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1 Introduction

An important feature of the perturbative treatment of any quantum field theory is the

evolution of couplings, fields and masses with the renormalization scale µ, which is usually

set to a characteristic energy scale of the physical process under consideration. This evo-

lution is described by the Renormalization Group (RG) functions, i.e. β-functions for the

couplings and anomalous dimensions for fields and masses.

The β-function for any coupling X is defined as

βX(X,X1, X2, . . .) = µ2 dX

dµ2
=

∞∑
n=1

1

(16π2)n
β

(n)
X . (1.1)

It is a power series in all couplings X,X1, X2, . . . of the theory and independent of all gauge

parameters ξ.

Recently the RG functions of the Standard Model (SM) were computed at three-loop

accuracy. In the MSscheme β-functions do not depend on masses [1], hence they can be

computed in the unbroken phase of the SM. For the gauge couplings gs, g2 and g1 of the

SUC(3), SUL(2) and UY (1) subgroups of the SM the results were first published in [2, 3] and

independently confirmed in [4]. For the top-Yukawa coupling yt, which is the numerically

largest Yukawa coupling by far, and the parameters of the Higgs potential λ and m2

the β-functions were first computed in the gaugeless limit, i.e. g2, g1 → 0, along with the

anomalous dimensions of the fields involved [5]. Later βλ and βm2 were extended to the full

SM [6], confirmed by [7, 8], as well as βyt [9], where the β-functions for the smaller Yukawa

couplings were also added. The one- and two-loop β-functions for the gauge couplings [10–

21], Yukawa couplings [18, 20, 22, 23] and Higgs potential parameters [18, 20, 21, 24] have

been known for a long time as well as partial three-loop results [25–31]. At four-loop level

only the QCD β-function, i.e. βgs(gs) or equivalently βαs(αs) = 2αsgs βgs with αs = g2
s

4π is

known [32, 33].
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Especially the evolution of the quartic Higgs self-coupling has received a lot of interest

because of its close connection to the question of vacuum stability in the Standard Model.

It has been shown that the stability of the SM vacuum up to some large energy scale

Λ ∼ MPlanck is approximately equivalent to the requirement that the running coupling

λ(µ) > 0 for µ ≤ Λ [34–36]. The function βλ describing this evolution depends on all

SM couplings an especially the large couplings yt and gs have a strong influence. As the

evolution of all couplings is interdependent a precision calculation for the evolution of all

— at least of the five largest (gs, yt, g2, g1 and λ) — is well motivated. Many analyses of

this question have been performed [5, 37–49] during the last years.

In this paper we extend the QCD β-function to the gaugeless limit of the SM, i.e. we

include the dependence on the top-Yukawa coupling yt and the quartic Higgs self-coupling

λ. This can be seen as a first step to all three gauge coupling β-functions in the full SM.

To start with the gaugeless limit seems reasonable, first because at the energy-scales of our

experiments yt is the second largest coupling in the SM after gs, followed by g2, g1 and λ.

In order to renormalize fermion loops with four scalar legs we should also add counterterm

∝ Φ4 to the Lagrangian of our simplified model. This is exactly a contribution to the

renormalization of λ which makes it natural to include λ as well.

Secondly, the gaugeless limit of the SM provides an excellent opportunity to study the

proper treatment of γ5, which is introduced in the Yukawa-part of the Lagrangian. This

matrix is not well-defined in D = 4 − 2ε dimensions and hence constitutes a non-trivial

challenge.

The paper is structured as follows: in the following section the technical details, espe-

cially the treatment of γ5, as well as the automation of the calculation are discussed. Then

the results are given and the relevance of the four-loop terms numerically determined at

the scale of the top quark mass.

Note. During the finishing process of this paper a similar calculation was published by

another group [50]. Their calculation was not performed with massive tadpole integrals

but rather with massless propagator-like integrals and in the Background field gauge. Both

results achieved with different methods agree if the same prescription for the treatment of

γ5 is used (see section 2.3).

