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Institute of Technical Thermodynamics and Refrigeration 
Institute of Technical Physics

Outline

Taking into account different backgrounds of the course participants,  
the aim of this course is


to provide an overview of existing HTS cooling technologies


to explain their technological differences


to discuss future development potentials


Therefore, the course is structured in the following sections


Technology overview


Cryocoolers


Cryoplants (refrigerators)


Development potentials


Summary
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TECHNOLOGY OVERVIEW
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Three-phase HTS power cables

Example 

AmpaCity project

Partners	 RWE, Nexans, KIT 

Cable length

Voltage

Nominal current

Nominal capacity  
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  Inner tube
(LN2 supply)

Annular circular duct
      (LN2 return)

Phase 1Phase 2
Phase 3Screen

PPLP  dielectric

Cryostat

Cable installation route in downtown Essen, Germany Official start of field test on April 30, 2014

L = 1000m
U = 10000V
IN = 2300A
PN = 3 ⋅U ⋅ IN = 40MW



Cooling unit in the AmpaCity project

Specification1)

Sub-cooled LN2 cooling of the HTS cable

Open LN2 cooling cycle

Each one redundant LN2 and vacuum pump

Nominal cooling capacity

Nominal LN2 consumption 
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150 mbar

Sub-cooler

Expansion
valve

64 K

67 KLN2
pumps

Pressurized
LN2 tank

(8–15 bar)

Compensation line

HTS cable

N2 to
atmosphere

!Q0,N = 4kW @ 67K
!MLN2 ,N

= 110kg h

1)	Herzog, F.; Kutz, T.; Stemmle, M.; Kugel, T.: Cooling unit for the AmpaCity 
 	 Project – one year successful operation. IWC 2015, Matsue - Japan  

1)1)



Cooling methods

General overview
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Open cycle
Closed cycle

Cryocooler Cryoplant (refrigerator)

Principle Evaporation of LN2 obtained 
from air separation units (ASU)

Air composition: 


  78.09 Vol% N2

  20.95 Vol% O2

  0.934 Vol% Ar
+  CO2, Ne, He, Kr, H2, Xe, O3, Rn
+  Water, HCs, CFCs, dust, … 
    …

Oscillating 
regenerative 

process

Continuous 
recuperative 

cycle

Capacities Any range Small Large

Temperatures Tmin > Ttr,N2 = 63 K Any down to ~2 K Any down to ~1 K

Operation 
supplies

Electricity

LN2 

Electricity

(Cooling water)

Electricity

(Cooling water)

Other criteria Investment cost, operating cost, reliability, space requirements, noise, maintenance etc.  
are project-dependent



CRYOCOOLERS
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Principle of Stirling cryocoolers

Steps in a Stirling cycle


I➝II:	 The gas is in the compression space. 
	 During isothermal compression, heat 
	 is removed at 𝑇h


II➝III:	 Isochoric displaced (𝑉 = const.) of the 
	 gas through the regenerator, cooling 
	 the gas down to 𝑇c


III➝IV:	 The gas is isothermally expanded in 
	 the expansion space, absorbing the 
	 heat 𝑄c at 𝑇c


IV➝I:	 Isochoric displacement back in the 
	 compression space, warming the gas 
	 up to 𝑇h while cooling the regenerator
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Compression
space

Regenerator
TcTh

Expansion
space

I

II

III

IV

I



Cryocooler types
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Stirling Gifford-McMahon Pulse tube

Integral Stirling

	 Build-in 90° phase shift


+ 	High efficiency, low weight

– 	Vibration, noise, lifetime


Split Stirling

	 Resonance frequency depending 

	 on load and ambient temperature

+ 	Low vibration and noise

– 	Less efficient 

 

	 Continuously working compressor 
	 unit (air/water cooled)

	 Compression and expansion by 

	 switching to high-pressure and 
	 low-pressure lines (amount of fluid 
	 contained changes)

