KIT | KIT-Bibliothek | Impressum

Magnetostrictive Fe_73Ga_27 nanocontacts for low-field conductance switching

Kannan, U. M.; Kuntz, Sebastian; Berg, Oliver; Kittler, Wolfram; Basumatary, H.; Chelvane, J. Arout; Sürgers, Christoph; Jammalamadaka, S. Narayana

Abstract: The electrical conductance G of magnetostrictive nanocontacts made from Galfenol (Fe73Ga27) can be reproducibly switched between “on” and “off” states in a low magnetic field of ∼20–30 mT at 10 K. The switching behavior is in agreement with the magnetic field dependence of the magnetostriction inferred from the magnetization behavior, causing a positive magnetostrictive strain along the magnetic field. The repeated magnetic-field cycling leads to a stable contact geometry and to a robust contact configuration with a very low hysteresis of ∼1 mT between opening and closing the contact due to a training effect. Non-integral multiples of the conductance quantum G 0 observed for G > G 0 are attributed to electron backscattering at defect sites in the electrodes near the contact interface. When the contact is closed either mechanically or by magnetic field, the conductance shows an exponential behavior below G 0 due to electron tunneling. This allows to estimate the magnetostriction λ = 4 × 10−5 at 10 K. The results demonstrate that such magnetostrictive devices are suitable for the remote control of the conductance by low magnetic fields in future nanotechnology applications.


Zugehörige Institution(en) am KIT Physikalisches Institut (PHI)
Publikationstyp Zeitschriftenaufsatz
Jahr 2016
Sprache Englisch
Identifikator DOI: 10.1063/1.4953873
ISSN: 0003-6951
KITopen ID: 1000055520
Erschienen in Applied Physics Letters
Band 108
Seiten 242408
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page