2 Details of the calculation

2.1 Gaugeless limit of the SM

The Lagrangian of the SM in the unbroken phase can be decomposed into

LSM = LSU(3)×SU(2)×U(1) + LYukawa + LΦ , (2.1)

where LSU(3)×SU(2)×U(1) contains the kinetic terms of the fermions and gauge bosons, their

interactions and the necessary gauge fixing and ghost terms. The Yukawa part LYukawa

describes the coupling of the fermions to a scalar SU(2) doublet Φ =

(
Φ1

Φ2

)
which re-

sults in fermion masses and the coupling of fermions to the Higgs boson after Spontaneous

– 2 –



J
H
E
P
0
2
(
2
0
1
6
)
0
9
5

Symmetry Breaking as well as the mixing of the quark generations. The scalar part LΦ

contains the kinetic term for the scalar field Φ, its potential and its coupling to the elec-

troweak gauge bosons through the covariant derivative. In the gaugeless limit we neglect

two smaller gauge couplings g2 and g1 (electroweak sector). We also approximate the small

Yukawa couplings, i.e. all but the top-Yukawa coupling yt, by zero and arrive at a simplified

model which includes QCD and top-Yukawa effects as well as the scalar potential:

L = LQCD + Lyt + LΦ (2.2)

with

LQCD = −1

4
GaµνG

aµν − 1

2(1− ξ)
(∂µA

aµ)2 + ∂µc̄
a∂µca + gsf

abc ∂µc̄
aAb µcc

+
∑
q

{
i

2
q̄
←→
/∂ q + gsq̄ /A

a
T aq

}
, (2.3)

Lyt = −yt
{

(t̄PRt) Φ∗2 + (t̄PLt) Φ2 −
(
b̄PRt

)
Φ∗1 − (t̄PLb) Φ1

}
, (2.4)

LΦ = ∂µΦ†∂µΦ−m2Φ†Φ− λ
(

Φ†Φ
)2

. (2.5)

Here q runs over all quark flavours, the gluon field strength tensor is given by

Gaµν = ∂µA
a
ν − ∂νAaµ + gsf

abcAbµA
c
ν (2.6)

and fabc are the structure constants of the colour gauge group with the generators T a

which satisfy [
T a, T b

]
= ifabcT c. (2.7)

The Yukawa sector mixes left-handed (L) and right-handed (R) Weyl spinors which

can be projected out from Dirac spinors used in our Feynman rules by the application of

the projectors

PL =
1

2
(1− γ5) PR =

1

2
(1 + γ5) . (2.8)

The left- and right-handed parts of the quark fields and vertices participating in the Yukawa

interaction are renormalized differently.

The Lagrangian (2.2) is renormalized with the counterterms

δLQCD = −1

4
δZ

(2g)
3

(
∂µA

a
ν − ∂νAaµ

)2 − 1

2
δZ

(3g)
1 gsf

abc
(
∂µA

a
ν − ∂νAaµ

)
AbµA

c
ν

−1

4
δZ

(4g)
1 g2

s

(
fabcAbµA

c
ν

)2
+ δZ

(2c)
3 ∂µc̄

a∂µca + δZ
(ccg)
1 gsf

abc ∂µc̄
aAb µcc (2.9)

+
∑
q

{
i

2
q̄
←→
/∂
[
δZ

(2q)
2,L PL + δZ

(2q)
2,R PR

]
q + gsq̄ /A

a
T a
[
δZ

(qqg)
1,L PL + δZ

(qqg)
1,R PR

]
q

}
,

δLYukawa = −δZ(tbΦ)
1 yt

{
(t̄PRt) Φ∗2 + (t̄PLt) Φ2 −

(
b̄PRt

)
Φ∗1 − (t̄PLb) Φ1

}
, (2.10)

δLΦ = δZ
(2Φ)
2 ∂µΦ†∂µΦ−m2 δZΦ2Φ†Φ + δZ

(4Φ)
1

(
Φ†Φ

)2
. (2.11)
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All these renormalization constants were computed at three-loop level in the course of the

calculations in [5]. The simplest way to derive the renormalization constant for the strong

gauge coupling gs is via

Zgs =
Z

(ccg)
1

Z
(2c)
3

√
Z

(2g)
3

(2.12)

where we use the renormalization constants Z = 1 + δZ in the MS-scheme. All divergent

integrals are regularized in D = 4− 2ε space time dimensions.

