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1 Introduction

One of the important tasks of modern high-energy particle physics is the development of

new methods to compute quantum corrections to physical cross sections. This is particu-

larly important in the context of Quantum Chromodynamics (QCD) where higher order

corrections often have a significant numerical impact. In this article we provide the first

next-to-next-to-next-to-next-to-leading order (N4LO) contribution to a three-point func-

tion within QCD. To be precise, we consider the photon-quark form factor, which is a

building block for N4LO cross sections. Namely, it is a gauge-invariant part of virtual

forth-order corrections for the process e+e− → 2 jets, or for Drell-Yan production at

hadron colliders.

Denoting the photon-quark vertex function by Γµ
q the scalar form factor is obtained via

Fq(q
2) = −

1

4(1− ǫ)q2
Tr

(

p2/ Γµ
q p1/ γµ

)

, (1.1)

where D = 4 − 2ǫ is the space-time dimension, q = p1 + p2 and p1 (p2) is the incoming

(anti-)quark momentum. We consider the large-Nc expansion of Fq(q
2). As a consequence

we only have to consider the contributions of planar Feynman diagrams.

Results for Fq can be used to probe the infrared structure of gauge theories. Form

factors encapsulate universal infrared contributions coming from soft exchanges between

two partons. The general form of the latter is known [1–6] and depends on cusp and

collinear anomalous dimensions.

Two-loop corrections to Fq have been computed more than 25 years ago [7–10]. The

first three-loop result has been presented in ref. [11] and has later been confirmed in ref. [12].

Analytic results for the three-loop form factor integrals were presented in ref. [13]. In

ref. [14], the results of ref. [13] have been used to compute Fq at three loops up to order

ǫ2, i.e., transcendental weight eight, as a preparation for the four-loop calculation.
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Figure 1. Sample Feynman diagrams contributing to the Fq at four-loop order in the large-Nc

limit. Straight and curly lines denote quarks and gluons, respectively. The external wavy line

represents the photon.

In this paper we compute the fermionic corrections to Fq in the large-Nc limit, to the

four-loop order. Sample Feynman diagrams which have to be computed for this purpose

are shown in figure 1.

Over the last decades, powerful methods for determining loop integrands based on

generalized unitarity have become common. However, form factors are simple enough

that a direct Feynman diagram approach for determining the loop integrand is perfectly

possible. The expression for the integrals contributing to the form factors is then reduced

to a set of so-called master integrals, exploiting integration-by-parts identities [15]. This

requires rather involved computer algebra, and can be achieved using the latest version of

the program FIRE [16–18].

This leaves the evaluation of the master integrals as the main technical difficulty. In

a previous paper [19], three of the present authors proposed a new technique for comput-

ing such integrals. Massless form-factor integrals have a trivial scale dependence, so the

powerful method of differential equations [20–24] cannot be used directly. Rather, one

first introduces an auxiliary parameter (corresponding to a second off-shell external leg),

in which differential equations are set up. The main idea of [19] is that the boundary

value of the differential equations can be fixed trivially from a value of the new parameter

that corresponds to propagator-type integrals. This boundary value is then related to the

original problem via the differential equations.

This last step is especially easy in the canonical form [24] of the differential equations.

It was suggested in that paper that in order to reach the canonical form it is helpful to

select basis integrals that have constant leading singularities [25]. The latter are essentially

multidimensional residues of the loop integrand and can be computed algorithmically. This

connection makes it easy to reach the canonical form of the differential equations, as was

demonstrated in many recent papers.

We classified all massless planar four-loop form-factor integrals and determined the

corresponding master integrals. We found a total of 99 master integrals. We then computed

them as described in the previous two paragraphs. A very welcome by-product of the

approach of [24] is that the results are typically expressed in terms of uniform weight

functions. Examples of uniform weight form factor integrals were previously considered in
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refs. [13, 26]. Here we systematically found a uniform weight basis for all planar integrals,

and expanded them to weight eight. While this is the weight needed for typical four-loop

computations, it is also possible to expand our result to higher weight.

