeling is an emerging and aspir-
ing complementary approach to animal experiments and clinical trials [13]. In
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silico methods have the advantage of yielding quantitative results, of providing
a controlled environment allowing to study how changes of certain parameters
affect the system, of causing no harm to patients or animals, and of being capable
of bridging gaps across levels of integration [14]. The latter is of particular im-
portance considering that a lot of the fundamental changes happen on very low
levels of integration: e.g. mutations of genes altering the properties of cardiac ion
channels or drug therapies targeting specific binding sites of ion channels. The
phenomena of interest, e.g. AF, often happen on the organ level on the other hand.
Multi-scale simulations of such effects are often insightful and imperative for a
comprehensive assessment because the altered fundamental biophysical proper-
ties enter the system in a complex and mostly non-linear way, often resulting in
non-intuitive changes on higher levels of integration. Moreover, experimental
data are available on very low levels of integration (e.g., ion currents) and very
high levels of integration (e.g., the ECG) with missing links on intermediate levels
in many cases. Model-based approaches can bridge this gap arising from a lack
of data, thus foster our understanding and facilitate the development of tailored
therapeutic approaches.
Within the scope of this thesis, computational models of human atrial patho-
electrophysiology ranging from the ion channel level up to the electrocardiogram
(ECG) on the body surface are developed, advanced, and employed aiming at
tailored therapies at different levels of individualization:

◦ Mechanism-specific: Elucidate basic mechanisms, such that the physicians
can apply them to a patient’s individual situation.
◦ Group-specific: Develop therapeutic approaches that are optimal for a

specific sub-population of patients (e.g. specific atrial substrates defined by
comorbidities, genetic variations, or disease induced remodeling).
◦ Patient-specific: Optimize a therapy based on a personalized model of the

patient.

By employing the models and applying the insight derived from them, both
the patients’ and the socio-economical burden of AF can hopefully be reduced
eventually.
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1.2 Aims of the Thesis

The following major challenges are addressed in this thesis:

• Development of a method to integrate measured ion current data into models of
cardiac electrophysiology robustly by means of parameter estimation.

• Multi-scale characterization of atrial substrates regarding their arrhythmic
potential. Substrates comprise effects of remodeling due to chronic AF and
familial AF substrates represented by two mutations of the human ether-à-go-
go-related gene (hERG).

• Investigation of the dynamic mode of action of antiarrhythmic agents on patho-
logic substrates.
◦ Comparison of amiodarone and dronedarone under consideration of the

atrial substrate, as well as the circadian variation of heart rate and drug
concentration.
◦ Evaluation of the experimental data base regarding the mode of action of

vernakalant.
• Optimization of pharmacotherapy considering the genetic profile of the patient

aiming at the prevention and therapy of familial AF.
• Implementation of a mesh-type-agnostic pipeline to augment anatomical models

with a priori knowledge regarding myocyte orientation, interatrial connections,
and ablation lesions.

• Development of a comprehensive methodology to determine the vulnerability
to AFlut considering individual anatomical and electrophysiological properties
aiming at an in silico evaluation of planned AF ablation patterns to overcome
the learning by burning paradigm and reduce the incidence of post-ablational
AFlut.
• Evaluation of factors influencing P-wave morphology in the body surface ECG.

◦ Contribution of the left and the right atrium.
◦ Effect of the location of the earliest activated site in the right atrium and

the conductive properties of the posterior interatrial connections.
◦ Influence of left atrial hypertrophy.

3
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1.3 Structure of the Thesis
Part I outlines the medical fundamentals and the basic principles of computational
cardiac electrophysiology.
◦ Chapter 2 gives a brief introduction to cardiac anatomy and electrophys-

iology. The atrial arrhythmias flutter and fibrillation are introduced and
state-of-the-art pharmacological and interventional therapeutical approaches
are presented.
◦ Chapter 3 provides an overview of state-of-the-art techniques regarding

computational models of cardiac electrophysiology. The models cover
various scales ranging from single ion channels via integrated cell models
and excitation propagation in tissue up to the body surface potential level.

Part II presents studies regarding the effect of alterations of cellular electrophysi-
ological properties using in silico methods.
◦ Chapter 4 presents and evaluates methods to integrate experimental data in

mathematical models by reparametrizing the mathematical formulations. In
this way, models reflecting gene mutations, the effect of pharmacological
agents, or the distinct properties of sub-populations can be obtained.
◦ Chapter 5 characterizes different atrial substrates leveraging computational

models. Besides two gain-of-function mutations of the human ether-à-go-
go-related gene (hERG), a model representing chronic atrial fibrillation
induced remodeling is formulated and characterized.
◦ Chapter 6 introduces methods to investigate the mode of action of pharma-

cological agents in silico. The compounds amiodarone and dronedarone
are characterized regarding their dynamic effects on pathological substrates.
Regarding vernakalant, relevant gaps in the experimental data are identified.
Finally, hypothetic and existing multi-channel blockers are designed and
optimized paving the way for tailored pharmacotherapy of familial atrial
fibrillation.

Part III describes a novel method to quantify the vulnerability to atrial flutter in
personalized models.
◦ Chapter 7 presents methods to augment anatomical models with a priori

knowledge regardless of the underlying type of mesh. In this way, infor-

4
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mation regarding myocyte orientation and interatrial connections can be
included in the models. Moreover, methods to introduce standard ablation
patterns, as well as user-defined lesions are presented.

◦ Chapter 8 presents a pipeline of methods to identify vulnerable paths in
the atria along which atrial flutter can be sustained. The novel approach
considers the individual anatomy of the patient as well as heterogeneous,
anisotropic, and heart rate dependent tissue properties.

Part IV presents three studies elucidating the genesis of the P-wave and determi-
nants of morphology.
◦ Chapter 9 quantifies the contribution of the two atria to the P-wave in

different leads in a temporally resolved manner.
◦ Chapter 10 shows how the location of the earliest activated site and the

conductive properties of the posterior interatrial connections affect the P-
wave. In particular, the effect of these two contributors on P-wave terminal
force in ECG lead V1 is evaluated.

◦ Chapter 11 presents methods to dissect the effects of left atrial hypertrophy
and dilation on the P-wave.

Chapter 12 summarizes the findings presented in this thesis.

During the almost three years of research leading to this thesis, I published four
journal papers and 13 conference contributions as first author and an additional
journal publication is under review. As a co-author, one journal paper and eight
conference contributions were published and two papers are under review. Five
conference contributions are currently under review. Moreover, I supervised eight
student theses that partly form the basis of the work presented here (cf. List of
Publications and Supervised Theses at the end of this thesis).
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CHAPTER2
Medical Fundamentals

In this chapter, the basic medical fundamentals are presented that are essential to
understand the studies presented in Parts II to IV and put them into context. After
a brief discussion of atrial anatomy and physiology, cardiac electrophysiology is
summarized. Then, the atrial arrhythmias flutter and fibrillation are introduced and
state-of-the-art pharmacological and interventional treatments are presented. The
interested reader is referred to the cited references for a more in-depth introduction
to the different topics.

2.1 Atrial Anatomy and Physiology
The heart is a cone-shaped, hollow muscle and located in the pericardial sac within
the thorax. The four-chambered system is anatomically and functionally divided
in two halves by the septum. Each half consists of an atrium and a ventricle that
are separated by the atrioventricular plane and connected via valves controlling
the blood flow (Figure 2.1). While the ventricles fulfill the pumping function of
the heart by ejecting blood from the left ventricle into the aorta and from the right
ventricle into the pulmonary arteries, the atria are in the focus of this thesis. The
atria collect the blood continuously flowing from the veins and entering the heart.
In this way, they allow uninterrupted venous blood flow to the heart and prevent
circulatory inertia [16]. The right atrium (RA) collects blood from the systemic
circuit via the superior vena cava (SVC), the inferior vena cava (IVC), and also the
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Interventricular septum

Figure 2.1: The human heart and the great vessels. Blood flow is indicated by dashed red
arrows. Reproduced from [15] with permission.

blood perfusing the heart itself from the coronary sinus (CS). The RA ejects and
passes blood to the right ventricle via the tricuspid valve (TV). The right ventricle
ejects into the pulmonary circuit which leads back to the left atrium (LA) via the
lungs where the blood is oxygenated. Blood enters the LA through (normally)
four pulmonary veins (PVs) and leaves it via the mitral valve (MV) into the left
ventricle. The left ventricle pumps blood out of the heart into the systemic circuit
via the aorta. As the systemic circuit leads back to the RA, the circulatory loop is
closed.

2.1.1 Atrial Anatomy
The atrial anatomy is characterized by prominent muscular bundles, particularly
in the RA, and regions with distinct properties (Figure 2.2). The LA is located
posteriorly in the thorax with its posterior wall being adjacent to the oesophagus.
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Fig. 2.3. Schematic representation of the major atrial fiber bundles and layers. Blue: septo-atrial bundle
(subendocardium), red: septo-pulmonary bundle (subepicardium), light blue: Bachmann’s bundle, green:
crista terminalis, green: intercaval bundle, pink: pectinate muscles, black: circular fiber orientation around
vessel orifices and valves as well in the appendages.

changes [57, 58]. Fibers are oriented circumferentially symmetric in the muscular
sleeves of the PVs [52].

2.1.1.3 Fiber Architecture

The myofiber architecture in the human atria is characterized by non-transmural
fiber layers and a number of prominent muscular bundles. Figure 2.3 schemati-
cally shows the major fiber bundles and layers in the right and left atrium. In the
right atrium, myofibers encircle the tricuspid valve ring and SVC [59]. Fiber ori-
entation is aligned along the longitudinal extension of the CT, PMs and BB. PM
fibers end perpendicular in the CT and tricuspid ring muscle fibers (Fig. 2.4b).
The myocardium between the pectinate muscles shows a fiber orientation similar
to the pectinate muscles. The intracaval bundle is the main muscular structure of
the venous component of the right atrium (Fig. 2.4e). It encircles the orifice of the
SVC. One muscle bundle leaves this circular structure left lateral of the orifice and
extends towards the right lateral side of the orifice of the IVC [14]. It connects
with the CT on the posterior wall. There are no muscular extensions and thus no
fiber orientation in the IVC [52].

The left atrium is comprised of two layers of myocardial fibers overlapping each
other (Fig. 2.3). In contrast to ventricular fiber architecture, the transmural change
in fiber orientation between those layers is abrupt. Fiber orientation is organized
in two rather continuous layers compared to the right atrium with its multiple of

Figure 2.2: Schematic representation of themajor muscular bundles in the atria. Blue: septo-
atrial bundle in the subendocardium, red: septo-pulmonary bundle in the subepicardium, light
blue: BB, green: CT, pink: PMs, black: circular myocyte orientation around the appendages, as
well as vessel and valve orifices, blue CS. Reproduced from [23] with permission.

As the endocardial surface of the LA is smooth [17], it exhibits a simpler structure
than the RA. The ear-shaped left atrial appendage (LAA) being located supero-
anterior of the left superior pulmonary vein (LSPV) is an exception with its rough
endocardial surface [18].
The RA can be divided in four regions: the smooth and the rough parts of the
posterior wall, the septum, and the right atrial appendage (RAA). The most impor-
tant bundles in the RA are the crista terminalis (CT) [19, 20], 15 to 20 pectinate
muscles (PMs) [21], the intercaval bundle [22], Bachmann’s bundle (BB) [19],
and the tricuspid valve ring (TVR). The CT separates the rough free wall from
the smooth part and runs on the posterior wall from the right side of the SVC
orifice via the right side of the IVC orifice towards the CS region where it smooths
out. The width of the CT reduces from the SVC to the IVC [20]. The vestibule
supports the leaflets of the TV. The PMs run from the CT along the lateral and
anterior wall to the vestibulum. The tent-shaped RAA overlaps the root of the
aorta [20].
The atrial wall exhibits a spatially varying thickness ranging from 1 mm to 3 mm.
In the RA, the prominent muscular bundles dominate the wall thickness distribu-
tion. In the LA, the wall is thicker on the posterior and the inferior side compared
to the roof (2.9±1.3 mm vs. 2.3±1.0 mm) [24, 25]. The existing literature on
atrial wall thickness is reviewed in [23].
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2.1.1.1 Interatrial Connections
The atria are electrically isolated from the ventricles by a valve plane and isolated
from each other by the atrial septum. While both sides of the septum are covered
with myocardium, an isolating layer separates the RA from the LA [26, 27]. Inter-
atrial conduction is thus only possible via distinct interatrial connections (IACs).
BB is the most prominent IAC with a width of 4.6 mm [28] and is located supero-
anteriorly. It extends between the atrial appendages and even encircles them partly
after splitting in two branches [19]. The inferior part of BB in the RA connects
with the TVR. BB serves as an IAC by bridging the interatrial groove [29, 30].
As the outer surface of the CS is covered with myocardium, it forms an IAC as
well [31].
While the IACs formed by BB and the CS are present and conductive in most
humans, additional IACs on the anterior and posterior side show significant
interindividual variability in terms of presence, location, and conductive proper-
ties [26, 32–34]. Particularly the middle and lower IACs on the posterior side that
are present in 67% and 87% of the population [23] are vulnerable to conduction
block due to their thin and fragile nature and are thus often non-conductive in
elderly or diseased subjects [35].

2.1.1.2 Atrial MyocyteOrientation
Atrial myocardial tissue is composed of discrete myocytes. The myocardium
forms a functional syncytium because myocytes are electrically coupled to, on
average, eleven neighbors via gap junctions [36]. Single myocytes are not spher-
ical but have a shape which roughly corresponds to a prolate spheroid and tend
to align along their longest semi-principal axis. As the gap junctions are concen-
trated at the poles of the cells and because the number of membrane crossing
per unit length is lower, the conductivity is higher along the principal axis than
perpendicular to it [36]. The orientation of myocytes within atrial tissue is not
distributed uniformly. The cells are rather aligned along major bundles determin-
ing the preferential orientation. These bundles are visible on a macroscopic scale
(Figure 2.3) and follow distinct patterns [19, 22, 37, 38].
The most prominent bundles can be found in the RA with myocytes aligned along
the CT, PMs, and BB (Figure 2.3A). At the junction of the PMs with the CT and
the TVR, perpendicular orientation can be observed (Figure 2.3B). The tissue
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Fig. 2.4. Local fiber orientation (dashed lines) in various dissections of human atria. Black and red stars
denote interatrial muscle bridges. Photographs provided by Damien Sanchez-Quintana and reproduced
with permission. The photographs were partly also used in [26].
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A B

C D

E F

Figure 2.3: Major muscular bundles in the atria indicated by dashed lines overlaid on pho-
tographs of hum atrial dissections. Stars indicate bundles bridging the interatrial groove.
Reproduced from [23] with permission.

between the discrete PMs is aligned similarly. Myocytes are aligned tangentially
around the TVR and the SVC [38]. The intercaval bundle is located in the RA
between the CT and the septum. The superior part encircles the SVC while the
inferior part extends towards the IVC orifice and connects with the CT on the
posterior wall [22] (Figure 2.3E). Around the IVC, no preferential orientation can

13
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be identified [37].
The LA wall is composed of two layers: the subepicardial and the subendocar-
dial layer with discontinuous myocyte orientation between the layers. The most
prominent structures are the septo-pulmonary bundle in the subepicardium (Fig-
ure 2.3C+D) and the septo-atrial bundle in the subendocardium (Figure 2.3E+F).

2.1.1.3 Sinus Node
The sinus node (SN) driving the heart under physiological conditions is a complex
structure in crescent shape within the RA wall reaching from the SVC orifice
downward in the projection of the terminal groove [39]. Its size has been reported
to be 29.5 mm in length, 1.8 mm in height, and 6.4 mm in width measure using
immunohistochemical methods [40]. Earlier electron microscopy measurements
reported 13.5±2.5 mm in length, 1.2±0.3 mm in height, and 5.6±1.4 mm in
width [41]. Functional studies indicated significantly bigger surface areas as large
as 75 mm × 15 mm [42]. The location where the excitation of the SN is captured
by the RA myocardium is defined as the earliest activated site (EAS) and has been
shown to express tremendous interindividual variability. The EAS ranged from
the mid-septal region to the junction with the RAA during epicardial mapping
studies [42, 43]. Moreover, interindividual variability has been described and is
accounted to vagal stimulation, different exit pathways in the SN, and switching
between different distinct groups of pacemaker cells [44, 45].

2.1.2 Atrial Electrophysiology
This section introduces the basic concepts governing cardiac electrical activity
from the single ion channel via integrated cardiac myocytes, and excitation propa-
gation in tissue up to the body surface electrocardiogram (ECG).
The plasma membrane confines the intracellular space of each myocyte. The mem-
brane itself is built of a phospholipid bilayer and impermeable for ions and most
water-soluble molecules. However, dedicated, selectively permeable ion channels,
pumps, and transporters are integrated in the membrane allowing for exchange
between the intracellular and the extracellular space. The plasma membrane
allows to maintain different ion concentrations inside and outside the cell causing
a non-zero transmembrane voltage Vm according to the Goldman-Hodgkin-Katz
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Figure 2.4: The course of the transmembrane voltage Vm during a cardiac action potential withits different phases (A) and themembrane currents carried by the different ions (B). The sodium
current reaches an amplitude of ≈–70pA/pF. The calcium exchange with the sarcoplasmic
reticulum is not considered. Courses were computed using the Courtemanche et al. model [49].
Figure inspired by [50].

equation [46]:

Vm =−R ·T
F

ln
(

PK+ · [K+]i +PNa+ · [Na+]i +PCl− · [Cl−]o
PK+ · [K+]o +PNa+ · [Na+]o +PCl− · [Cl−]i

)
, (2.1)

with R being the gas constant, T being the absolute temperature, F being Fara-
day’s constant, and Px being the membrane permeabilites for sodium, potassium,
and chloride ions. [X ]i and [X ]o are the respective intracellular and extracellular
concentrations. Under resting conditions, Vm accounts to approximately –80 mV
in human atrial myocytes.
Ions can flow passively through the membrane along their electro-chemical gradi-
ent if ion channels that are permeable for the specific type of ion are open. Ion
channels are composed of several subunits with the α-subunit forming the pore,
while β , γ , and potential further subunits serve auxiliary functions [47]. Passage
through the pore is goverened by gates that open and close depending on Vm, the
presence of ligands, temperature, or mechanical force. Voltage-sensitive channels
change their conformation depending on Vm. The interested reader is referred
to [48] for a detailed review of ion channels in the heart.
Vm can not only be influenced by changes of parameters in Equation (2.1) but also
by applying external stimuli. If a stimulus raises Vm above a certain threshold
ranging between –50 mV and –60 mV, fast sodium channels open and initiate an
action potential (AP) (Figure 2.4A). After this depolarization phase carried by
outward INa, sodium channels inactivate and the AP plateau is entered due to
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the balance of repolarizing currents carrying K+ out of the cell and depolarizing
currents carrying Ca2+ from the sarcoplasmic reticulum into the cytosol (Fig-
ure 2.4A+B). After an AP was elicited, the cell is in a refractory state for a certain
time. The time before a new AP can be elicited is called the effective refractory
period (ERP) and is mainly determined by the state of the inactivation sodium
gates. The initial state is restored due to active ion transport by the sodium calcium
exchanger (INaCa), the sodium potassium ATPase (INaK), and the sarcoplasmic
endoplasmic reticulum calcium ATPase (SERCA) [51].
As introduced in Section 2.1.1.2, adjacent myocytes are connected via gap junc-
tions and form a functional syncytium. The gap junctions are non-selective
connections formed by one connexon in each plasma membrane. In this way,
excitation propagates within cardiac tissue once one cell is activated and the
current sink formed by the adjacent cells is not too large to be driven by the active
cells. The gap junction density and their distribution in combination with the AP
upstroke velocity dVm/dt determines the conduction velocity (CV) in the tissue
and its anisotropy.

2.1.2.1 Sinus Rhythm
The cells of the cardiac conduction system do not exhibit a stable resting mem-
brane voltage but depolarize spontaneously. The cells of the SN are the ones
that depolarize the fastest and thus drive the cardiac rhythm as the primary pace-
maker. In rest, the autorhythmicity rate of the SN is about 60 to 100 beats per
minute (bpm).
From the EAS where the RA myocardium captures the excitation originating from
the SN, the wave propagates fastest along the CT, BB, and the PMs due to the
higher conductivity and pronounced anisotropy within these anatomical struc-
tures [42, 52–54]. Earliest LA breakthrough is normally conducted via BB, thus
the LA is activated from the supero-anterior side [55]. Physiological CV values
are reported to be between 500 mm/s and 1200 mm/s (see [23] for a review of avail-
able literature) and tend to exhibit larger variance under pathologic conditions [9].
Anisotropy is commonly assumed as 2:1 to 3:1 for the common myocardium [56–
58] and between 4:1 and 12:1 for fast conducting bundles [23, 54, 59].
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2.1.2.2 The Electrocardiogram

The spread of the depolarization wave is carried by electrical currents. Sodium
influx at the back of the wavefront in combination with capacitive outflow at
the front depolarizing adjacent cells causes a positive current in the intracellular
domain in direction of wave propagation. The broader repolarization front gives
rise to currents from regions that are still active to already repolarized regions in
combination with potassium outflow at the waveback leading to a negative current
in direction of wave propagation. These currents act as sources for an electrical
field reaching to the body surface. Thus, the electrical activity in the heart can be
measured on a macroscopic scale by evaluating the potential differences on the
body surface in the ECG. The depolarization of the atria is reflected in the P-wave
of the ECG. The interested reader is referred to [60] for a detailed description of
the genesis of the body surface potentials.
Routinely, a 12 lead ECG is recorded using nine electrodes. The three Einthoven
leads I, II, and III are defined as the bipolar signals between the extremities. For
the unipolar Goldberger leads aVR, aVL, and aVF, the mean of the two other limb
leads is used as a reference signal. The Wilson leads on the chest are measured
with respect to Wilson’s central terminal defined as the mean of the three limb
leads I, II, and III. The vectorcardiogram (VCG) is the projection of the field
integral vector on the frontal, sagittal and transversal plane. The VCG can be
estimated from a subset SECG of the 12 lead ECG (V1-V6, I, II) using the inverse
Dower matrix D [61]:

ŜVCG = D SECG , (2.2)

with

D =

−0.172 −0.074 0.122 0.231 0.239 0.194 0.156 −0.010
0.057 −0.019 −0.106 −0.022 0.041 0.048 −0.227 0.887
−0.229 −0.310 −0.246 −0.063 0.055 0.108 0.022 0.102

 .

(2.3)
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operations, stereo typical anatomic locations have been 
described in each of these diff erent settings.

In patients without previous atrial surgery, various 
circuits have been described.17,18 In the right atrium, these 
include circuits in the lateral wall of the atrium (free wall 
fl utter),19,20 or around the inferior vena cava (lower loop re-
entry with slow transverse conduction across the crista 

terminalis; fi gure 4B).21 Left atrial atypical fl utter usually 
occurs in the presence of signifi cant structural heart 
disease, such as heart failure or mitral regurgitation, which 
result in atrial enlarge ment.22 In these chronically dilated 
atria, regions of fi brosis develop that serve as obstacles to 
normal conduction and stabilise re-entrant circuits. These 
circuits can be single or multiple (dual loop re-entry) and 

Figure 4: Right atrial fl utter circuits
Anatomical circuits of typical atrial fl utter (A) and lower loop re-entry (B). The atrioventricular annuli that sit anteriorly (in front) have been removed for clarity. Red 
arrows represent the activation path for each putative circuit. Blue arrows represent the cavotricuspid isthmus, which forms the narrowest part in each of the fl utter 
circuits shown. Linear ablation through this crucial isthmus prevents both atrial fl utter circuits. Yellow arrows represent passive activation of atrial tissue that is not 
part of the active circuit. Typical fl utter involves a circuit around the tricuspid annulus (A). Note that the crista terminalis (CT) forms a complete line of conduction 
block (yellow double lines), forcing the re-entrant circuit to go superiorly around the tricuspid annulus. Lower loop re-entry involves a smaller circuit around the 
IVC (B). The grey arrow represents a small gap in transverse conduction at the low crista terminalis, which facilitates this circuit. CS=coronary sinus. CT=crista 
terminalis. ER=Eustachian ridge. FO=fossa ovalis. IVC=inferior vena cava. PV=pulmonary vein. SVC=superior vena cava.
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Figure 5: Atypical fl utter circuits
Red arrows represent the activation path for each circuit. Yellow arrows represent passive activation wavefronts. Grey areas represent areas of spontaneous electrical scar on the posterior left atrial wall. 
Perimitral fl utter (A) involves a circuit that rotates around the mitral annulus, with the right atrium activated passively. Posterior atrial scarring (grey areas) in the context of atrial disease results in regions 
of slow conduction, which allow development of this arrhythmia. Left atrial fl utter (B) can also involve circuits around the pulmonary veins or circuits around pulmonary veins and areas of posterior left 
atrial scar, with the right atrium activated passively. Atypical fl utter circuits can also form around suture lines and scar tissue from previous atrial surgery (C) or around prosthetic material such as an ASD 
patch (C) or an atrial conduit. An area of slowed conduction due to previous surgical incisions and chronic atrial dilatation is usually present, and this assists re-entry. ASD=atrial septal defect.
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Figure 2.5: Paths maintaining AFlut in the RA (red arrows). Flutter is sustained along the
TV annulus in typical flutter (A). Both atrioventricular annuli have been removed for clearer
visualization. The blue arrow indicates the cavotricuspid isthmus representing the crucial
narrowest part in typical AFlut (A) and lower loop reentry (B). Yellow arrows indicate pathways
activating the atrial myocardium but not driving the flutter. The dark gray arrow in (B) indicates
a zone of slow conduction allowing to sustain the flutter along the shorter circuit compared to
(A) where the CT forms a line of functional block in transverse direction. Reproduced from [62]
with permission from the publisher.

2.2 Atrial Flutter
Atrial Flutter (AFlut) is a supraventricular tachycardia with a consistent excita-
tion pattern. It is perpetuated around a large central obstacle, which can be an
anatomical structure, unexcitable scar tissue, or a functional line of block [62].
The cycle length is between 250 ms and 135 ms [63]. As this fast rhythm can
not be sustained by the ventricles, 2:1 or 3:1 conduction block at the AV node is
frequently observed. AFlut is categorized in two major types: typical AFlut (also
termed type I) and atypical AFlut (type II).
Typical AFlut is maintained in the RA by mostly counterclockwise reentry around
the TV annulus (Figure 2.5A). The CT acts as a conduction barrier due to the
slow transversal conduction. The floor of the RA between the inferior TV annulus
and the IVC forms the critical isthmus for this type of reentry (cavotricuspid
isthmus) [64]. In ≈15% of the cases, the excitation rotates in a clockwise direc-
tion [62]. Atypical AFlut develops often after corrective atrial surgery (congenital
and valvular heart disease) and atrial fibrillation (AF) ablation [8, 65–68] with the
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Figure 2.6: Atypical flutter circuits. Red arrows indicate the driving circuit whereas the re-
mainingmyocardium is activated via pathways indicated by yellow arrows. Gray areas indicate
non-excitable scar tissue. Perimitral flutter is sustained around theMV annulus (A), whereas
the flutter circuits in (B) and (C) anchor around smaller obstacles formed by the PVs, scar tissue,
surgical suture lines, or patches covering atrial septal defects (ASD). Reproduced from [62]
with permission from the publisher.

driving reentry circuit determined by the lesions (Figure 2.6C). However, it can
also occur without previous surgery driven by various reentry circuits. The domi-
nant paths in the RA include the lateral wall (free wall flutter), and the IVC (lower
loop reentry, Figure 2.5B). In the LA, AFlut is mostly observed in patients with
enlarged atria [69]. Areas of fibrotic tissue, e.g. induced by chronic dilation, serve
as stabilizers of the reentry due to the slowed conduction. Driving circuits are
found around the MV (perimitral flutter, Figure 2.6A) or the PVs (Figure 2.6B).
The incidence of AFlut in the general population is 88/100,000 person-years and
significantly higher for elderly (587/100,000 person-years in subjects older than
80 years) [70]. AFlut is associated with a significantly increased risk for stroke
and other negative events with a comparable risk scenario as AF [1], which is
described in more detail below. AFlut can be approached with antiarrhythmic
drugs. However, pharmacological therapy is often ineffective and more than half
of the patients are treated with rate-control strategies due to the failure to maintain
sinus rhythm [71]. Catheter ablation (see Section 7.3) is recommended for patients
with a first episode of typical AFlut and for flutter appearing after antiarrhythmic
treatment of AF [62].
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resulting proteolysis play a major role in remodeling of cell 
ultrastructure.177 Cell ultrastructure changes likely contrib-
ute to the atrial hypocontractility that characterizes AF,178–180 
thereby contributing to atrial dilation.179 Whether, and if so 
how, cellular ultrastructural remodeling also plays a role in the 
 AF-initiating or AF-maintaining substrate remains unclear.

Atrial size is a long-recognized determinant of AF likeli-
hood, both at the experimental181 and clinical182 levels. This 
relationship has been attributed to a critical mass needed to 
maintain multiple-circuit re-entry.181 More recent computa-
tional modeling suggests that larger atrial substrates have a 
greater ability to maintain a critical balance between rotor 
formation and rotor annihilation in the absence of rotor-sta-
bilizing properties such as functional or anatomic pinning.183 
In addition, greater atrial enlargement likely reflects greater 
atrial stretch, a known profibrillatory phenomenon,184 as well 
as atrial damage/remodeling in general.

Ever since its pathophysiological importance in AF sub-
strate development was first identified,171 atrial fibrosis has 
emerged as a significant contributor to AF in many paradigms. 
Fibrosis results from a broad range of factors related to AF-
inducing pathologies, including cell stretch, neurohumoral 
activation, oxidative stress, and possibly even AF itself.184–187 
For a full discussion of the complex signaling mechanisms 
that lead to atrial fibrosis, please see detailed reviews.167,185,188 
Fibrosis can favor atrial arrhythmogenesis in several ways 
(Figure 4). First, fibrous tissue can physically separate atri-
al muscle fibers in the longitudinal direction (Figure 4A), 

interrupting muscle continuity and creating a physical barrier 
to conduction.189 This type of conduction barrier has been im-
plicated in local conduction disturbances and block that in-
duce re-entry (Figure 5).171,189,190 Second, fibrosis is associated 
with proliferation of fibroblasts and their differentiation into a 
myofibroblast phenotype,173 increasing the likelihood and sig-
nificance of fibroblast–cardiomyocyte interaction. Extensive 
cardiomyocyte–fibroblast electric interaction, with the induc-
tion of re-entry and spontaneous ectopic activity, is well docu-
mented in cardiomyocyte–fibroblast coculture systems.191,192 
Interactions between cardiomyocytes and fibroblasts via 
 cell-coupling connexin hemichannels make fibroblasts (which 
are inexcitable but can carry currents) act as an electric sink 
for cardiomyocyte bioelectricity.173 This results in slowing of 
conduction, depolarization of cardiomyocyte resting poten-
tial, variable effects on APD, and the induction of spontane-
ous phase-4 depolarization.169 Spontaneous depolarization 
causes focal ectopy and both conduction slowing and APD 
abbreviation favor the induction and maintenance of re-entry. 
In addition to direct electric interactions, fibroblasts can affect 
cardiomyocyte bioelectricity by secreting biologically active 
substances that cause paracrine effects.193 Whether fibroblast–
cardiomyocyte interactions promote arrhythmogenesis de-
pends on the number of fibroblasts, their size, and (for electric 
interactions) the extent of electric coupling between the 2 
cell types.194,195 Thus, although fibroblasts can directly induce 
cardiomyocyte arrhythmic activity in cocultured in vitro sys-
tems, whether this happens in vivo is still unclear. However, 

Figure 3. A general schema representing the 
various mechanisms that can lead to the 
perturbations underlying atrial fibrillation (AF), 
including focal ectopic firing and vulnerable 
substrates that can maintain re-entry. APD 
indicates action potential duration; DAD, delayed 
afterdepolarization; EAD, early afterdepolarization; 
and ERP, effective refractory period.

 by guest on March 21, 2016http://circres.ahajournals.org/Downloaded from 

Figure 2.7:Mechanisms contributing to the initiation and perpetuation of AF by affecting the
arrhythmia-initiating trigger and the arrhythmia-sustaining substrate. Abbreviations: delayed
afterdepolarization (DAD), early afterdepolarization (EAD), action potential duration (APD),
effective refractory phase (ERP). Reproduced from [72] with permission from the publisher.

2.3 Atrial Fibrillation
AF is the most common sustained arrhythmia affecting over 8 million people in
the European Union [73]. It is characterized by irregular and rapid excitation pat-
terns with frequencies above 300 bpm [1] caused by the interplay of a vulnerable
substrate and at least one initiating trigger. AF has a prevalance of 2% to 3% of
the general population [74] and is associated with a significantly higher mortality
and five-fold increase of the risk of stroke [73] accounting for 25% of all strokes
in the general population [2]. Moreover, AF impairs LV function severely even
though the AV node prevents the tachyarrhythmia from affecting the ventricles
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C. Mechanisms of Reentry

1. Circus movement reentry

Circus movement reentry was first demonstrated in
rings prepared from jellyfish (372) and cardiac tissue
(381). It is characterized by an activation that can travel
along a preformed anatomical structure and reactivate
(reexcite) previously excited tissue. A prerequisite for
circus movement reentry is recovery of excitability after
the previous activation before the next activation reaches
the tissue again. As a consequence of this, a short refrac-
tory period and a low conduction velocity make circus
movement reentry more likely. The minimal pathlength
for circus movement reentry can be calculated as the
product of conduction velocity and refractory period
(wavelength) (613). If the path of the circuit is longer than
the wavelength, there is a delay between recovery of the
tissue and the moment of reexcitation which is called the
“temporal excitable gap.” The section of the path which
regained excitability before the next excitation is called
the “spatial excitable gap,” which can be calculated as the
product of conduction velocity and temporal excitable
gap (Fig. 6A).

Initiation of circus movement reentry requires unidi-
rectional conduction block often occurring in regions
with long refractory periods. Because of the presence of
an excitable gap, circus movement reentry can be en-
trained (600). External waves can invade the reentrant
circuit, causing block and termination of reentry.

2. The leading circle concept

In 1924, Garrey (192) proposed a concept of AF that
involved aspects of reentry without a clearly defined an-
atomical structure. In turtle cardiac muscle, he demon-

strated a sustained excitation wave rotating around a
stimulation electrode. While in these experiments the
stimulus site still might have represented an obstacle for
propagation, in 1973, Allessie et al. (6) provided the first
evidence that reentry does not necessarily require an
anatomical obstacle. In left atrial rabbit atria, tachycardia
induced by premature stimulation was due to excitation
by rotating waves. Transmembrane electrode recordings
demonstrated that the core was not fully activated but
instead showed electrotonic depolarizations preventing
the tissue from regaining full excitability. According to
the “leading circle concept,” the size of the reentry circuit
adapts to the smallest possible loop in which the wave
can continue to propagate (Fig. 6B) (5). Excitation
wavefronts are propagating through tissue with limited
excitability, and the excitable gap is small. Therefore,
the arrhythmia is relatively unstable so that small
changes in the properties of the tissue can significantly
affect the dynamics of the reentry process, the local-
ization of the circuit, and the activation cycle length.
Because of the small excitable gap, premature stimula-
tion is less likely (compared with circus movement
reentry) but still able to invade the reentry circuit
(600). In line with this, entrainment of AF in a limited
area around the stimulation electrode (1– 4 cm) has
been demonstrated in experimental (288) and clinical
studies (437).

3. Spiral wave reentry

The theory of spiral wave reentry originally stems
from observations of chemical reactions in excitable me-
dia (619) and has strongly been influenced by insights
obtained from imaging of intracellular Ca2! waves in

FIG. 6. Mechanisms of reentry. A: circus movement reentry. The size of the anatomical obstacle, the conduction velocity, and the refractory
period are the main determinants of this kind of reentry. The spatial excitable gap is the section of the path in which full excitability has been
regained. B: leading circle concept. As no anatomic obstacle exists, the reentry path adopts the minimal possible path length, which depends on
conduction velocity and refractory period. The spatial excitable gap is small. The central region is rendered unexcitable by electrotonic
depolarization by the circulating fibrillation wave. C: rotor theory reentry. The rotor rotates around an excitable yet unexcited core. Lengths of
arrows show conduction velocity. D: chaotic activation pattern caused by multiple wavelets. Waves are separated by multiple lines of conduction
block. Block lines may also occur within waves and form pivot points. Asterisks denote waves appearing within the mapped area presumably due
to transmural conduction breakthroughs reflecting a 3-dimensional substrate for AF. See text for further explanation.
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Figure 2.8: Reentrymechanisms: circusmovement reentry (A), leading circle concept (B), spiral
wave reentry (C), andmultiple wavelet hypothesis (D). Reproduced from [77] with permission
from the publisher.

directly [75, 76]. As AF prevalence increases with age, the number of patients is
estimated to double within the next decades due to demographic change [5].
AF is a progressive disease typically starting with short silent paroxysms trans-
lating to symptomatic and longer episodes of AF [1, 77]. Clinically, AF is
categorized as paroxysmal if episodes are self-terminating within a maximum
of 7 days (typically within 48 hours). Persistent AF does not terminate within
7 days without pharmaceutical or electrical cardioversion. AF is categorized as
long-lasting persistent if it lasts longer than one year. If no rhythm control strategy
is pursued but only the rate is controlled, the term permanent AF is used [1].
The mechanisms initiating and perpetuating AF are far from being understood
completely. Despite considerable research efforts, the role of calcium handling,
atrial fibrosis, and the drivers of AF are under discussion [72, 78] (Figure 2.7).
Regarding the triggers, enhanced and abnormal autorhythmicity particularly in the
myocardial sleeves of the PVs are a known contributor [79]. Moreover, triggered
activity (early and delayed afterdepolarizations) can elicit excitation [80–82]. Sev-
eral concepts regarding the perpetuation of fibrillatory activity in the atria (partly
complementary, partly contradicting) are being discussed [77, 78, 83].
Reentry around an anatomical obstacle is called circus movement reentry (Fig-
ure 2.8). A necessary condition is that the wavefront always has some excitable
tissue ahead of it. Thus, the waveback has to have regained excitability after the
ERP. Hence, low CV and short ERP favor this kind of reentry by widening the
excitable gap for a given reentry path. The leading circle concept does not require
a clearly defined anatomical obstacle. Rather, reentry is sustained around a non-
activated center, which shows electrotonic depolarizations, such as a functional
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line of block (Figure 2.8B). Circus movement reentry and the reentry according to
the leading circle concepts are also observed during atrial flutter.
The concept of spiral wave reentry was inspired by chemical reactions in excitable
media [84]. Today, the term rotor is used as well for this kind of functional
reentrant activity (Figure 2.8C). While the cells in the core of the rotor are ex-
citable in general, the CV is dramatically reduced from the tip towards the core
due to the increasing source-sink imbalance eventually causing conduction block.
Reentry can therefore be sustained around the core. While rotors were observed in
human AF during electroanatomical mapping [85], several experimental studies
reported multiple unstable excitation patterns supporting the multiple wavelet
hypothesis (Figure 2.8D) [86–88]. If several fibrillation waves are present and
meander through the tissue, continuous wavefront-wavetail interactions cause the
generation and termination of wavefronts winding up in a self-sustaining, chaotic
pattern [89]. While additional fibrillation waves emerge due to wavebreak, others
cease due to block, collision, or fusion of wavefronts. Dissociation between the
endocardial and the epicardial layer and breakthrough from one layer into the
other contributes to this phenomenon, as well [90–92]. Short ERP, pronounced
heterogeneity of refractoriness, slow CV, and a large substrate favor multiple
wavelet reentry [77].
Current state-of-the-art therapies for AF include antiarrhythmic drug therapy (see
Section 2.4) and substrate modification by catheter ablation (see Section 2.5).

2.3.1 Remodeling
The rapid excitation rate during AF drives several long-term adaptation mech-
anisms in the cardiovascular system [93–95]. While these mechanisms partly
prevent intracellular Ca2+ overload [96, 97] and allow to minimize the metabolic
cost [98], they also promote the perpetuation of the reentry. This so-called remod-
eling process contributes to the progressive nature of AF and coined the term AF
begets AF [99]. Figure 2.9 summarizes the four main positive-feedback loops
driving AF-induced remodeling. In the scope of this thesis, electrical remodeling
and structural remodeling (to a lesser extent, though) are in the focus.
Electrophysiologically, the main effects are a reduction of ICa,L, Ito, and IKur, as
well as an increase of IK1, IK,ACh, and IKs [77]. Table 2.1 gives an overview of
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dynamic character of the process and the diversity of the
contributors to the atrial remodeling process. The dia-
gram mainly consists of four positive-feedback loops. The
central element in all loops is the arrhythmia itself, which at the
same time represents both trigger and effect of the four circular
processes. The circular positive-feedback enhancement of
these pathophysiological changes explains the general ten-
dency of AF to become more stable with time. Also, many of
the mechanisms synergistically interact once AF has become
manifest in a patient. Since the contribution of these different
factors to AF varies from patient to patient, the progression of

AF shows a high inter-individual variability. Initially, pathophys-
iological factors like structural heart diseases, arrhythmias, ag-
ing, or inherited diseases are required to drive the positive
feedback loops, but once the pathophysiological alterations in
the atria have reached a certain threshold, the process will
sustain itself and AF will become more stable over time.

B. Current Challenges and Future Perspectives

The increase in life expectancy and recent improve-
ments in treatment of acute heart disease have resulted in

FIG. 15. Overview of mechanisms of AF. Four different positive-feedback loops are proposed as the main driving forces for the atrial remodeling process.
Enhanced Ca2! loading during AF is believed to underlie most of the cellular proarrhythmic mechanisms (trigger loop). The main process in the electrical loop
is an altered contribution of ion channels to the action potential configuration that protects atrial myocytes against excessive Ca2! loading. Abbreviation of the
action potential facilitates reentry and thereby promotes AF. In the structural loop, chronic atrial stretch activates numerous signaling cascades that produce
alterations of the extracellular matrix and conduction disturbances, also facilitating reentrant mechanisms. The main changes of the contractile properties of the
heart are loss of atrial contractility which increases atrial compliance and the development of a ventricular tachycardiomyopathy, both of which increase stretch
in the atrial wall. The circular positive-feedback enhancement of these pathophysiological changes explains the general tendency of AF to become more stable
with time. It should be noted that the different loops are interconnected by mechanisms that are part of more than one loop. For example, increased Ca2! loading
enhances trigger activity (trigger loop) and also results in a change in the ion channel population and activity (electrical loop). Reentrant mechanisms are
promoted by both shortening of refractoriness (electrical loop) as well as by conduction disturbances resulting from tissue fibrosis (structural loop). Like in a
system of meshing gear wheels, one loop will drive the other, leading to progression of the arrhythmia. However, the proposed system of gear wheels does not
start to move spontaneously. Structural heart diseases, arrhythmias, aging, or inherited diseases are required to initiate movement of one or more of these wheels.
When the pathophysiological alterations eventually reach a certain threshold, AF will ensue.
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Figure 2.9: Overview of the main driving forces of AF and AF-induced remodeling. Four
positive-feedback loops cause the remodeling process. Reproduced from [77] with permission
from the publisher.

experimental data regarding functional reduction and changes in mRNA levels
obtained in humans. mRNA levels serve as a surrogate measure for the conduc-
tivity but do not allow to draw quantitative conclusions regarding functionality
as protein expression and trafficking can be affected as well. No functional data
from humans were available for IKr. However, measurements in dogs revealed
no change in maximum conductivity [123, 124]. In combination, the changes of
ion channel conductivities lead to a shortening of the ERP. The reported increase
of cell capacitance ranged from +5% to +71% [100, 102, 104, 106–109, 112–
114, 125]. On the structural level, the increase of interstitial fibrosis [77] and
potentially altered connexin connections [126] cause a reduction of CV macro-
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Table 2.1: Alteredmaximum conductivity values andmRNA levels due to cAF induced remod-
eling in humans. Values given are relative changes of measured current amplitudes. Tissue
samples were taken from either left (L) or right (R) human atrial appendages (hAA) or unspeci-
fied human atrial tissue including the free walls.

Current Tissue Change
IK1 hRAA ±0% [100], + 75% [101], + 75% [102], + 83% [103],

+ 91% [104], + 100% [105], + 105% [106], + 137% [107]
hLAA +106% [100]

ICa,L hRAA –73% [106], – 73% [108], –50% [109], – 43% [110],
– 42% [111]

hAA –63% [101]
Ito hRAA –84% [112], – 83% [106], – 67% [113], – 66% [100],

– 65% [101], – 45% [114], – 44% [115]
hLAA –74% [114], – 61% [100]

IKr human atria – 27%mRNA [116]
hAA –34%mRNA [117]
hRAA –30%mRNA [118],±0%mRNA [119]

IKur hRAA - 55% [115], – 50% [113], – 25% to –50% [106],
– 25% to –50% [112],±0% [101]

hLAA –53% [100], – 43% [114]
IKs hRAA +150% [114], + 56%mRNA [119]

hLAA +80% [114]
human atria – 30%mRNA [116]

INa hRAA ±0% [106]
INaCa hRAA +60% [111], + 85% [110],

+ 43%mRNA [120], + 67%mRNA [121]
Ileak hRAA +50% [111], + 280% [120]
INaK hRAA ±0% [122]

scopically. Through the reduction of the CV and the ERP, the wavelength (WL)
as the product of the two measures is affected quadratically. The interested reader
is referred to [127] for a detailed literature review of remodeling of ion currents
(also concerning gating kinetics), cell capacitance, and connexin expression.
As the different stages of AF are not completely selective and experimental data
regarding the remodeling effects of the distinct stages are sparse, the remodeling
due to persistent, long-standing persistent, and permanent AF is subsumed as
chronic atrial fibrillation (cAF) induced remodeling in the remainder of this thesis.
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2.4 Atrial Antiarrhythmic Drugs
2.4.1 Amiodarone
Amiodarone is an antiarrhythmic agent classified as class III according to the
Vaughan Williams classification [128] due to its pronounced effect on outward
potassium currents. However, it exhibits inhibitory effects on other cardiac ion
currents, such as INa, or ICa,L, as well [129]. Thus, it has to be considered a multi-
channel blocker. Amiodarone has been used for the treatment of ventricular and
supraventricular tachycardia for over 50 years and is still one of the recommended
agents for pharmacological AF cardioversion, as well as rate and rhythm control
in current guidelines [1, 73, 130].
While exhibiting a high anti-arrhythmic efficacy, amiodarone is associated with
several side effects, such as corneal micro-deposits, thyroid dysfunction, and
bradycardia [131, 132]. The interested reader is referred to e.g. [133, 134] for a
more in-depth description of amiodarone.

2.4.2 Dronedarone
Dronedarone is a benzofuran derivative, structurally related to amiodarone and
was designed as a less thyrotoxic alternative to amiodarone [135]. Towards this
end, iodine was removed and the lipophilicity was reduced. It has been introduced
to the market in 2009 [135]. Despite being classified as class III, it is as well
a multi-channel blocker that inhibits sodium, potassium, and calcium channels.
Besides certain differences in the inhibitory effects on ion channels, both drugs
differ markedly in their pharmacokinetic properties: Amiodarone has a biological
half-life of several weeks, caused mainly by accumulation in a third compartment
due to its lipophilic properties [136]. In contrast, dronedarone is less lipophilic
and has a much shorter biological half-life of 24 h [136].
Regarding the maintenance of sinus rhythm after AF, dronedarone has proven to be
superior to placebo but inferior to amiodarone [73]. In patients with longer lasting
AF, dronedarone is not recommended according to current guidelines. However,
it is the favorable antiarrhythmic drug for patients with certain structural heart
diseases, such as left ventricular hypertrophy in combination with hypertensive
heart disease [73]. The interested reader is referred to e.g. [137–139] for more
detailed information on dronedarone.
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2.4.3 Vernakalant
Vernakalant is a relatively new antiarrhythmic agent and was approved in Europe
in 2010 [140]. Because of its effect on cardiac potassium and sodium channels, it
is classified as class III and class I according to the Vaughan Williams classifica-
tion [128]. Due to the pronounced inhibition of the atria-selective IKur, vernakalant
acts preferentially in the atria and is thus less likely to cause ventricular torsade
de pointes arrhythmia due to prolonged repolaraziation [73].
It proved to be superior to placebo and more effective than amiodarone regarding
the conversion of recent onset AF. Patients were 8.4× more likely to convert to
sinus rhythm within 90 minutes after intravenous infusion of vernakalant than
after infusion of amiodarone or a placebo without increased risk of severe adverse
events [141]. AF after cardiac surgery was converted in 47% of patients using ver-
nakalant compared to 14% converting spontaneously [142]. However, vernakalant
was ineffective in converting AF of more than 7 days duration and typical atrial
flutter in several studies [143–145].
Vernakalant has an elimination half-life of 3 to 5 hours [73]. The interested reader
is referred to [73, 146] for more information regarding vernakalant.

2.5 Ablation Therapy
In patients with recurrent AF that are resistant to antiarrhythmic drugs, catheter
ablation of atrial tissue is the recommended therapy [1]. Tissue is rendered non-
excitable by heating the tissue via radio-frequency currents (RF ablation) or
cooling it (cryo ablation) with comparable success rates [147].
As in the majority of patients, focal discharges from the PVs trigger AF or at
least contribute to the initiation, PV isolation is the standard approach since the
seminal work of Haïssaguerre et al. almost 20 years ago [79]. Many paroxysmal
AF patients maintain sinus rhythm and are free from arrhythmic episodes after
PV isolation. The AF recurrence rate is up to 60% in patients with persistent and
long-standing persistent AF [6] and was recently reported to be 45% within one
year in 2306 paroxysmal AF patients in Germany [7]. Therefore, several other
strategies aiming at a modification of the atrial substrate have been proposed [148]:
isolation of the LA posterior wall, ablation of sites exhibiting complex fractionated
atrial electrograms (CFAEs) or signals of low voltage, ablation of ganglionated
plexuses where the adrenergic fibers from the central nervous system end, ablation

26



2.5. ABLATION THERAPY

of sites exhibiting a high dominant frequency, as well as most recently ablation of
rotors identified through panoramic mapping or non-invasive electrocardiographic
imaging (ECGI). However, the success rates of PV isolation in persistent AF
patients could not be increased by additional CFAE ablation as well as linear
lesions in a big randomized multi-center study [149]. Therefore, a controversial
discussion regarding the optimal strategy in different patient population is ongoing
and was fueled by recently reported remarkable success rates of rotor ablation that
remain to be reproduced [150, 151].
The interested reader is referred to e.g. [148] for a review of current ablation
strategies.
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CHAPTER3
Computational CardiacModeling

In this chapter, the basic concepts of computational models of cardiac electrophys-
iology are introduced. The mathematical formulations range from the single ion
channel level via integrated cell models and excitation propagation in tissue up to
the electric fields on the whole body scale.

3.1 ElectrophysiologicalModeling
Hodgkin and Huxley were the first to describe ionic membrane currents by a
mathematical model in their seminal work from 1952 [152]. They represented the
membrane of giant squid axons by an equivalent electric circuit (Figure 3.1). The
transmembrane voltage Vm is defined as the difference between the intracellular

Figure 3.1: Equivalent electric circuit of a giant squid axon according to Hodgkin and Hux-
ley [152]. Under physiological conditions, the Nernst potential for potassium is negative
whereas those for sodium and leak are positive. Adapted from [15] with permission.
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potential Φi and the extracellular potential Φe. The cell membrane is represented
by a capacitor and the different ion channels by variable resistors in line with
the respective Nernst voltages EX represented by voltage sources. Thus, the
membrane current is given as the sum of the ionic currents plus the capacitive
current resulting in the following ordinary differential equation (ODE) for Vm:

dVm

dt
=− Iion + Istim

Cm
, (3.1)

considering an additional stimulus current Istim, as well. For electrophysiological
models, Cm is regularly defined as membrane capacity per unit area in F/m2

resulting in current densities Ix in A/m2:

Ix = gx (Vm−Ex) . (3.2)

The conductivity gx is defined as the product of a maximum conductivity ĝx

of all channels carrying Ix and the open probability of this channel type. The
dimensionless open probability of a channel ∈ [0,1] is determined as the product
of all gating variables γi involved:

gx = ĝx ∏
i

γi . (3.3)

The evolution of each gating variable γi over time is described by the following
first order ODE through transition rates αγi from the closed to the open state and
βγi vice versa:

dγi

dt
= αγi (1− γi)−βγiγ . (3.4)

As the rate constants depend on Vm, the channels exhibit a voltage dependency.
During steady-state, the derivative equates to zero yielding the steady-state open
probability γi,∞:

γi,∞ =
αγi

αγi +βγi

. (3.5)

Using energy arguments, the steady-state open probability can be described by a
Boltzmann equation [153]:

γi,∞ =
1

1+ exp
(V1/2,γi

−Vm

kγi

) , (3.6)

30



3.1. ELECTROPHYSIOLOGICALMODELING
3.1. Mathematical Modeling of Cardiac Cells 17

 

Ib,Ca Ib,Na INa 

ICa,L 

INaCa Ip,Ca 
Ca2+ 

Ca2+ 

3Na+ 

2K+ 

3Na+ INaK 
Ito IKur IKr IKs 

IK1 

Iup 
Itr 

Irel 

NSR JSR 

Cytosol 

Extracellular 
Space 

Ileak 

Fig. 3.2. Schematic of the atrial cell modeled by Courtemanche et al..

ion concentrations are not included in the model nor are processes of intracellular Ca2+

di↵usion.

