

Research activities on cryogenic safety

Steffen Grohmann, Carolin Heidt, Andre Henriques (CERN), Christina Weber European Cryogenics Days, CERN, June 9-10, 2016

INSTITUTE OF TECHNICAL PHYSICS (ITEP) INSTITUTE OF TECHNICAL THERMODYNAMICS AND REFRIGERATION (ITTK)

- Safety of pressure equipment What is special in Cryogenics?
- Review of national standardization project (2010 2015)
- Current research activities (2015 2017)
- Future plans (2016 2019)

Safety of pressure equipment WHAT IS SPECIAL IN CRYOGENICS?

Safety of cryogenic pressure equipment

- Cryogenic installations usually contain pressure vessels, subject to the European PED 2014/68/EU {PS > 0.5 bar(g)}
 - Storage containers [static, transportable, (non-)vacuum insulated]: <u>Dedicated standards</u>, such as EN 13458, EN 13648, etc.
 - LHe cryostats: <u>No dedicated</u> safety design standard/rule

LHe cryostat conditions **not covered** by other standards:

- Necessity of staging multiple safety levels
- Large stored energies, loss of insulating vacuum
- Inlet piping pressure drops (3 % rule) and heat loads (0.6 m rule)
- Thermal acoustic oscillations
- Two-phase flow

What is special in LHe cryostats?

- Process dynamics
 - Heat loads during system failure up to $\dot{q} \approx 40 \text{ kW/m}^2$
 - Very low latent heat of helium $\rightarrow \frac{\Delta h_v}{L \text{ liquid}}\Big|_{1\text{bar}} (\text{He}: N_2: H_2 0) = 1:62:835$

- Nearly instantaneous evaporation
- Pressure gradients in the range of (bar/s)

5

Quench test of a sc. solenoid (KATRIN)

What is special in LHe cryostats?

Common pressure equipment	Liquid helium cryostats
Cryogenic storage containers	Sc. magnet cryostats, RF cavities
 Protection against disruptive failure Extreme and rare failure scenarios 	 Protection against disruptive failure Extreme and rare failure scenarios
	 + Protection against operation failure > Expected and frequent failure scenarios (quenches) > Need of staging safety levels!
	 Large number <i>papers</i>, individual <i>reports</i> and <i>experience</i> BUT no systematic guideline
• Standardized task (limited complexity)	Complex design task

Examples of typical safety units

LN2 storage tank (\approx 50.000 L)	Liquid helium cryostat ($\approx 500 \text{ L}$)
 Set pressure p₀ = 17 bar(g) Two safety valves 1/2" (d₀ = 7 mm) Shuttle valve 	 Safety valve DN25 at p₀ = 2 bar(g) Two rupture disks DN65 at p₀ = 3 bar(g) Quench gas line DN100
Source: Air Liquide	
	Source: KATRIN

Safety of liquid helium cryostats **NATIONAL STANDARDIZATION PROJECT** (2010 – 2015)

Contributions

Industry	
Blum, Lars	Linde Kryotechnik AG
Otte, Wolfgang	Air Liquide Deutschland GmbH
Reinhardt, Matthias	Herose GmbH
Schulenberg, Olaf	Goetze KG Armaturen
Universities and Research Ce	enters
Grohmann, Steffen	Karlsruhe Institute of Technology
Haberstroh, Christoph	Technical University Dresden
Heidt, Carolin	Karlsruhe Institute of Technology
Raccanelli, Andrea	Research Center Jülich GmbH
Schröder, Claus	GSI Gesellschaft für Schwerionenforschung mbH
Süßer, Manfred	Karlsruhe Institute of Technology
Organization	
Lau, Markus	German Institute for Standardization (DIN)

DIN SPEC 4683

	April 2015
DIN SPEC 4683	DIN
13.240, 23.020.40	
lüssighelium-Kryostate – icherheitseinrichtungen gegen Drucküberschreitung ryostats for liquefied helium –	
fety devices for protection against excessive pressure yostats pour hélium liquefies –	
Dispositifs de sécurité pour protection contre les pressions excessives.	*0
Das vorliegende Dokument wurde nach den Verfahrensregeln eines Fachberichts erstellt.	
Gesamt	imfang 73 Seiten
DIN-Normenausschuss Druckgasanlagen (NDG)	