Other attempts to calculate similar form factors or master integrals were reported on

in refs. [27–29]. The evaluation of the master integrals in refs. [27, 28] was performed only

by numerical methods while ref. [29] presents results only for some individual integrals in

an analytical form.

The remainder of the paper is structured as follows: in the next section we briefly

outline our calculation and present results for the form factor and for the cusp and collinear

anomalous dimensions. Sections 3 and 4 are dedicated to the classification and evaluation

of the master integrals. Our conclusions are contained in section 5.

2 Calculation and results

We generate the Feynman amplitudes with the help of qgraf [30] and transform the output

to FORM [31, 32] notation using q2e and exp [33, 34]. For the reduction to master integrals

we use the program FIRE [16–18] which we apply in combination with LiteRed [35, 36].

Relations between primary master integrals occurring in the reduction tables are revealed

with the help of tsort, which is part of the latest FIRE version [18], and based on ideas

presented in ref. [17]. This leads to 78 master integrals needed for the fermionic part.

More generally, we find that a total of 99 master integrals are sufficient for arbitrary

planar integrals. They are all computed as described in sections 3 and 4.

In our calculation we allow for a generic QCD gauge parameter ξ and expand the

Feynman diagrams around ξ = 0, which corresponds to Feynman gauge, up to linear order.

We checked that ξ drops out before inserting explicit results for the master integrals.

In the following we present results for the form factor Fq and the related anomalous

dimensions. Fq is conveniently shown in term of the bare strong coupling constant. In that

case the perturbative expansion of Fq can be cast in the form

Fq = 1 +
∑

n≥1

(

α0
s

4π

)n(
µ2

−q2

)(nǫ)

F (n)
q . (2.1)

Analytic results for F
(n)
q , with n ≤ 3, expanded in ǫ up to transcendental weight eight can

be found in ref. [14]. We refrain from repeating them here.

The main result of this letter is the fermionic contribution to F
(4)
q in the large-Nc limit.

It is given by

F (4)
q |large-Nc

=

1

ǫ7

[

1

12
N3

c nf

]

+
1

ǫ6

[

41

648
N2

c n
2
f −

37

648
N3

c nf

]

+
1

ǫ5

[

1

54
Ncn

3
f +

277

972
N2

c n
2
f

+

(

41π2

648
−

6431

3888

)

N3
c nf

]

+
1

ǫ4

[

(

215ζ3
108

−
72953

7776
−

227π2

972

)

N3
c nf
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+
11

54
Ncn

3
f +

(

5

24
+

127π2

1944

)

N2
c n

2
f

]

+
1

ǫ3

[

(

229ζ3
486

−
630593

69984
+

293π2

2916

)

N2
c n

2
f

+

(

2411ζ3
243

−
1074359

69984
−

2125π2

1296
+

413π4

3888

)

N3
c nf +

(

127

81
+

5π2

162

)

Ncn
3
f

]

+
1

ǫ2

[

(

−
41ζ3
81

+
29023

2916
+

55π2

162

)

Ncn
3
f +

(

11684ζ3
729

−
41264407

419904
−

155π2

72

+
2623π4

29160

)

N2
c n

2
f +

(

−
537625ζ3
11664

−
599π2ζ3
486

+
12853ζ5
180

+
155932291

839808

−
27377π2

69984
−

1309π4

7290

)

N3
c nf

]

+
1

ǫ

[

(

−
451ζ3
81

+
331889

5832
+

635π2

243
+

151π4

4860

)

Ncn
3
f

+

(

661ζ3
4

−
1805π2ζ3

729
+

19877ζ5
405

−
608092805

839808
−

6041473π2

209952
+

8263π4

21870

)