3.1.4 Nygren, Fiset, Firek, Clark, Lindblad, Clark, Giles 1998

In 1998, Nygren et al. [3] published a mathematical model of atrial myocytes with its

focus on the importance of potassium currents for the shape of the action potential.

To improve the reconstruction of human action potentials, the model described in the

following, which is a further development of the LMCG model of rabbit atrial cells [22],

concentrates on electrophysiological di↵erences between human and rabbit myocytes.
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Fig. 3.3. Schematic of the atrial cell modeled by Nygren et al..

Figure 3.2: Schematic representation of the Courtemanche et al. model of human atrial my-
ocytes [49]. Ion channels (red), pumps (green), and transporters (yellow) allow the exchange of
ions between the intracellular space (cytosol), the extracellular space and the calciumsubspaces
(NSR and JSR). Reproduced from [155] with permission.

with V1/2,γi being the transmembrane voltage at which the gate γi exhibits an open
probability of 0.5 (the so-called half-activation voltage) and kγi being the slope at
the half-activation voltage. k is determined by the ratio zF/RT , with z being the
valency of the gating ion, F being Faraday’s constant, R being the gas constant,
and T being the absolute temperature.
Discrete further states (e.g. inactive states) and state-dependent transitions can be
represented in Markov models with explicit representations of single ion-channel
states. The number of gates and the number of states depends on the ion channel
being modeled and the degree of complexity desired to cover. The interested
reader is referred to e.g. [60, 154] for more detailed information regarding mathe-
matical models of ion channels.
The ion channels present in distinct cells are integrated in computational cell
models by coupling the ODEs via the transmembrane voltage and the ion concen-
trations. Within the scope of this thesis, the Courtemanche et al. model of human
atrial myocytes [49] is mainly used as it convinced in a benchmark of the five
currently available models of human atrial myocytes [156]. Figure 3.2 gives an
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overview of the ion channels, transporters, and pumps considered in the Courte-
manche et al. model. Besides the extracellular and the intracellular space (cytosol),
two calcium subspaces in the sarcoplasmic reticulum are represented in the model.
The junctional sarcoplasmic reticulum compartment (JSR) releases Ca2+ while
the network sarcoplasmic reticulum compartment (NSR) is responsible for Ca2+

uptake. The intracellular ion concentrations and the Ca2+ concentration in the
sarcoplasmic reticulum compartments are computed dynamically whereas the
extracellular concentrations are assumed to be constant.
While most current formulations in the Courtemanche et al. model are based on
human experimental data, the pumps INaCa, INaK , Ip,Ca, the background currents
Ib,Na and Ib,Ca, and the intracellular calcium handling build on the Luo-Rudy
model representing guinea pig ventricular myocytes [157]. Krueger et al. pre-
sented a heterogeneous version of the Courtemanche et al. model comprising 13
distinct regions in the atria [158].

3.2 Simulating Excitation Propagation
As cardiac myocytes form a syncytium as described in Section 2.1.1.2, excitation
can propagate through cardiac tissue. To investigate excitation propagation phe-
nomena on the tissue level in silico, a mathematical formulation of the coupling
between cells is required. Several approaches exist that range from very micro-
scopic descriptions up to macroscopic, phenomenological models. While very
low-level descriptions provide the means to cover phenomena on the sub-cellular
scale, as e.g. intracellular calcium waves [159], the focus of this thesis is on tissue
and organ level phenomena as far as excitation propagation is concerned. For this
purpose, the bidomain model and the monodomain model proved to be suitable
for complex excitation patterns including e.g. wave break [160]. For simpler
activation patterns, the fast marching scheme based on the eikonal equation can
provide reasonable activation sequences at significantly reduced computational
cost [161, 162].

3.2.1 The BidomainModel and theMonodomain Simplification
The bidomain model introduced by Tung [163] represents cardiac tissue as a homo-
geneous medium with two coupled domains: the intracellular and the extracellular
space. In this way, the complex microstructure of the cardiac tissue is disregarded
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and homogenized. The two computational domains coexist and interfere at each
point, thus occupying the same geometrical space [164]. A transmembrane current
per volume im can flow from one domain into the other at each point serving as
the source for the current densities j(i/e) in the two domains. The potentials in
the intracellular and extracellular domain are defined by Poisson’s equation of
stationary electrical fields:

∇ · ji = ∇ · (σi∇Φi) = im , (3.7)
∇ · je = ∇ · (σe∇Φe) =−im , (3.8)

with Φi being the intracellular potential and Φe the extracellular potential, and
σi and σe being the respective conductivity tensors, which are composed of
conductivities along (σ‖) and transversal (σ⊥) to the myocardial fibre direction.
The ratio k = σ‖/σ⊥ is called anisotropy ratio (see also Section 3.2.2).
Using the definition of the transmembrane voltage Vm = Φi−Φe, transformations
on Equation (3.7) and Equation (3.8) [165] yield the following two coupled
equations that are called the bidomain equations:

∇ · ((σi +σe)∇Φe) =−∇ · (σi∇Vm) , (3.9)
∇ · (σi∇Vm)+∇ · (σi∇Φe) = im . (3.10)

The transmembrane current density per volume im is normally composed of an
ionic transmembrane current density (per surface) Iion defined by a cell model
(such as the Courtemanche et al. model of human atrial myocytes), a capacitive
current density, and an optional external stimulus current density Istim:

im = β

(
Cm

dVm

dt
+ Iion + Istim

)
, (3.11)

with β being the cell surface to volume ratio translating surface current densities
to volume current densities.
If the anisotropy ratio k is equal for the intracellular and the extracellular conduc-
tivity tensors, σi can be expressed as κσe and the bidomain formulation can be
simplified to the so-called monodomain equation, which is computationally less
expensive to solve:

∇ · (σi∇Vm) = (κ +1)β
(

Cm
dVm

dt
+ Iion + Istim

)
(3.12)
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Xenopus oocytes (114, 316) and the results of computer
simulations (438, 571).

To understand spiral wave reentry, it is important to
realize that propagation in the heart depends on a critical
balance between the “source” and the “sink” of a depo-
larizing current. The source of a wavefront is the diffusion
current generated by excited tissue tending to depolarize
downstream cells, which act as a sink. If the sink is too
large, the source current is not sufficient to excite the
downstream cells and propagation fails. In convex wave-
fronts, cells at the leading tip have to activate more cells
in front of it, resulting in a relatively small source
current and a low conduction velocity. In a concave
wavefront, many cells contribute to the activation of a
lower number of downstream cells which accelerates
conduction (Fig. 7).

The classical protocol to induce spiral wave reentry
is to provoke a perpendicular collision of a wavefront
with the wavetail of another wave (119). Where the tissue
is still refractory, the colliding wave will block while the
wave encounters excitable tissue behind the wave tail.
The colliding wave will turn towards newly recovered
cells and in this way the reentry wave adopts the shape of
a rotor (Fig. 6C). Importantly, the curvature of the wave-
front increases towards the core. Because of increasing
source-sink mismatch, the conduction velocity declines
towards the core until block occurs (dotted line in Fig.
6C). Thus the core, though being excitable, remains un-
excited during spiral wave reentry. Also, the core will
tend to shorten the action potential duration in its vicinity
which together with the low conduction velocity explains
the short wavelength (conduction velocity times refrac-
tory period) in its proximity.

In general, spiral wave reentry provides a compre-
hensive concept for reentry during AF. The only, though
significant, shortcoming of this concept is that spiral wave
reentry has never been documented in AF in humans.
More specifically, to the best of the authors’ knowledge,
there is not a single graphical depiction of sustained spiral
waves occurring during AF in patients. A possible expla-

nation might be that in human atria electrophysiological
heterogeneity due to structural changes such as fibrosis is
much more pronounced than in many animal models, and
therefore, more complex propagation patterns occur. Inter-
estingly, structural remodeling resulting in fibrosis of the
atrial wall in dogs with heart failure has been shown to
reduce the stability of rotors and promote the existence of
“multiple unstable rotors” (556), a conduction pattern essen-
tially resembling multiple wavelets.

4. The multiple wavelet hypothesis

In the late 1950s, computer models of AF demon-
strated that, based on simple assumptions regarding re-
fractoriness and conduction velocity, reentrant wavelets
might wander through an excitable medium in a seem-
ingly chaotic pattern (387). According to Moe’s “multiple
wavelet hypothesis,” fibrillation wavefronts continuously
undergo wavefront-wavetail interactions resulting in
wavebreak and generation of new wavefronts. On the
other hand, block, collision, and fusion of wavefronts will
tend to reduce their number. As long as the number of
wavefronts does not decline below a critical level, multi-
ple wavelets will be capable to sustain the arrhythmia
(386, 388). Factors increasing the stability of the fibrilla-
tion process include shortening of the refractory period,
increased heterogeneity of refractoriness, slowing of con-
duction, and an increase of the tissue mass. In contrast,
prolongation of refractoriness, enhancement of conduc-
tion velocity, and reduction of the available substrate will
reduce the number of wavefronts until the arrhythmia
ceases.

In 1985, Allessie et al. (7) demonstrated for the first
time the existence of multiple wavefronts in canine atria
exposed to acetylcholine. Numerous experimental and
clinical observations could be reconciled with the multi-
ple wavelet hypothesis. For example, during the Maze
procedure, the atria are subdivided in multiple electrically
independent compartments that are too small to sustain
the arrhythmia (128, 129). A comparable mechanism can
be postulated for some ablation procedures (see sect. VI).
Furthermore, prolongation of refractoriness indeed has
been shown to reduce AF stability (87, 452).

It has recently been suggested that the multiple wave-
let hypothesis would actually not exclude the coexistence
of local sources of AF (578). These authors argue that in
certain substrates, stable rotors might act as a source of
multiple wavelets. As such, this might be true in specific
cases (655). Moe’s hypothesis, however, goes beyond the
simple existence of multiple wavelets. It implies that the
fibrillation process is actually driven by them and no
localized sources of AF exist (“anarchical” organization of
AF). The actual experimental demonstration of multiple
wavelets as the mechanism sustaining AF, however, is
technically challenging, since fibrillatory conduction

FIG. 7. Effect of wavefront curvature on conduction velocity. In a
convex wavefront, cells serve as current source for more than one
downstream cell. Because of the relatively strong sink, conduction
velocity is low. In contrast, current source of more than one cell adds up
in a convex wavefront. As a result, the source is relatively strong and
conduction velocity high.
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Figure 3.3: Influence of wavefront curvature-based source-sink balance on CV. A convex wave-
front represents a smaller source at the tip and leads to low CV whereas the larger source
in a concave wavefront results in high CV. A planar wave requires matched source and sink.
Reproduced from [77] with permission from the publisher.

The monodomain equation coupled to a membrane model such as the Courte-
manche et al. model represents a reaction-diffusion system. By computing the
currents flowing within the computational domain explicitly, effects like source-
sink balance due to convex or concave wavefronts leading to CV modulation
(Figure 3.3), wave break, and conduction block can be considered [165].
Finite difference discretizations of the monodomain equation or finite element
schemes with mass lumping do not require to solve systems of linear equations
but can be formulated using matrix vector multiplications [166–168]. As the as-
sumption σi = κσe holds within the scope of this thesis, all excitation propagation
simulations were conducted using the monodomain model. The formulation was
implemented at IBT in the parallel modular solver acCELLerate [169], which was
verified by an N-version benchmark [170].

3.2.2 The Eikonal Equation and the FastMarching Scheme
While the monodomain reaction-diffusion model provides the means to capture
behavior of complex excitation patterns, it is also computationally expensive. Sim-
pler schemes like cellular automata or eikonal-based approaches do not provide
the means to reflect the diffusion processes but are suitable to compute the spread
of activation for scenarios in which source-sink balance does not play an important
role [161].
The eikonal equation governs the spread of an activation wave in a possibly
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anisotropic medium resulting in a scalar field ta (xi) – the activation map:

c
√

∇taG∇ta = 1 , (3.13)
with c(xi) being the speed function defined for each node xi, ta (xi) being the
activation time, and G being a tensor creating anisotropy. G provides the means
to account for faster conduction along the principal axis of myocytes (cf. Sec-
tion 2.1.1.2) than perpendicular to it. Towards this end, the euclidean distance
‖diso‖2 between two points representing the isotropic case is scaled according to
the myocyte orientation and the angle between the two points.
A transformation aligning the positive x-axis with the myocyte orientation given
by the angles φ and θ ′ can be established using conventional rotation matrices Ry

and Rz:

Ry(θ
′) =

 cosθ ′ 0 sinθ ′

0 1 0
−sinθ ′ 0 cosθ ′

 , (3.14)

Rz(φ) =

cosφ −sinφ 0
sinφ cosφ 0

0 0 1

 . (3.15)

At IBT, φ ∈ [0,π], is defined as the angle in the x-y-plane with respect to the
positive x-axis as we only care about the direction but not the orientation of the
myocyte orientation. θ ∈ [0,π] is defined as the angle with respect to the x-y-plane.
Thus, θ ′ needs to be substituted by θ := θ ′+ 270◦ to follow the conventional
spherical coordinate system defined with respect to the positive z-axis. When only
applied within trigonometrical functions, θ = θ ′−90◦ holds, which gives us:

Ry(θ) =

 cos(θ −90◦) 0 sin(θ −90◦)
0 1 0

−sin(θ −90◦) 0 cos(θ −90◦)

=

sinθ 0 −cosθ

0 1 0
cosθ 0 sinθ

 .

(3.16)
To align the positive x-axis with the principal myocyte orientation, we need to
apply Ry followed by Rz.

coordslocal = R(φ ,θ) ·

1
0
0

 , (3.17)
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Algorithm 3.1 The fast marchingmethod.N (X) denotes the neighborhood of X .
while T RIAL 6= /0 do

X ← argminX∈T RIAL {ta (X)}
T RIAL← T RIAL\{X}
KNOWN← KNOWN∪{X}
for all (Xi ∈N (X))∧ (Xi /∈ KNOWN) do

ta (Xi)← update(Xi,X)
if Xi /∈ T RIAL then

T RIAL← T RIAL∪{Xi}end if
end for

endwhile

with:

R(φ ,θ) := Rz(φ) ·Ry(θ) =

sinθ cosφ −sinφ −cosθ cosφ

sinθ sinφ cosφ −cosθ sinφ

cosθ 0 sinφ

 . (3.18)

If we want to transform from the global coordinate system to the local coordinate
system with the fiber direction aligned with the x-axis, we need to apply the inverse
operation using the identity R−1 = RT . After this transformation is established,
appropriate scaling can be applied using the anisotropy factor k. Transformation
back to the global coordinate system yields daniso with the anisotropic distance
measure ‖daniso‖2:

daniso = R(φ ,θ)

k−1 0 0
0 1 0
0 0 1

R(φ ,θ)T diso . (3.19)

Hence, G in Equation (3.13) is defined as:

R(φ ,θ)

k 0 0
0 1 0
0 0 1

R(φ ,θ)T . (3.20)

The fast marching method is a scheme to solve Equation (3.13) in an efficient
way taking advantage of the causality relationship between nodes. Only adjacent
nodes with an activation time ta (x j) smaller than the current estimate for the node
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Algorithm 3.2 update(Xi,X ) for triangular surfacemeshes.N (X) denotes the neighborhood
of X .

ta (Xi)←+∞

∆X
Xi
←{Y | (Y ∈N (X))∧ (Y ∈N (Xi))}

for allY ∈ ∆X
Xi
do

ifY ∈ KNOWN then
ta (Xi)←min{ta (Xi) ,solve2D (X ,Xi,Y )}else
ta (Xi)←min{ta (Xi) ,solve1D (X ,Xi)}end if

end for

Start

Finish

Dijkstra
Eikonal

Figure 3.4: Comparison of Dijkstra’s algorithm and the solution of the eikonal equation regard-
ing the shortest path between two nodes on a triangular mesh. Dijkstra’s algorithm considers
only edges of the mesh as segments of the path yielding non-unique results that deviate sig-
nificantly from the geometrical shortest path between the two nodes. The eikonal approach
interpolates activation times considering all adjacent nodes yielding a better result on the same
mesh.

in question ta (xi) can influence its activation. In this way, the complexity of the
algorithm is reduced to O(N logN) with N being the number of nodes compared
to O(N2) for a naïve Newton method. Algorithm 3.1 gives an overview of the fast
marching scheme to solve the eikonal equation Equation (3.13).
Compared to Dijkstra’s algorithm [171, 172] and other graph-based methods [161,
173], a different relaxation scheme is used yielding unique solutions that are not
necessarily restricted to the edges of the mesh. This is achieved by considering
the anisotropic distance measure ‖daniso‖2 (Equation (3.19), solve1D) and quadrat-
ically approximating the activation time of nodes for which activation times of
several other nodes in the same element are already known (solve2D) according to
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Algorithm 3.3Multifront fast marching. Abbreviations: integrated time (IT), elapsed time (ET),
activity period (AcP).

IT ← 0.0
while (T RIAL 6= /0)∧ (IT < maxTime) do

ET ← 0.0
while (T RIAL 6= /0)∧ (ET < timeStep) do

X ← argminX∈T RIAL {ta (X)}
T RIAL← T RIAL\{X}
KNOWN← KNOWN∪{X}
for all (Xi ∈N (X))∧ (Xi ∈UNKNOWN) do

ta (Xi)← update(Xi,X)
if Xi /∈ T RIAL then

T RIAL← T RIAL∪{Xi}end if
ET ← ta (Xi)− IT

end for
endwhile
IT ← IT + timeStep
for all X ∈ KNOWN do
if (IT − ta (X))> AcP(X) then

KNOWN← KNOWN \{X}
REFRACTORY ← REFRACTORY ∪{X}

end if
end for
for all X ∈ REFRACTORY do
if (IT − ta(X))> ERP(X) then

REFRACTORY ← REFRACTORY \{X}
UNKNOWN←UNKNOWN∪{X}

end if
end for

endwhile

Algorithm 3.2 (Figure 3.4) [174, 175].
Sermesant et al. proposed an extension to the fast marching scheme allowing to
include multiple wavefronts [176] (Algorithm 3.3). The extension summarized
in Algorithm 3.3 introduces a refractory state in which the nodes remain for the
length of the effective refractory period (ERP) after being activated. Moreover,
nodes can only activate adjacent nodes within a certain activity period after the
activation, which has to be shorter than the ERP. The assignment of the nodes to
the classes REFRACTORY and UNKNOWN is checked and updated after a fixed
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time step. The simulation runs as long as there are nodes in the T RIAL list and
the maximum integrated time has not been reached.

3.3 AnatomicalModeling

The activation pattern of the atria is strongly dependent on their anatomical prop-
erties. Moreover, mechanisms of arrhythmia initiation and perpetuation interfere
with the geometrical substrate [9]. Therefore, a realistic model of human atrial
anatomy is required to study such phenomena in silico. If body surface potentials
are of interest (cf. Section 3.4), also a torso model comprising the most important
organs is required [177].
While very detailed, microstructure-based models of single regions of the atria are
available, organ models on the atrial or whole heart scale represent only their shape
normally [9]. The shape can either be composed of simple geometrical bodies (e.g.
surfaces of a sphere with holes for the vessel and valve orifices) or derived from
segmentations of imaging data. Gadolinium-enhanced magnetic resonance imag-
ing (MRI) is one of the few methods allowing to include information regarding
the substrate in models (e.g. the degree of fibrosis) [178–182]. Three-dimensional
models of the atria can be divided in volumetric models comprising an atrial wall
with a finite thickness and surface models. Another distinguishing feature are the
conductive properties of the atrial septum. While it is modeled as a continuous,
fully conducting connection in some models, others include an isolating layer,
thus allowing interatrial conduction only via well-defined, discrete connections.
The interested reader is referred to e.g. [9, 23] for a comprehensive review of
available anatomical models and their features.
Within the scope of this thesis, a virtual population of eight heterogeneous torso
models presented by Krueger et al. was used [183]. Torso models and atrial
models were segmented from MRI data and augmented with a priori knowledge
using the approaches presented in Chapter 7. Figure 3.5 shows two examples of
torso models comprising several organs. The characteristics of the virtual study
population are introduced in more detail in Section 9.1.1.
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A B

Figure 3.5: Heterogeneous tetrahedral torso meshes of model #5 (A) and model #6 (B). The
volumes of the different segmented organs are shown in distinct color: lungs (blue), bone (gray),
heart (red), great vessels (pink), liver (brown), kidneys (yellow), intestines (green). Model #6 (B)
also comprised a segmented spleen (orange).

3.4 Forward Calculation of the ECG
The spatial gradient of the transmembrane voltages impresses a volume current
density iimp on the tissue:

iimp =−∇ · (σi∇Vm) . (3.21)

This impressed volume current density serves as the source for the extracellular
field in the surrounding according to the parabolic part of the bidomain formulation
(Equation (3.9)) [184]:

∇ · ((σi +σe)∇Φe) = iimp. (3.22)

Thus, the body surface potentials can be calculated based on the distribution of
Vm using this reduced bidomain formulation under the assumption of a passive,
purely resistive volume conduction representing the torso [177]. This so-called
forward problem of electrocardiography is linear and quasi-stationary. A fixed
potential at a reference node serves as a Dirichlet boundary condition whereas
the thorax-air boundary poses a Neumann boundary condition. Equation (3.22)
is usually discretized by finite element or boundary element schemes [9]. While
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finite element approaches are computationally more expensive, they can handle
unequal anisotropy in the volume conductor.
The resulting body surface potential maps (BSPMs) can be evaluated for each
time instant, as an integral over time [185], or by tracing the potential differ-
ence between electrodes over time as performed during electrocardiogram (ECG)
recordings.
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CHAPTER4
Parameter Estimation of Ion

CurrentModels
While computational models of cardiac electrophysiology elucidated pathophysio-
logical mechanisms and provided insight into arrhythmogenesis during the last
years, most models represent healthy cells. In order to fully leverage the potential
of in silico cardiology, the models have to be adapted to reflect pathologies, ge-
netic defects (channelopathies), the effects of pharmacological agents, or distinct
properties of specific regions of the heart.
Voltage and patch clamp techniques [186, 187] allow to record the response of
cells or single channels to a voltage step in terms of current. As the current is
proportional to the channel open probability, these experiments allow to assess the
channel kinetics, i.e. activation, deactivation and inactivation under specific condi-
tions. The altered gating behavior often translates to counter-intuitive changes on
higher levels of integration due to the complex and mostly non-linear structure
of the biophysical systems. Thus, an integration of these ion channel data into
comprehensive cellular models is imperative for a thorough evaluation of the
systemic effects (e.g. on the whole cell, tissue, or organ level) of altered gating
behavior (see e.g. [188]).
A common approach is to reparameterize established models (see Section 3.1)
while leaving their structure unaltered. The parameter estimation aims to minimize
the difference between the model output and the measured data, thus at a model
parameter set optimally reflecting the data. This process can be computationally
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expensive and time-consuming depending on the complexity of the model, the
number of parameters to estimate, and the abundance of measurement data. Par-
ticularly the high-dimensional, highly non-linear, and often non-convex nature of
the problem renders this a challenging task.
The advent of automated high-throughput patch clamping techniques [189] led to
a significant increase of the amount of available ion channel data. In many cases,
experimental data are available on very low levels of integration (e.g. ion cur-
rents) and very high levels of integration (e.g. the body surface electrocardiogram
(ECG)). Multi-scale simulations can aid to bridge the gap of missing links on
intermediate levels arising from a lack of data. In this way, model-based ap-
proaches can foster our understanding of patho-mechanisms and pave the way
for the development of tailored therapeutic approaches. Thus, there is a need for
automated, accurate, efficient, and robust parameter estimation techniques.
In this chapter, two algorithms from different families are evaluated regarding
their suitability for the scenario sketched above. First, optimization-based ap-
proaches are evaluated and advanced in Section 4.1. Then, an approach based on
multivariate metamodeling is evaluated in Section 4.2.

4.1 Hybrid Optimization
Besides classical gradient-based optimization approaches, derivative-free algo-
rithms have been proposed to tackle high-dimensional, non-linear, and non-convex
minimization problems. In this study, gradient-based trust-region-reflective (TRR)
optimization [190] and derivative-free, population-based particle swarm optimiza-
tion (PSO) are evaluated. Using idealized synthetic input data as well as measured
current data, the shortcomings of each of the approaches when being applied to
different cardiac ion currents are identified. Thus, a new hybrid approach coupling
PSO and TRR is proposed aiming at an optimization scheme being minimally
dependent on the initial parameter guess.
Previous work by other authors suggested different algorithms to estimate param-
eters of ion current formulations or whole cell models to reproduce measured
currents, action potentials or restitution curves (e.g. [191, 192]). Also derivative-
free metaheuristic algorithms were used in the field of cardiac electrophysiology:
e.g. particle swarm optimization (PSO) in [193, 194] and a genetic algorithm
in [195–197]. However, the study presented here is the first to combine the two

46



4.1. HYBRIDOPTIMIZATION

approaches in a coupled hybrid scheme [198, 199] for this purpose to the best of
my knowledge.
Parts of this study have been published as a journal article [200] as well as confer-
ence contributions [201–203] and are based on earlier work [127, 204, 205].

4.1.1 Methods
4.1.1.1 Ion Current Formulations
The parameter estimation algorithms were evaluated using ion current formula-
tions from the Courtemanche et al. human atrial cell model (see Section 3.1). The
currents are formulated using Hodgkin-Huxley type equations [152]:

IX = ĝX x(Vm−EX ) (4.1)
with ĝX being the maximum conductance of all channels conducting the current
IX , x being the open probability of the channels, and EX being the Nernst potential
of the ion type carrying the current IX . Based on pilot studies, the parameters of
the rapid delayed rectifier potassium current IKr, the ultra-rapid delayed rectifier
potassium current IKur, and the slow delayed rectifier potassium current IKs were
chosen to be estimated because they span a wide range of characteristics (e.g. fast
IKur kinetics compared to IKr).
For IKr, the Courtemanche et al. formulation [49] being used was:

IKr = gKrxr(Vm−EK)
1

1+ exp
(

Vm+15
22.4

) , (4.2)

with gKr being the maximal conductance, xr the activation gating variable, and EK

the potassium Nernst voltage, and Vm the transmembrane voltage in mV. Besides
the instantaneous inactivation gate represented by the fraction in Equation (4.2),
the formulation comprises the time-dependent gating variable xr governed by the
following ordinary differential equation (ODE):

dxr

dt
=

xr∞− xr

τxr

, (4.3)

with xr∞ being the steady-state value and τxr the time constant of the gating
variable xr. These two parameters depend on Vm again:

xr∞ =
1

1+ exp
(
−Vm+14.1

6.5

) , (4.4)
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τxr =
1

αxr +βxr

. (4.5)
The rate constants αxr and βxr are defined as a function of Vm as well:

αxr = 0.0003
Vm +14.1

1− exp
(
−Vm+14.1

5

) , (4.6)

βxr = 7.3898×10−5 Vm−3.3328

exp
(

Vm−3.3328
5.1237

)
−1

. (4.7)

For each current, the parameters to be estimated were identified and classified
as additive or multiplicative depending on whether they enter the equation in a
sum or a product. Maximum conductances are an example for multiplicative
parameters whereas half-activation voltages are an example for additive param-
eters (cf. Section 3.1). For IKr, 12 parameters were estimated. The complete
set of equations for IKr, IKur, and IKs together with the estimated parameters,
their original Courtemanche et al. values, and their classification as additive or
multiplicative are given in Section A.1.
The gating ODEs as e.g. Equation (4.3) are normally solved numerically in com-
putational cardiology. This is necessary as the steady-state value xr∞ and the time
constant τxr are voltage-dependent and change during the cardiac cycle. Thus, no
closed analytical solution can be obtained. During clamp experiments with classi-
cal voltage protocols however, Vm is a piecewise constant function. Therefore, an
analytical solution for Equation (4.3) can be derived [206]:

xr (t− t0) = xr∞ +(xr0− xr∞) exp
(
− t− t0

τxr

)
, (4.8)

with t0 being the time of a step of Vm and xr0 the corresponding initial value at
that time. Using the analytical solution, the calculation of the current is computa-
tionally far less expensive as compared to numerical approximation. All current
formulations were implemented in Matlab (R2015a, The MathWorks, Natick, MA,
USA).

4.1.1.2 Voltage ClampData
For the evaluation of the algorithms, two sets of data were used: synthetic and
measured currents. Synthetic data were generated using the original formulations
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and parameters from Courtemanche et al. [49]. These synthetic data had the ad-
vantage that it was known that a parameter set exists which exactly reproduces the
input data allowing to optimally assess the accuracy of the estimation. Moreover,
the parameter values used to generate the input data were available for comparison
of the estimated parameters even though the optimization algorithm was blinded
to these values. This allowed to assess parameter identifiability. In addition,
noise was added to the synthetic signals to evaluate the robustness regarding the
influence of noise under controlled conditions. Synthetic data were generated for
IKr which was identified as rather easy to fit in a pilot study and for IKur which
was identified as hard to fit.
The voltage protocol is shown in Figure 4.1 and was composed of 13 traces con-
sisting of 20 ms at –80 mV resting voltage, 400 ms at the respective step voltage
ranging from –70 mV to +50 mV in steps of 10 mV, and 400 ms at –110 mV result-
ing in a total length of 10.66 s. The resulting currents were sampled every 2 ms.
For the sensitivity analysis regarding noise, the non-noisy signals were corrupted
with additive white Gaussian noise resulting in signal to noise ratios (SNRs) of
10, 20, 35, and 65 dB.
The study also comprised a second set of data which were acquired in wet-lab
experiments. Measured data pose additional challenges in terms of noise and other
artifacts. Moreover, the biophysical entity being measured will not be perfectly
replicated by the model as opposed to synthetic data. The investigation performed
in the group of Eberhard Scholz at University Hospital Heidelberg conformed to
the “Guide for the Care and Use of Laboratory Animals” published by the US
National Institutes of Health (NIH publication No 85-23, revised 1996) and was
approved by the regional administrative council (Regierungspräsidium Karlsruhe,
Karlsruhe, Germany, application number G-221/12). The details of the acquisition
procedures for the human ether-à-go-go-related gene (hERG) (IKr), KCNA5 (IKur),
and KCNQ1+KCNE1 (IKs) are given in Section A.2.

4.1.1.3 Optimization Algorithms

In this study, the estimation of model parameters was treated as a minimization
problem aiming at an optimal fit of the model output to the input data. Therefore,
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Figure 4.1: Synthetic ((A) and (C)) andmeasured ((B), (D), and (E)) input current data used to
estimate parameters together with the corresponding voltage protocols. (A) and (B) show IKr,(C) and (D) show IKur, (E) shows IKs.

the following cost function was used:

min
p

(
M

∑
j

N

∑
i

(
I
(
ti,Vj (ti) ,p

)
− I∗

(
ti,Vj (ti)

))2

)
, (4.9)

with I being the output of the ion current model using the vector of adjustable
parameters p aiming to match the measured current I∗, ti being a discrete time, and
Vj the transmembrane voltage trace, which is described by a piecewise constant
function for each step voltage. Thus i covered all N time instants for which
samples were considered and j covered all M step voltages.
The parameter search spaces were restricted. Two sets of ranges were evaluated.
For the “narrow” range, additive values were allowed to vary between –60 and
+60 of their standard Courtemanche et al. values [49] in the unit of the standard
value. Multiplicative values were restricted to the interval of 0.1 and 10 times
their standard value in the “narrow” case. For the “wide” range, limits were ±120
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and 0.01..100×, respectively. All optimization code was implemented in Matlab
(R2015a, The MathWorks, Natick, MA, USA). In order to obtain statistics regarding
the dependency on the parameter vector used to initialize the optimization (“initial
guess”), all experiments were run 25 times with uniformly distributed random
initial values.

Trust-Region-Reflective The TRR optimization algorithm is a second order
scheme, which approximates the function f (p) quadratically as qi (p). Thus, it
requires the values of the first and the second derivative in the current parameter
vector pi. The quadratic approximation is considered within a region of trust
around that point:

qi (p) = f (pi)+∇ f (pi)
T (p−pi)+

1
2
(p−pi)

T
∇

2 f (pi)(p−pi) , (4.10)

min
‖s‖2≤r∆

qi (pi + s) . (4.11)

The size of the region of trust r∆ is varied depending on the quality of the second
order approximation. The more accurate the approximation was in the current
iteration, the larger r∆ will be in the next iteration. TRR is provided by the
Matlab function lsqnonlin and can terminate due to several criteria. The minimum
change of the norm of the parameter vector p (pTol) and the minimum change
of the cost function value (fTol) were set to 1×10−11 (pA/pF)2. The number
of iterations (maxIter) was limited to 1×105 and the number of cost function
evaluations (maxFunEval) to 5×105. Each TRR experiment comprised 22 parallel
instantiations with random start vectors.

Particle SwarmOptimization Derivative-based algorithms such as TRR in-
troduced above are prone to get stuck in local minima as shown in [201]. As
a consequence, the result is sensitive to the choice of the initial parameter vec-
tor, which is undesirable. Thus, a population-based algorithm, which does not
use gradient information, was implemented in addition. PSO is inspired by the
swarming behavior observed in nature as e.g. flocking birds or fish schools [207].
A population of “particles” swarms through the parameter space searching for
the globally best solution. Each particle i knows about the best position it has
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bg

bi pi,last iteration

pi, next iteration

pi

Figure 4.2: Basic principle of the PSO. Each particle with its position pi experiences attractingforces towards the best position found so far by the entire swarm bg , the best position found sofar by itself bi, and an inertia force defined by the difference between the current position piand the one in the last iteration pi,last iteration. These three forces are weighted using uniformlydistributed numbers∈ [0,1] and added vectorially to obtain the position for the next iteration
(pi,next iteration).

found so far itself (bi) and the best position found so far by the entire swarm (bg).
The particles experience attracting forces towards bi and bg with random weights.
Moreover, inertia tries to keep particles moving in a similar direction as before as
shown e.g. in [208]. Thus, the parameter vectors are updated as follows in each
iteration:

vi← χ(vi +U(0,φ1)⊗ (bi−pi)+U(0,φ2)⊗ (bg−pi)) , (4.12)
pi← pi +vi , (4.13)

with U(0,φ1) and U(0,φ2) being vectors of the same length as p of uniformly
distributed random numbers (between 0 and φ1 or φ2) and ⊗ being a component-
wise multiplication. Clerc and Kennedy showed that a choice of φ1 = φ2 = 2.05
is optimal together with the following definition of the constriction coefficient χ :

χ =
2

φ −2+
√

φ 2−4φ
≈ 0.73 , (4.14)

with φ = φ1 +φ2 [209].
In this study, PSO was adjusted in order to handle restricted search spaces. If
one of the parameters was out of the prescribed ranges after the update step
Equation (4.13), a correction step was performed. The particular elements of p
which crossed a boundary were placed randomly within a 25% margin starting at
this boundary.
The number of particles N was varied between 24 and 12,288 with the number
being doubled from one setup to the next. The algorithm was run for a fixed
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number of iterations L. The approach was implemented in Matlab with parallelized
computation of the cost function across the particles.

Combination ofAlgorithms As it turned out that none of the algorithms alone
performed satisfactory for all investigated currents (see Section 4.1.2.1), combina-
tions were evaluated. In the “two-stage PSO+TRR” approach, the algorithms were
combined in a sequential manner. Motivated by the fact that TRR was sensitive
to the initial guess and thus dependent on a good start vector, the best M = 12
parameter vectors yielded by PSO were used as initial guesses for subsequent
TRR optimization as shown in Figure 4.3A.
The “two-stage PSO+TRR” approach was not superior compared to pure PSO
or pure TRR for some of the current formulations and the resulting error using
the synthetic data deviated significantly from zero (see Section 4.1.2.1). Thus, a
hybrid approach coupling TRR and PSO in each PSO iteration was developed and
implemented as shown in Figure 4.3B and detailed in Algorithm 4.1. After each
PSO update step Equation (4.13), each of the N particles with their respective para-
meter vectors were subject to a fixed number of K TRR iterations. This approach
is being referred to as “hybrid (PSO+TRR)”. For “hybrid (PSO+TRR)+TRR”,
TRR was additionally run until convergence for the best M = 12 particles after
PSO termination. Three different combinations of the number of TRR iterations in
each PSO iteration K, the number of PSO iterations L, and the number of particles
N were evaluated: “low” (K = 5, L = 250, N = 96), “medium” (K = 10, L = 500,
N = 192), and “high” (K = 20, L = 1000, N = 384).

4.1.2 Results
4.1.2.1 Results Using Synthetic Data
In a first step, the different algorithms and their combinations were evaluated
using synthetic input data. For these data, a parameter set yielding an error of
exactly zero exists and was available for comparison.

53



CHAPTER 4. PARAMETER ESTIMATIONOF IONCURRENTMODELS

Trust Region 
Reflective

Particle 
Swarm

for K 
iterations

for L iterations

all N particles

Trust Region 
Reflectiveuntil 

convergence

best M particlesTrust Region 
Reflective

Particle 
Swarm

until 
convergence

for L iterations

best M particles

A B

Figure 4.3: Flow chart of the two-stage PSO+TRR algorithm (A) and the hybrid (PSO+TRR)+TRR
algorithm (B). The steps above the horizontal, dashed line in (B) are referred to as hybrid
(PSO+TRR).

One-StageApproach Regarding the pure variants of PSO and TRR (one-stage
approaches), TRR yielded lower errors and less variance than PSO for IKr. For
IKur on the other hand, PSO performed better by four orders of magnitude (see
Figure 4.4).
The squared errors obtained using pure PSO and the narrow IKr parameter in-
tervals ranged between 1×10−4 (pA/pF)2 and 0.18 (pA/pF)2. For higher num-
bers of particles N, a tendency toward lower errors was observed (median error
6.4×10−2 (pA/pF)2 for N = 24 and 9.5×10−3 (pA/pF)2 for N = 12,288). The
squared errors obtained by pure TRR were lower (5.1×10−3) and showed smaller
variance compared to pure PSO in the 25 experiments with random start vec-
tors (see Figure 4.4A). By extending the search space to the wide ranges, the
squared error was increased by about three orders of magnitude for pure PSO
(see Figure 4.4B). For pure TRR, the median error was unaffected by the wider
ranges. However, five of the experiments yielded significantly higher errors (see
Figure 4.4B).
The convergence behavior of pure PSO is shown in Figure 4.5A. While the me-
dian error decreased until around 8,500 iterations, the maximum error remained
almost unchanged after the very first iterations. Regarding the TRR convergence
criteria introduced in Section 4.1.1.3, the change of the norm of p (pTol) caused
termination for all experiments using the narrow parameter ranges. This criterion
was decisive for only 19% of cases using the wide ranges where the norm of the
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Algorithm 4.1 “hybrid (PSO+TRR)+TRR” optimization approach
for itPSO < L do
for i < N do

vi← χ(vi +U(0,φ1)⊗ (bi−pi)+U(0,φ2)⊗ (bg−pi))
p̃i← pi +vienforce boundary constraints on p̃ifor itT RR < K do
perform TRR iteration on p̃iend for

vi← p̃i−pi
pi← pi +viend for

end for
sort b[] by ascending squared error
for i < M do
while (not converged)∧ (itT RR < maxIter) do
perform TRR iteration on biendwhile

end for

squared error (fTol) terminated the remaining cases.
Using synthetic IKur current data as input, two differences were observed com-
pared to IKr. First, PSO performed better by more than 4 orders of magnitude in
terms of squared error (see Figure 4.4C). Second, extending the parameter search
space to the wide ranges led to a lower squared error (see Figure 4.4D). Compared
to the narrow ranges, the squared error was lower by 80% for PSO (N = 12,288)
and by 12% for TRR.
PSO converged to almost the final value of the cost function within 6,000 iterations
(see Figure 4.6A). The maximum error did not decrease significantly after the first
500 iterations as was the case for IKr. The decisive termination criterion for TRR
was fTol in 66% of the cases, the number of iterations (maxIter) in 31% of the
cases, and pTol in 3% of the cases using the narrow ranges. For the wide ranges,
the distribution was 50/40/10%, respectively.

Two-Stage PSO+TRR Approach A combination of PSO and TRR in a se-
quential manner by using the best M = 12 particles as start vector for subsequent

55



CHAPTER 4. PARAMETER ESTIMATIONOF IONCURRENTMODELS

�����

�����

�����

�����

�����

�����

�����

�����

�����

�� �� �� ��� ��� ��� ���� ���� ���������
��� ���

�����

�����

�����

�����

�����

�����

�����

�����

�����

�� �� �� ��� ��� ��� ���� ���� ���������
��� ���

�����

�����

�����

�����

�����

�����

�����

�����

�����

�� �� �� ��� ��� ��� ���� ���� ���������
��� ���

�����

�����

�����

�����

�����

�����

�����

�����

�����

�� �� �� ��� ��� ��� ���� ���� ���������
��� ���

sq
ua

re
d 

er
ro

r (
pA

/p
F)

2
sq

ua
re

d 
er

ro
r (

pA
/p

F)
2

I K
ur

I K
r

narrow parameter ranges wide parameter ranges

A B

C D

6144 12288 6144 12288

Figure 4.4: Sum of squared errors achieved by pure PSO and pure TRR optimization for syn-
thetic IKr ((A) and (B)) and IKur ((C) and (D)) data. The number of particlesN for PSOwas varied.
In (A) and (C), narrow parameter ranges were used whereas in (B) and (D) the search space was
wider. Box plots represent 25 experiments each; the green lines indicate linear regressions of
themedian values in the graph coordinate system.

TRR optimization improved the results compared to pure PSO in all cases and
compared to pure TRR in most cases (see Figure 4.7). The advantage of the
two-stage PSO+TRR approach compared to the one-stage approaches was bigger
for IKur than for IKr and bigger for the wide parameter ranges than for the narrow
ones.
The squared error was reduced by 87% for N = 24 and by 56% for N = 12,288
using the narrow IKr ranges (see Figure 4.7A). Thus, the median error of the
two-stage PSO+TRR approach was smaller than for any one-stage approach for
N ≥ 1536. The worst result yielded by pure TRR, however, was better than the
worst result obtained using two-stage PSO+TRR. Extending the parameter search
space to the wide ranges increased the variance of the resulting squared errors
accompanied by a slight increase of the median error (1.2×10−2 (pA/pF)2 vs.
4.2×10−3 (pA/pF)2, see Figure 4.7B). This behavior of the two-stage PSO+TRR
approach is in contrast to pure PSO for which the median error was significantly
increased together with a slight increase of the variance (see Section 4.1.2.1 and
Figure 4.4A+B). The TRR step of the two-stage PSO+TRR approach was termi-
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Figure 4.5: Sum of squared errors convergence behavior of pure PSO (A) and hybrid (PSO+TRR)
(B-D) for synthetic IKr data. 25 experiments using the wide parameter ranges were performed.The black line indicates themedian, the green lines theminimum and themaximum. The green
area covers the two central quartiles. The number of particlesN, the number of PSO iterations
L, and the number of inner TRR iterationsK was increased from low (B) viamedium (C) to high
(D).

nated due to pTol in all cases using the narrow ranges. For the wide ranges, 16%
of the runs were terminated due to fTol.
For the IKur formulation, the improvement of two-stage PSO+TRR over the best
one-stage approach was 6% for the narrow ranges (see Figure 4.4C) and 88%
for the wide ranges (see Figure 4.4D) for N = 12,288. For the wide IKur para-
meter ranges, the median error was lower and the variance bigger for two-stage
PSO+TRR as was the case for pure PSO. The decisive stopping criterion for the
TRR step was maxIter in 80% of the cases and pTol in 20% using the narrow
ranges. For the wide ranges, TRR was terminated due to pTol, maxIter, fTol in
51/30/29% of the cases, respectively.

Hybrid Approach The hybrid approach performed best for both IKr and IKur

synthetic current data irrespective of the parameter ranges used. The improvement
compared to the sequential combination of PSO and TRR was more than five
orders of magnitude (see Figure 4.8).
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Using the hybrid (PSO+TRR) approach, median squared error smaller than
1×10−9 (pA/pF)2 for IKr (see Figure 4.8B) and smaller than 1×10−7 (pA/pF)2 for
IKur (see Figure 4.8D) were obtained. Thus, the results were improved by seven
and five orders of magnitude compared to the two-stage PSO+TRR approach,
respectively. The low setup of the hybrid approach comprising the lowest num-
ber of particles, the lowest number of PSO iterations, and the lowest number of
inner TRR iterations within each PSO iteration yielded a single outlier for IKur:
1.4×10−2 (pA/pF)2. In this experiment, the value of the cost function remained
almost stable after the first 10 iterations indicating a deadlock of the entire swarm
in a local minimum. The maximum squared errors obtained using the medium and
high setups of the hybrid (PSO+TRR) approach were 5.2×10−11 (pA/pF)2 for IKr

and 2.3×10−6 (pA/pF)2 for IKur.
Restricting the parameters to the narrow ranges did not influence the result in
terms of median error and variance significantly for IKr (see Figure 4.8A). For
IKur, a similar behavior as for the two-stage PSO+TRR approach was observed for
hybrid (PSO+TRR): a larger variance of the resulting squared error with several
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Figure 4.7: Sum of squared errors achieved by two-stage PSO+TRR optimization for synthetic
IKr ((A) and (B)) and IKur ((C) and (D)) data. The number of particlesN was varied. In (A) and (C),
narrow parameter ranges were usedwhereas in (B) and (D) the search spacewaswider. Box
plots represent 25 experiments each. The green lines indicate linear regressions of themedian
values in the graph coordinate system. The green dot on the left of each panel represents the
median of pure TRR optimization, the dotted green lines represent linear regressions of the
median values of pure PSO (compare Figure 4.4).

estimates yielding up to 3.5×10−1 (pA/pF)2 for both the low and the medium
setup (see Figure 4.8C).
The convergence of the median error was not highly dependent on the setup being
used. It decreased to an interval within one order of magnitude of the final value
in 125/217/232 iterations for the low/medium/high IKr setups, respectively (see
Figure 4.5B-D). For IKur, convergence was faster than for IKr as was the case
for pure PSO. A value within one order of magnitude of the final value was
reached after 112/167/128 iterations using the low/medium/high setups of the
hybrid (PSO+TRR) approach. Using the low setup, however, the maximum error
still decreased during the final iterations 200–250.
In the hybrid (PSO+TRR)+TRR approach, TRR was run until one of the termi-
nation criteria introduced in Section 4.1.1.3 was met. Using this modification,
the squared error could only be reduced by <1% (see Figure 4.8). The final TRR
step was terminated due to pTol in ≈80% of the cases and due to fTol in ≈20%
irrespective of the current formulation, the parameter ranges, and the algorithm
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Figure 4.8: Sum of squared errors achieved by hybrid (PSO+TRR) and hybrid (PSO+TRR)+TRR
optimization for synthetic IKr (A) and IKur (B) data. Parameter values were restricted to thewide range. The number of particles N, the number of PSO iterations L and the number of
inner TRR iterations K was increased from low via medium to high. Box plots represent 25
experiments each; the green lines indicate linear regressions of themedian values in the graph
coordinate system. The green triangle on the left of each panel represents the median of
two-stage PSO+TRR forN = 12,288 (compare Figure 4.7).

setup being used.
The currents produced by the parameter sets estimated using the high variant

of the hybrid (PSO+TRR)+TRR approach yielding the highest squared error are
shown in Figure 4.9A+C. For the synthetic data, input and output were visually
indistinguishable. Therefore, the magnified difference between the synthetic
input data and the model output using the estimated parameters is shown in Fig-
ure 4.10A+C. The relative deviation of the estimated parameters from the ground
truth parameters used to generate the synthetic input data is shown in Figure 4.11.
All twelve IKr parameters were estimated very accurately with a relative error of
<0.1%. For IKur, some of the 25 parameters deviated significantly. Likely reasons
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Figure 4.9: Resulting currents using the estimated parameters. Solid lines indicate synthetic
((A) and (C)) and measured ((B), (D), and (E)) input currents used for parameter estimation.
Crosses represent the best fit obtained using the high setup of the hybrid (PSO+TRR)+TRR
approach (every 15th sample is shown). (A) and (B) show IKr , (C) and (D) show IKur, (E) shows IKstogether with the corresponding voltage protocols.

for this observation as well as the offset for gKr and ui,b2 are discussed below (see
Section 4.1.3.1).

4.1.2.2 Influence of Noise
The synthetic input data were corrupted with additive white Gaussian noise yield-
ing SNRs of 10, 20, 35, and 60 dB to assess the robustness with respect to noise.
The one-stage approaches and the sequential combination of algorithms yielded
worse results when raising the SNR to values above 35 dB. The hybrid approach
on the other hand proved to be able to cope with data of higher quality as well
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Figure 4.10: Resulting difference between the input currents and themodel output using the
estimated parameters. The best fit obtained using the high setup of the hybrid (PSO+TRR)+TRR
approach is shown. Samples directly adjacent to voltage stepswere ignored in the cost function
for the optimization and not plotted. (A) and (B) show IKr, (C) and (D) show IKur, (E) shows IKstogether with the corresponding voltage protocols.

(see Figure 4.12).
The cost function for the optimization problem was defined as the sum of squared
differences between the model output using the estimated parameters and the
noisy input data according to Equation (4.9). This metric got worse for signals
of poorer quality (increased noise level, thus lower SNR) as the noise was not
reproduced by the model output (see Figure 4.12B+D). The hybrid (PSO+TRR)
approach yielded better results than simpler approaches for a moderate noise
level of 60 dB (2.7×10−4 (pA/pF)2 for medium vs. 8.8×10−4 (pA/pF)2 for PSO
with N = 12,288). When increasing the noise level, this difference vanished. For
a SNR of 10 dB, all evaluated approaches yielded a sum of squared errors of
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Figure 4.11: Relative error of the estimated parameters using synthetic IKr (A) and IKur (B)+(C)data and the hybrid (PSO+TRR)+TRR approach in the high configuration. Parameter deviations
were normalized to their ground truth values. Note the different scales. IKur parameters weresplit in high deviation (B) and low deviation (C) groups. Box plots represent 25 experiments.

2.6×101 (pA/pF)2. For the non-noisy signals of better quality on the other hand,
the squared error increased compared to SNR = 60 dB for all but the hybrid ap-
proaches. By assuming that the model cannot reproduce the white Gaussian noise,
the difference between the noisy and the non-noisy input signal can be considered
a lower boundary for the sum of squared errors achieved by the optimization.
In this sense, the hybrid (PSO+TRR) approach yielded optimal results for all
investigated noise levels. While optimal results could be obtained using the PSO
and the two-stage PSO+TRR approach for lower quality signals with SNRs below
35 dB as well, they could not cope well with high quality signals.
Figure 4.12A+C shows the squared error with respect to the original, non-noisy
signal. This is not the cost function which the optimization was subject to. The
lower boundary for this metric is zero. The main difference is a lower squared
error when relating the model output to the non-noisy signal compared to the
corrupted one. For the hybrid (PSO+TRR)+TRR approach and a SNR of 60 dB,
the squared error was lower by three orders of magnitude. For the one-stage
approaches (pure PSO and pure TRR) and two-stage PSO+TRR, the squared
error was lower for a SNR of 35 dB than for 60 dB. This behavior could not be
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Figure 4.12: Sensitivity of the sumof squared error to noise in synthetic IKr ((A) and (B)) and IKur((C) and (D)) data using pure PSO, pure TRR, two-stage (PSO+TRR) and hybrid (PSO+TRR)+TRR
optimization. The squared error was measured with respect to the original, non-noisy data
in (A) and (C). In (B) and (D), the error was measured with respect to the noisy data and the
horizontal lines indicate the sum of squared differences between the noisy input data and the
ground-truth input data. Parameters were restricted to the wide ranges. Box plots represent
25 experiments.

observed for the hybrid approaches which showed a monotonic increase of error
for increasing noise levels also for the quality metric with respect to the ground
truth signal.