Contents

- 7 chapters, 73 pages
 - Ļ
- Hazard analysis, risk assessment and safety concept
- (2) Scenarios of pressure increase
- (3) Dimensioning of safety relief devices
- (4) Design and operation of safety relief devices and safety units
- (5) Release of the working fluid
- (6) Commissioning and maintenance
- (7) Materials for safety relief devices

Safety of liquid helium cryostats **CURRENT RESEARCH ACTIVITIES** (2015 – 2017)

New test facility (PICARD)

PICARD

Features

- Vacuum jacket PN10
- Venting with air or nitrogen
- Venting diameters 1...40 mm
- Neck-cooled radiation shield
- Optional MLI tests
- V = 110 L inner vessel, PN16 Set pressures up to $p_0 = 12$ bar(g) He flow rates up to 4 kg/s Fluids He, N₂, ...
- Max. DAQ sampling rate 1 kHz 30 sensors (18 TVO)

KIT – CERN collaboration

Schedule 09/2015 – 03/2017

Experimental program

- 1) Relief flow rates for **breaking insulating vacuum** (without and with MLI)
- 2) Expansion in **two-phase region** \rightarrow model validation/development \rightarrow determination of flow coefficients
- 3) Measurements with relief point close to the critical point
- Objectives
 - Validation and further development of CERN's Kryolize[®] software
 - Development of **dynamic models** for heat loads and flow rates

> All results will be jointly published

First experimental results

Example

Venting with N₂ through 12.5 mm orifice, 28% initial helium level, set pressure $p_0 = 2.6$ bar(g)

- I isochoric pressure increase;
 II chattering and pumping;
 III relief of rest gas (simmering)
- Permissible pressure exceeded!
- Oversized valve (25%), but next smaller valve would be too small
- ➤ Correctly sized valve → small incident → oversized valve
- General risk of chattering/pumping?

First experimental results

Example

Venting with N_2 through 12.5 mm orifice, 28% initial helium level, set pressure 2.6 bar(g)

Risk for staged safety levels

First experimental results

Example

Venting with N_2 through 12.5 mm orifice, 28% initial helium level, set pressure 2.6 bar(g)

Different procedures to qualify the set pressure p₀

- Pop action (full lift safety valves)
- o Initial audible discharge
- Start to leak pressure (?)
- o Bubble test
- Large effect on valve performance
- ➢ Helium leak → flow between bubble test and initial audible discharge

Safety relief devices

- Focus on cryogenic performance of safety relief valves
 - Measurement of **leak rates** between set pressure procedures "bubble test" and "initial audible discharge" (Bachelor thesis)
 - Experiments and modelling of twophase flow → determination of discharge coefficients (Ph.D. thesis)
 - Investigation of stability criteria in cooperation with CSE <u>Center of Safety Excellence</u>

Safety of liquid helium cryostats **FUTURE PLANS** (2016 – 2019)

European standardization project

- Satellite meeting at European Cryogenics Days 2015 (Grenoble)
 - Agreement to advance a European standardization process
- Translation of DIN SPEC 4683 and CEA documents

- Inconsistent nomenclature in different standards!
- Different definitions of set pressure in ISO 4126 (2013), API 520 (2014) and ASME PTC 25 (2014)

European standardization project

Organization of new working group at CEN TC/268 by DIN

Horizon 2020 project proposal

Accelerator and Magnet Infrastructure for Cooperation and Innovation

- Aim: Knowledge transfer
- Coordination: CEA Saclay
- Participation: 10 European research labs

WP5.3: Harmonization – Cryogenic safety procedures

- KIT, CEA, CERN
- Link to new WG at CEN TC/268

Cryogenic safety seminar at CERN

Date: Sep 21-22, 2016

Aim: Share knowledge and the challenges liked to cryogenic safety

Topics:

- a) European standardization activities
- b) Pressure relief and heat load experiments
- c) Research & development
- d) Rules & regulations
- e) Safety in large/medium scale projects
- f) Risk assessment methodologies
- g) Knowledge transfer

Register @:

https://indico.cern.ch/e/CryoSafety