N2
c n

2
f

+

(

−
5427821ζ3

5832
+

48563π2ζ3
2916

−
1373ζ23
324

+
12847ζ5
810

+
662170621

279936
+

17271517π2

209952

−
78419π4

25920
+

21625π6

81648

)

N3
c nf

]

+

[

(

−
10414ζ3
243

−
205π2ζ3
243

−
1097ζ5
135

+
10739263

34992

+
145115π2

8748
+

1661π4

4860

)

Ncn
3
f +

(

65735207ζ3
52488

−
4262π2ζ3
2187

−
71711ζ23
1458

+
725828ζ5
1215

−
68487272627

15116544
−

295056623π2

1259712
−

889π4

6480
+

43559π6

204120

)

N2
c n

2
f

+

(

−
1774255975ζ3

209952
+

265217π2ζ3
3888

−
2692π4ζ3
3645

+
973135ζ23
1458

−
56656921ζ5

19440

−
58657π2ζ5

1620
+

1643545ζ7
1008

+
555003607961

30233088
+

785989381π2

839808
−

34077673π4

2099520

−
146197π6

612360

)

N3
c nf

]

+ . . . , (2.2)

where the ellipses stand for nf -independent contributions.

The cusp and collinear anomalous dimension is conveniently extracted from log(Fq)

(after renormalization of αs). The pole part of the latter has the generic structure (see,

e.g., refs. [12, 37])

log(Fq)|pole part =

αs

4π

{

1

ǫ2

[

−
1

2
CFγ

0
cusp

]

+
1

ǫ

[

γ0q

]}

+
(αs

4π

)2
{

1

ǫ3

[

3

8
β0CFγ

0
cusp

]

+
1

ǫ2

[

−
1

2
β0γ

0
q −

1

8
CFγ

1
cusp

]

+
1

ǫ

[

γ1q
2

]}

+
(αs

4π

)3
{

1

ǫ4

[

−
11

36
β2
0CFγ

0
cusp

]

+
1

ǫ3

[

CF

(

2

9
β1γ

0
cusp +

5

36
β0γ

1
cusp

)

+
1

3
β2
0γ

0
q

]
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+
1

ǫ2

[

−
1

3
β1γ

0
q −

1

3
β0γ

1
q −

1

18
CFγ

2
cusp

]

+
1

ǫ

[

γ2q
3

]}

+
(αs

4π

)4
{

1

ǫ5

[

25

96
β3
0CFγ

0
cusp

]

+
1

ǫ4

[

CF

(

−
13

96
β2
0γ

1
cusp −

5

12
β1β0γ

0
cusp

)

−
1

4
β3
0γ

0
q

]

+
1

ǫ3

[

CF

(

5

32
β2γ

0
cusp +

3

32
β1γ

1
cusp +

7

96
β0γ

2
cusp

)

+
1

4
β2
0γ

1
q +

1

2
β1β0γ

0
q

]

+
1

ǫ2

[

−
1

4
β2γ

0
q −

1

4
β1γ

1
q −

1

4
β0γ

2
q −

1

32
CFγ

3
cusp

]

+
1

ǫ

[

γ3q
4

]}

, (2.3)

where µ2 = −q2 has been chosen and the coefficients of the β function are given by

β0 =
11CA

3
−

2nf

3
,

β1 = −
10CAnf

3
+

34C2
A

3
− 2CFnf ,

β2 = −
205

18
CACFnf −

1415

54
C2
Anf +

79

54
CAn

2
f +

2857C3
A

54
+

11

9
CFn

2
f + C2

Fnf . (2.4)

The coefficients of the cusp and collinear anomalous dimensions are defined through

γx =
∑

n≥0

(

αs(µ
2)

4π

)n

γnx , (2.5)

with x ∈ {cusp, q}.