64



4.1. HYBRIDOPTIMIZATION

sq
ua

re
d 

er
ro

r (
pA

/p
F)

2

I K
ur

I K
r

I K
s

�����

�����

�����

�����

�����

�����

�� �� �� ��� ��� ��� ���� ���� ���� ����� ��� �� �� �� ��� ��� ��� ���� ���� ���� ����� ��� ���������� ��� ����������

�������������������� ���������������� ��������������������

sq
ua

re
d 

er
ro

r (
pA

/p
F)

2
sq

ua
re

d 
er

ro
r (

pA
/p

F)
2

�����

�����

�����

�����

�����

�����

�� �� �� ��� ��� ��� ���� ���� ���� ����� ��� �� �� �� ��� ��� ��� ���� ���� ���� ����� ��� ���������� ��� ����������

�������������������� ���������������� ��������������������

�����

�����

�����

�����

�����

�����

�� �� �� ��� ��� ��� ���� ���� ���� ����� ��� �� �� �� ��� ��� ��� ���� ���� ���� ����� ��� ���������� ��� ����������

�������������������� ���������������� ��������������������

A

B

C

Figure 4.13: Sum of squared errors achieved by pure PSO or TRR, two-stage PSO+TRR, hybrid
(PSO+TRR) and hybrid (PSO+TRR)+TRR optimization for measured IKr (A), IKur (B) and IKs (C)data. Parameter values were restricted to the wide range. Note the different scaling compared
to Figure 4.4, Figure 4.7, and Figure 4.8. For the one-stage and two-stage PSO approaches the
number of particlesN was varied. For the hybrid approaches, the number of particlesN, the
number of PSO iterations L and the number of inner TRR iterationsK was increased from low
viamedium to high. Box plots represent 25 experiments each; the dashed lines indicate linear
regressions of themedian values in the graph coordinate system.

4.1.2.3 Results UsingMeasured Data
In contrast to the synthetic input data used in Section 4.1.2.1, measured current
data pose additional challenges. In general, a parameter set yielding exactly the
input signal as model output does not exist due to noise and other measurement
artifacts as well as simplifications in the mathematical models. The best results
were obtained using the hybrid approaches for all three investigated currents: IKr,
IKur, and IKs (see Figure 4.13). While the choice of the optimization algorithm did
not make a significant difference for IKr (all results within one order of magnitude),
the squared error was consistently decreased by one order of magnitude for IKur
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by using the hybrid approach. For IKs, the main advantage of the hybrid approach
over the others was reduced variance in the resulting squared error by one order
of magnitude.
The slow upstroke following the first voltage step in the measured IKr current was
well reproduced by the model (see Figure 4.9B and Figure 4.10B). The second
voltage step down to –120 mV caused a fast inward current, which quickly went
back to zero again. The Courtemanche et al. current formulation being used in
this study could not reproduce this phase well (see Figure 4.9B and Figure 4.10B)
because only one gate with a finite time constant is incorporated. The second
gate is instantaneous (τ = 0 ms), thus forcing the same time constant vs. voltage
relation for both step responses. The variance in the resulting squared error was
smaller when TRR was incorporated in the optimization (see Figure 4.13A) as
was the case for synthetic IKr input data (see Section 4.1.2.1).
Regarding IKur, the results using the measured input currents were also comparable
to the characteristics observed using the synthetic input data (see Figure 4.13B).
First, PSO performed better than TRR (9.4 (pA/pF)2 for pure PSO with N = 12,288
vs. 3.2×102 (pA/pF)2 for pure TRR). Second, hybrid (PSO+TRR) was superior to
the sequential combination (two-stage PSO+TRR) in terms of both the median
and the maximum squared error. The model output currents using the estimated
parameters were visually indistinguishable from the input data (see Figure 4.9D).
The remaining difference in Figure 4.10D showed no clear pattern which could be
traced back to the voltage protocol and was dominated by measurement noise.
The algorithm performance for the Courtemanche et al. IKs formulation was
only assessed using measured data and showed comparable characteristics as
were observed for IKur. PSO performed better than TRR for sufficiently large
N (see Figure 4.13C). However, two differences could be observed. First, the
variance in the resulting squared error using the two-stage PSO+TRR approach
was significantly larger for IKs compared to IKur, as well as compared to pure
PSO. Second, the main advantage of the hybrid over the two-stage approach was
a reduced variance in the resulting squared error rather than a reduction of the
median error. The resulting current reproduced the steady-state currents well (see
Figure 4.9E). The difference signal with respect to the input data (Figure 4.10E)
reveals that the biphasic nature of the response to the first voltage step could not
be well reproduced. While the slow, exponential increase was covered by the
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Table 4.1: Median computing times in seconds (n = 25) for the parameter estimation using
synthetic (s) andmeasured (m) input data. For pure PSO and two-stage PSO+TRR, the number of
particles was set toN = 1,536. For hybrid, themedium setupwas used.

sIKr (s) sIKur (s) mIKr (s) mIKur (s) mIKs (s)
PSO 475 714 839 569 341
TRR 40 2,747 2,763 1,570 599
two-stage PSO+TRR 532 2,096 854 832 361
hybrid (PSO+TRR) 7,392 20,220 8,923 21,840 3,687
hybrid (PSO+TRR)+TRR 7,393 20,225 8,925 21,894 3,692

Courtemanche et al. IKs formulation comprising four identical xs gates, the almost
instantaneous upstroke was not.

4.1.2.4 Computing Times
Table 4.1 gives an overview of the median computing times (n = 25) of the differ-
ent algorithms. All experiments were performed on Mac Pro machines equipped
with two 2.4 GHz Intel Xeon E5645 processors with six cores each and 64 GB
RAM under Mac OS X (Apple Inc., Cupertino, CA, USA). PSO was the least
computationally expensive algorithm, in general. One exception were the syn-
thetic IKr data for which TRR was faster than PSO by one order of magnitude.
TRR converged faster when particle swarm optimized start vectors were used
(two-stage PSO+TRR) compared to random initial guesses (pure TRR) even when
counting in the time spent for PSO.
For the synthetic data and the hybrid approaches applied to the measured data,
IKur was computationally more expensive than the other two currents. The hy-
brid approaches took the longest time compared to the one-stage approaches or
sequential combination of algorithms (2.5 h for IKr, 6.1 h for IKur, and 1.0 h for
IKs using the measured data). In general, synthetic and measured input data did
not lead to significantly different computing times. However, TRR was faster
using the synthetic data by two orders of magnitude for IKr and pure TRR as
well as two-stage PSO+TRR were faster by a factor of ≈2 for measured IKur.
The convergence of the final TRR step in the hybrid (PSO+TRR)+TRR approach
was faster using the synthetic data than using the measured data. For IKr, it was
terminated within 2 s for the synthetic and within 3 s for the measured data in all
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cases. For IKur, the maximum times were 20 s and 1167 s. For the measured IKs

data, the final TRR step converged within less than 700 s in all cases.
For all investigated approaches, less than 5% of the time was spent in algorithm-
specific code and more than 95% on the evaluation of the cost function Equa-
tion (4.9).

4.1.3 Discussion
In the study described in this section, the population-based PSO, the gradient-
based TRR algorithm, as well as sequential and tightly coupled combinations
of both algorithms were evaluated regarding their performance for parameter
estimation of cardiac ion channel formulations. The suitability was assessed in
terms of accuracy and robustness with respect to noise and the choice of the initial
guess.

4.1.3.1 Algorithm Performance
The type of problem, i.e. the current for which the parameters are estimated, had
a huge impact on the performance of the two algorithms being used stand-alone
(one-stage approaches). While the results obtained using TRR were significantly
better for IKr, PSO outperformed TRR by orders of magnitude for IKur data. By
combining the two algorithms sequentially (two-stage PSO+TRR), the median
error could be reduced. This benefit came, however, at the expense of a larger
variance, particularly when the search space was extended to the wide parameter
ranges. As the performance of the one-after-the-other combination was not satis-
factory, the algorithms were coupled in each PSO iteration in the newly proposed
hybrid (PSO+TRR) approach. This novel scheme yielded consistently low median
and maximum squared error values. Thus, the variance for experiments using dif-
ferent initial guesses was minimal. The observed characteristics can be explained
by the properties of the different optimization problems. The cost function for
IKr parameter estimation was relatively well fit by the quadratic approximation in
TRR. Moreover, the gradient-based TRR approach could overcome local minima
due to their relatively low number and shallow nature. The cost function for
IKur on the other hand was characterized by extensive plateaus with narrow and
steep minima. Therefore, the random movement of the PSO particles helped to
overcome the plateaus. Furthermore, the incorporation of the gradient information
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in each PSO iteration was needed to identify the actual minima and descend into
them. Regarding pure PSO, we showed that the first few iterations are crucial. A
high number of iterations did not help to prevent bad results if the swarm moved
in a bad direction at the start.
Regarding signal quality and noise conditions, the results got worse when the
quality of the input data, thus the noise conditions of the experimental design,
were improved for the non-hybrid approaches. This observation can be explained
by the accuracy requirements. The fewer noise there is in the signal, the narrower
is the margin of parameters yielding the optimal results in the sense of the cost
function. Thus, the minima in the cost function are more articulated for less
noisy signals and more blurred for signals of lower quality. Hence, the probability
to get stuck in a local minimum can be reduced by adding noise to the signal.
Conversely, this implies that the parameter estimation approach being used must
be capable of handling data of the quality at hand. We showed that the novel
hybrid approach proposed in this study is not limited in this respect and is suitable
for data of arbitrary high quality. Moreover, the approach yields the optimal result
up to the theoretical limit for noisy data.
The accuracy provided by the hybrid approach is probably higher than required for
most applications. However, Figure 4.14 shows an example of the physiological
relevance of the superiority regarding the quality of fit. While the two-stage
PSO+TRR approach (Figure 4.14A) failed to reproduce the IKur dynamics for
medium step voltages and yielded almost piece-wise constant current traces, the
hybrid (PSO+TRR) approach (Figure 4.14B) succeeded to fully capture the gating
kinetics resulting in a good reproduction of the current dynamics. Moreover, the
hybrid approach estimated the IKr and most of the IKur parameters very accurately.
For gKr, a small (0.01%) but consistent offset was observed as well as for ui,b2

(Figure 4.11). These offsets can be explained by different implementations used to
calculate the currents during the generation of synthetic measurement data (C++,
intermediate parameter discretized in look up tables) and for the evaluation of the
cost function during the optimization (Matlab, accurate up to machine precision)
and the interface between the two (text files with limited precision). In order to be
useful in practical application, the ability to generate reliable estimates in a single
run regardless of the initial guess is of great importance. The newly proposed
hybrid approach proved to fully meet this requirement as shown particularly for
wet-lab IKur and IKs data (see Figure 4.13).
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Figure 4.14: Resulting IKur curves using the parameters estimated by the two-stage PSO+TRR(A) and the hybrid (PSO+TRR) approach in themedium setup (B) togetherwith the corresponding
voltage protocols. Solid lines indicate synthetic input currents used for parameter estimation.
Crosses represent theworst fit obtained using the respective approach and thewide parameter
ranges (every 15th sample is shown). Differences are most pronounced for step voltages
between +20mV and +40mV.

Regarding the measured data, several reasons are likely to have contributed to
the remaining deviation between the input data and the model output using the
optimized parameters. First, there are differences between the model and the
expression system used to acquire the data. hERG for example only codes for
the α-subunit of IKr while the data used in the original Courtemanche et al. for-
mulation [49] also comprised the β -subunit. Moreover, the measurements were
conducted at room temperature rather than at 37◦ C. Second, measurement noise
corrupted the signals. Third, the model formulations being used are simplifi-
cations of the actual biophysical systems being analyzed. For IKr, it has been
shown that at least four gates are necessary to fully capture human atrial IKr [210]
while the Courtemanche et al. formulation comprises only one gate with a time
constant and a second instantaneous gate. In the IKs data, there was an almost
immediate response to the first voltage step in addition to the commonly observed
transient response (see Figure 4.9E). This might be due to the contribution of
background currents, which could be addressed and eliminated in a pre-processing
step. Fourth, the current traces measured in several cells were averaged to improve
the SNR. While this is common practice, it is important to keep the non-linearity
of the system in mind. Thus, the model might be able to reproduce the current
recorded in each single cell but not the average current.
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4.1.3.2 Recommended Approach
The requirements regarding accuracy, robustness and reliability are fully satisfied
by the hybrid (PSO+TRR)+TRR approach in the medium setup as shown by the
results in Section 4.1.2. The computing time was below 7 h for one run, thus a
good balance between computational cost and quality of fit was achieved. The
results regarding the convergence behavior (see Figure 4.5C and Figure 4.6C)
suggest that the number of iterations could be lowered to ≈300 without a marked
loss of quality of the result. The final step of TRR optimization until convergence
did not improve the result significantly on the one hand. On the other hand, it did
not account for a large share of the computational effort because the algorithm
had already almost converged, particularly for synthetic data. While this was also
the case for wet-lab IKr data (being another indicator for the benign nature of
this optimization problem), the final TRR step took 35× longer using measured
than using synthetic data for IKur. This observation fits well with the remarks in
Section 4.1.3.1 and can be explained by the absence of a well-defined, convex
minimum.
As can be seen in Figure 4.13, the variance in the results is minimal using the
hybrid (PSO+TRR)+TRR approach in the medium setup. Thus, a single run is
sufficient to estimate the optimal parameters reliably. This advantage of the hybrid
approach outweighs the additional computation time, which was longer by one
order of magnitude compared to the two-stage approach. However, the larger
variance in the results of the two-stage approach requires several independent runs
with different start vectors to reliably obtain a result close to the optimal result pos-
sible with this approach, which is still not as good as the result reliably obtained
with the newly proposed hybrid approach in a single run. The cost function for
each of the particles can be evaluated independently and thus in parallel. Hence,
highly parallel hardware architectures, such as graphics processing units (GPUs),
could be used to exploit the pronounced parallel nature of the problem and reduce
the computation time further.
For the two-stage PSO+TRR approach, the parameter search space should be set
neither too narrow (compare Figure 4.7C and Figure 4.7D) nor too wide (com-
pare Figure 4.7A and Figure 4.7B). The counter-intuitive observation of lower
errors for wider parameter ranges observed for IKur might be caused by the way
the ranges are enforced in the presented variant of the PSO algorithm. When a
parameter left the search space, it was randomly placed within a 25% margin of
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the size of the allowed parameter interval starting at the border being crossed.
Narrowing the 25% range with each iteration during the course of the optimization
did not affect the results significantly, however (data not shown). Also in this
respect, the hybrid approach proved to be robust and not sensitive to the choice of
the parameter ranges advocating its use. In summary, the newly proposed hybrid
approach tightly coupling PSO and TRR proved to yield accurate and reliable
results for a variety of measured and synthetic currents and regardless of noise
conditions and the choice of parameter ranges.
Metaheuristic approaches have been proposed earlier for parameter estimation
in the field of cardiac electrophysiology: e.g. PSO [193, 194] or genetic algo-
rithms [195–197]. However, this is the first combination of the two approaches
in a hybrid scheme [198, 199] for this purpose to the best of my knowledge. The
presented results underline that such hybridization is imperative when requiring
accurate and reliable parameter estimates. The results of a pilot study suggested
genetic algorithm performance to be comparable to PSO (data not shown).

4.1.3.3 Limitations
The parameter estimation pipeline presented in this study can not guarantee that
the system being fit is in steady state because only one stimulus is applied during
each evaluation of the cost function. However, transient oscillations should not
be a problem as the parameters change rather slowly, particularly during later
iterations which determine the final result. Furthermore, artifacts stemming from
non-steady-state conditions are more of a problem when fitting current densities
in a whole-cell model with a complex interplay (see e.g. Section 6.3) than in
problems involving only a single current formulation as only the initial values
of the gating variables are concerned and ion concentrations etc. do not change.
Therefore, the presented approach was chosen based on the balance between
runtime and steady-state approximation. Moreover, the stimulus protocol applied
during the parameter estimation is equal to the one applied in the wet-lab, thus
deviations from steady-state are similar.
All approaches presented in this study cannot provide information on the sensitiv-
ity of the system to changes of certain parameters and parameter identifiability.
Regression-based algorithms (see e.g. Section 4.2 or [211–213]) or methods based
on local sensitivity analysis [214, 215] can in part provide such information in ad-
dition to an estimate of the parameters. However, an evaluation of a representative
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approach of this family of algorithms in Section 4.2 shows that such statistical
approaches also struggle with more challenging formulations like IKur. Future
work could combine approaches aiming at a parameter identifiability analysis like
proposed in [213, 216] with the hybrid parameter estimation approach presented
here. Considering that several IKur parameters turned out to be hardly identifiable
using the voltage protocol employed in this study, a pre-step identifying the set
of parameters to be appropriately estimated appears advisable. Then, the hybrid
approach could subsequently be applied to actually estimate the values of that
subset of parameters.
The assessment of the parameter estimation algorithms in this study was conducted
using measured and synthetic data from three different potassium currents. The
choice was made based on the range of characteristics being covered (e.g. fast IKur

kinetics vs. rather slow IKr) and the availability of wet-lab data. The type of ions
carrying the current do not make a difference, thus the results should also hold
for other currents. Provided that the data are acquired with sufficient temporal
resolution, also currents with even faster kinetics (e.g. INa) can be handled as the
algorithm itself is time-agnostic. The current formulations were all taken from the
Courtemanche et al. model of human atrial myocytes [49]. This model convinced
in a benchmark of different atrial models [156] and is widely used. Despite the
choice being made for this study, the presented methods can be applied to other
atrial models (like [217–220]), ventricular models (e.g. [221, 222]), or even other
types of cells like neurons. The results found in this study should hold for these
kinds of models, as well. The method should also be applicable to Markov models
of ion channels rather than pure Hodgkin-Huxley type models [216].

4.1.3.4 Outlook and Conclusion
The fact that a number of IKur parameters were hardly identifiable in this study
stems from an insensitivity of the formulation to these parameters with respect
to the voltage protocol being used leading to an abundance of local minima. The
voltage protocol did not challenge all mechanisms included in the model compre-
hensively. Particularly, the second voltage step down to –110 mV did not elicit a
current of significant amplitude. A more comprehensive voltage protocol might
render the optimization problem a litte more benign. The fact that TRR did often
not converge to a solution but was terminated due to the maximum number of
iterations shows the challenging nature of the problem in the setting being used
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in this study. Further contributors to the relatively large differences between the
estimated and ground truth IKur parameters (see Figure 4.11B) are dependencies
between the parameters and model sloppiness [213].
The population-based approaches employed in this study were feasible because
the ODEs underlying the ion current formulations were solved analytically and
thus drastically faster than would have been the case using numerical solvers. The
fact that over 95% of the computation time was spent for the repeated evaluation
of the cost function highlights the importance of a streamlined cost function imple-
mentation. While the analytic solution is faster by a factor of ≈1000 compared to
numerical approximation [201], the voltage protocols are restricted to piecewise
constant functions in this case. On the other hand, parameter identifiability can
be improved by employing more complex voltage protocols [216, 223], which
can comprise non-piecewise constant functions [224, 225]. Whether the addi-
tional computational effort for a single cost function evaluation is outbalanced by
improved parameter identifiability and potentially faster convergence has to be
assessed for each problem individually.
The definition of the cost function is a potential field for advancement of the
presented method. Phases considered to be more important, e.g. highly dynamic
phases elicited by a voltage step or elicited by steps to voltages considered to
be physiologically more relevant, could be assigned higher weights. Further-
more, traces with bad SNR could be neglected. An alternative to the sum of
squared errors employed in this study (see Equation (4.9)) is to incorporate a
priori knowledge about the signal morphology. For typical cardiac ion currents,
the coefficients of mono- or bi-exponential functions could be determined through
curve fitting (see Section 4.2.1). The (potentially weighted) difference of the
coefficients obtained for the input data and model output could then be used as
the cost function.
The methods presented in this section, particularly the newly proposed hybrid
scheme, allow to incorporate altered ion channel behavior caused by genetic
mutations or the influence of pharmacological agents into mathematical models
routinely. As these models are often embedded in multi-scale simulation environ-
ments, the effect of changes on the ion channel level on higher levels of integration
can be assessed comprehensively. Section 5.1 gives an example of how changes in
hERG translate to altered behavior in the whole-cell, the tissue, and the (pseudo)
ECG level. The novel hybrid strategy comprising population-based PSO and

74



4.2. MULTIVARIATEMETAMODELING

gradient-based TRR facilitates parameter estimation of ion current formulation by
providing very accurate, reliable and robust results. Using this method, experi-
mental data can be transferred into computational models in a single run, thus it is
an important tool to exploit and leverage today’s and tomorrow’s high-throughput
patch clamp methods. A comprehensive multi-scale assessment of the effect of
changes on the ion channel is imperative as the biophysical systems of interest are
mostly complex and non-linear. Hence, changes on a lower level often translate to
counter-intuitive effects on higher levels of integration. In Section 5.1, two hERG
mutations are assessed using such methodology.

4.2 MultivariateMetamodeling
The results presented and discussed in the section above give a nice example of
how some parameters of ion current formulations are hardly identifiable. This
effect could be shown for the combination of the IKur formulation and the voltage
protocol presented in Section 4.1.1 for the special case of synthetically generated
input data with known ground truth parameter values. However, in practical
parameter estimation applications, the ground truth is not available as a matter of
course. Therefore, some algorithms aim to provide information on identifiability
of and sensitivity to the parameters besides an estimate of their value. Tøndel et al.
presented a comprehensive parameter fitting framework recently [213] and used it
to quantify interspecies differences in contractile function [226]. In this section,
the method is adapted for the voltage clamp ion current application introduced in
Section 4.1 and evaluated.
Parts of this study have been conducted in a supervised student’s project [227].

4.2.1 Methods
Voltage protocols applied to ion current formulations link a set of model parame-
ters X to a set of output metrics Y:

X ion current f ormulation−−−−−−−−−−−−−→
voltage protocol

Y . (4.15)

X is of size n×m, with n being the number of instantiations, so-called experimen-
tal designs, and m being the number of model parameters. Thus, X is a set of
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parameter identifiability analysis, which was done for
both models.

Sensitivity analysis and parameter identifiability analysis
of the Niederer-model
In order to obtain an overview of the relationships bet-
ween input parameters and dynamic outputs of the
model, an experimental design of the Niederer-model
parameters using relatively wide parameter ranges was
made using a Latin Hypercube design (LHD) [21]. LHD
is a semi-random sampling procedure that is especially
suitable for use on high-dimensional data, since it se-
parates the data into several hypercubes, and samples
randomly within each hypercube. This ensures that all
regions of the parameter space are sampled. Within our
implementation, the parameter ranges in Table 1 were
used to generate a LHD of 500 parameter value combi-
nations, and simulations where run with the Niederer-
model using cell lengths of 90, 100 and 110% of resting
sarcomere length. An input Ca-transient measured for
mouse at 37°C (Figure 3) [22] was used in all simula-
tions. All simulations and subsequent analyses were
done in MATLAB® version R2012b [23].

Output metrics used to represent the model behaviour
Tension transients were simulated using both the Land
and Niederer contraction models, and described by

routinely experimentally measured descriptors of the
transient morphology. A list of the descriptors and their
recorded experimental values for mouse at 37°C is
shown in Table 2. Tension transients were simulated at
three cell lengths (90, 100 and 110% of resting sarco-
mere length) activated by the experimentally measured
Ca-transient in Figure 3.
Preliminary analyses of the results achieved by fitting

the model parameters to the metrics in Table 2, using data
obtained by simulations using the experimentally mea-
sured Ca-transient scaled by 90, 100 and 110%, showed
that the model outputs were highly sensitive to the cal-
cium concentration. In order to take this into account we
also matched the force-pCa (F-pCa) relationships of the
two models, using metrics from simulations run with fixed
Ca-concentrations as additional model characteristics to
constrain parameters. The Ca-concentrations used were a
logarithmically spaced series of 82 different concentrations
from 0.15 to 1 μM together with the concentration
10 μM. The resulting steady state tensions were norma-
lised by the maximal simulated tension value.
Model and experimental steady state force-calcium

curves are routinely approximated by a Hill-curve that
can be logarithmically transformed to be linear. The re-
lationship between pCa and log(F/(1-F)) was therefore
fitted to a straight line using Ordinary Least Squares
(OLS) Regression [24] (values of (1-F) < 10−3 were re-
moved in order to avoid numerical errors), and the
metrics given in Table 3 were calculated to represent the
properties of the force-pCa relationship. The F-pCa
curves were simulated for 90, 100 and 110% of resting
sarcomere length, and the resulting F-pCa metrics used
as additional output constraints (together with the ten-
sion transient characteristics resulting from simulations
with the experimental Ca-transient) to fit the parameters
of the Niederer-model. Similarly, the final set of target
output measures included both the metrics in Table 2
and those in Table 3, all calculated from simulations
with 90, 100 and 110% of resting sarcomere length for
the Land-model.

Sensitivity analysis by classical metamodelling
Partial Least Squares Regression (PLSR) [25-28] was then
used for regression-based sensitivity analysis. PLSR is a
subspace-based regression method based on decomposing

Figure 1 Illustration of classical and inverse metamodelling for sensitivity analysis and parameter estimation.

Initial parameter 
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Parameter values in 
experimental design 

     Metrics calculated from 
simulations 

Run dynamic model 

Distances to target in 
PCA score space of output 

metrics  
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Parameter fitting succeeded 

NO Metamodel prediction 
combined with the 20 
closest simulations  

New parameter ranges 
for the next iteration  
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Parameters=f(Metrics) 

1 

2 3 
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8 

Figure 2 Schematic representation of the parameter fitting
pipeline. Steps 2–8 were repeated in each iteration.

Tøndel et al. BMC Systems Biology 2014, 8:59 Page 4 of 20
http://www.biomedcentral.com/1752-0509/8/59

Figure 4.15: Basic concept of classical and inversemetamodeling. Classical (forward)metamod-
eling predicts the output of the detailed differential equationmodel using the input parameters
aiming at a sensitivity analysis based on the regression coefficients of themetamodel. Inverse
metamodeling on the other hand estimates the input parameters based on the output. In
this case, the input is composed of the parameters of the detailed model and the output is
represented by themeasurements. Figure from [213].

parameter vectors like the ones used for PSO. Y is of size n× k with k being the
number of output metrics.

4.2.1.1 State of the Art
The approach presented in this section is composed of two metamodeling steps.
Figure 4.15 illustrates the basic concept of classical and inverse metamodeling.
The classical metamodel is built by a partial least squares regression (PLSR) [228–
230] of the model output Y (features describing the current traces) based on the
model parameters X:

Ŷ = Xb . (4.16)
The regression coefficients in b provide information on the sensitivity of the
model output Y to the model parameters X, as well as coupling between model
parameters. The inverse metamodel on the other hand is used to analyze para-
meter identifiability and to estimate the values of the model parameters X given
a set of output metrics Y, which is normally a more ill-posed problem than
model output prediction [213]. Towards this end, a non-linear extension of the
PLSR method is employed: hierarchical cluster-based partial least squares regres-
sion (HC-PLSR) [231, 232]. The sets of measurement data which are compared
to the model output are called observations and are separated into groups by
HC-PLSR using fuzzy C-means clustering [233–236]. The fuzzy C-means clus-
tering is performed on the latent variables of a global PLSR model. Within each
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7

run dynamic model

no
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Figure 4.16:Multivariate metamodeling pipeline. After the initial parameter ranges are set in
step 1, steps 2-8 are iteratively repeated until the termination criterion in step 6 is met. Step 8
zooms successively into interesting parameter ranges. Figure concept from [213].

cluster, the method builds linear local PLSR models. The output is then predicted
using a weighted sum of the local models. This approach has proven to be well
suited for highly non-linear input-output relationships [213]. In order to handle
values of different magnitudes and compensate for offsets, both the input parame-
ters and the output metrics were centered and normalized by the standard deviation
before the regression.
Figure 4.16 gives an overview of the automatic parameter fitting pipeline. In each
iteration, n sets of parameter values (experimental designs) are drawn randomly
from the parameter search space using latin hypercube sampling (LHS) and as-
sembled in X (step 2 in Figure 4.16). LHS is a method to generate a collection
of parameter value sets from a multidimensional distribution [237]. For the ion
current formulation application, the dimensionality was given by the number of
parameters to estimate. LHS divides the search space into hypercubes equidis-
tantly along each parameter axis and samples randomly within each hypercube.
In this way, it is guaranteed that each segment of a parameter axis is sampled
while retaining random sampling. Then, the ion current model output is computed
for each of the n experimental designs. Output metrics are calculated for each
model output, assembled in Y, and compared to the metrics of the input data
(measurements) (step 3 in Figure 4.16). In general, any output metric can be used.
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The particular metrics being used in this study for the ion current application are
outlined below.
The comparison is not conducted directly on the output metrics but after transfor-
mation using principal component analysis (PCA) (step 5 in Figure 4.16). Thus,
the root mean square differences (RMSDs) of the output metrics yielded by the
experimental designs and the target output is computed using the PCA scores.
The minimal number of principal components explaining 99% of the variance
in the output metrics are considered for the distance calculation. Thus, the PCA
approach reduces the dimensionality of the problem and inherently weighs the
metrics according to their contribution to the variation in the output metrics. If
the RMSDs obtained using the experimental designs are within the predefined
tolerable error margins, the algorithm terminates (step 6 in Figure 4.16). If this
is not the case, the next iteration is initiated by combining the 20 experimental
designs with the best output metrics and the parameter set yielded by HC-PLSR in
the inverse metamodel (step 4 in Figure 4.16). The output of the metamodel was
only considered for the parameters yielding a prediction accuracy of >70%. The
prediction accuracy was determined with the Pearson product-moment correlation
coefficient R2 [238] using a test set validation. Only two thirds of the experimental
designs were used for the calibration of the inverse metamodel while the remaining
third was used as the test set. The correlation related the input and the predicted
values. The set of 21 experimental setups in step 7 in Figure 4.16 is called the
guideline set Xguideline.
The parameter ranges are adjusted in each iteration depending on the performance
of the current set of experimental designs and the range spanned by the guideline
set (step 8 in Figure 4.16):

upperBound j←max
(
Xguideline,j

)
+

∣∣∣∣Xguideline,j

stepsize

∣∣∣∣ , (4.17)

lowerBound j←min
(
Xguideline,j

)
−
∣∣∣∣Xguideline,j

stepsize

∣∣∣∣ , (4.18)

with j being the index of the parameter ∈ [1,m], Xguideline,j being the mean value
of the parameter with the index j with respect to the guideline set, and stepsize
being a parameter controlling the zooming into the parameter space. Depending
on the proximity of the model output using the current estimates to the target
outputs, stepsize is adjusted. Starting from an initial value of 4, it is increased
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by 2 if the minimum RMSD in the PCA score space has decreased in the current
iteration. Thus, the search space gets more constrained, the closer the distance to
the target output metrics gets. The maximum allowed value is 20. If it is reached
without meeting the termination criteria, it is decreased by 2 for the next iteration.
Using the new parameter ranges, the experimental designs for the next iteration
are again determined using LHS.

4.2.1.2 Extension of the Parameter Estimation Pipeline
Below, the modifications and extensions of the parameter fitting pipeline by
Tøndel et al. [213] performed during the scope of this work in order to allow for
estimation of ion current formulation parameters are described. As outlined in
Section 4.1.1.1, the response of most ion current models to a piecewise constant
voltage protocol can be modeled as a series of exponential functions. Starting
with Equation (4.2) and Equation (4.8), the following transformations can be
established exemplary for the IKr gate xr:

IKr = gKr
Vm−EK

1+ exp
(

Vm+xr,m1
xr,m2

)
︸ ︷︷ ︸

a

·

 xr∞︸︷︷︸
b

−

xr∞− xr0︸︷︷︸
c

 · exp


d︷︸︸︷
t0 −t

τ



(4.19)

= (a ·b)︸ ︷︷ ︸
A

+a(c−b) · exp
(

d
τ

)
︸ ︷︷ ︸

B

·exp
(
− t

τ

)
(4.20)

= A+B · exp
(
− t

τ

)
(4.21)

The parameters A, B, and τ can be estimated for each phase of measured or syn-
thetic current traces using standard curve fitting tools provided by Matlab. Thus,
besides the squared error used in Section 4.1, an alternative way to quantify the
quality of the cell model’s adaption to measured current data is to compare A,
B, and τ for each phase of the current traces. One phase was defined for each
voltage step of each voltage trace. IKr traces were fitted using mono-exponential
functions, whereas bi-exponential functions were required to fit IKur traces. While
the Courtemanche et al. IKs formulation comprising four identical xs gates requires
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higher order functions in theory, the voltage protocols being used in this study
did only elicit currents that could be well fitted by mono-exponential functions.
The coefficients of the exponential functions were used as output metrics for
this study. As three coefficients were required for mono-exponential functions,
k (the number of output metrics) was 3× l× p for IKr and IKs with l being the
number of voltage traces and p being the number of phases (voltage steps) in each
trace resulting in k ∈ [66,99]. For the IKr voltage protocols with 13 different step
voltages and 2 phases, this equates to 78 output metrics. All output metrics were
equally weighted.

4.2.1.3 Test Cases
The initial parameter search space was set according to the wide ranges in Ta-
ble A.1, Table A.2, and Table A.3. n, the number of experimental designs, was set
to 500 and the number of clusters in the HC-PLSR method was set to eight for all
experiments described below. The acceptable error margins of the output metrics
used as the termination criterion in step 6 in Figure 4.16 were set to ±10% of the
target exponential coefficients. All code was implemented in Matlab with parallel
computation of the model output for the n experimental designs.
The approach introduced above was evaluated using synthetic and measured cur-
rent data. The first voltage protocol (referred to as “protocol A”), was similar
to the one used for the synthetic data in Section 4.1.1 and used for IKr and IKur.
Protocol A was composed of 13 traces consisting of 20 ms at –80 mV resting
voltage, 380 ms at the respective step voltage ranging from –70 mV to +50 mV
in steps of 10 mV, and 400 ms at –110 mV (see Figure 4.17A and Figure 4.21B).
Protocol B started at –80 mV for 20 ms followed by a 500 ms conditioning pulse to
+40 mV and 5 s test pulses to eleven different voltages between –100 mV and 0 mV
in steps of 10 mV. Each trace was ended with 500 ms at –80 mV. Protocol B was
designed to obtain the properties of the fully activated IKr [239] and is shown in
Figure 4.17B. Protocol C challenging the IKr tail currents [239] started with 20 ms
at –80 mV followed by 2 s test pulses to eleven different voltages between –40 mV
and +60 mV in steps of 10 mV and finished with 6 s at –40 mV (see Figure 4.17C).
For IKs, protocol D was used [240], which was composed of 50 ms at –80 mV
followed by 2 s test pulses to voltages between –100 mV and +100 mV in steps of
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Figure 4.17: Resulting currents using the parameters estimated by themultivariatemetamod-
eling approach. Solid lines indicate synthetic IKr input currents used for parameter estimation.Crosses represent the best fit obtained (not every sample shown for clarity reasons). The
voltage protocols used to generate the input data and to challenge the ion current model are
shown on the right part of each panel.

20 mV. Each trace was closed by a 0.95 s step back to –50 mV (see Figure 4.21B).
The resulting currents were sampled every 2 ms.

4.2.2 Results
4.2.2.1 Rapid Delayed Rectifier PotassiumCurrent IKr
The multivariate metamodeling approach was evaluated for the Courtemanche
et al. IKr formulation by impressing the three voltage protocols A, B, and C. The
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Figure 4.18: Sensitivity of output variables to the parameters of the Courtemanche et al. IKrformulation and voltage protocol A in terms of regression coefficients. A threshold of 70% of
themaximum value selected 37 of the 78 output variables. The subscript of the output variable
refers to the voltage trace. A, B, and τ are the exponential coefficients determined for the first
phase of each voltage trace, whereasA′ ,B′ , and τ ′ represent the second phase. Output variables
were selected based on the cumulated sensitivity with respect to all model parameters.

resulting currents are shown in Figure 4.17. While the model output using the
estimated parameters was visually close to the synthetic input data for voltage pro-
tocol A (Figure 4.17A), quantitative analysis revealed a sum of squared differences
of 46 (pA/pF)2. Using protocols B and C on the other hand, marked differences
were observed. For voltage protocol B, the steady state values at the end of the
second phase deviated for higher step voltages (Figure 4.17B). The same behavior
was observed for the first phase of voltage protocol C (Figure 4.17C).
A sensitivity analysis of the output variables (exponential coefficients) to the
model parameters was conducted by using the regression coefficients of the PLSR-
based classical metamodel as sensitivity measures. Figure 4.18A shows the most
sensitive output variables for voltage protocol A. The cumulative sensitivity with
respect to all model parameters was used to select the most interesting output
variables. 41 of the 78 variables were less sensitive than 70% of the maximum
cumulative sensitivity and thus not plotted. Some input parameters were reflected
in output variables belonging to certain step voltages. The intracellular potassium
concentration Ki, e.g., translated to changes in all three exponential coefficients
defining the first phase (the voltage step) of the trace with a step voltage of –
70 mV. Changes in xr,m2 translated mostly to changes in the voltage trace with a
step voltage of –50 mV. Changes of other parameters like xr,b1 and xr,b2 were not
significantly reflected in the output variables.
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Figure 4.19:Maximum sensitivity (regression coefficients) across the 78 output variables to
the parameters of the Courtemanche et al. IKr formulation (A) as well as parameter predictionaccuracy (R2) in (B) using different voltage protocols (see Figure 4.17).

The overall sensitivity of the output variables to the model parameters for the
different voltage protocols A, B, and C is shown in Figure 4.19A in terms of the
maximum sensitivity across all output variables. While the gross pattern is consis-
tent across the three protocols, changes of certain model parameters did translate
to markedly more pronounced changes for some protocols than for others. The
sensitivity of the output variables to xr,a1 for example was higher for protocol C
than for the others. The Courtemanche et al. IKr formulation was hardly sensitive
to xr,b1 and xr,b2 for all three investigated voltage protocols, though.
The accuracy of the parameter estimation was assessed by correlating the simu-
lated and the predicted values using the test set in the inverse metamodel. The
overall pattern of parameter prediction accuracy (Figure 4.19B) matches that of
the sensitivity of the output variables to these parameters (Figure 4.19A). This
shows on the one hand that the inverse metamodel does its job of estimating the
parameters well, in general. On the other hand, this observation confirms that
model parameters that hardly translate into changes of the output variables cannot
be estimated well.
While the patterns of sensitivity and accuracy show gross correspondence, differ-
ences were observed as well. The achieved accuracy to xr,a2 for example was lower
than the sensitivity for voltage protocols A and B. Moreover, the performance
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Figure 4.20: Distribution of the relative error of the estimated parameters for the three voltage
protocols A, B, and C and the IKr input data. (A) shows the results obtained by the look upfunction, whereas (B) shows the results yielded by the inverse metamodel. The dashed line
interpolates theminimum values linearly.

of the three protocols differed. While protocol B yielded the lowest sensitivity
to xr,b1, it performed best in terms of accuracy. The differences were not very
pronounced and revealed no consistent pattern, though.
Comparing the differences between the estimated parameters and the parameter
set used to generate the synthetic input data (ground truth) yielded results corre-
sponding to the sensitivity and accuracy analysis. The algorithm was blinded to
the ground truth values as a matter of course. Figure 4.20 shows the distribution
of relative errors considering the three voltage protocols. The minimum error was
high for parameters yielding low sensitivity and accuracy values (xr,b1, xr,b2) and
low for parameters performing well in terms of sensitivity and accuracy (xr,KQ10

to Ki). Interestingly, the intermediate sensitivity and accuracy values observed for
xr,a2 and xr,a3 translated to high errors with a comparable amplitude like xr,b1 and
xr,b2.
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Comparing the relative errors of the parameter sets yielded by only considering
the forward model (look up function, Figure 4.20A, step 3 in Figure 4.16) and
including the inverse metamodel (Figure 4.20B, step 4 in Figure 4.16) reveals that
the minimum error values for parameters associated with high errors in general
(xr,a2 to xr,b1) were lower for the look up function than for the inverse metamodel.
Moreover, the spread between the voltage protocols was lower for the results
obtained through the look up function.
The inverse metamodel and the look up function were compared in terms of
output current deviation by considering the average squared error in order to
compensate for the different duration of the voltage protocols A, B, and C. The
parameters estimated by the look up function yielded average squared errors
of 1.02×10−4 (pA/pF)2 for protocol A, 3.93×10−4 (pA/pF)2 for protocol B, and
1.94×10−4 (pA/pF)2 for protocol C. The parameter set obtained through the in-
verse metamodel (weighted sum of the clusters) yielded 4.11×10−5 (pA/pF)2,
7.95×10−4 (pA/pF)2, and 5.85×10−4 (pA/pF)2, respectively. Thus, the two meth-
ods incorporated in the approach showed comparable performance with no clear
advantage of one method over the other as expected for a coupled approach.

4.2.2.2 SlowDelayed Rectifier PotassiumCurrent IKs
Figure 4.21A shows the best fit obtained through the look up function for the IKs

formulation and voltage protocol D. The average squared error was
5.0×10−3 (pA/pF)2 while the inverse metamodel yielded higher average squared
errors of 1.42×10−1 (pA/pF)2 for the weighted sum of HC-PLSR clusters and
21.59 (pA/pF)2 for a single cluster.
The model parameters influencing the voltage dependence of the rate constants
(xs,a1, xs,a2, xs,a3, xs,b1, xs,b2) were not accurately estimated in terms of the corre-
lation coefficient between the calibration set and the test set used for the inverse
metamodel (R2 <0.44, Figure 4.22B). This behavior was also reflected in the
relative error measure (Figure 4.22C). However, these observations could not be
explained by the sensitivity of the output variables to the model parameters, as
the regression coefficients were larger than 0.65 for all parameters except xs,b1

Figure 4.22A). The reason is rather model sloppiness meaning that while the
model output is sensitive to changes in a particular parameter (e.g. xs,b2), the effect
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Figure 4.21: Resulting currents using the parameters estimated by the multivariate meta-
modeling approach. Solid lines indicate synthetic IKs (A) and IKur (B) input currents used forparameter estimation. Crosses represent the best fit obtained (not every sample shown for
clarity reasons). The voltage protocols used to generate the input data and to challenge the ion
current model are shown on the right part of each panel.

can be compensated by another model parameter or a set of parameters. Thus,
the exact value cannot be identified even though the model is sensitive to the
parameter [213]. In such scenarios, the look up function can be superior to the
inverse metamodel (see e.g. xs,b1 in Figure 4.22).

4.2.2.3 Ultra-Rapid Delayed Rectifier PotassiumCurrent IKur

The Courtemanche et al. IKur formulation could not be well parametrized using
input data generated with voltage protocol A by the multivariate metamodeling
approach. Figure 4.21B shows that neither the step currents nor the exponential
decay for high step voltages could be reproduced by the estimated parameters.
The sum of squared errors was 6.30×103(pA/pF)2 for the best fit obtained using
the look up function.
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Figure 4.22:Maximum sensitivity (regression coefficients) across the 66 output variables to
the parameters of the Courtemanche et al. IKs formulation (A) as well as parameter predictionaccuracy (R2) in (B) using voltage protocolD (see Figure 4.21A). (C) shows the absolute value
of the relative error between the estimated and the ground truth parameters for the results
yielded by the look up function.

4.2.3 Discussion
In this chapter, a recently presented multivariate inverse metamodeling approach
for parameter estimation was extended and adapted for the application of ion
current formulations. The approach has the advantage that it can provide informa-
tion on the sensitivity of the output variables to the model parameters via PLSR
analysis, as well as information regarding parameter identifiability via correlation
of a calibration set and a test set in the inverse metamodeling phase.
Using this information, it could be shown that the set of parameters that can be
estimated in a meaningful way in terms of accuracy is dependent on the voltage
protocol being used (see e.g. Figure 4.19). While this finding is neither new nor
surprising, the good correlation between the accuracy determined through the
inverse metamodel and the relative parameter deviation with respect to the ground
truth values is indeed exciting and good news. In real life parameter estimation
scenarios, a ground truth reference, which could be used to identify the subset
of parameters that are sensible to estimate, is not available as a matter of course.
However, the multivariate metamodeling approach provides the accuracy measure
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that turned out to be a good surrogate for the relative error. Moreover, discrepan-
cies between sensitivity and accuracy can reveal model sloppiness as observed for
the parameters determining the voltage dependency of the rate constants for the
Courtemanche et al. xs gate.
The performance of the approach presented in this section was inferior to the
optimization-based approaches presented in Section 4.1. Using the same voltage
protocols and current formulations, the squared error was higher by eleven orders
of magnitude for IKr and by nine orders of magnitude for IKur. Considering the
absolute value of the differences observed for IKr (Figure 4.17A vs. Figure 4.9A),
the relative weakness of the multivariate approach might not be relevant for in-
put data of medium to low quality. For IKur, which turned out to be hard to fit
in Section 4.1, the multivariate approach failed to reproduce the physiological
behavior of the current (Figure 4.21B vs. Figure 4.9C). Considering the relative
error between the estimated parameters and the ground truth parameters used to
generate the synthetic input data also showed a superiority by two to three orders
of magnitude of the hybrid approach (Figure 4.20 vs. Figure 4.11A).
When comparing the hybrid optimization-based and the multivariate approach,
one should keep in mind the differing cost function definitions, though. While
the hybrid approach used the scalar-valued sum of squared differences between
the input data and the model output obtained using the current parameter set,
the multivariate approach operated on a set of differences between exponential
coefficients of size 66 to 78 representing the input and output current traces.
The definition of the cost function leaves room for future improvement of the
method. On the one hand, the parameters of the exponential functions describing
the different phases of the current traces could be constrained in an improved
way that incorporates a priori knowledge. The first phase of the IKr, as well as
the IKs traces used in this work did all start at an initial value of zero. Thus,
only the time constants and the terminal (close to steady-state) values for the
different traces would need to be estimated leaving less room for ambiguity in
this step of the approach. Moreover, the coefficients representing the different
phases and different step voltages could be weighted according to their amplitude,
physiological relevance, or other measures.
The advancements discussed above are currently implemented in a joint follow-up
project with Kristin Tøndel, who presented the multivariate inverese metamodeling
approach in [213]. As part of this project, the multivariate metamodeling approach
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will be compared with the hybrid optimization-based approach developed within
the scope of this thesis and presented in Section 4.1, which will be adapted to
use the same cost function. The comparison will comprise both synthetic and
wet-lab data, a noise sensitivity analysis, and different ionic currents as presented
in Section 4.1.
Considering the results of the first evaluation of the multivariate inverse metamod-
eling approach for ion current parameter estimation presented in this section and
the experience regarding the different currents gained in the previous section, it
is unlikely that the metamodeling approach will estimate the parameters in an
optimal way, particularly for IKur. Therefore, a combination of both approaches
appears suitable: the accuracy measure provided by the inverse metamodel would
identify the subset of parameters that can be identified given a particular set of
input data while the hybrid optimization approach would be used to actually
estimate the value of these parameters.
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CHAPTER5
Modeling Atrial Substrates

Atrial rhythm disorders, such as atrial fibrillation (AF) and atrial flutter (AFlut),
are caused by an interaction of stimuli triggering the arrhythmia and a vulnerable
atrial substrate maintaining the reentry. Most of the triggers originate from the
pulmonary veins (PVs) and have been in the focus of AF research since the
seminal work by Haïssaguerre et al. suggesting electrical isolation of the PV ostia
by ablation [79]. Despite high success rates of more than 70% in patients with
new onset AF, only one third of patients with persistent AF remains in sinus
rhythm in the long run after catheter ablation [241–243]. Considering that AF is a
progressive disease, which causes remodeling of the substrate itself, the reduced
responder rates in patients with longer lasting AF suggest a more momentous role
of the arrhythmia-sustaining substrate in these patients. Therefore, a remodeled
substrate due to chronic atrial fibrillation (cAF) (Section 5.2) and substrates of
familial AF caused by two gene mutations (Section 5.1) are represented by newly
developed models and evaluated in this chapter.

5.1 Genetic Defects in hERG
AF is a progressive disease with increasing incidence levels for populations of
higher age and often accompanied by other cardiovascular diseases. However, AF
is also observed in young patients in absence of comorbidities. In this case, the
term lone AF is used. It has been shown that genetic predisposition to AF plays a
role [244–247] and led to the formulation of the second hit model postulating that
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a genetic defect is unmasked by a second factor, such as atrial stretch [248].
While mutations in some genes or transcription factors affect the cardiovascular
system in a complex way, other mutations translate to effects restricted to certain
ion channel proteins. These genetic defects are called channelopathies [245] and
are in the focus of the study presented in this section. The effect of the mutations
on the ionic currents conducted via the mutated proteins can be assessed via patch
clamp measurements in an expression system. However, the consequences of a
mutation on the cardiovascular system, particularly the vulnerability to AF, is non-
trivial to infer from changes measured on the ion channel level due to the often
counter-intuitive changes on higher levels of integration caused by the complexity
and non-linearity of the system. Assessment of the tissue level effects of certain
mutations through computational modeling provides the means to characterize
the genetic defects more comprehensively and forms the basis for personalized
approaches for AF risk stratification, geno-type guided preventive strategies, and
group-specific pharmaceutical therapy.
In this study, experimental data of two human ether-à-go-go-related gene (hERG)
missense mutations were integrated into the Courtemanche et al. model of human
atrial electrophysiology [249] using the techniques described in Section 4.1. hERG
(alternative nomenclature: KCNH2) codes for Kv11.1 forming the α-subunit of
the channel conducting the cardiac IKr current, which plays an important role
regarding the delicate balance of inward and outward currents during atrial repo-
larization [250]. Mutation N588K replaces the uncharged amino acid aspargine
(N) by the positively charged lysine (K) at residue N588. N588 is located in the S5
domain in the outer mouth of the channel and has been associated with AF [251].
The second mutation affects residue L532 residing in the S4 domain forming
the voltage sensor. Leucine (L) is replaced by proline (P) by mutation L532P. A
homologous mutant expressed in zebrafish (zERG L499P) displayed a distinct
phenotype of intermittent AF and became known as reggae mutation [252]. Previ-
ously published experimental data describing the effects of these gain-of-function
mutations on IKr were integrated into a multi-scale computational model. The
model was then used to identify mechanisms favoring AF by analysis of the dura-
tion of the effective refractory period (ERP), conduction velocity (CV), reentry
wavelength (WL), duration of the vulnerable window (VW), and the restitution of
these markers, as well as the inducability and persistence of spiral reentry waves
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in a two-dimensional tissue patch.
Parts of this work have been published as a journal article [188].

5.1.1 State of the Art
Several in silico studies investigated the effect of other genetic mutations on
ventricular myocytes [253–255]. Also, a sensitivity analysis of parameters that
could be affected by hypothetic mutations was presented [256]. Two studies
investigated the effect of N588K on ventricular myocytes [257, 258] using the Luo-
Rudy cell model [157]. The effects of the N588K mutation on atrial myocytes was
investigated in an AP clamp study [259] and in earlier work by our group using a
parameter estimation approach in a premature stage [260, 261]. A comprehensive
and detailed analysis of the dynamic behavior of spiral waves for genetically
modified atrial substrates was not presented before. An exception is work by
Hancox et al. investigating the KCNQ1 mutation S140G [262] affecting atrial
IKs and by Imaniastuti et al. regarding mutation V241F in the same gene [263].
However, their works were published after the results of the study presented in
this section were submitted as a journal publication [188]. The hERG mutation
L532P was not assessed besides simulations on the cellular level in the original
publication describing the mutation [252].

