

Cooling technology for HTS power applications

Prof. Dr.-Ing. Steffen Grohmann ESAS Summer School, Bologna, June 8-14, 2016

INSTITUTE OF TECHNICAL THERMODYNAMICS AND REFRIGERATION (ITTK) INSTITUTE OF TECHNICAL PHYSICS (ITEP)

 $l_{\rm tE}$

Outline

- Taking into account different backgrounds of the course participants, the aim of this course is
 - to provide an overview of existing HTS cooling technologies
 - to explain their technological differences
 - to discuss future development potentials
 - Therefore, the course is structured in the following sections
 - Technology overview
 - Cryocoolers
 - Cryoplants (refrigerators)
 - Development potentials
 - Summary

Cooling technology for HTS power applications **TECHNOLOGY OVERVIEW**

3 13.06.2016 Steffen Grohmann - ESAS Summer School 2016, Bologna, IT

4 13.06.2016 Steffen Grohmann - ESAS Summer School 2016, Bologna, IT

Three-phase HTS power cables

- Example
 - AmpaCity project
 - Partners RWE, Nexans, KIT
 - Cable length $L = 1000 \,\mathrm{m}$
 - Voltage $U = 10000 \,\mathrm{V}$
 - Nominal current $I_{\rm N} = 2\,300\,{\rm A}$
 - Nominal capacity $P_{\rm N} = \sqrt{3} \cdot U \cdot I_{\rm N} = 40 \,{\rm MW}$

Cable installation route in downtown Essen, Germany

Official start of field test on April 30, 2014

Cooling unit in the AmpaCity project

- Specification¹⁾
 - Sub-cooled LN₂ cooling of the HTS cable
 - Open LN₂ cooling cycle
 - Each one redundant LN₂ and vacuum pump
 - Nominal cooling capacity $\dot{Q}_{0,N} = 4 \,\mathrm{kW} @ 67 \,\mathrm{K}$
 - Nominal LN₂ consumption $\dot{M}_{LN_2,N} = 110 \text{ kg/h}$

1) Herzog, F.; Kutz, T.; Stemmle, M.; Kugel, T.: Cooling unit for the AmpaCity Project – one year successful operation. IWC 2015, Matsue - Japan **Cooling methods**

General overview

	Open cycle	Closed cycle	
		Cryocooler	Cryoplant (refrigerator)
Principle	 Evaporation of LN₂ obtained from air separation units (ASU) <u>Air composition:</u> 78.09 Vol% N₂ 20.95 Vol% O₂ 0.934 Vol% Ar + CO₂, Ne, He, Kr, H₂, Xe, O₃, Rn + Water, HCs, CFCs, dust, 	Oscillating regenerative process	Continuous recuperative cycle
Capacities	Any range	Small	Large
Temperatures	$T_{\rm min} > T_{\rm tr,N2} = 63 \ { m K}$	Any down to ~2 K	Any down to ~1 K
Operation supplies	Electricity LN ₂	Electricity (Cooling water)	Electricity (Cooling water)
Other criteria	Investment cost, operating cost, reliability, space requirements, noise, maintenance etc. are <i>project-dependent</i>		

Cooling technology for HTS power applications **CRYOCOOLERS**

7 13.06.2016 Steffen Grohmann - ESAS Summer School 2016, Bologna, IT

Principle of Stirling cryocoolers

8

Cryocooler types

Stirling

Integral Stirling

- Build-in 90° phase shift
- + High efficiency, low weight
- Vibration, noise, lifetime

Split Stirling

- Resonance frequency depending on load and ambient temperature
- + Low vibration and noise
- Less efficient

9

Continuously working compressor unit (air/water cooled)

Gifford-McMahon

High pressure line

Displacer drive

Displacer/-

regenerator

Rotary

valve

Water/air

cooling

Low pressure line

Compressor

 Compression and expansion by switching to high-pressure and low-pressure lines (amount of fluid contained changes)

Gas

piston

Pulse tube

- Control of the phase shift between mass flow and pressure waves by orifice or capillary combined with a buffer vessel
- Thermodynamically equivalent to Stirling cycle