2.2 Automation and calculation with massive tadpoles

The calculation begins with the generation of all necessary 1PI Feynman diagrams with

two external ghost or gluon legs for Z
(2c)
3 or Z

(2g)
3 and with two external ghost and one

external gluon leg for Z
(ccg)
1 . This was done with the program QGRAF [51].

The C++ programs Q2E and EXP [52, 53] are then used to identify the topology of

the diagram. Later we will Taylor expand in the external momenta and use projectors on

the integrals in order to make them scalar. For example the ghost-gluon vertex corrections

are proportional to the outgoing ghost momentum qµ, where µ is the Lorentz index of

the gluon leg. Hence we expand to first order in q, use the projector qµ

q2 on the integral

and set q → 0 after that. This is allowed as MS renormalization constants do not depend

on external momenta. After having set all external momenta to zero we are left with

tadpole integrals. The fermion traces, the expansion in the external momenta and the in-

sertion of counterterms in one-loop, two-loop and three-loop diagrams was performed using

FORM [54, 55]. The colour factors were computed with the FORM package COLOR [56].

The tadpole integrals up to three-loop order were computed with the FORM-based package

MATAD [57].

At four-loop level there are two independent tadpole topologies, see figure 1.1 All

scalar products pi · pj (i, j = 1, . . . , 10) can be written as linear combinations of the p2
i

which can be expressed in terms of the scalar propagators Di = 1
i

1
M2−p2

i
and the auxiliary

Mass M2 (see below). Hence all four-loop integrals can be written in terms of functions

TAD4l(n1, . . . , n10) :=

∫
dDp1

∫
dDp2

∫
dDp3

∫
dDp4

10∏
i=1

Dni
i . (2.13)

The integrals (2.13) can be reduced to Master Intgrals (MI) using FIRE [59]. For the

huge number of integrals in such a calculation the C++ version of FIRE 5 [60] is necessary.

All MI needed for this computation can be found in [33]. The program FIESTA 3 [61] was

used to numerically cross check these MI and some unreduced integrals as a check for our

setup.

In order to compute the divergent part of the needed self-energies and vertex corrections

we use the same method as in our previous calculations [5, 6]. This method was suggested

in [62] and further developed in [63]. A step-by-step explanation of this method can

be found in [46]. An auxiliary mass parameter M2 is introduced in every propagator

1All Feynman diagrams in this paper have been drawn with the Latex package Axodraw [58].
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p1

p2

p3

p4

p5

p6 p7

p8

p9

Planar topology: tad4lp.

p1

p2

p3

p4

p5

p6 p7

p8

p10

Non-planar topology: tad4lnp.

Figure 1. Four-loop tadpole topologies: p1, p2, p3, p4 are independent loop momenta, the others

are linear combinations p5 = p4 − p1, p6 = p2 − p1, p7 = p3 − p2, p8 = p3 − p4, p9 = p4 − p2 and

p10 = p4 + p2 − p1 − p3.

denominator. A naive Taylor expansion in the external momenta is performed before

applying the projector to scalar integrals. After that all external momenta are set to

zero which leaves us with scalar tadpole integrals. Subdivergences ∝ M2 are canceled by

counterterms
M2

2
δZ

(2g)

M2 AaµA
aµ and

M2

2
δZ

(2Φ)

M2 Φ†Φ . (2.14)

which are computed order by order in perturbation theory and inserted in lower loop dia-

grams. Note that this method is only valid for computing UV divergent parts of Feynman

diagrams, and hence Z-factors, not finite amplitudes.