5.1.2 Methods
5.1.2.1 Adaptation of the Cell Model
hERG wild-type (WT) and L532P measurements were conducted in Xenopus
laevis oocytes in the group of Eberhard Scholz at University Hospital Heidelberg
as described in [252]. In brief, double-electrode voltage clamp experiments were
performed at room temperature using a voltage protocol similar to protocol A in
Figure 4.17A but a final voltage of –60 mV instead of –110 mV. Data for N588K
were extracted from a study published by McPate et al. [239] in which they
performed whole cell patch clamp recordings of WT and N588K hERG at 37◦ C.
Chinese hamster ovary cells were used as expression system. The voltage protocol
was composed of steps from –80 mV to voltages between –40 mV and +100 mV
for 2 s followed by a 4 s return pulse to –40 mV.
Standard Matlab curve fitting tools were used to fit exponential curves to the
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Figure 5.1: Transfer of measured currents into synthetic traces used to estimate parameters.
Exponential coefficients were estimated formutant andWTmeasured traces, as well as the
output of the Courtemanche et al. current formulation using the default parameters [49] and
the same voltage protocol as applied during wet-lab experiments. The ratio betweenmutant
and WT coefficients was then multiplied with the coefficients of the original model output
in order to generate synthetic traces representing the effect of the mutation in the model
environment.

measured hERG traces as introduced in Section 4.2.1.2. In this way, the steady-
state amplitude of the step current, the peak amplitude of the tail current, as well as
the respective time constants were estimated for each step voltage of both WT and
L532P measurements. Moreover, these exponential coefficients were determined
for IKr traces obtained using the original Courtemanche et al. parameters [49]
serving as reference coefficients.
The measurement conditions between new WT and mutant experiments and the
ones used to formulate and parameterize the original model may vary in terms
of temperature, electrolyte concentrations, expression systems, cell types, et
cetera. In order to compensate for these influences, only relative differences
between WT and mutant data were considered as shown in Figure 5.1: The
ratio of the bi-exponential coefficients estimated using the mutant current traces
and the WT current traces was computed. This ratio was then applied to the
reference coefficients yielded by the standard Courtemanche et al. parameters to
obtain synthetic current traces representing the effect of the mutation in the model
environment without effects stemming from the different experimental setups. For
the step currents, the fast time constant was considered, whereas the slow time
constant was considered for the tail currents because of the instantaneous kinetics
of the inactivation gate of the Courtemanche et al. IKr formulation. The synthetic
current traces produced in this way were then provided as input to the hybrid
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optimization approach introduced in Section 4.1 to estimate the values of the IKr

parameters aiming at a minimization of the root mean square error between the
model output and the synthetic traces representing the effect of the mutation in
the model environment.
For N588K, current data were extracted from literature [239]. The normalized tail
current amplitudes were fitted to a Boltzmann function:

yact =
1

1+ exp
(

V1/2−Vm
k

) , (5.1)

with yact being the level of activation ∈ [0,1], V1/2 being the half-maximal ac-
tivation potential, and k being the slope factor. Regarding inactivation (yinact),
steady-state step current values were normalized to the maximum observed step
current and divided by the degree of activation yact for the respective step voltage.
(1− yinact) represented the level of inactivation and was fitted to a Boltzmann
function, as well. Time constants were estimated using exponential curve fitting as
introduced above for L532P. In this way, half-maximal inactivation and activation
potentials, slope factors, and time constants were obtained for each step voltage
of the WT and N588K current traces.
As all wet-lab data were acquired using homozygous expression of the mutation
(referred to as N588K-homo and L532P-homo), heterozygous expression was
approximated by averaging homozygous mutant and non-mutant IKr. Towards
this end, an unaltered IKr with the original Courtemanche et al. parameters was
included in the cell model in addition to the mutant IKr and the maximal conduc-
tivity of both formulations was reduced by 50%. Besides this 1:1 mutant to WT
ratio (referred to as N588K and L532P), a 3:1 ratio was assessed on the single cell
level (referred to as N588K-3:1 and L532P-3:1), as well.

5.1.2.2 Single Cell Investigations
The IKr parameterizations representing the two hERG mutations were integrated
in the Courtemanche et al. cellular model of human atrial myocytes [49]. Action
potentials (APs) were elicited in the cell model by a stimulus current of 1.3 nA
being applied for 3 ms at a fixed basic cycle length (BCL) of 1000 ms. Transient
oscillations were observed during the first approximately 30 cycles, allowing
to assess the steady state properties of the mutant cell models by analyzing the
50th AP in the train. Besides AP amplitude, action potential duration (APD) at
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90% repolarization (APD90), APD50, and the maximum diastolic potential (MDP)
as a surrogate for the resting membrane voltage Vm,rest were determined. A
triangulation index (TI) was defined as a measure of linearity of the repolarization,
i.e. absence of a plateau, being associated with early afterdepolarizations [264]:

T I = 200%

1−
Vm

(
APD90

2

)
−MDP

Vm (tnotch)−MDP

 , (5.2)

with Vm

(
APD90

2

)
being the transmembrane voltage after half the APD90 had

passed, and tnotch being defined as the first time step after the upstroke for which
the absolute value of the slope dVm/dt was smaller than 0.4 V/s. If this condition
was not fulfilled within the first 50 ms after the upstroke, the time of the peak of
Vm was considered.

5.1.2.3 Restitution Analysis
Moving up one scale of integration from the single cell level to a one-dimensional
tissue patch composed of coupled cells, not only the electrophysiological prop-
erties at a fixed BCL but also their frequency dependence (known as restitution)
was assessed. The tissue strand was composed of 100 cubic voxels with a side
length of 0.1 mm resulting in a total size of 20 mm × 0.1 mm × 0.1 mm. The cell
models were initialized for 50 cycles in a single cell environment to let the system
adapt to the changed IKr parameters and varying BCLs to reach steady-state. 20
different BCLs ranging from 300 ms to 1300 ms were distributed equidistantly in
the frequency domain. Stimulus currents were applied to the first three voxels for
3 ms with an amplitude of 7 nA in all tissue simulations.
Restitution curves were computed for APD90, the slope of the APD90 with respect
to the diastolic interval (DI) defined as the difference between BCL and APD90,
CV, ERP, and the WL defined as the product of CV and ERP. The ERP was deter-
mined through an S1-S2 protocol: after a train of S1 stimuli applied according
to the BCL, a premature S2 stimulus was applied for 3 ms with an amplitude of
7 nA at varying S2 times. If the S2 stimulus elicited a wave that propagated along
the strand, the ERP was lower than the S2 time. If no excitation wave propagated,
S2 was below the ERP. By applying an interval bisection method, the ERP was
determined accurately with a residual uncertainty of less than 1 ms.
Besides the markers mentioned above, the duration of the temporal VW was
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Figure 5.2: S1-S2 cross field protocol used for rotor initiation. After the tissue patch was
preconditioned by four stimuli S1 (A) causing planar waves (B), the S2 stimulus in the lower left
quadrant (C) initiated spiral wave reentry (D)+(E). The positions of the virtual electrodes for
pseudo ECG calculation are depicted by cyan dots in (B). The detected phase singularities at
the rotor core are indicate by red stars in (D)+(E).

determined in the tissue strand by an S1-S2 protocol as well. Different from S1,
the S2 stimulus was applied in the center of the strand and the wave propagation
to both sides of the tissue strand was monitored. The S2 time was within the VW
if unidirectional block occurred, thus an excitation reached the front of the strand
where the S1 stimuli were applied but no wave propagated to the end of the strand.
By varying the S2 time, the temporal width of the VW was obtained.
Beat-to-beat alternans was assessed by evaluating the fifth and the sixth beat in
the tissue strand.

5.1.2.4 SpiralWave Analysis
A two-dimensional tissue patch was used to analyze the properties of the mutant
cell models regarding the initiation and perpetuation of AF. The homogeneous and
isotropic tissue patch was composed of 1000 × 1000 × 1 cubic voxels with a side
length of 0.1 mm. After initialization in a single cell environment for 50 cycles
with a BCL of 350 ms, the tissue was preconditioned by four planar waves with the
same BCL (Figure 5.2A+B). Reentry was initiated by a cross-field S1-S2 protocol
with the S2 pulse applied to the lower left quadrant of the patch (Figure 5.2C).
By default, an area of 50 mm × 50 mm was stimulated at t = ERP+4 ms meaning
that the stimulus was applied 4 ms after the ERP ended at the plane where the S1
stimulus was applied.
Up to 5 s simulation time were covered depending on the lifetime of the spiral
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wave. The dynamic behavior of the spiral waves was evaluated by tracking their
trajectories in time and space using the phase singularities as surrogates for the
core of the rotor [265] (Figure 5.2D+E). For this purpose, a transformation from
the transmembrane voltage space to phase space was established by point-wise
time-delay embedding of Vm with a time delay τ of 1 ms:

φ(r, t) = atan2(Vm(r, t)−V ∗,Vm(r, t− τ)−V ∗) , (5.3)

with r being the coordinate vector of the point in question, V ∗ being the activation
threshold set to –40 mV, and atan2() being a variant of the arctangent function
returning the computed angle in the desired quadrant ∈ (−π ,π] [266]. The trans-
formation to phase space uniquely defines the temporal position within the reentry
cycle and yields independence of amplitude.
The gradient operator ∇ applied on a differentiable scalar field φ yields a con-
servative field v. For a conservative field, the closed loop line integral along the
boundary ∂C of arbitrary areas C, for which the field is defined, yields zero:∮

∂C
v ·ds = 0 . (5.4)

By applying Stoke’s theorem, the following transformation can be established:∮
∂C

v ·ds =
∮

∂C
∇φ ·ds =

∫∫
C

∇× (∇φ) ·dC =: nt . (5.5)

Thus the curl of the gradient of the phase field can be evaluated to obtain the
topological charge nt . Because the phase field is not well-defined and not dif-
ferentiable at the point of a phase singularity rs, nt does not equate to zero at
such points [265–268]. Instead, the topological charge yields an integer value
with the sign depending on the chirality of the singularity enclosed by ∂C [269].
By applying the rot(grad(φ (r, t))) operation on every discrete point ri of the
computational domain for each time step ti, the spiral core trajectories can thus be
determined.
Besides the evaluation of rotor lifetime and trajectories, a pseudo ECG was
computed to determine the dominant frequency (DF). The DF has shown to corre-
late with the persistency of AF indicating that higher DFs are more arrhythmo-
genic [270–274]. The two-dimensional tissue patch was assumed to be embedded
in an infinite homogenous medium for the calculation of the extracellular potential
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Φe at point r and time t [275]:

Φe(r, t) =
1

4πσ

∫ Ii (r′, t)
|r− r′|

dr′ , (5.6)

with Ii being the intracellular current density yielded by the monodomain model
(see Section 3.2.1) and σ being the scalar-valued homogeneous conductivity of
the infinite medium. The pseudo ECG was defined as the voltage measured by
the potential difference of two virtual unipolar electrodes sensing the extracellular
potentials Φe. They were placed 5 mm above the patch in z-direction and 5 mm
before the center of the patch and 5 mm behind the center in a line aligned with
the direction of excitation propagation (x-direction) and centered with respect to
the y-axis orthogonal to the excitation wave (Figure 5.2B). The power density
spectrum of the signal was obtained as the squared absolute value of the Fourier
transform after multiplication with a Hanning window [276] of the same size as
the signal and zero padding to achieve a frequency resolution of 0.1 Hz.

5.1.3 NumericalMethods
The ordinary differential equations (ODEs) of the Courtemanche et al. model
representing the control and mutant human atrial myocytes were solved with a
fixed time step of 10 µs. The Rush-Larsen scheme [206] was applied for the gating
variables while a forward Euler scheme was employed to solve for the remaining
variables of the cell model. Tissue level simulations were carried out using the
monodomain solver acCELLerate [169, 170]. The monodomain conductivity was
set to an isotropic value of 0.076 S/m yielding a CV of 750 mm/s at a BCL of
1000 ms in the control model.

5.1.4 Results
5.1.4.1 Adaptation of the Cell Model
The resulting parameters of the Courtemanche et al. IKr formulation representing
the homozygous N588K and L532P mutants are given in Table 5.1. For N588K,
the half-maximal activation potential was shifted by 2.39 mV towards more nega-
tive Vm (Figure 5.3A). Inactivation V1/2 was shifted by 53.7 mV in the opposite
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Table 5.1: Parameters of the adapted Courtemanche et al. IKr formulations as well as thecontrol model. Parameter names according to Section A.1.1. The control case was defined
by the original values in [49]. For N588K, activation and inactivation characteristics as well
as xr,KQ10 were extracted from patch clamp measurements by McPate et al. [239]. L532Pparameters were obtained through the hybrid optimization approach on synthesized currents
based on voltage clamp experiments by Hassel et al. [252].

Parameter Unit Control N588K-homo L532P-homo
xr,a1 1 3×10−4 3×10−4 2.5×10−4

xr,a2 mV 14.1 14.1 –196.86
xr,a3 mV –5 –5 –131.36
xr,b1 mV 3.3328 3.3328 40.00
xr,b2 mV 5.1237 5.1237 3.79×10−6

xr,KQ10 1 1.0 2.0 1.0
xr,m1 mV 14.1 16.49 –9.88
xr,m2 mV –6.5 –6.76 –22.31
xr,m3 mV 15.0 –38.65 –15.54
xr,m4 mV 22.4 19.46 24.37
gKr nS/pF 0.029412 0.029412 0.091720

direction. The respective k values were 6.7 mV and 19.5 mV. The time constant
showed an almost constant reduction by a factor of 0.5 for the N588K mutant
compared to WT. Therefore, the time constant of the IKr formulation was reduced
to 50% by setting the Q10 temperature coefficient to 2 (Figure 5.3E). Steady-state
open probability was highest for Vm=–4/0/2/4 mV for control, N588K, N588K-3:1,
and N588K-homo, respectively (Figure 5.3C).
For L532P, a shift of the half-maximal activation potential V1/2 by 23.84 mV to-
wards positive Vm values was yielded by the optimization approach (Figure 5.3B).
For inactivation, V1/2 was shifted by 30.72 mV in the same direction. The corre-
sponding slope factors k were identified as 22.3 mV and 24.4 mV, respectively.
The voltage dependency of the time constant τ showed an almost linear and
markedly flattened course for transmembrane voltages within the physiological
range: 53.3 ms at –85 mV, 57.7 ms at +20 mV (Figure 5.3F). The behavior of
the heterozygous models was intermediate between the control model and the
homozygous mutant. The voltage for which the steady-state open probability was
highest was –4 mV for control, 0 mV for L532P, 5 mV for L532P-3:1, and 15 mV
for L532P-homo (Figure 5.3D).
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Figure 5.3: Voltage dependency of gate open probabilities of the homozygousmutantmodel
(A)+(B), dashed lines represent the control model. The xr1 gate is the classical ODE gate definedby Equation (A.3) to Equation (A.6), while xr2 is the instantaneous gate defined in Equation (A.2).Steady-state IKr of the homozygous and heterozygousmutant models (C)+(D), and time con-stant τ of the xr1 gate of the homozygousmodel (E)+(F).

5.1.4.2 Single Cell Simulations
The adapted Courtemanche models with the reparametrized IKr formulations
were clamped to the AP course of the control model in a first step (Figure 5.4C).
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Table 5.2: Resulting IKr parameters in AP clamp and AP stimulation experiments for the controlmodel and themutant models. The peak current, the time integral of IKr , and the time of thepeak are given. For the AP clamp experiments, the control AP served as the reference.

AP clamp AP stimulation
IKr,max

∫
IKrdt t(IKr,max) IKr,max

∫
IKrdt t(IKr,max)(pA/pF) (pC/nF) (ms) (pA/pF) (pC/nF) (ms)

Control 0.234 51.0 165.0 0.234 51.0 165.0
N588K 0.478 92.5 137.8 0.370 61.7 103.7
N588K-3:1 0.607 113.2 133.5 0.426 63.7 88.0
N588K-homo 0.737 134.1 131.1 0.476 64.6 76.3
L532P 0.726 143.5 128.6 0.537 72.2 71.7
L532P-3:1 0.981 189.7 124.0 0.672 76.0 57.8
L532P-homo 1.238 236.0 123.3 0.792 79.1 48.9

Table 5.3: ResultingAPparameters for the controlmodel and themutantmodels. AP amplitude,
MDP, APD at 90% and 50% repolarization, and TI were determined from single cell simulations.

Amplitude (mV) MDP (mV) APD90(ms) APD50 (ms) TI (%)
Control 105.64 –81.05 298.44 172.43 26.10
N588K 105.82 –81.31 255.03 129.64 46.94
N588K-3:1 105.86 –81.41 237.39 113.74 55.65
N588K-homo 105.92 –81.48 222.10 100.74 62.90
L532P 105.92 –81.64 200.78 90.76 64.56
L532P-3:1 105.99 –81.31 169.28 71.13 73.91
L532P-homo 106.01 –81.91 146.82 58.89 78.29

Both mutations increased the IKr amplitude. N588K, N588K-3:1, and N588K-
homo caused increases by 104%/159%/210%, whereas L532P, L532P-3:1, and
L532P-homo yielded higher amplitudes by 201%/319%/429%, respectively. As
the duration of the IKr transient was mainly determined by the APD, and thus not
significantly altered, the amplitude changes translated to changes of the current
integral over time, as well. The current peaked earlier by between 27 and 41 ms
(see Table 5.2).
In a second step, Vm of the cell models was set free and APs were elicited by
recurrent stimuli with a BCL of 1000 ms (Figure 5.4A). In these AP experiments,
the time of the IKr peak was earlier compared with the clamp protocol by up to
74 ms (see Table 5.2). The peak currents were reduced compared to the clamp
experiments on the other hand due to the faster repolarization. Compared to the
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Figure 5.4: APs simulated in the single cell environment (A) and the one-dimensional tissue
strand of coupled cells (B) and the corresponding IKr courses (C) and (D). Dashed lines in(A) represent heterozygous models with 75% mutant channel share. Dash-dotted lines in
(C) represent IKr during AP clamp experiments using the AP of the control model as voltageprotocol. The BCLwas 1000ms for all simulation.

control model, they were still enhanced, though. N588K, N588K-3:1, and N588K-
homo showed higher amplitudes by 58%/82%/103%, whereas L532P, L532P-3:1,
and L532P-homo yielded higher amplitudes by 129%/187%/238%, respectively.
The current integrals were thus also higher by +27% for N588K-homo and +55%
for L532P-homo (see Table 5.2).
The APs showed a shorter duration and a less pronounced plateau, hence a more
linear repolarization. Regarding the quantitative AP markers, only slight effects
were observed for MDP and the AP amplitude (Table 5.3). APD and the TI
differed significantly, however. MDP was hyperpolarized by less than 1 mV, the
AP amplitude was increased by less than 1 mV. APD90 was reduced by between
43 ms and 76 ms for N588K and by between 97 ms and 152 ms for L532P. APD90

was reduced by between 43 ms and 72 ms for N588K and by between 82 ms and
114 ms for L532P, respectively. Effects were more pronounced for the setups
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Figure 5.5: In silico restitution of human atrial myocardium representing healthy and hERG-
mutated cells. ERP restitution (A), CV restitution (B),WL restitution as the product of ERP and
CV (C), APD90 restitution (D) and its slope (E), as well as VW restitution (F) are shown for thefifth and the sixth beat in tissue (thus two lines per substrate) to cover beat-to-beat alternans.

comprising a higher share of mutant IKr. Compared to control (26%), the TI was
elevated for all mutant models (N588K: 47% to 63%, L532P: 65% to 78%).

5.1.4.3 Tissue Restitution Properties
Only the 1:1 heterozygous mutant models were investigated on the tissue level
because of the low probability of myocytes being homozygous to L532P and
N588K in humans. When coupled to other myocytes in a tissue strand, myocytes
showed a less pronounced overshoot and shorter APD (compare Figure 5.4A+B).
AP amplitude was reduced by between 21.4 mV and 21.8 mV. In order to com-
pensate for the different amplitudes, APD was compared at the time when Vm fell
below –73 mV during repolarization. For the control model in tissue, APD−73mV

coincided with APD90. Compared to the single cell simulations, APD−73mV was
higher by 8 to 9 ms in tissue.
Effects observed for the restitution of ERP, APD90, the slope of the APD90 with
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respect to the DI (∆APD90/∆DI), CV, WL, and the VW were more pronounced
for L532P than for N588K (Figure 5.5). As was the case for the single cell sim-
ulations, effects were also more pronounced for the model variants comprising
higher shares of mutant IKr than for the homozygous variant. Both mutations
caused shorter ERP (Figure 5.5A) and APD90 (Figure 5.5B). For an intermediate
BCL of 504 ms, the reduction of APD90 was 50 ms for N588K and 103 ms for
L532P. The effect on CV (Figure 5.5C) was equivocal with conduction slowing
by up to 129 mm/s and faster conduction by up to 6 mm/s for N588K and changes
between –196 and +11 mm/s for L532P. Due to the higher relative amplitude of
the ERP changes, the effect of the mutations on the WL (Figure 5.5E) correlated
with the effect on the ERP. The restitution of the APD slope (Figure 5.5D) was
flattened by introducing mutant IKr. ∆APD90/∆DI curves for N588K and L532P
intersected the control curve at DIs of 350 and 270 ms, respectively. Regarding
the VW (Figure 5.5F), the restitution was unaffected by the mutations for DIs
shorter than 300 ms. For longer DIs, the VW was longer by up to 9%. The VW for
L532P was shorter by 0.1 ms than that for N588K consistent across most of the DI
range with a slightly higher slope of the linear part causing a reduced difference
for longer DIs. Beat-to-beat alternans was observed less frequently and with lower
amplitude for the mutation models compared to the control model.

5.1.4.4 Dynamic Behavior of Rotors
Spiral waves could not be initiated by the S1-S2 cross-field protocol using the
control model (Figure 5.6). Using the heterozygous L532P model on the other
hand, rotors were sustained for the whole simulation time of 5 s with a stimulus
width of 20 ms being the only exception. The N588K model failed to initiate
rotors for stimuli smaller than 40 mm or later than 20 ms after the end of the
ERP. For the setups that did not initiate reentry, the wavelength condition was not
fulfilled for the combination of cell model and substrate geometry. If rotors were
initiated, they ceased after a maximum lifetime of 2.47 s using the N588K model
because the excitable substrate was consumed and the spiral wave cut itself off at
an edge of the patch. Wave break was not observed using the control model and
the heterozygous mutant models.
The rotor trajectories were star-shaped indicating a meandering core (Figure 5.6).
The dynamic behavior of the spiral waves on the L532P substrate was more stable
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Figure 5.6: Trajectories of the phase singularities representing the rotor core in the two-
dimensional tissue patch for varying stimulation widths (A) and times (B). In (A), a S2 cross-field
stimulus of height 50mm and varying width was applied at t = ERP+4ms. In (B), the premature
stimulus of size 50mm× 50mmwas applied at varying times with respect to the end of the
ERP at the left side of the tissue patch (see Figure 5.2).

than on the N588K substrate as can be seen by the more regularly shaped trajecto-
ries and the smaller amount of space occupied.
Fourier transformation of the pseudo ECG signals obtained from the simulations
with the premature S2 stimulus being applied 10 ms after the end of the ERP
yielded DFs of 4.02 Hz for N588K and 5.37 Hz for L532P, respectively (Fig-
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500 ms

L532P-1:1N588K-1:1N588KC L532PD

Figure 5.7: Pseudo ECGs originating from spiral waves induced by a cross-field S2 stimulus of
size 50mm×50mmat10ms after the endof theERP (cf. Figure 5.6B). Signals for heterozygous
N588K (A) and L532P (B) substrates start 0.7 s after the S2 stimulus induced reentry. Pseudo
ECG amplitude is arbitrarily scaled by σ in Equation (5.6).

ure 5.7). As the control substrate could not maintain reentry, no DF could be
computed.

5.1.5 Discussion
The study presented in this chapter investigates the effect of the two hERG
missense mutations N588K and L532P on human atrial electrophysiology through
a multi-scale computational modeling approach. Residue N588 plays an important
role in the rapid voltage-dependent inactivation of IKr [277]. This observation fits
well with the results obtained in the present study indicating that the mutation
N588K leads to gain of IKr function by impeded rectification. In contrast to the
control model, N588K did not inactivate within the physiological Vm range. The
gain of function caused by mutation L532P in residue L532 residing within the
voltage sensor region was mediated via a different mechanism on the other hand.
L532P IKr was enhanced through premature activation. Compared to the control
model, the inactivation gate opens at more negative Vm, thus earlier during the AP.
This effect potentiates through the massive depolarization caused by the fast INa

kinetics. During later phases of the AP, a similar, yet less pronounced, mechanism
as described for N588K contributes as well. A reason for the similar effects on
IKr could be the interface between the voltage sensor (S4) hosting residue L532
and the pore domain (S5) hosting residue N588 [278].
By integrating the effects of the mutations on the single ion channel level into a
comprehensive multi-scale simulation framework ranging from the ion channel
via the cellular to the tissue level, the specific effects of the two missense gain-
of-function mutations on higher levels of integration could be analyzed. AP
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clamp simulations representing a plasma membrane with a multitude of similar
channels revealed a faster rise to higher IKr peak values. AP simulation using
the Courtemanche et al. model of human atrial myocytes showed that during a
dynamic AP governed by the delicate balance of depolarizing and repolarizing
currents, IKr was increased by 21% to 42% for the heterozygous models while
the peak amplitude showed a 1.6 to 2.3-fold increase. The less pronounced
effect of the mutations on the rapid delayed rectifier current IKr using the AP
clamp protocol compared to the dynamic AP simulations can be explained by the
mutation-induced faster repolarization causing an earlier return to lower Vm values,
which in turn reduce IKr again. The shorter APD was accompanied by a more
triangular AP shape in contrast to the spike-and-dome morphology of the control
AP. Effects were more pronounced for L532P than for N588K on both the cellular
and the tissue level. Not surprisingly, the amplitude of mutation-induced changes
correlated with the share of mutant IKr, i.e. was higher for the homozygous than
the heterozygous model variants. ERP and APD90 were reduced by ≈ 14% and
≈ 32% for N588K and L532P, respectively. For the zebrafish mutation cERG
L499P corresponding to the hERG reggae mutation L532P, Hassel et al. reported
an APD reduction of 19% in ventricular myocytes of zebrafish larvae [252].
An S1-S2 cross field protocol could induce stable reentry in a L532P-substrate
model in contrast to the control model and N588K for which spiral waves emerged
only in rare cases. This finding together with the spatially concentrated star-
shaped trajectories of the rotor cores highlight the elevated arrhythmic potential
of L532P. The observation that spiral waves in the N588K substrate often ceased
because of interaction with the boundary of the simulation domain suggest similar
investigations using a two-dimensional spherical surface in three-dimensional
space. By including holes representing the orifices of the great vessels and valves,
the spherical model could be extended to a simplified representation of a human
atrium [279]. Regarding the transformation of the Vm space to phase space, other
approaches based on e.g. the Hilbert transform were proposed in the literature.
However, the applied time-delay embedding has been shown to be well-suited for
noise-free simulated Vm data [266]. The DF computed for the L532P pseudo ECG
was within the clinically observed range for patients in AF [280]. The rather low
values for N588K, however, are most probably dominated by rotor deflections at
the boundaries of the tissue patch, which could be addressed by using a spherical
simulation domain as described above. For the determination of the DF in the

108



5.1. GENETIC DEFECTS IN HERG

Fourier spectrum, more sophisticated approaches haven been proposed [281].
The simple method based on the maximum should be appropriate for noise-free
simulated signals, though. Peaks reflecting harmonics of the DF were present in
the signals indicating a successful DF identification.
N588K hERG currents were simulated using the Noble et al. IKr formulation [282]
clamped to ventricular, Purkinje fiber, and atrial APs by McPate et al. [259].
Regarding the atrial myocytes, APs simulated using the Courtemanche et al. [49]
and the Nygren [283] cell models were used as voltage protocols. They found
a less pronounced shift of the voltage which causes maximum IhERG and an
increase of the peak current by 130% for the Nygren et al. model compared
to the Courtemanche et al. model used in this study. However, the impact of
the choice of the cell model should be significantly smaller in our study for
all experiments except the AP clamps. For the in silico experiments on the
cellular and tissue level, Vm was not fixed by a voltage protocol but evolved
physiologically. The second in silico work [260, 261] studying the effect of
N588K on atrial electrophysiology adapted the cell models in another way. As
discussed in Chapter 4, parameter estimation problems for cardiac ion current
formulation are highly underdetermined in many cases. Thus, the global model
characteristics are not necessarily preserved by the approach used in their set
of studies neglecting differences between experimental setups and lacking a
hybridization strategy concerning parameter estimation. Compared to [260, 261],
APD and AP morphology were affected to a lower degree using the approach
presented in this thesis relating the amplitudes and the time constants of the WT
and mutant measurements.
Using a Markov chain IKr formulation integrated in the Luo-Rudy ventricular
cell model [157], Itoh et al. reported a 6% reduction of APD90 at a BCL of
1000 ms [258]. Zhang and Hancox found a 16% decrease for M-cells at a BCL
of 400 ms for an adapted Hodgkin-Huxley-type IKr formulation integrated in the
Luo-Rudy ventricular model, as well [257]. In the presented study, APD90 was
reduced by ≈25% for the homozygous N588K mutant at BCLs between 400 ms
and 1000 ms indicating that the effect of the N588K hERG mutation on APD is
larger in the atria than in the ventricles.
The different V1/2 activation and inactivation values for L532P-hERG found in
this study compared to [252] could be traced back to the different methods applied
to estimate the parameters based on the measured current traces. In the approach
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presented here, the slope factor k was estimated for both WT and L532P and
the result of the parameter estimation for the activation gate was considered as
a priori knowledge for the estimation of the parameters of the inactivation gate.
These differences as well as the missing step regarding the transformation of the
parameters to the model environment also explains the differences on the AP level
(Figure 5 in [252]).

5.1.5.1 Limitations
The measurement data used in this study were acquired in hERG channels, which
represent the pore-forming α-subunit of the cardiac IKr channel. The β -subunit is
encoded by KCNE2, which was not coexpressed for L532P. Aiming at a compari-
son of both mutations, N588K data were taken from pure hERG measurements,
as well. Comparing hERG-N588K data with hERG-N588K + KCNE2 data shows
that the effects on currents are similar, though [284]. The reported slight shift
of activation towards more positive Vm associated with KCNE2 coexpression
leads to the assumption that the mutation-induced effects will be gradually more
pronounced than for lone hERG expression.
Both mutations were expressed homozygously. The chosen approach to approx-
imate heterozygous expression by combining mutant and WT channels in a 1:1
ratio (and additionally a 3:1 ratio on the cellular level) appears reasonable as long
as measured data for heterozygously expressed mutants are not available.
L532P measurements were conducted at room temperature and hERG channel
kinetics are known to exhibit a complex temperature dependence [285]. Thus, the
recordings acquired at room temperature may not exactly represent the behavior at
37◦ C body temperature. However, temperature dependence of the effect of hERG
mutations has been shown to be rather small [259, 286]. In particular, the data by
Hassel et al. [252] used in this work are in agreement with L532P experiments
performed at 37◦ C in human embryonic kidney cells by Zhang et al. [287]. The
markedly flattened time constant vs. voltage relation found in the model presented
in this chapter correlates with the finding by Zhang et al., as well as the shift of
activation V1/2 by 24 mV compared with 30 mV [287].
Maximum channel conductivity is hard to estimate from current recordings in ex-
pression systems. While single-channel patch clamp recordings allow to measure
the conductivity of one channel, the acquired value would need to be multiplied
with the number of channels to obtain the macroscopic conductivity of the current

110



5.1. GENETIC DEFECTS IN HERG

in the whole cell as represented in electrophysiological cell models. Protein im-
munoblotting could be used to estimate the amount of channel protein, however
no conclusion regarding functionality could be drawn, thus neglecting possible
trafficking changes.
As discussed in Section 4.1.3, a five-state Markov model is required to represent
all aspects of hERG gating [210] while the Courtemanche et al. formulation [49]
used in this work comprises only one activation gate governed by an ODE and
one instantaneous inactivation gate. However, the Courtemanche et al. model
was chosen as a phenomenological representation of atrial electrophysiology be-
cause it convinced in a benchmark of several atrial cell models [156], is well
established [9, 10], and validated regarding high levels of integration. Hence, it
was considered well-suited to study the effects of the hERG mutations on the
cellular and tissue level. Biophysically more detailed models, e.g. the Grandi et al.
model [220], come at the expense of higher computational cost and exhibit behav-
ior partly inconsistent with experimental findings in tissue level simulations [156].
More complex and anatomically more detailed geometrical models including
myocyte orientation, thus anisotropic conduction, and heterogeneous tissue prop-
erties are available [9, 183]. While reentry can be initiated by small ectopic
stimuli in contrast to the large S2 cross-field stimulus used in this work, basic
underlying mechanisms of rotor genesis, perpetuation, and termination can be
easier illuminated in simplified models.

5.1.5.2 Conclusion
In this chapter, the effects of the two hERG missense mutations N588K and L532P
on human atrial electrophysiology were studied using multi-scale simulation
ranging from the ion channel level via integrated cellular models to the one-
dimensional and two-dimensional tissue level. The consequences of the mutations
on these higher levels of integration in terms of AP morphology changes, refractory
behavior, as well as rotor initiation and sustainment capacity allow to identify
individuals harboring a genetic substrate predisposing to AF. By aiding risk
stratification and paving the way for genotype-guided therapeutic strategies, the
findings presented here help to bridge the gap from bench to bedside. While
both mutations affect the same gene, they cause qualitatively different effects
suggesting more offensive approaches for subjects carrying the L532P mutation
compared to N588K. In Section 6.1, geno-type specific effects of the two existing
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pharmacological agents amiodarone and dronedarone are evaluated regarding
the two mutations. A preventive approach rendering the genetically modified
substrate less vulnerable to AF by administering existing agents with a specific
dose or applying a hypothetic, optimized multi-channel blocker is proposed in
Section 6.3.

5.2 Chronic AF Induced Remodeling
Atria that are exposed to fibrillation for a longer time undergo remodeling pro-
cesses as introduced in Section 2.3.1. In order to leverage in silico methods to
gain mechanistic insight into AF patho-physiology and to evaluate therapeutic
strategies, the results of these remodeling processes need to be represented in the
models.
Established cell models have been adapted to represent AF-induced remodeling
by other groups. Table 5.4 gives an overview of the existing models. Most models
did not consider all existing experimental data (cf. Table 2.1) or lack reasoning
for the choice of parameters. This motivated the definition of a new remodeling
setup based on a rigorous literature research within the scope of this thesis. Model
AF4 by Colman et al. and the model by Koivumäki et al. consider the available
literature comprehensively. However, these models were published after the model
presented here was submitted as a conference contribution [294].
Parts of this work have been published as a conference paper [294] and are based
on earlier work [127].

5.2.1 Methods
In the model, Ito was reduced by 65%, IK1 was increased by 100%, IKs was
increased by 100%, IKur was reduced by 50%, ICa,L was reduced by 55%, INa,Ca

was increased by 60%, and the leak current from the sarcoplasmic reticulum to the
cytosol Ileak was increased by 50%. The cell capacitance was increased by 20%.
As the data on connexin expression is equivocal as reviewed in [126, 295], the
initial monodomain conductance σ = 76mS/m of the monodomain equation was
reduced by 30% for the setup RemodCV and left unchanged for the setup Remod.
The effect of the cAF induced changes on electrophysiology through remodeling
were evaluated on multiple scales. On the single cell level, APs were elicited by
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applying a stimulus current of 1.3 nA for 3 ms at a BCL of 1000 ms. MDP, AP
amplitude, as well as APD at 90% and 50% repolarization were analyzed after
pacing for 50 cycles. Restitution curves were obtained through simulations in
a one-dimensional tissue strand as introduced in Section 5.1.2.3. Restitution of
APD90 and its slope, CV, ERP, and WL was determined for BCLs ranging from
180 ms to 1300 ms for the fifth and the sixth beat in tissue to cover beat-to-beat
alternans.
Besides the original Courtemanche et al. model [49] representing healthy tissue
(Control), the setup presented by Seemann et al. in 2010 [291] was used for
comparison. In the Seemann et al. setup, a 30% reduction of the monodomain
conductivity σ was assumed as for the RemodCV setup.
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Table5.4:AdaptationofcellmodelstorepresentAFinducedremodelingfrom
literature.Thelastrowpresentstheproposednew

remodelingsetupbasedonarigorousliteratureresearchofexperimentaldata(cf.Table2.1andSection2.3.1).

Model
Ref.

gK1
gCa,L

gto
gKr

gKur
gKs

gNa
INaCa

Ileak
Iup

RyR
Remarks

ColmanAF1
[288]

+100%
–70%

–70%
τCa,L +60%,
Ito activation+16mVshift

ColmanAF2
[288]

+75%
–65%

–65%
ColmanAF3

[288]
+106%

–63%
–66%

–49%
ColmanAF4

[288]
+100%

–70%
–65%

–50%
+100%

+55%
+25%

+50%
+300%

Grandi
[220]

+100%
–50%

–70%
–50%

+100%
–10%

+40%
+25%

+100%
addedlateINa component,
SERCA

↓
Koivumäki

[289]
+62%

–59%
–62%

–38%
+50%

–15%
–16%

+100%
cellvolume+58%,
phospholambantoSERCA

↑
sarcolipintoSERCA

↓
MateneAF1

[290]
+73%

–63%
–65%

MateneAF2
[290]

+200%
+50%

MateneAF3
[290]

–63%
Seemann

[291]
+110%

–65%
–65%

Uldry
[292]

–30%
–80%

+50%
–90%

ZhangAF1a
[293]

+102%
–74%

–85%
Ito activation+16mVshift

ZhangAF1b
[293]

+250%
Ito activation+16mVshift,
INa activationshift+1.6mV,
τCa,L +62%

ZhangAF2
[293]

+90%
–64%

–65%
Loewe

[294]
+100%

–55%
–65%

–50%
+100%

+60%
+50%
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5.2.2 Results
The APs yielded by the remodeling variants of the Courtemanche et al. model
are shown in Figure 5.8. Compared to control, the MDP was hyperpolarized by
3.2 mV for the new setup as compared to 3.7 mV for the setup by Seemann et
al. [291]. AP amplitude was higher by 1.5 mV and 2.4 mV, respectively. APD was
shortened due to remodeling: compared to control, APD50 was reduced by 55%
for Remod, thus less drastically than for the Seemann et al. setup (69%). APD90

was reduced by 56% and 64%, respectively. Compared to the Seemann et al. setup,
the repolarization of the AP yielded by the new setup was less linear. However,
the AP plateau was not as pronounced as for the control model and the initial
notch after the overshoot was missing. Thus, the spike-and-dome morphology
of the control model was not present in the new remodeling setup. The setup
considering changes of the intercellular coupling (RemodCV) did not exhibit any
differences compare to Remod on the single cell level as a matter of course.
Restitution was analyzed in a one-dimensional tissue strand for the three remodel-
ing setups. Compared to the control model, the ERP was shortened in the Remod
setup by between 142 ms for a BCL of 341 ms and 160 ms for a BCL of 764 ms
(Figure 5.9A). The difference in ERP between Remod and RemodCV was smaller
than 2 ms for all BCLs. In comparison, the Seemann et al. setup shortened the
ERP by between 160 ms (BCL: 326 ms) and 188 ms (BCL: 852 ms).
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Figure 5.8: AP of an atrial myocyte under cAF remodeling conditions (red) in comparison to
control (green). The blue curve represents the setup by Seemann et al. [291].
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Figure 5.9: Restitutions curves of atrial myocardiumwith cAF induced remodeling. ERP restitu-
tion (A), CV restitution (B),WL restitution as the product of ERP and CV (C), APD90 restitution(D) and its slope (E), as well as VW restitution (F) are shown for the fifth and the sixth beat in
tissue (thus two lines per substrate) to cover beat-to-beat alternans. The gray lines with error
bars represent experimental data of chronic AF remodeledmyocytes from Franz et al. [296], Yu
et al. [297], and Feld et al. [298].

APD90 restitution exhibited a qualitatively similar course as the ERP curves (Fig-
ure 5.9B). The slope of the APD90 with respect to the DI did not differ significantly
between the three remodeling setups and was lower by up to 0.3 compared to
control for short BCLs. The Seemann et al. setup exhibited marked oscillations
by up to 0.2 for BCLs shorter than 400 ms. For BCLs longer than 700 ms, no
differences to control were observed (Figure 5.9D).
Remodeling caused conduction slowing by up to 39 mm/s (BCL: 504 ms) for the
Remod setup and by up to 165 mm/s (BCL: 504 ms) for the Seemann et al. setup.
RemodCV exhibited similar properties as the Seemann et al. setup regarding the
CV with a maximum difference of 8 mm/s. The restitution was markedly flattened
for all remodeling setups compared to control (Figure 5.9C).
The different remodeling setups yielded the most distinct results for the WL mea-
sure defined as the product of the ERP and the CV (Figure 5.9E). The WL was
shortened by between 81 mm and 128 mm for Remod, by between 100 mm and
150 mm for RemodCV, and by between 110 mm and 166 mm for the Seemann et
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5.2. CHRONIC AF INDUCED REMODELING

al. setup. The reduction was lowest for a BCL of 313 ms being the lowest BCL
for which the control model yielded stable APs.
While the general progression of the VW with respect to the BCL was similar
for all setups, Remod showed the shortest VW with values between 0.31 ms and
0.53 ms. The Seemann et al. setup showed a relatively constant VW of about
1.25 ms. RemodCV and control exhibited similar VW restitution for BCLs above
800 ms. For lower BCLs, RemodCV showed a shortening of the VW by up to
0.2 ms for a BCL of 300 ms (Figure 5.9F).
Beat-to-beat alternans, particularly with respect to APD90, was reduced by all
models of cAF induced remodeling.

5.2.3 Discussion
In this section, the Courtemanche et al. model representing healthy human atrial
myocytes was adapted to reflect changes induced by cAF remodeling. Maxi-
mum conductivities of the ion currents were altered based on a rigorous literature
research. Since the publication of this setup as a conference contribution in
2014 [294], the data base regarding experimental data of ion channel remodeling
has not changed significantly [299]. Compared to an earlier remodeling setup
developed at IBT by Seemann et al. [291], the AP plateau is not completely
degenerated. This observation can be attributed to the 50% reduction of IKur and
secondary to the slightly less reduced ICa,L (55% vs. 65%). In comparison to the
control model, the repolarization of the new setup is still more linear, though.
A number of biomarkers were evaluated to assess the arrhythmogenic potential
of the remodeled substrate. ERP, APD, and WL indicated a tendency towards
arrhythmogeneity considering the critical WL concept. While CV was mostly
dependent on the assumed monodomain conductivity σ , conduction slowing was
observed in the Remod setup despite unaltered σ and INa compared to the control
model. This observation can be explained by the hyperpolarized resting membrane
voltage as a stimulus current of a given amplitude needs more time to exceed the
threshold due to the capacitive properties of the membrane. Moreover, increased
IK1 counteracts depolarizing stimuli. The slope of the APD90 with respect to
the DI was higher, thus presumably more arrhythmogenic, for control than for
any remodeling setup. Also beat-to-beat alternans as a potential pro-arrhythmic
mechanism was only observed in the control substrate.
The comparison to the sparse available experimental data regarding restitution
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in cAF remodeled substrates shows fair agreement regarding APD90 [296] and
ERP [297]. However, the absolute values of both markers in the cAF remodeling
setups were larger in the model than in the experimental data. The absolute values
of the model CV were in the range reported by Feld et al. [298]. The slope of the
CV with respect to the BCL does not match the mean values of the experiments.
However, the error bars of the experimental data span a wider interval than the
dynamic restitution interval (Figure 5.9C).
The model presented here is limited in the sense that only changes of the maximum
ion current conductivities were considered. However, the remodeling of gating
kinetics is reported very equivocally as described in detail in [127]. Structural
remodeling effects such as the influence of e.g. fibrosis are beyond the scope
of this work focussing on the electrophysiological effects on the single cell and
one-dimensional tissue level. Future work could address inter-subject variability
as suggested by Sanchez et al. [300].
In conclusion, the modification of the Courtemanche et al. model of human atrial
myocytes presented in this section represents cAF induced electrophysiological
remodeling and is able to reproduce the main characteristics observed experimen-
tally. It provides mechanistic descriptions how remodeling increases susceptibility
to reentry through shortened WL facilitating the initiation and maintenance of
atrial arrhythmias according to the AF begets AF paradigm. The adapted model
provides the means to evaluate tailored therapeutic strategies for cAF patients in
silico and was used as a substrate model in Chapter 6 regarding pharmacotherapy
and in Chapter 8 regarding ablation.
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CHAPTER6
Pharmacological Agents

Pharmacological treatment of atrial fibrillation (AF) with various antiarrhythmic
drugs is an alternative, less invasive approach to radio-frequency or cryo-ablation
of atrial tissue for cardioversion and prevention of AF recurrence. While antiar-
rhythmic agents are classically developed and tested using in vitro and in vivo
approaches in both animals and humans, in silico methods can complement a
thorough analysis. In this way, critical compounds can be identified and rejected
at earlier stages of drug development and the number of animal studies can be
reduced in the long run [9, 301, 302]. Moreover, novel ion channel targets can be
characterized [303, 304] and therapies can be tailored for subgroups of the general
population as a further step towards personalized medicine [305].
Computational models were employed to evaluate the effect of hypothetic and
existing antiarrhythmic agents on ventricular electrophysiology in previous stud-
ies [205, 306–308]. The focus of most ventricular studies was drug safety in
terms of prevention of torsades de pointes tachycardia that can cause sudden
cardiac death. Mirams et al. performed a virtual thorough QT study aiming at
a prediction of the drug induced proarrhythmic risk of up to 34 compounds by
in silico modeling [309] superior to using IC50 values only [310]. The use of in
silico methods for drug safety evaluation has recently been reviewed in [301].
Regarding atrial electrophysiology, Morotti et al. presented a computational study
aiming at a prevention of phase-3 early afterdepolarizations as a potential mech-
anism of AF initiation by blocking peak INa [311]. Tsujimae et al. investigated
voltage and time dependent IKr inhibition caused by the pharmacological agents
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dofetilide, vesnarinone, and quinidine [312]. IKur inhibitor kinetic properties
were studied regarding their effect on rotor termination by Scholz et al. [303] and
regarding AP prolongation by Tsujimae et al. [313]. Wilhelms et al. [205, 314]
presented first work on the effects of amiodarone and dronedarone on atrial elec-
trophysiology. While the study presented here is based on this study, the dynamic
effects caused by the interplay of the circadian changes of both drug concentration
and heart rate were not considered in the work of Wilhelms, thus neglecting phar-
macokinetic considerations. Moreover, the drug model was advanced. Aslanidi et
al. [315] studied the effect of dronedarone of APD90 restitution and spiral wave
dynamics. Heijman et al. used a computational model to study the determinants
of beat-to-beat alternans of action potential duration (APD) [316], which can
translate to beat-to-beat variability of T-wave morphology [317]. Zemzemi et al.
studied how inhibition of IKr, INa, and ICa,L in ventricular myocytes translate to
changes up to the body surface potential level [306].
The study presented in Section 6.1 is the first comprehensive study of the dynamic
effects of amiodarone and dronedarone on human atrial patho-electrophysiology
considering the properties of distinct atrial substrates. Vernakalant investigated in
Section 6.2 has never been studied in silico before to the best of my knowledge
highlighted by the lack of a comprehensive understanding of its effects on different
levels of integration. The study presented in Section 6.3 is the first to optimize
hypothetic and existing compounds for the treatment and prevention of familial
AF comprehensively.

6.1 Amiodarone &Dronedarone
Amiodarone and dronedarone are two antiarrhythmic agents that have been pro-
posed as an effective treatment of AF [1]. As both drugs inhibit cardiac potassium
currents, they are classified as class III agents according to the Singh Vaughan
Williams system [318]. However, both agents exert effects on multiple channels
and have to be considered multi-channel blockers, indeed. Besides differences in
their pharmacodynamic properties in terms of inhibition of ion channels, amio-
darone and dronedarone also differ markedly in their pharmacokinetic properties.
Amiodarone accumulates in a third compartment because of its lipophilic proper-
ties leading to a biological half-life of several weeks. Dronedarone on the other
hand is less lipophilic translating to a significantly shorter half-life of less than
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24 h [136].
Even though dronedarone was designed as a less thyrotoxic alternative to amio-
darone with similar effects on cardiac electrophysiology, the efficacy in terms of
AF recurrence prevention is much better for amiodarone than for dronedarone [73,
130, 136]. Therefore, three hypotheses are tested in this study using a multi-scale
in silico approach: It is hypothesized that the effects of the two drugs differ
because of i) the different pharmacokinetic properties causing distinct temporal
variations in drug concentration, ii) different restitution properties leading to dis-
tinct effects in different heart rate regimes, and iii) distinct effects for different
atrial substrates.
Parts of this work have been published as a journal article [129] and are based on
a supervised student’s project [319].

6.1.1 Methods
The original Courtemanche et al. model of human atrial myocytes [49] was used as
the control substrate representing healthy atrial myocardium. Besides, the effect of
amiodarone and dronedarone was assessed in the chronic atrial fibrillation (cAF)
substrate introduced in Section 5.2 and for the two hERG mutations L532P and
N588K introduced in Section 5.1 as models of familial AF. Regarding the hERG
mutations, heterozygous expression was assumed and approximated by mixing
mutant and wild-type (WT) IKr at a 1:1 ratio.

6.1.1.1 Modeling the Effect of Amiodarone andDronedarone
Binding of the agents to the channel proteins and the consequent conductivity
reduction were modeled using Hill’s equation [320]:

Θ =
1

1+
(

IC50
D

)nH , (6.1)

with Θ being the degree of channel block ∈ [0,1] ranging from no block to com-
plete block, IC50 being the half-maximal inhibitory concentration, D being the
free plasma drug concentration, and nH being the Hill coefficient quantifying
cooperative binding. The IC50 and nH values describing the effect of amio-
darone and dronedarone on cardiac ion currents were extracted from literature
(Table 6.1). Amidarone affected the currents IKr [321], IKs [322], INa [323],
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Table 6.1: Inhibition of cardiac ion channels by the pharmacological agents amiodarone and
dronedarone. Half-maximal inhibitory concentrations IC50 andHill coefficients nHwere ex-tracted from literature.

Amiodarone Dronedarone
IC50 (µM) nH Reference IC50 (µM) nH Reference

IKr 2.80 0.91 [321] 0.0591 0.80 [327]
IKur – – 1.00 1.00 [328]
IKs 3.84 0.63 [322] 5.60 0.51 [329]
INa 4.84 0.76 [323] 0.54 2.03 [323]
ICa,L 5.80 1.00 [324] 0.83 2.75 [137]
INaCa 3.30 1.00 [325] – –
INaK 15.60 1.00 [326] – –
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Figure 6.1: Degree of inhibition resulting fromHill-type channel block due to amiodarone (A)
and dronedarone (B) based on the half-maximal inhibitory concentrations and Hill coefficients
given in Table 6.1. The vertical dashed line corresponds to the standard concentration. Note
the different scales on the x-axes.

ICa,L [324], the sodium calcium exchanger INaCa [325], and the sodium potassium
pump INaK [326]. Dronedarone affected IKr [327], IKur [328], IKs [329], INa [323],
and ICa,L [137]. Figure 6.1 shows the resulting Hill curves.
The amiodarone plasma concentration in steady-state is reported to range between
1 µg/ml and 2 µg/ml [330]. Given the molar mass of 643.31 g/mol, this corre-
sponds to 1.55 to 3.11 µM. For dronedarone, the reported plasma concentration
of 84 ng/ml to 147 ng/ml corresponds to 0.15 µM to 0.25 µM considering the

122



6.1. AMIODARONE &DRONEDARONE

molar mass of 556.76 g/mol. For a thorough exploration of the concentration
space, the effect of both agents was modeled for free drug concentrations ranging
from approximately 10% of the respective mean standard concentration to 10×
the mean standard concentration. Within those ranges, 15 logarithmically spaced
concentrations were assessed.

6.1.1.2 Scoring
Similar to the method introduced in Section 5.1.2.3, the effect of amiodarone
and dronedarone on cardiac electrophysiology was studied in a one-dimensional
tissue strand with the same numerical methods as in the previous chapter (see
Section 5.1.3). In order to obtain information on the frequency dependence, the
system was paced at 20 different basic cycle lengths (BCLs) being distributed
equidistantly in the frequency domain between 200 ms and 1300 ms. Restitution
curves were computed for APD50, APD90, the slope of the APD with respect
to the diastolic interval (DI) (∆APD90/∆DI), action potential (AP) amplitude,
maximum diastolic potential (MDP), conduction velocity (CV), effective refrac-
tory period (ERP), wavelength (WL), triangulation index (TI), and vulnerable
window (VW) as introduced in Section 5.1.2. Moreover, the resulting APs for
each combination of drug concentration and BCL were classified into categories.
APs were considered valid if Vm exceeded –45 mV and the upstroke velocity ex-
ceeded 10 V/s. Besides normal APs and total block, consistent 2:1 block, block of
a single AP, and APs with decrescent amplitude formed categories. The decrease
was considered significant if the amplitude was reduced by at least 3% from beat
to beat. Moreover, sequences of valid APs with more than 3% variation in APD90

were classified as alternans.
All acquired biomarkers were scored on a continuous scale and combined in a
single score to represent the results in a compact way allowing for assessment of
the interdependency between BCL and concentration. The scores ranged from 1
representing the best value to 6 being the worst score regarding arrhythmogeneity.
The upper and lower bounds for the continuous, linear score of the six biomarkers
considered are given in Table 6.2. AP categories were scored from 1 to 6 as follow:
normal, alternans, decreasing, single block, 2:1 block, complete block. The score
values for combinations of BCL and concentration not being on the grid points
formed by the 20 BCL values and the 15 concentration values, for which tissue
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Table 6.2: Bounds for the continuous scoring of the biomarkers. ERP, APD50, and VWwere
related to the respective values without drug influence (subscript 0).