	 Replacement of the displacer 
	 piston by a gas piston (wear, 
	 reliability)

	 Control of the phase shift between  

	 mass flow and pressure waves by  
	 orifice or capillary combined with  
	 a buffer vessel

	 Thermodynamically equivalent to 

	 Stirling cycle

Displacer
piston

Fixed
regenerator

Split
design

Moving
regenerator

Integral
design

Low pressure line

High pressure line

Rotary
valve

Displacer/
regenerator

Compressor
Water/air

~ ~~ ~

Displacer drive

cooling

Gas
piston

Orifice/capillary

Buffer
Phase shifter

Optional 2nd inlet



Cryocooler types (examples)
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Stirling Gifford-McMahon Pulse tube

Source: http://www.stirlingcryogenics.com/

Source: http://www.aim-ir.de/

Source:  
http://www.shicryogenics.com

Source: https://leyboldproducts.oerlikon.com/

Source: http://www.chartindustries.com

6-8 W

@ 77 K

150 W @ 77 K

90 W

@ 77 K

Source: http://www.cryomech.com/

200 W

@ 77 K

140 W

@ 77 K1000 W


@ 77 K

0.5-4 W

@ 77 K

http://www.stirlingcryogenics.com/
http://www.aim-ir.de/
http://www.shicryogenics.com
https://leyboldproducts.oerlikon.com/
http://www.chartindustries.com/Industry/Industry-Products/Gas-Systems/Qdrive/Qdrive-Products
http://www.cryomech.com/products/cryorefrigerators/pulse-tube/


Thermodynamic modelling

11

Time domain 

Sinusoids 

Math: Differential equations

Frequency domain 

Phasors (τ = 0, complex space) 

Math: Algebra, real and imaginary parts
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Illustration of cryocooler operation
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T, s – diagram (simplified)

Consider P as the average acoustic power 
provided by the pressure oscillator, causing 
pressure oscillations


Minimum temperature Tmin,ideal of the ideal 
cryocooler cycle at zero load q0 = 0


Additional entropy production due to 
gradients in {T, p} in a real cryocooler


Minimum temperature Tmin of the real cryocooler 
at zero load q0 = 0


Cooling power q0 available at T0 > Tmin

Work available to compensate the entropy 
difference between absorbing / dissipating the 
heat q0 between T0 / Th

The higher the temperature T0, the larger the 
cooling capacity q0 

Strong dependence q0 = f (T0) 
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Exemplary performance plots
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Single-stage cryocoolers Two-stage cryocoolers
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CRYOPLANTS (REFRIGERATORS)
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Linde-Hampson cycle

15

Layout


Simplest configuration

Positive Joule-Thomson coefficient 
required

Process in T, h-diagram

Very low cooling capacity

Very low efficiency

Warm process part at T > Ta not shown
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Linde-Hampson cycle
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Layout


Multi-stage compression to e.g. pH = 200 bar

Different number of stages depending on 
compressor technology (flow rates)

Process in T, h-diagram

Higher specific cooling capacity

Still low efficiency

Warm process part at T > Ta not shown
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Brayton cycle
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Layout


Expansion of single-phase working fluid in 
super-heated region (e.g. Ne)

Recovery of expansion work

Process in T, h-diagram
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Brayton cycle
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Layout


Expansion of single-phase working fluid in 
super-heated region (e.g. Ne)

Recovery of expansion work

Process in T, s-diagram

Efficient due to turbo-expander, but cost factor 
of cold turbo-machinery

Costly and rare working fluid (0.0018 Vol% in air)
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Turbo-Brayton refrigerator

Commercial system available (Air Liquide)


Applications

Gas (re)liquefaction (HCs, air gases)

Cryogenic gas purification/separation

Smallest unit suitable for HTS power applications
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Source: http://www.airliquideadvancedtechnologies.com/

http://www.airliquideadvancedtechnologies.com/en/our-offer/scientific-research-1/turbo-brayton-cryogenic-systems.html