Cryocooler types (examples)

Thermodynamic modelling

Time domain

- Sinusoids
- Math: Differential equations

• Phasors ($\tau = 0$, complex space)

Frequency domain

Math: Algebra, real and imaginary parts

Acoustic power of the pressure oscillator for the real gas EOS pv = ZRT $P = \frac{1}{Z}ZRT \dot{M} \frac{p_a}{cos(\varphi_c)}$

$$P = \frac{1}{2} Z R T_{\rm m} \dot{M}_{\rm a} \frac{p_{\rm a}}{p_{\rm m}} \cos(\varphi_{\dot{M}p})$$

Illustration of cryocooler operation

T, s – diagram (simplified)

- Consider *P* as the average *acoustic power* provided by the pressure oscillator, causing pressure oscillations $p_m \pm p_a$
 - Minimum temperature $T_{\min,ideal}$ of the ideal cryocooler cycle at zero load $q_0 = 0$
- Additional entropy production due to gradients in $\{T, p\}$ in a *real* cryocooler
 - Minimum temperature T_{\min} of the real cryocooler at zero load $q_0 = 0$
- Cooling power q_0 available at $T_0 > T_{min}$
 - Work available to compensate the entropy difference between absorbing / dissipating the heat q_0 between T_0/T_h
 - The higher the temperature T_0 , the larger the cooling capacity q_0
 - Strong dependence $q_0 = f(T_0)$

Exemplary performance plots

Two-stage cryocoolers

Cooling technology for HTS power applications **CRYOPLANTS (REFRIGERATORS)**

14 13.06.2016 Steffen Grohmann - ESAS Summer School 2016, Bologna, IT

Linde-Hampson cycle

Layout

- Simplest configuration
- Positive Joule-Thomson coefficient $\mu_{\rm JT} = (\partial T / \partial p)_{\rm h}$ required

Process in *T*, *h*-diagram

- Very low cooling capacity $q_0 = h_7 h_5$
- Very low efficiency $\eta = q_0 / l_t$
- Warm process part at $T > T_a$ not shown

Linde-Hampson cycle

- Multi-stage compression to e.g. $p_{\rm H} = 200$ bar
- Different number of stages depending on compressor technology (flow rates)

Process in *T*, *h*-diagram

- Higher specific cooling capacity $q_0 = h_7 h_5$
- Still low efficiency $\eta = q_0 / l_t$
- Warm process part at $T > T_a$ not shown

Brayton cycle

Process in *T*, *h*-diagram

- Expansion of single-phase working fluid in super-heated region (e.g. Ne)
- Recovery of expansion work

Brayton cycle

- Expansion of single-phase working fluid in super-heated region (e.g. Ne)
- Recovery of expansion work

Process in *T*, *s*-diagram

- Efficient due to turbo-expander, but cost factor of cold turbo-machinery
- Costly and rare working fluid (0.0018 Vol% in air)

Turbo-Brayton refrigerator

Commercial system available (Air Liquide)

Applications

19

- Gas (re)liquefaction (HCs, air gases)
- Cryogenic gas purification/separation
- Smallest unit suitable for HTS power applications

Source: http://www.airliquideadvancedtechnologies.com/

Claude cycle

- Single-phase expansion of *partial flow* in super-heated region
- Pre-cooling of remaining flow

Temperature profiles in CFHX I-III

- Efficient due to turbo-expander, but cost factor of cold turbo-machinery
- Pinch-points to be considered

Claude cycle

Layout $l_{t,Comp,HP}$ $l_{t,Comp,MP}$ $l_{t,Comp,LP}$ $T_{\rm a}$ 20 CFHX I 16 0 $l_{\rm t,Exp}$ 19 CFHX II 17 Expander 18 10 15 CFHX III 11 ⇒ 12 ₹• 13

- Single-phase expansion of partial flow in superheated region
- Pre-cooling of remaining flow