Value for score 1 Value for score 6
CV (mm/s) 800 300
∆APD90/∆DI –0.3 1.5
TI (%) 15 95
ERP/ERP0 (%) 130 60
APD50/APD50,0 (%) 130 60
VW/VW0 (%) 60 130

level simulations were performed were interpolated bilinearly. The overall score
was computed as the mean of the six scores of the single biomarkers in Table 6.2.
If one score yielded 5.5 or worse or two markers were 5.0 or worse, the overall
score 6 was assigned, however.

6.1.1.3 Pharmacokinetic Scenarios
To identify the most relevant areas in the BCL-concentration space spanned by
the 20 BCLs and the 15 concentrations, for which the biomarkers were evaluated,
typical trajectories were defined by combining pharmacokinetic scenarios with
dynamic heart rate variations (Figure 6.2). A 200 mg daily dose of amiodarone was
assumed to be administered at 8 a.m. causing a 20% increase in concentration [331]
with respect to the mean value. The standard concentration of 2.3 µM was used
as a reference for the mean value. Thus, a reduction of 20% with respect to
the standard concentration was modeled at the time of administration. The time
course between these extrema was modeled using Gaussians (Figure 6.2A). For
dronedarone, in contrast, two doses of 400 mg each were administered at 8 a.m.
and 8 p.m. causing an increase of 50% [332] with respect to the mean value of
0.21 µM (Figure 6.2B). In a second set of scenarios, concomitant food intake
was assumed resulting in a three-fold increase of the bioavailability of both
agents [136] (Figure 6.2A+B).
Regarding the circadian variation of the heart rate (Figure 6.2C), a baseline of 70
beats per minute (bpm) corresponding to a BCL of 857 ms was assumed during
daytime (6 a.m. to 11 p.m.). Episodes of physical stress were modeled by a 20 min
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Figure 6.2: Course of the drug concentrations over a typical daymodeled in the pharmacoki-
netic scenarios for amiodarone (A) and dronedarone (B) with andwithout concomitant food
intake, as well as the circadian BCL course including sleep, rest, and phases of physical activity
(C).

linear increase of the heart rate to 120 bpm (BCL: 500 ms), followed by 5 min at
120 bpm and a 20 min linear decrease to the resting value of 70 bpm. Eight such
episodes were distributed equidistantly during daytime. The heart rate during
sleep (11 p.m. to 6 a.m.) was assumed to be 50 bpm (BCL: 1200 ms). The heart
rate course was the same for all substrates (including the cAF substrate) for the
sake of comparability.
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Figure 6.3: Dynamic trajectories in the BCL-concentration space for amiodarone (A)+(B) and
dronedarone (C)+(D). The time of the day is color-coded. The lower panel represents drug
administration with concomitant food intake resulting in a higher bioavailabilty. The axes
correspond to the axes in Figure 6.6.

6.1.2 Results
6.1.2.1 Dose and Frequency Response
The effect of variations in the drug dose and the pacing frequency (inversely corre-
lated with BCL) were studied in the one-dimensional tissue strand. Drug-induced
conduction block occurred for dronedarone concentrations above 1.09 µM in all
substrates. For amiodarone, block was only observed in the cAF substrate for
concentrations above 23 µM (see Figure 6.4). The concentration at which block
occurred coincided with the drug concentration causing INa block of ≈80%. As
the baseline sodium current in the drug-free scenario was reduced in the cAF sub-
strate due to the remodeling, block occurred already at lower drug concentrations.
Fast pacing, thus low BCLs, induced block in all substrates but cAF. The cutoff
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Figure 6.4: Resulting AP categories for amiodarone (A), (C), (D), and (G) and dronedarone (B),
(D), (F), and (H) and the four different substrates control (A)+(B), cAF induced remodeling
(C)+(D), hERG mutation L532P (E)+(F), and hERG mutation N588K (G)+(H). Alternans was
defined as APD90 alterations of 3% ormore. Sequences with a least 3% beat-to-beat decreaseof AP amplitude were considered as decreasing.

BCL increased with increasing drug concentration resulting in a step-like pattern
and was higher for dronedarone than for amiodarone.
For valid APs which were not blocked but conducted along the strand, the fre-
quency and dose response of the biomarkers was evaluated. The interested reader
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is referred to Figures S6 and S7 in the online supplementary material of [129] for
the 160 graphs detailing the dose and frequency response with a fixed value of the
respective other parameter for both drugs in all four substrates. Here, the results
are presented in a condensed form and quantified for representative BCLs and
drug concentrations.
AP amplitude decreased for higher concentrations. In the control model, it de-
creased from 83.9 mV without any compound applied to 54.3 mV for 23 µM
amiodarone and to 62.1 mV for 1.09 µM dronedarone at a BCL of 1008 ms. For
dronedarone concentrations below 0.1 µM and amiodarone concentrations below
0.32 µM, AP amplitude was almost unaffected. AP amplitude increased again
when raising the dronedarone concentration from 0.56 µM to 0.78 µM for BCLs
longer than 600 ms. Shorter BCLs were associated with smaller amplitudes, in
general. The cAF substrate exhibited a markedly attenuated frequency dependence.
The difference in amplitude between the shortest and the longest BCL was 3.1 mV
in the cAF substrate compared to between 15.4 mV and 19.9 mV for the other
substrates at an amiodarone concentration of 0.23 µM. Similar characteristics
were observed for dronedarone (exemplary concentration of 0.021 µM) with a
range of 3.8 mV in the cAF substrate compared to 14.1 mV to 22.9 mV in the
other substrates.
Amiodarone dose-response curves for the biomarkers APD50, APD90, and ERP
were bell-shaped in contrast to dronedarone, which caused a monotonic increase
towards higher concentrations followed by a marked drop beyond a cutoff con-
centration. The amiodarone concentration corresponding to the peak in ERP was
3.2 µM for cAF and between 6.1 µM and 8.6 µM for control, L532P, and N588K.
The absolute value of the amiodarone induced APD50 increase was largest in the
control substrate (+160 ms =̂ +86%), followed by N588K (+144 ms =̂ +86%),
L532P (+117 ms =̂ +96%), and cAF (+28 ms =̂ +23%). In the control and N588K
substrates, a less pronounced peak was observed at an amiodarone concentration
of ≈ 1/5 of the main peak. The cutoff dronedarone concentrations were identified
as between 0.56 µM and 0.78 µM in all substrates. In the cAF substrate, the cutoff
was not as sharp as for the other substrates causing a decrease for dronedarone
concentrations between 0.29 µM and 0.56 µM rather than an instantaneous cutoff
observed for the other substrates. ERP dose response curves are shown in Fig-
ure 6.5A for amiodarone and Figure 6.5C for dronedarone at a BCL of 857 ms
corresponding to 70 bpm. The dose response for APD90 and ERP showed similar
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Figure6.5: Response of ERP todifferent concentrations of amiodarone (A) anddronedarone (B)
for a fixed BCL of 857ms corresponding to 70 bpm. Vertical dashed lines indicate the standard
concentration of the respective drug, horizontal dashed lines represent the baseline ERP for
zero drug concentration. (C)+(D) show the frequency response (restitution) against the DI at
the standard concentrations of amiodarone (C) (2.3 µM) and dronedarone (D) (0.21 µM). The
shaded gray area in (A)+(B) represents the concentration range covered in the pharmacokinetic
scenarios (Figure 6.2 and Figure 6.3). TheDI range coveredwas different for each substrate
and each concentration. Data points are indicated andwere interpolated using cubic splines.
Data points were neglected if no AP could be elicited due to drug-induced block.

courses.
Regarding the restitution properties, the overall course did not differ between
substrates and the gross morphology of the restitutions curves was unaffected by
both drugs. However, the degree of reverse use dependence describing the effect
of less pronounced ERP prolongation for lower BCLs, thus faster heart rates,
differed between substrates. It was observed for N588K and the control substrate
for amiodarone. In the control case, ERP with the standard amiodarone concen-
tration of 2.3 µM was even shorter than the baseline value for BCLs shorter than
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392 ms (Figure 6.5C). Reverse use dependence was observed for dronedarone in
the cAF and L532P substrates; compared to amiodarone to a lower degree, though.
Restitution curves are shown in Figure 6.5C for amiodarone and Figure 6.5D for
dronedarone at the respective standard concentrations.
The APD90 slope ∆APD90/∆DI oscillated for short BCLs close to cutoff and high
concentrations of both drugs close to cutoff. In general, the slope was steeper to-
wards lower BCLs (most pronounced for the L532P substrate followed by control
and N588K).
Increasing drug concentrations caused conduction slowing correlating with the de-
gree of INa block. This effect on CV was observed for dronedarone concentrations
above 0.1 µM as was the case for AP amplitude. Marginal intersubstrate differ-
ences were reflected in minimal CV values under amiodarone administration of
268 mm/s, 324 mm/s, 267 mm/s, and 268 mm/s for control, cAF, L532P, and N588.
Values for dronedarone were 417 mm/s, 505 mm/s, 414 mm/s, and 416 mm/s, re-
spectively. CV frequency dependence was only observed for BCLs shorter than
500 ms with a tendency towards slower conduction. In the cAF substrate, CV was
unaffected by a BCL decrease down to 200 ms. The WL was calculated as the
product of ERP and CV resulting in a general tendency towards shorter WLs for
higher amiodarone concentrations. The peaks observed in the ERP dose response
translated to the WL course, though. These peaks counterbalanced the amiodarone
induced ERP decrease and almost restored the baseline WL without any drug. For
dronedarone, a WL increase was observed for concentrations up to 0.15 µM in the
cAF substrate and up to 0.29 µM in all other substrates. For higher concentrations,
WL dropped. WL prolongation compared to baseline was up to 52 mm (+22%) for
control, 19 mm (+16%) for cAF, 101 mm (+64%) for L532P, and 70 mm (+34%)
for N588K.
Regarding the MDP, amiodarone caused a hyperpolarization whereas dronedarone
depolarized the MDP. The amplitude of this effect was smaller than 2.5 mV for all
drug concentrations at a BCL of 1008 ms. Faster pacing did prevent full repolar-
ization of Vm yielding higher MDPs by up to 4.8 mV, 2.1 mV, 6.1 mV, and 6.2 mV
for control, cAF, L532P, and N588K, respectively. The TI as a marker quantifying
the linearity of the repolarization, i.e. the absence of an AP plateau, showed a
qualitatively similar course as the ones for the APD markers. For amiodarone,
higher concentrations were associated with a slightly higher TI with the exception
of a marked drop around 3 µM in the cAF substrate and around 6 µM in the other
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substrates. For dronedarone, the general tendency was towards lower TI values
for higher concentrations in all substrates but cAF, which showed no significant
sensitivity for concentrations up to 0.6 µM.
The baseline duration of the VW with no drug administered was between 1.5 ms
and 2.0 ms for all substrates but cAF for which it was 0.3 ms. Amiodarone short-
ened the VW down to 0.3 ms in the former substrates and 0.1 ms in the cAF
substrate. The VW was unaffected by dronedarone concentrations far from the
cutoff concentration. Frequency dependence was marginal for BCLs significantly
above the cutoff value.

6.1.2.2 Scores
The biomarkers were scored according to Table 6.2. The interested reader is
referred to Figure S8 in the online supplementary material of [129] for details of
the resulting scores for all markers under both drugs in all four substrates. Here,
selected results are presented in a condensed form. Figure 6.6 shows the resulting
total score. The baseline value without any drug administered was 2.33, 2.57,
2.75, and 2.53 for the control, cAF, L532P, and N588K substrates at a BCL of
1008 ms.
Regarding the individual biomarkers, CV yielded higher, thus worse, score val-
ues for elevated drug concentrations with no significant frequency or substrate
dependency. Only for BCLs close to cutoff, a tendency towards higher scores
was observed which was more pronounced for dronedarone than for amiodarone.
The worst CV scores for high drug concentrations were 6 for amiodarone in
all substrates and 5 for dronedarone for all but the cAF substrate for which the
maximal score was 4.
The bell-shaped ERP amiodarone dose response translated to a bathtub-shaped
ERP score dose response curve. The minima occurred at amiodarone concentra-
tions of 6.17 µM, 3.19 µM, 4.44 µM, and 6.17 µM in the control, cAF, L532P,
and N588K substrates. Lower BCLs were associated with slightly higher scores at
low amiodarone concentrations. At higher concentrations, the opposite behavior
was observed, i.e. lower scores for lower BCLs. Regarding dronedarone, elevated
concentrations caused lower ERP scores in all substrates but cAF for which a min-
imum was observed at 0.15 µM. In the other three substrates, peaks to high, thus
bad, scores were observed for low BCLs close to cutoff for some concentrations.
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Figure 6.6: Total score resulting from amiodarone (A), (C), (E), and (G) and dronedarone (B),
(D), (F), and (H) administration in the four different substrates control (A)+(B), cAF induced
remodeling (C)+(D), hERGmutation L532P (E)+(F), and hERGmutation N588K (G)+(H). Scores
range from1 (best) to 6 (worst). The total score is based on the individual scores forAP category
(see Figure 6.4), CV, ∆APD90/∆DI, TI, ERP/ERP0, APD50/APD50,0, and VW/VW0. In case one ofthe individual scores of themarkers evaluated to 5.5 or worse, or twomarkers yielded 5.0 or
worse, the total score 6was assigned. Otherwise, themean of the seven individual scores was
considered.

The APD50/APD50,0 score showed a qualitatively similar course as the ERP/ERP0

score.
The APD90 slope scores were dominated by peaks to critical values close to the
concentrations yielding APD90 (and ERP) minima for amiodarone and close to
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cutoff BCLs for dronedarone. In general, shorter BCLs yielded slightly higher
∆APD90/∆DI scores.
Regarding TI, minima were observed at amiodarone concentrations yielding
APD90 (and ERP) minima. In vicinity to these concentrations, shorter BCLs and
higher concentrations were associated with higher scores resulting in a step-like
pattern. For lower concentrations in the control substrate, also longer BCLs
yielded lower scores. The course of the TI score for dronedarone was consistent
with the ERP score. The frequency dependence causing higher scores for shorter
BCLs was more pronounced for TI than for ERP, though. In the L532P substrate,
low concentrations (<3 µM amiodarone, <0.1 µM dronedarone) yielded TI scores
as high as 4.9.
Regarding the VW, higher amiodarone concentrations caused lower scores in
general. This tendency was less pronounced for dronedarone. Hot spots with
peaks to critical values were observed for short BCLs close to cutoff for several
concentrations of both compounds. Dronedarone applied to the cAF substrate
caused such hot spots also for longer BCLs.

6.1.2.3 Circadian Variation
The total score was evaluated along the trajectories in the BCL-concentration
space representing the circadian variation of the drug concentration and the heart
rate (Figure 6.3). The amiodarone score in the food scenario considering con-
comitant drug and food intake varied between 1.6 and 2.5 in the control substrate
(Figure 6.7A), between 1.8 and 2.5 for cAF (Figure 6.7C), between 2.1 and 2.4 for
L532P (Figure 6.7E), and between 1.7 and 2.4 for N588K (Figure 6.7G). The same
scenario applied to dronedarone caused total score values between 1.6 and 5.1 in
the control substrate (Figure 6.7B), between 1.9 and 6.0 for cAF (Figure 6.7D),
between 1.7 and 5.1 for L532P (Figure 6.7F), and between 1.6 and 5.1 for N588K
(Figure 6.7H).
Compared to the baseline score trace with zero drug concentration, the score
under amiodarone was improved. The only exception was observed for the con-
trol substrate during phases of high concentration and low heart rate in the food
scenario (Figure 6.7A). Dronedarone improved the score compared to baseline
in most cases. Worse scores under dronedarone were observed during peaks to
critical values (Figure 6.7B,D,F,H). These peaks occurred in all substrates during
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Figure 6.7: Circadian variation of the total score (Figure 6.6) along the trajectories through
the BCL-concentration space representing a typical day (Figure 6.2 and Figure 6.3). The an-
tiarrhythmic drugs amiodarone (A), (C), (E), and (G) and dronedarone (B), (D), (F), and (H) were
assumed to be administered together with food (solid lines) or without (dashed lines) resulting
in different bioavailability of the agents. The gray, dash-dotted lines indicate the baseline score
at zero drug concentration. Resulting scores are shown in four different substrates: control
(A)+(B), cAF induced remodeling (C)+(D), hERGmutation L532P (E)+(F), and hERGmutation
N588K (G)+(H). The lower panels indicate times of sleep, drug (and possible food) intake, as
well as phases of elevated heart rate representing physical activity.

phases of high concentration and low heart rate considering the food scenario
and during phases of low concentration and intermediate heart rate in the cAF
substrate (Figure 6.7D) considering the non-food pharmacokinetic scenario.
Phases of elevated heart rate, thus shorter BCL, reflecting physical stress lead to
elevated scores during phases of low amiodarone concentration. During phases
of high concentration, the score was reduced during stress with the exception
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of the cAF substrate in which a stress induced increase was observed for all
concentration phases. The circadian variation of the drug concentration lead to
higher scores during phases of high amiodarone concentration with the exception
of the cAF and the L532P substrates, which showed no consistent trend.
The dronedarone scores peaked to critical values of 5.0 or above during phases
of high concentration and short BCL in all substrates in the food scenario. In the
scenario without concomitant food intake, peaks above 2.5 were only observed in
the cAF substrate. Moreover, the peaks occurred under different circumstances:
low concentration and short BCL in contrast to high concentration and short BCL.
In the food scenario, elevated dronedarone levels caused higher scores, in general.
In the cAF substrate however, the score was lowest during the transition from
high to low concentration and the other way around. In the non-food scenario, the
circadian variation of the dronedarone concentration was reflected in significant
score changes only in the cAF substrate. Shorter BCLs representing physical
stress yielded higher scores in all substrates.

6.1.3 Discussion
The dynamic effect of amiodarone and dronedarone on human cardiac electro-
physiology was investigated in this study under consideration of physiological
circadian variation of drug concentration and heart rate using a computational
model. Moreover, the influence of the atrial substrate was assessed comprising
cAF induced remodeling and two hERG mutations associated with familial AF.
Under high drug concentrations, AP could no longer be elicited due to the degree
of sodium channel block. For short BCLs, the tissue could not fully repolarize
between two consecutive wavefronts leading to depolarized MDP. This may favor
ectopic beats as any stimulus of given amplitude is more likely to reach the Vm

threshold and trigger an AP. Alternans on the AP level under amiodarone oc-
curred only for high concentrations corresponding to the concentration peaks in
the pharmacokinetic scenario assuming concomitant food and drug intake. For
dronedarone however, APs exhibited alternans for the whole concentration range
at short BCLs close to cutoff, particularly in the control substrate. This proar-
rhythmic mechanism [333, 334] is potentially one of the factors contributing to
the inferior efficacy of dronedarone compared with amiodarone in terms of the
prevention of AF recurrence [73, 130, 136].
A further factor contributing to the inferior efficacy can be found in the fact that
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the total score peaked to critical values in all substrates in the dronedarone food
scenario. In the cAF substrate, these peaks could even be observed in the non-
food scenario during phases of low dronedarone concentration right before the
next drug intake. Under amiodarone, the circadian variation of BCL and drug
concentration caused only minor score oscillations, though.
Acceleration of the heart rate reflecting phases of physical activity caused peaks
to critical scores in all dronedarone concentration phases. For amiodarone on the
other hand, shorter BCLs improved the score during phases of high concentration
in all but the cAF substrate. Reverse use dependence was also substrate dependent
and occurred in the control and N588K substrates under amiodarone and the other
two substrates under dronedarone.
The finding that the amiodarone concentration yielding the best, thus lowest, score
was lower by 50% in the cAF substrate compared to the control substrate and
the two hERG mutations implies and highlights that the responder rate of phar-
macological AF therapy and preventive approaches could be raised by tailoring
the drug regimen in a group-specific way considering the atrial substrate. For
dronedarone, a less pronounced tendency in the other direction was observed
proposing elevated doses for cAF patients. Generally speaking, the effects in the
cAF substrate differed markedly from the others. The drop of the biomarkers
APD, ERP, and VW at the cutoff concentrations was not as abrupt but showed a
rather smooth transition starting at lower concentrations compared to the other
substrates. The VW was significantly shorter by a factor of ≈5 and the ERP score
did not decrease for higher dronedarone concentrations. All these differences lead
to peaks to critical score values under dronedarone in the cAF substrate even in the
pharmacokinetic scenario assuming smaller variations of the drug concentration.
Wilhelms proposed INa block as the predominant mechanism by which amio-
darone terminates spiral wave reentry [205]. Such two-dimensional tissue level
effects were beyond the scope of the study presented here and should be addressed
by future research. Preferably, investigations regarding the effects of drugs on ro-
tor inducability and perpetuation should be performed on closed two-dimensional
surfaces in three-dimensional space (cf. Section 5.1.5). The results presented here
regarding the effect of amiodarone on ERP and CV are in line with experimen-
tal findings by Shinagawa et al. [335]. They report prolonged ERP in atrially
tachypaced dogs under chronic amiodarone administration. The restoration of
ERP absolute values and ERP rate adaptation to control values observed in the
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tachypaced dogs could not be reproduced, though. A reason for this might be the
slightly different pharmacodynamic effects of amiodarone regarding acute and
chronic administration further discussed in the next section. The CV reduction
of ≈200 mm/s with flat restitution reported by Shinagawa et al. were reproduced
here for an amiodarone concentration of 4.4 µM. In their study, regional variations
of the effect of amiodarone were described. This spatial heterogeneity could
be integrated in a heterogeneous anatomical model (cf. Section 9.1) in future
work once appropriate pharmacodynamics data on the ion channel level become
available.
Sun et al. superfused rabbit muscle preparations acutely with either 10 µM
dronedarone or 10 µM amiodarone [336]. They reported a similar degree of
APD90 reduction for both compounds. Their observation cannot be explained by
any IC50 and nH values found in the literature, however. In guinea pig experi-
ments [329], MDP was not significantly affected by dronedarone as was the case
for the in silico experiments presented here.
Scoring systems are widely used to quantify the complex effects of drugs in
a condensed way. However, they are often based solely on IC50 values [337],
neglect frequency dependence, thus restitution, of the dynamic system [309], ne-
glect substrate dependence [338, 339], or require experiments using large animal
models [340]. Besides markers derived from simulations using biophysically
detailed models facilitating mechanistic insight, data-driven approaches using
machine learning methods resulting in black box descriptions have been proposed.
Kramer et al. used logistic regression on IC50 values of IKr (hERG), ICa,L (Cav1.2),
and INa (Nav1.5) obtained through automatic patch clamping [337]. Mistry et
al. proposed to combine the degree of block of these channels in a single scalar
measure [341]. Babcock et al. proposed to use gene expression levels instead
of measured currents [342]. Pharmacokinetic properties were mostly neglected
in prior work with few exceptions using basic representations as used in this
study [301].

6.1.4 Limitations
The Hill-based drug models employed in this study are based on drug recep-
tor interaction data from the literature, which are sometimes reported equivo-
cally [321, 323, 324, 326, 327, 329, 343–361]. As pointed out before [362], dose
response curves obtained under comparable experimental conditions from the

137



CHAPTER 6. PHARMACOLOGICAL AGENTS

same species for all cardiac ion current would be desirable. Recent developments
aim to build methods allowing to incorporate measures considering and quanti-
fying the uncertainty caused by the variability in the data [363] as well as the
intrinsic variability across the population [300, 338, 364] based on e.g. Bayesian
inference [365].
While the Hill-based conduction block model used in this study does not al-
low to consider voltage- or state-dependent block which has been described for
some currents [312, 366, 367], these effects should not play a significant role
considering the timescale at which binding and unbinding of the compound to
the channel occurs, which is much longer than the timescale of channel state
transitions and voltage changes. Therefore, simple conductance block models
should be suitable except for agents affecting the probability of state transitions
(allosteric block) [339]. The mode of action of amiodarone and dronedarone
is mainly mediated via non-voltage-dependent effects and the available data de-
scribing voltage-dependent block were too sparse to model this effect reliably.
Moreover, the non-competitive anti-β -adrenergic effect of both drugs [366, 367]
was neglected and could be included in a future extension of the model in a similar
way as in the work by Keller et al. [368].
It has to be stressed that the models of the drugs are based on data representing
their acute effects rather than chronic administration. Differences between chronic
and acute effects have been reported particularly for amiodarone with a possible
mechanism being a modulation of gene expression [133, 369]. The available data
on the ion current level were not sufficient to identify a complete set of Hill curve
parameters representing the effects of chronic amiodarone administration.
The in silico modeling approach chosen in this study does not necessarily allow to
translate the results to in vivo settings in terms of absolute concentrations as in the
latter, the free drug concentration can hardly be assessed reliably [370]. Binding
to plasma proteins has been reported for both drugs in vitro reducing the bioavail-
ability as only the free drug concentration is pharmacologically active [371].
Even though the levels of plasma protein binding are not known precisely (e.g.
96.3±0.6% [372] vs. 99.97–99.99% [371] for amiodarone), this uncertainty does
not affect the validity of the results in terms of relative concentration levels. The
calibration of the biomarkers taken into account in the scoring process was based
on the dynamic range observed in the simulation results and not on a robust and
extensive empirical data set. Thus, validation and probably also refinement of the
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calibration is needed to draw clinically relevant conclusions from the score in a
quantitative way rather than qualitatively as done in this study.
The circadian variation of the drug concentrations was based on a very simplistic
model and does not claim to represent the exact course observed in vivo. Moreover,
the course of the heart rate can only be a stereotypical showcase and does not
claim to cover the whole range of possible scenarios in the real world population
as a matter of course. The pharmacokinetic properties of both drugs are reported
equivocally in the literature. As dronedarone kinetics are hard to assess in vivo,
no data from humans were available and the amplitude of the circadian variation
was assumed to be 50% due to the shorter elimination half time compared with
amiodarone [136]. Considering the above mentioned aspects, a detailed pharma-
cokinetic model appears questionable to date and a variation within a certain range
served the purpose of this study.

6.1.5 Conclusion
The results presented in this study show how atrial electrophysiology is differ-
entially affected by the antiarrhythmic compounds amiodarone and dronedarone
in a concentration-dependent and heart rate-dependent manner. The insights
gained from in silico modeling regarding AP alternans as a proarrhythmic mecha-
nism provide possible explanations for the superior efficacy of amiodarone over
dronedarone in the treatment of AF. The newly proposed arrhythmia score ag-
gregating several biomarkers from the cellular and tissue level peaked to critical
values for dronedarone but not for amiodarone. The elucidated effects may aid in
the design and optimization of patient group-specific pharmacotherapy. The drug
effects differed significantly in a cAF remodeled substrate. By considering the
atrial substrate in tailored therapies, the responder rate can be improved.

6.2 Vernakalant
Vernakalant is a recent compound, which has proven to be effective for the acute
cardioversion of AF in a large share of patients in clinical studies. In this respect,
vernakalant is superior to both placebo and the agent amiodarone, which was
investigated in Section 6.1 [73, 140–144, 373, 374]. However, it was ineffective
in patient with AF lasting for more than seven days and patients with atrial
flutter (AFlut) [145]. The underlying mode of action and the reasons for the
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strong time dependence are not understood in their entirety.
The experimental data ranges from one study on isolated ion channels [375],
to a study in isolated tissue preparations [376] up to an in vivo study assessing
the effect of vernakalant on atrial and ventricular ERP in humans [377]. The
results on these different levels of integration have never been consolidated in a
coherent framework and could not be linked until now. In this study, a multi-scale
computational modeling approach is employed to elucidate the complex non-linear
effects of vernakalant on cellular electrophysiology by linking the experimental
data from the single channel level up to tissue level data.
Parts of this work have been published as a conference contribution [378] and are
based on a supervised student’s project [379].

6.2.1 Methods
The effect of vernakalant was studied using the Courtemanche et al. model of
human atrial myocytes [49] representing a healthy substrate as well as in a variant
representing cAF induced remodeling as introduced in Section 5.2. The cel-
lular models were integrated in a one-dimensional tissue strand as detailed in
Section 6.1. The effect of vernakalant was modeled based on Hill’s equation
(Equation (6.1)) using the following pairs of half-maximal inhibitory concentra-
tions IC50 and Hill coefficients nH for the cardiac ion currents: 21.0 µM / 0.92
for IKr [375], 13.0 µM / 0.92 for IKur [375], 30.0 µM / 0.82 for Ito [375], and
84.0 µM / 1.0 for ICa,L [376]. This model based on literature values is referred
to as M1 (Figure 6.8C). A second model M2 was formulated with only ICa,L

being affected (42.0 µM / 1.0) (Figure 6.8D) besides sodium channel block as a
hypothesis based on the experimentally observed behavior [376].
INa block was considered in both models. Due to the pronounced frequency
dependence of vernakalant induced INa block, it could not be well represented
by a single pair of IC50 and nH values. Therefore, the degree of INa block was
determined by fitting gNa aiming at the reproduction of experimentally observed
changes of the AP upstroke velocity dVm/dtmax [376] for each frequency and drug
concentration individually. dVm/dtmax at zero drug concentration and the desired
frequency was taken as a reference value to determine the relative reduction for
a specific vernakalant concentration. The degree of INa block was optimized in
the tissue strand environment. The resulting degree of block at concentrations of
10 µM and 30 µM were used to determine frequency-specific IC50 and nH values.
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Table 6.3: Frequency-dependent estimates of half-maximal inhibitory concentrations IC50 andHill coefficients nH for INa based on dVm/dtmax reduction data [376] for the two models ofvernakalant (M1 andM2).

M1 M2
IC50 (µM) nH IC50 (µM) nH

0.5Hz 36.15 2.67 35.79 2.67
control 1.0Hz 36.25 1.16 35.27 1.07

3.0Hz 15.07 0.95 17.34 1.25
0.5Hz 76.89 1.26 39.45 1.87

cAF 1.0Hz 61.32 1.10 61.88 1.18
3.0Hz 36.99 1.27 37.32 1.10

Besides the AP upstroke velocity dVm/dtmax, further markers were evaluated. ERP,
APD90, AP amplitude, and MDP were introduced above. APD20 was determined
at 20% repolarization and PLT20 was defined as the mean potential in the time
window between 20% and 30% repolarization [376].

6.2.2 Results
The optimization of INa block using a bisection method converged for all substrates,
frequencies, and concentrations and reproduced the experimentally observed rel-
ative reduction of AP upstroke velocity dVm/dtmax with a residual of 0.4±1.8%.
Table 6.3 lists the resulting IC50 and nH values for all three frequencies in both
substrates. For faster pacing, lower IC50 values and smaller Hill coefficients were
identified. This translated to a higher degree of block for vernakalant concentra-
tions between 1 µM and 35 µM (Figure 6.8A+B). The frequency dependence was
attenuated in the cAF substrate compared to control.
By pacing the coupled cell models in the one-dimensional tissue strand under the
influence of vernakalant, APs were elicited (Figure 6.9). 2:1 block occurred in the
control substrate for 3 Hz pacing frequency and the drug model M1. All others
combinations conducted APs robustly. AP alternans was observed, though. The re-
sulting AP markers and their correspondence to the experimental findings in [376]
are presented in Table 6.4. While M1 reproduced the ERP prolongation reported
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Figure 6.8: Dose response of veranakalant induced INa block depending on the pacing fre-quency and the substrate inM1 (A) andM2 (B) (cf. Table 6.3). The vertical lines indicate the
concentration span covered in the study byWetter et al. [376]. The frequency and substrate
independent degree of block of other cardiac ion currents is shown in (C) forM1 and (D) forM2.

in [376], the drug induced increase of divergence between ERP and APD90 was
not reproduced. This divergence caused by concomitant ERP prolongation and
APD90 shortening was described particularly for the control substrate [376]. M2
on the other hand reproduced the APD90 shortening and the elevation of PLT20

but did not exhibit ERP prolongation. The other investigated AP markers were
sufficiently reproduced by both drug models.

6.2.3 Discussion
In this study, it was shown that inhibition of the potassium currents IKr, IKur,
and Ito together with the L-type calcium current ICa,L by vernakalant prolongs
the atrial ERP dose-dependently. The frequency-dependent and dose-dependent
block of INa causes AP upstroke slowing and attenuated AP amplitudes. The
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time between APD20 and APD30 used to calculate PLT20 is highlighted by the shaded areas in(A) and (E) for zero drug concentration (gray) and 30 µMveranakalant (blue).

model M1, which is based on pharmacodynamics data from literature, explains
ERP prolongation, which can be considered vernakalant’s major antiarrhythmic
mode of action. The results presented here are in line with in vivo data from
human by Dorian et al. reporting ERP prolongation to be dose-dependent but not
significantly frequency-dependent between 1.6 Hz and 3.3 Hz [377]. In their study,
atrial ERP was prolonged by between 12% and 14% for the higher investigated
dose of 4.6 mg/kg applied intravenously.
Frommeyer et al. recently reported an increase of APD by 9 ms and ERP by 16 ms
in whole-heart Langendorff-perfused rabbit models [380]. Burashnikov et al.
reported a rate-dependent prolongation of post repolarization refractoriness in LA
canine preparations which was accounted to block of the sodium channel [381].
The second model M2 comprised only ICa,L block besides INa inhibition with
the model parameters for ICa,L block not being based on literature data from the
subcellular level but chosen to match experimentally observed AP properties.
This model affected the delicate balance of depolarizing and repolarizing currents
during the AP plateau and repolarization in a way possibly explaining the effects
of vernakalant on APD90 and PLT20. PLT20 suggested as a marker in [376]
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has to be considered with caution, however, as APD20 strongly depends on the
AP morphology. If the AP exhibits a pronounced spike-and-dome morphology
(30 µM in Figure 6.9A), APD20 is shifted to later phases in the AP compared to
early values for a more linear repolarization (30 µM in Figure 6.9E). The cell
model by Maleckar et al. [218] yielded qualitatively similar results (data not
shown). Thus, the results of this study are unlikely to be sensitive to the choice of
a particular cell model.
Both investigated drug models provide hypotheses for part of the experimentally
observed effects of vernakalant. However, none of the drug models is capable of
reproducing the effects in their entirety and providing comprehensive mechanistic
insight. This finding highlights a missing piece in the puzzle regarding our
understanding of vernakalant’s mode of action and brings up new questions.
Besides potential effects on the MDP mediated by IK1 or IK,ACh and affecting ERP
via the availability of the h gate of the sodium channel, the frequency-dependence,
and possibly state-dependence, of INa block is not understood. This puts the ball
in the experimentalists court as appropriate wet-lab data is required to formulate
a more complex model representing the effects of vernakalant. In particular, a
Markov model directly describing the frequency dependence appears better suited
than a set of models comprised of one Hill formulation per frequency. State-
dependency of block might as well need to be covered in order to reproduce the
different effects on ERP and APD90. Models of the discrete kinetics of drug
interaction can e.g. be parametrized using the methods recently proposed by
Moreno et al. [382].
In conclusion, this study fosters our understanding of the cellular mode of action
of vernakalant on the one hand. On the other hand, it points out relevant gaps in
our current knowledge and will thus hopefully fuel and direct future wet-lab and
computational research on this aspiring antiarrhythmic agent. As such, it serves
as an example how the interplay between experimentalists and modelers can lead
to mutual benefit and cross-fertilize and speed up research.
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6.3 Optimization of Drug Therapy for Familial Atrial
Fibrillation

Early onset AF has a significant familial component [383]. Individuals carrying
certain gene mutations, as e.g. the two hERG mutations N588K and L532P
introduced in Section 5.1, are more susceptible to AF. In this study, multi-channel
blockers are evaluated regarding their potential to revert the AP of atrial myocytes
affected by these mutations to the control AP of non-mutated, WT myocytes.
Towards this end, a hypothetic multi-channel blocker is designed and optimized for
each mutation. Moreover, the potential of the two existing compounds amiodarone
and dronedarone (cf. Section 6.1) is assessed by tuning the concentration levels.
The optimization aims at a minimization of the root mean square difference
(RMSD) between the control and the mutant AP. The properties of the myocytes
under the influence of the tailored pharmacological agent is then assessed in a
dynamic way considering APD90 restitution and calcium transients.
Parts of this work have been published as conference contributions [384, 385] and
are based on a supervised student’s project [319].

6.3.1 Methods
The Courtemanche et al. model of human atrial myocytes [49] served as a reference
for the healthy, WT myocytes. The hERG mutations N588K and L532P were
modeled by altering the IKr formulation as introduced in Section 5.1. For the
design of the hypothetic multi-channel blocker, the maximum conductances gx of
the nine atrial ion currents IKr, IKur, IKs, Ito, IK1, INa, ICa,L, Ib,Na, and Ib,Ca were
scaled individually by a factor Θx ∈ [0,1]:

Ix = gx ·Θx · (Vm−Ex) , (6.2)

with Ex being the equilibrium potential of the ion type carrying the respective
current. The existing compounds amiodarone and dronedarone were modeled by
the Hill equation-based approach introduced in Section 6.1.
The cost function for the minimization was the RMSD ∆AP between the mutant
and the control AP over a fixed time span of 500 ms:

∆AP :=

√√√√ 1
500

500

∑
i=1

(
Vm,mut (ti,Θ)−Vm,ctl (ti)

)2
, (6.3)
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with Θ ∈ R9 altering the mutant AP. In order to minimize ∆AP, Θ was optimized
in the nine-dimensional space for the hypothetic multi-channel blocker. For
the existing compounds amiodarone and dronedarone, the scalar concentration
D translating to a specific degree of block Θx for each channel according to
Equation (6.1) and Table 6.1 was subject to optimization. APs were elicited with
a BCL of 1000 ms and analyzed in steady-state conditions.
The cell model was implemented in Matlab and solved by ode15s with a variable
time increment for simulations on the single cell level. Tissue level simulations
were conducted in the one-dimensional tissue strand introduced in Section 5.1 with
a fixed time step of 10 µs. Optimization on the single cell level was performed
using the TRR algorithm introduced in Section 4.1.1.3, which is well-suited for
multi-dimensional, non-linear minimization problems. The start vectors were
drawn randomly using a uniform distribution. On the tissue level, the constrained
Broyden-Fletcher-Goldfarb-Shanno algorithm belonging to the class of quasi-
Newton hill-climbing methods provided by the Python library SciPy [386] was
utilized. The parameters yielded by the optimization on the single cell levels were
used as the initial guess on the tissue level.
To evaluate the optimization result, APD90 was analyzed in the tissue strand for
30 BCLs ranging from 200 ms to 1300 ms distributed linearly in the frequency
domain to obtain its restitution with respect to the DI.

6.3.2 Results
By optimizing the degree of inhibition for each channel individually, the deviation
between the WT and the mutant APs could be reduced. The RMSD was lowered
from 8.3 mV to 0.5 mV for N588K (Figure 6.10A) and from 18.2 mV to 0.5 mV
for L532P (Figure 6.10B) in the single cell environment. The maximum deviation
observed for a single time step was reduced from 36.2 mV to 3.1 mV and from
17.1 mV to 2.5 mV, respectively. The corresponding optimal scale factors Θx are
listed in Table 6.5. Transitioning to the tissue level, the factors Θx defining the
optimized hypothetic compound remained unchanged for N588K. In the tissue
strand simulation, the RMSD was 0.63 mV (Figure 6.10C). Concerning, the L532P
substrate the result obtained on the single cell level yielded an RMSD of 1.8 mV
that could be reduced to 0.6 mV by optimization on the tissue level. Compared to
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Figure 6.10: AP curves from single cell (A)+(B) and tissue level (C)+(D) simulations obtained us-
ingWTand hERGmutation cell models. The optimizedmulti-channel blockers given in Table 6.5
were applied tomutant myocytes to restore theWTAP. In (A) and (B), theWTAPs are partly
covered by those of themutant models under drug influence. In (C) and (D), the APs obtained
by tissue level optimization partly cover the single cell optimization result, additionally.

the optimal compound on the single cell level, IKr was reduced by additional 3%
and Ib,Na by additional 1% (Figure 6.10D).
The compounds that performed optimal for the fixed BCL of 1000 ms were
analyzed regarding their dynamic APD90 restitution properties (Figure 6.11).
For higher pacing rates, thus lower DIs, the APD of the mutant cells under the
influence of the tuned compounds was shorter compared to WT. This effect
was more pronounced for L532P (maximum deviation of 34.2 ms at a DI of
62 ms, Figure 6.11B) than for N588K (maximum deviation of 6.2 ms at a DI of
178 ms, Figure 6.11A). A second property that was not considered during the
optimization but determines the cell’s electrophysiological characteristics are
calcium transients that were ameliorated by the optimized compounds but not
fully restored (Figure 6.12A+B).
Besides the design of hypothetic multi-channel blockers with arbitrary ratios
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Table 6.5: Scaling factors Θ of the hypothetic multi-channel blocker for atrial ion currents
ranging from 1 (no effect) to 0 (complete blockage). The given combinations yielded the lowest
RMSD betweenmutant andWTAPs in single cell and tissue simulations.

L532P N588K
Cell Tissue Cell Tissue

ΘKr 0.42 0.39 0.56 0.56
ΘKur 0.59 0.59 0.61 0.61
ΘKs 0.95 0.95 0.88 0.88
Θto 1.00 1.00 0.99 0.99
ΘK1 1.00 1.00 1.00 1.00
ΘNa 1.00 1.00 0.99 0.99
ΘCa,L 0.86 0.86 0.83 0.83
Θb,Na 0.97 0.98 0.96 0.96
Θb,Ca 0.92 0.92 0.96 0.96
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Figure 6.11: Restitution of the APD90 forWT andmutant atrial myocytes. Themulti-channelblockers (see Table 6.5) were optimized at a BCL of 1000ms corresponding to the vertical
dashed line and applied to the hERGmutant cells at BCLs between 200ms and 1300ms.

of channel inhibition, the concentration of the existing compounds amiodarone
and dronedarone was optimized on the cellular level. The objective function was
Equation (6.3) as above. The N588K mutant AP could be reverted up to 1.3 mV by
0.04 µM of dronedarone, thus almost as good as using the hypothetic compound
(0.5 mV). Amiodarone, however failed to restore the WT AP yielding a residual
RMSD of 6.3 mV at the optimal concentration of 0.76 µM not much lower than
the initial value of 8.3 mV (Figure 6.13A). The results for L532P were comparable
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Figure 6.13: APs obtained by applying the optimized concentrations of amiodarone and
dronedarone to restore theWTAP in cells affected by hERGmutations L532P (A) and N588K
(B).

with a residual RMSD of 1.76 mV for the optimal dronedarone concentration of
0.088 µM and 17.21 mV for the optimal amiodarone concentration of 10.72 µM.
The optimal dronedarone concentration and the optimized hypothetic compound
regarding ∆AP differed in the resulting Ca2+ transients (Figure 6.12C+D). For
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N588K, dronedarone restored the WT transient slightly better whereas the result
was opposite for L532P.

6.3.3 Discussion
In this study, the electrophysiology of hERG mutant atrial myocytes was restored
to the healthy state in terms of AP morphology and APD. The WT AP could be
restored by significant block of IKr and IKur (≥39%) and less pronounced block
of IKs, ICa,L, Ib,Na, and Ib,Ca (≤17%). On the tissue level, IKr inhibition had to be
slightly reduced for L532P to obtain optimal AP restoration. The presented results
show that on the AP level, changes in IKr conductance and kinetics can be coun-
terbalanced by combined reduction of ionic current conductances without altering
their kinetics. APD90 restitution and calcium transients were used as independent
quality metrics to assess the restoration of the electrophysiological properties
using measures that were not considered in the optimization cost function. For
N588K, APD90 restitution was almost restored by the hypothetic multi-channel
blocker, whereas deviation of up to 15% were observed for fast pacing in the
L532P substrate.
The existing antiarrhythmic agents amiodarone and dronedarone exhibited markedly
different potential with respect to the restoration of the WT AP. Dronedarone
performed very well and achieved levels of restoration close to the hypothetic
multi-channel blocker with just one degree of freedom (the concentration) instead
of nine (the levels of block). Amiodarone on the other hand could not reduce
the RMSD between the mutant and the WT AP significantly. This observation
underlines the importance of the complex, non-linear interaction between the
different atrial ion currents and prevent solely considering the main effect (in this
case inhibition of potassium channels) when characterizing the mode of action.
This is the first work using computational methods or experimental approaches
to restore mutant APs to the state of healthy control myocytes by hypothetic or
existing pharmaceutical compounds to the best of my knowledge. The limitations
regarding the models of amiodarone and dronedarone with respect to acute vs.
chronic administration and the Hill equation-based formulation discussed in Sec-
tion 6.1.4 apply to this study as well. Future work could include the metrics that
were used for validation in this study (restitution properties and calcium transients)
into the cost function. However, validation has to be performed in other ways,
then.
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In conclusion, the study presented in this section provides insight into the phar-
macodynamic response of hERG mutant myocytes rendering patients vulnerable
to AF and may aid in the design and advancement of tailored therapeutic and
preventive approaches considering the atrial substrate as recently outlined in a
roadmap for personalized drug development [305].
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CHAPTER7
Augmenting AnatomicalModels

with a Priori Knowledge
Today’s medical imaging technologies provide the means to obtain the anatomy
of individual patients in unprecedented detail. However, some properties cannot
be image in vivo. One important aspect is the orientation of myocytes which influ-
ences excitation propagation significantly. Moreover, the contrast in most imaging
modalities does not allow to identify the presence of interatrial connections (IACs)
or at least their conductive properties. Their presence and intactness determines
the LA activation pattern, though. The same holds for scar tissue introduced by
ablation or fibrosis induced by remodeling processes, which can only be imaged
by late Gadolinium-enhanced magnetic resonance imaging (MRI) with a limited
resolution [178–181]. Another challenge is the estimation of the long-term extent
of the scar as late gadolinium enhanced MRI of acute ablation lesions significantly
overestimate the chronic scar volume [387]. Moreover, it is necessary to introduce
standard ablation patterns in the in silico models in an automated manner in order
to assess their effect before applying them in the patient.
Therefore, data acquired in animal models, human ex vivo studies, or invasive
electroanatomic mapping studies is used to learn about these features. These gen-
eral patterns can then be applied to augment anatomical models of an individual
with a priori knowledge in a rule-based manner. Section 7.1 describes a method to
annotate myocyte orientation which is mesh-type-agnostic, i.e. can be applied to
meshes with arbitrary elements (triangles, tetrahedra, hexahedra etc.). Section 7.2
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introduces an extension allowing to connect the right atrium (RA) and the left
atrium (LA) via well-defined IACs in order to control interatrial conduction.
Part of this work is based on earlier work [23] and a supervised student’s
project [388] and has been published as a conference contribution [389].

7.1 MyocyteOrientation
As introduced in Section 2.1.1.2, myocytes tend to align along pronounced muscu-
lar bundles and finer, non-transmural structures. This fact gives rise to anisotropic
conductive properties, which in turn influence excitation propagation signifi-
cantly [55, 390, 391] with consequences for the development and perpetuation of
atrial arrhythmias [33, 392].
Diffusion tensor imaging (DTI) is an MRI-based imaging technique that can
provide information on myocyte orientation. However, acquisition in the atria is
difficult due to the very thin wall compared to the ventricles and the motion due to
the beating of the heart. This requires the atria to be fixated and an acquisition time
of several hours in contrast to first in vivo data for the ventricles [393]. Other tech-
niques such as histographs [394] or extended volume surface imaging [395, 396]
were used to map the myocyte orientation of a specific specimen to an anatomical
model of the same specimen. After early studies with manually placed myocyte
orientation [57, 58, 397–399] and simple interpolation methods [400, 401], the
first comprehensive approach to augment models with transmurally varying my-
ocyte orientation in a rule-based manner semiautomatically was presented within
the scope of the dissertation of Dr.-Ing. Martin Krüger [23].
The method presented by Krüger et al. is based on several anatomical stud-
ies [19, 20, 22] and was evaluated and validated in [23, 183, 402]. However, it
was designed and implemented for models represented in structured grids with a
fixed resolution of 0.33 mm. Structured grids built of uniformly-sized hexahedra
carry the disadvantage of requiring a high resolution in order to represent the
curved atrial surface without pronounced jagged boundaries causing spurious
currents [403]. Moreover, the whole domain has to be modeled using elements
of the same size. Particularly for bidomain simulations including passive regions
(e.g. blood) this represents a major restriction and a computational bottleneck.
Therefore, tetrahedral meshes are often better suited for finite element simulation
of cardiac electrophysiology. Another type of grids are triangular surface meshes
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Table 7.1: Definition of the 22 landmark points used in the annotation that are required as an
input to the algorithm. Points R1 to R9 are located in the RA, L1 to L13 are located in the LA.

Point Location
R1 boundary of the superior vena cava (SVC), septal, close to R4
R2 boundary of the SVC, anterior towards the tricuspid valve (TV)
R3 boundary of the SVC, junction with the right atrial appendage (RAA)
R4 boundary of the inferior vena cava (IVC), superior
R5 boundary of the IVC, inferior
R6 tip of the RAA
R7 boundary of the TV, anterior/superior
R8 boundary of the TV, posterior/inferior
R9 boundary of the TV, septal
L1 boundary of themitral valve (MV), close to the left atrial appendage (LAA)
L2 boundary of theMV, posterior/inferior
L3 boundary of theMV, septal
L4 right superior pulmonary vein (RSPV), superior/medial, in line with L6 and L8
L5 left superior pulmonary vein (LSPV), superior/medial, in line with L7 and L9
L6 between RSPV and right inferior pulmonary vein (RIPV)
L7 between LSPV and left inferior pulmonary vein (LIPV)
L8 RIPV, inferior/medial
L9 LIPV, inferior/medial
L10 end of Bachmann’s bundle (BB) in the LA
L11 tip of the LAA
L12 left lateral of the LPVs, between the LPVs and the LAA
L13 right lateral (septal) of the RPVs

that are commonly used in fast, simplified excitation propagation simulation using
e.g. the fast marching algorithm (Chapter 8). Therefore, the existing method to
annotate myocyte orientation was extended and improved aiming at a mesh-type-
agnostic approach, thus being suited for structured and unstructured grid with
arbitrary building blocks.