2.3 Treatment of γ5

The most important issue of this calculation is the proper treatment of γ5 in dimensional

regularization. In D = 4 dimensions it can be defined as

γ5 = iγ0γ1γ2γ3 =
i

4!
εµνρσγ

µγνγργσ with ε0123 = 1 = −ε0123 . (2.15)

In most diagrams a naive treatment of γ5 is sufficient, i.e. we use {γ5, γ
µ} = 0 and γ2

5 = 1,

valid in D = 4 dimensions, until only one or no γ5 matrix remain on each fermion line, then

discard diagrams with at least one γ5. This is valid for fermion lines with less than four

Lorentz indices and momenta flowing into the fermion line. Figure 2 shows the schematic

cases of γ5 appearing on internal and external fermion lines. We start with the case of

internal lines (see figure 2a). In fact, for the calculation presented in this paper no external

fermion lines appear.

As we set all momenta external to the whole Feynman diagram to zero for the com-

putation of the UV divergent part of the diagram external momenta to a fermion line (k1,

k2,. . .) are loop momenta from other loops. Taking the trace over the closed fermion loop

in D = 4 dimensions yields a result with terms proportional to εµ1µ2µ3µ4 and εµ1µ2αβ k
α
1 k

β
2

and so on. In order for the ε-tensors not to vanish at least 4 free Lorentz structures are

needed. Else the diagram is set to zero.

– 5 –
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γ5

µ1 µ2

µ3 µ4

k2 k1

(a)

· · ·

γ5

(b)

Figure 2. γ5 on internal (a) and external (b) fermion lines.

If we have only one internal fermion line with one γ5 on it and the final result is known

to be scalar (not pseudoscalar), as are the counterterms we want to compute here, we can

discard these terms as well. The only possibility for a non-naive contribution to the final

result can appear in the case of two (or more) fermion lines. Here the two ε-tensors can be

contracted and expressed in terms of the metric tensor

εµ1µ2µ3µ4εν1ν2ν3ν4 = −
∑
π

sgn(π)g
µπ(1)
ν1 g

µπ(2)
ν2 g

µπ(3)
ν3 g

µπ(4)
ν4 , (2.16)

where the sum is taken over all permutations π of (1,2,3,4) and

sgn(π) =

{
+1 for π even

−1 for π odd
. (2.17)

The l.h.s. of (2.16) is composed of intrinsically four-dimensional objects whereas the r.h.s.

can be used in D = 4 − 2ε dimensions, introducing an uncertainty of O(ε). However, if

the integrals appearing in the calculation of the Feynman diagram in question have only 1
ε

poles the divergent part, which we are interested in here, is unaffected.

For completeness we want to make a short remark about external fermion lines, such

as the one shown in figure 2b, as well. Here we can anticommute the γ5 to the end of

the fermion line and hence outside of all loops. But if we use a projector on the external

fermion line in order to make the integral scalar and this involves taking a trace over the

fermion line we have to treat it the same way as the internal ones. In the case of the

three-loop β-function for the Yukawa couplings a non-naive γ5 effect from the contraction

of the ε-tensors from an internal and an external fermion line was observed [5].

In the calculations needed for the renormalization constants in (2.12) only one type of

diagram features two fermion lines with four external Lorentz indices or loop-momenta to

them, namely in the gluon propagator, when each external leg is attached to a different

fermion loop and the two fermion loops are connected by a gluon and two Φ-lines. A planar

example is shown in figure 3.

– 6 –
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µ1 µ2

ν1 ν2

l1

l2

PL

PR

PR

PL

Figure 3. Diagram giving a non-naive γ5-contribution to the gluon self-energy: each fermion line

has two indices µi and νi (i=1,2) and two momenta l1, l2, which can support a εµiνiαβlαlβ term.