From eq. (2.3) it is evident that γcusp can be extracted from the coefficient of the

quadratic, and γq from the first-order pole in ǫ. In the large-Nc limit we obtain for γcusp

γ0cusp = 4 ,

γ1cusp =

(

−
4π2

3
+

268

9

)

Nc −
40nf

9
,

γ2cusp =

(

44π4

45
+

88ζ3
3

−
536π2

27
+

490

3

)

N2
c +

(

−
64ζ3
3

+
80π2

27
−

1331

27

)

Ncnf

−
16n2

f

27
,

γ3cusp =

(

−
32π4

135
+

1280ζ3
27

−
304π2

243
+

2119

81

)

Ncn
2
f +

(

128π2ζ3
9

+ 224ζ5 −
44π4

27

−
16252ζ3

27
+

13346π2

243
−

39883

81

)

N2
c nf +

(

64ζ3
27

−
32

81

)

n3
f + . . . . (2.6)
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where the ellipses in γ3cusp indicate non-nf terms which are not yet known. For γq we have

γ0q = −
3Nc

2
,

γ1q =

(

π2

6
+

65

54

)

Ncnf +

(

7ζ3 −
5π2

12
−

2003

216

)

N2
c ,

γ2q =

(

−
π4

135
−

290ζ3
27

+
2243π2

972
+

45095

5832

)

N2
c nf +

(

−
4ζ3
27

−
5π2

27
+

2417

1458

)

Ncn
2
f

+N3
c

(

−68ζ5 −
22π2ζ3

9
−

11π4

54
+

2107ζ3
18

−
3985π2

1944
−

204955

5832

)

,

γ3q = N3
c

[(

−
680ζ23
9

−
1567π6

20412
+

83π2ζ3
9

+
557ζ5
9

+
3557π4

19440
−

94807ζ3
972

+
354343π2

17496

+
145651

1728

)

nf

]

+

(

−
8π4

1215
−

356ζ3
243

−
2π2

81
+

18691

13122

)

Ncn
3
f +

(

−
2

3
π2ζ3

+
166ζ5
9

+
331π4

2430
−

2131ζ3
243

−
68201π2

17496
−

82181

69984

)

N2
c n

2
f + . . . . (2.7)

For the finite part of log(Fq) we obtain

log(Fq)|
(4)
large-Nc, finite part =

(

π2ζ3
27

−
53ζ5
135

+
761π4

7290
+

52ζ3
243

+
9883π2

4374
+

1865531

104976

)

Ncn
3
f +

(

137ζ23
54

+
1753π6

34020

+
26π2ζ3
81

+
1798ζ5
15

−
58547π4

58320
+

386105ζ3
5832

−
24172133π2

419904
−

918437291

1679616

)

N2
c n

2
f

+

(

24427ζ7
144

+
23π2ζ5
108

−
1079π4ζ3
3240

+
19705ζ23
108

+
347π6

9720
−

2509π2ζ3
1296

−
514217ζ5

720

−
10961π4

5832
−

11482507ζ3
5832

+
284977643π2

839808
+

874566569

209952

)

N3
c nf + . . . , (2.8)

The expressions in eqs. (2.6) and (2.7) up to three-loop order confirm the results in the

literature [11, 12, 37–41] and the N3
c n

3
f term of γ3cusp agrees with the result of refs. [42, 43].

All other terms in the four-loop results γ3cusp and γ3q and the finite part in eq. (2.8) are new.

3 Integrals with constant leading singularities

Our calculation involves planar four-loop form-factor integrals. We classified all such in-

tegrals and performed an integral reduction, resulting in 99 master integrals. Before dis-

cussing their evaluation, we devote this section to our basis choice for these integrals.

3.1 Leading singularities and d-log forms

In recent years it has become standard to use a basis, whenever possible, of integrals

having constant leading singularities. Leading singularities [25] are essentially defined as

multidimensional residues of the Feyman loop integrand.