Claude cycle
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Layout


Single-phase expansion of partial flow in  
super-heated region

Pre-cooling of remaining flow

Temperature profiles in CFHX I–III

Efficient due to turbo-expander, but cost factor 
of cold turbo-machinery

Pinch-points to be considered
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Claude cycle
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Layout


Single-phase expansion of partial flow in super-
heated region

Pre-cooling of remaining flow

Sources of energy demand

Example process with N2, Ta = 300 K, p1 = 1 bar, 
p7 = 40 bar, Δpij = 0.5 bar, ηComp = 0.7, ηExp = 0.8, 
ΔTmin = 3 K in all heat exchangers 

Most efficient operating point at a cold flow  
M = 0.3 und T16 = 170 K (expander flow 1–M )
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Variants of the Claude cycle
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DEVELOPMENT POTENTIALS
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Technology comparison

24

Efficiency Specific investment cost

13.06.2016 Steffen Grohmann - ESAS Summer School 2016, Bologna, IT Institute of Technical Thermodynamics and Refrigeration 
Institute of Technical Physics

1 10 100 1.000 10.000 100.000

0.1 1 10 100 1.000 10.000
0

5

10

15

20

25

Ca
rn

ot
 ef

fic
ie

nc
y 

(%
)

Cooling capacity @ 4.5 K (W)

Cooling capacity @ 40 K (W)

Cryocoolers
Cryoplants

1

10

100

0.1

1

10

In
ve

ns
tm

en
t @

 4
.5

 K
 (k

$/
W

)

In
ve

stm
en

t @
 4

0 
K

 (k
$/

W
)

0.1 1 10 100 1.000 10.000
Cooling capacity @ 4.5 K (W)

1 10 100 1.000 10.000 100.000
Cooling capacity @ 40 K (W)

Cryocoolers 4.2 K
Cryocoolers 20 K
Cryocoolers 40 K
Cryocoolers 77 K
Cryoplants

We can conclude that either technology has limitations in the HTS power application range
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	 (IWC-HTS), October 14-16, 2015, Matsue, Japan
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Makeshift solution at 4 K

Excessive cryocooler use on a superconducting magnet and RF cryostat

MICE project 
Muon 
Ionization 
Cooling 
Experiment


25 GM cryocooler on one cryostat

Cooling power: 	 

Power consumption: 	 

Specific power consumption:	 

Other issues:	 Space, vibrations, noise, reliability, maintenance, …


Comparison to recuperative cycle (Collins process)

 Specific power consumption:

25 13.06.2016 Steffen Grohmann - ESAS Summer School 2016, Bologna, IT Institute of Technical Thermodynamics and Refrigeration 
Institute of Technical Physics

Source: LBNL MICE Project Status (2012)

!Q0 = 37.5 W @ 4.2 K → 25 ×1.5 W @ 4.2 K( )
P = 180 kW 25 × 7.2 kW( )
P∗ = 4800 W WCooling power

P∗ = 250…400 W WCooling power



Back to the Linde-Hampson cycle

Reason for poor efficiency


Different capacity flows 	 yield increasing ΔT


Large entropy production


Technical options

Aim:	 in order to 
keep ΔTmin along the CFHX


I) Adaptation of flow rates

The Claude cycle includes this solution  
in CFHX II


II) Manipulation of spec. heat capacities 
by using wide-boiling refrigerant 
mixtures 

Mixed refrigerant cycle (MRC)
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Phase behavior of zoetrope mixtures
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Phase diagram (example)


Basics (ideal mixtures)

Dalton’s law

Raul's law

Equilibrium 

Different concentrations of saturated  
liquid and vapor phases


Closed condensation 1 → 4

(1) Single-phase super-heated vapor


(2) Saturated vapor 2″; first liquid drop 2′

High-boiler CH4 has lower vapor pressure and 
condenses first


(3) Saturated liquid 3′; last vapor bubble 3″


(4) Single-phase sub-cooled liquid


Equivalent for heating/boiling from 4 → 1

Low-boiler N2 has higher vapor pressure and 
evaporates first
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Effects of using refrigerant mixtures