The left- and right-handed projectors PL,R introduce γ5 into the diagram.

There are 72 diagrams contributing to the non-naive part of the gluon propagator,

which (like figure 3) are all obtained by connecting two fermion loops with an external

gluon leg each by means of one gluon propagator and two scalar propagators in all possible

ways. Using {γ5, γ
µ} = 0 we move all γ5 matrices on each fermion line to the same reading

point, for which we choose the external vertex. We checked that the same result is obtained

if we choose to place γ5 to the left or to the right of the external γµ1,2 . We can also use

the Larin prescription [64]

γµγ5 =
i

3!
εµρ1ρ2ρ3γρ1γρ2γρ3 , (2.18)

which combines the two possibilities, with the same result. It is only important that the

reading point is the same for all 72 diagrams. Due to γ2
5 = 1 we are left with one or no γ5

on each fermion line. If there is only one γ5 on one fermion line the contribution is zero.

Terms with no γ5 contribute to the naive part of the gluon propagator. The remaining

contribution from one γ5 on each fermion line is what we call the non-naive contribution.

The γ5 prescription using the same external vertex in all diagrams was described in [65] as

a practical and consistent γ5 scheme.

We checked explicitly that only 1
ε poles appear in the results for these diagrams. In

fact, as an additional precaution we checked that at O(ε) completely antisymmetric and

completely symmetric structures composed of the metric and the eight indices appearing

in the ε tensors do not give contributions to the divergent part. This was implemented as

εµ1µ2µ3µ4εν1ν2ν3ν4 = −
∑
π

sgn(π)g
µπ(1)
ν1 g

µπ(2)
ν2 g

µπ(3)
ν3 g

µπ(4)
ν4 (1 + ε · Cas)

+ε · Cs
∑
π

g
µπ(1)
ν1 g

µπ(2)
ν2 g

µπ(3)
ν3 g

µπ(4)
ν4 , (2.19)

where the labels Cas,s parametrize the uncertainty introduced through (2.16) being applied

in D = 4− 2ε. As they drop out in the divergent term of our final result we are convinced

that γ5 can be treated in this way.

However, in contrast to the Yukawa coupling β-functions at three-loop level, we find

here that the result is different if we do not choose the same reading point for γ5 before

taking the trace.

– 7 –
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For instance, if we leave each γ5 matrix at the point on the fermion line where it was

introduced by the Feynman rules, i.e. we do not use {γ5, γ
µ} = 0 at all in terms with one

γ5 on each fermion line, the result for these terms is a factor 6 larger. This procedure is the

opposite of moving all γ5 to a common reading point, but it is inconsistent as we still use

{γ5, γ
µ} = 0 and γ2

5 = 1 in terms with two γ5 on one fermion line. This shows, however,

that anticommuting γ5 along the fermion lines arbitrarily in each diagram spoils the result

even though only 1
ε poles are visible in the final result. This becomes clear when we use

D = 4−2ε̃ when evaluating the fermion traces and D = 4−2ε in the intergral reduction and

the master integrals. Then we see terms ∝ ε̃
ε2

independent of the labels Cas,s. This means

that the ambiguity is introduced by anticommuting the γ5 to different points in different

terms. At present this issue is not fully understood. The approach described above using

the external reading point seems most intuitive. The result is also stable for choices of the

reading point to the left or right of the external vertex. We will check that the numerical

impact of the non-naive terms is small. In fact, even a non-naive contribution of a factor

6 larger would be numerically small compared to the naive contribution.

Naturally, we checked that this treatment of γ5 respects the Ward identity manifest in

the transversal structure of the gluon self-energy.