– 6 –
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The usefulness of integrals with constant leading singularities was first noticed in the

context of maximally supersymmetric gauge theory, where the answer appears to be natu-

rally written in terms of them. Building on experience with such integrals in the literature,

their systematic use was advocated in ref. [44]. A particular highlight is an all-n expression,

where n is the number of external legs for the integrand of two-loop maximally helicity

violating amplitudes in N = 4 super Yang-Mills theory. In fact, it turns out that the

appearance of integrals with simple leading singularities in this theory is very natural,

as can be seen in the twistor approach of [45], or when expressing leading singularities

as certain Grassmannian integrals [46]. Although more examples are known in the planar

case, the concept of constant leading singularities also carries over to the non-planar sector,

see [26, 47, 48] for examples.

The use of such integrals is not limited to supersymmetric amplitudes, as was pointed

out in ref. [24]. Since then, they were applied to countless calculations of scattering ampli-

tudes required for phenomenology, see, e.g., ref. [49]. Of course, more integrals are needed

in QCD compared to supersymmetric theories. In this context, it is perhaps interesting

to point out that many of the additional integrals needed for QCD can be thought of as

integrals being defined in a dimension shifted by two units. As is well known, integrals in

D± 2 and D dimensions are related. The picture that emerges is that one should not only

classify integrals having constant leading singularities in four dimensions, but in all integer

(in particular even) dimensions, and then relate them to the four-dimensional case.

Let us give some one-loop examples of such integrals. We define the triangle integral

near four dimensions

Itriangle =

∫

d4−2ǫk

iπ2−ǫ

(p1 + p2)
2

k2(k + p1)2(k − p2)2
, (3.1)

and the propagator-type integral near two dimensions,

Ibubble =

∫

d2−2ǫk

iπ1−ǫ

(p1 + p2)
2

(k + p1)2(k − p2)2
, (3.2)

where p21 = p22 = 0.

In the following we will consider leading singularities at ǫ = 0. It is convenient to

change variables. For the bubble, we set kµ = αpµ1 + βpµ2 , which leads to

d2k (p1 + p2)
2

(k + p1)2(k − p2)2
∝

dα dβ

(α+ 1)αβ(β − 1)
, (3.3)

where the proportionality sign means that the equation holds up to kinematic-independent

factors. While there are various locations of the leading singularities, we can see

that all poles are kinematic-independent. A similar analysis was done for the triangle

integral, see [48].

We mention that one can rewrite the integrands (algebraically) in a form where this

property is manifest, namely,

dα dβ

(α+ 1)αβ(β − 1)
= ± d log

[

(k + p1)
2

(k − k±)2

]

d log

[

(k − p2)
2

(k − k±)2

]

. (3.4)

– 7 –
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p1 p2
k1 k2 k3

k4 + p1

Figure 2. Twelve-propagator form-factor integral that has unit leading singularities. The numer-

ator (k24)
2 normalization factor is implied.

Here k± denotes the two solutions to the maximal cut condition, (k± + p1)
2 = 0,

(k± − p2)
2 = 0, which are given by k+ = −p1+p2 and k− = 0. Equation (3.4) implies that

there exist variables in which the integrand is just d log x1d log x2, with unit normalization.

More formulas of this type, called d-log forms, can be found in refs. [47, 48].

Following these ideas, we wrote down a basis of integrals with constant leading sin-

gularities for planar four-loop form-factor integrals. The whole basis will be presented

elsewhere. Here we give one example, for the twelve-propagator integral that was needed

in the nf -calculation. See figure 2 and the first diagram of figure 1 for a representative

Feynman diagram. We choose as basis element

I12 prop = ǫ8(−s)1−4ǫe4ǫγE
∫ 4

∏

j=1

dDkj

iπD/2

(k24)
2

k21k
2
2k

2
3(k1 − k2)2(k2 − k3)2(k1 − k4)2

×
1

(k2 − k4)2(k3 − k4)2(k1 + p1)2(k4 + p1)2(k4 − p2)2(k3 − p2)2
(3.5)