Sources of energy demand

- Example process with N₂, $T_a = 300$ K, $p_1 = 1$ bar, $p_7 = 40$ bar, $\Delta p_{ij} = 0.5$ bar, $\eta_{\text{Comp}} = 0.7$, $\eta_{\text{Exp}} = 0.8$, $\Delta T_{\min} = 3$ K in all heat exchangers
- Most efficient operating point at a cold flow M = 0.3 und $T_{16} = 170$ K (expander flow 1-M)

Variants of the Claude cycle

Claude cycle

Kapitza cycle

Collins cycle

Cooling technology for HTS power applications **DEVELOPMENT POTENTIALS**

Technology comparison

Efficiency

Specific investment cost

Source: Decker, L.: Overview on cryogenic refrigeration cycles for large scale HTS applications. International Workshop on Cooling System for HTS Applications (IWC-HTS), October 14-16, 2015, Matsue, Japan

We can conclude that *either technology* has *limitations* in the HTS power application range

Makeshift solution at 4 K

Excessive cryocooler use on a superconducting magnet and RF cryostat

• 25 GM cryocooler on one cryostat

- Cooling power:
- Power consumption:
- Specific power consumption:
- Other issues:

 $\dot{Q}_0 = 37.5 \text{ W} @ 4.2 \text{ K} \rightarrow (25 \times 1.5 \text{ W} @ 4.2 \text{ K})$ $P = 180 \text{ kW} (25 \times 7.2 \text{ kW})$ $P^* = 4800 \text{ W/W}_{\text{Cooling power}}$

Space, vibrations, noise, reliability, maintenance, ...

- Comparison to recuperative cycle (Collins process)
 - Specific power consumption: $P^* = 250...400 \text{ W/W}_{\text{Cooling power}}$

Institute of Technical Thermodynamics and Refrigeration Institute of Technical Physics

Reason for poor efficiency

Comp

Back to the Linde-Hampson cycle

 $T_{\rm a}$ 300 $\Delta T_{
m min}$ CFHX 250 Temperature (K) 120 ΕV 100 Evap 50 0 0.2 0.4 0.6 0.8 1.0 Heat transferred (-)

Different capacity flows $\dot{C} = \dot{M} \cdot c_p(T, p)$ yield increasing ΔT Large entropy production $\Delta s_{irr} = \int \frac{T_h - T_c}{T_h \cdot T_c} dq$ $1^{st} Law$ $2^{nd} Law$

- Technical options
 - Aim: $\dot{M}_{HP} \cdot c_{p, HP} = \dot{M}_{LP} \cdot c_{p, LP}$ in order to keep ΔT_{min} along the CFHX
 - I) Adaptation of flow rates \dot{M}
 - The Claude cycle includes this solution in CFHX II
 - II) Manipulation of spec. heat capacities by using *wide-boiling refrigerant mixtures*
 - Mixed refrigerant cycle (MRC)

Phase behavior of zoetrope mixtures

Basics (ideal mixtures)

- **Dalton's law** $p_i = y_i \cdot p$
- **Raul's law** $p''_i = x_i \cdot p_{\text{sat,i}}$
- Equilibrium $p_i = p_i''$

- Different concentrations of saturated liquid and vapor phases
- Closed condensation $1 \rightarrow 4$
 - (1) Single-phase super-heated vapor
 - (2) Saturated vapor 2"; first liquid drop 2'
 - High-boiler CH₄ has lower vapor pressure and condenses first
 - (3) Saturated liquid 3'; last vapor bubble 3"
 - (4) Single-phase sub-cooled liquid
 - Equivalent for heating/boiling from $4 \rightarrow 1$
 - Low-boiler N₂ has higher vapor pressure and evaporates first

28 Steffen Grohmann - ESAS Summer School 2016, Bologna, IT 13.06.2016

Institute of Technical Thermodynamics and Refrigeration

Institute of Technical Physics

- Effects of using refrigerant mixtures
- Partial condensation and evaporation (HP and LP sides), respectively, of mixture components along the CFHX
 - High-boiling components condense/evaporate at the warm end
 - Low-boiling components condense/evaporate at the cold end