3 Results

In this section we give the results for the four-loop β-function of the strong coupling gs
in the gaugeless limit of the SM. For a gerneric SU(Nc) gauge group the colour factors

are expressed through the quadratic Casimir operators CF and CA of the fundamental

and the adjoint representation of the corresponding Lie algebra. The dimension of the

fundamental representation is called Nc. The adjoint representation has dimension ng and

the trace TF defined by TFδ
ab = Tr

(
T aT b

)
with the group generators T a of the fundamental

representation. In addition we need a few higher order invariants constructed from the

symmetric tensors

dabcdF =
1

6
Tr
(
T aT bT cT d + T aT bT dT c + T aT cT bT d

+ T aT cT dT b + T aT dT bT c + T aT dT cT b
)
. (3.1)

from the generators of the fundamental representation and analogously dabcdA constructed

from the generators of the adjoint representation. The combinations needed and their

SU(Nc) values are

dabcdF dabcdF

ng
=
N4

c − 6N2
c + 18

96N2
c

,
dabcdF dabcdA

ng
=
Nc(N

2
c + 6)

48
, (3.2)

dabcdA dabcdA

ng
=
N2

c (N2
c + 36)

24
.

Furthermore for SU(Nc) we have

TF =
1

2
, CF =

N2
c − 1

2Nc

, CA = Nc, ng = N2
c − 1 . (3.3)

– 8 –
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The number of active fermion flavours is denoted by nf (= 6 in the SM).

β(4)
gs

gs
= g8

s

(
40

9

dabcdA dabcdA

ng
− 150653

972
C4

A −
256

9
nf
dabcdF dabcdA

ng
− 23nfTFC

3
F

+
2102

27
nfCATFC

2
F −

7073

486
nfC

2
ATFCF +

39143

162
nfC

3
ATF +

352

9
n2
f

dabcdF dabcdF

ng

−676

27
n2
fT

2
FC

2
F −

8576

243
n2
fCAT

2
FCF −

3965

81
n2
fC

2
AT

2
F −

616

243
n3
fT

3
FCF

−212

243
n3
fCAT

3
F −

352

3
ζ3
dabcdA dabcdA

ng
+

22

9
ζ3C

4
A +

832

3
ζ3nf

dabcdF dabcdA

ng

−176

9
ζ3nfCATFC

2
F +

328

9
ζ3nfC

2
ATFCF −

68

3
ζ3nfC

3
ATF −

256

3
ζ3n

2
f

dabcdF dabcdF

ng

+
352

9
ζ3n

2
fT

2
FC

2
F −

224

9
ζ3n

2
fCAT

2
FCF −

112

9
ζ3n

2
fC

2
AT

2
F

)
+ g6

s y
2
t

(
−3TFC

2
F −

523

18
CATFCF −

985

9
C2

ATF +
322

9
nfT

2
FCF

+
218

9
nfCAT

2
F + 72ζ3TFC

2
F + 36ζ3CATFCF

)
+ g4

s y
4
t

(
−3TFCF +

41

2
TFCFNc + 36CATF + 25CATFNc

−24ζ3TFCFNc + T 2
F

(
80

3
− 32ζ3

))
+ g2

s y
6
t

(
−21

4
TF − 29TFNc −

3

2
TFN

2
c − 6ζ3TF

)
− 30g2

s y
4
t λTF + 36TFg

2
s y

2
t λ

2.

(3.4)

This is in agreement with [50] if the same γ5 prescription is used. The term ∝ g4
s y

4
t T

2
F

is the only one affected by non-naive γ5 contributions as explained above. The naive and

non-naive (i.e. stemming from the contraction of two ε-tensors) contributions are

g4
s y

4
t T

2
F

(
80

3
− 32ζ3

)
= g4

s y
4
t T

2
F

 24︸︷︷︸
(naive)

+
8

3︸︷︷︸
(non-naive)

− 48ζ3︸︷︷︸
(naive)

+ 16ζ3︸︷︷︸
(non-naive)

 . (3.5)

The lower loop results are

β(3)
gs

gs
= g6

s

(
−2857

108
C3

A − nfTFC
2
F +

205

18
nfCATFCF

+
1415

54
nfC

2
ATF −

22

9
n2
fT

2
FCF −

79

27
n2
fCAT

2
F

)
(3.6)