The normalization factors were chosen for later convenience. We first would like to illus-

trate that this integral has indeed constant leading singularities. While this can be done

algorithmically, it is instructive to rewrite the integrand in a form where this is obvious,

namely in terms of d-log forms of the type discussed above. A very useful feature is that

this analysis can be done loop by loop, which allows one to recycle formulas. This is very

similar to an analysis via cuts, although here we do not assume that any loop momenta

are on-shell. First, we note that the box subintegrals with three off-shell legs, i.e. the ones

depending on loop momenta k1 and k3 (see figure 2), can be written in a d-log form. For

the subsequent calculation, only the normalization factor of these subintegrals is relevant.

The latter can be obtained from any of their leading singularities. For example, for the

box integral on the left, we have the following integrand

d4k1
iπ2

1

k21(k1 + p1)2(k1 − k4)2(k1 − k2)2
. (3.6)
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After taking a multi-dimensional residue one obtains either zero, or a term proportional to

1

k24(k2 + p1)2 − k22(k4 + p1)2
. (3.7)

For the box on the right a similar expression is obtained. Next, we consider the k2 inte-

gration. Taking into account the factors obtained from the k1 and k3 integrals, we arrive

at a generalized box integral

d4k2
k22(k2 − k4)2[k24(k2 + p1)2 − k22(k4 + p1)2][k24(k2 − p2)2 − k22(k4 − p2)2]

. (3.8)

Again, it can be shown that this has a d-log form, with the normalization factor 1/(k24)
3.

We refer the interested reader to [44, 48] for more detailed examples of leading singularity

and d-log calculations. We now see that the numerator in eq. (3.5) cancels the excessive

factors of k24. Indeed, putting everything together, we see that the remaining k4 integral is

exactly of the form of the one-loop triangle integral of eq. (3.1). In summary, this proves

that (3.5) has a d-log representation with unit normalization.

We would like to emphasize again that the classification of integrals having constant

leading singularities can be done algorithmically. Let us expand on this point. First of

all, for a given propagator structure, one makes an ansatz for all possible numerator terms

allowed by power counting (or subject to other criteria). It is convenient to parametrize

the loop momentum in such a way that the integration parameters are scalars. We illus-

trated this in the case of the bubble integral, cf. eq. (3.3). Next, one evaluates all leading

singularities of this ansatz (i.e., one computes the residues at all poles of the integrand).

Requiring that the residues be kinematic-independent yields a system of equations, which

is then solved. It is important to realize that this analysis only depends on the integrand

at hand, and can be done before attempting to compute the integral.

3.2 Transcendental weight properties

One nice feature of integrals with constant leading singularities is that, conjecturally, they

evaluate to so-called pure functions, i.e. iterated integrals of uniform weight.

For iterated integrals, such as multiple polylogarithms, the weight is defined as the

number of integrations, e.g. one for logarithms, n for classical polylogarithms Lin, etc.

Similarly, transcendental constants such as zeta values, ζn, have weight n. Finally, when

considering Laurent expansions in the dimensional regularization parameter ǫ, one can

assign weight −1 to ǫ. This is natural since 1/ǫ would be represented by logarithm in a

cutoff regularization.

With these definitions, we see that the triangle integral of eq. (3.1) has uniform

weight 2,

(−s)1−ǫeǫγEItriangle =
1

ǫ2
−

1

12
π2 −

7

3
ζ3ǫ−

47

1440
π4ǫ2 +O(ǫ3) . (3.9)

More generally, L-loop integrals with constant leading singularities in 4 dimensions are

expected to evaluate to weight 2L functions.
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Beyond maximally supersymmetric Yang-Mills theory, also functions of weight smaller

than 2L are needed. Perhaps the best way to understand the additional integrals is to

consider them in different dimensions. Take as an example the 2− 2ǫ dimensional bubble

integral of eq. (3.2). In fact, in this simple example, the bubble and triangle integrals

are related by an integration-by-parts relation (and, dimensional shift relation [50, 51]),

which implies

Ibubble = −2ǫ Itriangle , (3.10)

where the integrals are defined in eqs. (3.1) and (3.2). From this formula we see that its

weight is shifted by one compared to the triangle. It evaluates to a uniform weight-one

function.