Partial condensation and evaporation (HP and LP sides),  
respectively, of mixture components along the CFHX


High-boiling components condense/evaporate at the warm end

Low-boiling components condense/evaporate at the cold end


Reduced entropy production Δsirr during heat transfer

Manipulation of capacity flows	 through the specific heat capacities of 
the condensing/evaporating components i (phase change implies cp, i → ∞)


Minimization of temperature gradients in the CFHX


Reduced entropy production Δsirr during throttling

Higher Joule-Thomson coefficients at lower temperature


Lower Δp required for the same ΔT
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Throttling in the Linde-Hampson cycle

29

Example process

Higher specific cooling capacity at 
higher pressure


Necessity of c. 200 bar in case of N2

Joule-Thomson coefficient of N2

μJT ↑ bei  T ↓ 


Better pre-cooling (T12) with mixtures


 μJT ↑ bei  p ↓
Lower pressure needed as well
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Low-temperature limits of MRCs
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State-of-the-art

MRCs are widely used in natural gas 
liquefaction since the 1970s


C3MR process (C3 pre-cooling)


DMR process (double MR process)


MFC process (mixed fluid cascade)


Typical use of hydrocarbon mixtures 
(C1…C5) at T > 100 K


Tnb,CH4 = 112 K

Low-temperature limits

Achievable temperature influenced by 
lowest boiling component

Some reduction of boiling temperatures  
Tb (p) by addition of intent gases (N2, …)

	 , i.e. Tb = f ( pi )


Low-temperature limit determined by 
freezing of high-boilers and oil

Theoretical limit for HTS application

Classical limit of vapor compression 
cycles given by the triple point of N2


Ttr,N2 = 63 K

N2/O2 binary mixtures, however, have 
freezing points as low as ~50 K


Eutectic point at 50.1 K and 77 mole-% O2


Data for ternary Ne/N2/O2 mixtures not 
yet available (➭ studies at KIT)
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Prevention of freeze-out
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Kleemenko cycle Principle

Similarity with the Claude cycle, but 
phase separator and expansion valve 
instead of the expander


Separation of high-boilers (e.g. C5, C4) 
as well as oil at ~250…270 K


+ Concentration-dependent freezing 
point


– No complete separation


Various process configurations

Several phase separators, especially for low-
temperature operation


– Complexity, …
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Cryogenic mixed refrigerant cascade (CMRC)
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Layout Principle

Separate pre-cooling and second stage


+ No high-boilers and no risk of freeze-
out in the second stage


Example temperature profiles
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Approaches for cooling system improvements

33

Linde-Hampson process Claude process
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using refrigerant 
mixtures (MRC)


„Molecular 
 Engineering“ 

Negligible cost

Higher efficiency by 
increased system 
complexity


Cold expander

Number of HX ↑

Control ↑

Investment cost ↑

4

7
5

6

Ta

Comp

lt,Comp

AC

Evap
q0

EV

CFHX

1

23

qAC

Expander

CFHX I

Ta

CFHX II

CFHX III

1

234567

8
9

10

11

14
12

15

19

16

17
18

20

13

Use of standard refrigeration technology



Potential HTS mixture applications

Use of wide-boiling refrigerant mixtures in closed cycle cooling units

Longer power cable lengths by re-cooling units at the far cable end


Potential use of O2/N2 mixtures as cooling liquid in HTS power cables


Open issues: Material compatibility, safety, …
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Source:  Shabagin, E.; Heidt, C.; Strauß, S.; Grohmann, S.: 
Three-dimensional modelling of temperature and pressure 
profiles in concentric three-phase HTS power cables. 
Cryogenics 2016 (to be published). 



CONCLUSIONS
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Conclusions
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