−g4
s y

2
t (3TFCF + 12CATF) + g2

s y
4
t

(
+

9

2
TF +

7

2
TFNc

)
,

– 9 –
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β(2)
gs

gs
= g4

s

(
−17

3
C2

A + 2nfTFCF +
10

3
nfCATF

)
− 2g2

s y
2
t , (3.7)

β(1)
gs

gs
= g2

s

(
−11

6
CA +

2

3
nfTF

)
. (3.8)

in agreement with [5]. The pure QCD part of (3.4) agrees with [32, 33].

For convenience we also give the β-function for αs. We absorb the loop factor 1
16π2 into

as =
g2
s

(4π)2
=
αs
4π
, at =

y2
t

(4π)2
, aλ =

λ

(4π)2
(3.9)

and define

βαs(as, at, aλ) =

∞∑
n=1

β(n)
αs

(as, at, aλ). (3.10)

We find

β(4)
αs

αs
= a4

s

(
80

9

dabcdA dabcdA

ng
− 150653

486
C4

A −
512

9
nf
dabcdF dabcdA

ng
− 46nfTFC

3
F

+
4204

27
nfCATFC

2
F −

7073

243
nfC

2
ATFCF +

39143

81
nfC

3
ATF

+
704

9
n2
f

dabcdF dabcdF

ng
− 1352

27
n2
fT

2
FC

2
F −

17152

243
n2
fCAT

2
FCF

−7930

81
n2
fC

2
AT

2
F −

1232

243
n3
fT

3
FCF −

424

243
n3
fCAT

3
F −

704

3
ζ3
dabcdA dabcdA

ng

+
44

9
ζ3C

4
A +

1664

3
ζ3nf

dabcdF dabcdA

ng
− 352

9
ζ3nfCATFC

2
FCF

+
656

9
ζ3nfC

2
ATF −

136

3
ζ3nfC

3
ATF −

512

3
ζ3n

2
f

dabcdF dabcdF

ng
CF

+
704

9
ζ3n

2
fT

2
FC

2
F −

448

9
ζ3n

2
fCAT

2
FCF −

224

9
ζ3n

2
fC

2
AT

2
F

)
+ ata

3
s

(
−6TFC

2
F −

523

9
CATFCF −

1970

9
C2

ATF +
644

9
nfT

2
FCF

+
436

9
nfCAT

2
F + 144ζ3TFC

2
F + 72ζ3CATFCF

)
+ a2

t a
2
s

(
− 6TFCF + 41TFCFNc + 72CATF + 50CATFNc

−48ζ3TFCFNc + T 2
F

(
160

3
− 64ζ3

))
+ a3

t as

(
−21

2
TF − 58TFNc − 3TFN

2
c − 12ζ3TF

)
+ a2

t asaλ (−60TF) + atasa
2
λ (+72TF) ,

(3.11)
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where

a2
t a

2
sT

2
F

(
+

160

3
T 2

F − 64ζ3T
2
F

)
= a2

t a
2
sT

2
F

 48︸︷︷︸
(naive)

+
16

3︸︷︷︸
(non-naive)

− 96ζ3︸︷︷︸
(naive)

+ 32ζ3︸︷︷︸
(non-naive)

 . (3.12)

and

β(3)
αs

αs
= a3

s

(
−2857

54
C3

A − 2nfTFC
2
F +

205

9
nfCATFCF

+
1415

27
nfC

2
ATF −

44

9
n2
fT

2
FCF −

158

27
n2
fCAT

2
F

)
(3.13)

+ata
2
s (−6TFCF − 24CATF) + a2

t as (+9TF + 7TFNc) ,

β(2)
αs

αs
= a2

s

(
−34

3
C2

A + 4nfTFCF +
20

3
nfCATF

)
+ atas (−4TF) , (3.14)