More generally, at higher loops one can also generate integrals of various weights, in

particular by writing subintegrals formally in different dimensions. For example, all the

uniform weight integrals presented in ref. [24] and elsewhere can be understood in this way.

See also the lecture notes [52] for more details.

Returning to our form-factor integrals, we can verify the uniform weight conjecture for

the most complicated twelve-propagator integral of eq. (3.5). It turns out that the uniform

weight property can be best understood systematically using differential equations that are

discussed in the next section. Here we anticipate a result of that calculation,

I12 prop =
1

576
+ ǫ2

1

216
π2 + ǫ3

151

864
ζ3 + ǫ4

173

10368
π4 + ǫ5

[

505

1296
π2ζ3 +

5503

1440
ζ5

]

+

+ ǫ6
[

6317

155520
π6 +

9895

2592
ζ23

]

+ ǫ7
[

89593

77760
π4ζ3 +

3419

270
π2ζ5 −

169789

4032
ζ7

]

+ ǫ8
[

407

15
s8a +

41820167

653184000
π8 +

41719

972
π2ζ23 −

263897

2160
ζ3ζ5

]

+O(ǫ9) , (3.11)

where s8a =
∑∞

i1=1
1
i51

∑i1
i2=1

1
i32

= ζ8 + ζ5,3 = 1.041785 . . . and ζ5,3 is a multiple zeta

value [53]. Reinstating the 1/ǫ8 from eq. (3.5), one sees that this is a uniform weight eight

integral, as expected from a four-loop integral. As an independent check of eq. (3.11), we

derived a Mellin-Barnes representation (see Chapter 5 of [54] for a review) for this integral,

which we used to verify the first three terms in the ǫ expansion analytically.

4 Differential equation bootstrap for single-scale integrals

In this section we discuss the first analytic computation of all planar four-loop on-shell form-

factor integrals which are defined in the kinematic regime p21 = p22 = 0, with q2 ≡ p23 =

(p1 + p2)
2. Following the strategy of [19] we introduce an auxiliary parameter by taking a

second external leg off-shell, i.e. p22 6= 0, and x = p22/p
2
3, and derive differential equations

with respect to x. The main idea can be explained via figure 3. It turns out that the

singular points of the differential equations are x = 0, 1,∞. The point x = 0 corresponds

to the original on-shell form-factor integrals, figure 3(b). Similarly, for x = ∞ we have

p23 = 0, which again leads to form-factor integrals, as for x = 0, and thus this case does
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0 1

p1 p2

p3

Re(x)

Im(x)

(a)

p1 p2

p3

x = 0

(b)

p2

p3

x = 1

(c)

Figure 3. Bootstrapping on-shell form-factor integrals at x = 0 (b) from propagator integrals at

x = 1 (c). The form factor with two off-shell legs is shown in (a), where x = p22/p
2
3.

not have to be considered separately. On the other hand, the boundary value at x = 1

corresponds to propagator-type integrals, see figure 3(c). They can be determined easily:

in most cases, the boundary value is zero due to kinematical factors. Otherwise one can use

results for propagator type integrals available in the literature, see, in particular, four-loop

analytic results in [55–57]. This information is then transported back via the differential

equation to x = 0, see figure 3(a). Let us now see how this works in a bit more detail. A

pedagogical example is given in [52].

In reference [24], a canonical form of differential equations for Feynman integrals was

suggested. Conjecturally, this form can be reached whenever the master integrals can

be chosen to have the property that their leading singularities are constant, as explained

in section 3. This reduces the problem of finding a canonical basis for the differential

equations to a simple classification of integrals having this property. The latter can be

done algorithmically.