7.1.1 Methods
In order to get an abstract representation of the elements of the mesh (cells), each
cell was represented by a single point located at its centroid. This transformation
provided the means to design the algorithm in a mesh-type-agnostic way while
maintaining the distance between elements.
The proposed method can be applied without user interaction once the position

157



CHAPTER 7. AUGMENTINGANATOMICALMODELS

A B

L1

L2

L3

LA
RA

LA
RA

L4

L6 L4L5

L6L7

L8L9

L13L12

L11

L10

L11
L7

L12L5

R5

R4

R3

R1

R2
R6

R7

R8

R9

R6

R2 R1

R3

R4

R5

Figure 7.1: Schematic representation of the 22 landmark points (blue) given in Table 7.1. R1 to
R9 are located in the RA, L1 to L13 are located in the LA. (A) shows the anterior aspect, (B) the
posterior aspect. Figure based on supervised student’s work [388].

of 22 anatomical landmarks (Figure 7.1) are defined [23]. These nine points in
the RA and 13 points in the LA can either be marked manually or provided by
the tool performing the preprocessing including the segmentation of the atria.
Table 7.1 and Figure 7.1 give a detailed description of the location of these initial
points. The two atria need to be separated, i.e. right and LA elements may not
share common nodes. If such nodes are present in the model, they are resolved by
node duplication: a common node is split into two nodes (one for the LA, one for
the RA) with the same coordinates.
For the annotation of the myocyte orientation and the definition of additional,
derived points, connections between points had to be found. Paths p from a starting
point a0 to an end point aN−1 via potential intermediate points were computed
using a modification of the Dijsktra algorithm [171, 172] which penalizes deviance
from the direct connection between the points:

‖p(a0,aN−1)‖2 = min

(
N−1

∑
i=1

(
‖ai−ai−1‖2 +

‖(an−a0)× (ai−a0)‖2
‖an−a0‖2

))
,

(7.1)
with N being the number of points along the path and ai being the location of
point i. If the starting point a0 and the end point aN−1 are the same, the path is
circular and referred to by pc in the following. Some paths were restricted to a
plane, e.g. the crista terminalis (CT) and the pectinate muscles. Therefore, the
penalty term was changed to the distance between the point on the path and the
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plane defined by the normal vector n for paths pp restricted to a plane:

‖pp (a0,aN−1)‖2 = min

(
N−1

∑
i=1

(
‖ai−ai−1‖2 +

‖(ai−a0) ·n‖2
‖n‖2

))
. (7.2)

The paths along which myocyte orientation was annotated as well as the rules
to derive auxiliary points used to define these paths are given in Table 7.2 and
Table 7.3. In the LA, separate sets of rules were applied to the endocardial (Ta-
ble 7.5) and epicardial layer (Table 7.6) using the the auxiliary points defined
in Table 7.4. A schematic representation of the paths is shown in Figure 7.2.
Once the sequence of points defining a path was found, the myocyte orientation
was annotated as the normalized difference vector between the current element
and the preceding one. Depending on the course of the path and the structure of
the underlying mesh, this approach can lead to local discontinuities in myocyte
orientation which are not modeled deliberately based on anatomical observation
but have to be considered artifacts. Therefore, the orientation along the paths was
smoothed by a moving average filter implemented as a symmetric sliding window
of size eleven.
As the annotation of myocyte orientation was motivated by the observation of
bundles with a finite thickness, the orientation of the elements along the path was
copied to adjacent elements using a spherical shape element with a defined radius
(see Tables 7.3, 7.5, and 7.6). This interpolation and dilation step resulted in a
tubular structure with coherent myocyte orientation. For atrial wall segments that
are thicker than twice the radius of the dilation shape element, the annotation
of fibers and tissue classes was thus not necessarily transmural. However, par-
ticularly complete separation of adjacent regions by a dilated path is crucial for
some steps. Therefore, the spherical shape element can optionally be replaced
by two semi-spheres connected by a cylinder with the same radius and a variable
height yielding a precisely transmural annotation in each element. This extended
approach guarantees transmurality even for pathological wall thicknesses (see e.g.
Chapter 11) on the expense of computation time.
The interpolation and dilation steps can cause myocyte orientations to deviate
slightly from the tangential direction with respect to the surface which is not
physiological. Therefore, the orientation was projected onto the plane defined by
the closest surface element and normalized. For hexahedral meshes, the surface
mesh considered in this step was smoothed in order to avoid artifacts due to mesh
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Figure 7.2: Schematic course of the paths along whichmyocyte orientation was annotated. In
the LA, the paths in the endocardial layer ((A) and (B)) and the epicardial layer ((C) and (D)) were
annotated using two distinct set of rules, whereas the paths did not differ between layers in
the RA. Different colors represent distinct tissue classes. Blue points represent the 22 initial
landmarks. Dashed lines were only used to compute the location of auxiliary points and not
used to alignmyocyte orientation. (A) and (C) show the anterior aspect, (B) and (D) the posterior
aspect. Figure based on supervised student’s work [388].

structure-induced jagged edges.
Besides the annotation of a vector defining the myocyte orientation, a scalar value
representing the tissue class was added for points along the paths and dilated
similarly. Initially, the entire RA was set to the class RA while the LA was divided
into two layers (LAendo and LAepi) for volumetric models.
The CT tapers from 3.96 mm at the SVC to 2.64 mm at the IVC [20]. Therefore,

the radius was linearly decreased from 3.96 mm at R3 via R12 to 2.64 mm at R4.
The number of pectinate muscles (PMs) differs between individuals and was thus
implemented as a variable M with a default value of 15. The PMs depart from the
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Table 7.2: Definition of additional points in the RA used during the annotation procedure.
Missing points in the sequential numbering were identified as non-necessary during the devel-
opment of the algorithm.

Point Location Point Location
R10 10% along pR7R8 R22 59% along PM1R11 3% along pR12R4 R23 43% along PM1R12 3% along pR3R1 R24 50% along R1R2
R13 85% along pR2R3 R26 22% along PM1R14 60% along pR4R5 R28 90% along pR12R4
R15 20% along pR12R7 R29 80% along pR12R4
R16 25% along pR14R15 R31 65% along pR12R4
R17 6.6mm along pR13R6 R38 40% along pR2R7
R18 50% along pR14R15 R39 50% along R2R24R28
R20 29% along pR12R4 R40 25% along pR7R8
R21 22% along pR12R7

CT (pR10R8) towards the TVR (pR11R4R14) with the junctions being distributed
equidistantly. Each PM was defined as a path along a plane (pp) being defined by
the start and the end point and R18.

For the annotation of the LA elements, two distinct sets of rules (see Tables 7.5
and 7.6) were applied for the endocardial and the epicardial elements. Volumetric
models have to be separated into endocardial and epicardial layers by prepro-
cessing steps as e.g. described in [404]. Before annotating the respective layers,
the seed points were moved normal to the atrial wall such that they were located
within the right layer. For surface models, endocardial and epicardial data arrays
are created allowing to choose the appropriate set for the desired application in a
flexible way.

7.1.1.1 Pulmonary Veins &Atrial Appendages
The anatomy of the atrial appendages and the pulmonary vein ostia exhibits pro-
nounced interindividual variability. As this variability also affects wall thickness
and incidence angle, a standard path dilation with a spherical shape element does
not guarantee transmural separation of these structures.
Not all anatomical models present during the development of this approach con-

161



CHAPTER 7. AUGMENTINGANATOMICALMODELS

Table 7.3: Paths defining atrial myocyte orientation in the RA. A path is defined by the start
point, the end point, and potential intermediate points.

Name Material Material Radius Additional
restriction label (mm) remarks

pcR1R2R3 RA SVC 4.29
pcR6R7R8 RA TVR 6.27
pR12R7 RA, SVC, TVR TL 3.96
pR3R12 RA, SVC CT 3.96 – 2.64
ppR12R4 RA, SVC CT 3.96 – 2.64 plane defined by

R12, R4, R14
pR4R14R16 RA CT 2.64
pR16R15 RA, TL CT 4.62
PM1 RA PM 1.32 extendedwidth of

2.64mm for the
first 4.95mm

PM2–PMM RA PM 0.66
pR13R17 RA PM 1.98
pcR17R22R23R26R21 RA RAA 2.64
pR2R24R28 RA, CT, SVC ICB 4.80
pR1R20 RA, CT, SVC ICB 2.64
pR2R7 RA BB 2.00

A B

Figure 7.3: Annotation of the PVs. If non-labeled tissue (blue) was found within the green
cylinder in (A), an outwards-oriented PVwas assumed to be present. The PVwas cut open for
visualization reasons within the semi-transparent LA wall in (A) but not in (B). All elements
within the green sphere in (B) were labeled as PV tissue. Figure based on supervised student’s
work [388].

tained outwards-oriented PV ostia. In order to check if an annotatable PV is
present, the normal vector of the plane defined by the three seed points around
the PV and the center of the bounding box of the path defined by these three
points (cBoBo) was computed. cBoBo was then translated along the normal vector

162



7.1. MYOCYTEORIENTATION

Table 7.4: Definition of additional points in the LA used during the annotation procedure. cBoBorepresents the center of the bounding box around a path.

Point Location Point Location
L14 80% along pL2L3 L54 cBoBo pL7L9L26L12L16 50% along pL1L4 L55 45% along pL13L22
L18 50% along pL5L4 L56 50% along pL1L2
L19 50% along pL7L6 L57 60% along pL13L22
L20 50% along pL9L8 L58 30% along pL6L7
L21 50% along pL19L20 L59 70% along pL7L7
L22 10% along pL4L14 L60 20% along pL12L26
L23 50% along pL4L14 L61 20% along pL4L6
L24 10% along pL8L2 L62 50% along pL7L5
L25 80% along pL8L2 L63 20% along pL9L7
L26 20% along pL9L1 L64 80% along pL6L8
L27 75% along pL9L1 L65 70% along pL9L7
L31 30% along pL9L1 L66 60% along pL4L6
L32 70% along pL9L1 L67 20% along pL7L5
L33 5% along pL26L1 L68 closest LA point to R16
L34 6.93mm along pL1L11 L69 70% along pL13L2
L35 10% along pL13L22 L70 30% along pL6L7
L36 25% along pL3L2 L72 80% along pL13L58
L39 cBoBo pL6L8L13 L73 20% along pL13L58
L44 cBoBo pL4L6L13L22 L74 50% along pL60L7
L49 cBoBo pL5L7L12

of the plane by half the maximum distance between cBoBo and the points along the
path. An outwards-oriented PV was defined as present if non-annotated tissue was
found within a cylinder of height 2 mm centered around the translated cBoBo and
aligned with the normal vector of the plane (see Figure 7.3A). If PV was found,
a sphere was defined to identify the elements belonging to it. The sphere was
centered at the average location of all points along the PV path and the radius was
set equal to the maximum distance between that point and the points along the
path (see Figure 7.3B). For the annotation, cBoBo was translated from its initial
position by 15 mm along the outwards-pointing normal vector of the plane. This
served as a distant reference point in order to sort the PV points by descending
distance to it. Then, the same averaging approach as used for the appendages was
applied.
Regarding the atrial appendages, the points defining the circular paths around the
base of the appendages (pcR17R22R23R26R21 and pcL34L5L10L12R21) were
translated towards their tips (R6 and L11). R17, R22, and R23 were moved until
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Table 7.5: Paths defining atrial myocyte orientation in the endocardial layer of the LA. A path is
defined by the start point, the end point, and potential intermediate points. The paths were
restricted to thematerial LAendo. Abbreviations: mitral valve ring (MVR).

Name Radius (mm) Additional remarks
pcL1L2L3 5.50 marked asmaterial MVR
pL4L6L8L13L6 2.64
pcL5L7L9L31L12 2.64
pL21L9 2.64 temporary path to separate PV andMVR regions
pL21L8 2.64 temporary path to separate PV andMVR regions
pL5L4 3.00 temporary path to separate PV andMVR regions
pL18L19L21L9 2.64
pL1L32L12L7 2.64
pL1L16L5 3.30
pL14L4 2.64
pcL34L5L10L12R21 2.60 marked asmaterial LAA
pcL6L8L13 - marked asmaterial RIPV
pcL4L6L13L22 6.30 marked asmaterial RSPV
pcL7L9L26L12 - marked asmaterial LIPV
pcL5L7L12 - marked asmaterial LSPV

they were at least 0.66 mm away from previously annotated points. The threshold
for R21 and R26 was 1.32 mm, and 1.65 mm for all LA points. Circular paths were
then computed and smoothed using the translated points. Moreover, the center
of the bounding box of each path (cBoBo) was calculated. The path was dilated
using a cylindrical shape element determined specifically for each point along the
path. The cylinder was confined by four planes defined by: i) cBoBo, the tip of
the appendage and the preceding point on the path, ii) the two aforementioned
points and the subsequent point on the path, iii) cBoBo, the current point on the
path, and the preceding point on the path translated normally in that node of the
current element being closest to the tip of the appendage, and iv) cBoBo, the current
point on the path, and the subsequent point on the path translated normally in
that node of the current element being most remote to the tip of the appendage.
Planes i and ii confined the cylinder radially while planes iii and iv defined the
height. The isolating paths obtained through this method were then additionally
dilated radially to a minimum width (see Tables 7.3, 7.5, and 7.6). All elements
connected to the tip of the appendage via elements not being on the isolating paths
were annotated as belonging to the appendage in a final step. For this purpose, all
these elements were sorted by their distance to the tip in descending order and

164



7.1. MYOCYTEORIENTATION

Table 7.6: Paths defining atrial myocyte orientation in the epicardial layer of the LA. A path is
defined by the start point, the end point, and potential intermediate points. The paths were
restricted to thematerial LAepi.

Name Radius (mm) Additional remarks
pcL1L2L3 5.50 marked asmaterial MVR
pcL6L8L13 3.30 marked asmaterial RIPV
pL26L24L13L22L4L6 3.30
pcL5L12L26L9L7 3.30
pL5L16L23L25L27 3.30
pL26L33L12L7 3.30
pL8L24 3.30
pL5L4 3.63 temporary path to separate

inter-pulmonary vein region
pL22L4L6L8L24 3.30
pL26L9L5L16 3.30
pL7L5L16L23L25L27L12 3.30
pL26L24L13L22L4L6 3.30
pcL34L5L10L12R21 2.60 marked asmaterial LAA
pcL4L6L13L22 5.30 marked asmaterial RSPV
pcL7L9L26L12 - marked asmaterial LIPV
pcL5L7L12 - marked asmaterial LSPV
pL5L10L1 2.00 marked as BB

successively assigned the average orientation of the adjacent elements.
In conclusion, the myocyte orientation in the RA was annotated first. Afterwards,
the endocardial layer of the LA and the epicardial layer of the LA followed.
Finally, the PVs and the atrial appendages were annotated.

7.1.1.2 Interpolation and Region Growing
Besides distinct bundles, there are areas in the atria that show coherent prefer-
ential myocyte orientation, e.g. the posterior LA wall in the endocardial layer.
The paths described above define the orientation along the boundaries of these
regions. Tissue areas which were isolated from other non-annotated tissued by
two boundary paths p1 and p2 were annotated by subsequent interpolation. Each
element within the region was assigned the weighted average of the closest ele-
ments in the boundary paths. The weight was the inverse distance to the respective
elements, thus assigning a higher weight to the orientation of the closer path. The
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interpolated orientation of node i (fi) was defined as:

f′i =
(

1− d(i,p)
d(i,p)+d(i,q)

)
· fp +

(
1− d(i,q)

d(i,p)+d(i,q)

)
· fq , (7.3)

fi =
f′i∥∥f′i
∥∥

2

, (7.4)

with p being the closest node on the first path p1, q being the closest node on the
second path p2, fp and fq the respective orientations, and d(x,y) the euclidean
distance between nodes x and y. As the conductive properties are orientation-
dependent but direction-independent, thus the same for 0◦ and 180◦, the myocyte
orientation is only defined for -90◦ ≤ x < 90◦ which was considered during the
interpolation. If the scalar product of fp and fq yielded values <0, fq was flipped by
180◦. This method was applied for the region between the RAA and the first PM,
the intercaval region, and the region between pR12R7R8R9 and pR14R16R15 in
the RA. For the latter region, the plane defined by the points R14, R17, and R4
divided the domain into two half spaces. Only points in the half space including
R8 were considered during the interpolation. Moreover, points in the half space
defined by the plane R14, R7, and R18 and oriented towards R4 were neglected.
The tissue class inferior isthmus was annotated for the points that lie in the half
space not including R8 spanned by R14, R17, and R4 and also lie in the half space
not including R20 spanned by R28, R2, and R39.
In the endocardial layer of the LA, interpolation was performed using the paths
around the PVs and the temporary paths defined in Table 7.5, which were required
to isolate the region and removed after the interpolation. Moreover, the area
between pL14L4 and pL1L16L5 was interpolated. In the epicardial layer, the
area between the pulmonary veins in the posterior wall confined by pL5L4 and
the four paths pL22L4L6L8L24, pL26L9L5L16, pL7L5L16L23L25L27L12, and
pL26L24L13L22L4L6, respectively.
Besides paths, also planes can serve as boundaries for the interpolation. This
method was used for the interpolation of the PMs since the paths were deliberately
not dilated transmurally. While the myocyte orientation in the interpectinate
regions was interpolated based on the adjacent PMs, the tissue class was labeled
as RA.
Remaining tissue elements that were not annotated during path dilation and
interpolation were handled during a final outside-in region growing step. The

166



7.1. MYOCYTEORIENTATION

elements in a non-annotated region were assigned the orientation of the closest
connected annotated element if the region is surrounded by elements of only one
tissue class. If more than one tissue class was present, the principal orientation
of the adjacent regions was determined as a weighted average with the weight
being the inverse distance to the boundary. Each node i inside the non-annotated
region was then assigned a weighted average of the principal orientations of the N
adjacent regions with the weight λ j of region j defined as:

λi =
d(rj, i)−1

∑
N−1
l=0 d(rl, i)

, (7.5)

with rj being the node in region j, which is closest to node i.
The last tissue class being labeled was the sinus node. It was modeled as an
ellipsoid with semi-principal axes of length 2 mm, 2 mm, and 4 mm plus the
average distance between points across the mesh. The ellipsoid was centered at
R3 and the longest axis was aligned along pR3R20. The myocyte orientation was
not altered during this step.

7.1.2 Results
The algorithm annotating myocyte orientation in biatrial meshes was evaluated
in a cohort of eight anatomically personalized models derived from MRI data.
The characteristics of the patients and volunteers in which the data were acquired,
as well as the anatomical properties of the subject’s hearts are introduced in
more detail in Chapter 9 (Section 9.1.1, see also Table 9.1). For each subject, a
volumetric hexahedral mesh composed of cubic voxels, a triangular surface mesh,
and a volumetric tetrahedral mesh was generated in order to thoroughly evaluate
the methods regarding mesh type independency. The presented method applied to
an isotropic voxel grid width a fixed element side length of 0.33 mm was already
validated in [23]. Therefore, the focus here is laid on differences between mesh
types.
The overall pattern of resulting myocyte orientation and the annotated tissue
labels are shown in Figure 7.4. A comparison of the results obtained for different
underlying mesh types shows gross correspondence. In contrast to the volumetric
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Figure 7.4: Annotated myocyte orientation in a volumetric voxel mesh ((A), (D), and (G)), a
tetrahedral mesh ((B), (E), and (H)), as well as a triangular mesh of the epicardial surface ((C),
(F), and (I)) of model #5. The color of the lines aligned with myocyte orientation encodes
the annotated tissue class. The smoothed endocardial surface is shown in grey. The distinct
endocardial and epicardial two layer architecture can e.g. be seen in the posterior wall region
and at the junction with the inferior PVs in (D) and (E) (dashed circles). In (F), no crossing fibers
are present as only the epicardial layer is present. The orientation along the IACs introduced in
Section 7.2 are already annotated in green (BB) and red (remaining IACs).

voxel meshes (left column in Figure 7.4) and tetrahedral meshes (middle column
in Figure 7.4), no fiber crossing in different layer occurred in the surface meshes
(right column in Figure 7.4) as a matter of course. In Figure 7.4, the epicardial rule
set was applied to the surface mesh. In principle, endocardial and epicardial rule
sets could be applied to the respective surface meshes which could subsequently be
merged. Figure 7.5 shows a close up of the LA in the region where the BB joins the
LAA. In this region, the endocardial layer is aligned almost perpendicular to the
myocytes within the BB, thus causing transmurally crossing myocyte orientation.
The resulting circular myocyte orientation within the LAA is shown in Figure 7.6.
The circumferential alignment and the smooth transition between the LA wall and
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tetrahedral meshA voxel meshB

Figure 7.5: Close up of the annotatedmyocyte orientation in the BB region in model #4 repre-
sented by cylinders superimposed on the smoothed blood pool shown in grey. The two-layer
architecture is clearly visible. Endocardial orientation cylinders are shown in grey while the
epicardial ones are colored in green. The tissue class labels in both the tetrahedral mesh (A)
and the structured voxel grid (B) are encoded by color. Figure based on supervised student’s
work [388].

the LAA indicate that the method introduced in Section 7.1.1.1 performed well in
both types of volumetric meshes. Model #4 deviated from the norm of anatomical
properties in terms of the number of PVs and the shape of the LAA. The subject
had two RIPVs (Figure 7.7A) and an L-shaped LAA (Figure 7.7B) instead of the
standard cone shape. The algorithm coped with this challenge even though no
explicit rules to handle additional PVs were implemented.

7.2 Interatrial Connections
The RA and the LA are electrically isolated by the septum and interatrial conduc-
tion is only possible via distinct IACs. The presence, location, and conductive
properties, which all express tremendous variability, affect excitation propagation
and the activation pattern significantly, particularly in the LA [27, 55, 405–408].
However, these IACs are delicate structures, which makes them hard to identify
in imaging data. Moreover, their sole presence gives no information about their
conductive properties. The gold-standard to assess the intactness of IACs is to
perform pacing during invasive electroanatomic mapping studies.
Because of their crucial relevance for atrial activation and arrhythmogenesis [405]
on the one hand and the difficulties to image the IACs on the other hand, it is de-
sirable to augment models with initially separated atria with IACs in a rule-based,
flexible manner. An algorithm providing these means is presented in this chapter.
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Figure 7.6: Close up of the annotatedmyocyte orientation of the LAA region inmodel #3 ((A)
and (B)), model #4 ((C) and (D)), andmodel #8 ((E) and (F)) represented by cylinders superim-
posed on the smoothed blood pool shown in grey. The tissue class labels in both tetrahedral
meshes ((A), (C), and (E)) and structured voxel grids ((B), (D), and (F)) are encoded by color. The
orientation along the IACs introduced in Section 7.2 are already annotated. Figure based on
supervised student’s work [388].

7.2.1 Methods
IACs are defined by a start point r0 in the RA and an end point l0 in the LA. A
cylinder with a predefined radius r was aligned along the connecting line between
r0 and l0 to restrict the search space for the points derived to actually set the
connection. In a first step, the points r1 and l1 were defined as the nodes within
the search space being located closest to l0 and r0, respectively. The midpoint
of the line segment defined by r1 and l1 was named m and used to identify the
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right pulmonary veinsA left atrial appendageB

Figure 7.7: Close up of the annotatedmyocyte orientation in the RPV (A) and LAA (B) region of
model #3. The color of the lines alignedwithmyocyte orientation encodes the annotated tissue
class. The smoothed endocardial surface is shown in grey. The two RIPVs were annotated
together (A). The L-shaped LAAwas completely labeled with the right tissue class andmyocyte
orientation wasmodeled approximately circumferential.

actual start and end points of the IAC: r2 defined as the RA point being closest to
m within the search cylinder, and l2 being the closest LA point to m.
Paths between r0 and r2, as well as between l0 and l2 were computed using
Equation (7.1). These paths were dilated with a radius of 0.83 mm and used to
annotate myocyte orientation and tissue labels. The actual bridge was inserted
into the model as a pill-shaped object built of a cylinder running from r2 to l2 with
the predefined bridge radius and a hemisphere with the same radius attached to
each end of the cylinder. The hemispheres formed connections to the atrial walls
providing a smooth transition without jagged edges.
For voxel-based meshes, the elements within the IAC could just be labeled. For
unstructured grids, the surface of the IAC was generated of triangles using the
fundamental forms provided by the VTK library [409]. For volumetric tetrahedral
grids, the surface was then filled with tetrahedra using Delaunay triangulation
provided by the TetGen library [410]. The interface between the surface of the IAC
and the atrial walls was treated in an automated post-processing step guaranteeing
proper connectivity of the elements. Myocyte orientation was aligned with the
path running from r2 to l2 within the cylinder. The dilation step with a spherical
element and the radius of the cylinder did also cover the hemispheres.
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Figure 7.8: Sketch of how the final IAC start point in the RA r2 and the end point in the LA l2 aredetermined starting from the initial points r0 and l0. A search cylinder with radius r is defined
around the direction connection between r0 and l0. The point l1 is the closest LA point to r0within this cylinder. r1 is defined analogously. r2 and l2 are determined as the points within therespective atrium being closest tomwhich splits the direct connection between r1 and l1 inhalf.
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Figure 7.9: Schematic course of the IACs (dashed orange lines) connecting the start points in
the RA and the end points in the LA directly. The RA and LA extension of BB is indicated by
the magenta line. The dashed black lines represent auxiliary paths used to locate start and
end points (orange) of the IACs. Blue points represent the 22 landmarks points. (A) shows the
anterior aspect, (B) the posterior aspect.

The implemented algorithm can augment biatrial models with freely defined IACs
as well as several standard IACs (Figure 7.9) based on the seed points introduced in
Section 7.1.1 (see Table 7.2 and Table 7.4): BB, two connections on the posterior
side (middle posterior connection (MPC), lower posterior connection (LPC)), a
connection via the coronary sinus (CS), as well as two connections on the anterior
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A B

CS
LAC

BB

UAC

Figure 7.10: Voxel-basedmodel (A) and tetrahedral model (B) of subject #4 with inserted IACs.
The presented anterior aspect shows BB, the two additional upper (UAC) and lower (LAC)
anterior connections, as well as the RA landing point of the IAC via the CS. Tissue class labels
are color-coded. Figure based on supervised student’s work [388].

side (upper anterior connection, lower anterior connection). The standard search
radius for IACs was set to the maximum of 2× the average mesh resolution and
1 mm. The radius of the connections was 1.65 mm. The MPC ran from point R31
in the RA to point L55 in the LA, the LPC from R29 to L35. The lower anterior
connection linked the points R40 and L36. The upper anterior IAC connected the
points R1 and L22. The connection at the CS was established via R14 and L1 with
a search radius of the maximum of 3× the average mesh resolution and 1 mm.
The BB differs from the other IACs in terms of spatial extent. The search radius
for the start and end points r2 to l2 was 8 mm (cf. Figure 7.8). Besides the actual
IAC bridging the septum from R38 to L10, the BB reaches out to the bases of
the RAA and the LAA (see Table 7.3 and Table 7.6). This extension can either
be restricted to existing elements, thus only affecting tissue labels and myocyte
orientation or modeled as a tube-like structure protruding from the atrial walls.
For the latter option, a radius of 2.31 mm was used.

7.2.2 Results
The algorithm to introduce IACs in a rule-based manner was tested using the
models of all eight subjects in all three mesh variants resulting in 24 models as
was the case for the myocyte orientation. Elements were successfully introduced
in the meshes as exemplary shown for the voxel-based model (Figure 7.10A)
and the tetrahedral model (Figure 7.10B) of subject #4. In (Figure 7.10B), the
coalescence of the BB tube and the LA tetrahedra in the fused mesh can be
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appreciated. Moreover, the default connections BB, posterior IACs, and CS are
included in Figures 7.4, 7.5, and 7.6.

7.3 Atrial Ablation Patterns
Besides the anatomy, the myocyte orientation, and the IACs, also non-excitable
scar tissue plays a vital role determining the atrial activation patterns and arrhyth-
mogenesis. Radio-frequency ablations aims at rendering tissue non-excitable. For
an in silico evaluation of different ablation patterns in order to identify the optimal
option, it is thus imperative to introduce standard ablation patterns in anatomically
individualized models.
In this section, an approach to augment models with standard ablation patterns
based on the methods presented in the previous sections of this chapter is pre-
sented.

7.3.1 Methods
Ablation lines are defined by a start point, and end point and optionally a number
of additional intermediate points. The points were connected with a path defined
by Equation (7.1) which was later on dilated with a spherical shape element of a
predefined radius. The spherical shape element can be centered at the endocar-
dial or the epicardial surface depending on the desired application. Moreover,
transmural ablation scars can be introduced using a pill-shaped dilation element
with varying height at each point depending on the wall thickness as introduced in
Section 7.1.1. A border zone with a fixed width around the scar was included by
applying the algorithm twice: first with a width defined as the sum of the border
zone and the scar width, thus labeling the border zone. The second run considered
only the width of the actual scar and overwrote the tissue label within the scar.
Besides a flexible interface allowing to define individual ablation patterns through
tubes and spheres with fixed radii, 13 standardized ablation patterns based on the
points derived from the anatomical landmarks (Table 7.4) can be automatically
generated. Table 7.7 lists the paths that make up the standardized ablation patterns
based on publications by Reumann et al. [411] and Deisenhofer et al. [412]. The
pattern A to M are schematically visualized in Figure 7.11.
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Table 7.7: Paths defining ablation patterns A to J based on [411] and K toM based on [412].
The location of the points defining the patterns is given in Table 7.4.

Pattern Path Pattern Path
A pL8L6L4L5L7L9L56 H pcL8L13L69L4L5L12L26L9pL26L56
B pcL5L12L7 I all paths from pattern H plus

pcL60L26L9L59L74 pL8L1
pcL4L58L72L57L69pcL70L8L13L73

C pcL8L13L69L4L6 J all paths from pattern H plus
pcL9L7L5L12L26 pL13L68
pL6L57 pL5L11
pL12L65

D pcL8L13L69L4L6 K pcL8L13L69L4L5L12L26L9pcL9L7L5L12L26 pL20L2
pL5L10L34L12

E all paths from pattern D plus L all paths from pattern K plus
pL61L62 pL9L7L5
pL26L56 pL4L5L8

F all paths from pattern D plus M all paths from pattern D plus
pL66L67 pL5L10L34L12
pL26L56
pL6L57
pL12L65

G all paths from pattern F plus
pL63L64

7.3.2 Results

The automatic placement of the nine ablation patterns introduced in Table 7.7 was
assessed using models from all eight subjects in all three types of meshes: struc-
tured voxel grids, volumetric tetrahedral meshes, and triangular surface meshes.
Moreover, all four variants to place the ablation (starting from the endocardium,
from the epicardium, from within the wall, and transmurally) were performed suc-
cessfully yielding a total of 1248 results. Figure 7.12 shows transmural ablation
of pattern G including a border zone in model #4 in the three different mesh types.
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Figure 7.11: Schematic representation of the standardized ablation patterns provided by the
automatic algorithm and defined in Table 7.7. Patterns A to J are based on [411], patterns K to
M are based on [412]. Figure based on supervised student’s work [388].

7.4 Discussion
The rule-based algorithm to annotate myocyte orientation and tissue labels was
originally introduced and thoroughly evaluated in [23]. The myocyte orientation
pattern was compared to manual placement based on histology data [57, 401]
and image data in models of the Visible Human dataset [413, 414]. Moreover,
anatomical images from literature were used a qualitative reference [19, 392, 401]
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voxel mesh tetrahedral mesh surface meshA B C

Figure 7.12: Resulting ablation by applying pattern G in model #4. The core lesion with a
radius of 2mm (black) is surrounded by a border zone with a width of 1mm (white) in the
semi-transparent biatrial model. Transmural ablation was applied in the voxel grid (A) and
the volumetric tetrahedral mesh (B) revealing the differentmesh structures at the interface
between the border zone and LAmyocardium. In the triangular surfacemesh (C), ablation was
applied to the epicardial side.

and a high resolution microscopic image stack of sheep atria [415] served as a
quantitative reference with myocyte orientation determined by a gradient-based
structure tensor approach [416]. The rule-based approach was able to reproduce
the overall pattern of fiber orientation observed in the microscopy data even
though the anatomy of the sheep atria differed from human atria. Comparison to
previously published manually annotated datasets revealed similar major axes for
most of the elements.
The main progress achieved by the work presented here is a coherent and consistent
description of the set of rules used to annotate myocyte orientation, tissue classes,
as well as standard ablation patterns. Moreover, the implementation provides a
mesh-type-agnostic algorithm that can be applied to all common data structures
used in computational modeling of cardiac electrophysiology and biomechanics.
Furthermore, the implementation is flexible regarding the resolution of the un-
derlying mesh. By replacing the few remaining absolute distance measures by
normalized values, the algorithm could be used for pediatric scenarios or hearts of
small animals, as well. The object-oriented design of the software using modern
software engineering methods yielded an extendable software with maintainable
code.
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CHAPTER8
Analysis of Atrial Flutter

Vulnerability
The long-term success rate of atrial fibrillation (AF) ablation is unsatisfactory
low, particularly in patients suffering from persistent AF. Besides AF recurrence,
the development of post-ablational atrial flutter (AFlut) represents a major prob-
lem [8, 65–68]. In more than half of the patients, sustained AF is reinitiated
within 5 years after ablation or AFlut develops [417]. More than 40% of patients
in the STAR AF II study by Verma et al. suffered from recurrent AF within 18
months independent from the ablation approach chosen [149]. 20% of recurrences
after AF ablation in elderly are due to AFlut [418]. In the general AF population,
18.5% of patients were diagnosed with AFlut during a median follow-up time
of 421 day post ablation [419]. Liang et al. observed AF or organized atrial
tachycardia in 53% of 300 patients within the first six weeks after pulmonary
vein (PV) antral isolation [420]. AF and AFlut are often even combined endpoints
in studies evaluating the success of AF ablation [417]. Waldo and Feld highlighted
the inter-relationships between AF and AFlut [421]. AF precedes AFlut in most
cases forming the required line of block between the vena cavae by fibrillatory
conduction. Moreover, ablation of atrial tissue can lead to a substrate for AFlut.
Particularly gaps in linear lesions forming isthmuses or revitalized tissue areas
forming zones of slow conduction render the atria vulnerable. Also PV isolation
has been associated with a substantial risk to develop AFlut [422–424]. Castréjon
et al. reviewed the occurrence of organized atrial tachycardia such as AFlut after
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AF ablation and discuss that more extensive left atrium (LA) ablation renders the
atria more vulnerable to AFlut [425]. However, the exact origin of the pathologic
substrate is not understood. Therefore, a method to assess the vulnerability to
AFlut in personalized computational models is presented in this chapter. Besides
an identification of possibly AFlut sustaining pathways in the observed state of the
patient (baseline), the approach allows to assess the effect of different therapeutic
strategies such as ablation patterns, pharmacological compounds, or other anatom-
ical and electrophysiological interventions in silico before actually performing
them.
The monodomain reaction-diffusion model presented in Section 3.2.1 and used to
simulate excitation propagation in Chapters 5 and 6 is based on the diffusion of
ions and reactions of the plasma membrane. As such, it considers electrotonic ef-
fects and source-sink relations resulting in e.g. convex or concave wavefronts. On
the one hand, the monodomain approach provides the means to simulate complex
excitation patterns as chaotic fibrillation including wave breaks. Moreover, the
underlying cell models can be arbitrary complex to incorporate e.g. advanced cal-
cium handling providing the means to study early or delayed afterdepolarizations.
On the other hand, the monodomain model is computationally expensive [426].
The simulation of 1 s excitation propagation in a volumetric three-dimensional
model of the atria takes several hours wall-clock time on modern machines. Hence,
they are not suitable for a thorough exploration of parameters regarding effects on
the three-dimensional whole organ level, as e.g. the vulnerability to arrhythmia
caused by ectopic stimuli from a multitude of locations and at varying time steps.
Eikonal approximations of the continuous dynamics of the reaction-diffusion
system allow to simulate excitation propagation in terms of activation times with
significantly reduced computational load [161] as only one static, non-linear partial
differential equation (PDE) derived from e.g. the monodomain model has to be
solved, which makes it interesting for simulations of cardiac activation [427, 428].
In contrast to level set methods in general, shortest path [429] and fast marching
methods assume monotonously expanding wavefronts, however. Thus, a specific
approach considering multiple fronts, reentry, and anisotropic conduction was
developed for cardiac electrophysiology [162, 176] based on a fast marching
method on structured grids [430–433]. Several extensions provide the means
to consider wavefront curvature and the mesh structure if that is needed for the
specific application [434, 435]. Ablation of ventricular tissue in order to prevent
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scar-related ventricular tachycardia was presented as a potential application for
this method [162].
Dang et al. compared different standard ablation patterns for AF using an ide-
alized computational model [436]. Reumann et al. evaluated different patterns
regarding AF prevention in a more complex model [411]. Hwang et al. proposed
a method to test AF ablation patterns in silico using a monodomain approach on
anatomically, but not electrophysiologically personalized models [437]. Thus, no
substrate information regarding fibrosis, zones of slow conduction or the degree
of electrophysiological remodeling is considered. McDowell et al. presented a
proof-of-concept how computational modeling can predict ablation sites terminat-
ing rotors driving AF in personalized models including fibrosis distribution [438].
Bayer et al. evaluated the potency of PV isolation, mitral and roof lines, ablation
guided by rotor mapping, and lesions streamlining sinus activation regarding the
termination of AF in silico [439]. In a very recent work, Zahid et al. employed the
minimum cut algorithm to predict optimal ablation sites for AFlut in the LA [440].
The potential of clinically-derived computational models to optimize catheter
ablation of AF was recently reviewed by Zhao et al. [441]. They conclude that
high-resolution three-dimensional models of functionally and structurally mapped
atria of the exact patient are imperative to provide clinically relevant insights on a
personalized level.
Lines et al. presented a method to parametrize a monodomain simulation in a
standard bi-atrial model aiming to incorporate electrograms acquired during elec-
troanatomic mapping studies in order to replicate clinically mapped AFlut in
silico [442]. The extracellular potentials at 32 computational nodes served as
a boundary condition for the solution of the monodomain system. While the
algorithm synchronized the simulation to the synthetic reference simulation, the
algorithm is computationally expensive and only allows to study clinically ob-
served cases in silico but cannot provide information on the vulnerability to AFlut.
The method presented here is the first allowing to comprehensively assess the
vulnerability to AFlut in personalized models considering both anatomical and
electrophysiological properties allowing to evaluate therapeutic approaches such
as ablation in silico.
Part of this work is based on a supervised student’s project [443].
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8.1 Methods
A pipeline consisting of several methods was developed in order to assess the
vulnerability to AFlut. In this section, the different steps in the workflow are
presented.

8.1.1 FastMarching Simulation of Excitation Propagation
The basic concept of the eikonal-based simulation of excitation propagation and
the fast marching scheme were introduced in Section 3.2.2. The existing concepts
were extended to consider restitution of conduction velocity (CV) and effective
refractory period (ERP). Restitution of both parameters with respect to basic cycle
length (BCL) was determined by pacing in a one-dimensional tissue strand using
the Courtemanche et al. cell model [49] coupled in a monodomain approach as
introduced in Chapter 5. The resulting curves for CV and ERP were approximated
by exponential decays:

CV (BCL) = A−B · exp
(
−BCL

C

)
, (8.1)

with A, B, and C being determined through standard Matlab curve fitting methods.
The BCL was defined as the time passed since the last activation of the respective
node and initialized with a user-defined value either globally or for each node
individually. The restitution of the ERP was described similarly.
In this study, an implementation of the fast marching approach was used to trigger
excitations from a multitude of locations sequentially in order to identify potential
loops along which AFlut can be sustained as described in the next section. The
algorithm was implemented in a modular and extensible C++ framework.

8.1.2 Identification of Flutter Loops
For each stimulus location, activation times were computed and stored together
with information regarding the spread of excitation in terms of a vector pointing
from the activating to the activated node. Wavefront collision sites are points of
latest activation on circular paths composed of two paths originating from the
stimulus site to opposite sides. On the one hand, these paths are the shortest in
the sense of wave propagation, i.e. they are not artificially prolonged by zig-zag
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patterns but determined as the shortest connection by the fast marching algorithm.
On the other hand, they are locally the longest as two independent waves collided
on the loop. A wavefront collision for node i was identified if the following
condition was fulfilled for any neighboring node j:

ai
‖ai‖2

+
aj∥∥aj
∥∥

2

< 0.99 , (8.2)

with ai being the vector pointing from the node that activated node i to node i
itself. The condition identifies all points at which the vectors meet at an angle
∈ (π/2,3π/2) including π , thus pointing in opposite directions. From the sites
of collisions, loops were defined by the two traces along the steepest negative
activation time gradient leading back to the stimulus location. A loop was thus
composed of a circular, ordered series of nodes. Along the loop, the round trip
time (RTT) was calculated considering the heterogeneous and anisotropic tissue
properties in terms of CV and ERP (cf. Equation (8.1)). If a loop did not fulfill
the wavelength (WL) condition

max
i

(ERPi(RT T ))< RT T , (8.3)

it was disregarded. Here, ERPi was the ERP of node i considering a BCL equal
to the RTT according to Equation (8.1). i comprised all nodes spanning the loop
candidate.
The fact that the loops were traced back all the way to the initial stimulus site
introduced artifacts as a dynamic wave would cut short between the two traces
from the site of collision to the stimulus site in many cases. In the easier case,
both half loops shared a part of the loop. Under such circumstances, all common
nodes could be neglected, thus shrinking the loop (Figure 8.1A). In most cases,
however, this approach did not remove all artifacts. In Figure 8.1B, a shortcut of
the two half loops running adjacent on the posterior LA wall can be anticipated
between the posterior IACs and the IAC via the CS. Therefore, a geometric
snake approach considering anisotropy was implemented in order to constrict
the loops like a rubber band by minimizing the spline energy. Evolving snakes
on triangular meshes were proposed before for mesh scissoring operations and
constriction detection [444–448] and were adapted to the requirements of the
specific application in this work.
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shared path no shared pathA B

Figure8.1: Artifacts introducedby loop tracing from sites ofwavefront collision (orange star) to
the stimulus location (yellow star). As in (A) both half loops share part of the loop (red segment),
the loop can be constricted to the blue circle. In (B), the wavefronts collided on the anterior
wall and the shared path was already disregarded (note the distance between the yellow star
and the yellow loop on the LA roof). However, the loop would still be cut short by a propagating
wave between the LPC and the IAC at the CS.

The geometric snake is an active contour model that is restricted to a polygonal
surface mesh. In this work, the parametrization-free implementation for triangular
meshes proposed by Bischoff and Kobbelt [444, 445] was used. A snake was
represented as a polygon in space (Figure 8.2). The vertices of the snake are
referred to as snaxels and represented by lower case vectors in the following.
Snaxels were constrained to lie on edges of the mesh. Furthermore, the segments
of the snake (connections between snaxels) had to lie in the interior of triangles.
An oriented snaxel s could thus be defined as:

s = fs + ps · (ts− fs) , (8.4)

with the points ts and fs defining the supporting edge on which the snaxel s lies
and ps ∈ (0,1) defining the position on the edge.
The snake evolves by assigning a scalar speed vs to each snaxel s:

ps← ps +∆t · vs , (8.5)

with ∆t being a virtual time increment. The time increment was chosen as 0.5 in
this study striking a good balance between stability and convergence speed. By
performing the update step, the snaxel was shifted along the supporting edge of
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Figure 8.2: Geometric snake on a triangular mesh. The snake segments run on the surface of
the triangles from snaxel to snaxel. Each snaxel is constrained to its supporting edge. Snaxel s is
supported by the edge running from fs to ts and directly connected to its predecessor p0 and itssuccessor n0.

the mesh es (Figure 8.3):
es = ts− fs . (8.6)

In order to avoid local oscillations, not only the direct neighbors were considered
when calculating the velocity:

vs =
1( √

es·Ds·es
CVS(RT T )

)
·∑N−1

i=0 ai
·

N−1

∑
i=0

[
ai (d (pi,s)+d (ni,s))

]
, (8.7)

with N being the order of the approach, a being the order divisor ∈ (0,1], and
Di being the anisotropy tensor according to Equation (3.20). As snaxels were
located on edges between two nodes and the material properties CV and ERP
was defined for each node, the closer node was considered (referred to by upper
case vectors using the same letter). Thus, CVs(RT T ) was the CV of the closest
node to snaxel s considering the RTT of the last iteration as the BCL according to
Equation (8.1). pi is the ith predecessor of snaxel s and ni is the ith successor. In
this study, the order N was chosen as 30 and a was set to 0.91 based on experience
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Figure 8.3: Concept of the snaxel velocity calculation for orderN=1 and isotropic tissue prop-
erties. Snaxel s is connected to its first order neighbors p0 and n0 (A). The sum of the connectingvectors sp0 and sn0 (B)+(C) is projected onto the supporting edge es (D). The projection is scaledby the conduction velocity in order to obtain the velocity of the snaxel (E).

gained in pilot studies. The anisotropic distance projected on the supporting edge
and weighted by the heterogeneous CV d (p1,p2) was defined as:

d (p1,p2) =
1

CVP1(RT T )
(p1−p2)DP1 ·

es

‖es‖2
, (8.8)

If an update step shifted a snaxel on one of the supporting nodes or beyond them
(ps ≤ 0 or ps ≥ 1), the snaxel was duplicated and distributed on all adjacent edges
with an initial p value of 0.05. Thus, the new snaxels were located 5% away from
the crossed node with respect to the length of their new supporting edge. During
the evolution, one more constraint was checked and enforced. No two consecutive
snake segments could lie within the same triangle. If this was the case because
a snaxel was distributed after passing a supporting node, the interior snaxel was
disregarded and the first and third snaxel were connected directly. Snaxel collisions
caused by snaxels crossing each other on the same supporting edge were resolved
by merging the respective snake segments. After each iteration, the WL condition
Equation (8.3) was checked. Snakes not fulfilling it were disregarded immediately.
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Figure 8.4: Example of an AFlut vulnerability map. The vulnerable paths aremarked in yellow
on the brown substrate of the RA; the blood pool is indicated in gray. Several paths run from
the septal side of the TV to the RAA.

The iterative algorithm was stopped once the absolute RTT reduction over the
last 20 iterations was less than 7 ms or the relative reduction was less than 10%.
This choice of parameters yielded stable convergence and is further discussed in
Section 8.3.
The presented approach controls the topology, detects and resolves self-collisions
at sub-element size precision, and inherently avoids error prone back projections
of snaxels onto the mesh.

8.1.3 Eikonal-Diffusion Phase Interpolation
The methods introduced above allow to identify paths in an atrial model that can
potentially sustain AFlut. However, the paths are not necessarily the dominant
one and might thus not be expressed in dynamic scenarios. An example is shown
in Figure 8.4 where several paths run from the septal side of the TV to the RAA
and to the CS region. Each path is locally the shortest and long enough to sustain
AFlut according to the WL condition. However, according to Huygen’s principle
only one path will dominate the excitation pattern distal to the constriction at the
TV where all paths narrow. Thus, the remaining paths will be suppressed. In order
to identify the dominant path, i.e. to distinguish between theoretically vulnerable
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paths and practically inducible paths, the initial state for a dynamic simulation
had to be extrapolated from a single loop to the entire simulation domain.
Jacquemet proposed an eikonal-diffusion approach for the initiation of reentrant
cardiac propagation [449, 450]. The eikonal-diffusion equation can be derived
from the monodomain equation Equation (3.12) using singular perturbation the-
ory [449, 451, 452]:

‖c∇ta‖2 = 1+∇ · (D∇ta) x ∈Ω , (8.9)

n ·D∇ta = 0 x ∈ ∂Ω , (8.10)
with the symmetric positive definite tensors c and D being the link to the mon-
odomain equation, Ω being the computation domain, and n being the unit vector
normal to the boundary ∂Ω. The scaled propagation velocity c in mm/rad (mm/s
× T/2π) was defined as:

c =
(

T 2 kmσ

4π2 β Cm

)1/2

, (8.11)

and the scaled diffusion tensor D in mm2 defined as:

D =
T σ

2π β Cm
, (8.12)

with the period of the reentry T (RTT), the surface to volume ratio β , and the
membrane capacitance per unit area Cm defined as introduced in Section 3.2.1.
The parameter km depends on the cell model and results in a plane wave CV of√

kmσ/βCm. In this study, km was set to 2.0833 ms−1 as suggested in [449, 450].
As we aim to simulate reentrant activity, the activation time was scaled:

τ (x) = 2π
ta (x)

T
mod 2π , (8.13)

with T being the period of the reentry, thus RTT in our case. To compensate for the
2π jumps occurring in the phase τ , a transformation to phase space was established
by φ := exp( jτ), with j denoting the imaginary unit. This transformation yields
an adapted eikonal-diffusion equation [449]:

‖c∇φ‖2 = 1+ Im(∇ · (φ ∗D∇φ)) x ∈Ω , (8.14)
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|φ |= 1 x ∈Ω , (8.15)

n ·D∇φ = 0 x ∈ ∂Ω , (8.16)
with Im() denoting the imaginary part and ∗ being the conjugate vector.

For D→ 0, Equation (8.9) reduces to the classical eikonal equation Equation (3.13).
If D is non-zero, wavefront curvature-dependent effects are included. A purely
diffusive case can be considered for D = λ D̃ with λ →+∞:

∇ · (D∇τ) = 0 x ∈Ω\Γ , (8.17)

n ·D∇τ = 0 x ∈ ∂Ω\Γ , (8.18)

τ(x) = τ0(x) x ∈ Γ , (8.19)
with Γ being the subdomain posing a Dirichlet boundary condition when for-
mulating a Laplacian interpolation problem [453] to compute an initial phase
distribution φ0 for the whole domain Ω. The initial estimate for the solution
of Equation (8.14) satisfying the constraint Equation (8.15) and the boundary
condition Equation (8.16) was iteratively refined using a linearized eikonal ap-
proach [450, 454]. In each iteration, the phase of each node was shifted:

φi← φi · exp( jθi) , (8.20)

with θ defined as follows:

‖c∇φ‖2− Im(∇ · (φ ∗D∇φ))−1 = ‖c∇φ‖−1
2 Im(φ∇φ

∗c∗c∇θ)+∇ · (D∇θ) .

(8.21)
This scheme approximates Equation (8.14) up to first order in ∇θ and is equivalent
to the Newton root finding method applied to the PDE [449, 450]. The interested
reader is referred to [450] regarding the details of the discretization to triangular
surface meshes resulting in a linear system representing the linearized eikonal-
diffusion equation:

A(φ)θ = f(φ) , (8.22)
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Algorithm 8.1 Iterative eikonal solver algorithm proposed by Jacquemet [450].
Generate initial estimate for φ using e.g. Laplacian interpolation
while ‖θ‖2 < tol doComputeA(φ) and f(φ)
SolveA(φ)θ = f(φ) for θ

Substract mean: θ ← θ−mean(θ )
Under-relaxation: θ ← θ ·min(1,θmax/max(|θ |))
φ ← φ exp( jθ)

endwhile

with explicit expressions of A and f as derived in [449]. The iterative algorithm
is summarized in Algorithm 8.1. The tolerance was set to 10−9 and the under-
relaxation threshold was set to 0.1 [449]. The method was implemented in Matlab
leveraging sparse matrix functions as proposed in [450] and spatially varying
tensors c and D in order to consider heterogeneous tissue properties in terms of
CV and its anisotropy.
The resulting phase on the whole computational domain was transferred to an
initial state of the dynamic fast marching simulator introduced in Section 3.2.2.
The nodes in the first 50% of the cycle were included in the REFRACTORY list,
the next 20% in KNOWN, the next 20% were included in the T RIAL list, and
the last 10% in UNKNOWN. Nodes in the KNOWN list have a fixed activation
time influencing the activation time of the nodes in the T RIAL list. The element
with the smallest timestamp in the T RIAL list is added to the KNOWN list and
all UNKNOWN neighbors are added to the trial list. The BCL of all nodes was
initialized with the RTT and the time of the last activation ta of each node i was
set by mapping the phase back to an activation time and starting the dynamic
simulation at time t = RT T :

ta(x) = RT T
φ(x)
2π

. (8.23)

Figure 8.5 summarized the pipeline used to generate AFlut vulnerability maps
and transfer the results to dynamic simulations.
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Identify collisions and 
trace back to origin

Compute fast marching 
excitation from node i

for each 
stimulus
node i

Vulnerability map

Constrict loops using 
geometrical snakes

Interpolate phase map 
using eikonal approach 

for loop j

Initialize dynamic fast 
marching simulation

for each 
loop j

Figure 8.5: Overview of the algorithm to compute vulnerability maps (left) and optionally
transfer the AFlut scenarios to dynamic simulations (right).

8.2 Results
The restitution of CV and ERP was determined through monodomain simulations
in a one-dimensional tissue strand as detailed in Section 5.1.2 using variants of
the Courtemanche et al. cell model [49]. CV and ERP were determined for 50
BCLs between 200 ms and 1300 ms distributed linearly in frequency domain. The
monodomain conductivity σ was set to 0.076 S/m yielding a CV of 750 mm/s
at a BCL of 1000 ms in the RA model. Different anatomical structures were
investigated to account for regional heterogeneity using the data presented by
Krueger et al. [158]. Furthermore, the four substrates introduced in Chapter 5
were analyzed with and without the influence of the pharmacological compounds
amiodarone and dronedarone (cf. Section 6.1). Figure 8.6 shows the exponential
fit of the restitution curves based on the coefficients in Table 8.1. The A and B
coefficients for the CV of the different substrates were scaled with a factor of 0.6
yielding a total RA activation time of 192 ms in the control model without any
drug applied.
The ERP for long BCLs ranged between 225.0 ms for the mitral valve ring (MVR)
to 331.5 ms for the crista terminalis (CT). CT and the RA myocardium showed a
steeper decrease towards shorter BCLs compared to the remaining regions. The
CV for long BCLs differed by less than 1% for the different anatomical structures
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Figure 8.6: Fitted exponential restitution curves of ERP (A), (B) and CV (C), (D), as well as
the WL as the product of the former measures (E), (F) for different anatomical regions in
the atria (A), (C), (E) and different substrates (B), (D), (F). In (B), (D), and (F), the dashed lines
represent the respective substrates under the influence of 2.3 µMamiodaronewhereas the
dotted lines represent the influence of 0.21 µMdronedarone. Exponential curves according
to Equation (8.1) were used to fit the output of monodomain tissue strand simulations. The
coefficients are listed in Table 8.1.

(Figure 8.6C). The restitution curves of the different substrates (Figure 8.6B+D)
in general and under the influence of drugs are discussed in detail in Section 6.1.2.
Regarding the AFlut vulnerability, the WL is the decisive factor. Both different
regions and different substrates exhibited distinct behavior at different BCLs. At
short BCLs, CT was the region with the shortest WL opposed to long BCLs where
it was the region with the longest BCL, e.g. (Figure 8.6E).
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Table 8.1: Coefficients of exponential curves representing the restitution ofCVandERPaccord-
ing to Equation (8.1) and the anisotropy k according to Equation (3.19) for different anatomical
structures in the atria and different homogeneous substrates. Parameters were estimated
based on the output of monodomain tissue strand simulations.