Reduced entropy production Δs_{irr} during heat transfer

- Manipulation of capacity flows $\dot{C} = \dot{M} \cdot c_p(T, p)$ through the specific heat capacities of the condensing/evaporating components *i* (phase change implies $c_{p,i} \rightarrow \infty$)
- Minimization of temperature gradients in the CFHX

Reduced entropy production Δs_{irr} during throttling

- Higher Joule-Thomson coefficients $\mu_{\rm JT} = (\partial T / \partial p)_{\rm h}$ at lower temperature
- Lower Δp required for the same ΔT

Throttling in the Linde-Hampson cycle

Example process

- Higher specific cooling capacity at higher pressure
- Necessity of c. 200 bar in case of N_2

Joule-Thomson coefficient of N₂

- $\mu_{\rm JT}$ \uparrow bei $T\downarrow$
 - Better pre-cooling (T_{12}) with mixtures
- $\mu_{\rm JT}$ \uparrow bei $p \downarrow$
 - Lower pressure needed as well

Low-temperature limits of MRCs

- State-of-the-art
 - MRCs are *widely used* in natural gas liquefaction since the 1970s
 - C3MR process (C3 pre-cooling)
 - DMR process (double MR process)
 - MFC process (mixed fluid cascade)
 - Typical use of hydrocarbon mixtures $(C_1...C_5)$ at T > 100 K
 - $T_{\rm nb,CH4} = 112 \, {\rm K}$
 - Low-temperature limits
 - Achievable temperature influenced by lowest boiling component
 - Some reduction of boiling temperatures $T_{\rm b}(p)$ by addition of intent gases (N₂, ...)
 - $\bigvee \underbrace{y_i \cdot p}_{p_i} = x_i \cdot p_{\text{sat,i}} \text{, i.e. } T_b = f(p_i)$
 - Low-temperature limit determined by freezing of high-boilers and oil

- Theoretical limit for HTS application
 - Classical limit of vapor compression cycles given by the *triple point* of N₂
 *T*_{tr,N2} = 63 K
 - N_2/O_2 binary mixtures, however, have freezing points as low as $\sim 50 \text{ K}$
 - Eutectic point at 50.1 K and 77 mole-% O₂

Data source: Ruhemann, M. et al.: Zustandsdiagramme niedrig schmelzender Gemische; II. Das Schmelzdiagramm Sauerstoff-Stickstoff und das Zustandsdiagramm Stickstoff-Kohlenoxyd. *Phys. Z. Sowjetunion* 1935, *8*, 326.

Data for ternary Ne/N₂/O₂ mixtures not yet available (\$\studies at KIT)

Prevention of freeze-out

Kleemenko cycle

Principle

- Similarity with the Claude cycle, but *phase separator* and *expansion valve* instead of the expander
- Separation of high-boilers (e.g. C₅, C₄) as well as oil at ~250...270 K
- + Concentration-dependent freezing point
- No complete separation
- Various process configurations
 - Several phase separators, especially for lowtemperature operation
 - Complexity, ...

Cryogenic mixed refrigerant cascade (CMRC)

Layout

Principle

- Separate pre-cooling and second stage
- + No high-boilers and no risk of freezeout in the second stage

Example temperature profiles

Approaches for cooling system improvements

Potential HTS mixture applications

- Use of wide-boiling refrigerant mixtures in closed cycle cooling units
 - Longer power cable lengths by re-cooling units at the far cable end

Potential use of O₂/N₂ mixtures as cooling liquid in HTS power cables

Source: Shabagin, E.; Heidt, C.; Strauß, S.; Grohmann, S.: Three-dimensional modelling of temperature and pressure profiles in concentric three-phase HTS power cables. Cryogenics 2016 (to be published).

(LN₂ return)

Phase 3

Phase 2

PPLP dielectric

Phase 1

Inner tube (LN, supply)

Cooling technology for HTS power applications **CONCLUSIONS**

35 13.06.2016 Steffen Grohmann - ESAS Summer School 2016, Bologna, IT

Conclusions