For the planar form factor with p22 6= 0 and p23 6= 0 we find a total of 504 master

integrals (some of them related by symmetry). After choosing a canonical basis ~f , we

found the following system of differential equations,

∂x ~f(x, ǫ) = ǫ

[

a

x
+

b

1− x

]

~f(x, ǫ) , (4.1)

where a and b are some constant (i.e. x- and ǫ-independent) 504 × 504 matrices. The

special features of this form are the manifest Fuchsian property of the singularities, i.e.

only single poles in x = 0, 1,∞ are present on the right-hand side of eq. (4.1), and the

fact that the right-hand side is proportional to ǫ. The latter property can be achieved for

iterated integrals. Here, it implies that the solution, to any order in ǫ, can be written in

terms of iterated integrals over the kernels dx/x and dx/(x− 1), i.e. in terms of harmonic

polylogarithms [58]. The former property is true for any Feynman integral. Making it

manifest allows us to describe the boundary behavior in a simple way, namely

~f(x, ǫ)
x→0
=



1 +
∑

k≥1

pk(ǫ)x
k



xǫa ~f0(ǫ) , (4.2)

~f(x, ǫ)
x→1
=



1 +
∑

k≥1

qk(ǫ)(1− x)k



 (1− x)−ǫb ~f1(ǫ) , (4.3)
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where a and b are the matrices from eq. (4.1) and the coefficients matrices pk(ǫ) and qk(ǫ)

in the expansion can be obtained recursively [59].

We fix the boundary value at x = 1 by demanding regularity of the integrals in this

limit and using explicit results for some propagator type integrals. This determines ~f1(ǫ).

We then use the differential equation (4.1) to transport this boundary value back to

x = 0. (In mathematical language, we construct the Drinfeld associator, perturbatively

in ǫ.) This allows us to determine ~f0(ǫ). Finally, unlike the x → 1 limit, the x → 0 limit

is singular, in the sense that the matrix exponential xǫa contains several terms xǫα, with

α 6= 0. These non-zero values of α correspond to contributions of various regions [60–62]

to the asymptotic expansion in the given limit. The on-shell integrals we would like to

compute correspond to the so-called “hard” region with α = 0.

In order to determine to the on-shell integrals, we reduce the basis ~f for on-shell

kinematics, expressing it in terms of 99 on-shell master integrals. We then match the

expression so obtained to the hard region at x = 0. We find that this determines all the 99

integrals (naturally, some of the 504 equations are redundant). In order to carry out these

algebraic manipulations, we found the Mathematica implementation HPL.m [53] useful.

In summary, we analytically computed all planar form-factor integrals with two off-

shell legs (504 master integrals), and with one off-shell leg (99 master integrals). The

result for the most complicated on-shell form-factor integral with twelve propagators that

appeared in the nf -piece of our calculation was given in eq. (3.11) as an example. The full

analytic results for all planar master integrals will be given elsewhere.

5 Conclusions

In this paper we report the calculation of all 504 master integrals which are needed for

a generic planar massless form factor with two off-shell legs. They are obtained by a

proper choice of basis integrals, together with boundary conditions where the form factor

degenerates to a two-point function. From the generic basis we derive analytic results for

the 99 master integrals that are needed for the planar on-shell form factor. 78 out of the 99

master integrals are needed for the fermionic part of the planar photon-quark form factor.

The latter is considered in section 2 of this paper, where analytic results up to four loops

are presented for the cusp and collinear anomalous dimension and the finite part of Fq.

A natural extension of this work is to apply the planar master integrals we computed

to evaluate the non-fermionic planar contribution, where the integral reduction is more

complicated. Furthermore, we expect that the methods discussed in this paper can also be

applied to non-planar form factor integrals.
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