CV ERP
A (mm/s) B (mm/s) C (ms) k A (ms) B (ms) C (ms)

RA 537.4 3.02×106 30.3 3.75 318.4 312.9 165.0
LA 536.4 8.73×105 30.2 3.75 282.2 149.7 216.1
SN 1129.7 6.35×106 30.3 1.00 318.4 312.9 165.0
scar 0 0 1.0 1.00 318.4 312.9 165.0
CT 538.4 2.85×105 45.1 6.56 331.5 1000.0 94.0
PM 417.7 2.35×106 30.3 10.25 318.4 312.9 165.0
BB 587.5 3.30×106 30.3 9.00 318.4 312.9 165.0
inf. isthm. 537.4 3.02×106 30.3 1.00 318.4 312.9 165.0
PV 547.1 1.26×105 40.7 3.75 276.1 55.8 915.4
RAA 537.4 3.67×106 29.9 3.75 302.7 92.3 224.0
LAA 536.7 2.49×106 27.1 3.75 262.3 62.2 255.7
TVR 534.7 1.56×106 23.9 3.75 256.8 128.9 305.4
MVR 534.6 2.83×105 25.8 3.75 227.9 88.7 382.9
control 453.6 2.55×105 30.3 318.4 312.9 165.0
cAF 436.0 0 1 173.6 79.7 276.2
N588K 452.3 3.79×105 30.4 245.7 30.9 575.3
L532P 449.8 1.53×105 18.1 161.8 37.6 337.2

8.2.1 Activation Times
The fast marching algorithm and its implementation were verified and bench-
marked by comparison to the analytical solution of a radial wave, quantitative
comparison to the monodomain model on planar meshes with the same nodes,
and qualitative comparison of the excitation pattern on a biatrial geometry. For a
radial wave originating from a single node and spreading in an isotropic substrate,
an analytical solution of the activation time map can be obtained. These analytical
values were compared to the results yielded by the fast marching implementation
on planar meshes composed of ordered triangles. The test mesh was of size
1 m × 1 m and a CV of 750 mm/s was assumed. The deviation was dependent
on the number of nodes used to discretize the domain (Figure 8.7A). For node
counts above 2000, both the maximum error and the mean error remained stable
indicating a converged solution. The implementation scaled as expected consider-
ing the algorithm complexity O(N logN) with the linear part prevailing over the
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Figure 8.7: Deviation of the fast marching solution from the analytic solution of a radial wave
(A). Excitation spreadwas computed on quadratical planar meshes composed of right-angled
triangles. The mean error ‖e‖1 and the maximum error ‖e‖∞

was evaluated for different
numbers of nodes. The dependence of the computation time for one complete activation cycle
on the number of nodes (B) was dominated by the linear part ofO(N logN).

logarithmic part for relevant numbers of nodes (Figure 8.7B). The benchmark was
performed on a single core of an Intel Core i5 machine at a clock rate of 2.9 GHz.
On this system, regular excitation patterns could be computed in real-time for
models comprising up to 50,000 nodes.
Besides comparison to analytical solutions, monodomain simulations on planar
patches served as a benchmark (Figure 8.8A+B). The time at which Vm exceeded
–40 mV was used as the activation time. Each voxel of the structured grid used
in the finite difference monodomain simulation was split into two triangles to
obtain a triangular surface mesh for fast marching simulations. As the nodes of
both meshes coincided, quantitative comparison was possible without the need
for interpolation. The maximum deviation of activation times was 1.88% for
ordered triangles (each voxel split by a diagonal from the bottom left to the top
right, Figure 8.8C) and 1.78% for random split orientation (Figure 8.8E). The
fast marching activation times were slightly later than the monodomain activation
times on average. For moderately anisotropic substrates, the deviation depended
on the assumed myocyte orientation. While the deviation was low for myocyte
orientation coinciding with edges of all triangles (1.58%, Figure 8.8F), it was
significantly higher for myocytes oriented 45◦ to the right-angled triangle edges
(up to 23.3%, Figure 8.8D). The deviation was small in the direction of fast
propagation and highest in the direction of slowest propagation, in which the fast
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Figure 8.8: Monodomain activation times of almost radial waves in the isotropic (A) and an
anisotropic case (B) on quadratic tissue patches with 30 cm side length. Fast marching ac-
tivation was later for nodes along the diagonal in both ordered (C) and randomly oriented
right-angled triangles (E). The deviation was larger for anisotropy 45◦ to the main triangle
orientation axes (D) compared tomyocyte orientation alignedwith the right angled edges of
the triangles (F). Excitation was triggered from the red area in the schematic representation in
the top right corner of each panel. Note the different scales of the color bars.

marching activation times were later. The faster propagation in the monodomain
simulation can be explained by the higher amount of activated tissue perpendicular
to the myocyte orientation causing a higher source-to-sink ratio. This effect was
not considered in the fast marching simulation as no anisotropic correction was
implemented.
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monodomain fast marchingA B

Figure 8.9: Comparison of monodomain activation times in a volumetric biatrial model (A) with
fast marching activation times on a triangular surfacemesh of the same subject embedded in
three-dimensional space (B). Earliest activation (blue) was triggered from the junction of the
SVCwith the RAA.

A segmented magnetic resonance imaging (MRI) dataset was used to generate a
volumetric structured grid for the monodomain simulation as well as a triangular
mesh of the smoothed epicardial surface suitable for fast marching simulations.
The activation patterns matched qualitatively as can be seen in Figure 8.9. Nearest
neighbor comparison yielded an average activation time deviation of 4% and
a maximum deviation of 8% between the fast marching and the monodomain
simulations.

8.2.2 Flutter Loops and Geometric Snakes
Excitation propagation was calculated from several stimulus sites and sites of
collision were detected using the activation vectors as shown in Figure 8.10A+B.
From the sites of wavefront collision, the activation front was traced back to
the stimulus site along the gradient of the activation time field. Combining the
traces obtained by following the activation waves of both colliding waves yielded
a set of initial loops for each stimulus node (Figure 8.10C). The WL condition
Equation (8.3) was not fulfilled by several loops that could thus be neglected
during the following steps (lighter colored loops in Figure 8.10C).
A geometrical snake was initialized for each valid loop candidate as illustrated
in Figure 8.11. Each node along the loop was surrounded by a micro-snake
with segments covering all adjacent triangles (Figure 8.11A). By enforcing the
constraints introduced in Section 8.1.2, the initial micro-snakes were merged into
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activation time and vectors collison sitesA B unconstricted loopsC

Figure 8.10: Activation time resulting from a stimulus at the junction of the SVCwith the RAA
(yellow star) ranging from early (blue) to late (red). The direction of the activation is indicated
by arrows (A). Points of wavefront collisions were detected and are indicated by red dots in (B).
(C) shows the loops composed of the two traces leading from the site collision to the stimulus
site (yellow star). The yellow loops fulfill theWL condition Equation (8.3) whereas the light gray
loops do not andwere thus not considered for further steps.

two distinct snakes: one snake on the outside of the loop nodes with consistently
outwards-oriented snaxels and one inside-oriented snake on the inside of the loop
nodes. The outwards-oriented snake could be identified as the longer one and
disregarded. In this way, a consistently oriented snake adjacent to the loop nodes
was constructed.
Figure 8.12 shows a geometrical snake initialized along a flutter loop candidate in
the LA. The stimulus leading to that loop was applied between the two left PVs
(yellow star in Figure 8.12A). The segment connecting the loop candidate with the
stimulus location was shared by both half loops and disregarded before the snake
was initialized. The initial RTT of 390 ms was reduced to 304 ms by iterating
the snake according to Equation (8.7). The converged snake reflects myocyte
orientation and CV heterogeneity (Figure 8.12F).

8.2.3 VulnerabilityMaps
By triggering stimulation from different points, identifying loop candidates, and
constricting them using geometrical snakes, AFlut vulnerability maps were gen-
erated as outlined in Figure 8.5. The vulnerability maps were sensitive to tissue
anisotropy as indicated by the lower number of flutter paths in the isotropic model
(Figure 8.13A) compared to the anisotropic case (Figure 8.13B). While the het-
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A B

C

Figure 8.11: Initialization of a geometric snake along a loop (blue band). Initially, a micro-snake
is established around each loop node (A). Snake segments are represented by thin grey tubes.
Enforcing the constraints regarding the maximum number of snaxels per edge lead to two
consistently oriented snakes (B), (C). Only the shorter snakewas considered for constriction
while the longer onewas disregarded.

erogeneous A and B values defining the CV according to Equation (8.1) were
scaled in the isotropic case to match the activation time of the last element in the
anisotropic case (158 ms), only 28.7% of all elements were covered by vulnerable
paths in the isotropic case compared to 50.9% in the anisotropic case. In heteroge-
neous models regarding both CV and ERP, no vulnerable paths could be found in
both isotropic and anisotropic setups with the CV scaled to obtain the same total
activation time as in the anisotropic, heterogenous case.
The number of vulnerable paths and the share of RA myocardium covered by
them was highly dependent on the CV. In the homogeneous anisotropic setup,
the coverage increased from 0% at a CV of 475 mm/s to over 90% for CVs of
360 mm/s and more (Figure 8.14A). The degree of coverage did also depend on
the number of different stimulus locations evaluated (Figure 8.14B). Considering
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RTT 390msA

RTT 316msD

RTT 360msB

RTT 306msE

RTT 322msC

RTT 304msF

Figure 8.12: Evolution of a geometric snake covering the LA. Initially, the snake covered the
loop found by the collision tracing algorithm (blue band) corresponding to a RTT of 390ms (A).
By iteratively constricting the snake (B-F), the shortest RTT of 304ms considering heteroge-
neous CV and anisotropywas found. In this way, the influence of the particular choice of the
stimulus site (yellow star in (A)) could be reduced.

all 19,296 RA nodes (minimum distance: 0 mm) yielded a coverage of 54.5% for a
fixed CV of 425 mm/s. Requiring a minimum distance of 1 mm between stimulus
points reduced their number to 8,254 without affecting the result significantly
(50.9%). Considering less points yielded lower coverage rates (39.4% for 2 mm
=̂ 2,136 nodes, 3.8% for 20 mm =̂ 19 nodes).
The degree of coverage was also highly dependent on the substrate as detailed
in Table 8.2. 8,254 stimulus points with a minimum distance of 1 mm were
considered using the CV and ERP values fitted from the monodomain model
output using the biophysically detailed Courtemanche et al. cell model [49] given
in Table 8.1. While the fitted exponential restitution of the ERP and the CV
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isotropic anisotropicA B

Figure 8.13: Influence of anisotropic conduction on a vulnerability map in the RA. Vulnerable
paths aremarked in yellow on the brown RAmyocardium; the blood pool is indicated in gray.
While the latest activation coincided in the isotropic (A) and anisotropic model (B), anisotropy
lead to a higher number of vulnerable paths. The heterogeneous CV definitions are detailed in
the text.
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Figure 8.14: Sensitivity of the vulnerable paths to changes of the CV (A) and the stimulus point
density (B). The CVwas altered in a homogeneous, isotropic setup causing different degrees
of RA coverage by vulnerable paths for a fixed stimulus density of 1mm. In (B), the distance
between stimulus points was varied for a fixed CV of 425mm/s.

was modeled homogeneously across the RA, its heterogeneous anisotropy (k in
Table 8.1) was kept. Both the cAF substrate and the two hERG mutations were
more vulnerable to AFlut than the control model representing healthy myocytes.
The higher degree of coverage under the influence of amiodarone observed for
all substrates can be explained by the WL restitution (Figure 8.6F). The WL was
shortened by the administration of amiodarone due to conduction slowing caused
by the sodium channel inhibition. This effect was most pronounced in the control
substrate and was reflected in the vulnerability maps as well (Figure 8.15).
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Table 8.2: Degree of coverage of RA elements with paths vulnerable to AFlut for different
substrates and antiarrhythmic drugs amiodarone (amio) and dronedarone (drone). In the right
three columns, theA andB values determining the CV according to Equation (8.1) were scaled
tomatch the activation time of the last element in the control substrate with no drug applied.

Degree of coverage
Original CV Total activation timematched

no drug amio drone no drug amio drone
Control 18.1% 70.5% 0.0% 18.1% 0.0% 0.0%
cAF 96.0% 96.3% 95.6% 96.2% 96.1% 94.9%
N588K 93.2% 94.1% 0.0% 93.0% 77.8% 0.0%
L532P 96.2% 96.5% 34.5% 96.3% 96.0% 11.1%

In order to separate the effects of the different substrates and compounds on CV
and ERP, the total activation time of the RA was matched with the activation of
the last element in the control model and no drug (191 ms) in a second set of sim-
ulations (Figure 8.16), i.e. the A and B parameters determining the CV according
to Equation (8.1) were scaled while keeping the anisotropy ratio k constant. In
this way, only the effect on the repolarization (ERP) was considered leading to a
reduction of vulnerable paths under the influence of amiodarone in all substrates
and a more pronounced reduction under the influence of dronedarone compared
to Figure 8.15.
Besides evaluating different substrates, distinct spatial heterogeneities were intro-
duced in the RA model. The normal RA myocardium was parametrized with an
isotropic CV of 700 mm/s and an ERP of 250 ms for all BCLs. A circular zone of
slow conduction on the posterior wall was modeled (Figure 8.17A). Depending
on the CVs inside and outside a circular zone of slow conduction, the wave might
be faster bypassing the zone than propagating through it. Comparing the time the
wave takes to bypass the circle with the time it takes to propagate through the
zone of slow conduction yields a critical CVslow/CVnormal ratio of 2/π ≈ 0.63. If
the ratio is higher, the dominant path is through the zone of slow conduction. If
it is lower, the bypassing wave is faster. Therefore, the zone of slow conduction
within the surrounding tissue conducting at 704 mm/s was parametrized with a
CV of 500 mm/s resulting in a ratio of 0.71 (Figure 8.18B), and 250 mm/s (=̂
0.36, Figure 8.18C). In contrast to the control model (Figure 8.18A), the zones
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Figure 8.15: Vulnerability maps of the RA for combinations of different substrates and pharma-
cological agents. Besides a control substrate representing healthymyocytes, a cAF remodeled
substrate (neglecting changes of cell-to-cell coupling), and twohERGmutationswere evaluated.
Standard concentrations of the antiarrhythmic agents amiodarone (2.3 µM) and dronedarone
(0.21 µM)were administered in the center and right columns. Vulnerable paths aremarked in
yellow on the brown RAmyocardium; the blood pool is indicated in gray.

of slow conduction yielded additional flutter paths. For the CV of 500 mm/s in
the zone of slow conduction, 24.1% of the RA were covered by vulnerable paths
(Figure 8.18B) in contrast to 14.1% in the control case (Figure 8.18A). Additional
flutter paths crossed the periphery of the zone of slow conduction and thereby
prolonged the RTT. For the slower CV of 250 mm/s, the entire zone of slow
conduction was covered by vulnerable paths yielding a total RA coverage of
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Figure 8.16: Vulnerability maps of the RA for combinations of different substrates and pharma-
cological agents. In contrast to Figure 8.15, only the ERPwasmodeled substrate-specific, thus
only considering differences in repolarization.

47.8% (Figure 8.18C). The paths were not constricted to the faster route outside
the zone as the route through the zone of slow conduction was optimal considering
the field of view of the geometrical snake. When computing an inducability map
(see Figure 8.5 and Discussion), the driving path would be running around the
zone of slow conduction, though.
The second spatial substrate modification was an ablation lesion which encircled
the RA completely from both sides of the TV (Figure 8.17B). Rather than being
a clinically used ablation pattern, this scenario serves as an example separating
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zone of slow conductionA circular ablationB ablation with gapC

Figure 8.17: Substratemodifications introduced in the RAmodel: a zone of slow conduction
(cyan in (A)), a circular ablation lesion (black in (B)+(C)), as well as a gap in the ablation lesion (C).

the RA into two electrically isolated regions. The lesion was modeled as non-
conductive, thus no flutter paths could cross it. In an additional scenario, a gap
in the ablation lesion was assumed at the central posterior wall (Figure 8.17C
and Figure 8.18E). In case of the complete lesion, no flutter paths were identified
(Figure 8.18D) as the WL condition could not be fulfilled on any of the two
separated, smaller substrates. The gap in the ablation lesion yielded numerous
vulnerable paths running through the gap at various angles (Figure 8.18E). The
flutter paths covered 42.9% of the RA in contrast to 14.1% in the control case.
The time to compute a complete vulnerability map depends on the number of
stimulus points considered and the number of loops candidates fulfilling the WL
condition over time. The computation is faster, the fewer loop candidates there are
and the earlier the constricted loops are disregarded because they no longer fulfill
the WL condition. For the RA mesh consisting of 38,033 triangles, computation
was timed on an Intel Xeon E5-2697V2 machine with twelve cores at a base clock
rate of 2.7 GHz. The control vulnerability map in Figure 8.18A with a coverage
of 14.1% was computed within 4.0 min whereas it took 5.5 min to compute the
vulnerability map for the RA including the zone of slow conduction causing a
coverage of 47.8% (Figure 8.18C).
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controlA zone, CV = 500mm/sB zone, CV = 250mm/s

ablationD

C

ablation with gapE

Figure 8.18: Vulnerability maps of the RA for different substratemodifications. Compared, to
(A), a zone of slow conduction was assumed (cf. Figure 8.17A) in (B)+(C). A circular ablation
lesion was introduced in (D) (cf. Figure 8.17B). In (E), a gap in the ablation lesion wasmodeled
on the central posterior wall (cf. Figure 8.17C).

8.2.4 Phase Extrapolation
The vulnerable paths represented in the vulnerability maps and identified using
the methods described above were extrapolated on the whole RA in terms of
phase using the methods described in Section 8.1.3. Towards this end, the eikonal-
diffusion based approach was employed. Each vulnerable path (Figure 8.19A) was
extrapolated in phase space individually (Figure 8.19B). The eikonal-diffusion
approach converged within 16 to 18 iterations for assumed CVs between 0.1× and
2× the ground truth value and assumed RTTs between 0.3× and 3× the ground
truth value.
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Figure 8.19: Individual vulnerable paths in the RA (A) were extrapolated to the whole RA
in phase domain (B) by applying the eikonal-diffusion approach with the path from (A) as a
Dirichlet boundary condition.

The phase map was then used to determine the initial state of a dynamic fast march-
ing simulation. Figure 8.20 gives an example of how the dominant path determines
the reentry driving AFlut. The reentry was initiated with the wavefront starting
from the septal side of the TV running towards the CS region (Figure 8.19B).
However, reentry around the TV could be sustained (Figure 8.20). Thus, the
wavefront passing over to the posterior wall at the junction with the inferior vena
cava (IVC) (cf. Figure 8.19B) and running upwards collided with the downwards
wave passing over at the junction of the SVC with the RAA and ceased. As the
ERP of the tricuspid valve ring (TVR) was shorter than that of the surrounding
RA myocardium (cf. Figure 8.6A), the driving reentry circle around the TVR
excited the remaining RA every other cycle (Figure 8.20A vs. Figure 8.20D).

8.3 Discussion
In this chapter, a workflow to identify vulnerable paths potentially sustaining
AFlut was presented. The approach builds on fast marching simulations of ex-
citation propagation and geometric snakes to constrict paths identified on the
basis of wavefront collision sites. Throughout the whole pipeline, heterogeneous,
anisotropic, and frequency-dependent tissue properties are considered in terms of
CV and ERP.
The fast marching simulation was verified against analytical solutions for simple
excitation patterns and against activation times determined in monodomain sim-
ulations for more complex excitation patterns and computational domains. The
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t = 407msB t = 521msC t = 568msD

t = 618msE t = 688msF t = 706msG t = 766msH

t = 325msA

unknown trial known refractory

Figure 8.20: Dynamic fast marching simulation with AFlut around the TV. Every second cycle,
tissue towards the RAAwas non-refractory (D) and excited by the dominant flutter path (E).
Wavefronts collided in the CS region (F) such that only the dominant flutter path around the TV
was still active and driving reentry (H). The blood pool is indicated in gray.

maximum error was below 5% with respect to the analytical solution for node
distances below 2.8 mm considering physiologic CVs. The implementation allows
real-time simulations of activation times for models up to 50,000 nodes on a stan-
dard desktop machine. Regarding the monodomain simulation, the deviation was
higher for high anisotropy ratios resulting in wavefronts with differing curvature.
This issue is discussed further in the Limitations section below (8.3.1).
The geometrical snake approach presented by Bischoff and Kobbelt [444, 445]
was implemented and adapted to the excitation propagation application scenario
considering heterogeneous, anisotropic, and frequency-dependent tissue prop-
erties. Applying the geometric snake approach to loop candidates identified as
circular paths from an initial stimulus point via a site of wavefront collision back
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to the initial stimulus yielded AFlut vulnerability maps. The number and the
location of the identified vulnerable flutter paths was sensitive to anisotropy (Fig-
ure 8.13), the substrate properties regarding CV and repolarization, as well as
modification of these parameters due to pharmacological compounds (Figure 8.15
and Figure 8.16), zones of slow conduction or ablation lesions (Figure 8.18), and
most importantly the assumed CV (Figure 8.14). Anisotropic substrates were
more vulnerable than isotropic tissue when matching the total activation time of
the RA due to the concentration of flutter paths along the fast-conducting bundles.
The WL is a crucial parameter as can be seen by the higher number of vulnerable
paths identified for the cAF and hERG mutated substrates compared to control.
While dronedarone reduced the AFlut vulnerability, amiodarone rendered the
substrate more vulnerable due to the reduced WL caused by the slowed CV (cf.
Figure 8.6). When only considering the effect on repolarization, thus altering
ERP to represent the influence of the drug, amiodarone exhibited antiarrhythmic
properties as well. The effect was less pronounced than for dronedarone, though.
Zones of slow conduction increased the number and the density of vulnerable
paths as the cycle length increases both by conducting through the slow zone
and by bypassing it. While ablation lesions isolating different regions completely
rendered the RA invulnerable to AF, a small gap in the lesion increased the number
of vulnerable paths threefold compared to control. This effect can be explained
by the narrow isthmus formed by the gap in the lesion. Moreover, shortcuts
leading to wavefront collision and ceasing the reentrant activation are cut off by
the lesion, thus stabilizing the reentry. The assumed CV had the biggest effect
on the number of vulnerable paths and the degree of RA coverage by them. A
CV slowing by 25% rendered an invulnerable RA model highly vulnerable with
a flutter path coverage of over 90%. This finding highlights the importance of a
reliable CV estimation to draw relevant conclusions from personalized models
using the method presented here. The CV of the individual patient has to be
measured in a spatially resolved, and preferably frequency-dependent, manner.
Weber et al. proposed a method to estimate local CV and its restitution based on
a cosine fit method [455, 456]. The advent of new electro-anatomical mapping
systems and catheters with improved signal quality, in particular the RhythmiaT M

mapping system and the OrionT M catheter from Boston Scientific, Natick, MA,
USA, as well as sophisticated signal processing approaches gives rise to hope for
such CV mapping in the near future [457, 458].
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The computation of a single activation sequence was faster than real-time, a com-
plete vulnerability map took several minutes, however. Most of the computational
cost was due to the constriction of the loop candidates using the geometrical snake
approach. While the time spent to calculate excitation propagation accounted
for only a minor share, less complex alternatives to the fast marching algorithm
exist. Graph-based approaches, such as the A∗ algorithm [161, 173, 459] or the
fastest route algorithm [460] are however only faster if the activation time at only
a subset of nodes is needed. Cellular automata (e.g. [461]) on the other hand
do not consider quadratic approximation of activation times. The computational
complexity of the geometrical snake implementation could be reduced by op-
timizing the number of neighbors considered for the calculation of the snaxel
velocity (Equation (8.7)) and the convergence criteria. Indeed, the approach con-
sidering N = 30 neighbors with decreasing weight could be approximated by a
spatial multi-grid approach starting with distant neighbors in early iterations and
focussing on closer nodes at later iterations. When aiming at an interactive modi-
fication of the substrate, e.g. by introducing virtual ablation lesions, results from
previous evaluation can be reused for regions not affected by the last modifica-
tion. Moreover, intermediate results could be precomputed, thus trading memory
footprint in for reduced computation time. This potential for optimizations makes
interactive assessment of ablation therapy in almost real-time seem achievable.
While several other studies mentioned in the introduction of this chapter assessed
ablation patterns regarding the prevention or termination of AF, this is the first
work to assess the vulnerability to AFlut based on an individualized anatomical
model besides a very recent work by Zahid et al. with substantially increased
computational effort [440] to the best of my knowledge (see also review in [11]).
Child et al. introduced the reentry vulnerability index (RVI) as a quantitative
metric based on the difference between activation and repolarization intervals at
pairs of spatial locations [462]. The RVI correlates with exit sites of scar-related
reentrant arrhythmia as commonly observed in the ventricles [463]. However, it
aims at predicting functional lines of block rather than providing a comprehensive
map of vulnerable paths based on the individual geometrical properties. The same
holds for a study by Wallman et al. quantifying the arrhythmogeneity of scar and
left-to-right heterogeneity in the ventricles [464].
Lines et al. proposed a method to replicate clinically mapped atrial tachycardias
in silico [442]. Trächtler et al. used the fast marching implementation presented
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here for a similar in silico reproduction of clinical cases [465, 466]. While both
methods allow to test ablation strategies regarding the termination of the specific
reentry, they do not allow to draw conclusions regarding the vulnerability to AFlut
along other paths. Thus, these approaches do not provide the means to optimize
AF ablation aiming at the prevention of post-ablational AFlut.
The method presented here could be further developed regarding two aspects.
First, the extrapolated phase map obtained by the eikonal-diffusion approach
could not only be used to initialize a fast marching simulation but also to replicate
the flutter path in a monodomain simulation. Matene et al. proposed a suitable
approach [290], which they used to initiate AF by extrapolating phase singulari-
ties [467, 468]. By initiating the same flutter loop in both the fast marching and
the monodomain environment, the fast marching approach could be validated with
respect to macro-reentry. Second, the dominant flutter paths sustaining reentry
in the dynamic simulations could be tracked and compared to the paths used to
extrapolate the initial state. In this way, not only a map of vulnerable flutter paths
but also a map of inducible flutter paths could be computed.
The complete pipeline could be validated using clinical cases once tools for a
spatially resolved CV estimation become available. The anatomical model of
the individual patient built from MRI data would be augmented with a priori
knowledge and LA breakthrough measurements using the methods presented in
Chapter 7. CV and ERP would be parametrized using intracardiac measurements
complemented with model-based assumptions. Preferably, the subjects should be
recruited from patients undergoing ablation of AFlut that developed after AF abla-
tion. If a gap in the ablation lesion is identified during the second procedure, the
lesions placed during the AF ablation procedure as well as the gap in it would be
included as further a priori knowledge. The clinically observed flutter path should
then be found in the vulnerability (and potentially inducability) map. Moreover,
the ablation terminating the flutter in the clinical setting should also remove the
specific vulnerable path from the map.

8.3.1 Limitations
The implementation of the fast marching algorithm used in this work does con-
sider anisotropic CV but does not consider recursive anisotropic correction as
proposed by Sermesant et al. [176]. In [162], the authors of [176] showed that
the computation time is higher by a factor of ≈1.6 when considering anisoptropic
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Figure 8.21: Limitation of geometrical snakes concerning biatrial loops. While a shortcut
between the two purple stars exists (dashed green line), the snake cannot constrict further and
remains on the dotted orange line due to the discrete IACs.

correction. While the influence of the anisotropic correction has never been evalu-
ated systematically, it should not be too relevant for moderate anisotropy values.
For the application presented in this chapter, subtle differences of the activation
sequence do not play a role for the final result as fast marching activation times
serve only as the input for subsequent processing.
Another limitation of the presented method is that it is restricted to monoatrial
flutter paths. The reason for this can be seen in Figure 8.21 in which a biatrial
loop candidate was constricted using the geometrical snakes approach. While
a shortcut within the LA exists, it cannot be considered by the snake as it is
constrained by the IACs and can thus not cross the septum. However, the method
could be extended to identify shortcuts within the two atria by also considering
monoatrial loops in addition. The final constricted biatrial loop could be used to
initialize additional monoatrial loops comprising the segment of the biatrial loop
and shortest connection between the two open ends at the IACs. When computing
inducability maps instead of vulnerability maps, this limitations is not relevant
since reentry along a loop as in Figure 8.21 could not be induced if it could not be
induced as a monoatrial loop as well.
Regarding the dynamic simulation of AFlut, the missing representation of elec-
trotonic coupling is a limitation. A situation as depicted in Figure 8.20 with a
consistent 2:1 conduction pattern would hardly be possible in a monodomain
simulation. The longer action potentials (APs) of the RA tissue surrounding the
TVR would delay repolarization and recovery from refractoriness of the TVR
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myocytes. The driving flutter path around the TV would thus be slowed resulting
in a 1:1 conduction pattern, eventually.
The biggest hurdle is the sparsity of the available clinical data to characterize an
individual’s substrate and the associated uncertainty. The importance of a reliable
CV estimation is highlighted by the fact that a CV uncertainty of ∆c corresponds
to scaling of the atrium by a factor of

√
∆c. Considering that the minimal WL

needed to sustain reentry is defined by the product of CV and ERP, uncertainty
of ERP plays an important role as well [469, 470]. Improved electro-anatomic
mapping systems providing better signal quality and simultaneous mapping using
a multitude of electrodes, as well as advanced signal processing methods make it
seem probable to have suitable data available in the near future. Moreover, the
uncertainty in the data can be taken into account by probabilistic modeling using
Bayesian inference and compressed sensing methods [471].

8.3.2 Conclusion
In this chapter, a comprehensive method to analyze the vulnerability to AFlut was
presented. The individual anatomy as well as electrophysiology in terms of CV,
ERP, and their frequency-dependence was taken into account. This tool provides
the means to evaluate potential ablation strategies in silico regarding their arrhyth-
mic potential for AFlut before actually applying them in the electrophysiology
lab. In this way, this work can be one piece in the puzzle to overcome the learning
by burning paradigm [472, 473] and eventually reduce the number of patients
suffering from post-ablational AFlut.
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UNDERSTANDING THE
BODY SURFACE P-WAVE





CHAPTER9
Contribution of the Left and the

Right Atrium to the P-Wave
As outlined in Chapter 2, atrial rhythm disorders are progressive diseases. Thus,
they are more likely to be treated effectively, the earlier they are detected. In
the best case, patients at risk to develop atrial rhythm disorders can be identified
before the onset of the arrhythmia. Adequate preventive measures can then prevent
or at least postpone the outbreak in a large share of patients.
The P-wave in the body surface electrocardiogram (ECG) has long been used to
gain insight into anatomy, function and dysfunction of the atria [474, 475]. As
a 12-lead ECG is routinely acquired non-invasively as part of a large number of
examinations, ECG-derived measures represent ideal risk markers due to their
availability and low associated costs [476]. These properties render ECG-based
markers more attractive than alternatives like ultrasound, magnetic resonance
imaging (MRI), electroanatomical mapping, or ECG imaging. Therefore, clini-
cians aim to stratify arrhythmia risk based on P-wave markers [477, 478]. The
assessment of morphological features of the P-wave is recommended in current
guidelines for ECG interpretation [479] regarding the diagnosis of atrial abnor-
malities such as left or right atrial enlargement. The anatomy and physiology of
the left atrium (LA) are of particular interest regarding the risk to develop atrial
fibrillation (AF).
Nevertheless, we are lacking mechanistic understanding of left and right atrial
contribution to the P-wave to date despite a multitude of empirical studies correlat-
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ing P-wave features with properties of the LA and right atrium (RA) [480–482].
Some literature sources state that the P-waves originating from left and right atrial
sources are almost simultaneous, thus fused into a single peak [479]. Others argue
that the left and right atrial P-wave can be almost perfectly separated in the time
domain due to the delayed activation of the LA [483]. The question which parts
of the atria contribute to the P-wave during different temporal phases and the
projection onto different leads is of great importance to evaluate the theoretical
limits regarding the diagnostic potential of specific P-wave markers. Even though
many aspects of AF induced remodeling affect atrial repolarization, which is re-
flected in the atrial T-wave not normally visible in the ECG, anatomical alterations,
fibrosis and gap junction remodeling can potentially be reflected in the P-wave.
Thus, the answer to the aforementioned question will foster our understanding
and eventually help to identify patients at risk early before severe remodeling sets
in. Optimized preventive and therapeutic measured can then relieve part of the
burden related to atrial arrhythmias from both patients and healthcare system.
The study presented in this chapter uses an in silico approach to separate the
contributions of the LA and the RA to the P-wave in a perfectly controlled en-
vironment. The analysis is conducted on a population of eight individualized
anatomical models.
The P-wave was investigated in silico in several aspects before. A double layer
can serve as a source model for the P-wave as shown in [484], however anisotropic
conductivity tensors are required [485]. While Lu et al. presented a reasonable
P-wave obtained using a generic, homogeneous thorax model [486], other studies
showed that at least the blood and the lungs with their respective properties need to
be considered [177, 487]. Colman et al. analyzed the effect of acetylcholine on the
P-wave using a detailed cellular model and a simplified torso [488] and assessed
the accuracy of a clinically used algorithm to locate atrial focal points [489]. In
contrast to all aforementioned studies, Krueger et al. conducted finite element
computations instead of using the boundary element method to investigate P-wave
genesis and alterations related to hemodialysis [23, 490]. Several computational
studies assessed P-waves during AF [491–494], however I am not aware of any
work distinguishing between right and left atrial contribution besides two very
recent studies [495, 496] published after the results of this study were submitted
as a conference paper [497].
Parts of this work have been published as a conference contribution [497] and
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Table 9.1: Characteristics of the eight patients and volunteers (subjects) used to build the in
silicomodels. Abbreviations: Heart rate (HR), control (Ctl), long-QT syndrome (LQT).

Subject #1 #2 #3 #4 #5 #6 #7 #8
Age (years) 47 19 26 50 27 25 38 66
Weight (kg) 52 66 79 79 100 70 90 100
Diagnosis Ctl LQT2 Ctl LQT1 Ctl Ctl Ctl AF
HR (1/min) 81 76 69 62 70 53 86 62
PWD (ms) 95 95 107 91 103 97 99 176
RA blod volume (ml) 98 52 117 88 132 99 72 155
LA blod volume (ml) 55 27 63 79 81 87 53 136
RAmyocardium (1×103mm3) 26 12 27 38 52 21 36 38
LAmyocardium (1×103mm3) 19 10 25 32 26 19 29 34

are currently under review [498] as a journal paper and a conference contribu-
tion [499].

9.1 Methods
9.1.1 Cohort of AnatomicalModels
In earlier work [23, 183], anatomical models of eight individuals were constructed
at IBT based on magnetic resonance images. The MRI studies were approved by
the institutional review boards of the centers where the data were acquired and
participating patients and volunteers gave informed consent. The study population
characteristics are summarized in Table 9.1. The imaging data were segmented
using a combination of automatic and manual approaches [183]. For the atrial
wall, a homogeneous thickness of 2.5–3 mm had to be assumed due to the poor
MRI contrast. The segmented atria were then converted to a structured grid
with an isotropic voxel resolution of 0.33 mm resulting in between 5.4×105 and
2.6×106 elements for excitation propagation simulations. The segmented torsos
were converted to a tetrahedral mesh using the CGAL library [500] resulting in
between 1.1×106 and 2.9×106 elements.
These existing volumetric bi-atrial models were augmented with tissue labels as
a basis for a heterogeneous electrophysiological model and myocyte orientation
allowing for anisotropic conduction using the approach described in Chapter 7.
In order to control right-to-left atrial conduction, the initially isolated atria were
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Table 9.2: Relative values ĝx of ion channel conductivities representing regional hetero-geneities [158] with respect to the original Courtemanche et al. model of human atrial my-
ocytes [49]. Monodomain conductivity perpendicular to myocyte orientation σ⊥ with relationto theworkingmyocardium (87mS/m) and anisotropy factor. Italic values differ from normal
myocardium.

Anatomical structure ĝKr ĝto ĝCa,L σ⊥/σ⊥,RA/LA (%) anisotropy
RA / LA 1.0 1.0 1.0 100 3.75
Crista Terminalis 1.0 1.0 1.67 100 6.56
Atrial appendages 1.0 0.68 1.06 100 3.75
Atrio-ventricular rings 1.0 1.53 0.67 100 3.75
Pectinatemuscles 1.0 1.0 1.0 66 10.52
Bachmann’s Bundle 1.0 1.0 1.0 116 9.0
Inferior isthmus 1.0 1.0 1.0 86 1.0

connected via four discrete interatrial connections (IACs): Bachmann’s bundle
(BB), middle posterior connection (MPC), lower posterior connection (LPC), and
at the coronary sinus (CS) [32, 33].

9.1.2 ElectrophysiologicalModeling
Ionic currents in the voxels representing atrial myocytes were computed using
a heterogeneous version of the Courtemanche et al. membrane model [49, 158].
As introduced in Section 3.1, the ion currents are calculated according to Ohm’s
law by multiplying the difference between the transmembrane voltage Vm and the
respective Nernst potential EX with the maximum conductivity gX and the open
probability of the channel. Based on prior work [158], the maximum conductivi-
ties gX of several channels were altered by multiplication with a factor ĝX as given
in Table 9.2 to account for regional heterogeneity.
Besides maximum ion channel conductivities, also monodomain tissue conductiv-
ity and its anisotropy regarding myocyte orientation was modeled heterogeneously
according to Table 9.2. After initialization of the cell models in a single cell
environment to establish steady-state, stimulation was triggered from the junction
of the superior vena cava (SVC) and the right atrial appendage (RAA) (cf. EAS3
in Section 10.1). Excitation propagation was calculated by the monodomain
reaction-diffusion solver acCELLerate [169, 170] using a finite element method
on regular hexahedral grids and explicit Euler integration with constant time
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Table 9.3: Characteristics of the simulated P-waves using the eight in silicomodels and excita-
tion origin at the junction between the superior vena cava and the right atrial appendage (cf.
EAS3 in Section 10.1).

Model #1 #2 #3 #4 #5 #6 #7 #8
PWD (ms) 91 76 83 87 100 105 78 112
Max. amplitude lead II III II II V1 II II II
Amplitude II (mV) 0.26 0.14 0.18 0.22 0.35 0.22 0.27 0.18
Axis α (◦) 73.1 65.0 66.9 65.2 60.3 77.7 64.5 71.0
Positive I √ √ √ √ √ √ √ √

Positive II √ √ √ √ √ √ √ √

Negative aVR √ √ √ √ √ √ √ √

Monophasic I √ √ √ √ √ x √ √

Biphasic V1
√ √ √ x √ x √ x

stepping of 20 µs.
The sources of the extracellular potential within the torso and on the body surface
that are measured during ECG acquisition are the impressed currents stemming
from the gradient of Vm as introduced in Section 3.4. These currents were masked
in order to separate the LA from the RA P-wave. In order to obtain the parts of
the P-wave stemming from the RA, the sources in the LA were muted by setting
σi∇Vm to 0 in all LA elements and vice versa. The conductivity tensors σ were
set according to the data by Gabriel & Gabriel [501] and the reduced bidomain
formulation (Section 3.4, [177]) was solved with a temporal resolution of 1 ms
once for the LA sources and once for the RA sources. Thanks to the linearity of
the problem, the regular P-wave could be obtained by the superposition of the LA
and the RA P-waves. The vectorcardiogram (VCG) was derived from the 12-lead
ECG using the inverse Dower matrix [61]. The electrical axis of the atria α was
calculated using the P-wave amplitudes in leads aVF and I:

α = arctan
(

2√
3

aV F
I

)
(9.1)

9.2 Results
Figure 9.1 shows the activation time maps yielded by the monodomain simu-
lations. After the stimulus at the junction between the SVC and the RAA, the
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A B

0 ms

107 ms

Figure 9.1: Local activation times resulting from the excitation propagation simulation using
model #5. Excitation originated from the junction of the SVC and the RAA indicated by the
yellow star. Anterior view in (A), posterior view in (B).

excitation spread predominantly along the fast conducting bundles, such as the
crista terminalis (CT). The last elements were activated 76–112 ms after the
stimulus. The characteristics of the resulting P-waves are given in Table 9.3. The
P-wave duration (PWD) differed by between ±25 ms between the measured and
the simulated P-waves for subjects #1 to #7 with a mean PWD of 91.5 ms in the
simulations. The fact that no patient-specific substrate model was employed in
this study explains the shorter simulated P-wave for the AF subject #8 (–64 ms).
Potential AF-induced conduction slowing was not included in the model because
the focus of this study was on inter-individual anatomical rather than electrophys-
iological differences. The P-waves in Einthoven leads I, II were upright in all
models and negative in Goldberger lead aVR. In Wilson lead V1, the P-wave
was biphasic for all models except #4, #6, and #8 for which no significant initial
positive phase was present.
As an example, the simulated 12-lead ECG and VCG signals are shown for model
#5 in Figure 9.2A. No filters were applied to the simulated signals. Common
filters used in clinical ECG systems did not affect the simulated P-wave morphol-
ogy significantly, though (data not shown). Comparing the simulated with the
measured signal (see Figure 9.2B) shows fair correspondence. It has to be kept in
mind that the computational model was only personalized in terms of anatomy and
not in terms of electrophysiological properties. Despite gross correspondence, the
polarity in lead aVL is different as well as the morphology in VCG lead X, which
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Figure 9.2: ECGs obtained through simulation usingmodel #5 (A) andmeasurement in subject
#5 (B). The iso-potential line is indicated by a thin grey line. In (A), the blue traces correspond
to the right atrial P-wave whereas the the red ones stem from sources in the LA. LA and RA
P-waves add up to the regular P-wave represented by the black traces.

was biphasic in the simulation but not in the measurement. The high amplitude of
the positive phase in lead V1 is caused by the depolarization of the RAA, which is
oriented almost perpendicular to the sternum, thus in line with V1, and close to
the chest (Figure 9.3). Hence, the activation of the RAA caused a high positive
signal amplitude in V1 with a sharp drop once the RAA was fully activated.
The separate contributions of the LA and the RA can be seen in Figure 9.2A, e.g.,
and are summarized for the whole cohort of models using the P-wave area in lead
II in Figure 9.4. The median contribution of the RA to the P-wave integral was
79% and thus much larger than that of the LA (24%). The RA and LA values do
not add up to 100% due to the non-linearity of the median operator. Looking at
the different temporal phases of the P-wave separately reveals that the first third
was dominated by RA sources in all models. The LA contributed with only 6% to
the P-wave integral of that phase. For the second and last temporal third, the LA
share was 30% and 34%, respectively. Considering the different ECG and VCG
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superior view frontal view

-80mV +5mV

A B

Figure 9.3: Superior (A) and frontal (B) view of the Vm distribution of the atria embedded inthe semi-transparent torso of model #5 at 43ms after the initial stimulus corresponding to
the time of themaximum signal downslope at the transition from the positive to the negative
phase in lead V1 in Figure 9.2A. The RAA is aligned with the axis fromV1 toWilson’s centralterminal and close to the chest as can be seen in the superior view (A). Thus, the activation of
the RAA causes the high positive signal amplitude in V1 with a sharp drop once the RAA is fullyactivated.

leads separately (Figure 9.5) reveals that the RA P-wave was strongest projected
onto Einthoven lead II, while the LA P-wave was most pronounced in Wilson
lead V2. The RA P-wave dominated strongest in lead III with the median RA/LA
P-wave area ratio being 3.3. The relative share of the LA was biggest in lead I in
which the signal was however still dominated by the RA with a median factor of
1.1.

9.3 Discussion
In this study, a cohort of eight anatomically personalized models comprising
both atria and the subject’s torsos was used to gain insight into the genesis of the
P-wave with a particular focus on the distinct contributions of the two atria. The
in silico approach employed gave the unique opportunity to separate the P-waves
stemming from the RA and the LA, which is not possible in vivo.
The LA share of the P-wave integral of absolute values (P-wave area) was between
19% and 51% with a median value of 24% in this study. These results are in
line with a recent study using a dipole-current source approach [495] published
after the results of the study presented here were submitted as a conference con-
tribution [497]. The signal originating from the LA was small and the P-wave
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Figure 9.4: Contribution to the entire P-wave area in lead II separated by the two atria and
three temporal phases. The regular P-wave (black) is composed of sources in the RA (blue) and
LA (red). The entire P-wave duration (left column in each group) is composed of three temporal
thirds (columns 2, 3, 4 in each group). Cubic splines were used to interpolate the time course of
themedian values during the three temporal thirds. Box plots represent n=8models; values
were normalized for eachmodel.

was mostly dominated by the RA even during late phases of the P-wave (cf. Fig-
ure 9.4), which is in line with the very sparse experimental data [502]. The fact
that LA sources do interfere with RA sources during the whole P-wave and that
the P-wave is mostly dominated by RA sources explains some of the difficulties
experienced in P-wave-based LA assessment [479, 503–508]. This is reflected
in current guidelines [479] by the recommendation to only diagnose a left atrial
abnormality (LAAb) and restrain from diagnosing a specific abnormality.
The P-waves obtained using the computational models and their derived indices
were within the clinically observed ranges [509, 510]. Comparison of the simu-
lated with the measured P-waves showed gross correspondence, particularly when
considering that the impact of differences beyond anatomical variability of the
atria and the torso variability was not included in the models. In particular, electro-
physiological variability in terms of intrinsic inter-individual variability, disease
related remodeling, as well as variability of conduction velocity and its anisotropy
were not accounted for. The modeling approach focussing on the influence of
gross anatomical variability did not reproduce the considerably longer measured
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(P-wave area), which were normalized to the maximum lead in the regular P-wave for each
model (V1 for #5, II for all other models). Values for the LA and the RA add up to the value forboth atria.

PWD for the AF subject #8 because the potentially AF-remodeled substrate was
not considered in the simulation. On the other hand, the chosen approach allowed
to focus on the variability in the P-wave and related markers solely induced by
anatomical differences in a controlled environment without additional influencing
factor. Therefore, the fact that subject #8 had the largest LA did translate to the
longest simulated PWD in the model cohort. The remaining seven subjects had
structurally healthy atria.
Lemery et al. performed a simultaneous mapping and ECG study in 35 patients
with a history of symptomatic AF [502]. Earliest LA activation was conducted
via BB at 31±13 ms after earliest activation of the RA in 31 of the 35 patients
and via non-specified IACs in the four remaining patients. These results are in
line with the simulation results for common sites of earliest activation (cf. EAS3
to EAS5 in Section 10.1). The tendency towards later activation in the measure-
ment can be explained by potential AF-induced conduction slowing in the study
population. While Lemery et al. did annotate a standard P-wave with activation
times of anatomical structures in the RA and the LA, they could not distinguish
the contributions of simultaneously activated regions and thus not establish a clear
separation of RA and LA sources.
After the results of this study were published in a conference paper, Ferrer et
al. conducted a finite element modeling study using a detailed atrial and thorax
model [496]. Their results show gross correspondence to the results presented
here, particularly regarding lead V1, which plays an important role in the next
chapter. In Einthoven lead II, their left and right atrial P-waves are somewhat
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more distinct in the time domain, which might be explained by their choice of
IACs. Only the CS connection and BB were included and BB touched on the LA
more distant to the septum than in our model. The contribution to the P-wave was
further differentiated by separating 21 distinct regions. The main contributors in
the RA were the RAA, the lateral wall and the right atrial septum. In the LA, the
LAA and the posterior wall contributed to the largest extent.
In the study presented in this Chapter, the Courtemanche et al. cell model [49]
was chosen for the computation of ion kinetics because of its suitability proven in
a benchmark [156]. The heterogeneous variants of the Courtemanche et al. model
caused regional differences (heterogeneity) in the action potential (AP) plateau
and early repolarization. These were reflected in ECG signals deviations from zero
after the end of the P-wave in the PQ-segment particularly in the precordial leads.
This phenomenon was described before both for clinical measurements [511] and
in computer simulations [512, 513].

9.3.1 Limitations
The size of the virtual cohort of n=8 models is small compared to most in vivo
studies. However, a model population carries a significant advantage over using a
single model result: the effect of characteristics specific to a single subject can be
minimized by assessing a distribution of results. The results for models #2 and
#8 that deviate from the other six models highlight that the evaluation of a single
model may be misleading. As a lot of modeling studies base their conclusions on a
single anatomical model [484, 486–488, 490–494, 514] or two models [515], the
virtual cohort of eight models is an important step forward and larger than most in
silico cohort with only few exceptions for ventricular studies (e.g. [516, 517]) and
even fewer for applications in the atria [23, 438, 440, 518]. Considering that only
anatomical variability of the subjects used to build the models was considered
in this study gives confidence that the study cohort covers a good share of the
general population’s variability.
The P-wave amplitude in the simulations was larger than in the measured signals,
particularly in leads V1 and V2 in model #5. This effect might be due to an
overestimation of the extent of fast-conducting bundles in the RA, which were
introduced by the rule-based algorithm outlined in Chapter 7. Another possible
source of error is the assumed homogeneous wall thickness that might lead to an
over- or underestimation of RA myocardial mass, particularly in the RAA causing
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the high positive amplitude in leads V1 and V2. In addition, the intracellular
and extracellular conductivities carry uncertainty [177, 519]. Moreover, subject
#5 had the largest RA in the cohort in terms of myocardial wall volume. Thus,
the results regarding the relative contribution of the LA and the RA should not
be compromised by the variability in P-wave amplitude that can be attributed to
variability in myocardial volume and the proximity of the atria to the precordial
wall.

9.3.2 Conclusion
While markers based on the P-wave in the ECG carry the great advantage of being
routinely acquired due to the non-invasiveness and the low associated costs, the
findings of this study highlight important limitations. The results obtained in the
cohort of eight in silico models suggest that the contribution of the LA to the
P-wave is less than one third. Also a temporal discrimination was not possible
to the extent described in some textbooks which attribute the last temporal third
of the P-wave almost exclusively to the LA [510]. LA activation was reflected
in the middle third of the P-wave to the greatest extent rather than the terminal
third. The domination of the P-wave by sources from the RA helps to understand
the difficulties experienced in P-wave-based assessment of the LA [479, 520].
In conclusion, this study fosters our understanding of P-wave genesis and the
spatio-temporal projection of atrial activation on the body surface potentials.
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CHAPTER10
Effect of Earliest Activated Site
and Interatrial Connections

P-wave morphology in the body surface electrocardiogram (ECG) has been shown
to correlate with the risk to develop atrial fibrillation (AF) empirically [39, 73,
521]. In particular, P-wave terminal force in lead V1 (PTF-V1) has been suggested
as a surrogate marker [475, 522]. A possible mechanism linking elevated PTF-V1

and the higher AF risk is left atrial enlargement (LAE). However, this link could
not be established mechanistically and, most importantly, the sensitivity and speci-
ficity of the marker is unsatisfying [505]. Therefore, an additional contributor is
analyzed in this study by testing the hypothesis that the location of the excitation
origin (the earliest activated site (EAS) in the right atrium (RA)) and its relative
proximity to conducting interatrial connections (IACs) influences PTF-V1 to a
significant extent.
The EAS corresponds to the location where the atrial myocardium captures the
stimulus generated by the sinus node (SN). The EAS is known to express signifi-
cant variability both between individuals and over time within an individual [39]
influenced by e.g. the degree of vagal stimulation. The IACs vary as well tremen-
dously in terms of their presence, location, and conductive properties [32].
In this study, the influence of the EAS and the presence / intactness of the posterior
IACs on PTF-V1 is analyzed using the virtual cohort of anatomically individu-
alized computational models introduced in the previous chapter. Nguyên et al.
recently investigated the effect of the position and orientation of the ventricles
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Figure10.1: Positionof the earliest activated sites EAS1 toEAS7 in theRAexemplary visualized
on bi-atrial model #5. Anterior view in (A), posterior view in (B). Besides the EAS, RAA, LAA, TV,
MV, SVC, IVC, left (L) and right (R), superior (S) and inferior (I) pulmonary veins (PV), CT and BB
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on ECG morphology using computational models of two subjects [515]. While
the genesis of the P-wave and the effect of different influencing factors have been
studied in silico before as described in Chapter 9, the effect of a shift of the EAS
and its relation to the conductive properties of the IACs has not been studied
before.
Parts of this work are currently under review as a journal paper [498] and a
conference contribution [499].

10.1 Methods
This study was conducted using the set of eight anatomical models introduced in
Chapter 9. Excitation propagation was triggered from different positions on the
epicardial surface around the SN region along the CT to study the effect of a shift
of the EAS caused by e.g. effects mediated by the autonomic nervous system [39].
EASs ordered from anterior/superior positions to more posterior/inferior positions
were defined as follows (see Figure 10.1): EAS1 was located midway between
the tip of the RAA and its junction with the SVC, EAS2 at the superior part of the
anterior wall, and EAS3 at the junction of the RAA and the SVC. EAS4 to EAS7
were uniformly distributed along the CT between EAS3 and the junction of the
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IVC and the RA (EAS7).
The standard setup comprised four IACs (BB, coronary sinus (CS), middle poste-
rior connection (MPC), and lower posterior connection (LPC)). Because the two
posterior connections (MPC and LPC) are known to be fragile [32], they were
modeled non-conductive in a second set of simulations (see Figure 10.1B).
The P-waves obtained through monodomain simulations and subsequent forward
calculation of the ECG as described in Chapter 9 were analyzed on the body
surface potential map (BSPM) and the ECG level. Two variants of P-wave ter-
minal force in lead V1 were employed: the classical definition by the product of
the duration and the amplitude of the negative P-wave as proposed by Morris et
al. [475] (referred to as PTF) and the integral of the negative P-wave (referred to
as PTFintegral). PTFintegral was calculated as the sum of signed values of the re-
spective part of the P-wave multiplied with the time between samples. Beginning
and end of the P-wave as well as its negative part were annotated manually.