β(1)
αs

αs
= as

(
−11

3
CA +

4

3
nfTF

)
. (3.15)

Now we want to give a numerical evaluation of the β-functions at the scale of the top

mass in order to get an idea of the size of the new terms. For Mt ≈ 173.34± 0.76 GeV [66],

MH ≈ 125.09± 0.24 GeV [67] and αs(MZ) = 0.1184± 0.0007 [68] we get the couplings in

the MS-scheme at this scale using two-loop matching relations [48]

gs(Mt) = 1.1666± 0.0035(exp),

yt(Mt) = 0.9369± 0.0046(exp)± 0.0005(theo), (3.16)

λ(Mt) = 0.1259± 0.0005(exp)± 0.0003(theo)

where the experimental uncertainty (exp) stems from Mt,MH and αs(MZ) and the theoret-

ical one (theo) from the matching of on-shell to MS parameters (these are taken from [48]).

We find2

β(2)
gs

β
(1)
gs (16π2)

= 3.20× 10−2︸ ︷︷ ︸
g4
s

+1.59× 10−3︸ ︷︷ ︸
g2
sy

2
t

, (3.17)

β(3)
gs

β
(1)
gs (16π2)2

= −3.45× 10−4︸ ︷︷ ︸
g6
s

+2.74× 10−4︸ ︷︷ ︸
g4
sy

2
t

−6.62× 10−5︸ ︷︷ ︸
g2
sy

4
t

, (3.18)

β(4)
gs

β
(1)
gs (16π2)3

= 2.26× 10−4︸ ︷︷ ︸
g8
s

+2.47× 10−5︸ ︷︷ ︸
g6
sy

2
t

−1.06× 10−5︸ ︷︷ ︸
g4
sy

4
t (naive)

−4.17× 10−7︸ ︷︷ ︸
g4
sy

4
t (non-naive)

(3.19)

+2.77× 10−6︸ ︷︷ ︸
g2
sy

6
t

+1.06× 10−7︸ ︷︷ ︸
g2
sy

4
t λ

−1.82× 10−8︸ ︷︷ ︸
g2
sy

2
t λ

2

. (3.20)

2The labels under the braces indicate from which part of the β-function the contributions come.
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We see that the top-Yukawa contributions have a sizable impact on the four-loop β-function

for the strong coupling. The part ∝ g6
s y

2
t increases it by ∼ 11% and the part ∝ g4

s y
4
t

decreases it by ∼ 5% at this scale compared to the pure QCD contribution ∝ g8
s . The

non-naive term gives only a ∼ 0.18% contribution if we assume the γ5 prescription with a

readout point at the external gluon vertices. That is ∼ 4% of the total term ∝ g4
s y

4
t . So

even if we attached an uncertainty factor of 6 to the non-naive term the uncertainty is only

∼ 1.1% of the leading term ∝ g8
s at this scale. We believe the result presented in this paper

to be correct but we nevertheless note here that any deviation due to a different treatment

of γ5 would be phenomenologically irrelevant.

4 Conclusions

We have presented an analytical result for the four-loop β-function of the strong coupling gs
in the gaugeless limit of the SM. This constitutes an important extension of the well-known

QCD result as top-Yukawa coupling is numerically the next important coupling after gs, at

least at the electroweak scale. Furthermore, this is an important step towards a complete

calculation of the four-loop β-functions of the gauge couplings in the full SM.

An important feature of this result is the non-naive γ5 contribution ∝ g4
s y

4
t . In the

pure gauge boson and fermion sector of the SM, given by LSU(3)×SU(2)×U(1), all non-naive

contributions cancel in the sum of all diagrams, making this part of the SM anomaly free.

This has been explicitly checked during the calculation of the three-loop β-functions for

the gauge couplings in the SM [2, 3]. Here we see that with the inclusion of a scalar field

non-naive contributions may appear in higher orders and special care will have to be taken

when attempting a complete calculation of four-loop β-functions in the SM.
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