10.2 Results
10.2.1 ECGMorphology Analysis
The general properties of the simulated P-waves considering all four IACs and
EAS3 corresponding to the site where the SN is modeled most often were already
presented and discussed in Chapter 9 (see particularly Table 9.3 and Figure 9.2).
The influence of a shift of the EAS on the ECG signal in Wilson lead V1 is shown
in Figure 10.2A for model #5. Looking at the regular P-wave stemming from
both atria, the amplitude of the first (positive) phase increased monotonically
from EAS1 to EAS3 and declined monotonically from EAS3 to EAS7. The
driver of this effect was the RA which contributed almost exclusively to that
phase. The P-wave integral BSPM (see Figure 10.2D for model #5) revealed a
counter-clockwise rotation of the iso-potential line for EAS2 to EAS7.

10.2.2 Left Atrial Breakthrough
Earliest LA breakthrough was conducted via BB in most cases as can be seen
in Figure 10.3A and detailed in Table 10.1. Later, secondary breakthrough via
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Figure10.2: P-waves in ECG leadV1 (A-B) and body surface potential integralmaps (D) inmodel#5 for varying earliest activates sites EAS1 to EAS7 in the RA. The left (red) and blue (right)
atrial P-waves add up to the regular P-wave represented by the black traces. The iso-potential
line is indicated by a thin grey line. Four IACswere present in (A), whereas the two posterior
connections (MPC and LPC) were non-conductive in (B). The difference of ECGs caused by the
non-conductive posterior IACs shown in (C) reveals that only the LA P-wave is affected and a
more pronounced effect for more inferior EASs. The dashed line in (D) indicates the perceived
iso-potential line, which rotates counter-clockwise from EAS1 to EAS7.

posterior IACs or the CS occurred in most cases. The more the stimulus site was
shifted from EAS3 towards EAS7 (inferior), the more often the posterior IACs
were the path via which earliest LA breakthrough was conducted. Breakthrough
via the CS was also observed more frequent and more early for more inferior
EASs: no CS breakthrough for EAS1 to EAS3 vs. CS breakthrough in seven
out of eight models for EAS7. Regarding EAS more inferior than EAS3 (EAS4
to EAS7), earliest breakthrough was conducted via a posterior IAC in three to
seven out of eight models. For EAS7, earliest breakthrough occurred via the LPC
in three models and the MPC in the remaining five models. In model #8 with
the largest atrial volume, earliest breakthrough occurred via a connection other
than BB only for EAS7. The anatomical properties of model #2 impeded CS
breakthrough for all EASs.
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Table 10.1: Interatrial connections conducting LA breakthrough for simulations with varying
earliest activated sites EAS1 to EAS7 in the RA. For the IACs via which breakthrough occurred,
the time is given.

Model #1 (ms) #2 (ms) #3 (ms) #4 (ms) #5 (ms) #6 (ms) #7 (ms) #8 (ms)
EAS1 BB: 29 BB: 31 BB: 34 BB: 31 BB: 33 BB: 28 BB: 27 BB: 25

MPC: 46 MPC: 42 MPC: 46 MPC: 43 MPC: 56 MPC: 46 MPC: 62
EAS2 BB: 9 BB: 11 BB: 13 BB: 8 BB: 7 BB: 8 BB: 13 BB: 8

MPC: 25 MPC: 23 MPC: 26 MPC: 22 MPC: 31 MPC: 48 MPC: 30
EAS3 BB: 18 BB: 19 BB: 20 BB: 22 BB: 19 BB: 18 BB: 26 BB: 16

MPC: 32 MPC: 31 MPC: 32 MPC: 28 MPC: 35 MPC: 26 MPC: 42
EAS4 BB: 26 BB: 25 MPC: 28 MPC: 27 BB: 27 MPC: 28 BB: 31 BB: 21

MPC: 35 MPC: 33 BB: 29 BB: 30 MPC: 35 BB: 29 MPC: 44 MPC: 42
CS: 65

EAS5 BB: 35 BB: 31 MPC: 28 MPC: 30 BB: 34 MPC: 32 BB: 39 BB: 27
MPC: 40 MPC: 33 BB: 36 BB: 36 MPC: 36 BB: 38 MPC: 44 MPC: 41

CS: 75 CS: 63 CS: 69 CS: 81 CS: 56
EAS6 MPC: 41 MPC: 35 MPC: 30 MPC: 33 MPC: 36 MPC: 35 MPC: 40 BB: 34

BB: 45 BB: 37 BB: 43 BB: 44 BB: 41 BB: 45 BB: 48 MPC: 39
CS: 71 CS: 71 CS: 55 CS: 62 CS: 74 CS: 96 CS: 50

EAS7 LPC: 45 MPC: 38 MPC: 35 LPC: 37 MPC: 33 LPC: 36 MPC: 37 MPC: 33
BB: 57 BB: 42 BB: 53 BB: 52 BB: 48 BB: 57 BB: 60 BB: 39
CS: 59 CS: 60 CS: 47 CS: 55 CS: 61 CS: 84 CS: 45

10.2.3 P-Terminal Force in Lead V1
Two variants of P-wave terminal force in lead V1 were evaluated: the classical def-
inition using the product of the duration and the amplitude of the negative P-wave
phase (PTF-V1, Figure 10.4A) and the integral of that phase (PTFintegral-V1, Fig-
ure 10.4B). The highest absolute values for both measures were observed for EAS1
on the superior part of the anterior RA caused by a short initial positive P-wave
deflection followed by a longer negative phase (see e.g. Figure 10.2A). Median
PTF-V1 was –20.0 mVms for EAS1; median PTFintegral-V1 was –9.4 mVms. The
EASs on the posterior wall of the RA (EAS2 to EAS7) yielded a U-shaped PTF-V1

curve with median absolute values increasing from the center of the RAA (EAS2:
–8.3 mVms) via the junction of the SVC and the RAA (EAS3: –14.0 mVms)
down the CT (EAS4: –15.6 mVms, EAS5: –16.1 mVms). For more inferior
EAS, PTF decreased again in terms of absolute values (EAS6: –13.0 mVms) up
to –8.7 mVms for EAS7 located at the junction between the IVC and the RA.
Looking at the integral instead of the product of the duration and the maximum
amplitude yielded a qualitatively similar curve. The absolute values were smaller
by an average factor of 2.1 as expected for approximately sinusoidal negative
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Figure 10.3: Distribution of the IAC conducting the earliest LA breakthrough for varying
earliest activated sites EAS1 to EAS7 in the RA in themodel population (n=8). In (A), four IACs
were present, whereas the two posterior IACs (MPC and LPC) were non-conductive in (B).

P-wave terminals. However, the intermodel variability was significantly smaller
for PTFintegral than for PTF. All outliers and most of the whiskers in the box plots
in Figure 10.4A+B were caused by models #2 and #8. Model #2 was the smallest
in terms of RA and LA blood volume and showed an almost linear decrease of
PTF-V1 from –0.9 mVms for EAS1 to –7.4 mVms for EAS7. Model #8 (being the
largest model in the cohort) on the other hand showed the reverse behavior with a
decrease in terms of absolute values from –22.0 mVms for EAS1 to –8.5 mVms
for EAS7.

10.2.4 Influence of Posterior Interatrial Connections
The posterior IACs were modeled as non-conductive in a second set of simulations.
This was reflected in the fact that earliest LA breakthrough was always conducted
via BB (see Figure 10.3B). BB and CS breakthrough times given in Table 10.1
were unaffected by non-conductive posterior IACs, breakthrough via the posterior
IACs did not occur as a matter of course.
The part of the P-wave originating from sources in the LA was affected by the
absence of the posterior IACs for EAS3 to EAS7 (see Figure 10.2B+C). While
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Figure 10.4: P-wave terminal force (PTF-V1, (A+C)) and P-wave integral terminal force(PTFintegral-V1, (B+D)) for varying earliest activated sites EAS1 to EAS7 in the RA. In (A+B),four IACswere present, (C+D) show the difference when the two posterior connections were
non-conductive. Note the different scales of the panels.

the morphology regarding the polarity and the number of phases was not affected,
the amplitude was altered. Taking into consideration the comparatively small
contribution of the LA to the overall P-wave shown in Chapter 9, the effect on
PTF-V1 (Figure 10.4C) and PTFintegral-V1 (Figure 10.4D) is remarkable. Non-
conductive posterior IACs caused higher absolute PTF-V1 on average with an
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Figure 10.5: In conclusion, the results presented in this chapter show that a shift of the EAS
towards bothmore superior/anterior andmore inferior locations causes lower absolute values
of PTF-V1. If the posterior IACs are non-conductive, a shift towards more inferior locationsdoes not affect PTF-V1 significantly.

increasing effect amplitude from EAS1 to EAS7. When evaluating PTFintegral-
V1, the interindividual spread was significantly lower yielding a very consistent
relation (Figure 10.4D).

10.3 Discussion
The study presented in this chapter investigates the effect of a variation of the EAS
in the RA on body surface potentials, particularly on the ECG-derived marker
PTF in Wilson lead V1. While this marker is commonly used to quantify left
atrial abnormalities (LAAbs) [521], the present study tested the hypothesis that
the marker is also affected by contributors in the RA. In particular, significant
variability in the origin of sinus excitation exists both on the interindividual and
the intraindividual level. In dogs, it has been shown that the EAS is shifted towards
inferior regions of the SN complex under vagal stimulation. On the other hand,
an acceleration of the heart rate causes a shift towards more superior/anterior re-
gions [39, 523, 524]. In humans, common EAS are found between the mid-septal
region and the junction of the SVC with the RAA [42]. The set of EAS in this
study was extended to also cover a more inferior position (EAS7) which may
correspond to EAS under pronounced vagal stimulation (very low heart rates), an
anterior position (EAS2), and a position in the center of the RAA roof (EAS1)
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corresponding to the common electrode location used for permanent atrial pacing.
The presented results show that the precise location of the EAS in the RA af-
fects PTF-V1 significantly. This P-wave marker exhibited a U-shaped course
for EASs from anterior/superior positions to posterior/inferior positions (EAS2
to EAS7). This progression indicates a reduced leftwards-pointing component
(opposite to the vector pointing from Wilson’s central terminal to V1) for both
very anterior/superior and posterior/inferior excitation origins and the strongest
leftwards-oriented component for intermediate positions (EAS4 to EAS5). EAS1
in the center of the RAA roof did not fit in this scheme. EAS1 yielded the highest
PTF-V1 values, which can be explained by the preferred excitation direction point-
ing towards the LA, thus away from V1 with respect to Wilson’s central terminal,
evolving after the short time when the RAA tip is excited. Less RAA tissue behind
the EAS towards the RAA tip could contribute to a rightwards-oriented vector for
EAS1 compared to the other EAS. PTF-V1 turned out to be very sensitive to rather
small changes in the location of excitation origin (or rather excitation capture)
reflected by the fact that EASs in close vicinity to each other yielded markedly
different PTF-V1 (e.g. an average factor of 2.0 between EAS2 and EAS4).
The mostly negative P-waves in leads V1 and V2 observed for EAS1 are in line
with the clinically observed P-waves in patients with atrial pacing electrodes in this
region. The finding that shifting the excitation origin from EAS4/EAS5 towards
more anterior/superior positions decreases absolute PTF-V1 values is in line with
the findings by Yokota et al.: PTF-V1 (referred to as the maximal LA component
in their work) decreased during exercise in healthy subjects [525]. However, an
earlier study in men with seemingly healthy hearts found that the probability of
abnormally high PTF-V1 values increases after exercise [507]. These equivocal
findings can possibly be explained by the experimental protocol. In [507], the
ECGs were acquired 5 min after rather than during exercise, which may have
caused an overcompensation resulting in vagal stimulation. Vagal stimulation
in turn corresponds to higher absolute PTF values in [525] and the study pre-
sented here. The results on the BSPM level are in fair agreement with an in vivo
study [185]. For pacing in positions close to EAS2 to EAS6, they also report a
counter-clockwise rotation of the iso-potential line as shown in Figure 10.2D.
The in silico approach employed in this study allowed to asses how the intactness
of the posterior IACs influence the ECG, which is not feasible in vivo. While gross
ECG morphology was unaltered by rendering the posterior IACs non-conductive,
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PTF-V1 absolute values were increased. Non-conductive posterior IACs translated
to a very consistent effect when evaluating the integral of the negative phase in
lead V1 (Figure 10.4D) instead of the product of amplitude and duration (Fig-
ure 10.4C). The effect was most pronounced for posterior/inferior EASs, which
can be explained by the LA breakthrough sites. A larger share of earliest LA
breakthrough conducted via one of the posterior IACs in the model cohort (Fig-
ure 10.3A) correlated with a higher difference in PTF between simulations with
conductive and non-conductive IACs (Figure 10.4C+D). When the LA could not
be activated via the posterior IACs due to their non-conductance, PTF remained
stable for EAS4 to EAS7. Thus, the recruitment of the posterior IACs explains the
decrease in absolute PTF-V1 values for the most inferior excitation origins (EAS6
and EAS7). The significant interindividual variability in both PTF markers for
EAS4 and EAS5 can be explained by the variability in the crucial IAC conducting
earliest LA breakthrough (BB vs. posterior IACs), which was also largest for
these EAS. Earliest LA breakthrough was never conducted via the CS connections.
Indeed, no LA breakthrough was conducted via this IAC for EAS more superior
than EAS5. While this indicates a subordinate role of the CS IAC during sinus
rhythm, it may play a more important role during less organized excitation patterns
characterizing atrial arrhythmias and maintain biatrial reentry.
Regarding the two variants of PTF, PTFintegral-V1 was the more conclusive marker
showing more consistent trends (Figure 10.5). The reason for this can be found in
the fact that PTF-V1 on the other hand is only determined by the maximum value
in terms of amplitude. This maximum value can be determined by the activation
of only a small share of the atrial myocardium neglecting all the rest. The integral
value contrariwise covers the activation of all tissue during the negative phase of
the P-wave instead of being based on the amplitude of just one time instant. This
makes the integral marker also less prone to noise artifacts for normally distributed
noise. Therefore, it is less prone to artifacts and future studies should consider to
evaluate this more robust and conclusive integral marker.
In Chapter 9, it was shown that the P-wave is mostly dominated by sources orig-
inating in the RA and the LA contributes to the integral with a median value
of only 24%. Also during late phases of the P-wave, the LA signals interfere
with those stemming from the RA and do not dominate the P-wave signal. These
findings explain the limited, however consistent, effects of conduction failure of
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the posterior IACs on the ECG.

10.3.1 Limitations
The limitations discussed in the previous chapter (Section 9.3.1) regarding the
size of the model cohort and P-wave amplitudes also apply to the study presented
in the current chapter. Moreover, we modeled four IACs and focussed on the
effect of the intactness of the posterior IACs. While additional IACs might be
present (particularly on the anterior side) their vicinity to BB makes it unlikely
to alter the activation pattern dramatically [33]. IACs other than the MPC and
LPC might become dysfunctional as well, e.g. BB [35, 526, 527]. However, the
posterior IACs are most vulnerable to conduction block due to their thin and
fragile nature [35]. Thus, the focus was on these IACs in this study leaving the
influence of the others for future work.
Futhermore, the rule-based annotation of myocyte orientation may introduce a
bias.

10.3.2 Conclusion
The advantage of the P-wave as a tool to assess electrical function is the ease of
acquisition. Recently, it re-raised excitement as an accessible surrogate of atrial
activation [476] and proved to be valuable for AF prediction [478, 528–530]. Re-
garding the LA, the P-wave is most commonly used to assess LAAb (particularly
LAE) based on PTF. While some studies showed good correlation between P-wave
markers and LA size [480, 482], others showed poor correlation [504, 506, 508].
The study presented in this chapter confirms the hypothesis that P-wave mor-
phology, and in particular PTF, is affected by a shift of the EAS and its relative
proximity to intact IACs. As both the excitation origin and the IACs express
significant intraindividual and interindividual variability in terms of presence,
location and conductive properties, their effect can explain the limits of PTF-based
assessment of LA anatomy: differences in PTF-V1 are not of purely anatomical
origin but also an electrical phenomenon.
The presented results highlight the need to be aware of the limits regarding our
current understanding of further factors influencing the P-wave, its morphology,
and related markers. Only by pushing and overcoming these limits by integrating
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the P-wave into extended research aiming at a mechanistic understanding of ar-
rhythmogenesis, healthcare practitioners will eventually be put in a position to
fully leverage the potential of the P-wave in terms of AF prevention.
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CHAPTER11
Influence of Left Atrial Anatomical

Properties
The previous chapter introduced the general idea of ECG-based assessment of
left atrial anatomy. Biomarkers based on the P-wave carry the advantage of being
easy to acquire. This fact and the empirical observation that e.g. abnormal P-wave
terminal force (PTF) in Wilson lead V1 is associated with a higher risk to develop
atrial fibrillation (AF) renders the P-wave particularly interesting. A common
explanation for both the higher AF risk and increased PTF-V1 is left atrial enlarge-
ment (LAE). On the one hand, a larger atrium provides a larger substrate that can
sustain and accommodate reentry with longer wavelengths, thus rendering it more
vulnerable to AF. On the other hand, the increase in left-myocardial volume causes
a more pronounced leftwards-pointing excitation vector once left atrium (LA)
breakthrough occurred. However, when actually comparing PTF-V1 with LA size,
the correlation is rather poor with one possible explanation being the influence of
the earliest activated site (EAS) in the right atrium (RA) and conductive properties
of the posterior interatrial connections (IACs) as presented in Chapter 10. Besides,
P-wave abnormalities can be caused by e.g. atrial hypertension, atrial hypertrophy,
atrial overload, atrial strain, partial or complete interatrial conduction block, in-
traatrial conduction slowing, as well as impaired ventricular distensibility [479].
Therefore, current guidelines advise to use the term left atrial abnormality (LAAb)
rather than committing to a specific cause when basing the diagnosis solely on the
P-wave [479, 531]. In earlier times, also the terms P-mitrale, P-congenitale, and
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P-pulmonale were used to refer to abnormal P-waves [479].
Several empirical studies investigated correlates of LAE and P-wave abnormalities.
Besides being a predictor for AF [532–535] and consequently stroke [536], LAE
indicates left ventricular dysfunction in general [537] and is a predictor for conges-
tive heart failure [532], cardiac mortality [536, 538], and combined cardiovascular
events [539–541]. Therefore, it is desirable to assess LA size non-invasively based
on P-wave markers as part of routine examinations.
Historically, the ratio of the P-wave duration (PWD) and the length of the P-R-
segment was the first ECG marker to estimate LA size [542]. However, it showed
to correlate poorly with LA size in more recent studies for common threshold
values of 1.6 [481, 543, 544]. PTF-V1 was soon used more frequently after it was
defined as the product of the amplitude and the duration of the negative phase of
the P-wave in Wilson lead V1 in 1964 by Morris et al. [475]. They established an
association between abnormal PTF-V1 and (mitral or aortic) valve disease, which
in turn is associated with LAE. PTF-V1 absolute values of 4 mVms or more are
considered abnormal [481, 482, 506, 543–546]. Other markers are the P-wave
area in lead II approximated as the product of the duration and the amplitude
multiplied by 0.5 [505, 543, 547], P-wave axis < 30◦, or the positive PTF in lead
aVL [531].
Another common marker is the PWD [546], usually measured in Einthoven lead II,
which is considered prolonged for values > 105 ms [481], > 110 ms [506, 531, 543–
545], or (more recently) > 120 ms [479, 528]. PWD, however, is also used to
quantify conduction delay [480, 548]. While a notched P-wave is intuitively
caused by interatrial conduction delay [479], it has also been suggested and used
as a marker for LAE quantification with a threshold of 40 ms for the duration of
the notch in lead II [479, 506, 544, 545].
This multitude of ECG markers used to assess LA size has proven to be subop-
timal in a number of studies prohibiting their use to diagnose LAE as a specific
LAAb [479, 508, 531]. Truong et al. evaluated the correlation of P-wave markers
with LA volume determined through cardiac computed tomography [505]. Sensi-
tivity, specificity, positive and negative predictive values, and accuracy are given
in Table 11.1. The best overall accuracy of 63% was obtained by PWD > 110 ms.
Other studies, partly based on echocardiography as a reference measure, reported
equivocal results regarding sensitivity and specificity [506, 543].
The reasons for the rather poor performance of the presented ensemble of P-wave
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Table 11.1: Statistic evaluation of P-wavemarkers for LAEwith respect to LA size determined
by computed tomography. Abbreviations: positive predictive value (PPV), negative predictive
value (NPV), P-wave duration (PWD), P-R-segment duration (PRd), P-wave area (PWA). Data
from [505].

sensitivity specificity PPV NPV accuracy
PWD>110ms 71% 55% 61% 66% 63%
PWD/PRd >1.6 81% 27% 53% 59% 54%
PWA in II > 4mVms 73% 19% 47% 41% 46%
PTF-V1 >4mVms 49% 54% 51% 51% 51%
notched P-wave in II 19% 85% 57% 51% 53%
biphasic P-wave in V1 26% 76% 52% 51% 51%

markers and a mechanistic link between anatomical properties and features of the
P-wave are not understood, to date. A controlled in vivo study is hard to design
because LA size cannot be adjusted in a single patient. Therefore, this study
investigates the effect of LA hypertrophy on the P-wave in the body surface ECG
in silico. The computational approach being applied allows to dissect the effect of
LA wall thickening in a controlled environment: different degrees of hypertrophy
can be simulated in the same subject’s model. Moreover, a method to analyze the
effect of LA dilation in silico is presented as a tool to analyze a second potential
anatomical cause for LAAb.
Parts of this work are based on a supervised student’s project [549] and is currently
under review for conference publication [550, 551].

11.1 Methods
11.1.1 Left Atrial Hypertrophy
The LA wall was thickened in four anatomical models to investigate the effect of
LA hypertrophy. The models #2 to #5 introduced in Section 9.1.1 were used for
this purpose. The voxel-based bi-atrial models covering the two atria, the trunks
of the great vessels, and the blood within the atria had an isotropic resolution of
0.33 mm. The additional wall thickness due to hypertrophy was modeled equally
and homogeneously on the endocardial and the epicardial side in steps of one
voxel. Therefore, wall thickness was increased up to the initial value plus 3.96 mm
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Figure 11.1: Cross section through the LAwall of model #3with different levels of wall thick-
ening coded by the color (A). The cross section is aligned along the dashed blue line in (B).

in steps of 0.66 mm yielding seven different models variants (Figure 11.1). The
dilation of one voxel layer was implemented such that voxels adjacent to LA voxels
that were not RA voxels were marked as LA voxels. Reapplying this operation
added one more voxel layer and so forth. By posing an additional adjacency
constraint that requires or prohibits neighborhood to LA blood, the method can also
be used to model purely endocardial or purely epicardial hypertrophy, respectively.
Myocyte orientation in the atria and distinct tissue classes were annotated in the
dilated models using the approach presented in Chapter 7.
Numerical field calculation in the torso was conducted on tetrahedral meshes as
introduced in Section 3.4. These meshes were built from the segmented imaging
data that were provided in a voxel-based format. As the torso model was of lower
resolution than the 0.33 mm-resolved atria, the bi-atrial models including the
hypertrophic LA wall and augmented inter-atrial connections were transferred
to the torso model by nearest neighbor interpolation. During this mapping step,
it was ensured that the two atria are separated and share no nodes except from
the IACs. Then, a tetrahedral torso mesh was generated for each model and each
degree of hypertrophy using the CGAL library [500]. The myocyte orientation was
included in the torso mesh, as well. Excitation propagation was simulated using
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Figure 11.2: Cross section through the LA wall of model #3 with different levels of dilation
coded by the color and induced by pressure overload (A). The cross section is aligned along the
dashed blue line in (B).

acCELLerate as described in Section 9.1.2 followed by a forward calculation of
the body surface potentials.

11.1.2 Left Atrial Dilation
LA dilation was induced by LA pressure overload in the anatomical model #3
using the cardiac continuum mechanics simulation environment CardioMechan-
ics [15, 552]. CardioMechanics requires a tetrahedral atrial mesh with a signifi-
cantly lower resolution than used for the electrophysiology simulations. Therefore,
the atrial surfaces were extracted from the voxel model and smoothed using the
VTK library [409]. After the resolution of the surface meshes was adjusted using
Blender [553], they were filled with tetrahedra using the Gmsh meshing soft-
ware [554].
For the dilation of the atria, pressure was applied on the closed surface formed
by the conjunction of the LA endocardium and the vessel and valve orifices. As
boundary conditions, the septal region and the valve plane were fixated in order to
prevent dilation into the RA and the ventricles. The pressure on the endocardial
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Figure 11.3: The dilated LA intersects with the lobes of the left lung as segmented using the
imaging data (A). Therefore, the volume of the left lungwasmanually reduced tomake room
for the dilated LA (B). Figuremodified from [549].

surface was then gradually increased causing the enclosed volume to balloon from
an initial value of 54 ml to 154 ml while keeping the volume of the myocardial
wall constant. The mechanics simulation was not performed on the whole torso
model but only on the atrial model due to the number of computational elements.
The triangular surface mesh of the dilated, low resolution atrial model were subse-
quently up-sampled using a subdivision filter and filled with tetrahedra of smaller
size for the simulation of electrophysiological excitation propagation. For the
calculation of electrical fields within the torso, the dilated LA has to be integrated
into the torso. Therefore, the surfaces of the lung had to be deformed to make
room for the dilated LA as can be seen in Figure 11.3. A reduction of the lung
volume due to increased LA size appeared reasonable due to the high compliance
of the lung tissue.
The models of dilated left atria within a subject-specific torso can be used to
simulate excitation propagation, as well as the electrical fields stemming from the
currents impressed by the gradient of the transmembrane voltages using a finite
element approach. A suitable approach was recently implemented [168] at IBT
providing the means for a combined active/passive tissue bidomain simulation.
While the extracellular domain is defined within the whole torso, the intracellular
domain can be restricted to the active tissue within the atria, thus reducing compu-
tational cost. However, the implementation has not been fully validated regarding
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the simulation of atrial body surface potentials, i.e. P-waves, prohibiting to draw
clinically relevant conclusions based on the simulation output. For this reason,
only the effect of LA hypertrophy on the ECG but not the effect of LA dilation is
assessed in the remainder of this chapter.

11.2 Results
The LA wall was thickened to seven different degrees in four anatomically person-
alized models. The generation of tetrahedral torso meshes using CGAL however
failed in eight of the 28 cases. Therefore, some values are missing in Figure 11.4,
which shows the effect of LA hypertrophy on different P-wave markers.
PWD (Figure 11.4A) was almost unaffected by LA wall thickening even though
the latest activated regions were located in the LA for all non-hypertrophic models.
For models #2, #3, and #5, the maximum difference in PWD for different wall
thicknesses was 2 ms; for model #4, it was 9 ms. The P-wave area under the
curve in lead II (Figure 11.4B) correlated with increased wall thickness due to an
increase in amplitude. This relation was not consistent across models, however,
with Pearson correlation coefficients ranging from 0.63 for model #4 to 0.98 for
model #2. P-wave axis α was determined based on the amplitudes in leads aVF
and I:

α = arctan
(

2√
3

aV F
I

)
. (11.1)

The axis did not show a consistent dependency on the degree of wall thick-
ening with a positive correlation for models #2 and #3 and a negative correlation
for models #4 and #5 (Figure 11.4E). The ECG in lead V1 (Figure 11.5) reveals
that during the early P-wave, no change was present because the LA was not yet
activated. Once the LA got activated, the voltage in V1 tended to lower values
for higher degrees of hypertrophy. Thus, the amplitude of the (late) positive
phase decreased while the amplitude of the subsequent negative phase increased.
This translates to a strong and consistent correlation between LA wall thickness
and PTF-V1 with a mean correlation coefficient of –0.93 and a mean slope of
–3.49 mVms/mm wall thickening (Figure 11.4C). Evaluating the integral of the
negative phase of the P-wave in lead V1 (PTFintegral-V1) instead of the product of
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Figure 11.4: Effect of LA hypertrophy (wall thickening) on different P-wavemarkers. P-wave
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the duration and the amplitude (PTF-V1) yielded comparable results with mean
values of –0.95 for the correlation coefficient and a slope of –1.26 mVms/mm
wall thickening (Figure 11.4D). The distribution of the increase in PTF-V1 (Fig-
ure 11.6A) and PTFintegral-V1 (Figure 11.6B) with respect to the value obtained
using the non-hypertrophic baseline models yielded a monotonic, rather robust
relation, as well.
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11.3 Discussion

The results obtained through computational modeling using a cohort of 4 anatom-
ical models suggest that PWD is unaffected by LA hypertrophy and the effect
on P-wave axis is highly dependent on the individual anatomy of the patient.
PTF-V1 seems to be a sensitive marker for LA wall thickening and was superior
to evaluating the integral of the whole P-wave as only the amplitude of the nega-
tive P-wave was increased by a thickened LA wall whereas the amplitude of the
positive phase was decreased towards its end. The evaluation of the integral of
the negative phase of the P-wave in lead V1 (PTFintegral-V1) was more conclusive
than considering the product of amplitude and duration (classical definition of
PTF-V1). This observation is in line with the results regarding the effect of the
earliest activated site in the RA and the posterior IACs presented in Chapter 10.
The LA wall thickness has not been correlated with measured P-wave indices
in clinical studies, so far. Thus, the findings of this study cannot be compared
to sensitivity values observed in the general population in vivo. In patients with
a history of AF, the posterior LA wall was slightly thinner than in patients in
sinus rhythm [24]. However, this observation does not allow to draw conclusions
regarding the risk to develop AF. The difference might as well develop under AF
conditions rather than being decisive for AF initation.
A limitation of the presented study is the assumption of homogeneous hypertrophy
across the LA which might not be the case in vivo as well as the assumption
that the RA is not affected at all. Besides, the lowest degree of hypertrophy
considered in this study was 0.66 mm, thus already more than 20% of the initial
thickness of the LA myocardial wall. More subtle changes could be investigated
using this methodology, in general. However, only a restriction to endocardial or
epicardial hypertrophy could achieve an increase of 10% wall thickness without
the need to resample the voxel dataset. This resampling process would potentially
introduce interpolation artifacts requiring additional validation. An additional
limitation regarding the P-wave amplitude is the fact that hypertrophy might be
accompanied by fibrosis leading to a reduction of the source currents per volume.
The limitations mentioned and discussed in Chapter 9 and Chapter 10 apply to the
study presented in this chapter as well.
LAE is commonly defined as an increased total volume of the LA rather than
an increased myocardial volume. The method presented in Section 11.1.2 will
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allow to investigate the effect of dilation in the near future. Intuitively, one would
assume that the P-wave is prolonged by LA dilation while the signal amplitude
(positive as well as negative) rather decreases. How pronounced these effects
actually are remains to be seen. Particularly regarding PTF-V1, the question is
if the two counteracting effects balance each other or if e.g. the prolongation
outweighs the decrease in amplitude leading to increased absolute PTF-V1 values.
Conceptually, LAE could also be a combination of dilation and hypertrophy. For
the ventricles, it is known that they respond to pressure overload in two phases.
First, the increased pressure is compensated by hypertrophic remodeling. If the
condition persists or worsens, the system decompensates and the ventricles di-
late [50]. The same might be true for atrial pressure overload underpinned by
the observation that the atrial wall is thinner in AF patients compared to the
healthy population (2.1-2.5 mm vs. 2.3-2.9 mm) [24]. The two-stage mechanism
could explain the contradicting findings regarding the sensitivity and specificity of
PTF-V1 with respect to the diagnosis of LAE [481, 482, 506, 543–546]. In that
case, PTF-V1 would be increased during the hypertrophic phase and potentially
abate towards more moderate values once decompensation, and thus dilation, sets
in. In conclusion, it was shown that the P-wave markers PTF-V1, and even more
so PTFintegral-V1, are sensitive to changes in LA wall thickness. The observations
that the P-wave is drawn towards negative voltages in lead V1 and that the PWD
is unaffected provide mechanistic explanations why the aforementioned markers
are superior to others. The interplay of LA hypertrophy and dilation might cause
the poor empirical correlation of LA size and PTF-V1.
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CHAPTER12
Conclusion

In this thesis, important aspects of human atrial patho-electrophysiology have
been investigated using computational models. The studies span from the level of
single ion channels up to investigations of the P-wave on the body surface ECG
level. The presented results pave the way for tailoring therapies in different ways.
Once basic patho-mechanisms are elucidated and understood, physicians can
apply mechanism-specific therapy. Moreover, computational models representing
subpopulations of patients provide the means to tailor and optimize therapies in a
group-specific way. Last but not least, models of the individual patient can be used
to evaluate therapeutic options in a patient-specific way if all the essential data
needed to parametrize the model to the individual patient for the specific question
at hand are available. Figure 12.1 gives an overview of the studies presented in this
thesis, the corresponding modeling scales, the kinds of tailored therapies improved
by the developed methods and derived insights, as well as the way via which they
can be translated into benefits for the patient in clinical practice (comprehension
of mechanisms, improved diagnosis, and improved therapy).

First, a method to incorporate altered ion channel behavior caused by genetic
mutations or the influence of pharmacological agents into mathematical models in
an accurate, robust, and reliable way was presented. The newly proposed hybrid
scheme comprising both gradient-based and derivative-free, population-based
algorithms proved to yield optimal results within a wide range of ion current for-
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Figure 12.1: Classification of the projects presented in this thesis regarding the level of inte-
gration and regarding the type of tailored therapy benefiting from the results. Colors indicate
the area of improvement: diagnosis (orange), model development and comprehension of patho-
mechanisms (blue), and atrial fibrillation therapy (green). Numbers refer to the corresponding
chapters of this thesis.

mulations and noise conditions. Using the proposed hybrid optimization method,
experimental data can be routinely transferred into computational models, thus it is
an important tool to exploit and leverage today’s and tomorrow’s high-throughput
patch clamp methods. A comprehensive multi-scale assessment of the effect of
changes on the ion channel is imperative as the biophysical systems of interest are
mostly complex and non-linear. Besides establishing a method of high practical
relevance, the study serves as an example how synthetic data derived from models
provide the means to evaluate novel methods under controlled conditions.

Next, the parameter estimation approaches were utilized to include the effects
of two mutations of the human ether-à-go-go-related gene (hERG) into computa-
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tional models. These substrates of familial atrial fibrillation (AF) were assessed
on multiple levels of integration regarding their arrhythmic potential. While
both mutations affect the same gene, they cause qualitatively different effects
suggesting more offensive approaches for subjects carrying the L532P mutation
compared to N588K. The consequences of the mutations on higher levels of
integration in terms of AP morphology changes, refractory behavior, as well as
rotor initiation and sustainment capacity allow to identify individuals harboring a
genetic substrate predisposing to AF. By aiding risk stratification and paving the
way for genotype-guided therapeutic strategies, the findings presented here help
to bridge the gap from bench to bedside.
Moreover, the Courtemanche et al. model was adapted to reflect remodeling
induced by chronic atrial fibrillation (cAF). The adapted model reproduces experi-
mentally observed findings and provides mechanistic descriptions how remodeling
increases susceptibility to reentry through shortened wavelength facilitating the
initiation and maintenance of atrial arrhythmias according to the AF begets AF
paradigm. The adapted model provides the means to evaluate tailored therapeutic
strategies for cAF patients in silico.

Thirdly, the substrate models of cAF remodeling and the two hERG mutations
were used to characterize the specific effects of amiodarone and dronedarone
under consideration of circadian changes of the heart rate and the drug concen-
tration. The study shows how atrial electrophysiology is differentially affected
by the two compounds in a concentration-dependent and heart rate-dependent
manner. A newly proposed arrhythmia score aggregating several biomarkers from
the cellular and tissue level peaks to critical values for dronedarone but not for
amiodarone. The insights gained from in silico modeling regarding AP alternans
as a proarrhythmic mechanism provide possible explanations for the superior
efficacy of amiodarone over dronedarone in the treatment of AF. As the drug
effects differ significantly in a cAF remodeled substrate, the responder rate could
be improved by considering the atrial substrate in tailored therapies.
By integrating experimental data regarding the effects of vernakalant from dif-
ferent scales into a computational model, the understanding of the cellular mode
of action of vernakalant was advanced. Furthermore, relevant gaps in the current
knowledge and experimental data were identified. By highlighting them, this study
has the potential to fuel and direct future wet-lab and computational research on
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this aspiring antiarrhythmic agent. As such, it serves as an example how the
interplay between experimentalists and modelers can lead to mutual benefit and
cross-fertilize and speed up research.
The last study regarding pharmacotherapy aimed at the restoration of the wild-type
action potential (AP) in mutant myocytes by designing hypothetical multi-channel
blockers, as well as by optimizing the concentration of existing compounds. The
results serve as a proof of concept and provide insight into the pharmacodynamic
response of hERG mutant myocytes rendering patients vulnerable to AF. As such,
they may aid in the design and advancement of tailored therapeutic and preven-
tive approaches considering the atrial substrate. Future work could extend the
presented approaches to account for variance and uncertainty using probabilistic
modeling as recently proposed [555].

Furthermore, a mesh-type agnostic method to augment anatomical models with a
priori knowledge regarding myocyte orientation, anatomical structures, interatrial
connections (IACs), and standard ablation patterns was presented based on a
coherent and consistent set of rules. The algorithm can be applied to all common
data structures used in computational modeling of cardiac electrophysiology and
biomechanics. Furthermore, the implementation is flexible regarding the resolu-
tion of the underlying mesh. The object-oriented design of the software using
modern software engineering methods yields an extendable piece of software with
maintainable code.
Building on the augmented anatomical models, a pipeline to assess the vulnera-
bility of atrial flutter was established. The individual anatomy as well as electro-
physiology in terms of CV, ERP, and their frequency-dependence is taken into
account. This tool provides the means to evaluate potential ablation strategies in
silico regarding their arrhythmic potential for AFlut before actually applying them
in the electrophysiology lab. In this way, this work can be one piece in the puzzle
to overcome the learning by burning paradigm and eventually reduce the number
of patients suffering from post-ablational AFlut. The advent of electro-anatomical
mapping systems providing high signal quality gives rise to the hope that the
method can be validated and applied to clinical cases in the near future.

Finally, the genesis of P-wave in the body surface electrocardiogram (ECG) was
studied regarding the influence of several contributors. First, the distinct contri-
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butions of the left atrium (LA) and the right atrium (RA) to the P-wave in the
different ECG leads were separated in a time-resolved manner. While biomarkers
based on the P-wave in the ECG carry the great advantage of being routinely
acquired due to the non-invasiveness and the low associated costs, the findings of
this study highlight important limitations. The results obtained in the cohort of
eight in silico models suggest that the contribution of the LA to the P-wave is less
than one third. The domination of the P-wave by sources from the RA helps to
understand the difficulties experienced in P-wave-based assessment of the LA.
Moreover, the hypothesis that P-wave morphology, and in particular P-wave termi-
nal force (PTF) in lead V1, is affected by a shift of the earliest activated site (EAS)
and its relative proximity to intact IACs was confirmed. As both the excitation ori-
gin and the IACs express significant intraindividual and interindividual variability
in terms of presence, location and conductive properties, their effect can explain
the limits of PTF-based assessment of LA anatomy: differences in PTF-V1 are
not of purely anatomical origin but also an electrical phenomenon.
Besides the factors mentioned above, the anatomical properties of the LA con-
tribute to PTF-V1. It was shown that LA hypertrophy increases PTF through
higher ECG amplitudes but does not change P-wave duration. The presented
findings show that PTF-V1 is a sensitive marker for LA wall thickening and elu-
cidate why it is superior to P-wave area. The interplay of LA hypertrophy and
dilation might be the reason for the poor empirical correlation of LA size and
PTF-V1. Therefore, the presented method to investigate LA dilation leveraging
computational models carries great potential. The presented results highlight
the need to be aware of the limits regarding our current understanding of further
factors influencing the P-wave, its morphology, and related markers. Only by
pushing and overcoming these limits by integrating the P-wave into extended
research aiming at a mechanistic understanding of arrhythmogenesis, healthcare
practitioners will eventually be put in a position to fully leverage the potential of
the P-wave in terms of AF prevention.

In conclusion, the studies presented in this thesis advanced the state of the art
in computational modeling of atrial patho-electrophysiology in several aspects.
Novel methods to transfer experimental data into models, to quantify the effects of
pharmacological agents and optimize them, to augment anatomical models with a
priori knowledge, and to assess vulnerability to atrial flutter were presented. More-
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over, the boundary regarding our understanding of basic mechanisms was pushed.
This includes the differential mode of action of amiodarone and dronedarone
regarding the atrial substrate and circadian changes of heart rate and drug con-
centration, as well as the contributors to P-wave morphology and terminal force.
Summing up, this thesis presents methods paving the way to tailor AF therapy
under consideration of the specific patho-mechanisms, the distinct properties of
subpopulations, and patient-individual characteristics. By translating the methods
and insights into clinical practice, appropriate and more efficient therapy can be
delivered in shorter time. In this way, not only the socio-economical costs of AF
but foremost the individual patient’s burden can be reduced eventually.
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APPENDIXA
Parameter Estimation

A.1 Ion Current Formulations
Here, the IKr, IKur, and IKs ion current formulations from Courtemanche et al. [49]
used in this study are given. The estimated parameters are highlighted in red in
the equations. Their classification as additive or multiplicative together with their
values in the original formulation and the corresponding wide and narrow range
are given in Table A.1–Table A.3.
The intracellular potassium concentration [K]i was estimated for all currents:

EK =
R ·T
F · zK

ln
[K]o
[K]i

(A.1)

A.1.1 IKr

IKr = gKrxr
1

1+ exp
(

Vm+xr,m3
xr,m4

) (Vm−EK) (A.2)

with xr being the gating variable. Its steady state value xr∞, the two rate
constants αxr and βxr and the time constant τxr are defined as follows:

xr∞ =
1

1+ exp
(

Vm+xr,m1
xr,m2

) (A.3)
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τxr =
1

(αxr +βxr) · xr,KQ10
(A.4)

αxr =
xr,a1 (Vm + xr,a2)

1− exp
(

Vm+xr,a2
xr,a3

) (A.5)

βxr = 7.3898×10−5 Vm + xr,b1

exp
(

Vm+xr,b1
xr,b2

)
−1

(A.6)

A.1.2 IKur

IKur = gKuru3
aui (Vm−EK) (A.7)

gKur = gKur1 +
gKur2

1+ exp
(

Vm+gKur3
gKur4

) (A.8)

αua = ua,a1

[
exp
(

Vm +ua,a2

ua,a3

)
+ exp

(
Vm +ua,a4

ua,a5

)]−1

(A.9)

βua = 0.65
[

ua,b1 + exp
(

Vm +ua,b2

ua,b3

)]
−1 (A.10)

τua =
1

(αua +βua) ·ua,KQ10
(A.11)

ua,∞ =

[
1+ exp

(
Vm +ua,m1

ua,m2

)]−1

(A.12)

αui = ui,a1

[
ui,a2 + exp

(
Vm +ui,a3

ua,a4

)]
−1 (A.13)

βui = exp
(

Vm +ui,b1

ui,b2

)
(A.14)
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τui =
1

(αui +βui) ·ui,KQ10
(A.15)

ui,∞ =

[
1+ exp

(
Vm +ui,m1

ui,m2

)]−1

(A.16)

A.1.3 IKs

IKs = gKsx2
s (Vm−EK) (A.17)

xs∞ =
1√

1+ exp
(

Vm+xs,m1
xs,m2

) (A.18)

τxs =
0.5

(αxr +βxr) ·xs,KQ10
(A.19)

αxs =
xs,a1 (Vm + xs,a2)

1− exp
(

Vm+xs,a2
xs,a3

) (A.20)

βxs = 3.5×10−5

(
Vm + xs,b1

)
exp
(

Vm+xs,b1
xs,b2

)
−1

(A.21)

A.2 Experimental Protocols
In this section, the details of the experimental protocols used to acquire wet-lab
IKr, IKur, and IKs current traces in the group of Eberhard Scholz at University
Hospital Heidelberg are given.
All currents were recorded using a Warner OC-725A (Warner Instruments, Ham-
den, CT, USA) amplifier, low-pass filtered at 1 to 2 kHz (-3dB, four-pole Bessel
filter) and digitized at 5 to 10 kHz (Digidata 1322A, Axon Instruments, Union
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Table A.1: IKr parameters: besides the parameter names and units, their classification as addi-tive (±) or multiplicative (*), the standard Courtemanche et al. value [49] and the parameter
ranges for the parameter estimation are given.

Parameter Unit Type Standard value Narrow range Wide range
xr,a1 1 * 3×10−4 3×10−5..3×10−3 3×10−6..3×10−2

xr,a2 mV ± 14.1 –45.9..74.1 –105.9..134.1
xr,a3 mV * –5 –50..–0.5 –500..–0.05
xr,b1 mV ± 3.3328 –63.33..56.67 –123.33..116.67
xr,b2 mV * 5.1237 0.51237..51.237 0.05123..512.37
xr,KQ10 1 * 1.0 0.1..10.0 0.01..100.0
xr,m1 mV ± 14.1 –45.9..74.1 –105.9..134.1
xr,m2 mV * –6.5 –65.0..–0.65 –650.0..–0.065
xr,m3 mV ± 15.0 –45.0..75.0 –105.0..135.0
xr,m4 mV * 22.4 2.24..224.0 0.224..2240.0
gKr nS/pF * 0.0294118 0.0029..0.2942 0.0003..2.94
[K]i mM * 138.99 13.899..1389.94 1.38994..13899.4

City, CA, USA). The currents recorded in different cells were normalized to their
maximum value, averaged, and scaled to the average maximum value.

A.2.1 hERGmeasurements
Human ether-à-go-go-related gene (hERG; alternative nomenclature KCNH2)
encodes the α-subunit of the Kv11.1 protein carrying the rapid delayed rectifier
potassium current (IKr). Wildtype hERG channels were expressed in Xenopus
oocytes after injection of 46 nl cRNA solution per oocyte. After 3 to 4 days
incubated at a temperature of 16◦ C, double micro-electrode voltage clamp experi-
ments were performed in n = 8 cells. The tip resistances of the micro-electrodes
were in the range of 1 to 5 MΩ. The voltage clamp recordings were performed
at room temperature (23 to 25◦ C). The bathing solution consisted of 5 mM KCl,
100 mM NaCl, 1.5 mM CaCl2, 2 mM MgCl2, and 10 mM HEPES (pH adjusted to
7.4 with NaOH) and the pipette solution contained 3 M KCl. The applied voltage
clamp protocol and the corresponding current traces are depicted in Figure 4.1C.

A.2.2 KCNA5measurements
KCNA5 encodes the Kv1.5 protein carrying the ultra-rapid delayed rectifier
potassium current (IKur). Wildtype KCNA5 was transfected into chinese hamster
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Table A.2: IKur parameters: besides the parameter names and units, their classification asadditive (±) ormultiplicative (*), the standardCourtemanche et al. value [49] and the parameter
ranges for the parameter estimation are given.

Parameter Unit Type Standard value Narrow range Wide range
ua,a1 1 * 0.65 0.065..6.5 0.0065..65.0
ua,a2 mV ± 10.0 –50..70 –110..130
ua,a3 mV * –8.5 –85..–0.85 –850.0..–0.085
ua,a4 mV ± –30.0 –90.0..30.0 –150.0..90.0
ua,a5 mV * –59.0 –590..–5.9 –5900.0..–0.59
ua,b1 1 ± 2.5 –57.5..62.5 –117.5..122.5
ua,b2 mV ± 82.0 22.0..142.0 –38.0..202.0
ua,b3 mV * 17.0 1.7..170.0 0.17..1700.0
ua,m1 mV ± 30.3 –29.7..90.3 –89.7..150.3
ua,m2 mV * –9.6 –96.0..–0.96 –960.0..–0.096
ua,KQ10 1 * 3.0 0.3..30.0 0.03..300.0
ui,a1 1 * 1.0 0.1..10.0 0.01..100.0
ui,a2 1 ± 21.0 –39.0..81.0 –99.0..141.0
ui,a3 mV ± –185.0 –245.0..–125.0 –305.0..–65.0
ui,a4 mV * –28.0 –280.0..–2.8 –2800.0..–0.28
ui,b1 mV ± –158.0 –218.0..–98.0 –278.0..–38.0
ui,b2 mV ± –16.0 –160.0..–1.6 –1600.0..–0.16
ui,m1 mV ± –99.45 –159.45..–39.45 –219.45..20.55
ui,m2 mV * 27.48 2.748..274.8 0.2748..2748.0
ui,KQ10 1 * 3.0 0.3..30.0 0.03..300.0
gKur1 nS/pF ± 0.005 –59.95..60.0 –119.9..120.0
gKur2 nS/pF * 0.05 0.005..0.5 0.0005..5.0
gKur3 mV ± –15.0 –75.0..45.0 –135.0..105.0
gKur4 mV * –13.0 –130.0..–1.3 –1300.0..–0.13
[K]i mM * 138.9 13.89..1389.9 1.389..13899

ovary (CHO) cell using Fugene reagent (Promega, Madison, WI, USA) (3 µg
DNA per bowl). The CHO cells were incubated at 37◦ C in minimum essential
medium α and an atmosphere of 95% humidified air and 5% CO2. The medium
was supplemented with 100 µg/ml streptomycin sulphate, 10% fetal bovine serum,
and 100 U/ml penicillin G sodium. Resistances ranged between 38 and 98 MΩ.
The bathing solution consisted of 140 mM NaCl, 5 mM KCl, 1 mM MgCl2*6H2O,
10 mM HEPES, 1.8 mM CaCl2*2H2O, and 10 mM glucose monohydrate. pH
was adjusted to 7.4 using NaOH. The pipette solution contained 100 mM K
aspartate, 20 mM KCl, 2 mM MgCl2*6H2O, 1 mM CaCl2*2H2O, 10 mM HEPES,
10 mM EGTA, and 2 mM Na2ATP. pH was adjusted to 7.2 using KOH; patch
clamp recordings were performed at a temperature of 37◦ C in n = 3 cells. The
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Table A.3: IKs parameters: besides the parameter names and units, their classification as addi-tive (±) or multiplicative (*), the standard Courtemanche et al. value [49] and the parameter
ranges for the parameter estimation are given.

Parameter Unit Type Standard value Narrow range Wide range
xs,a1 1 * 4×10−5 4×10−6..4×10−4 4×10−7..4×10−3

xs,a2 mV ± –19.9 –79.9..40.1 –139.9..100.1
xs,a3 mV * –17.0 –170.0..–1.7 –1700.0..–0.17
xs,b1 mV ± –19.9 –79.9..40.1 –139.9..100.1
xs,b2 mV * 9.0 0.9..90.0 0.09..900.0
xs,KQ10 1 * 2.0 0.2..20.0 0.02..200.0
xs,m1 mV ± –19.9 –79.9..40.1 –139.9..100.1
xs,m2 mV * –12.7 –127.0..–1.27 –1270.0..–0.127
gKs nS/pF * 0.12941176 0.0129..1.294 0.00129 12.94
[K]i mM * 138.994 13.899..1389.94 1.3899..13899.4

applied voltage protocol and the corresponding current traces are depicted in
Figure 4.1D.

A.2.3 KCNQ1+KCNE1measurements
KCNQ1 encodes the α-subunit of the Kv7.1 protein carrying the slow delayed rec-
tifier potassium channel (IKs), KCNE1 encodes the β -subunit of Kv7.1. KCNQ1
was co-expressed with KCNE1 in Xenopus oocytes after injection of 46 nl cRNA
solution per oocyte. Double micro-electrode voltage clamp experiments were
performed at room temperature (20 to 25◦ C) 2 days after injection in n = 5 cells.
The tip resistances of the micro-electrodes were in the range of 1 to 5 MΩ. The
bathing solution consisted of 5 mM KCl, 100 mM NaCl, 1.5 mM CaCl2, 2 mM
MgCl2, and 10 mM HEPES (pH adjusted to 7.4 with NaOH). The current and
voltage electrodes were filled with 3 M KCl solution. The applied voltage protocol
and the corresponding current traces are depicted in Figure 4.1E.
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